1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that ARM uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMISelLowering.h" 16 #include "ARMCallingConv.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMPerfectShuffle.h" 20 #include "ARMSubtarget.h" 21 #include "ARMTargetMachine.h" 22 #include "ARMTargetObjectFile.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/CodeGen/CallingConvLower.h" 27 #include "llvm/CodeGen/IntrinsicLowering.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/MC/MCSectionMachO.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Target/TargetOptions.h" 50 #include <utility> 51 using namespace llvm; 52 53 #define DEBUG_TYPE "arm-isel" 54 55 STATISTIC(NumTailCalls, "Number of tail calls"); 56 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); 57 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); 58 59 cl::opt<bool> 60 EnableARMLongCalls("arm-long-calls", cl::Hidden, 61 cl::desc("Generate calls via indirect call instructions"), 62 cl::init(false)); 63 64 static cl::opt<bool> 65 ARMInterworking("arm-interworking", cl::Hidden, 66 cl::desc("Enable / disable ARM interworking (for debugging only)"), 67 cl::init(true)); 68 69 namespace { 70 class ARMCCState : public CCState { 71 public: 72 ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, 73 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, 74 ParmContext PC) 75 : CCState(CC, isVarArg, MF, locs, C) { 76 assert(((PC == Call) || (PC == Prologue)) && 77 "ARMCCState users must specify whether their context is call" 78 "or prologue generation."); 79 CallOrPrologue = PC; 80 } 81 }; 82 } 83 84 // The APCS parameter registers. 85 static const MCPhysReg GPRArgRegs[] = { 86 ARM::R0, ARM::R1, ARM::R2, ARM::R3 87 }; 88 89 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, 90 MVT PromotedBitwiseVT) { 91 if (VT != PromotedLdStVT) { 92 setOperationAction(ISD::LOAD, VT, Promote); 93 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); 94 95 setOperationAction(ISD::STORE, VT, Promote); 96 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); 97 } 98 99 MVT ElemTy = VT.getVectorElementType(); 100 if (ElemTy != MVT::i64 && ElemTy != MVT::f64) 101 setOperationAction(ISD::SETCC, VT, Custom); 102 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 103 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 104 if (ElemTy == MVT::i32) { 105 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 106 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 107 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 108 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 109 } else { 110 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 111 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 112 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 113 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 114 } 115 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 116 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 117 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); 118 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); 119 setOperationAction(ISD::SELECT, VT, Expand); 120 setOperationAction(ISD::SELECT_CC, VT, Expand); 121 setOperationAction(ISD::VSELECT, VT, Expand); 122 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 123 if (VT.isInteger()) { 124 setOperationAction(ISD::SHL, VT, Custom); 125 setOperationAction(ISD::SRA, VT, Custom); 126 setOperationAction(ISD::SRL, VT, Custom); 127 } 128 129 // Promote all bit-wise operations. 130 if (VT.isInteger() && VT != PromotedBitwiseVT) { 131 setOperationAction(ISD::AND, VT, Promote); 132 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); 133 setOperationAction(ISD::OR, VT, Promote); 134 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); 135 setOperationAction(ISD::XOR, VT, Promote); 136 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); 137 } 138 139 // Neon does not support vector divide/remainder operations. 140 setOperationAction(ISD::SDIV, VT, Expand); 141 setOperationAction(ISD::UDIV, VT, Expand); 142 setOperationAction(ISD::FDIV, VT, Expand); 143 setOperationAction(ISD::SREM, VT, Expand); 144 setOperationAction(ISD::UREM, VT, Expand); 145 setOperationAction(ISD::FREM, VT, Expand); 146 } 147 148 void ARMTargetLowering::addDRTypeForNEON(MVT VT) { 149 addRegisterClass(VT, &ARM::DPRRegClass); 150 addTypeForNEON(VT, MVT::f64, MVT::v2i32); 151 } 152 153 void ARMTargetLowering::addQRTypeForNEON(MVT VT) { 154 addRegisterClass(VT, &ARM::DPairRegClass); 155 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); 156 } 157 158 static TargetLoweringObjectFile *createTLOF(const Triple &TT) { 159 if (TT.isOSBinFormatMachO()) 160 return new TargetLoweringObjectFileMachO(); 161 if (TT.isOSWindows()) 162 return new TargetLoweringObjectFileCOFF(); 163 return new ARMElfTargetObjectFile(); 164 } 165 166 ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) 167 : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) { 168 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 169 RegInfo = TM.getSubtargetImpl()->getRegisterInfo(); 170 Itins = TM.getSubtargetImpl()->getInstrItineraryData(); 171 172 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 173 174 if (Subtarget->isTargetMachO()) { 175 // Uses VFP for Thumb libfuncs if available. 176 if (Subtarget->isThumb() && Subtarget->hasVFP2() && 177 Subtarget->hasARMOps() && !TM.Options.UseSoftFloat) { 178 // Single-precision floating-point arithmetic. 179 setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); 180 setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); 181 setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); 182 setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); 183 184 // Double-precision floating-point arithmetic. 185 setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); 186 setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); 187 setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); 188 setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); 189 190 // Single-precision comparisons. 191 setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); 192 setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); 193 setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); 194 setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); 195 setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); 196 setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); 197 setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); 198 setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); 199 200 setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); 201 setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); 202 setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); 203 setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); 204 setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); 205 setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); 206 setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); 207 setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); 208 209 // Double-precision comparisons. 210 setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); 211 setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); 212 setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); 213 setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); 214 setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); 215 setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); 216 setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); 217 setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); 218 219 setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); 220 setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); 221 setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); 222 setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); 223 setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); 224 setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); 225 setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); 226 setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); 227 228 // Floating-point to integer conversions. 229 // i64 conversions are done via library routines even when generating VFP 230 // instructions, so use the same ones. 231 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); 232 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); 233 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); 234 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); 235 236 // Conversions between floating types. 237 setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); 238 setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); 239 240 // Integer to floating-point conversions. 241 // i64 conversions are done via library routines even when generating VFP 242 // instructions, so use the same ones. 243 // FIXME: There appears to be some naming inconsistency in ARM libgcc: 244 // e.g., __floatunsidf vs. __floatunssidfvfp. 245 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); 246 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); 247 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); 248 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); 249 } 250 } 251 252 // These libcalls are not available in 32-bit. 253 setLibcallName(RTLIB::SHL_I128, nullptr); 254 setLibcallName(RTLIB::SRL_I128, nullptr); 255 setLibcallName(RTLIB::SRA_I128, nullptr); 256 257 if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetMachO() && 258 !Subtarget->isTargetWindows()) { 259 static const struct { 260 const RTLIB::Libcall Op; 261 const char * const Name; 262 const CallingConv::ID CC; 263 const ISD::CondCode Cond; 264 } LibraryCalls[] = { 265 // Double-precision floating-point arithmetic helper functions 266 // RTABI chapter 4.1.2, Table 2 267 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 268 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 269 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 270 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 271 272 // Double-precision floating-point comparison helper functions 273 // RTABI chapter 4.1.2, Table 3 274 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, 275 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, 276 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, 277 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, 278 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, 279 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, 280 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, 281 { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ }, 282 283 // Single-precision floating-point arithmetic helper functions 284 // RTABI chapter 4.1.2, Table 4 285 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 286 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 287 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 288 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 289 290 // Single-precision floating-point comparison helper functions 291 // RTABI chapter 4.1.2, Table 5 292 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, 293 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, 294 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, 295 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, 296 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, 297 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, 298 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, 299 { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ }, 300 301 // Floating-point to integer conversions. 302 // RTABI chapter 4.1.2, Table 6 303 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 304 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 305 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 306 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 307 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 308 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 309 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 310 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 311 312 // Conversions between floating types. 313 // RTABI chapter 4.1.2, Table 7 314 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 315 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 316 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 317 318 // Integer to floating-point conversions. 319 // RTABI chapter 4.1.2, Table 8 320 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 321 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 322 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 323 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 324 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 325 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 326 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 327 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 328 329 // Long long helper functions 330 // RTABI chapter 4.2, Table 9 331 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 332 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 333 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 334 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 335 336 // Integer division functions 337 // RTABI chapter 4.3.1 338 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 339 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 340 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 341 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 342 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 343 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 344 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 345 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 346 347 // Memory operations 348 // RTABI chapter 4.3.4 349 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 350 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 351 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 352 }; 353 354 for (const auto &LC : LibraryCalls) { 355 setLibcallName(LC.Op, LC.Name); 356 setLibcallCallingConv(LC.Op, LC.CC); 357 if (LC.Cond != ISD::SETCC_INVALID) 358 setCmpLibcallCC(LC.Op, LC.Cond); 359 } 360 } 361 362 if (Subtarget->isTargetWindows()) { 363 static const struct { 364 const RTLIB::Libcall Op; 365 const char * const Name; 366 const CallingConv::ID CC; 367 } LibraryCalls[] = { 368 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP }, 369 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP }, 370 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP }, 371 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP }, 372 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP }, 373 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP }, 374 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP }, 375 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP }, 376 }; 377 378 for (const auto &LC : LibraryCalls) { 379 setLibcallName(LC.Op, LC.Name); 380 setLibcallCallingConv(LC.Op, LC.CC); 381 } 382 } 383 384 // Use divmod compiler-rt calls for iOS 5.0 and later. 385 if (Subtarget->getTargetTriple().isiOS() && 386 !Subtarget->getTargetTriple().isOSVersionLT(5, 0)) { 387 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); 388 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); 389 } 390 391 // The half <-> float conversion functions are always soft-float, but are 392 // needed for some targets which use a hard-float calling convention by 393 // default. 394 if (Subtarget->isAAPCS_ABI()) { 395 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS); 396 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS); 397 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS); 398 } else { 399 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS); 400 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS); 401 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS); 402 } 403 404 if (Subtarget->isThumb1Only()) 405 addRegisterClass(MVT::i32, &ARM::tGPRRegClass); 406 else 407 addRegisterClass(MVT::i32, &ARM::GPRRegClass); 408 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && 409 !Subtarget->isThumb1Only()) { 410 addRegisterClass(MVT::f32, &ARM::SPRRegClass); 411 if (!Subtarget->isFPOnlySP()) 412 addRegisterClass(MVT::f64, &ARM::DPRRegClass); 413 } 414 415 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 416 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 417 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 418 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) 419 setTruncStoreAction((MVT::SimpleValueType)VT, 420 (MVT::SimpleValueType)InnerVT, Expand); 421 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); 422 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); 423 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); 424 425 setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand); 426 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 427 setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand); 428 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 429 430 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); 431 } 432 433 setOperationAction(ISD::ConstantFP, MVT::f32, Custom); 434 setOperationAction(ISD::ConstantFP, MVT::f64, Custom); 435 436 if (Subtarget->hasNEON()) { 437 addDRTypeForNEON(MVT::v2f32); 438 addDRTypeForNEON(MVT::v8i8); 439 addDRTypeForNEON(MVT::v4i16); 440 addDRTypeForNEON(MVT::v2i32); 441 addDRTypeForNEON(MVT::v1i64); 442 443 addQRTypeForNEON(MVT::v4f32); 444 addQRTypeForNEON(MVT::v2f64); 445 addQRTypeForNEON(MVT::v16i8); 446 addQRTypeForNEON(MVT::v8i16); 447 addQRTypeForNEON(MVT::v4i32); 448 addQRTypeForNEON(MVT::v2i64); 449 450 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but 451 // neither Neon nor VFP support any arithmetic operations on it. 452 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively 453 // supported for v4f32. 454 setOperationAction(ISD::FADD, MVT::v2f64, Expand); 455 setOperationAction(ISD::FSUB, MVT::v2f64, Expand); 456 setOperationAction(ISD::FMUL, MVT::v2f64, Expand); 457 // FIXME: Code duplication: FDIV and FREM are expanded always, see 458 // ARMTargetLowering::addTypeForNEON method for details. 459 setOperationAction(ISD::FDIV, MVT::v2f64, Expand); 460 setOperationAction(ISD::FREM, MVT::v2f64, Expand); 461 // FIXME: Create unittest. 462 // In another words, find a way when "copysign" appears in DAG with vector 463 // operands. 464 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); 465 // FIXME: Code duplication: SETCC has custom operation action, see 466 // ARMTargetLowering::addTypeForNEON method for details. 467 setOperationAction(ISD::SETCC, MVT::v2f64, Expand); 468 // FIXME: Create unittest for FNEG and for FABS. 469 setOperationAction(ISD::FNEG, MVT::v2f64, Expand); 470 setOperationAction(ISD::FABS, MVT::v2f64, Expand); 471 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); 472 setOperationAction(ISD::FSIN, MVT::v2f64, Expand); 473 setOperationAction(ISD::FCOS, MVT::v2f64, Expand); 474 setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); 475 setOperationAction(ISD::FPOW, MVT::v2f64, Expand); 476 setOperationAction(ISD::FLOG, MVT::v2f64, Expand); 477 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); 478 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); 479 setOperationAction(ISD::FEXP, MVT::v2f64, Expand); 480 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); 481 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. 482 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); 483 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); 484 setOperationAction(ISD::FRINT, MVT::v2f64, Expand); 485 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); 486 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); 487 setOperationAction(ISD::FMA, MVT::v2f64, Expand); 488 489 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 490 setOperationAction(ISD::FSIN, MVT::v4f32, Expand); 491 setOperationAction(ISD::FCOS, MVT::v4f32, Expand); 492 setOperationAction(ISD::FPOWI, MVT::v4f32, Expand); 493 setOperationAction(ISD::FPOW, MVT::v4f32, Expand); 494 setOperationAction(ISD::FLOG, MVT::v4f32, Expand); 495 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); 496 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); 497 setOperationAction(ISD::FEXP, MVT::v4f32, Expand); 498 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); 499 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); 500 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); 501 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 502 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 503 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); 504 505 // Mark v2f32 intrinsics. 506 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); 507 setOperationAction(ISD::FSIN, MVT::v2f32, Expand); 508 setOperationAction(ISD::FCOS, MVT::v2f32, Expand); 509 setOperationAction(ISD::FPOWI, MVT::v2f32, Expand); 510 setOperationAction(ISD::FPOW, MVT::v2f32, Expand); 511 setOperationAction(ISD::FLOG, MVT::v2f32, Expand); 512 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); 513 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); 514 setOperationAction(ISD::FEXP, MVT::v2f32, Expand); 515 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); 516 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); 517 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); 518 setOperationAction(ISD::FRINT, MVT::v2f32, Expand); 519 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); 520 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); 521 522 // Neon does not support some operations on v1i64 and v2i64 types. 523 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 524 // Custom handling for some quad-vector types to detect VMULL. 525 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 526 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 527 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 528 // Custom handling for some vector types to avoid expensive expansions 529 setOperationAction(ISD::SDIV, MVT::v4i16, Custom); 530 setOperationAction(ISD::SDIV, MVT::v8i8, Custom); 531 setOperationAction(ISD::UDIV, MVT::v4i16, Custom); 532 setOperationAction(ISD::UDIV, MVT::v8i8, Custom); 533 setOperationAction(ISD::SETCC, MVT::v1i64, Expand); 534 setOperationAction(ISD::SETCC, MVT::v2i64, Expand); 535 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with 536 // a destination type that is wider than the source, and nor does 537 // it have a FP_TO_[SU]INT instruction with a narrower destination than 538 // source. 539 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 540 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 541 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); 542 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); 543 544 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 545 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); 546 547 // NEON does not have single instruction CTPOP for vectors with element 548 // types wider than 8-bits. However, custom lowering can leverage the 549 // v8i8/v16i8 vcnt instruction. 550 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); 551 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); 552 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); 553 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); 554 555 // NEON only has FMA instructions as of VFP4. 556 if (!Subtarget->hasVFP4()) { 557 setOperationAction(ISD::FMA, MVT::v2f32, Expand); 558 setOperationAction(ISD::FMA, MVT::v4f32, Expand); 559 } 560 561 setTargetDAGCombine(ISD::INTRINSIC_VOID); 562 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 563 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 564 setTargetDAGCombine(ISD::SHL); 565 setTargetDAGCombine(ISD::SRL); 566 setTargetDAGCombine(ISD::SRA); 567 setTargetDAGCombine(ISD::SIGN_EXTEND); 568 setTargetDAGCombine(ISD::ZERO_EXTEND); 569 setTargetDAGCombine(ISD::ANY_EXTEND); 570 setTargetDAGCombine(ISD::SELECT_CC); 571 setTargetDAGCombine(ISD::BUILD_VECTOR); 572 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 573 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 574 setTargetDAGCombine(ISD::STORE); 575 setTargetDAGCombine(ISD::FP_TO_SINT); 576 setTargetDAGCombine(ISD::FP_TO_UINT); 577 setTargetDAGCombine(ISD::FDIV); 578 579 // It is legal to extload from v4i8 to v4i16 or v4i32. 580 MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8, 581 MVT::v4i16, MVT::v2i16, 582 MVT::v2i32}; 583 for (unsigned i = 0; i < 6; ++i) { 584 setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal); 585 setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal); 586 setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal); 587 } 588 } 589 590 // ARM and Thumb2 support UMLAL/SMLAL. 591 if (!Subtarget->isThumb1Only()) 592 setTargetDAGCombine(ISD::ADDC); 593 594 595 computeRegisterProperties(); 596 597 // ARM does not have floating-point extending loads. 598 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); 599 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand); 600 601 // ... or truncating stores 602 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 603 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 604 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 605 606 // ARM does not have i1 sign extending load. 607 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 608 609 // ARM supports all 4 flavors of integer indexed load / store. 610 if (!Subtarget->isThumb1Only()) { 611 for (unsigned im = (unsigned)ISD::PRE_INC; 612 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 613 setIndexedLoadAction(im, MVT::i1, Legal); 614 setIndexedLoadAction(im, MVT::i8, Legal); 615 setIndexedLoadAction(im, MVT::i16, Legal); 616 setIndexedLoadAction(im, MVT::i32, Legal); 617 setIndexedStoreAction(im, MVT::i1, Legal); 618 setIndexedStoreAction(im, MVT::i8, Legal); 619 setIndexedStoreAction(im, MVT::i16, Legal); 620 setIndexedStoreAction(im, MVT::i32, Legal); 621 } 622 } 623 624 setOperationAction(ISD::SADDO, MVT::i32, Custom); 625 setOperationAction(ISD::UADDO, MVT::i32, Custom); 626 setOperationAction(ISD::SSUBO, MVT::i32, Custom); 627 setOperationAction(ISD::USUBO, MVT::i32, Custom); 628 629 // i64 operation support. 630 setOperationAction(ISD::MUL, MVT::i64, Expand); 631 setOperationAction(ISD::MULHU, MVT::i32, Expand); 632 if (Subtarget->isThumb1Only()) { 633 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 634 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 635 } 636 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() 637 || (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP())) 638 setOperationAction(ISD::MULHS, MVT::i32, Expand); 639 640 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 641 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 642 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 643 setOperationAction(ISD::SRL, MVT::i64, Custom); 644 setOperationAction(ISD::SRA, MVT::i64, Custom); 645 646 if (!Subtarget->isThumb1Only()) { 647 // FIXME: We should do this for Thumb1 as well. 648 setOperationAction(ISD::ADDC, MVT::i32, Custom); 649 setOperationAction(ISD::ADDE, MVT::i32, Custom); 650 setOperationAction(ISD::SUBC, MVT::i32, Custom); 651 setOperationAction(ISD::SUBE, MVT::i32, Custom); 652 } 653 654 // ARM does not have ROTL. 655 setOperationAction(ISD::ROTL, MVT::i32, Expand); 656 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 657 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 658 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) 659 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 660 661 // These just redirect to CTTZ and CTLZ on ARM. 662 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand); 663 setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand); 664 665 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 666 667 // Only ARMv6 has BSWAP. 668 if (!Subtarget->hasV6Ops()) 669 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 670 671 if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) && 672 !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) { 673 // These are expanded into libcalls if the cpu doesn't have HW divider. 674 setOperationAction(ISD::SDIV, MVT::i32, Expand); 675 setOperationAction(ISD::UDIV, MVT::i32, Expand); 676 } 677 678 // FIXME: Also set divmod for SREM on EABI 679 setOperationAction(ISD::SREM, MVT::i32, Expand); 680 setOperationAction(ISD::UREM, MVT::i32, Expand); 681 // Register based DivRem for AEABI (RTABI 4.2) 682 if (Subtarget->isTargetAEABI()) { 683 setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod"); 684 setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod"); 685 setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod"); 686 setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod"); 687 setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod"); 688 setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod"); 689 setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod"); 690 setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod"); 691 692 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS); 693 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS); 694 setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS); 695 setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS); 696 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS); 697 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS); 698 setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS); 699 setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS); 700 701 setOperationAction(ISD::SDIVREM, MVT::i32, Custom); 702 setOperationAction(ISD::UDIVREM, MVT::i32, Custom); 703 } else { 704 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 705 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 706 } 707 708 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 709 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 710 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); 711 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 712 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 713 714 setOperationAction(ISD::TRAP, MVT::Other, Legal); 715 716 // Use the default implementation. 717 setOperationAction(ISD::VASTART, MVT::Other, Custom); 718 setOperationAction(ISD::VAARG, MVT::Other, Expand); 719 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 720 setOperationAction(ISD::VAEND, MVT::Other, Expand); 721 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 722 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 723 724 if (!Subtarget->isTargetMachO()) { 725 // Non-MachO platforms may return values in these registers via the 726 // personality function. 727 setExceptionPointerRegister(ARM::R0); 728 setExceptionSelectorRegister(ARM::R1); 729 } 730 731 if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment()) 732 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 733 else 734 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 735 736 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use 737 // the default expansion. 738 if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) { 739 // ATOMIC_FENCE needs custom lowering; the others should have been expanded 740 // to ldrex/strex loops already. 741 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 742 743 // On v8, we have particularly efficient implementations of atomic fences 744 // if they can be combined with nearby atomic loads and stores. 745 if (!Subtarget->hasV8Ops()) { 746 // Automatically insert fences (dmb ist) around ATOMIC_SWAP etc. 747 setInsertFencesForAtomic(true); 748 } 749 } else { 750 // If there's anything we can use as a barrier, go through custom lowering 751 // for ATOMIC_FENCE. 752 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, 753 Subtarget->hasAnyDataBarrier() ? Custom : Expand); 754 755 // Set them all for expansion, which will force libcalls. 756 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); 757 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); 758 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); 759 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); 760 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); 761 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); 762 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); 763 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); 764 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); 765 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); 766 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); 767 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); 768 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the 769 // Unordered/Monotonic case. 770 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 771 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 772 } 773 774 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 775 776 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. 777 if (!Subtarget->hasV6Ops()) { 778 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 779 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 780 } 781 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 782 783 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && 784 !Subtarget->isThumb1Only()) { 785 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR 786 // iff target supports vfp2. 787 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 788 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 789 } 790 791 // We want to custom lower some of our intrinsics. 792 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 793 if (Subtarget->isTargetDarwin()) { 794 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 795 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 796 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 797 } 798 799 setOperationAction(ISD::SETCC, MVT::i32, Expand); 800 setOperationAction(ISD::SETCC, MVT::f32, Expand); 801 setOperationAction(ISD::SETCC, MVT::f64, Expand); 802 setOperationAction(ISD::SELECT, MVT::i32, Custom); 803 setOperationAction(ISD::SELECT, MVT::f32, Custom); 804 setOperationAction(ISD::SELECT, MVT::f64, Custom); 805 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 806 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 807 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 808 809 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 810 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 811 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 812 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 813 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 814 815 // We don't support sin/cos/fmod/copysign/pow 816 setOperationAction(ISD::FSIN, MVT::f64, Expand); 817 setOperationAction(ISD::FSIN, MVT::f32, Expand); 818 setOperationAction(ISD::FCOS, MVT::f32, Expand); 819 setOperationAction(ISD::FCOS, MVT::f64, Expand); 820 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 821 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 822 setOperationAction(ISD::FREM, MVT::f64, Expand); 823 setOperationAction(ISD::FREM, MVT::f32, Expand); 824 if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() && 825 !Subtarget->isThumb1Only()) { 826 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 827 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 828 } 829 setOperationAction(ISD::FPOW, MVT::f64, Expand); 830 setOperationAction(ISD::FPOW, MVT::f32, Expand); 831 832 if (!Subtarget->hasVFP4()) { 833 setOperationAction(ISD::FMA, MVT::f64, Expand); 834 setOperationAction(ISD::FMA, MVT::f32, Expand); 835 } 836 837 // Various VFP goodness 838 if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) { 839 // int <-> fp are custom expanded into bit_convert + ARMISD ops. 840 if (Subtarget->hasVFP2()) { 841 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 842 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 843 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 844 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 845 } 846 847 // v8 adds f64 <-> f16 conversion. Before that it should be expanded. 848 if (!Subtarget->hasV8Ops()) { 849 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 850 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 851 } 852 853 // fp16 is a special v7 extension that adds f16 <-> f32 conversions. 854 if (!Subtarget->hasFP16()) { 855 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 856 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 857 } 858 } 859 860 // Combine sin / cos into one node or libcall if possible. 861 if (Subtarget->hasSinCos()) { 862 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 863 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 864 if (Subtarget->getTargetTriple().getOS() == Triple::IOS) { 865 // For iOS, we don't want to the normal expansion of a libcall to 866 // sincos. We want to issue a libcall to __sincos_stret. 867 setOperationAction(ISD::FSINCOS, MVT::f64, Custom); 868 setOperationAction(ISD::FSINCOS, MVT::f32, Custom); 869 } 870 } 871 872 // We have target-specific dag combine patterns for the following nodes: 873 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine 874 setTargetDAGCombine(ISD::ADD); 875 setTargetDAGCombine(ISD::SUB); 876 setTargetDAGCombine(ISD::MUL); 877 setTargetDAGCombine(ISD::AND); 878 setTargetDAGCombine(ISD::OR); 879 setTargetDAGCombine(ISD::XOR); 880 881 if (Subtarget->hasV6Ops()) 882 setTargetDAGCombine(ISD::SRL); 883 884 setStackPointerRegisterToSaveRestore(ARM::SP); 885 886 if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() || 887 !Subtarget->hasVFP2()) 888 setSchedulingPreference(Sched::RegPressure); 889 else 890 setSchedulingPreference(Sched::Hybrid); 891 892 //// temporary - rewrite interface to use type 893 MaxStoresPerMemset = 8; 894 MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4; 895 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores 896 MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2; 897 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores 898 MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2; 899 900 // On ARM arguments smaller than 4 bytes are extended, so all arguments 901 // are at least 4 bytes aligned. 902 setMinStackArgumentAlignment(4); 903 904 // Prefer likely predicted branches to selects on out-of-order cores. 905 PredictableSelectIsExpensive = Subtarget->isLikeA9(); 906 907 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2); 908 } 909 910 // FIXME: It might make sense to define the representative register class as the 911 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is 912 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, 913 // SPR's representative would be DPR_VFP2. This should work well if register 914 // pressure tracking were modified such that a register use would increment the 915 // pressure of the register class's representative and all of it's super 916 // classes' representatives transitively. We have not implemented this because 917 // of the difficulty prior to coalescing of modeling operand register classes 918 // due to the common occurrence of cross class copies and subregister insertions 919 // and extractions. 920 std::pair<const TargetRegisterClass*, uint8_t> 921 ARMTargetLowering::findRepresentativeClass(MVT VT) const{ 922 const TargetRegisterClass *RRC = nullptr; 923 uint8_t Cost = 1; 924 switch (VT.SimpleTy) { 925 default: 926 return TargetLowering::findRepresentativeClass(VT); 927 // Use DPR as representative register class for all floating point 928 // and vector types. Since there are 32 SPR registers and 32 DPR registers so 929 // the cost is 1 for both f32 and f64. 930 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: 931 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: 932 RRC = &ARM::DPRRegClass; 933 // When NEON is used for SP, only half of the register file is available 934 // because operations that define both SP and DP results will be constrained 935 // to the VFP2 class (D0-D15). We currently model this constraint prior to 936 // coalescing by double-counting the SP regs. See the FIXME above. 937 if (Subtarget->useNEONForSinglePrecisionFP()) 938 Cost = 2; 939 break; 940 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: 941 case MVT::v4f32: case MVT::v2f64: 942 RRC = &ARM::DPRRegClass; 943 Cost = 2; 944 break; 945 case MVT::v4i64: 946 RRC = &ARM::DPRRegClass; 947 Cost = 4; 948 break; 949 case MVT::v8i64: 950 RRC = &ARM::DPRRegClass; 951 Cost = 8; 952 break; 953 } 954 return std::make_pair(RRC, Cost); 955 } 956 957 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { 958 switch (Opcode) { 959 default: return nullptr; 960 case ARMISD::Wrapper: return "ARMISD::Wrapper"; 961 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; 962 case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; 963 case ARMISD::CALL: return "ARMISD::CALL"; 964 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; 965 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; 966 case ARMISD::tCALL: return "ARMISD::tCALL"; 967 case ARMISD::BRCOND: return "ARMISD::BRCOND"; 968 case ARMISD::BR_JT: return "ARMISD::BR_JT"; 969 case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; 970 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; 971 case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG"; 972 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; 973 case ARMISD::CMP: return "ARMISD::CMP"; 974 case ARMISD::CMN: return "ARMISD::CMN"; 975 case ARMISD::CMPZ: return "ARMISD::CMPZ"; 976 case ARMISD::CMPFP: return "ARMISD::CMPFP"; 977 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; 978 case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; 979 case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; 980 981 case ARMISD::CMOV: return "ARMISD::CMOV"; 982 983 case ARMISD::RBIT: return "ARMISD::RBIT"; 984 985 case ARMISD::FTOSI: return "ARMISD::FTOSI"; 986 case ARMISD::FTOUI: return "ARMISD::FTOUI"; 987 case ARMISD::SITOF: return "ARMISD::SITOF"; 988 case ARMISD::UITOF: return "ARMISD::UITOF"; 989 990 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; 991 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; 992 case ARMISD::RRX: return "ARMISD::RRX"; 993 994 case ARMISD::ADDC: return "ARMISD::ADDC"; 995 case ARMISD::ADDE: return "ARMISD::ADDE"; 996 case ARMISD::SUBC: return "ARMISD::SUBC"; 997 case ARMISD::SUBE: return "ARMISD::SUBE"; 998 999 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; 1000 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; 1001 1002 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; 1003 case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP"; 1004 1005 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; 1006 1007 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; 1008 1009 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; 1010 1011 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; 1012 1013 case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; 1014 1015 case ARMISD::WIN__CHKSTK: return "ARMISD:::WIN__CHKSTK"; 1016 1017 case ARMISD::VCEQ: return "ARMISD::VCEQ"; 1018 case ARMISD::VCEQZ: return "ARMISD::VCEQZ"; 1019 case ARMISD::VCGE: return "ARMISD::VCGE"; 1020 case ARMISD::VCGEZ: return "ARMISD::VCGEZ"; 1021 case ARMISD::VCLEZ: return "ARMISD::VCLEZ"; 1022 case ARMISD::VCGEU: return "ARMISD::VCGEU"; 1023 case ARMISD::VCGT: return "ARMISD::VCGT"; 1024 case ARMISD::VCGTZ: return "ARMISD::VCGTZ"; 1025 case ARMISD::VCLTZ: return "ARMISD::VCLTZ"; 1026 case ARMISD::VCGTU: return "ARMISD::VCGTU"; 1027 case ARMISD::VTST: return "ARMISD::VTST"; 1028 1029 case ARMISD::VSHL: return "ARMISD::VSHL"; 1030 case ARMISD::VSHRs: return "ARMISD::VSHRs"; 1031 case ARMISD::VSHRu: return "ARMISD::VSHRu"; 1032 case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; 1033 case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; 1034 case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; 1035 case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; 1036 case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; 1037 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; 1038 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; 1039 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; 1040 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; 1041 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; 1042 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; 1043 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; 1044 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; 1045 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; 1046 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; 1047 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; 1048 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM"; 1049 case ARMISD::VDUP: return "ARMISD::VDUP"; 1050 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; 1051 case ARMISD::VEXT: return "ARMISD::VEXT"; 1052 case ARMISD::VREV64: return "ARMISD::VREV64"; 1053 case ARMISD::VREV32: return "ARMISD::VREV32"; 1054 case ARMISD::VREV16: return "ARMISD::VREV16"; 1055 case ARMISD::VZIP: return "ARMISD::VZIP"; 1056 case ARMISD::VUZP: return "ARMISD::VUZP"; 1057 case ARMISD::VTRN: return "ARMISD::VTRN"; 1058 case ARMISD::VTBL1: return "ARMISD::VTBL1"; 1059 case ARMISD::VTBL2: return "ARMISD::VTBL2"; 1060 case ARMISD::VMULLs: return "ARMISD::VMULLs"; 1061 case ARMISD::VMULLu: return "ARMISD::VMULLu"; 1062 case ARMISD::UMLAL: return "ARMISD::UMLAL"; 1063 case ARMISD::SMLAL: return "ARMISD::SMLAL"; 1064 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; 1065 case ARMISD::FMAX: return "ARMISD::FMAX"; 1066 case ARMISD::FMIN: return "ARMISD::FMIN"; 1067 case ARMISD::VMAXNM: return "ARMISD::VMAX"; 1068 case ARMISD::VMINNM: return "ARMISD::VMIN"; 1069 case ARMISD::BFI: return "ARMISD::BFI"; 1070 case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; 1071 case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; 1072 case ARMISD::VBSL: return "ARMISD::VBSL"; 1073 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; 1074 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; 1075 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; 1076 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; 1077 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; 1078 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; 1079 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; 1080 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; 1081 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; 1082 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; 1083 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; 1084 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; 1085 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; 1086 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; 1087 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; 1088 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; 1089 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; 1090 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; 1091 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; 1092 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; 1093 } 1094 } 1095 1096 EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { 1097 if (!VT.isVector()) return getPointerTy(); 1098 return VT.changeVectorElementTypeToInteger(); 1099 } 1100 1101 /// getRegClassFor - Return the register class that should be used for the 1102 /// specified value type. 1103 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const { 1104 // Map v4i64 to QQ registers but do not make the type legal. Similarly map 1105 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to 1106 // load / store 4 to 8 consecutive D registers. 1107 if (Subtarget->hasNEON()) { 1108 if (VT == MVT::v4i64) 1109 return &ARM::QQPRRegClass; 1110 if (VT == MVT::v8i64) 1111 return &ARM::QQQQPRRegClass; 1112 } 1113 return TargetLowering::getRegClassFor(VT); 1114 } 1115 1116 // Create a fast isel object. 1117 FastISel * 1118 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 1119 const TargetLibraryInfo *libInfo) const { 1120 return ARM::createFastISel(funcInfo, libInfo); 1121 } 1122 1123 /// getMaximalGlobalOffset - Returns the maximal possible offset which can 1124 /// be used for loads / stores from the global. 1125 unsigned ARMTargetLowering::getMaximalGlobalOffset() const { 1126 return (Subtarget->isThumb1Only() ? 127 : 4095); 1127 } 1128 1129 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { 1130 unsigned NumVals = N->getNumValues(); 1131 if (!NumVals) 1132 return Sched::RegPressure; 1133 1134 for (unsigned i = 0; i != NumVals; ++i) { 1135 EVT VT = N->getValueType(i); 1136 if (VT == MVT::Glue || VT == MVT::Other) 1137 continue; 1138 if (VT.isFloatingPoint() || VT.isVector()) 1139 return Sched::ILP; 1140 } 1141 1142 if (!N->isMachineOpcode()) 1143 return Sched::RegPressure; 1144 1145 // Load are scheduled for latency even if there instruction itinerary 1146 // is not available. 1147 const TargetInstrInfo *TII = 1148 getTargetMachine().getSubtargetImpl()->getInstrInfo(); 1149 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 1150 1151 if (MCID.getNumDefs() == 0) 1152 return Sched::RegPressure; 1153 if (!Itins->isEmpty() && 1154 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) 1155 return Sched::ILP; 1156 1157 return Sched::RegPressure; 1158 } 1159 1160 //===----------------------------------------------------------------------===// 1161 // Lowering Code 1162 //===----------------------------------------------------------------------===// 1163 1164 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC 1165 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { 1166 switch (CC) { 1167 default: llvm_unreachable("Unknown condition code!"); 1168 case ISD::SETNE: return ARMCC::NE; 1169 case ISD::SETEQ: return ARMCC::EQ; 1170 case ISD::SETGT: return ARMCC::GT; 1171 case ISD::SETGE: return ARMCC::GE; 1172 case ISD::SETLT: return ARMCC::LT; 1173 case ISD::SETLE: return ARMCC::LE; 1174 case ISD::SETUGT: return ARMCC::HI; 1175 case ISD::SETUGE: return ARMCC::HS; 1176 case ISD::SETULT: return ARMCC::LO; 1177 case ISD::SETULE: return ARMCC::LS; 1178 } 1179 } 1180 1181 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. 1182 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, 1183 ARMCC::CondCodes &CondCode2) { 1184 CondCode2 = ARMCC::AL; 1185 switch (CC) { 1186 default: llvm_unreachable("Unknown FP condition!"); 1187 case ISD::SETEQ: 1188 case ISD::SETOEQ: CondCode = ARMCC::EQ; break; 1189 case ISD::SETGT: 1190 case ISD::SETOGT: CondCode = ARMCC::GT; break; 1191 case ISD::SETGE: 1192 case ISD::SETOGE: CondCode = ARMCC::GE; break; 1193 case ISD::SETOLT: CondCode = ARMCC::MI; break; 1194 case ISD::SETOLE: CondCode = ARMCC::LS; break; 1195 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; 1196 case ISD::SETO: CondCode = ARMCC::VC; break; 1197 case ISD::SETUO: CondCode = ARMCC::VS; break; 1198 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; 1199 case ISD::SETUGT: CondCode = ARMCC::HI; break; 1200 case ISD::SETUGE: CondCode = ARMCC::PL; break; 1201 case ISD::SETLT: 1202 case ISD::SETULT: CondCode = ARMCC::LT; break; 1203 case ISD::SETLE: 1204 case ISD::SETULE: CondCode = ARMCC::LE; break; 1205 case ISD::SETNE: 1206 case ISD::SETUNE: CondCode = ARMCC::NE; break; 1207 } 1208 } 1209 1210 //===----------------------------------------------------------------------===// 1211 // Calling Convention Implementation 1212 //===----------------------------------------------------------------------===// 1213 1214 #include "ARMGenCallingConv.inc" 1215 1216 /// getEffectiveCallingConv - Get the effective calling convention, taking into 1217 /// account presence of floating point hardware and calling convention 1218 /// limitations, such as support for variadic functions. 1219 CallingConv::ID 1220 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC, 1221 bool isVarArg) const { 1222 switch (CC) { 1223 default: 1224 llvm_unreachable("Unsupported calling convention"); 1225 case CallingConv::ARM_AAPCS: 1226 case CallingConv::ARM_APCS: 1227 case CallingConv::GHC: 1228 return CC; 1229 case CallingConv::ARM_AAPCS_VFP: 1230 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP; 1231 case CallingConv::C: 1232 if (!Subtarget->isAAPCS_ABI()) 1233 return CallingConv::ARM_APCS; 1234 else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && 1235 getTargetMachine().Options.FloatABIType == FloatABI::Hard && 1236 !isVarArg) 1237 return CallingConv::ARM_AAPCS_VFP; 1238 else 1239 return CallingConv::ARM_AAPCS; 1240 case CallingConv::Fast: 1241 if (!Subtarget->isAAPCS_ABI()) { 1242 if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg) 1243 return CallingConv::Fast; 1244 return CallingConv::ARM_APCS; 1245 } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg) 1246 return CallingConv::ARM_AAPCS_VFP; 1247 else 1248 return CallingConv::ARM_AAPCS; 1249 } 1250 } 1251 1252 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given 1253 /// CallingConvention. 1254 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, 1255 bool Return, 1256 bool isVarArg) const { 1257 switch (getEffectiveCallingConv(CC, isVarArg)) { 1258 default: 1259 llvm_unreachable("Unsupported calling convention"); 1260 case CallingConv::ARM_APCS: 1261 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); 1262 case CallingConv::ARM_AAPCS: 1263 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 1264 case CallingConv::ARM_AAPCS_VFP: 1265 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1266 case CallingConv::Fast: 1267 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1268 case CallingConv::GHC: 1269 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); 1270 } 1271 } 1272 1273 /// LowerCallResult - Lower the result values of a call into the 1274 /// appropriate copies out of appropriate physical registers. 1275 SDValue 1276 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 1277 CallingConv::ID CallConv, bool isVarArg, 1278 const SmallVectorImpl<ISD::InputArg> &Ins, 1279 SDLoc dl, SelectionDAG &DAG, 1280 SmallVectorImpl<SDValue> &InVals, 1281 bool isThisReturn, SDValue ThisVal) const { 1282 1283 // Assign locations to each value returned by this call. 1284 SmallVector<CCValAssign, 16> RVLocs; 1285 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1286 *DAG.getContext(), Call); 1287 CCInfo.AnalyzeCallResult(Ins, 1288 CCAssignFnForNode(CallConv, /* Return*/ true, 1289 isVarArg)); 1290 1291 // Copy all of the result registers out of their specified physreg. 1292 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1293 CCValAssign VA = RVLocs[i]; 1294 1295 // Pass 'this' value directly from the argument to return value, to avoid 1296 // reg unit interference 1297 if (i == 0 && isThisReturn) { 1298 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 && 1299 "unexpected return calling convention register assignment"); 1300 InVals.push_back(ThisVal); 1301 continue; 1302 } 1303 1304 SDValue Val; 1305 if (VA.needsCustom()) { 1306 // Handle f64 or half of a v2f64. 1307 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 1308 InFlag); 1309 Chain = Lo.getValue(1); 1310 InFlag = Lo.getValue(2); 1311 VA = RVLocs[++i]; // skip ahead to next loc 1312 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 1313 InFlag); 1314 Chain = Hi.getValue(1); 1315 InFlag = Hi.getValue(2); 1316 if (!Subtarget->isLittle()) 1317 std::swap (Lo, Hi); 1318 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 1319 1320 if (VA.getLocVT() == MVT::v2f64) { 1321 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 1322 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 1323 DAG.getConstant(0, MVT::i32)); 1324 1325 VA = RVLocs[++i]; // skip ahead to next loc 1326 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); 1327 Chain = Lo.getValue(1); 1328 InFlag = Lo.getValue(2); 1329 VA = RVLocs[++i]; // skip ahead to next loc 1330 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); 1331 Chain = Hi.getValue(1); 1332 InFlag = Hi.getValue(2); 1333 if (!Subtarget->isLittle()) 1334 std::swap (Lo, Hi); 1335 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 1336 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 1337 DAG.getConstant(1, MVT::i32)); 1338 } 1339 } else { 1340 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), 1341 InFlag); 1342 Chain = Val.getValue(1); 1343 InFlag = Val.getValue(2); 1344 } 1345 1346 switch (VA.getLocInfo()) { 1347 default: llvm_unreachable("Unknown loc info!"); 1348 case CCValAssign::Full: break; 1349 case CCValAssign::BCvt: 1350 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); 1351 break; 1352 } 1353 1354 InVals.push_back(Val); 1355 } 1356 1357 return Chain; 1358 } 1359 1360 /// LowerMemOpCallTo - Store the argument to the stack. 1361 SDValue 1362 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, 1363 SDValue StackPtr, SDValue Arg, 1364 SDLoc dl, SelectionDAG &DAG, 1365 const CCValAssign &VA, 1366 ISD::ArgFlagsTy Flags) const { 1367 unsigned LocMemOffset = VA.getLocMemOffset(); 1368 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 1369 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 1370 return DAG.getStore(Chain, dl, Arg, PtrOff, 1371 MachinePointerInfo::getStack(LocMemOffset), 1372 false, false, 0); 1373 } 1374 1375 void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG, 1376 SDValue Chain, SDValue &Arg, 1377 RegsToPassVector &RegsToPass, 1378 CCValAssign &VA, CCValAssign &NextVA, 1379 SDValue &StackPtr, 1380 SmallVectorImpl<SDValue> &MemOpChains, 1381 ISD::ArgFlagsTy Flags) const { 1382 1383 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 1384 DAG.getVTList(MVT::i32, MVT::i32), Arg); 1385 unsigned id = Subtarget->isLittle() ? 0 : 1; 1386 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id))); 1387 1388 if (NextVA.isRegLoc()) 1389 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id))); 1390 else { 1391 assert(NextVA.isMemLoc()); 1392 if (!StackPtr.getNode()) 1393 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); 1394 1395 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id), 1396 dl, DAG, NextVA, 1397 Flags)); 1398 } 1399 } 1400 1401 /// LowerCall - Lowering a call into a callseq_start <- 1402 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter 1403 /// nodes. 1404 SDValue 1405 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1406 SmallVectorImpl<SDValue> &InVals) const { 1407 SelectionDAG &DAG = CLI.DAG; 1408 SDLoc &dl = CLI.DL; 1409 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1410 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1411 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1412 SDValue Chain = CLI.Chain; 1413 SDValue Callee = CLI.Callee; 1414 bool &isTailCall = CLI.IsTailCall; 1415 CallingConv::ID CallConv = CLI.CallConv; 1416 bool doesNotRet = CLI.DoesNotReturn; 1417 bool isVarArg = CLI.IsVarArg; 1418 1419 MachineFunction &MF = DAG.getMachineFunction(); 1420 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); 1421 bool isThisReturn = false; 1422 bool isSibCall = false; 1423 1424 // Disable tail calls if they're not supported. 1425 if (!Subtarget->supportsTailCall() || MF.getTarget().Options.DisableTailCalls) 1426 isTailCall = false; 1427 1428 if (isTailCall) { 1429 // Check if it's really possible to do a tail call. 1430 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 1431 isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(), 1432 Outs, OutVals, Ins, DAG); 1433 if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall()) 1434 report_fatal_error("failed to perform tail call elimination on a call " 1435 "site marked musttail"); 1436 // We don't support GuaranteedTailCallOpt for ARM, only automatically 1437 // detected sibcalls. 1438 if (isTailCall) { 1439 ++NumTailCalls; 1440 isSibCall = true; 1441 } 1442 } 1443 1444 // Analyze operands of the call, assigning locations to each operand. 1445 SmallVector<CCValAssign, 16> ArgLocs; 1446 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1447 *DAG.getContext(), Call); 1448 CCInfo.AnalyzeCallOperands(Outs, 1449 CCAssignFnForNode(CallConv, /* Return*/ false, 1450 isVarArg)); 1451 1452 // Get a count of how many bytes are to be pushed on the stack. 1453 unsigned NumBytes = CCInfo.getNextStackOffset(); 1454 1455 // For tail calls, memory operands are available in our caller's stack. 1456 if (isSibCall) 1457 NumBytes = 0; 1458 1459 // Adjust the stack pointer for the new arguments... 1460 // These operations are automatically eliminated by the prolog/epilog pass 1461 if (!isSibCall) 1462 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), 1463 dl); 1464 1465 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); 1466 1467 RegsToPassVector RegsToPass; 1468 SmallVector<SDValue, 8> MemOpChains; 1469 1470 // Walk the register/memloc assignments, inserting copies/loads. In the case 1471 // of tail call optimization, arguments are handled later. 1472 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 1473 i != e; 1474 ++i, ++realArgIdx) { 1475 CCValAssign &VA = ArgLocs[i]; 1476 SDValue Arg = OutVals[realArgIdx]; 1477 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 1478 bool isByVal = Flags.isByVal(); 1479 1480 // Promote the value if needed. 1481 switch (VA.getLocInfo()) { 1482 default: llvm_unreachable("Unknown loc info!"); 1483 case CCValAssign::Full: break; 1484 case CCValAssign::SExt: 1485 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1486 break; 1487 case CCValAssign::ZExt: 1488 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1489 break; 1490 case CCValAssign::AExt: 1491 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1492 break; 1493 case CCValAssign::BCvt: 1494 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 1495 break; 1496 } 1497 1498 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces 1499 if (VA.needsCustom()) { 1500 if (VA.getLocVT() == MVT::v2f64) { 1501 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1502 DAG.getConstant(0, MVT::i32)); 1503 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1504 DAG.getConstant(1, MVT::i32)); 1505 1506 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, 1507 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); 1508 1509 VA = ArgLocs[++i]; // skip ahead to next loc 1510 if (VA.isRegLoc()) { 1511 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, 1512 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); 1513 } else { 1514 assert(VA.isMemLoc()); 1515 1516 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, 1517 dl, DAG, VA, Flags)); 1518 } 1519 } else { 1520 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], 1521 StackPtr, MemOpChains, Flags); 1522 } 1523 } else if (VA.isRegLoc()) { 1524 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) { 1525 assert(VA.getLocVT() == MVT::i32 && 1526 "unexpected calling convention register assignment"); 1527 assert(!Ins.empty() && Ins[0].VT == MVT::i32 && 1528 "unexpected use of 'returned'"); 1529 isThisReturn = true; 1530 } 1531 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1532 } else if (isByVal) { 1533 assert(VA.isMemLoc()); 1534 unsigned offset = 0; 1535 1536 // True if this byval aggregate will be split between registers 1537 // and memory. 1538 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount(); 1539 unsigned CurByValIdx = CCInfo.getInRegsParamsProceed(); 1540 1541 if (CurByValIdx < ByValArgsCount) { 1542 1543 unsigned RegBegin, RegEnd; 1544 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd); 1545 1546 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 1547 unsigned int i, j; 1548 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) { 1549 SDValue Const = DAG.getConstant(4*i, MVT::i32); 1550 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 1551 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 1552 MachinePointerInfo(), 1553 false, false, false, 1554 DAG.InferPtrAlignment(AddArg)); 1555 MemOpChains.push_back(Load.getValue(1)); 1556 RegsToPass.push_back(std::make_pair(j, Load)); 1557 } 1558 1559 // If parameter size outsides register area, "offset" value 1560 // helps us to calculate stack slot for remained part properly. 1561 offset = RegEnd - RegBegin; 1562 1563 CCInfo.nextInRegsParam(); 1564 } 1565 1566 if (Flags.getByValSize() > 4*offset) { 1567 unsigned LocMemOffset = VA.getLocMemOffset(); 1568 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset); 1569 SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, 1570 StkPtrOff); 1571 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset); 1572 SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset); 1573 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, 1574 MVT::i32); 1575 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32); 1576 1577 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 1578 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; 1579 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, 1580 Ops)); 1581 } 1582 } else if (!isSibCall) { 1583 assert(VA.isMemLoc()); 1584 1585 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, 1586 dl, DAG, VA, Flags)); 1587 } 1588 } 1589 1590 if (!MemOpChains.empty()) 1591 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1592 1593 // Build a sequence of copy-to-reg nodes chained together with token chain 1594 // and flag operands which copy the outgoing args into the appropriate regs. 1595 SDValue InFlag; 1596 // Tail call byval lowering might overwrite argument registers so in case of 1597 // tail call optimization the copies to registers are lowered later. 1598 if (!isTailCall) 1599 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1600 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1601 RegsToPass[i].second, InFlag); 1602 InFlag = Chain.getValue(1); 1603 } 1604 1605 // For tail calls lower the arguments to the 'real' stack slot. 1606 if (isTailCall) { 1607 // Force all the incoming stack arguments to be loaded from the stack 1608 // before any new outgoing arguments are stored to the stack, because the 1609 // outgoing stack slots may alias the incoming argument stack slots, and 1610 // the alias isn't otherwise explicit. This is slightly more conservative 1611 // than necessary, because it means that each store effectively depends 1612 // on every argument instead of just those arguments it would clobber. 1613 1614 // Do not flag preceding copytoreg stuff together with the following stuff. 1615 InFlag = SDValue(); 1616 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1617 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1618 RegsToPass[i].second, InFlag); 1619 InFlag = Chain.getValue(1); 1620 } 1621 InFlag = SDValue(); 1622 } 1623 1624 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 1625 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 1626 // node so that legalize doesn't hack it. 1627 bool isDirect = false; 1628 bool isARMFunc = false; 1629 bool isLocalARMFunc = false; 1630 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1631 1632 if (EnableARMLongCalls) { 1633 assert((Subtarget->isTargetWindows() || 1634 getTargetMachine().getRelocationModel() == Reloc::Static) && 1635 "long-calls with non-static relocation model!"); 1636 // Handle a global address or an external symbol. If it's not one of 1637 // those, the target's already in a register, so we don't need to do 1638 // anything extra. 1639 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1640 const GlobalValue *GV = G->getGlobal(); 1641 // Create a constant pool entry for the callee address 1642 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1643 ARMConstantPoolValue *CPV = 1644 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0); 1645 1646 // Get the address of the callee into a register 1647 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1648 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1649 Callee = DAG.getLoad(getPointerTy(), dl, 1650 DAG.getEntryNode(), CPAddr, 1651 MachinePointerInfo::getConstantPool(), 1652 false, false, false, 0); 1653 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { 1654 const char *Sym = S->getSymbol(); 1655 1656 // Create a constant pool entry for the callee address 1657 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1658 ARMConstantPoolValue *CPV = 1659 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, 1660 ARMPCLabelIndex, 0); 1661 // Get the address of the callee into a register 1662 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1663 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1664 Callee = DAG.getLoad(getPointerTy(), dl, 1665 DAG.getEntryNode(), CPAddr, 1666 MachinePointerInfo::getConstantPool(), 1667 false, false, false, 0); 1668 } 1669 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1670 const GlobalValue *GV = G->getGlobal(); 1671 isDirect = true; 1672 bool isExt = GV->isDeclaration() || GV->isWeakForLinker(); 1673 bool isStub = (isExt && Subtarget->isTargetMachO()) && 1674 getTargetMachine().getRelocationModel() != Reloc::Static; 1675 isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); 1676 // ARM call to a local ARM function is predicable. 1677 isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking); 1678 // tBX takes a register source operand. 1679 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 1680 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?"); 1681 Callee = DAG.getNode(ARMISD::WrapperPIC, dl, getPointerTy(), 1682 DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 1683 0, ARMII::MO_NONLAZY)); 1684 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee, 1685 MachinePointerInfo::getGOT(), false, false, true, 0); 1686 } else if (Subtarget->isTargetCOFF()) { 1687 assert(Subtarget->isTargetWindows() && 1688 "Windows is the only supported COFF target"); 1689 unsigned TargetFlags = GV->hasDLLImportStorageClass() 1690 ? ARMII::MO_DLLIMPORT 1691 : ARMII::MO_NO_FLAG; 1692 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), /*Offset=*/0, 1693 TargetFlags); 1694 if (GV->hasDLLImportStorageClass()) 1695 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 1696 DAG.getNode(ARMISD::Wrapper, dl, getPointerTy(), 1697 Callee), MachinePointerInfo::getGOT(), 1698 false, false, false, 0); 1699 } else { 1700 // On ELF targets for PIC code, direct calls should go through the PLT 1701 unsigned OpFlags = 0; 1702 if (Subtarget->isTargetELF() && 1703 getTargetMachine().getRelocationModel() == Reloc::PIC_) 1704 OpFlags = ARMII::MO_PLT; 1705 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); 1706 } 1707 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1708 isDirect = true; 1709 bool isStub = Subtarget->isTargetMachO() && 1710 getTargetMachine().getRelocationModel() != Reloc::Static; 1711 isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); 1712 // tBX takes a register source operand. 1713 const char *Sym = S->getSymbol(); 1714 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 1715 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1716 ARMConstantPoolValue *CPV = 1717 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, 1718 ARMPCLabelIndex, 4); 1719 SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); 1720 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1721 Callee = DAG.getLoad(getPointerTy(), dl, 1722 DAG.getEntryNode(), CPAddr, 1723 MachinePointerInfo::getConstantPool(), 1724 false, false, false, 0); 1725 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 1726 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, 1727 getPointerTy(), Callee, PICLabel); 1728 } else { 1729 unsigned OpFlags = 0; 1730 // On ELF targets for PIC code, direct calls should go through the PLT 1731 if (Subtarget->isTargetELF() && 1732 getTargetMachine().getRelocationModel() == Reloc::PIC_) 1733 OpFlags = ARMII::MO_PLT; 1734 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags); 1735 } 1736 } 1737 1738 // FIXME: handle tail calls differently. 1739 unsigned CallOpc; 1740 bool HasMinSizeAttr = MF.getFunction()->getAttributes().hasAttribute( 1741 AttributeSet::FunctionIndex, Attribute::MinSize); 1742 if (Subtarget->isThumb()) { 1743 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) 1744 CallOpc = ARMISD::CALL_NOLINK; 1745 else 1746 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; 1747 } else { 1748 if (!isDirect && !Subtarget->hasV5TOps()) 1749 CallOpc = ARMISD::CALL_NOLINK; 1750 else if (doesNotRet && isDirect && Subtarget->hasRAS() && 1751 // Emit regular call when code size is the priority 1752 !HasMinSizeAttr) 1753 // "mov lr, pc; b _foo" to avoid confusing the RSP 1754 CallOpc = ARMISD::CALL_NOLINK; 1755 else 1756 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; 1757 } 1758 1759 std::vector<SDValue> Ops; 1760 Ops.push_back(Chain); 1761 Ops.push_back(Callee); 1762 1763 // Add argument registers to the end of the list so that they are known live 1764 // into the call. 1765 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1766 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1767 RegsToPass[i].second.getValueType())); 1768 1769 // Add a register mask operand representing the call-preserved registers. 1770 if (!isTailCall) { 1771 const uint32_t *Mask; 1772 const TargetRegisterInfo *TRI = 1773 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 1774 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI); 1775 if (isThisReturn) { 1776 // For 'this' returns, use the R0-preserving mask if applicable 1777 Mask = ARI->getThisReturnPreservedMask(CallConv); 1778 if (!Mask) { 1779 // Set isThisReturn to false if the calling convention is not one that 1780 // allows 'returned' to be modeled in this way, so LowerCallResult does 1781 // not try to pass 'this' straight through 1782 isThisReturn = false; 1783 Mask = ARI->getCallPreservedMask(CallConv); 1784 } 1785 } else 1786 Mask = ARI->getCallPreservedMask(CallConv); 1787 1788 assert(Mask && "Missing call preserved mask for calling convention"); 1789 Ops.push_back(DAG.getRegisterMask(Mask)); 1790 } 1791 1792 if (InFlag.getNode()) 1793 Ops.push_back(InFlag); 1794 1795 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1796 if (isTailCall) 1797 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops); 1798 1799 // Returns a chain and a flag for retval copy to use. 1800 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 1801 InFlag = Chain.getValue(1); 1802 1803 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 1804 DAG.getIntPtrConstant(0, true), InFlag, dl); 1805 if (!Ins.empty()) 1806 InFlag = Chain.getValue(1); 1807 1808 // Handle result values, copying them out of physregs into vregs that we 1809 // return. 1810 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, 1811 InVals, isThisReturn, 1812 isThisReturn ? OutVals[0] : SDValue()); 1813 } 1814 1815 /// HandleByVal - Every parameter *after* a byval parameter is passed 1816 /// on the stack. Remember the next parameter register to allocate, 1817 /// and then confiscate the rest of the parameter registers to insure 1818 /// this. 1819 void 1820 ARMTargetLowering::HandleByVal( 1821 CCState *State, unsigned &size, unsigned Align) const { 1822 unsigned reg = State->AllocateReg(GPRArgRegs, 4); 1823 assert((State->getCallOrPrologue() == Prologue || 1824 State->getCallOrPrologue() == Call) && 1825 "unhandled ParmContext"); 1826 1827 if ((ARM::R0 <= reg) && (reg <= ARM::R3)) { 1828 if (Subtarget->isAAPCS_ABI() && Align > 4) { 1829 unsigned AlignInRegs = Align / 4; 1830 unsigned Waste = (ARM::R4 - reg) % AlignInRegs; 1831 for (unsigned i = 0; i < Waste; ++i) 1832 reg = State->AllocateReg(GPRArgRegs, 4); 1833 } 1834 if (reg != 0) { 1835 unsigned excess = 4 * (ARM::R4 - reg); 1836 1837 // Special case when NSAA != SP and parameter size greater than size of 1838 // all remained GPR regs. In that case we can't split parameter, we must 1839 // send it to stack. We also must set NCRN to R4, so waste all 1840 // remained registers. 1841 const unsigned NSAAOffset = State->getNextStackOffset(); 1842 if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) { 1843 while (State->AllocateReg(GPRArgRegs, 4)) 1844 ; 1845 return; 1846 } 1847 1848 // First register for byval parameter is the first register that wasn't 1849 // allocated before this method call, so it would be "reg". 1850 // If parameter is small enough to be saved in range [reg, r4), then 1851 // the end (first after last) register would be reg + param-size-in-regs, 1852 // else parameter would be splitted between registers and stack, 1853 // end register would be r4 in this case. 1854 unsigned ByValRegBegin = reg; 1855 unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4; 1856 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd); 1857 // Note, first register is allocated in the beginning of function already, 1858 // allocate remained amount of registers we need. 1859 for (unsigned i = reg+1; i != ByValRegEnd; ++i) 1860 State->AllocateReg(GPRArgRegs, 4); 1861 // A byval parameter that is split between registers and memory needs its 1862 // size truncated here. 1863 // In the case where the entire structure fits in registers, we set the 1864 // size in memory to zero. 1865 if (size < excess) 1866 size = 0; 1867 else 1868 size -= excess; 1869 } 1870 } 1871 } 1872 1873 /// MatchingStackOffset - Return true if the given stack call argument is 1874 /// already available in the same position (relatively) of the caller's 1875 /// incoming argument stack. 1876 static 1877 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, 1878 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, 1879 const TargetInstrInfo *TII) { 1880 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; 1881 int FI = INT_MAX; 1882 if (Arg.getOpcode() == ISD::CopyFromReg) { 1883 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); 1884 if (!TargetRegisterInfo::isVirtualRegister(VR)) 1885 return false; 1886 MachineInstr *Def = MRI->getVRegDef(VR); 1887 if (!Def) 1888 return false; 1889 if (!Flags.isByVal()) { 1890 if (!TII->isLoadFromStackSlot(Def, FI)) 1891 return false; 1892 } else { 1893 return false; 1894 } 1895 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { 1896 if (Flags.isByVal()) 1897 // ByVal argument is passed in as a pointer but it's now being 1898 // dereferenced. e.g. 1899 // define @foo(%struct.X* %A) { 1900 // tail call @bar(%struct.X* byval %A) 1901 // } 1902 return false; 1903 SDValue Ptr = Ld->getBasePtr(); 1904 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); 1905 if (!FINode) 1906 return false; 1907 FI = FINode->getIndex(); 1908 } else 1909 return false; 1910 1911 assert(FI != INT_MAX); 1912 if (!MFI->isFixedObjectIndex(FI)) 1913 return false; 1914 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); 1915 } 1916 1917 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 1918 /// for tail call optimization. Targets which want to do tail call 1919 /// optimization should implement this function. 1920 bool 1921 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 1922 CallingConv::ID CalleeCC, 1923 bool isVarArg, 1924 bool isCalleeStructRet, 1925 bool isCallerStructRet, 1926 const SmallVectorImpl<ISD::OutputArg> &Outs, 1927 const SmallVectorImpl<SDValue> &OutVals, 1928 const SmallVectorImpl<ISD::InputArg> &Ins, 1929 SelectionDAG& DAG) const { 1930 const Function *CallerF = DAG.getMachineFunction().getFunction(); 1931 CallingConv::ID CallerCC = CallerF->getCallingConv(); 1932 bool CCMatch = CallerCC == CalleeCC; 1933 1934 // Look for obvious safe cases to perform tail call optimization that do not 1935 // require ABI changes. This is what gcc calls sibcall. 1936 1937 // Do not sibcall optimize vararg calls unless the call site is not passing 1938 // any arguments. 1939 if (isVarArg && !Outs.empty()) 1940 return false; 1941 1942 // Exception-handling functions need a special set of instructions to indicate 1943 // a return to the hardware. Tail-calling another function would probably 1944 // break this. 1945 if (CallerF->hasFnAttribute("interrupt")) 1946 return false; 1947 1948 // Also avoid sibcall optimization if either caller or callee uses struct 1949 // return semantics. 1950 if (isCalleeStructRet || isCallerStructRet) 1951 return false; 1952 1953 // FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo:: 1954 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as 1955 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation 1956 // support in the assembler and linker to be used. This would need to be 1957 // fixed to fully support tail calls in Thumb1. 1958 // 1959 // Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take 1960 // LR. This means if we need to reload LR, it takes an extra instructions, 1961 // which outweighs the value of the tail call; but here we don't know yet 1962 // whether LR is going to be used. Probably the right approach is to 1963 // generate the tail call here and turn it back into CALL/RET in 1964 // emitEpilogue if LR is used. 1965 1966 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls, 1967 // but we need to make sure there are enough registers; the only valid 1968 // registers are the 4 used for parameters. We don't currently do this 1969 // case. 1970 if (Subtarget->isThumb1Only()) 1971 return false; 1972 1973 // If the calling conventions do not match, then we'd better make sure the 1974 // results are returned in the same way as what the caller expects. 1975 if (!CCMatch) { 1976 SmallVector<CCValAssign, 16> RVLocs1; 1977 ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, 1978 *DAG.getContext(), Call); 1979 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg)); 1980 1981 SmallVector<CCValAssign, 16> RVLocs2; 1982 ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, 1983 *DAG.getContext(), Call); 1984 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg)); 1985 1986 if (RVLocs1.size() != RVLocs2.size()) 1987 return false; 1988 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { 1989 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) 1990 return false; 1991 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) 1992 return false; 1993 if (RVLocs1[i].isRegLoc()) { 1994 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) 1995 return false; 1996 } else { 1997 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) 1998 return false; 1999 } 2000 } 2001 } 2002 2003 // If Caller's vararg or byval argument has been split between registers and 2004 // stack, do not perform tail call, since part of the argument is in caller's 2005 // local frame. 2006 const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction(). 2007 getInfo<ARMFunctionInfo>(); 2008 if (AFI_Caller->getArgRegsSaveSize()) 2009 return false; 2010 2011 // If the callee takes no arguments then go on to check the results of the 2012 // call. 2013 if (!Outs.empty()) { 2014 // Check if stack adjustment is needed. For now, do not do this if any 2015 // argument is passed on the stack. 2016 SmallVector<CCValAssign, 16> ArgLocs; 2017 ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, 2018 *DAG.getContext(), Call); 2019 CCInfo.AnalyzeCallOperands(Outs, 2020 CCAssignFnForNode(CalleeCC, false, isVarArg)); 2021 if (CCInfo.getNextStackOffset()) { 2022 MachineFunction &MF = DAG.getMachineFunction(); 2023 2024 // Check if the arguments are already laid out in the right way as 2025 // the caller's fixed stack objects. 2026 MachineFrameInfo *MFI = MF.getFrameInfo(); 2027 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 2028 const TargetInstrInfo *TII = 2029 getTargetMachine().getSubtargetImpl()->getInstrInfo(); 2030 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 2031 i != e; 2032 ++i, ++realArgIdx) { 2033 CCValAssign &VA = ArgLocs[i]; 2034 EVT RegVT = VA.getLocVT(); 2035 SDValue Arg = OutVals[realArgIdx]; 2036 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 2037 if (VA.getLocInfo() == CCValAssign::Indirect) 2038 return false; 2039 if (VA.needsCustom()) { 2040 // f64 and vector types are split into multiple registers or 2041 // register/stack-slot combinations. The types will not match 2042 // the registers; give up on memory f64 refs until we figure 2043 // out what to do about this. 2044 if (!VA.isRegLoc()) 2045 return false; 2046 if (!ArgLocs[++i].isRegLoc()) 2047 return false; 2048 if (RegVT == MVT::v2f64) { 2049 if (!ArgLocs[++i].isRegLoc()) 2050 return false; 2051 if (!ArgLocs[++i].isRegLoc()) 2052 return false; 2053 } 2054 } else if (!VA.isRegLoc()) { 2055 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, 2056 MFI, MRI, TII)) 2057 return false; 2058 } 2059 } 2060 } 2061 } 2062 2063 return true; 2064 } 2065 2066 bool 2067 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 2068 MachineFunction &MF, bool isVarArg, 2069 const SmallVectorImpl<ISD::OutputArg> &Outs, 2070 LLVMContext &Context) const { 2071 SmallVector<CCValAssign, 16> RVLocs; 2072 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 2073 return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true, 2074 isVarArg)); 2075 } 2076 2077 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, 2078 SDLoc DL, SelectionDAG &DAG) { 2079 const MachineFunction &MF = DAG.getMachineFunction(); 2080 const Function *F = MF.getFunction(); 2081 2082 StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString(); 2083 2084 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset 2085 // version of the "preferred return address". These offsets affect the return 2086 // instruction if this is a return from PL1 without hypervisor extensions. 2087 // IRQ/FIQ: +4 "subs pc, lr, #4" 2088 // SWI: 0 "subs pc, lr, #0" 2089 // ABORT: +4 "subs pc, lr, #4" 2090 // UNDEF: +4/+2 "subs pc, lr, #0" 2091 // UNDEF varies depending on where the exception came from ARM or Thumb 2092 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0. 2093 2094 int64_t LROffset; 2095 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" || 2096 IntKind == "ABORT") 2097 LROffset = 4; 2098 else if (IntKind == "SWI" || IntKind == "UNDEF") 2099 LROffset = 0; 2100 else 2101 report_fatal_error("Unsupported interrupt attribute. If present, value " 2102 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF"); 2103 2104 RetOps.insert(RetOps.begin() + 1, DAG.getConstant(LROffset, MVT::i32, false)); 2105 2106 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps); 2107 } 2108 2109 SDValue 2110 ARMTargetLowering::LowerReturn(SDValue Chain, 2111 CallingConv::ID CallConv, bool isVarArg, 2112 const SmallVectorImpl<ISD::OutputArg> &Outs, 2113 const SmallVectorImpl<SDValue> &OutVals, 2114 SDLoc dl, SelectionDAG &DAG) const { 2115 2116 // CCValAssign - represent the assignment of the return value to a location. 2117 SmallVector<CCValAssign, 16> RVLocs; 2118 2119 // CCState - Info about the registers and stack slots. 2120 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2121 *DAG.getContext(), Call); 2122 2123 // Analyze outgoing return values. 2124 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, 2125 isVarArg)); 2126 2127 SDValue Flag; 2128 SmallVector<SDValue, 4> RetOps; 2129 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2130 bool isLittleEndian = Subtarget->isLittle(); 2131 2132 MachineFunction &MF = DAG.getMachineFunction(); 2133 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2134 AFI->setReturnRegsCount(RVLocs.size()); 2135 2136 // Copy the result values into the output registers. 2137 for (unsigned i = 0, realRVLocIdx = 0; 2138 i != RVLocs.size(); 2139 ++i, ++realRVLocIdx) { 2140 CCValAssign &VA = RVLocs[i]; 2141 assert(VA.isRegLoc() && "Can only return in registers!"); 2142 2143 SDValue Arg = OutVals[realRVLocIdx]; 2144 2145 switch (VA.getLocInfo()) { 2146 default: llvm_unreachable("Unknown loc info!"); 2147 case CCValAssign::Full: break; 2148 case CCValAssign::BCvt: 2149 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 2150 break; 2151 } 2152 2153 if (VA.needsCustom()) { 2154 if (VA.getLocVT() == MVT::v2f64) { 2155 // Extract the first half and return it in two registers. 2156 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 2157 DAG.getConstant(0, MVT::i32)); 2158 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, 2159 DAG.getVTList(MVT::i32, MVT::i32), Half); 2160 2161 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2162 HalfGPRs.getValue(isLittleEndian ? 0 : 1), 2163 Flag); 2164 Flag = Chain.getValue(1); 2165 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2166 VA = RVLocs[++i]; // skip ahead to next loc 2167 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2168 HalfGPRs.getValue(isLittleEndian ? 1 : 0), 2169 Flag); 2170 Flag = Chain.getValue(1); 2171 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2172 VA = RVLocs[++i]; // skip ahead to next loc 2173 2174 // Extract the 2nd half and fall through to handle it as an f64 value. 2175 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 2176 DAG.getConstant(1, MVT::i32)); 2177 } 2178 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is 2179 // available. 2180 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 2181 DAG.getVTList(MVT::i32, MVT::i32), Arg); 2182 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2183 fmrrd.getValue(isLittleEndian ? 0 : 1), 2184 Flag); 2185 Flag = Chain.getValue(1); 2186 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2187 VA = RVLocs[++i]; // skip ahead to next loc 2188 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2189 fmrrd.getValue(isLittleEndian ? 1 : 0), 2190 Flag); 2191 } else 2192 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 2193 2194 // Guarantee that all emitted copies are 2195 // stuck together, avoiding something bad. 2196 Flag = Chain.getValue(1); 2197 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2198 } 2199 2200 // Update chain and glue. 2201 RetOps[0] = Chain; 2202 if (Flag.getNode()) 2203 RetOps.push_back(Flag); 2204 2205 // CPUs which aren't M-class use a special sequence to return from 2206 // exceptions (roughly, any instruction setting pc and cpsr simultaneously, 2207 // though we use "subs pc, lr, #N"). 2208 // 2209 // M-class CPUs actually use a normal return sequence with a special 2210 // (hardware-provided) value in LR, so the normal code path works. 2211 if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") && 2212 !Subtarget->isMClass()) { 2213 if (Subtarget->isThumb1Only()) 2214 report_fatal_error("interrupt attribute is not supported in Thumb1"); 2215 return LowerInterruptReturn(RetOps, dl, DAG); 2216 } 2217 2218 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps); 2219 } 2220 2221 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { 2222 if (N->getNumValues() != 1) 2223 return false; 2224 if (!N->hasNUsesOfValue(1, 0)) 2225 return false; 2226 2227 SDValue TCChain = Chain; 2228 SDNode *Copy = *N->use_begin(); 2229 if (Copy->getOpcode() == ISD::CopyToReg) { 2230 // If the copy has a glue operand, we conservatively assume it isn't safe to 2231 // perform a tail call. 2232 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) 2233 return false; 2234 TCChain = Copy->getOperand(0); 2235 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { 2236 SDNode *VMov = Copy; 2237 // f64 returned in a pair of GPRs. 2238 SmallPtrSet<SDNode*, 2> Copies; 2239 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); 2240 UI != UE; ++UI) { 2241 if (UI->getOpcode() != ISD::CopyToReg) 2242 return false; 2243 Copies.insert(*UI); 2244 } 2245 if (Copies.size() > 2) 2246 return false; 2247 2248 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); 2249 UI != UE; ++UI) { 2250 SDValue UseChain = UI->getOperand(0); 2251 if (Copies.count(UseChain.getNode())) 2252 // Second CopyToReg 2253 Copy = *UI; 2254 else 2255 // First CopyToReg 2256 TCChain = UseChain; 2257 } 2258 } else if (Copy->getOpcode() == ISD::BITCAST) { 2259 // f32 returned in a single GPR. 2260 if (!Copy->hasOneUse()) 2261 return false; 2262 Copy = *Copy->use_begin(); 2263 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) 2264 return false; 2265 TCChain = Copy->getOperand(0); 2266 } else { 2267 return false; 2268 } 2269 2270 bool HasRet = false; 2271 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); 2272 UI != UE; ++UI) { 2273 if (UI->getOpcode() != ARMISD::RET_FLAG && 2274 UI->getOpcode() != ARMISD::INTRET_FLAG) 2275 return false; 2276 HasRet = true; 2277 } 2278 2279 if (!HasRet) 2280 return false; 2281 2282 Chain = TCChain; 2283 return true; 2284 } 2285 2286 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 2287 if (!Subtarget->supportsTailCall()) 2288 return false; 2289 2290 if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls) 2291 return false; 2292 2293 return !Subtarget->isThumb1Only(); 2294 } 2295 2296 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 2297 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is 2298 // one of the above mentioned nodes. It has to be wrapped because otherwise 2299 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 2300 // be used to form addressing mode. These wrapped nodes will be selected 2301 // into MOVi. 2302 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { 2303 EVT PtrVT = Op.getValueType(); 2304 // FIXME there is no actual debug info here 2305 SDLoc dl(Op); 2306 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2307 SDValue Res; 2308 if (CP->isMachineConstantPoolEntry()) 2309 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2310 CP->getAlignment()); 2311 else 2312 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2313 CP->getAlignment()); 2314 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); 2315 } 2316 2317 unsigned ARMTargetLowering::getJumpTableEncoding() const { 2318 return MachineJumpTableInfo::EK_Inline; 2319 } 2320 2321 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, 2322 SelectionDAG &DAG) const { 2323 MachineFunction &MF = DAG.getMachineFunction(); 2324 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2325 unsigned ARMPCLabelIndex = 0; 2326 SDLoc DL(Op); 2327 EVT PtrVT = getPointerTy(); 2328 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 2329 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2330 SDValue CPAddr; 2331 if (RelocM == Reloc::Static) { 2332 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); 2333 } else { 2334 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2335 ARMPCLabelIndex = AFI->createPICLabelUId(); 2336 ARMConstantPoolValue *CPV = 2337 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, 2338 ARMCP::CPBlockAddress, PCAdj); 2339 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2340 } 2341 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); 2342 SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, 2343 MachinePointerInfo::getConstantPool(), 2344 false, false, false, 0); 2345 if (RelocM == Reloc::Static) 2346 return Result; 2347 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2348 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); 2349 } 2350 2351 // Lower ISD::GlobalTLSAddress using the "general dynamic" model 2352 SDValue 2353 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 2354 SelectionDAG &DAG) const { 2355 SDLoc dl(GA); 2356 EVT PtrVT = getPointerTy(); 2357 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 2358 MachineFunction &MF = DAG.getMachineFunction(); 2359 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2360 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2361 ARMConstantPoolValue *CPV = 2362 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, 2363 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); 2364 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2365 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); 2366 Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, 2367 MachinePointerInfo::getConstantPool(), 2368 false, false, false, 0); 2369 SDValue Chain = Argument.getValue(1); 2370 2371 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2372 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); 2373 2374 // call __tls_get_addr. 2375 ArgListTy Args; 2376 ArgListEntry Entry; 2377 Entry.Node = Argument; 2378 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); 2379 Args.push_back(Entry); 2380 2381 // FIXME: is there useful debug info available here? 2382 TargetLowering::CallLoweringInfo CLI(DAG); 2383 CLI.setDebugLoc(dl).setChain(Chain) 2384 .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()), 2385 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args), 2386 0); 2387 2388 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2389 return CallResult.first; 2390 } 2391 2392 // Lower ISD::GlobalTLSAddress using the "initial exec" or 2393 // "local exec" model. 2394 SDValue 2395 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, 2396 SelectionDAG &DAG, 2397 TLSModel::Model model) const { 2398 const GlobalValue *GV = GA->getGlobal(); 2399 SDLoc dl(GA); 2400 SDValue Offset; 2401 SDValue Chain = DAG.getEntryNode(); 2402 EVT PtrVT = getPointerTy(); 2403 // Get the Thread Pointer 2404 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 2405 2406 if (model == TLSModel::InitialExec) { 2407 MachineFunction &MF = DAG.getMachineFunction(); 2408 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2409 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2410 // Initial exec model. 2411 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 2412 ARMConstantPoolValue *CPV = 2413 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, 2414 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, 2415 true); 2416 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2417 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 2418 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2419 MachinePointerInfo::getConstantPool(), 2420 false, false, false, 0); 2421 Chain = Offset.getValue(1); 2422 2423 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2424 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); 2425 2426 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2427 MachinePointerInfo::getConstantPool(), 2428 false, false, false, 0); 2429 } else { 2430 // local exec model 2431 assert(model == TLSModel::LocalExec); 2432 ARMConstantPoolValue *CPV = 2433 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); 2434 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2435 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 2436 Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, 2437 MachinePointerInfo::getConstantPool(), 2438 false, false, false, 0); 2439 } 2440 2441 // The address of the thread local variable is the add of the thread 2442 // pointer with the offset of the variable. 2443 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); 2444 } 2445 2446 SDValue 2447 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { 2448 // TODO: implement the "local dynamic" model 2449 assert(Subtarget->isTargetELF() && 2450 "TLS not implemented for non-ELF targets"); 2451 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2452 2453 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); 2454 2455 switch (model) { 2456 case TLSModel::GeneralDynamic: 2457 case TLSModel::LocalDynamic: 2458 return LowerToTLSGeneralDynamicModel(GA, DAG); 2459 case TLSModel::InitialExec: 2460 case TLSModel::LocalExec: 2461 return LowerToTLSExecModels(GA, DAG, model); 2462 } 2463 llvm_unreachable("bogus TLS model"); 2464 } 2465 2466 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, 2467 SelectionDAG &DAG) const { 2468 EVT PtrVT = getPointerTy(); 2469 SDLoc dl(Op); 2470 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2471 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2472 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 2473 ARMConstantPoolValue *CPV = 2474 ARMConstantPoolConstant::Create(GV, 2475 UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 2476 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2477 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2478 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 2479 CPAddr, 2480 MachinePointerInfo::getConstantPool(), 2481 false, false, false, 0); 2482 SDValue Chain = Result.getValue(1); 2483 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2484 Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); 2485 if (!UseGOTOFF) 2486 Result = DAG.getLoad(PtrVT, dl, Chain, Result, 2487 MachinePointerInfo::getGOT(), 2488 false, false, false, 0); 2489 return Result; 2490 } 2491 2492 // If we have T2 ops, we can materialize the address directly via movt/movw 2493 // pair. This is always cheaper. 2494 if (Subtarget->useMovt(DAG.getMachineFunction())) { 2495 ++NumMovwMovt; 2496 // FIXME: Once remat is capable of dealing with instructions with register 2497 // operands, expand this into two nodes. 2498 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, 2499 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 2500 } else { 2501 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); 2502 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2503 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2504 MachinePointerInfo::getConstantPool(), 2505 false, false, false, 0); 2506 } 2507 } 2508 2509 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, 2510 SelectionDAG &DAG) const { 2511 EVT PtrVT = getPointerTy(); 2512 SDLoc dl(Op); 2513 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2514 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2515 2516 if (Subtarget->useMovt(DAG.getMachineFunction())) 2517 ++NumMovwMovt; 2518 2519 // FIXME: Once remat is capable of dealing with instructions with register 2520 // operands, expand this into multiple nodes 2521 unsigned Wrapper = 2522 RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper; 2523 2524 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY); 2525 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G); 2526 2527 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) 2528 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, 2529 MachinePointerInfo::getGOT(), false, false, false, 0); 2530 return Result; 2531 } 2532 2533 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op, 2534 SelectionDAG &DAG) const { 2535 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported"); 2536 assert(Subtarget->useMovt(DAG.getMachineFunction()) && 2537 "Windows on ARM expects to use movw/movt"); 2538 2539 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2540 const ARMII::TOF TargetFlags = 2541 (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG); 2542 EVT PtrVT = getPointerTy(); 2543 SDValue Result; 2544 SDLoc DL(Op); 2545 2546 ++NumMovwMovt; 2547 2548 // FIXME: Once remat is capable of dealing with instructions with register 2549 // operands, expand this into two nodes. 2550 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, 2551 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0, 2552 TargetFlags)); 2553 if (GV->hasDLLImportStorageClass()) 2554 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2555 MachinePointerInfo::getGOT(), false, false, false, 0); 2556 return Result; 2557 } 2558 2559 SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, 2560 SelectionDAG &DAG) const { 2561 assert(Subtarget->isTargetELF() && 2562 "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); 2563 MachineFunction &MF = DAG.getMachineFunction(); 2564 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2565 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2566 EVT PtrVT = getPointerTy(); 2567 SDLoc dl(Op); 2568 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2569 ARMConstantPoolValue *CPV = 2570 ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_", 2571 ARMPCLabelIndex, PCAdj); 2572 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2573 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2574 SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2575 MachinePointerInfo::getConstantPool(), 2576 false, false, false, 0); 2577 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2578 return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2579 } 2580 2581 SDValue 2582 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { 2583 SDLoc dl(Op); 2584 SDValue Val = DAG.getConstant(0, MVT::i32); 2585 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, 2586 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 2587 Op.getOperand(1), Val); 2588 } 2589 2590 SDValue 2591 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { 2592 SDLoc dl(Op); 2593 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), 2594 Op.getOperand(1), DAG.getConstant(0, MVT::i32)); 2595 } 2596 2597 SDValue 2598 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, 2599 const ARMSubtarget *Subtarget) const { 2600 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2601 SDLoc dl(Op); 2602 switch (IntNo) { 2603 default: return SDValue(); // Don't custom lower most intrinsics. 2604 case Intrinsic::arm_rbit: { 2605 assert(Op.getOperand(0).getValueType() == MVT::i32 && 2606 "RBIT intrinsic must have i32 type!"); 2607 return DAG.getNode(ARMISD::RBIT, dl, MVT::i32, Op.getOperand(0)); 2608 } 2609 case Intrinsic::arm_thread_pointer: { 2610 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2611 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 2612 } 2613 case Intrinsic::eh_sjlj_lsda: { 2614 MachineFunction &MF = DAG.getMachineFunction(); 2615 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2616 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2617 EVT PtrVT = getPointerTy(); 2618 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2619 SDValue CPAddr; 2620 unsigned PCAdj = (RelocM != Reloc::PIC_) 2621 ? 0 : (Subtarget->isThumb() ? 4 : 8); 2622 ARMConstantPoolValue *CPV = 2623 ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex, 2624 ARMCP::CPLSDA, PCAdj); 2625 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2626 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2627 SDValue Result = 2628 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, 2629 MachinePointerInfo::getConstantPool(), 2630 false, false, false, 0); 2631 2632 if (RelocM == Reloc::PIC_) { 2633 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); 2634 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2635 } 2636 return Result; 2637 } 2638 case Intrinsic::arm_neon_vmulls: 2639 case Intrinsic::arm_neon_vmullu: { 2640 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) 2641 ? ARMISD::VMULLs : ARMISD::VMULLu; 2642 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 2643 Op.getOperand(1), Op.getOperand(2)); 2644 } 2645 } 2646 } 2647 2648 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, 2649 const ARMSubtarget *Subtarget) { 2650 // FIXME: handle "fence singlethread" more efficiently. 2651 SDLoc dl(Op); 2652 if (!Subtarget->hasDataBarrier()) { 2653 // Some ARMv6 cpus can support data barriers with an mcr instruction. 2654 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get 2655 // here. 2656 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && 2657 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"); 2658 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), 2659 DAG.getConstant(0, MVT::i32)); 2660 } 2661 2662 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1)); 2663 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue()); 2664 unsigned Domain = ARM_MB::ISH; 2665 if (Subtarget->isMClass()) { 2666 // Only a full system barrier exists in the M-class architectures. 2667 Domain = ARM_MB::SY; 2668 } else if (Subtarget->isSwift() && Ord == Release) { 2669 // Swift happens to implement ISHST barriers in a way that's compatible with 2670 // Release semantics but weaker than ISH so we'd be fools not to use 2671 // it. Beware: other processors probably don't! 2672 Domain = ARM_MB::ISHST; 2673 } 2674 2675 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0), 2676 DAG.getConstant(Intrinsic::arm_dmb, MVT::i32), 2677 DAG.getConstant(Domain, MVT::i32)); 2678 } 2679 2680 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, 2681 const ARMSubtarget *Subtarget) { 2682 // ARM pre v5TE and Thumb1 does not have preload instructions. 2683 if (!(Subtarget->isThumb2() || 2684 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) 2685 // Just preserve the chain. 2686 return Op.getOperand(0); 2687 2688 SDLoc dl(Op); 2689 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1; 2690 if (!isRead && 2691 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) 2692 // ARMv7 with MP extension has PLDW. 2693 return Op.getOperand(0); 2694 2695 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2696 if (Subtarget->isThumb()) { 2697 // Invert the bits. 2698 isRead = ~isRead & 1; 2699 isData = ~isData & 1; 2700 } 2701 2702 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), 2703 Op.getOperand(1), DAG.getConstant(isRead, MVT::i32), 2704 DAG.getConstant(isData, MVT::i32)); 2705 } 2706 2707 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { 2708 MachineFunction &MF = DAG.getMachineFunction(); 2709 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); 2710 2711 // vastart just stores the address of the VarArgsFrameIndex slot into the 2712 // memory location argument. 2713 SDLoc dl(Op); 2714 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); 2715 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2716 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2717 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2718 MachinePointerInfo(SV), false, false, 0); 2719 } 2720 2721 SDValue 2722 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, 2723 SDValue &Root, SelectionDAG &DAG, 2724 SDLoc dl) const { 2725 MachineFunction &MF = DAG.getMachineFunction(); 2726 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2727 2728 const TargetRegisterClass *RC; 2729 if (AFI->isThumb1OnlyFunction()) 2730 RC = &ARM::tGPRRegClass; 2731 else 2732 RC = &ARM::GPRRegClass; 2733 2734 // Transform the arguments stored in physical registers into virtual ones. 2735 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2736 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 2737 2738 SDValue ArgValue2; 2739 if (NextVA.isMemLoc()) { 2740 MachineFrameInfo *MFI = MF.getFrameInfo(); 2741 int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true); 2742 2743 // Create load node to retrieve arguments from the stack. 2744 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 2745 ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, 2746 MachinePointerInfo::getFixedStack(FI), 2747 false, false, false, 0); 2748 } else { 2749 Reg = MF.addLiveIn(NextVA.getLocReg(), RC); 2750 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 2751 } 2752 if (!Subtarget->isLittle()) 2753 std::swap (ArgValue, ArgValue2); 2754 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); 2755 } 2756 2757 void 2758 ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF, 2759 unsigned InRegsParamRecordIdx, 2760 unsigned ArgSize, 2761 unsigned &ArgRegsSize, 2762 unsigned &ArgRegsSaveSize) 2763 const { 2764 unsigned NumGPRs; 2765 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { 2766 unsigned RBegin, REnd; 2767 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); 2768 NumGPRs = REnd - RBegin; 2769 } else { 2770 unsigned int firstUnalloced; 2771 firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs, 2772 sizeof(GPRArgRegs) / 2773 sizeof(GPRArgRegs[0])); 2774 NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0; 2775 } 2776 2777 unsigned Align = MF.getTarget() 2778 .getSubtargetImpl() 2779 ->getFrameLowering() 2780 ->getStackAlignment(); 2781 ArgRegsSize = NumGPRs * 4; 2782 2783 // If parameter is split between stack and GPRs... 2784 if (NumGPRs && Align > 4 && 2785 (ArgRegsSize < ArgSize || 2786 InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) { 2787 // Add padding for part of param recovered from GPRs. For example, 2788 // if Align == 8, its last byte must be at address K*8 - 1. 2789 // We need to do it, since remained (stack) part of parameter has 2790 // stack alignment, and we need to "attach" "GPRs head" without gaps 2791 // to it: 2792 // Stack: 2793 // |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes... 2794 // [ [padding] [GPRs head] ] [ Tail passed via stack .... 2795 // 2796 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2797 unsigned Padding = 2798 OffsetToAlignment(ArgRegsSize + AFI->getArgRegsSaveSize(), Align); 2799 ArgRegsSaveSize = ArgRegsSize + Padding; 2800 } else 2801 // We don't need to extend regs save size for byval parameters if they 2802 // are passed via GPRs only. 2803 ArgRegsSaveSize = ArgRegsSize; 2804 } 2805 2806 // The remaining GPRs hold either the beginning of variable-argument 2807 // data, or the beginning of an aggregate passed by value (usually 2808 // byval). Either way, we allocate stack slots adjacent to the data 2809 // provided by our caller, and store the unallocated registers there. 2810 // If this is a variadic function, the va_list pointer will begin with 2811 // these values; otherwise, this reassembles a (byval) structure that 2812 // was split between registers and memory. 2813 // Return: The frame index registers were stored into. 2814 int 2815 ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, 2816 SDLoc dl, SDValue &Chain, 2817 const Value *OrigArg, 2818 unsigned InRegsParamRecordIdx, 2819 unsigned OffsetFromOrigArg, 2820 unsigned ArgOffset, 2821 unsigned ArgSize, 2822 bool ForceMutable, 2823 unsigned ByValStoreOffset, 2824 unsigned TotalArgRegsSaveSize) const { 2825 2826 // Currently, two use-cases possible: 2827 // Case #1. Non-var-args function, and we meet first byval parameter. 2828 // Setup first unallocated register as first byval register; 2829 // eat all remained registers 2830 // (these two actions are performed by HandleByVal method). 2831 // Then, here, we initialize stack frame with 2832 // "store-reg" instructions. 2833 // Case #2. Var-args function, that doesn't contain byval parameters. 2834 // The same: eat all remained unallocated registers, 2835 // initialize stack frame. 2836 2837 MachineFunction &MF = DAG.getMachineFunction(); 2838 MachineFrameInfo *MFI = MF.getFrameInfo(); 2839 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2840 unsigned firstRegToSaveIndex, lastRegToSaveIndex; 2841 unsigned RBegin, REnd; 2842 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { 2843 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); 2844 firstRegToSaveIndex = RBegin - ARM::R0; 2845 lastRegToSaveIndex = REnd - ARM::R0; 2846 } else { 2847 firstRegToSaveIndex = CCInfo.getFirstUnallocated 2848 (GPRArgRegs, array_lengthof(GPRArgRegs)); 2849 lastRegToSaveIndex = 4; 2850 } 2851 2852 unsigned ArgRegsSize, ArgRegsSaveSize; 2853 computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize, 2854 ArgRegsSize, ArgRegsSaveSize); 2855 2856 // Store any by-val regs to their spots on the stack so that they may be 2857 // loaded by deferencing the result of formal parameter pointer or va_next. 2858 // Note: once stack area for byval/varargs registers 2859 // was initialized, it can't be initialized again. 2860 if (ArgRegsSaveSize) { 2861 unsigned Padding = ArgRegsSaveSize - ArgRegsSize; 2862 2863 if (Padding) { 2864 assert(AFI->getStoredByValParamsPadding() == 0 && 2865 "The only parameter may be padded."); 2866 AFI->setStoredByValParamsPadding(Padding); 2867 } 2868 2869 int FrameIndex = MFI->CreateFixedObject(ArgRegsSaveSize, 2870 Padding + 2871 ByValStoreOffset - 2872 (int64_t)TotalArgRegsSaveSize, 2873 false); 2874 SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy()); 2875 if (Padding) { 2876 MFI->CreateFixedObject(Padding, 2877 ArgOffset + ByValStoreOffset - 2878 (int64_t)ArgRegsSaveSize, 2879 false); 2880 } 2881 2882 SmallVector<SDValue, 4> MemOps; 2883 for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex; 2884 ++firstRegToSaveIndex, ++i) { 2885 const TargetRegisterClass *RC; 2886 if (AFI->isThumb1OnlyFunction()) 2887 RC = &ARM::tGPRRegClass; 2888 else 2889 RC = &ARM::GPRRegClass; 2890 2891 unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC); 2892 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 2893 SDValue Store = 2894 DAG.getStore(Val.getValue(1), dl, Val, FIN, 2895 MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i), 2896 false, false, 0); 2897 MemOps.push_back(Store); 2898 FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, 2899 DAG.getConstant(4, getPointerTy())); 2900 } 2901 2902 AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize()); 2903 2904 if (!MemOps.empty()) 2905 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 2906 return FrameIndex; 2907 } else { 2908 if (ArgSize == 0) { 2909 // We cannot allocate a zero-byte object for the first variadic argument, 2910 // so just make up a size. 2911 ArgSize = 4; 2912 } 2913 // This will point to the next argument passed via stack. 2914 return MFI->CreateFixedObject( 2915 ArgSize, ArgOffset, !ForceMutable); 2916 } 2917 } 2918 2919 // Setup stack frame, the va_list pointer will start from. 2920 void 2921 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, 2922 SDLoc dl, SDValue &Chain, 2923 unsigned ArgOffset, 2924 unsigned TotalArgRegsSaveSize, 2925 bool ForceMutable) const { 2926 MachineFunction &MF = DAG.getMachineFunction(); 2927 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2928 2929 // Try to store any remaining integer argument regs 2930 // to their spots on the stack so that they may be loaded by deferencing 2931 // the result of va_next. 2932 // If there is no regs to be stored, just point address after last 2933 // argument passed via stack. 2934 int FrameIndex = 2935 StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr, 2936 CCInfo.getInRegsParamsCount(), 0, ArgOffset, 0, ForceMutable, 2937 0, TotalArgRegsSaveSize); 2938 2939 AFI->setVarArgsFrameIndex(FrameIndex); 2940 } 2941 2942 SDValue 2943 ARMTargetLowering::LowerFormalArguments(SDValue Chain, 2944 CallingConv::ID CallConv, bool isVarArg, 2945 const SmallVectorImpl<ISD::InputArg> 2946 &Ins, 2947 SDLoc dl, SelectionDAG &DAG, 2948 SmallVectorImpl<SDValue> &InVals) 2949 const { 2950 MachineFunction &MF = DAG.getMachineFunction(); 2951 MachineFrameInfo *MFI = MF.getFrameInfo(); 2952 2953 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2954 2955 // Assign locations to all of the incoming arguments. 2956 SmallVector<CCValAssign, 16> ArgLocs; 2957 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 2958 *DAG.getContext(), Prologue); 2959 CCInfo.AnalyzeFormalArguments(Ins, 2960 CCAssignFnForNode(CallConv, /* Return*/ false, 2961 isVarArg)); 2962 2963 SmallVector<SDValue, 16> ArgValues; 2964 int lastInsIndex = -1; 2965 SDValue ArgValue; 2966 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); 2967 unsigned CurArgIdx = 0; 2968 2969 // Initially ArgRegsSaveSize is zero. 2970 // Then we increase this value each time we meet byval parameter. 2971 // We also increase this value in case of varargs function. 2972 AFI->setArgRegsSaveSize(0); 2973 2974 unsigned ByValStoreOffset = 0; 2975 unsigned TotalArgRegsSaveSize = 0; 2976 unsigned ArgRegsSaveSizeMaxAlign = 4; 2977 2978 // Calculate the amount of stack space that we need to allocate to store 2979 // byval and variadic arguments that are passed in registers. 2980 // We need to know this before we allocate the first byval or variadic 2981 // argument, as they will be allocated a stack slot below the CFA (Canonical 2982 // Frame Address, the stack pointer at entry to the function). 2983 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2984 CCValAssign &VA = ArgLocs[i]; 2985 if (VA.isMemLoc()) { 2986 int index = VA.getValNo(); 2987 if (index != lastInsIndex) { 2988 ISD::ArgFlagsTy Flags = Ins[index].Flags; 2989 if (Flags.isByVal()) { 2990 unsigned ExtraArgRegsSize; 2991 unsigned ExtraArgRegsSaveSize; 2992 computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsProceed(), 2993 Flags.getByValSize(), 2994 ExtraArgRegsSize, ExtraArgRegsSaveSize); 2995 2996 TotalArgRegsSaveSize += ExtraArgRegsSaveSize; 2997 if (Flags.getByValAlign() > ArgRegsSaveSizeMaxAlign) 2998 ArgRegsSaveSizeMaxAlign = Flags.getByValAlign(); 2999 CCInfo.nextInRegsParam(); 3000 } 3001 lastInsIndex = index; 3002 } 3003 } 3004 } 3005 CCInfo.rewindByValRegsInfo(); 3006 lastInsIndex = -1; 3007 if (isVarArg) { 3008 unsigned ExtraArgRegsSize; 3009 unsigned ExtraArgRegsSaveSize; 3010 computeRegArea(CCInfo, MF, CCInfo.getInRegsParamsCount(), 0, 3011 ExtraArgRegsSize, ExtraArgRegsSaveSize); 3012 TotalArgRegsSaveSize += ExtraArgRegsSaveSize; 3013 } 3014 // If the arg regs save area contains N-byte aligned values, the 3015 // bottom of it must be at least N-byte aligned. 3016 TotalArgRegsSaveSize = RoundUpToAlignment(TotalArgRegsSaveSize, ArgRegsSaveSizeMaxAlign); 3017 TotalArgRegsSaveSize = std::min(TotalArgRegsSaveSize, 16U); 3018 3019 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3020 CCValAssign &VA = ArgLocs[i]; 3021 std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx); 3022 CurArgIdx = Ins[VA.getValNo()].OrigArgIndex; 3023 // Arguments stored in registers. 3024 if (VA.isRegLoc()) { 3025 EVT RegVT = VA.getLocVT(); 3026 3027 if (VA.needsCustom()) { 3028 // f64 and vector types are split up into multiple registers or 3029 // combinations of registers and stack slots. 3030 if (VA.getLocVT() == MVT::v2f64) { 3031 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], 3032 Chain, DAG, dl); 3033 VA = ArgLocs[++i]; // skip ahead to next loc 3034 SDValue ArgValue2; 3035 if (VA.isMemLoc()) { 3036 int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true); 3037 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 3038 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN, 3039 MachinePointerInfo::getFixedStack(FI), 3040 false, false, false, 0); 3041 } else { 3042 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], 3043 Chain, DAG, dl); 3044 } 3045 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 3046 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, 3047 ArgValue, ArgValue1, DAG.getIntPtrConstant(0)); 3048 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, 3049 ArgValue, ArgValue2, DAG.getIntPtrConstant(1)); 3050 } else 3051 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); 3052 3053 } else { 3054 const TargetRegisterClass *RC; 3055 3056 if (RegVT == MVT::f32) 3057 RC = &ARM::SPRRegClass; 3058 else if (RegVT == MVT::f64) 3059 RC = &ARM::DPRRegClass; 3060 else if (RegVT == MVT::v2f64) 3061 RC = &ARM::QPRRegClass; 3062 else if (RegVT == MVT::i32) 3063 RC = AFI->isThumb1OnlyFunction() ? 3064 (const TargetRegisterClass*)&ARM::tGPRRegClass : 3065 (const TargetRegisterClass*)&ARM::GPRRegClass; 3066 else 3067 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 3068 3069 // Transform the arguments in physical registers into virtual ones. 3070 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3071 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); 3072 } 3073 3074 // If this is an 8 or 16-bit value, it is really passed promoted 3075 // to 32 bits. Insert an assert[sz]ext to capture this, then 3076 // truncate to the right size. 3077 switch (VA.getLocInfo()) { 3078 default: llvm_unreachable("Unknown loc info!"); 3079 case CCValAssign::Full: break; 3080 case CCValAssign::BCvt: 3081 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); 3082 break; 3083 case CCValAssign::SExt: 3084 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 3085 DAG.getValueType(VA.getValVT())); 3086 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 3087 break; 3088 case CCValAssign::ZExt: 3089 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 3090 DAG.getValueType(VA.getValVT())); 3091 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 3092 break; 3093 } 3094 3095 InVals.push_back(ArgValue); 3096 3097 } else { // VA.isRegLoc() 3098 3099 // sanity check 3100 assert(VA.isMemLoc()); 3101 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); 3102 3103 int index = ArgLocs[i].getValNo(); 3104 3105 // Some Ins[] entries become multiple ArgLoc[] entries. 3106 // Process them only once. 3107 if (index != lastInsIndex) 3108 { 3109 ISD::ArgFlagsTy Flags = Ins[index].Flags; 3110 // FIXME: For now, all byval parameter objects are marked mutable. 3111 // This can be changed with more analysis. 3112 // In case of tail call optimization mark all arguments mutable. 3113 // Since they could be overwritten by lowering of arguments in case of 3114 // a tail call. 3115 if (Flags.isByVal()) { 3116 unsigned CurByValIndex = CCInfo.getInRegsParamsProceed(); 3117 3118 ByValStoreOffset = RoundUpToAlignment(ByValStoreOffset, Flags.getByValAlign()); 3119 int FrameIndex = StoreByValRegs( 3120 CCInfo, DAG, dl, Chain, CurOrigArg, 3121 CurByValIndex, 3122 Ins[VA.getValNo()].PartOffset, 3123 VA.getLocMemOffset(), 3124 Flags.getByValSize(), 3125 true /*force mutable frames*/, 3126 ByValStoreOffset, 3127 TotalArgRegsSaveSize); 3128 ByValStoreOffset += Flags.getByValSize(); 3129 ByValStoreOffset = std::min(ByValStoreOffset, 16U); 3130 InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy())); 3131 CCInfo.nextInRegsParam(); 3132 } else { 3133 unsigned FIOffset = VA.getLocMemOffset(); 3134 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, 3135 FIOffset, true); 3136 3137 // Create load nodes to retrieve arguments from the stack. 3138 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 3139 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, 3140 MachinePointerInfo::getFixedStack(FI), 3141 false, false, false, 0)); 3142 } 3143 lastInsIndex = index; 3144 } 3145 } 3146 } 3147 3148 // varargs 3149 if (isVarArg) 3150 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 3151 CCInfo.getNextStackOffset(), 3152 TotalArgRegsSaveSize); 3153 3154 AFI->setArgumentStackSize(CCInfo.getNextStackOffset()); 3155 3156 return Chain; 3157 } 3158 3159 /// isFloatingPointZero - Return true if this is +0.0. 3160 static bool isFloatingPointZero(SDValue Op) { 3161 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 3162 return CFP->getValueAPF().isPosZero(); 3163 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 3164 // Maybe this has already been legalized into the constant pool? 3165 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { 3166 SDValue WrapperOp = Op.getOperand(1).getOperand(0); 3167 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) 3168 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 3169 return CFP->getValueAPF().isPosZero(); 3170 } 3171 } 3172 return false; 3173 } 3174 3175 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for 3176 /// the given operands. 3177 SDValue 3178 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 3179 SDValue &ARMcc, SelectionDAG &DAG, 3180 SDLoc dl) const { 3181 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 3182 unsigned C = RHSC->getZExtValue(); 3183 if (!isLegalICmpImmediate(C)) { 3184 // Constant does not fit, try adjusting it by one? 3185 switch (CC) { 3186 default: break; 3187 case ISD::SETLT: 3188 case ISD::SETGE: 3189 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { 3190 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 3191 RHS = DAG.getConstant(C-1, MVT::i32); 3192 } 3193 break; 3194 case ISD::SETULT: 3195 case ISD::SETUGE: 3196 if (C != 0 && isLegalICmpImmediate(C-1)) { 3197 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 3198 RHS = DAG.getConstant(C-1, MVT::i32); 3199 } 3200 break; 3201 case ISD::SETLE: 3202 case ISD::SETGT: 3203 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { 3204 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 3205 RHS = DAG.getConstant(C+1, MVT::i32); 3206 } 3207 break; 3208 case ISD::SETULE: 3209 case ISD::SETUGT: 3210 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { 3211 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3212 RHS = DAG.getConstant(C+1, MVT::i32); 3213 } 3214 break; 3215 } 3216 } 3217 } 3218 3219 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 3220 ARMISD::NodeType CompareType; 3221 switch (CondCode) { 3222 default: 3223 CompareType = ARMISD::CMP; 3224 break; 3225 case ARMCC::EQ: 3226 case ARMCC::NE: 3227 // Uses only Z Flag 3228 CompareType = ARMISD::CMPZ; 3229 break; 3230 } 3231 ARMcc = DAG.getConstant(CondCode, MVT::i32); 3232 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); 3233 } 3234 3235 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. 3236 SDValue 3237 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, 3238 SDLoc dl) const { 3239 SDValue Cmp; 3240 if (!isFloatingPointZero(RHS)) 3241 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS); 3242 else 3243 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS); 3244 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); 3245 } 3246 3247 /// duplicateCmp - Glue values can have only one use, so this function 3248 /// duplicates a comparison node. 3249 SDValue 3250 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { 3251 unsigned Opc = Cmp.getOpcode(); 3252 SDLoc DL(Cmp); 3253 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) 3254 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 3255 3256 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); 3257 Cmp = Cmp.getOperand(0); 3258 Opc = Cmp.getOpcode(); 3259 if (Opc == ARMISD::CMPFP) 3260 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 3261 else { 3262 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); 3263 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); 3264 } 3265 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); 3266 } 3267 3268 std::pair<SDValue, SDValue> 3269 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG, 3270 SDValue &ARMcc) const { 3271 assert(Op.getValueType() == MVT::i32 && "Unsupported value type"); 3272 3273 SDValue Value, OverflowCmp; 3274 SDValue LHS = Op.getOperand(0); 3275 SDValue RHS = Op.getOperand(1); 3276 3277 3278 // FIXME: We are currently always generating CMPs because we don't support 3279 // generating CMN through the backend. This is not as good as the natural 3280 // CMP case because it causes a register dependency and cannot be folded 3281 // later. 3282 3283 switch (Op.getOpcode()) { 3284 default: 3285 llvm_unreachable("Unknown overflow instruction!"); 3286 case ISD::SADDO: 3287 ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32); 3288 Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS); 3289 OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS); 3290 break; 3291 case ISD::UADDO: 3292 ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32); 3293 Value = DAG.getNode(ISD::ADD, SDLoc(Op), Op.getValueType(), LHS, RHS); 3294 OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, Value, LHS); 3295 break; 3296 case ISD::SSUBO: 3297 ARMcc = DAG.getConstant(ARMCC::VC, MVT::i32); 3298 Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS); 3299 OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS); 3300 break; 3301 case ISD::USUBO: 3302 ARMcc = DAG.getConstant(ARMCC::HS, MVT::i32); 3303 Value = DAG.getNode(ISD::SUB, SDLoc(Op), Op.getValueType(), LHS, RHS); 3304 OverflowCmp = DAG.getNode(ARMISD::CMP, SDLoc(Op), MVT::Glue, LHS, RHS); 3305 break; 3306 } // switch (...) 3307 3308 return std::make_pair(Value, OverflowCmp); 3309 } 3310 3311 3312 SDValue 3313 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { 3314 // Let legalize expand this if it isn't a legal type yet. 3315 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) 3316 return SDValue(); 3317 3318 SDValue Value, OverflowCmp; 3319 SDValue ARMcc; 3320 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc); 3321 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3322 // We use 0 and 1 as false and true values. 3323 SDValue TVal = DAG.getConstant(1, MVT::i32); 3324 SDValue FVal = DAG.getConstant(0, MVT::i32); 3325 EVT VT = Op.getValueType(); 3326 3327 SDValue Overflow = DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, TVal, FVal, 3328 ARMcc, CCR, OverflowCmp); 3329 3330 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); 3331 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow); 3332 } 3333 3334 3335 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3336 SDValue Cond = Op.getOperand(0); 3337 SDValue SelectTrue = Op.getOperand(1); 3338 SDValue SelectFalse = Op.getOperand(2); 3339 SDLoc dl(Op); 3340 unsigned Opc = Cond.getOpcode(); 3341 3342 if (Cond.getResNo() == 1 && 3343 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 3344 Opc == ISD::USUBO)) { 3345 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) 3346 return SDValue(); 3347 3348 SDValue Value, OverflowCmp; 3349 SDValue ARMcc; 3350 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); 3351 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3352 EVT VT = Op.getValueType(); 3353 3354 return DAG.getNode(ARMISD::CMOV, SDLoc(Op), VT, SelectTrue, SelectFalse, 3355 ARMcc, CCR, OverflowCmp); 3356 3357 } 3358 3359 // Convert: 3360 // 3361 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) 3362 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) 3363 // 3364 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { 3365 const ConstantSDNode *CMOVTrue = 3366 dyn_cast<ConstantSDNode>(Cond.getOperand(0)); 3367 const ConstantSDNode *CMOVFalse = 3368 dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3369 3370 if (CMOVTrue && CMOVFalse) { 3371 unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); 3372 unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); 3373 3374 SDValue True; 3375 SDValue False; 3376 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { 3377 True = SelectTrue; 3378 False = SelectFalse; 3379 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { 3380 True = SelectFalse; 3381 False = SelectTrue; 3382 } 3383 3384 if (True.getNode() && False.getNode()) { 3385 EVT VT = Op.getValueType(); 3386 SDValue ARMcc = Cond.getOperand(2); 3387 SDValue CCR = Cond.getOperand(3); 3388 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); 3389 assert(True.getValueType() == VT); 3390 return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp); 3391 } 3392 } 3393 } 3394 3395 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the 3396 // undefined bits before doing a full-word comparison with zero. 3397 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, 3398 DAG.getConstant(1, Cond.getValueType())); 3399 3400 return DAG.getSelectCC(dl, Cond, 3401 DAG.getConstant(0, Cond.getValueType()), 3402 SelectTrue, SelectFalse, ISD::SETNE); 3403 } 3404 3405 static ISD::CondCode getInverseCCForVSEL(ISD::CondCode CC) { 3406 if (CC == ISD::SETNE) 3407 return ISD::SETEQ; 3408 return ISD::getSetCCInverse(CC, true); 3409 } 3410 3411 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode, 3412 bool &swpCmpOps, bool &swpVselOps) { 3413 // Start by selecting the GE condition code for opcodes that return true for 3414 // 'equality' 3415 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE || 3416 CC == ISD::SETULE) 3417 CondCode = ARMCC::GE; 3418 3419 // and GT for opcodes that return false for 'equality'. 3420 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT || 3421 CC == ISD::SETULT) 3422 CondCode = ARMCC::GT; 3423 3424 // Since we are constrained to GE/GT, if the opcode contains 'less', we need 3425 // to swap the compare operands. 3426 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT || 3427 CC == ISD::SETULT) 3428 swpCmpOps = true; 3429 3430 // Both GT and GE are ordered comparisons, and return false for 'unordered'. 3431 // If we have an unordered opcode, we need to swap the operands to the VSEL 3432 // instruction (effectively negating the condition). 3433 // 3434 // This also has the effect of swapping which one of 'less' or 'greater' 3435 // returns true, so we also swap the compare operands. It also switches 3436 // whether we return true for 'equality', so we compensate by picking the 3437 // opposite condition code to our original choice. 3438 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE || 3439 CC == ISD::SETUGT) { 3440 swpCmpOps = !swpCmpOps; 3441 swpVselOps = !swpVselOps; 3442 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT; 3443 } 3444 3445 // 'ordered' is 'anything but unordered', so use the VS condition code and 3446 // swap the VSEL operands. 3447 if (CC == ISD::SETO) { 3448 CondCode = ARMCC::VS; 3449 swpVselOps = true; 3450 } 3451 3452 // 'unordered or not equal' is 'anything but equal', so use the EQ condition 3453 // code and swap the VSEL operands. 3454 if (CC == ISD::SETUNE) { 3455 CondCode = ARMCC::EQ; 3456 swpVselOps = true; 3457 } 3458 } 3459 3460 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3461 EVT VT = Op.getValueType(); 3462 SDValue LHS = Op.getOperand(0); 3463 SDValue RHS = Op.getOperand(1); 3464 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3465 SDValue TrueVal = Op.getOperand(2); 3466 SDValue FalseVal = Op.getOperand(3); 3467 SDLoc dl(Op); 3468 3469 if (LHS.getValueType() == MVT::i32) { 3470 // Try to generate VSEL on ARMv8. 3471 // The VSEL instruction can't use all the usual ARM condition 3472 // codes: it only has two bits to select the condition code, so it's 3473 // constrained to use only GE, GT, VS and EQ. 3474 // 3475 // To implement all the various ISD::SETXXX opcodes, we sometimes need to 3476 // swap the operands of the previous compare instruction (effectively 3477 // inverting the compare condition, swapping 'less' and 'greater') and 3478 // sometimes need to swap the operands to the VSEL (which inverts the 3479 // condition in the sense of firing whenever the previous condition didn't) 3480 if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 || 3481 TrueVal.getValueType() == MVT::f64)) { 3482 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 3483 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE || 3484 CondCode == ARMCC::VC || CondCode == ARMCC::NE) { 3485 CC = getInverseCCForVSEL(CC); 3486 std::swap(TrueVal, FalseVal); 3487 } 3488 } 3489 3490 SDValue ARMcc; 3491 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3492 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3493 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, 3494 Cmp); 3495 } 3496 3497 ARMCC::CondCodes CondCode, CondCode2; 3498 FPCCToARMCC(CC, CondCode, CondCode2); 3499 3500 // Try to generate VSEL on ARMv8. 3501 if (getSubtarget()->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 || 3502 TrueVal.getValueType() == MVT::f64)) { 3503 // We can select VMAXNM/VMINNM from a compare followed by a select with the 3504 // same operands, as follows: 3505 // c = fcmp [ogt, olt, ugt, ult] a, b 3506 // select c, a, b 3507 // We only do this in unsafe-fp-math, because signed zeros and NaNs are 3508 // handled differently than the original code sequence. 3509 if (getTargetMachine().Options.UnsafeFPMath && LHS == TrueVal && 3510 RHS == FalseVal) { 3511 if (CC == ISD::SETOGT || CC == ISD::SETUGT) 3512 return DAG.getNode(ARMISD::VMAXNM, dl, VT, TrueVal, FalseVal); 3513 if (CC == ISD::SETOLT || CC == ISD::SETULT) 3514 return DAG.getNode(ARMISD::VMINNM, dl, VT, TrueVal, FalseVal); 3515 } 3516 3517 bool swpCmpOps = false; 3518 bool swpVselOps = false; 3519 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps); 3520 3521 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE || 3522 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) { 3523 if (swpCmpOps) 3524 std::swap(LHS, RHS); 3525 if (swpVselOps) 3526 std::swap(TrueVal, FalseVal); 3527 } 3528 } 3529 3530 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); 3531 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 3532 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3533 SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, 3534 ARMcc, CCR, Cmp); 3535 if (CondCode2 != ARMCC::AL) { 3536 SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32); 3537 // FIXME: Needs another CMP because flag can have but one use. 3538 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); 3539 Result = DAG.getNode(ARMISD::CMOV, dl, VT, 3540 Result, TrueVal, ARMcc2, CCR, Cmp2); 3541 } 3542 return Result; 3543 } 3544 3545 /// canChangeToInt - Given the fp compare operand, return true if it is suitable 3546 /// to morph to an integer compare sequence. 3547 static bool canChangeToInt(SDValue Op, bool &SeenZero, 3548 const ARMSubtarget *Subtarget) { 3549 SDNode *N = Op.getNode(); 3550 if (!N->hasOneUse()) 3551 // Otherwise it requires moving the value from fp to integer registers. 3552 return false; 3553 if (!N->getNumValues()) 3554 return false; 3555 EVT VT = Op.getValueType(); 3556 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) 3557 // f32 case is generally profitable. f64 case only makes sense when vcmpe + 3558 // vmrs are very slow, e.g. cortex-a8. 3559 return false; 3560 3561 if (isFloatingPointZero(Op)) { 3562 SeenZero = true; 3563 return true; 3564 } 3565 return ISD::isNormalLoad(N); 3566 } 3567 3568 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { 3569 if (isFloatingPointZero(Op)) 3570 return DAG.getConstant(0, MVT::i32); 3571 3572 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) 3573 return DAG.getLoad(MVT::i32, SDLoc(Op), 3574 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), 3575 Ld->isVolatile(), Ld->isNonTemporal(), 3576 Ld->isInvariant(), Ld->getAlignment()); 3577 3578 llvm_unreachable("Unknown VFP cmp argument!"); 3579 } 3580 3581 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, 3582 SDValue &RetVal1, SDValue &RetVal2) { 3583 if (isFloatingPointZero(Op)) { 3584 RetVal1 = DAG.getConstant(0, MVT::i32); 3585 RetVal2 = DAG.getConstant(0, MVT::i32); 3586 return; 3587 } 3588 3589 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) { 3590 SDValue Ptr = Ld->getBasePtr(); 3591 RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op), 3592 Ld->getChain(), Ptr, 3593 Ld->getPointerInfo(), 3594 Ld->isVolatile(), Ld->isNonTemporal(), 3595 Ld->isInvariant(), Ld->getAlignment()); 3596 3597 EVT PtrType = Ptr.getValueType(); 3598 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); 3599 SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op), 3600 PtrType, Ptr, DAG.getConstant(4, PtrType)); 3601 RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op), 3602 Ld->getChain(), NewPtr, 3603 Ld->getPointerInfo().getWithOffset(4), 3604 Ld->isVolatile(), Ld->isNonTemporal(), 3605 Ld->isInvariant(), NewAlign); 3606 return; 3607 } 3608 3609 llvm_unreachable("Unknown VFP cmp argument!"); 3610 } 3611 3612 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some 3613 /// f32 and even f64 comparisons to integer ones. 3614 SDValue 3615 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { 3616 SDValue Chain = Op.getOperand(0); 3617 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3618 SDValue LHS = Op.getOperand(2); 3619 SDValue RHS = Op.getOperand(3); 3620 SDValue Dest = Op.getOperand(4); 3621 SDLoc dl(Op); 3622 3623 bool LHSSeenZero = false; 3624 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); 3625 bool RHSSeenZero = false; 3626 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); 3627 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { 3628 // If unsafe fp math optimization is enabled and there are no other uses of 3629 // the CMP operands, and the condition code is EQ or NE, we can optimize it 3630 // to an integer comparison. 3631 if (CC == ISD::SETOEQ) 3632 CC = ISD::SETEQ; 3633 else if (CC == ISD::SETUNE) 3634 CC = ISD::SETNE; 3635 3636 SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32); 3637 SDValue ARMcc; 3638 if (LHS.getValueType() == MVT::f32) { 3639 LHS = DAG.getNode(ISD::AND, dl, MVT::i32, 3640 bitcastf32Toi32(LHS, DAG), Mask); 3641 RHS = DAG.getNode(ISD::AND, dl, MVT::i32, 3642 bitcastf32Toi32(RHS, DAG), Mask); 3643 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3644 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3645 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 3646 Chain, Dest, ARMcc, CCR, Cmp); 3647 } 3648 3649 SDValue LHS1, LHS2; 3650 SDValue RHS1, RHS2; 3651 expandf64Toi32(LHS, DAG, LHS1, LHS2); 3652 expandf64Toi32(RHS, DAG, RHS1, RHS2); 3653 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); 3654 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); 3655 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 3656 ARMcc = DAG.getConstant(CondCode, MVT::i32); 3657 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 3658 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; 3659 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops); 3660 } 3661 3662 return SDValue(); 3663 } 3664 3665 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3666 SDValue Chain = Op.getOperand(0); 3667 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3668 SDValue LHS = Op.getOperand(2); 3669 SDValue RHS = Op.getOperand(3); 3670 SDValue Dest = Op.getOperand(4); 3671 SDLoc dl(Op); 3672 3673 if (LHS.getValueType() == MVT::i32) { 3674 SDValue ARMcc; 3675 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3676 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3677 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 3678 Chain, Dest, ARMcc, CCR, Cmp); 3679 } 3680 3681 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); 3682 3683 if (getTargetMachine().Options.UnsafeFPMath && 3684 (CC == ISD::SETEQ || CC == ISD::SETOEQ || 3685 CC == ISD::SETNE || CC == ISD::SETUNE)) { 3686 SDValue Result = OptimizeVFPBrcond(Op, DAG); 3687 if (Result.getNode()) 3688 return Result; 3689 } 3690 3691 ARMCC::CondCodes CondCode, CondCode2; 3692 FPCCToARMCC(CC, CondCode, CondCode2); 3693 3694 SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32); 3695 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 3696 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3697 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 3698 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; 3699 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); 3700 if (CondCode2 != ARMCC::AL) { 3701 ARMcc = DAG.getConstant(CondCode2, MVT::i32); 3702 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; 3703 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); 3704 } 3705 return Res; 3706 } 3707 3708 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { 3709 SDValue Chain = Op.getOperand(0); 3710 SDValue Table = Op.getOperand(1); 3711 SDValue Index = Op.getOperand(2); 3712 SDLoc dl(Op); 3713 3714 EVT PTy = getPointerTy(); 3715 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 3716 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); 3717 SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); 3718 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); 3719 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); 3720 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); 3721 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3722 if (Subtarget->isThumb2()) { 3723 // Thumb2 uses a two-level jump. That is, it jumps into the jump table 3724 // which does another jump to the destination. This also makes it easier 3725 // to translate it to TBB / TBH later. 3726 // FIXME: This might not work if the function is extremely large. 3727 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, 3728 Addr, Op.getOperand(2), JTI, UId); 3729 } 3730 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { 3731 Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, 3732 MachinePointerInfo::getJumpTable(), 3733 false, false, false, 0); 3734 Chain = Addr.getValue(1); 3735 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); 3736 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); 3737 } else { 3738 Addr = DAG.getLoad(PTy, dl, Chain, Addr, 3739 MachinePointerInfo::getJumpTable(), 3740 false, false, false, 0); 3741 Chain = Addr.getValue(1); 3742 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); 3743 } 3744 } 3745 3746 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { 3747 EVT VT = Op.getValueType(); 3748 SDLoc dl(Op); 3749 3750 if (Op.getValueType().getVectorElementType() == MVT::i32) { 3751 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) 3752 return Op; 3753 return DAG.UnrollVectorOp(Op.getNode()); 3754 } 3755 3756 assert(Op.getOperand(0).getValueType() == MVT::v4f32 && 3757 "Invalid type for custom lowering!"); 3758 if (VT != MVT::v4i16) 3759 return DAG.UnrollVectorOp(Op.getNode()); 3760 3761 Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0)); 3762 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); 3763 } 3764 3765 static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { 3766 EVT VT = Op.getValueType(); 3767 if (VT.isVector()) 3768 return LowerVectorFP_TO_INT(Op, DAG); 3769 3770 SDLoc dl(Op); 3771 unsigned Opc; 3772 3773 switch (Op.getOpcode()) { 3774 default: llvm_unreachable("Invalid opcode!"); 3775 case ISD::FP_TO_SINT: 3776 Opc = ARMISD::FTOSI; 3777 break; 3778 case ISD::FP_TO_UINT: 3779 Opc = ARMISD::FTOUI; 3780 break; 3781 } 3782 Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); 3783 return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3784 } 3785 3786 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 3787 EVT VT = Op.getValueType(); 3788 SDLoc dl(Op); 3789 3790 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { 3791 if (VT.getVectorElementType() == MVT::f32) 3792 return Op; 3793 return DAG.UnrollVectorOp(Op.getNode()); 3794 } 3795 3796 assert(Op.getOperand(0).getValueType() == MVT::v4i16 && 3797 "Invalid type for custom lowering!"); 3798 if (VT != MVT::v4f32) 3799 return DAG.UnrollVectorOp(Op.getNode()); 3800 3801 unsigned CastOpc; 3802 unsigned Opc; 3803 switch (Op.getOpcode()) { 3804 default: llvm_unreachable("Invalid opcode!"); 3805 case ISD::SINT_TO_FP: 3806 CastOpc = ISD::SIGN_EXTEND; 3807 Opc = ISD::SINT_TO_FP; 3808 break; 3809 case ISD::UINT_TO_FP: 3810 CastOpc = ISD::ZERO_EXTEND; 3811 Opc = ISD::UINT_TO_FP; 3812 break; 3813 } 3814 3815 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0)); 3816 return DAG.getNode(Opc, dl, VT, Op); 3817 } 3818 3819 static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 3820 EVT VT = Op.getValueType(); 3821 if (VT.isVector()) 3822 return LowerVectorINT_TO_FP(Op, DAG); 3823 3824 SDLoc dl(Op); 3825 unsigned Opc; 3826 3827 switch (Op.getOpcode()) { 3828 default: llvm_unreachable("Invalid opcode!"); 3829 case ISD::SINT_TO_FP: 3830 Opc = ARMISD::SITOF; 3831 break; 3832 case ISD::UINT_TO_FP: 3833 Opc = ARMISD::UITOF; 3834 break; 3835 } 3836 3837 Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0)); 3838 return DAG.getNode(Opc, dl, VT, Op); 3839 } 3840 3841 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 3842 // Implement fcopysign with a fabs and a conditional fneg. 3843 SDValue Tmp0 = Op.getOperand(0); 3844 SDValue Tmp1 = Op.getOperand(1); 3845 SDLoc dl(Op); 3846 EVT VT = Op.getValueType(); 3847 EVT SrcVT = Tmp1.getValueType(); 3848 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || 3849 Tmp0.getOpcode() == ARMISD::VMOVDRR; 3850 bool UseNEON = !InGPR && Subtarget->hasNEON(); 3851 3852 if (UseNEON) { 3853 // Use VBSL to copy the sign bit. 3854 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80); 3855 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, 3856 DAG.getTargetConstant(EncodedVal, MVT::i32)); 3857 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; 3858 if (VT == MVT::f64) 3859 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT, 3860 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), 3861 DAG.getConstant(32, MVT::i32)); 3862 else /*if (VT == MVT::f32)*/ 3863 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); 3864 if (SrcVT == MVT::f32) { 3865 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); 3866 if (VT == MVT::f64) 3867 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT, 3868 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), 3869 DAG.getConstant(32, MVT::i32)); 3870 } else if (VT == MVT::f32) 3871 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64, 3872 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), 3873 DAG.getConstant(32, MVT::i32)); 3874 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); 3875 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); 3876 3877 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff), 3878 MVT::i32); 3879 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); 3880 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, 3881 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); 3882 3883 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, 3884 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), 3885 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); 3886 if (VT == MVT::f32) { 3887 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); 3888 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, 3889 DAG.getConstant(0, MVT::i32)); 3890 } else { 3891 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); 3892 } 3893 3894 return Res; 3895 } 3896 3897 // Bitcast operand 1 to i32. 3898 if (SrcVT == MVT::f64) 3899 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 3900 Tmp1).getValue(1); 3901 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); 3902 3903 // Or in the signbit with integer operations. 3904 SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32); 3905 SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32); 3906 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); 3907 if (VT == MVT::f32) { 3908 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, 3909 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); 3910 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3911 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); 3912 } 3913 3914 // f64: Or the high part with signbit and then combine two parts. 3915 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 3916 Tmp0); 3917 SDValue Lo = Tmp0.getValue(0); 3918 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); 3919 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); 3920 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 3921 } 3922 3923 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ 3924 MachineFunction &MF = DAG.getMachineFunction(); 3925 MachineFrameInfo *MFI = MF.getFrameInfo(); 3926 MFI->setReturnAddressIsTaken(true); 3927 3928 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3929 return SDValue(); 3930 3931 EVT VT = Op.getValueType(); 3932 SDLoc dl(Op); 3933 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3934 if (Depth) { 3935 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 3936 SDValue Offset = DAG.getConstant(4, MVT::i32); 3937 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 3938 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 3939 MachinePointerInfo(), false, false, false, 0); 3940 } 3941 3942 // Return LR, which contains the return address. Mark it an implicit live-in. 3943 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); 3944 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 3945 } 3946 3947 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 3948 const ARMBaseRegisterInfo &ARI = 3949 *static_cast<const ARMBaseRegisterInfo*>(RegInfo); 3950 MachineFunction &MF = DAG.getMachineFunction(); 3951 MachineFrameInfo *MFI = MF.getFrameInfo(); 3952 MFI->setFrameAddressIsTaken(true); 3953 3954 EVT VT = Op.getValueType(); 3955 SDLoc dl(Op); // FIXME probably not meaningful 3956 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3957 unsigned FrameReg = ARI.getFrameRegister(MF); 3958 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); 3959 while (Depth--) 3960 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 3961 MachinePointerInfo(), 3962 false, false, false, 0); 3963 return FrameAddr; 3964 } 3965 3966 // FIXME? Maybe this could be a TableGen attribute on some registers and 3967 // this table could be generated automatically from RegInfo. 3968 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, 3969 EVT VT) const { 3970 unsigned Reg = StringSwitch<unsigned>(RegName) 3971 .Case("sp", ARM::SP) 3972 .Default(0); 3973 if (Reg) 3974 return Reg; 3975 report_fatal_error("Invalid register name global variable"); 3976 } 3977 3978 /// ExpandBITCAST - If the target supports VFP, this function is called to 3979 /// expand a bit convert where either the source or destination type is i64 to 3980 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 3981 /// operand type is illegal (e.g., v2f32 for a target that doesn't support 3982 /// vectors), since the legalizer won't know what to do with that. 3983 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) { 3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3985 SDLoc dl(N); 3986 SDValue Op = N->getOperand(0); 3987 3988 // This function is only supposed to be called for i64 types, either as the 3989 // source or destination of the bit convert. 3990 EVT SrcVT = Op.getValueType(); 3991 EVT DstVT = N->getValueType(0); 3992 assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && 3993 "ExpandBITCAST called for non-i64 type"); 3994 3995 // Turn i64->f64 into VMOVDRR. 3996 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { 3997 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, 3998 DAG.getConstant(0, MVT::i32)); 3999 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, 4000 DAG.getConstant(1, MVT::i32)); 4001 return DAG.getNode(ISD::BITCAST, dl, DstVT, 4002 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); 4003 } 4004 4005 // Turn f64->i64 into VMOVRRD. 4006 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { 4007 SDValue Cvt; 4008 if (TLI.isBigEndian() && SrcVT.isVector() && 4009 SrcVT.getVectorNumElements() > 1) 4010 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, 4011 DAG.getVTList(MVT::i32, MVT::i32), 4012 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op)); 4013 else 4014 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, 4015 DAG.getVTList(MVT::i32, MVT::i32), Op); 4016 // Merge the pieces into a single i64 value. 4017 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); 4018 } 4019 4020 return SDValue(); 4021 } 4022 4023 /// getZeroVector - Returns a vector of specified type with all zero elements. 4024 /// Zero vectors are used to represent vector negation and in those cases 4025 /// will be implemented with the NEON VNEG instruction. However, VNEG does 4026 /// not support i64 elements, so sometimes the zero vectors will need to be 4027 /// explicitly constructed. Regardless, use a canonical VMOV to create the 4028 /// zero vector. 4029 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) { 4030 assert(VT.isVector() && "Expected a vector type"); 4031 // The canonical modified immediate encoding of a zero vector is....0! 4032 SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32); 4033 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 4034 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); 4035 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 4036 } 4037 4038 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two 4039 /// i32 values and take a 2 x i32 value to shift plus a shift amount. 4040 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, 4041 SelectionDAG &DAG) const { 4042 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 4043 EVT VT = Op.getValueType(); 4044 unsigned VTBits = VT.getSizeInBits(); 4045 SDLoc dl(Op); 4046 SDValue ShOpLo = Op.getOperand(0); 4047 SDValue ShOpHi = Op.getOperand(1); 4048 SDValue ShAmt = Op.getOperand(2); 4049 SDValue ARMcc; 4050 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 4051 4052 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 4053 4054 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 4055 DAG.getConstant(VTBits, MVT::i32), ShAmt); 4056 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 4057 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 4058 DAG.getConstant(VTBits, MVT::i32)); 4059 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 4060 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 4061 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 4062 4063 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 4064 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, 4065 ARMcc, DAG, dl); 4066 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 4067 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, 4068 CCR, Cmp); 4069 4070 SDValue Ops[2] = { Lo, Hi }; 4071 return DAG.getMergeValues(Ops, dl); 4072 } 4073 4074 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 4075 /// i32 values and take a 2 x i32 value to shift plus a shift amount. 4076 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, 4077 SelectionDAG &DAG) const { 4078 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 4079 EVT VT = Op.getValueType(); 4080 unsigned VTBits = VT.getSizeInBits(); 4081 SDLoc dl(Op); 4082 SDValue ShOpLo = Op.getOperand(0); 4083 SDValue ShOpHi = Op.getOperand(1); 4084 SDValue ShAmt = Op.getOperand(2); 4085 SDValue ARMcc; 4086 4087 assert(Op.getOpcode() == ISD::SHL_PARTS); 4088 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 4089 DAG.getConstant(VTBits, MVT::i32), ShAmt); 4090 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 4091 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 4092 DAG.getConstant(VTBits, MVT::i32)); 4093 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 4094 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 4095 4096 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 4097 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 4098 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, 4099 ARMcc, DAG, dl); 4100 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 4101 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc, 4102 CCR, Cmp); 4103 4104 SDValue Ops[2] = { Lo, Hi }; 4105 return DAG.getMergeValues(Ops, dl); 4106 } 4107 4108 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 4109 SelectionDAG &DAG) const { 4110 // The rounding mode is in bits 23:22 of the FPSCR. 4111 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 4112 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) 4113 // so that the shift + and get folded into a bitfield extract. 4114 SDLoc dl(Op); 4115 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, 4116 DAG.getConstant(Intrinsic::arm_get_fpscr, 4117 MVT::i32)); 4118 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, 4119 DAG.getConstant(1U << 22, MVT::i32)); 4120 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, 4121 DAG.getConstant(22, MVT::i32)); 4122 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, 4123 DAG.getConstant(3, MVT::i32)); 4124 } 4125 4126 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, 4127 const ARMSubtarget *ST) { 4128 EVT VT = N->getValueType(0); 4129 SDLoc dl(N); 4130 4131 if (!ST->hasV6T2Ops()) 4132 return SDValue(); 4133 4134 SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0)); 4135 return DAG.getNode(ISD::CTLZ, dl, VT, rbit); 4136 } 4137 4138 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count 4139 /// for each 16-bit element from operand, repeated. The basic idea is to 4140 /// leverage vcnt to get the 8-bit counts, gather and add the results. 4141 /// 4142 /// Trace for v4i16: 4143 /// input = [v0 v1 v2 v3 ] (vi 16-bit element) 4144 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element) 4145 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi) 4146 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6] 4147 /// [b0 b1 b2 b3 b4 b5 b6 b7] 4148 /// +[b1 b0 b3 b2 b5 b4 b7 b6] 4149 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0, 4150 /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits) 4151 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) { 4152 EVT VT = N->getValueType(0); 4153 SDLoc DL(N); 4154 4155 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; 4156 SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0)); 4157 SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0); 4158 SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1); 4159 SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2); 4160 return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3); 4161 } 4162 4163 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the 4164 /// bit-count for each 16-bit element from the operand. We need slightly 4165 /// different sequencing for v4i16 and v8i16 to stay within NEON's available 4166 /// 64/128-bit registers. 4167 /// 4168 /// Trace for v4i16: 4169 /// input = [v0 v1 v2 v3 ] (vi 16-bit element) 4170 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi) 4171 /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ] 4172 /// v4i16:Extracted = [k0 k1 k2 k3 ] 4173 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) { 4174 EVT VT = N->getValueType(0); 4175 SDLoc DL(N); 4176 4177 SDValue BitCounts = getCTPOP16BitCounts(N, DAG); 4178 if (VT.is64BitVector()) { 4179 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts); 4180 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended, 4181 DAG.getIntPtrConstant(0)); 4182 } else { 4183 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, 4184 BitCounts, DAG.getIntPtrConstant(0)); 4185 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted); 4186 } 4187 } 4188 4189 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the 4190 /// bit-count for each 32-bit element from the operand. The idea here is 4191 /// to split the vector into 16-bit elements, leverage the 16-bit count 4192 /// routine, and then combine the results. 4193 /// 4194 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged): 4195 /// input = [v0 v1 ] (vi: 32-bit elements) 4196 /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1]) 4197 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi) 4198 /// vrev: N0 = [k1 k0 k3 k2 ] 4199 /// [k0 k1 k2 k3 ] 4200 /// N1 =+[k1 k0 k3 k2 ] 4201 /// [k0 k2 k1 k3 ] 4202 /// N2 =+[k1 k3 k0 k2 ] 4203 /// [k0 k2 k1 k3 ] 4204 /// Extended =+[k1 k3 k0 k2 ] 4205 /// [k0 k2 ] 4206 /// Extracted=+[k1 k3 ] 4207 /// 4208 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) { 4209 EVT VT = N->getValueType(0); 4210 SDLoc DL(N); 4211 4212 EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; 4213 4214 SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0)); 4215 SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG); 4216 SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16); 4217 SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0); 4218 SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1); 4219 4220 if (VT.is64BitVector()) { 4221 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2); 4222 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended, 4223 DAG.getIntPtrConstant(0)); 4224 } else { 4225 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2, 4226 DAG.getIntPtrConstant(0)); 4227 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted); 4228 } 4229 } 4230 4231 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, 4232 const ARMSubtarget *ST) { 4233 EVT VT = N->getValueType(0); 4234 4235 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); 4236 assert((VT == MVT::v2i32 || VT == MVT::v4i32 || 4237 VT == MVT::v4i16 || VT == MVT::v8i16) && 4238 "Unexpected type for custom ctpop lowering"); 4239 4240 if (VT.getVectorElementType() == MVT::i32) 4241 return lowerCTPOP32BitElements(N, DAG); 4242 else 4243 return lowerCTPOP16BitElements(N, DAG); 4244 } 4245 4246 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, 4247 const ARMSubtarget *ST) { 4248 EVT VT = N->getValueType(0); 4249 SDLoc dl(N); 4250 4251 if (!VT.isVector()) 4252 return SDValue(); 4253 4254 // Lower vector shifts on NEON to use VSHL. 4255 assert(ST->hasNEON() && "unexpected vector shift"); 4256 4257 // Left shifts translate directly to the vshiftu intrinsic. 4258 if (N->getOpcode() == ISD::SHL) 4259 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 4260 DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32), 4261 N->getOperand(0), N->getOperand(1)); 4262 4263 assert((N->getOpcode() == ISD::SRA || 4264 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); 4265 4266 // NEON uses the same intrinsics for both left and right shifts. For 4267 // right shifts, the shift amounts are negative, so negate the vector of 4268 // shift amounts. 4269 EVT ShiftVT = N->getOperand(1).getValueType(); 4270 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, 4271 getZeroVector(ShiftVT, DAG, dl), 4272 N->getOperand(1)); 4273 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? 4274 Intrinsic::arm_neon_vshifts : 4275 Intrinsic::arm_neon_vshiftu); 4276 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 4277 DAG.getConstant(vshiftInt, MVT::i32), 4278 N->getOperand(0), NegatedCount); 4279 } 4280 4281 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, 4282 const ARMSubtarget *ST) { 4283 EVT VT = N->getValueType(0); 4284 SDLoc dl(N); 4285 4286 // We can get here for a node like i32 = ISD::SHL i32, i64 4287 if (VT != MVT::i64) 4288 return SDValue(); 4289 4290 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 4291 "Unknown shift to lower!"); 4292 4293 // We only lower SRA, SRL of 1 here, all others use generic lowering. 4294 if (!isa<ConstantSDNode>(N->getOperand(1)) || 4295 cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1) 4296 return SDValue(); 4297 4298 // If we are in thumb mode, we don't have RRX. 4299 if (ST->isThumb1Only()) return SDValue(); 4300 4301 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. 4302 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), 4303 DAG.getConstant(0, MVT::i32)); 4304 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), 4305 DAG.getConstant(1, MVT::i32)); 4306 4307 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and 4308 // captures the result into a carry flag. 4309 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; 4310 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi); 4311 4312 // The low part is an ARMISD::RRX operand, which shifts the carry in. 4313 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); 4314 4315 // Merge the pieces into a single i64 value. 4316 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 4317 } 4318 4319 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { 4320 SDValue TmpOp0, TmpOp1; 4321 bool Invert = false; 4322 bool Swap = false; 4323 unsigned Opc = 0; 4324 4325 SDValue Op0 = Op.getOperand(0); 4326 SDValue Op1 = Op.getOperand(1); 4327 SDValue CC = Op.getOperand(2); 4328 EVT VT = Op.getValueType(); 4329 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 4330 SDLoc dl(Op); 4331 4332 if (Op.getOperand(1).getValueType().isFloatingPoint()) { 4333 switch (SetCCOpcode) { 4334 default: llvm_unreachable("Illegal FP comparison"); 4335 case ISD::SETUNE: 4336 case ISD::SETNE: Invert = true; // Fallthrough 4337 case ISD::SETOEQ: 4338 case ISD::SETEQ: Opc = ARMISD::VCEQ; break; 4339 case ISD::SETOLT: 4340 case ISD::SETLT: Swap = true; // Fallthrough 4341 case ISD::SETOGT: 4342 case ISD::SETGT: Opc = ARMISD::VCGT; break; 4343 case ISD::SETOLE: 4344 case ISD::SETLE: Swap = true; // Fallthrough 4345 case ISD::SETOGE: 4346 case ISD::SETGE: Opc = ARMISD::VCGE; break; 4347 case ISD::SETUGE: Swap = true; // Fallthrough 4348 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; 4349 case ISD::SETUGT: Swap = true; // Fallthrough 4350 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; 4351 case ISD::SETUEQ: Invert = true; // Fallthrough 4352 case ISD::SETONE: 4353 // Expand this to (OLT | OGT). 4354 TmpOp0 = Op0; 4355 TmpOp1 = Op1; 4356 Opc = ISD::OR; 4357 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); 4358 Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1); 4359 break; 4360 case ISD::SETUO: Invert = true; // Fallthrough 4361 case ISD::SETO: 4362 // Expand this to (OLT | OGE). 4363 TmpOp0 = Op0; 4364 TmpOp1 = Op1; 4365 Opc = ISD::OR; 4366 Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); 4367 Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1); 4368 break; 4369 } 4370 } else { 4371 // Integer comparisons. 4372 switch (SetCCOpcode) { 4373 default: llvm_unreachable("Illegal integer comparison"); 4374 case ISD::SETNE: Invert = true; 4375 case ISD::SETEQ: Opc = ARMISD::VCEQ; break; 4376 case ISD::SETLT: Swap = true; 4377 case ISD::SETGT: Opc = ARMISD::VCGT; break; 4378 case ISD::SETLE: Swap = true; 4379 case ISD::SETGE: Opc = ARMISD::VCGE; break; 4380 case ISD::SETULT: Swap = true; 4381 case ISD::SETUGT: Opc = ARMISD::VCGTU; break; 4382 case ISD::SETULE: Swap = true; 4383 case ISD::SETUGE: Opc = ARMISD::VCGEU; break; 4384 } 4385 4386 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). 4387 if (Opc == ARMISD::VCEQ) { 4388 4389 SDValue AndOp; 4390 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 4391 AndOp = Op0; 4392 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) 4393 AndOp = Op1; 4394 4395 // Ignore bitconvert. 4396 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) 4397 AndOp = AndOp.getOperand(0); 4398 4399 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { 4400 Opc = ARMISD::VTST; 4401 Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0)); 4402 Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1)); 4403 Invert = !Invert; 4404 } 4405 } 4406 } 4407 4408 if (Swap) 4409 std::swap(Op0, Op1); 4410 4411 // If one of the operands is a constant vector zero, attempt to fold the 4412 // comparison to a specialized compare-against-zero form. 4413 SDValue SingleOp; 4414 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 4415 SingleOp = Op0; 4416 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 4417 if (Opc == ARMISD::VCGE) 4418 Opc = ARMISD::VCLEZ; 4419 else if (Opc == ARMISD::VCGT) 4420 Opc = ARMISD::VCLTZ; 4421 SingleOp = Op1; 4422 } 4423 4424 SDValue Result; 4425 if (SingleOp.getNode()) { 4426 switch (Opc) { 4427 case ARMISD::VCEQ: 4428 Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break; 4429 case ARMISD::VCGE: 4430 Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break; 4431 case ARMISD::VCLEZ: 4432 Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break; 4433 case ARMISD::VCGT: 4434 Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break; 4435 case ARMISD::VCLTZ: 4436 Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break; 4437 default: 4438 Result = DAG.getNode(Opc, dl, VT, Op0, Op1); 4439 } 4440 } else { 4441 Result = DAG.getNode(Opc, dl, VT, Op0, Op1); 4442 } 4443 4444 if (Invert) 4445 Result = DAG.getNOT(dl, Result, VT); 4446 4447 return Result; 4448 } 4449 4450 /// isNEONModifiedImm - Check if the specified splat value corresponds to a 4451 /// valid vector constant for a NEON instruction with a "modified immediate" 4452 /// operand (e.g., VMOV). If so, return the encoded value. 4453 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, 4454 unsigned SplatBitSize, SelectionDAG &DAG, 4455 EVT &VT, bool is128Bits, NEONModImmType type) { 4456 unsigned OpCmode, Imm; 4457 4458 // SplatBitSize is set to the smallest size that splats the vector, so a 4459 // zero vector will always have SplatBitSize == 8. However, NEON modified 4460 // immediate instructions others than VMOV do not support the 8-bit encoding 4461 // of a zero vector, and the default encoding of zero is supposed to be the 4462 // 32-bit version. 4463 if (SplatBits == 0) 4464 SplatBitSize = 32; 4465 4466 switch (SplatBitSize) { 4467 case 8: 4468 if (type != VMOVModImm) 4469 return SDValue(); 4470 // Any 1-byte value is OK. Op=0, Cmode=1110. 4471 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); 4472 OpCmode = 0xe; 4473 Imm = SplatBits; 4474 VT = is128Bits ? MVT::v16i8 : MVT::v8i8; 4475 break; 4476 4477 case 16: 4478 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. 4479 VT = is128Bits ? MVT::v8i16 : MVT::v4i16; 4480 if ((SplatBits & ~0xff) == 0) { 4481 // Value = 0x00nn: Op=x, Cmode=100x. 4482 OpCmode = 0x8; 4483 Imm = SplatBits; 4484 break; 4485 } 4486 if ((SplatBits & ~0xff00) == 0) { 4487 // Value = 0xnn00: Op=x, Cmode=101x. 4488 OpCmode = 0xa; 4489 Imm = SplatBits >> 8; 4490 break; 4491 } 4492 return SDValue(); 4493 4494 case 32: 4495 // NEON's 32-bit VMOV supports splat values where: 4496 // * only one byte is nonzero, or 4497 // * the least significant byte is 0xff and the second byte is nonzero, or 4498 // * the least significant 2 bytes are 0xff and the third is nonzero. 4499 VT = is128Bits ? MVT::v4i32 : MVT::v2i32; 4500 if ((SplatBits & ~0xff) == 0) { 4501 // Value = 0x000000nn: Op=x, Cmode=000x. 4502 OpCmode = 0; 4503 Imm = SplatBits; 4504 break; 4505 } 4506 if ((SplatBits & ~0xff00) == 0) { 4507 // Value = 0x0000nn00: Op=x, Cmode=001x. 4508 OpCmode = 0x2; 4509 Imm = SplatBits >> 8; 4510 break; 4511 } 4512 if ((SplatBits & ~0xff0000) == 0) { 4513 // Value = 0x00nn0000: Op=x, Cmode=010x. 4514 OpCmode = 0x4; 4515 Imm = SplatBits >> 16; 4516 break; 4517 } 4518 if ((SplatBits & ~0xff000000) == 0) { 4519 // Value = 0xnn000000: Op=x, Cmode=011x. 4520 OpCmode = 0x6; 4521 Imm = SplatBits >> 24; 4522 break; 4523 } 4524 4525 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC 4526 if (type == OtherModImm) return SDValue(); 4527 4528 if ((SplatBits & ~0xffff) == 0 && 4529 ((SplatBits | SplatUndef) & 0xff) == 0xff) { 4530 // Value = 0x0000nnff: Op=x, Cmode=1100. 4531 OpCmode = 0xc; 4532 Imm = SplatBits >> 8; 4533 break; 4534 } 4535 4536 if ((SplatBits & ~0xffffff) == 0 && 4537 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { 4538 // Value = 0x00nnffff: Op=x, Cmode=1101. 4539 OpCmode = 0xd; 4540 Imm = SplatBits >> 16; 4541 break; 4542 } 4543 4544 // Note: there are a few 32-bit splat values (specifically: 00ffff00, 4545 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not 4546 // VMOV.I32. A (very) minor optimization would be to replicate the value 4547 // and fall through here to test for a valid 64-bit splat. But, then the 4548 // caller would also need to check and handle the change in size. 4549 return SDValue(); 4550 4551 case 64: { 4552 if (type != VMOVModImm) 4553 return SDValue(); 4554 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. 4555 uint64_t BitMask = 0xff; 4556 uint64_t Val = 0; 4557 unsigned ImmMask = 1; 4558 Imm = 0; 4559 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { 4560 if (((SplatBits | SplatUndef) & BitMask) == BitMask) { 4561 Val |= BitMask; 4562 Imm |= ImmMask; 4563 } else if ((SplatBits & BitMask) != 0) { 4564 return SDValue(); 4565 } 4566 BitMask <<= 8; 4567 ImmMask <<= 1; 4568 } 4569 4570 if (DAG.getTargetLoweringInfo().isBigEndian()) 4571 // swap higher and lower 32 bit word 4572 Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4); 4573 4574 // Op=1, Cmode=1110. 4575 OpCmode = 0x1e; 4576 VT = is128Bits ? MVT::v2i64 : MVT::v1i64; 4577 break; 4578 } 4579 4580 default: 4581 llvm_unreachable("unexpected size for isNEONModifiedImm"); 4582 } 4583 4584 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm); 4585 return DAG.getTargetConstant(EncodedVal, MVT::i32); 4586 } 4587 4588 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, 4589 const ARMSubtarget *ST) const { 4590 if (!ST->hasVFP3()) 4591 return SDValue(); 4592 4593 bool IsDouble = Op.getValueType() == MVT::f64; 4594 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op); 4595 4596 // Try splatting with a VMOV.f32... 4597 APFloat FPVal = CFP->getValueAPF(); 4598 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal); 4599 4600 if (ImmVal != -1) { 4601 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) { 4602 // We have code in place to select a valid ConstantFP already, no need to 4603 // do any mangling. 4604 return Op; 4605 } 4606 4607 // It's a float and we are trying to use NEON operations where 4608 // possible. Lower it to a splat followed by an extract. 4609 SDLoc DL(Op); 4610 SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32); 4611 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, 4612 NewVal); 4613 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, 4614 DAG.getConstant(0, MVT::i32)); 4615 } 4616 4617 // The rest of our options are NEON only, make sure that's allowed before 4618 // proceeding.. 4619 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP())) 4620 return SDValue(); 4621 4622 EVT VMovVT; 4623 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue(); 4624 4625 // It wouldn't really be worth bothering for doubles except for one very 4626 // important value, which does happen to match: 0.0. So make sure we don't do 4627 // anything stupid. 4628 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32)) 4629 return SDValue(); 4630 4631 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too). 4632 SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT, 4633 false, VMOVModImm); 4634 if (NewVal != SDValue()) { 4635 SDLoc DL(Op); 4636 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, 4637 NewVal); 4638 if (IsDouble) 4639 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); 4640 4641 // It's a float: cast and extract a vector element. 4642 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, 4643 VecConstant); 4644 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, 4645 DAG.getConstant(0, MVT::i32)); 4646 } 4647 4648 // Finally, try a VMVN.i32 4649 NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT, 4650 false, VMVNModImm); 4651 if (NewVal != SDValue()) { 4652 SDLoc DL(Op); 4653 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); 4654 4655 if (IsDouble) 4656 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); 4657 4658 // It's a float: cast and extract a vector element. 4659 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, 4660 VecConstant); 4661 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, 4662 DAG.getConstant(0, MVT::i32)); 4663 } 4664 4665 return SDValue(); 4666 } 4667 4668 // check if an VEXT instruction can handle the shuffle mask when the 4669 // vector sources of the shuffle are the same. 4670 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { 4671 unsigned NumElts = VT.getVectorNumElements(); 4672 4673 // Assume that the first shuffle index is not UNDEF. Fail if it is. 4674 if (M[0] < 0) 4675 return false; 4676 4677 Imm = M[0]; 4678 4679 // If this is a VEXT shuffle, the immediate value is the index of the first 4680 // element. The other shuffle indices must be the successive elements after 4681 // the first one. 4682 unsigned ExpectedElt = Imm; 4683 for (unsigned i = 1; i < NumElts; ++i) { 4684 // Increment the expected index. If it wraps around, just follow it 4685 // back to index zero and keep going. 4686 ++ExpectedElt; 4687 if (ExpectedElt == NumElts) 4688 ExpectedElt = 0; 4689 4690 if (M[i] < 0) continue; // ignore UNDEF indices 4691 if (ExpectedElt != static_cast<unsigned>(M[i])) 4692 return false; 4693 } 4694 4695 return true; 4696 } 4697 4698 4699 static bool isVEXTMask(ArrayRef<int> M, EVT VT, 4700 bool &ReverseVEXT, unsigned &Imm) { 4701 unsigned NumElts = VT.getVectorNumElements(); 4702 ReverseVEXT = false; 4703 4704 // Assume that the first shuffle index is not UNDEF. Fail if it is. 4705 if (M[0] < 0) 4706 return false; 4707 4708 Imm = M[0]; 4709 4710 // If this is a VEXT shuffle, the immediate value is the index of the first 4711 // element. The other shuffle indices must be the successive elements after 4712 // the first one. 4713 unsigned ExpectedElt = Imm; 4714 for (unsigned i = 1; i < NumElts; ++i) { 4715 // Increment the expected index. If it wraps around, it may still be 4716 // a VEXT but the source vectors must be swapped. 4717 ExpectedElt += 1; 4718 if (ExpectedElt == NumElts * 2) { 4719 ExpectedElt = 0; 4720 ReverseVEXT = true; 4721 } 4722 4723 if (M[i] < 0) continue; // ignore UNDEF indices 4724 if (ExpectedElt != static_cast<unsigned>(M[i])) 4725 return false; 4726 } 4727 4728 // Adjust the index value if the source operands will be swapped. 4729 if (ReverseVEXT) 4730 Imm -= NumElts; 4731 4732 return true; 4733 } 4734 4735 /// isVREVMask - Check if a vector shuffle corresponds to a VREV 4736 /// instruction with the specified blocksize. (The order of the elements 4737 /// within each block of the vector is reversed.) 4738 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { 4739 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && 4740 "Only possible block sizes for VREV are: 16, 32, 64"); 4741 4742 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4743 if (EltSz == 64) 4744 return false; 4745 4746 unsigned NumElts = VT.getVectorNumElements(); 4747 unsigned BlockElts = M[0] + 1; 4748 // If the first shuffle index is UNDEF, be optimistic. 4749 if (M[0] < 0) 4750 BlockElts = BlockSize / EltSz; 4751 4752 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) 4753 return false; 4754 4755 for (unsigned i = 0; i < NumElts; ++i) { 4756 if (M[i] < 0) continue; // ignore UNDEF indices 4757 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) 4758 return false; 4759 } 4760 4761 return true; 4762 } 4763 4764 static bool isVTBLMask(ArrayRef<int> M, EVT VT) { 4765 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of 4766 // range, then 0 is placed into the resulting vector. So pretty much any mask 4767 // of 8 elements can work here. 4768 return VT == MVT::v8i8 && M.size() == 8; 4769 } 4770 4771 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 4772 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4773 if (EltSz == 64) 4774 return false; 4775 4776 unsigned NumElts = VT.getVectorNumElements(); 4777 WhichResult = (M[0] == 0 ? 0 : 1); 4778 for (unsigned i = 0; i < NumElts; i += 2) { 4779 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || 4780 (M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult)) 4781 return false; 4782 } 4783 return true; 4784 } 4785 4786 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of 4787 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 4788 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 4789 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 4790 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4791 if (EltSz == 64) 4792 return false; 4793 4794 unsigned NumElts = VT.getVectorNumElements(); 4795 WhichResult = (M[0] == 0 ? 0 : 1); 4796 for (unsigned i = 0; i < NumElts; i += 2) { 4797 if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) || 4798 (M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult)) 4799 return false; 4800 } 4801 return true; 4802 } 4803 4804 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 4805 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4806 if (EltSz == 64) 4807 return false; 4808 4809 unsigned NumElts = VT.getVectorNumElements(); 4810 WhichResult = (M[0] == 0 ? 0 : 1); 4811 for (unsigned i = 0; i != NumElts; ++i) { 4812 if (M[i] < 0) continue; // ignore UNDEF indices 4813 if ((unsigned) M[i] != 2 * i + WhichResult) 4814 return false; 4815 } 4816 4817 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 4818 if (VT.is64BitVector() && EltSz == 32) 4819 return false; 4820 4821 return true; 4822 } 4823 4824 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of 4825 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 4826 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 4827 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 4828 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4829 if (EltSz == 64) 4830 return false; 4831 4832 unsigned Half = VT.getVectorNumElements() / 2; 4833 WhichResult = (M[0] == 0 ? 0 : 1); 4834 for (unsigned j = 0; j != 2; ++j) { 4835 unsigned Idx = WhichResult; 4836 for (unsigned i = 0; i != Half; ++i) { 4837 int MIdx = M[i + j * Half]; 4838 if (MIdx >= 0 && (unsigned) MIdx != Idx) 4839 return false; 4840 Idx += 2; 4841 } 4842 } 4843 4844 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 4845 if (VT.is64BitVector() && EltSz == 32) 4846 return false; 4847 4848 return true; 4849 } 4850 4851 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 4852 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4853 if (EltSz == 64) 4854 return false; 4855 4856 unsigned NumElts = VT.getVectorNumElements(); 4857 WhichResult = (M[0] == 0 ? 0 : 1); 4858 unsigned Idx = WhichResult * NumElts / 2; 4859 for (unsigned i = 0; i != NumElts; i += 2) { 4860 if ((M[i] >= 0 && (unsigned) M[i] != Idx) || 4861 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts)) 4862 return false; 4863 Idx += 1; 4864 } 4865 4866 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 4867 if (VT.is64BitVector() && EltSz == 32) 4868 return false; 4869 4870 return true; 4871 } 4872 4873 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of 4874 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 4875 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 4876 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 4877 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 4878 if (EltSz == 64) 4879 return false; 4880 4881 unsigned NumElts = VT.getVectorNumElements(); 4882 WhichResult = (M[0] == 0 ? 0 : 1); 4883 unsigned Idx = WhichResult * NumElts / 2; 4884 for (unsigned i = 0; i != NumElts; i += 2) { 4885 if ((M[i] >= 0 && (unsigned) M[i] != Idx) || 4886 (M[i+1] >= 0 && (unsigned) M[i+1] != Idx)) 4887 return false; 4888 Idx += 1; 4889 } 4890 4891 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 4892 if (VT.is64BitVector() && EltSz == 32) 4893 return false; 4894 4895 return true; 4896 } 4897 4898 /// \return true if this is a reverse operation on an vector. 4899 static bool isReverseMask(ArrayRef<int> M, EVT VT) { 4900 unsigned NumElts = VT.getVectorNumElements(); 4901 // Make sure the mask has the right size. 4902 if (NumElts != M.size()) 4903 return false; 4904 4905 // Look for <15, ..., 3, -1, 1, 0>. 4906 for (unsigned i = 0; i != NumElts; ++i) 4907 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) 4908 return false; 4909 4910 return true; 4911 } 4912 4913 // If N is an integer constant that can be moved into a register in one 4914 // instruction, return an SDValue of such a constant (will become a MOV 4915 // instruction). Otherwise return null. 4916 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, 4917 const ARMSubtarget *ST, SDLoc dl) { 4918 uint64_t Val; 4919 if (!isa<ConstantSDNode>(N)) 4920 return SDValue(); 4921 Val = cast<ConstantSDNode>(N)->getZExtValue(); 4922 4923 if (ST->isThumb1Only()) { 4924 if (Val <= 255 || ~Val <= 255) 4925 return DAG.getConstant(Val, MVT::i32); 4926 } else { 4927 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) 4928 return DAG.getConstant(Val, MVT::i32); 4929 } 4930 return SDValue(); 4931 } 4932 4933 // If this is a case we can't handle, return null and let the default 4934 // expansion code take care of it. 4935 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 4936 const ARMSubtarget *ST) const { 4937 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4938 SDLoc dl(Op); 4939 EVT VT = Op.getValueType(); 4940 4941 APInt SplatBits, SplatUndef; 4942 unsigned SplatBitSize; 4943 bool HasAnyUndefs; 4944 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 4945 if (SplatBitSize <= 64) { 4946 // Check if an immediate VMOV works. 4947 EVT VmovVT; 4948 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), 4949 SplatUndef.getZExtValue(), SplatBitSize, 4950 DAG, VmovVT, VT.is128BitVector(), 4951 VMOVModImm); 4952 if (Val.getNode()) { 4953 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); 4954 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 4955 } 4956 4957 // Try an immediate VMVN. 4958 uint64_t NegatedImm = (~SplatBits).getZExtValue(); 4959 Val = isNEONModifiedImm(NegatedImm, 4960 SplatUndef.getZExtValue(), SplatBitSize, 4961 DAG, VmovVT, VT.is128BitVector(), 4962 VMVNModImm); 4963 if (Val.getNode()) { 4964 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); 4965 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 4966 } 4967 4968 // Use vmov.f32 to materialize other v2f32 and v4f32 splats. 4969 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { 4970 int ImmVal = ARM_AM::getFP32Imm(SplatBits); 4971 if (ImmVal != -1) { 4972 SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32); 4973 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); 4974 } 4975 } 4976 } 4977 } 4978 4979 // Scan through the operands to see if only one value is used. 4980 // 4981 // As an optimisation, even if more than one value is used it may be more 4982 // profitable to splat with one value then change some lanes. 4983 // 4984 // Heuristically we decide to do this if the vector has a "dominant" value, 4985 // defined as splatted to more than half of the lanes. 4986 unsigned NumElts = VT.getVectorNumElements(); 4987 bool isOnlyLowElement = true; 4988 bool usesOnlyOneValue = true; 4989 bool hasDominantValue = false; 4990 bool isConstant = true; 4991 4992 // Map of the number of times a particular SDValue appears in the 4993 // element list. 4994 DenseMap<SDValue, unsigned> ValueCounts; 4995 SDValue Value; 4996 for (unsigned i = 0; i < NumElts; ++i) { 4997 SDValue V = Op.getOperand(i); 4998 if (V.getOpcode() == ISD::UNDEF) 4999 continue; 5000 if (i > 0) 5001 isOnlyLowElement = false; 5002 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 5003 isConstant = false; 5004 5005 ValueCounts.insert(std::make_pair(V, 0)); 5006 unsigned &Count = ValueCounts[V]; 5007 5008 // Is this value dominant? (takes up more than half of the lanes) 5009 if (++Count > (NumElts / 2)) { 5010 hasDominantValue = true; 5011 Value = V; 5012 } 5013 } 5014 if (ValueCounts.size() != 1) 5015 usesOnlyOneValue = false; 5016 if (!Value.getNode() && ValueCounts.size() > 0) 5017 Value = ValueCounts.begin()->first; 5018 5019 if (ValueCounts.size() == 0) 5020 return DAG.getUNDEF(VT); 5021 5022 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR. 5023 // Keep going if we are hitting this case. 5024 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode())) 5025 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 5026 5027 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5028 5029 // Use VDUP for non-constant splats. For f32 constant splats, reduce to 5030 // i32 and try again. 5031 if (hasDominantValue && EltSize <= 32) { 5032 if (!isConstant) { 5033 SDValue N; 5034 5035 // If we are VDUPing a value that comes directly from a vector, that will 5036 // cause an unnecessary move to and from a GPR, where instead we could 5037 // just use VDUPLANE. We can only do this if the lane being extracted 5038 // is at a constant index, as the VDUP from lane instructions only have 5039 // constant-index forms. 5040 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5041 isa<ConstantSDNode>(Value->getOperand(1))) { 5042 // We need to create a new undef vector to use for the VDUPLANE if the 5043 // size of the vector from which we get the value is different than the 5044 // size of the vector that we need to create. We will insert the element 5045 // such that the register coalescer will remove unnecessary copies. 5046 if (VT != Value->getOperand(0).getValueType()) { 5047 ConstantSDNode *constIndex; 5048 constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)); 5049 assert(constIndex && "The index is not a constant!"); 5050 unsigned index = constIndex->getAPIntValue().getLimitedValue() % 5051 VT.getVectorNumElements(); 5052 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, 5053 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), 5054 Value, DAG.getConstant(index, MVT::i32)), 5055 DAG.getConstant(index, MVT::i32)); 5056 } else 5057 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, 5058 Value->getOperand(0), Value->getOperand(1)); 5059 } else 5060 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); 5061 5062 if (!usesOnlyOneValue) { 5063 // The dominant value was splatted as 'N', but we now have to insert 5064 // all differing elements. 5065 for (unsigned I = 0; I < NumElts; ++I) { 5066 if (Op.getOperand(I) == Value) 5067 continue; 5068 SmallVector<SDValue, 3> Ops; 5069 Ops.push_back(N); 5070 Ops.push_back(Op.getOperand(I)); 5071 Ops.push_back(DAG.getConstant(I, MVT::i32)); 5072 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops); 5073 } 5074 } 5075 return N; 5076 } 5077 if (VT.getVectorElementType().isFloatingPoint()) { 5078 SmallVector<SDValue, 8> Ops; 5079 for (unsigned i = 0; i < NumElts; ++i) 5080 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32, 5081 Op.getOperand(i))); 5082 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); 5083 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); 5084 Val = LowerBUILD_VECTOR(Val, DAG, ST); 5085 if (Val.getNode()) 5086 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 5087 } 5088 if (usesOnlyOneValue) { 5089 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); 5090 if (isConstant && Val.getNode()) 5091 return DAG.getNode(ARMISD::VDUP, dl, VT, Val); 5092 } 5093 } 5094 5095 // If all elements are constants and the case above didn't get hit, fall back 5096 // to the default expansion, which will generate a load from the constant 5097 // pool. 5098 if (isConstant) 5099 return SDValue(); 5100 5101 // Empirical tests suggest this is rarely worth it for vectors of length <= 2. 5102 if (NumElts >= 4) { 5103 SDValue shuffle = ReconstructShuffle(Op, DAG); 5104 if (shuffle != SDValue()) 5105 return shuffle; 5106 } 5107 5108 // Vectors with 32- or 64-bit elements can be built by directly assigning 5109 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands 5110 // will be legalized. 5111 if (EltSize >= 32) { 5112 // Do the expansion with floating-point types, since that is what the VFP 5113 // registers are defined to use, and since i64 is not legal. 5114 EVT EltVT = EVT::getFloatingPointVT(EltSize); 5115 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 5116 SmallVector<SDValue, 8> Ops; 5117 for (unsigned i = 0; i < NumElts; ++i) 5118 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); 5119 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); 5120 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 5121 } 5122 5123 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we 5124 // know the default expansion would otherwise fall back on something even 5125 // worse. For a vector with one or two non-undef values, that's 5126 // scalar_to_vector for the elements followed by a shuffle (provided the 5127 // shuffle is valid for the target) and materialization element by element 5128 // on the stack followed by a load for everything else. 5129 if (!isConstant && !usesOnlyOneValue) { 5130 SDValue Vec = DAG.getUNDEF(VT); 5131 for (unsigned i = 0 ; i < NumElts; ++i) { 5132 SDValue V = Op.getOperand(i); 5133 if (V.getOpcode() == ISD::UNDEF) 5134 continue; 5135 SDValue LaneIdx = DAG.getConstant(i, MVT::i32); 5136 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); 5137 } 5138 return Vec; 5139 } 5140 5141 return SDValue(); 5142 } 5143 5144 // Gather data to see if the operation can be modelled as a 5145 // shuffle in combination with VEXTs. 5146 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, 5147 SelectionDAG &DAG) const { 5148 SDLoc dl(Op); 5149 EVT VT = Op.getValueType(); 5150 unsigned NumElts = VT.getVectorNumElements(); 5151 5152 SmallVector<SDValue, 2> SourceVecs; 5153 SmallVector<unsigned, 2> MinElts; 5154 SmallVector<unsigned, 2> MaxElts; 5155 5156 for (unsigned i = 0; i < NumElts; ++i) { 5157 SDValue V = Op.getOperand(i); 5158 if (V.getOpcode() == ISD::UNDEF) 5159 continue; 5160 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { 5161 // A shuffle can only come from building a vector from various 5162 // elements of other vectors. 5163 return SDValue(); 5164 } else if (V.getOperand(0).getValueType().getVectorElementType() != 5165 VT.getVectorElementType()) { 5166 // This code doesn't know how to handle shuffles where the vector 5167 // element types do not match (this happens because type legalization 5168 // promotes the return type of EXTRACT_VECTOR_ELT). 5169 // FIXME: It might be appropriate to extend this code to handle 5170 // mismatched types. 5171 return SDValue(); 5172 } 5173 5174 // Record this extraction against the appropriate vector if possible... 5175 SDValue SourceVec = V.getOperand(0); 5176 // If the element number isn't a constant, we can't effectively 5177 // analyze what's going on. 5178 if (!isa<ConstantSDNode>(V.getOperand(1))) 5179 return SDValue(); 5180 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); 5181 bool FoundSource = false; 5182 for (unsigned j = 0; j < SourceVecs.size(); ++j) { 5183 if (SourceVecs[j] == SourceVec) { 5184 if (MinElts[j] > EltNo) 5185 MinElts[j] = EltNo; 5186 if (MaxElts[j] < EltNo) 5187 MaxElts[j] = EltNo; 5188 FoundSource = true; 5189 break; 5190 } 5191 } 5192 5193 // Or record a new source if not... 5194 if (!FoundSource) { 5195 SourceVecs.push_back(SourceVec); 5196 MinElts.push_back(EltNo); 5197 MaxElts.push_back(EltNo); 5198 } 5199 } 5200 5201 // Currently only do something sane when at most two source vectors 5202 // involved. 5203 if (SourceVecs.size() > 2) 5204 return SDValue(); 5205 5206 SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) }; 5207 int VEXTOffsets[2] = {0, 0}; 5208 5209 // This loop extracts the usage patterns of the source vectors 5210 // and prepares appropriate SDValues for a shuffle if possible. 5211 for (unsigned i = 0; i < SourceVecs.size(); ++i) { 5212 if (SourceVecs[i].getValueType() == VT) { 5213 // No VEXT necessary 5214 ShuffleSrcs[i] = SourceVecs[i]; 5215 VEXTOffsets[i] = 0; 5216 continue; 5217 } else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) { 5218 // It probably isn't worth padding out a smaller vector just to 5219 // break it down again in a shuffle. 5220 return SDValue(); 5221 } 5222 5223 // Since only 64-bit and 128-bit vectors are legal on ARM and 5224 // we've eliminated the other cases... 5225 assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts && 5226 "unexpected vector sizes in ReconstructShuffle"); 5227 5228 if (MaxElts[i] - MinElts[i] >= NumElts) { 5229 // Span too large for a VEXT to cope 5230 return SDValue(); 5231 } 5232 5233 if (MinElts[i] >= NumElts) { 5234 // The extraction can just take the second half 5235 VEXTOffsets[i] = NumElts; 5236 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 5237 SourceVecs[i], 5238 DAG.getIntPtrConstant(NumElts)); 5239 } else if (MaxElts[i] < NumElts) { 5240 // The extraction can just take the first half 5241 VEXTOffsets[i] = 0; 5242 ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 5243 SourceVecs[i], 5244 DAG.getIntPtrConstant(0)); 5245 } else { 5246 // An actual VEXT is needed 5247 VEXTOffsets[i] = MinElts[i]; 5248 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 5249 SourceVecs[i], 5250 DAG.getIntPtrConstant(0)); 5251 SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, 5252 SourceVecs[i], 5253 DAG.getIntPtrConstant(NumElts)); 5254 ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2, 5255 DAG.getConstant(VEXTOffsets[i], MVT::i32)); 5256 } 5257 } 5258 5259 SmallVector<int, 8> Mask; 5260 5261 for (unsigned i = 0; i < NumElts; ++i) { 5262 SDValue Entry = Op.getOperand(i); 5263 if (Entry.getOpcode() == ISD::UNDEF) { 5264 Mask.push_back(-1); 5265 continue; 5266 } 5267 5268 SDValue ExtractVec = Entry.getOperand(0); 5269 int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i) 5270 .getOperand(1))->getSExtValue(); 5271 if (ExtractVec == SourceVecs[0]) { 5272 Mask.push_back(ExtractElt - VEXTOffsets[0]); 5273 } else { 5274 Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]); 5275 } 5276 } 5277 5278 // Final check before we try to produce nonsense... 5279 if (isShuffleMaskLegal(Mask, VT)) 5280 return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1], 5281 &Mask[0]); 5282 5283 return SDValue(); 5284 } 5285 5286 /// isShuffleMaskLegal - Targets can use this to indicate that they only 5287 /// support *some* VECTOR_SHUFFLE operations, those with specific masks. 5288 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 5289 /// are assumed to be legal. 5290 bool 5291 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, 5292 EVT VT) const { 5293 if (VT.getVectorNumElements() == 4 && 5294 (VT.is128BitVector() || VT.is64BitVector())) { 5295 unsigned PFIndexes[4]; 5296 for (unsigned i = 0; i != 4; ++i) { 5297 if (M[i] < 0) 5298 PFIndexes[i] = 8; 5299 else 5300 PFIndexes[i] = M[i]; 5301 } 5302 5303 // Compute the index in the perfect shuffle table. 5304 unsigned PFTableIndex = 5305 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 5306 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 5307 unsigned Cost = (PFEntry >> 30); 5308 5309 if (Cost <= 4) 5310 return true; 5311 } 5312 5313 bool ReverseVEXT; 5314 unsigned Imm, WhichResult; 5315 5316 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5317 return (EltSize >= 32 || 5318 ShuffleVectorSDNode::isSplatMask(&M[0], VT) || 5319 isVREVMask(M, VT, 64) || 5320 isVREVMask(M, VT, 32) || 5321 isVREVMask(M, VT, 16) || 5322 isVEXTMask(M, VT, ReverseVEXT, Imm) || 5323 isVTBLMask(M, VT) || 5324 isVTRNMask(M, VT, WhichResult) || 5325 isVUZPMask(M, VT, WhichResult) || 5326 isVZIPMask(M, VT, WhichResult) || 5327 isVTRN_v_undef_Mask(M, VT, WhichResult) || 5328 isVUZP_v_undef_Mask(M, VT, WhichResult) || 5329 isVZIP_v_undef_Mask(M, VT, WhichResult) || 5330 ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT))); 5331 } 5332 5333 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 5334 /// the specified operations to build the shuffle. 5335 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 5336 SDValue RHS, SelectionDAG &DAG, 5337 SDLoc dl) { 5338 unsigned OpNum = (PFEntry >> 26) & 0x0F; 5339 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 5340 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 5341 5342 enum { 5343 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 5344 OP_VREV, 5345 OP_VDUP0, 5346 OP_VDUP1, 5347 OP_VDUP2, 5348 OP_VDUP3, 5349 OP_VEXT1, 5350 OP_VEXT2, 5351 OP_VEXT3, 5352 OP_VUZPL, // VUZP, left result 5353 OP_VUZPR, // VUZP, right result 5354 OP_VZIPL, // VZIP, left result 5355 OP_VZIPR, // VZIP, right result 5356 OP_VTRNL, // VTRN, left result 5357 OP_VTRNR // VTRN, right result 5358 }; 5359 5360 if (OpNum == OP_COPY) { 5361 if (LHSID == (1*9+2)*9+3) return LHS; 5362 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 5363 return RHS; 5364 } 5365 5366 SDValue OpLHS, OpRHS; 5367 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 5368 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 5369 EVT VT = OpLHS.getValueType(); 5370 5371 switch (OpNum) { 5372 default: llvm_unreachable("Unknown shuffle opcode!"); 5373 case OP_VREV: 5374 // VREV divides the vector in half and swaps within the half. 5375 if (VT.getVectorElementType() == MVT::i32 || 5376 VT.getVectorElementType() == MVT::f32) 5377 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); 5378 // vrev <4 x i16> -> VREV32 5379 if (VT.getVectorElementType() == MVT::i16) 5380 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); 5381 // vrev <4 x i8> -> VREV16 5382 assert(VT.getVectorElementType() == MVT::i8); 5383 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); 5384 case OP_VDUP0: 5385 case OP_VDUP1: 5386 case OP_VDUP2: 5387 case OP_VDUP3: 5388 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, 5389 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32)); 5390 case OP_VEXT1: 5391 case OP_VEXT2: 5392 case OP_VEXT3: 5393 return DAG.getNode(ARMISD::VEXT, dl, VT, 5394 OpLHS, OpRHS, 5395 DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32)); 5396 case OP_VUZPL: 5397 case OP_VUZPR: 5398 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 5399 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); 5400 case OP_VZIPL: 5401 case OP_VZIPR: 5402 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 5403 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); 5404 case OP_VTRNL: 5405 case OP_VTRNR: 5406 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 5407 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); 5408 } 5409 } 5410 5411 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, 5412 ArrayRef<int> ShuffleMask, 5413 SelectionDAG &DAG) { 5414 // Check to see if we can use the VTBL instruction. 5415 SDValue V1 = Op.getOperand(0); 5416 SDValue V2 = Op.getOperand(1); 5417 SDLoc DL(Op); 5418 5419 SmallVector<SDValue, 8> VTBLMask; 5420 for (ArrayRef<int>::iterator 5421 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) 5422 VTBLMask.push_back(DAG.getConstant(*I, MVT::i32)); 5423 5424 if (V2.getNode()->getOpcode() == ISD::UNDEF) 5425 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, 5426 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask)); 5427 5428 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, 5429 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask)); 5430 } 5431 5432 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, 5433 SelectionDAG &DAG) { 5434 SDLoc DL(Op); 5435 SDValue OpLHS = Op.getOperand(0); 5436 EVT VT = OpLHS.getValueType(); 5437 5438 assert((VT == MVT::v8i16 || VT == MVT::v16i8) && 5439 "Expect an v8i16/v16i8 type"); 5440 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS); 5441 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now, 5442 // extract the first 8 bytes into the top double word and the last 8 bytes 5443 // into the bottom double word. The v8i16 case is similar. 5444 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4; 5445 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS, 5446 DAG.getConstant(ExtractNum, MVT::i32)); 5447 } 5448 5449 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 5450 SDValue V1 = Op.getOperand(0); 5451 SDValue V2 = Op.getOperand(1); 5452 SDLoc dl(Op); 5453 EVT VT = Op.getValueType(); 5454 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 5455 5456 // Convert shuffles that are directly supported on NEON to target-specific 5457 // DAG nodes, instead of keeping them as shuffles and matching them again 5458 // during code selection. This is more efficient and avoids the possibility 5459 // of inconsistencies between legalization and selection. 5460 // FIXME: floating-point vectors should be canonicalized to integer vectors 5461 // of the same time so that they get CSEd properly. 5462 ArrayRef<int> ShuffleMask = SVN->getMask(); 5463 5464 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5465 if (EltSize <= 32) { 5466 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { 5467 int Lane = SVN->getSplatIndex(); 5468 // If this is undef splat, generate it via "just" vdup, if possible. 5469 if (Lane == -1) Lane = 0; 5470 5471 // Test if V1 is a SCALAR_TO_VECTOR. 5472 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { 5473 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 5474 } 5475 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR 5476 // (and probably will turn into a SCALAR_TO_VECTOR once legalization 5477 // reaches it). 5478 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && 5479 !isa<ConstantSDNode>(V1.getOperand(0))) { 5480 bool IsScalarToVector = true; 5481 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) 5482 if (V1.getOperand(i).getOpcode() != ISD::UNDEF) { 5483 IsScalarToVector = false; 5484 break; 5485 } 5486 if (IsScalarToVector) 5487 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 5488 } 5489 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, 5490 DAG.getConstant(Lane, MVT::i32)); 5491 } 5492 5493 bool ReverseVEXT; 5494 unsigned Imm; 5495 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { 5496 if (ReverseVEXT) 5497 std::swap(V1, V2); 5498 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, 5499 DAG.getConstant(Imm, MVT::i32)); 5500 } 5501 5502 if (isVREVMask(ShuffleMask, VT, 64)) 5503 return DAG.getNode(ARMISD::VREV64, dl, VT, V1); 5504 if (isVREVMask(ShuffleMask, VT, 32)) 5505 return DAG.getNode(ARMISD::VREV32, dl, VT, V1); 5506 if (isVREVMask(ShuffleMask, VT, 16)) 5507 return DAG.getNode(ARMISD::VREV16, dl, VT, V1); 5508 5509 if (V2->getOpcode() == ISD::UNDEF && 5510 isSingletonVEXTMask(ShuffleMask, VT, Imm)) { 5511 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, 5512 DAG.getConstant(Imm, MVT::i32)); 5513 } 5514 5515 // Check for Neon shuffles that modify both input vectors in place. 5516 // If both results are used, i.e., if there are two shuffles with the same 5517 // source operands and with masks corresponding to both results of one of 5518 // these operations, DAG memoization will ensure that a single node is 5519 // used for both shuffles. 5520 unsigned WhichResult; 5521 if (isVTRNMask(ShuffleMask, VT, WhichResult)) 5522 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 5523 V1, V2).getValue(WhichResult); 5524 if (isVUZPMask(ShuffleMask, VT, WhichResult)) 5525 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 5526 V1, V2).getValue(WhichResult); 5527 if (isVZIPMask(ShuffleMask, VT, WhichResult)) 5528 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 5529 V1, V2).getValue(WhichResult); 5530 5531 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5532 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 5533 V1, V1).getValue(WhichResult); 5534 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5535 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 5536 V1, V1).getValue(WhichResult); 5537 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5538 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 5539 V1, V1).getValue(WhichResult); 5540 } 5541 5542 // If the shuffle is not directly supported and it has 4 elements, use 5543 // the PerfectShuffle-generated table to synthesize it from other shuffles. 5544 unsigned NumElts = VT.getVectorNumElements(); 5545 if (NumElts == 4) { 5546 unsigned PFIndexes[4]; 5547 for (unsigned i = 0; i != 4; ++i) { 5548 if (ShuffleMask[i] < 0) 5549 PFIndexes[i] = 8; 5550 else 5551 PFIndexes[i] = ShuffleMask[i]; 5552 } 5553 5554 // Compute the index in the perfect shuffle table. 5555 unsigned PFTableIndex = 5556 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 5557 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 5558 unsigned Cost = (PFEntry >> 30); 5559 5560 if (Cost <= 4) 5561 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 5562 } 5563 5564 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. 5565 if (EltSize >= 32) { 5566 // Do the expansion with floating-point types, since that is what the VFP 5567 // registers are defined to use, and since i64 is not legal. 5568 EVT EltVT = EVT::getFloatingPointVT(EltSize); 5569 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 5570 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); 5571 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); 5572 SmallVector<SDValue, 8> Ops; 5573 for (unsigned i = 0; i < NumElts; ++i) { 5574 if (ShuffleMask[i] < 0) 5575 Ops.push_back(DAG.getUNDEF(EltVT)); 5576 else 5577 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 5578 ShuffleMask[i] < (int)NumElts ? V1 : V2, 5579 DAG.getConstant(ShuffleMask[i] & (NumElts-1), 5580 MVT::i32))); 5581 } 5582 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); 5583 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 5584 } 5585 5586 if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT)) 5587 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG); 5588 5589 if (VT == MVT::v8i8) { 5590 SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG); 5591 if (NewOp.getNode()) 5592 return NewOp; 5593 } 5594 5595 return SDValue(); 5596 } 5597 5598 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 5599 // INSERT_VECTOR_ELT is legal only for immediate indexes. 5600 SDValue Lane = Op.getOperand(2); 5601 if (!isa<ConstantSDNode>(Lane)) 5602 return SDValue(); 5603 5604 return Op; 5605 } 5606 5607 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 5608 // EXTRACT_VECTOR_ELT is legal only for immediate indexes. 5609 SDValue Lane = Op.getOperand(1); 5610 if (!isa<ConstantSDNode>(Lane)) 5611 return SDValue(); 5612 5613 SDValue Vec = Op.getOperand(0); 5614 if (Op.getValueType() == MVT::i32 && 5615 Vec.getValueType().getVectorElementType().getSizeInBits() < 32) { 5616 SDLoc dl(Op); 5617 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); 5618 } 5619 5620 return Op; 5621 } 5622 5623 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { 5624 // The only time a CONCAT_VECTORS operation can have legal types is when 5625 // two 64-bit vectors are concatenated to a 128-bit vector. 5626 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && 5627 "unexpected CONCAT_VECTORS"); 5628 SDLoc dl(Op); 5629 SDValue Val = DAG.getUNDEF(MVT::v2f64); 5630 SDValue Op0 = Op.getOperand(0); 5631 SDValue Op1 = Op.getOperand(1); 5632 if (Op0.getOpcode() != ISD::UNDEF) 5633 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 5634 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), 5635 DAG.getIntPtrConstant(0)); 5636 if (Op1.getOpcode() != ISD::UNDEF) 5637 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 5638 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), 5639 DAG.getIntPtrConstant(1)); 5640 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); 5641 } 5642 5643 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each 5644 /// element has been zero/sign-extended, depending on the isSigned parameter, 5645 /// from an integer type half its size. 5646 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, 5647 bool isSigned) { 5648 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. 5649 EVT VT = N->getValueType(0); 5650 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { 5651 SDNode *BVN = N->getOperand(0).getNode(); 5652 if (BVN->getValueType(0) != MVT::v4i32 || 5653 BVN->getOpcode() != ISD::BUILD_VECTOR) 5654 return false; 5655 unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; 5656 unsigned HiElt = 1 - LoElt; 5657 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt)); 5658 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt)); 5659 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2)); 5660 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2)); 5661 if (!Lo0 || !Hi0 || !Lo1 || !Hi1) 5662 return false; 5663 if (isSigned) { 5664 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && 5665 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) 5666 return true; 5667 } else { 5668 if (Hi0->isNullValue() && Hi1->isNullValue()) 5669 return true; 5670 } 5671 return false; 5672 } 5673 5674 if (N->getOpcode() != ISD::BUILD_VECTOR) 5675 return false; 5676 5677 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 5678 SDNode *Elt = N->getOperand(i).getNode(); 5679 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { 5680 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5681 unsigned HalfSize = EltSize / 2; 5682 if (isSigned) { 5683 if (!isIntN(HalfSize, C->getSExtValue())) 5684 return false; 5685 } else { 5686 if (!isUIntN(HalfSize, C->getZExtValue())) 5687 return false; 5688 } 5689 continue; 5690 } 5691 return false; 5692 } 5693 5694 return true; 5695 } 5696 5697 /// isSignExtended - Check if a node is a vector value that is sign-extended 5698 /// or a constant BUILD_VECTOR with sign-extended elements. 5699 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { 5700 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) 5701 return true; 5702 if (isExtendedBUILD_VECTOR(N, DAG, true)) 5703 return true; 5704 return false; 5705 } 5706 5707 /// isZeroExtended - Check if a node is a vector value that is zero-extended 5708 /// or a constant BUILD_VECTOR with zero-extended elements. 5709 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { 5710 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) 5711 return true; 5712 if (isExtendedBUILD_VECTOR(N, DAG, false)) 5713 return true; 5714 return false; 5715 } 5716 5717 static EVT getExtensionTo64Bits(const EVT &OrigVT) { 5718 if (OrigVT.getSizeInBits() >= 64) 5719 return OrigVT; 5720 5721 assert(OrigVT.isSimple() && "Expecting a simple value type"); 5722 5723 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; 5724 switch (OrigSimpleTy) { 5725 default: llvm_unreachable("Unexpected Vector Type"); 5726 case MVT::v2i8: 5727 case MVT::v2i16: 5728 return MVT::v2i32; 5729 case MVT::v4i8: 5730 return MVT::v4i16; 5731 } 5732 } 5733 5734 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total 5735 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. 5736 /// We insert the required extension here to get the vector to fill a D register. 5737 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, 5738 const EVT &OrigTy, 5739 const EVT &ExtTy, 5740 unsigned ExtOpcode) { 5741 // The vector originally had a size of OrigTy. It was then extended to ExtTy. 5742 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than 5743 // 64-bits we need to insert a new extension so that it will be 64-bits. 5744 assert(ExtTy.is128BitVector() && "Unexpected extension size"); 5745 if (OrigTy.getSizeInBits() >= 64) 5746 return N; 5747 5748 // Must extend size to at least 64 bits to be used as an operand for VMULL. 5749 EVT NewVT = getExtensionTo64Bits(OrigTy); 5750 5751 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); 5752 } 5753 5754 /// SkipLoadExtensionForVMULL - return a load of the original vector size that 5755 /// does not do any sign/zero extension. If the original vector is less 5756 /// than 64 bits, an appropriate extension will be added after the load to 5757 /// reach a total size of 64 bits. We have to add the extension separately 5758 /// because ARM does not have a sign/zero extending load for vectors. 5759 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { 5760 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT()); 5761 5762 // The load already has the right type. 5763 if (ExtendedTy == LD->getMemoryVT()) 5764 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(), 5765 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(), 5766 LD->isNonTemporal(), LD->isInvariant(), 5767 LD->getAlignment()); 5768 5769 // We need to create a zextload/sextload. We cannot just create a load 5770 // followed by a zext/zext node because LowerMUL is also run during normal 5771 // operation legalization where we can't create illegal types. 5772 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy, 5773 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), 5774 LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(), 5775 LD->isNonTemporal(), LD->getAlignment()); 5776 } 5777 5778 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, 5779 /// extending load, or BUILD_VECTOR with extended elements, return the 5780 /// unextended value. The unextended vector should be 64 bits so that it can 5781 /// be used as an operand to a VMULL instruction. If the original vector size 5782 /// before extension is less than 64 bits we add a an extension to resize 5783 /// the vector to 64 bits. 5784 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { 5785 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) 5786 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, 5787 N->getOperand(0)->getValueType(0), 5788 N->getValueType(0), 5789 N->getOpcode()); 5790 5791 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) 5792 return SkipLoadExtensionForVMULL(LD, DAG); 5793 5794 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will 5795 // have been legalized as a BITCAST from v4i32. 5796 if (N->getOpcode() == ISD::BITCAST) { 5797 SDNode *BVN = N->getOperand(0).getNode(); 5798 assert(BVN->getOpcode() == ISD::BUILD_VECTOR && 5799 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); 5800 unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0; 5801 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32, 5802 BVN->getOperand(LowElt), BVN->getOperand(LowElt+2)); 5803 } 5804 // Construct a new BUILD_VECTOR with elements truncated to half the size. 5805 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); 5806 EVT VT = N->getValueType(0); 5807 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2; 5808 unsigned NumElts = VT.getVectorNumElements(); 5809 MVT TruncVT = MVT::getIntegerVT(EltSize); 5810 SmallVector<SDValue, 8> Ops; 5811 for (unsigned i = 0; i != NumElts; ++i) { 5812 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); 5813 const APInt &CInt = C->getAPIntValue(); 5814 // Element types smaller than 32 bits are not legal, so use i32 elements. 5815 // The values are implicitly truncated so sext vs. zext doesn't matter. 5816 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32)); 5817 } 5818 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), 5819 MVT::getVectorVT(TruncVT, NumElts), Ops); 5820 } 5821 5822 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { 5823 unsigned Opcode = N->getOpcode(); 5824 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 5825 SDNode *N0 = N->getOperand(0).getNode(); 5826 SDNode *N1 = N->getOperand(1).getNode(); 5827 return N0->hasOneUse() && N1->hasOneUse() && 5828 isSignExtended(N0, DAG) && isSignExtended(N1, DAG); 5829 } 5830 return false; 5831 } 5832 5833 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { 5834 unsigned Opcode = N->getOpcode(); 5835 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 5836 SDNode *N0 = N->getOperand(0).getNode(); 5837 SDNode *N1 = N->getOperand(1).getNode(); 5838 return N0->hasOneUse() && N1->hasOneUse() && 5839 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); 5840 } 5841 return false; 5842 } 5843 5844 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { 5845 // Multiplications are only custom-lowered for 128-bit vectors so that 5846 // VMULL can be detected. Otherwise v2i64 multiplications are not legal. 5847 EVT VT = Op.getValueType(); 5848 assert(VT.is128BitVector() && VT.isInteger() && 5849 "unexpected type for custom-lowering ISD::MUL"); 5850 SDNode *N0 = Op.getOperand(0).getNode(); 5851 SDNode *N1 = Op.getOperand(1).getNode(); 5852 unsigned NewOpc = 0; 5853 bool isMLA = false; 5854 bool isN0SExt = isSignExtended(N0, DAG); 5855 bool isN1SExt = isSignExtended(N1, DAG); 5856 if (isN0SExt && isN1SExt) 5857 NewOpc = ARMISD::VMULLs; 5858 else { 5859 bool isN0ZExt = isZeroExtended(N0, DAG); 5860 bool isN1ZExt = isZeroExtended(N1, DAG); 5861 if (isN0ZExt && isN1ZExt) 5862 NewOpc = ARMISD::VMULLu; 5863 else if (isN1SExt || isN1ZExt) { 5864 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these 5865 // into (s/zext A * s/zext C) + (s/zext B * s/zext C) 5866 if (isN1SExt && isAddSubSExt(N0, DAG)) { 5867 NewOpc = ARMISD::VMULLs; 5868 isMLA = true; 5869 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { 5870 NewOpc = ARMISD::VMULLu; 5871 isMLA = true; 5872 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { 5873 std::swap(N0, N1); 5874 NewOpc = ARMISD::VMULLu; 5875 isMLA = true; 5876 } 5877 } 5878 5879 if (!NewOpc) { 5880 if (VT == MVT::v2i64) 5881 // Fall through to expand this. It is not legal. 5882 return SDValue(); 5883 else 5884 // Other vector multiplications are legal. 5885 return Op; 5886 } 5887 } 5888 5889 // Legalize to a VMULL instruction. 5890 SDLoc DL(Op); 5891 SDValue Op0; 5892 SDValue Op1 = SkipExtensionForVMULL(N1, DAG); 5893 if (!isMLA) { 5894 Op0 = SkipExtensionForVMULL(N0, DAG); 5895 assert(Op0.getValueType().is64BitVector() && 5896 Op1.getValueType().is64BitVector() && 5897 "unexpected types for extended operands to VMULL"); 5898 return DAG.getNode(NewOpc, DL, VT, Op0, Op1); 5899 } 5900 5901 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during 5902 // isel lowering to take advantage of no-stall back to back vmul + vmla. 5903 // vmull q0, d4, d6 5904 // vmlal q0, d5, d6 5905 // is faster than 5906 // vaddl q0, d4, d5 5907 // vmovl q1, d6 5908 // vmul q0, q0, q1 5909 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); 5910 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); 5911 EVT Op1VT = Op1.getValueType(); 5912 return DAG.getNode(N0->getOpcode(), DL, VT, 5913 DAG.getNode(NewOpc, DL, VT, 5914 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), 5915 DAG.getNode(NewOpc, DL, VT, 5916 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); 5917 } 5918 5919 static SDValue 5920 LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) { 5921 // Convert to float 5922 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); 5923 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); 5924 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); 5925 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); 5926 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); 5927 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); 5928 // Get reciprocal estimate. 5929 // float4 recip = vrecpeq_f32(yf); 5930 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5931 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y); 5932 // Because char has a smaller range than uchar, we can actually get away 5933 // without any newton steps. This requires that we use a weird bias 5934 // of 0xb000, however (again, this has been exhaustively tested). 5935 // float4 result = as_float4(as_int4(xf*recip) + 0xb000); 5936 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); 5937 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); 5938 Y = DAG.getConstant(0xb000, MVT::i32); 5939 Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y); 5940 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); 5941 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); 5942 // Convert back to short. 5943 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); 5944 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); 5945 return X; 5946 } 5947 5948 static SDValue 5949 LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) { 5950 SDValue N2; 5951 // Convert to float. 5952 // float4 yf = vcvt_f32_s32(vmovl_s16(y)); 5953 // float4 xf = vcvt_f32_s32(vmovl_s16(x)); 5954 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); 5955 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); 5956 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 5957 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 5958 5959 // Use reciprocal estimate and one refinement step. 5960 // float4 recip = vrecpeq_f32(yf); 5961 // recip *= vrecpsq_f32(yf, recip); 5962 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5963 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1); 5964 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 5965 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 5966 N1, N2); 5967 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 5968 // Because short has a smaller range than ushort, we can actually get away 5969 // with only a single newton step. This requires that we use a weird bias 5970 // of 89, however (again, this has been exhaustively tested). 5971 // float4 result = as_float4(as_int4(xf*recip) + 0x89); 5972 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 5973 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 5974 N1 = DAG.getConstant(0x89, MVT::i32); 5975 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); 5976 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 5977 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 5978 // Convert back to integer and return. 5979 // return vmovn_s32(vcvt_s32_f32(result)); 5980 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 5981 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 5982 return N0; 5983 } 5984 5985 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { 5986 EVT VT = Op.getValueType(); 5987 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 5988 "unexpected type for custom-lowering ISD::SDIV"); 5989 5990 SDLoc dl(Op); 5991 SDValue N0 = Op.getOperand(0); 5992 SDValue N1 = Op.getOperand(1); 5993 SDValue N2, N3; 5994 5995 if (VT == MVT::v8i8) { 5996 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); 5997 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); 5998 5999 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 6000 DAG.getIntPtrConstant(4)); 6001 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 6002 DAG.getIntPtrConstant(4)); 6003 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 6004 DAG.getIntPtrConstant(0)); 6005 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 6006 DAG.getIntPtrConstant(0)); 6007 6008 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 6009 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 6010 6011 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 6012 N0 = LowerCONCAT_VECTORS(N0, DAG); 6013 6014 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); 6015 return N0; 6016 } 6017 return LowerSDIV_v4i16(N0, N1, dl, DAG); 6018 } 6019 6020 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) { 6021 EVT VT = Op.getValueType(); 6022 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 6023 "unexpected type for custom-lowering ISD::UDIV"); 6024 6025 SDLoc dl(Op); 6026 SDValue N0 = Op.getOperand(0); 6027 SDValue N1 = Op.getOperand(1); 6028 SDValue N2, N3; 6029 6030 if (VT == MVT::v8i8) { 6031 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); 6032 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); 6033 6034 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 6035 DAG.getIntPtrConstant(4)); 6036 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 6037 DAG.getIntPtrConstant(4)); 6038 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 6039 DAG.getIntPtrConstant(0)); 6040 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 6041 DAG.getIntPtrConstant(0)); 6042 6043 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 6044 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 6045 6046 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 6047 N0 = LowerCONCAT_VECTORS(N0, DAG); 6048 6049 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, 6050 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32), 6051 N0); 6052 return N0; 6053 } 6054 6055 // v4i16 sdiv ... Convert to float. 6056 // float4 yf = vcvt_f32_s32(vmovl_u16(y)); 6057 // float4 xf = vcvt_f32_s32(vmovl_u16(x)); 6058 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); 6059 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); 6060 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 6061 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 6062 6063 // Use reciprocal estimate and two refinement steps. 6064 // float4 recip = vrecpeq_f32(yf); 6065 // recip *= vrecpsq_f32(yf, recip); 6066 // recip *= vrecpsq_f32(yf, recip); 6067 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6068 DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1); 6069 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6070 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 6071 BN1, N2); 6072 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 6073 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6074 DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32), 6075 BN1, N2); 6076 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 6077 // Simply multiplying by the reciprocal estimate can leave us a few ulps 6078 // too low, so we add 2 ulps (exhaustive testing shows that this is enough, 6079 // and that it will never cause us to return an answer too large). 6080 // float4 result = as_float4(as_int4(xf*recip) + 2); 6081 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 6082 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 6083 N1 = DAG.getConstant(2, MVT::i32); 6084 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); 6085 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 6086 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 6087 // Convert back to integer and return. 6088 // return vmovn_u32(vcvt_s32_f32(result)); 6089 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 6090 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 6091 return N0; 6092 } 6093 6094 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 6095 EVT VT = Op.getNode()->getValueType(0); 6096 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 6097 6098 unsigned Opc; 6099 bool ExtraOp = false; 6100 switch (Op.getOpcode()) { 6101 default: llvm_unreachable("Invalid code"); 6102 case ISD::ADDC: Opc = ARMISD::ADDC; break; 6103 case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break; 6104 case ISD::SUBC: Opc = ARMISD::SUBC; break; 6105 case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break; 6106 } 6107 6108 if (!ExtraOp) 6109 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), 6110 Op.getOperand(1)); 6111 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), 6112 Op.getOperand(1), Op.getOperand(2)); 6113 } 6114 6115 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { 6116 assert(Subtarget->isTargetDarwin()); 6117 6118 // For iOS, we want to call an alternative entry point: __sincos_stret, 6119 // return values are passed via sret. 6120 SDLoc dl(Op); 6121 SDValue Arg = Op.getOperand(0); 6122 EVT ArgVT = Arg.getValueType(); 6123 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 6124 6125 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6126 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6127 6128 // Pair of floats / doubles used to pass the result. 6129 StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL); 6130 6131 // Create stack object for sret. 6132 const uint64_t ByteSize = TLI.getDataLayout()->getTypeAllocSize(RetTy); 6133 const unsigned StackAlign = TLI.getDataLayout()->getPrefTypeAlignment(RetTy); 6134 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false); 6135 SDValue SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy()); 6136 6137 ArgListTy Args; 6138 ArgListEntry Entry; 6139 6140 Entry.Node = SRet; 6141 Entry.Ty = RetTy->getPointerTo(); 6142 Entry.isSExt = false; 6143 Entry.isZExt = false; 6144 Entry.isSRet = true; 6145 Args.push_back(Entry); 6146 6147 Entry.Node = Arg; 6148 Entry.Ty = ArgTy; 6149 Entry.isSExt = false; 6150 Entry.isZExt = false; 6151 Args.push_back(Entry); 6152 6153 const char *LibcallName = (ArgVT == MVT::f64) 6154 ? "__sincos_stret" : "__sincosf_stret"; 6155 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy()); 6156 6157 TargetLowering::CallLoweringInfo CLI(DAG); 6158 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 6159 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), Callee, 6160 std::move(Args), 0) 6161 .setDiscardResult(); 6162 6163 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6164 6165 SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet, 6166 MachinePointerInfo(), false, false, false, 0); 6167 6168 // Address of cos field. 6169 SDValue Add = DAG.getNode(ISD::ADD, dl, getPointerTy(), SRet, 6170 DAG.getIntPtrConstant(ArgVT.getStoreSize())); 6171 SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, 6172 MachinePointerInfo(), false, false, false, 0); 6173 6174 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); 6175 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, 6176 LoadSin.getValue(0), LoadCos.getValue(0)); 6177 } 6178 6179 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { 6180 // Monotonic load/store is legal for all targets 6181 if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic) 6182 return Op; 6183 6184 // Acquire/Release load/store is not legal for targets without a 6185 // dmb or equivalent available. 6186 return SDValue(); 6187 } 6188 6189 static void ReplaceREADCYCLECOUNTER(SDNode *N, 6190 SmallVectorImpl<SDValue> &Results, 6191 SelectionDAG &DAG, 6192 const ARMSubtarget *Subtarget) { 6193 SDLoc DL(N); 6194 SDValue Cycles32, OutChain; 6195 6196 if (Subtarget->hasPerfMon()) { 6197 // Under Power Management extensions, the cycle-count is: 6198 // mrc p15, #0, <Rt>, c9, c13, #0 6199 SDValue Ops[] = { N->getOperand(0), // Chain 6200 DAG.getConstant(Intrinsic::arm_mrc, MVT::i32), 6201 DAG.getConstant(15, MVT::i32), 6202 DAG.getConstant(0, MVT::i32), 6203 DAG.getConstant(9, MVT::i32), 6204 DAG.getConstant(13, MVT::i32), 6205 DAG.getConstant(0, MVT::i32) 6206 }; 6207 6208 Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, 6209 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6210 OutChain = Cycles32.getValue(1); 6211 } else { 6212 // Intrinsic is defined to return 0 on unsupported platforms. Technically 6213 // there are older ARM CPUs that have implementation-specific ways of 6214 // obtaining this information (FIXME!). 6215 Cycles32 = DAG.getConstant(0, MVT::i32); 6216 OutChain = DAG.getEntryNode(); 6217 } 6218 6219 6220 SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, 6221 Cycles32, DAG.getConstant(0, MVT::i32)); 6222 Results.push_back(Cycles64); 6223 Results.push_back(OutChain); 6224 } 6225 6226 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6227 switch (Op.getOpcode()) { 6228 default: llvm_unreachable("Don't know how to custom lower this!"); 6229 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 6230 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 6231 case ISD::GlobalAddress: 6232 switch (Subtarget->getTargetTriple().getObjectFormat()) { 6233 default: llvm_unreachable("unknown object format"); 6234 case Triple::COFF: 6235 return LowerGlobalAddressWindows(Op, DAG); 6236 case Triple::ELF: 6237 return LowerGlobalAddressELF(Op, DAG); 6238 case Triple::MachO: 6239 return LowerGlobalAddressDarwin(Op, DAG); 6240 } 6241 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 6242 case ISD::SELECT: return LowerSELECT(Op, DAG); 6243 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 6244 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 6245 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 6246 case ISD::VASTART: return LowerVASTART(Op, DAG); 6247 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); 6248 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); 6249 case ISD::SINT_TO_FP: 6250 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 6251 case ISD::FP_TO_SINT: 6252 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); 6253 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 6254 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 6255 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 6256 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); 6257 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); 6258 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); 6259 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, 6260 Subtarget); 6261 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG); 6262 case ISD::SHL: 6263 case ISD::SRL: 6264 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); 6265 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); 6266 case ISD::SRL_PARTS: 6267 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); 6268 case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget); 6269 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); 6270 case ISD::SETCC: return LowerVSETCC(Op, DAG); 6271 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); 6272 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); 6273 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 6274 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 6275 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 6276 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 6277 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 6278 case ISD::MUL: return LowerMUL(Op, DAG); 6279 case ISD::SDIV: return LowerSDIV(Op, DAG); 6280 case ISD::UDIV: return LowerUDIV(Op, DAG); 6281 case ISD::ADDC: 6282 case ISD::ADDE: 6283 case ISD::SUBC: 6284 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 6285 case ISD::SADDO: 6286 case ISD::UADDO: 6287 case ISD::SSUBO: 6288 case ISD::USUBO: 6289 return LowerXALUO(Op, DAG); 6290 case ISD::ATOMIC_LOAD: 6291 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); 6292 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); 6293 case ISD::SDIVREM: 6294 case ISD::UDIVREM: return LowerDivRem(Op, DAG); 6295 case ISD::DYNAMIC_STACKALLOC: 6296 if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment()) 6297 return LowerDYNAMIC_STACKALLOC(Op, DAG); 6298 llvm_unreachable("Don't know how to custom lower this!"); 6299 } 6300 } 6301 6302 /// ReplaceNodeResults - Replace the results of node with an illegal result 6303 /// type with new values built out of custom code. 6304 void ARMTargetLowering::ReplaceNodeResults(SDNode *N, 6305 SmallVectorImpl<SDValue>&Results, 6306 SelectionDAG &DAG) const { 6307 SDValue Res; 6308 switch (N->getOpcode()) { 6309 default: 6310 llvm_unreachable("Don't know how to custom expand this!"); 6311 case ISD::BITCAST: 6312 Res = ExpandBITCAST(N, DAG); 6313 break; 6314 case ISD::SRL: 6315 case ISD::SRA: 6316 Res = Expand64BitShift(N, DAG, Subtarget); 6317 break; 6318 case ISD::READCYCLECOUNTER: 6319 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget); 6320 return; 6321 } 6322 if (Res.getNode()) 6323 Results.push_back(Res); 6324 } 6325 6326 //===----------------------------------------------------------------------===// 6327 // ARM Scheduler Hooks 6328 //===----------------------------------------------------------------------===// 6329 6330 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and 6331 /// registers the function context. 6332 void ARMTargetLowering:: 6333 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB, 6334 MachineBasicBlock *DispatchBB, int FI) const { 6335 const TargetInstrInfo *TII = 6336 getTargetMachine().getSubtargetImpl()->getInstrInfo(); 6337 DebugLoc dl = MI->getDebugLoc(); 6338 MachineFunction *MF = MBB->getParent(); 6339 MachineRegisterInfo *MRI = &MF->getRegInfo(); 6340 MachineConstantPool *MCP = MF->getConstantPool(); 6341 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); 6342 const Function *F = MF->getFunction(); 6343 6344 bool isThumb = Subtarget->isThumb(); 6345 bool isThumb2 = Subtarget->isThumb2(); 6346 6347 unsigned PCLabelId = AFI->createPICLabelUId(); 6348 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; 6349 ARMConstantPoolValue *CPV = 6350 ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj); 6351 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4); 6352 6353 const TargetRegisterClass *TRC = isThumb ? 6354 (const TargetRegisterClass*)&ARM::tGPRRegClass : 6355 (const TargetRegisterClass*)&ARM::GPRRegClass; 6356 6357 // Grab constant pool and fixed stack memory operands. 6358 MachineMemOperand *CPMMO = 6359 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(), 6360 MachineMemOperand::MOLoad, 4, 4); 6361 6362 MachineMemOperand *FIMMOSt = 6363 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 6364 MachineMemOperand::MOStore, 4, 4); 6365 6366 // Load the address of the dispatch MBB into the jump buffer. 6367 if (isThumb2) { 6368 // Incoming value: jbuf 6369 // ldr.n r5, LCPI1_1 6370 // orr r5, r5, #1 6371 // add r5, pc 6372 // str r5, [$jbuf, #+4] ; &jbuf[1] 6373 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6374 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) 6375 .addConstantPoolIndex(CPI) 6376 .addMemOperand(CPMMO)); 6377 // Set the low bit because of thumb mode. 6378 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6379 AddDefaultCC( 6380 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) 6381 .addReg(NewVReg1, RegState::Kill) 6382 .addImm(0x01))); 6383 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6384 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) 6385 .addReg(NewVReg2, RegState::Kill) 6386 .addImm(PCLabelId); 6387 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) 6388 .addReg(NewVReg3, RegState::Kill) 6389 .addFrameIndex(FI) 6390 .addImm(36) // &jbuf[1] :: pc 6391 .addMemOperand(FIMMOSt)); 6392 } else if (isThumb) { 6393 // Incoming value: jbuf 6394 // ldr.n r1, LCPI1_4 6395 // add r1, pc 6396 // mov r2, #1 6397 // orrs r1, r2 6398 // add r2, $jbuf, #+4 ; &jbuf[1] 6399 // str r1, [r2] 6400 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6401 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) 6402 .addConstantPoolIndex(CPI) 6403 .addMemOperand(CPMMO)); 6404 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6405 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) 6406 .addReg(NewVReg1, RegState::Kill) 6407 .addImm(PCLabelId); 6408 // Set the low bit because of thumb mode. 6409 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6410 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) 6411 .addReg(ARM::CPSR, RegState::Define) 6412 .addImm(1)); 6413 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 6414 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) 6415 .addReg(ARM::CPSR, RegState::Define) 6416 .addReg(NewVReg2, RegState::Kill) 6417 .addReg(NewVReg3, RegState::Kill)); 6418 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 6419 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5) 6420 .addFrameIndex(FI) 6421 .addImm(36)); // &jbuf[1] :: pc 6422 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) 6423 .addReg(NewVReg4, RegState::Kill) 6424 .addReg(NewVReg5, RegState::Kill) 6425 .addImm(0) 6426 .addMemOperand(FIMMOSt)); 6427 } else { 6428 // Incoming value: jbuf 6429 // ldr r1, LCPI1_1 6430 // add r1, pc, r1 6431 // str r1, [$jbuf, #+4] ; &jbuf[1] 6432 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6433 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) 6434 .addConstantPoolIndex(CPI) 6435 .addImm(0) 6436 .addMemOperand(CPMMO)); 6437 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6438 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) 6439 .addReg(NewVReg1, RegState::Kill) 6440 .addImm(PCLabelId)); 6441 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) 6442 .addReg(NewVReg2, RegState::Kill) 6443 .addFrameIndex(FI) 6444 .addImm(36) // &jbuf[1] :: pc 6445 .addMemOperand(FIMMOSt)); 6446 } 6447 } 6448 6449 MachineBasicBlock *ARMTargetLowering:: 6450 EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const { 6451 const TargetInstrInfo *TII = 6452 getTargetMachine().getSubtargetImpl()->getInstrInfo(); 6453 DebugLoc dl = MI->getDebugLoc(); 6454 MachineFunction *MF = MBB->getParent(); 6455 MachineRegisterInfo *MRI = &MF->getRegInfo(); 6456 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); 6457 MachineFrameInfo *MFI = MF->getFrameInfo(); 6458 int FI = MFI->getFunctionContextIndex(); 6459 6460 const TargetRegisterClass *TRC = Subtarget->isThumb() ? 6461 (const TargetRegisterClass*)&ARM::tGPRRegClass : 6462 (const TargetRegisterClass*)&ARM::GPRnopcRegClass; 6463 6464 // Get a mapping of the call site numbers to all of the landing pads they're 6465 // associated with. 6466 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad; 6467 unsigned MaxCSNum = 0; 6468 MachineModuleInfo &MMI = MF->getMMI(); 6469 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; 6470 ++BB) { 6471 if (!BB->isLandingPad()) continue; 6472 6473 // FIXME: We should assert that the EH_LABEL is the first MI in the landing 6474 // pad. 6475 for (MachineBasicBlock::iterator 6476 II = BB->begin(), IE = BB->end(); II != IE; ++II) { 6477 if (!II->isEHLabel()) continue; 6478 6479 MCSymbol *Sym = II->getOperand(0).getMCSymbol(); 6480 if (!MMI.hasCallSiteLandingPad(Sym)) continue; 6481 6482 SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym); 6483 for (SmallVectorImpl<unsigned>::iterator 6484 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end(); 6485 CSI != CSE; ++CSI) { 6486 CallSiteNumToLPad[*CSI].push_back(BB); 6487 MaxCSNum = std::max(MaxCSNum, *CSI); 6488 } 6489 break; 6490 } 6491 } 6492 6493 // Get an ordered list of the machine basic blocks for the jump table. 6494 std::vector<MachineBasicBlock*> LPadList; 6495 SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs; 6496 LPadList.reserve(CallSiteNumToLPad.size()); 6497 for (unsigned I = 1; I <= MaxCSNum; ++I) { 6498 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I]; 6499 for (SmallVectorImpl<MachineBasicBlock*>::iterator 6500 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) { 6501 LPadList.push_back(*II); 6502 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end()); 6503 } 6504 } 6505 6506 assert(!LPadList.empty() && 6507 "No landing pad destinations for the dispatch jump table!"); 6508 6509 // Create the jump table and associated information. 6510 MachineJumpTableInfo *JTI = 6511 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); 6512 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 6513 unsigned UId = AFI->createJumpTableUId(); 6514 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 6515 6516 // Create the MBBs for the dispatch code. 6517 6518 // Shove the dispatch's address into the return slot in the function context. 6519 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 6520 DispatchBB->setIsLandingPad(); 6521 6522 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 6523 unsigned trap_opcode; 6524 if (Subtarget->isThumb()) 6525 trap_opcode = ARM::tTRAP; 6526 else 6527 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 6528 6529 BuildMI(TrapBB, dl, TII->get(trap_opcode)); 6530 DispatchBB->addSuccessor(TrapBB); 6531 6532 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 6533 DispatchBB->addSuccessor(DispContBB); 6534 6535 // Insert and MBBs. 6536 MF->insert(MF->end(), DispatchBB); 6537 MF->insert(MF->end(), DispContBB); 6538 MF->insert(MF->end(), TrapBB); 6539 6540 // Insert code into the entry block that creates and registers the function 6541 // context. 6542 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); 6543 6544 MachineMemOperand *FIMMOLd = 6545 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 6546 MachineMemOperand::MOLoad | 6547 MachineMemOperand::MOVolatile, 4, 4); 6548 6549 MachineInstrBuilder MIB; 6550 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); 6551 6552 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII); 6553 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); 6554 6555 // Add a register mask with no preserved registers. This results in all 6556 // registers being marked as clobbered. 6557 MIB.addRegMask(RI.getNoPreservedMask()); 6558 6559 unsigned NumLPads = LPadList.size(); 6560 if (Subtarget->isThumb2()) { 6561 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6562 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) 6563 .addFrameIndex(FI) 6564 .addImm(4) 6565 .addMemOperand(FIMMOLd)); 6566 6567 if (NumLPads < 256) { 6568 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) 6569 .addReg(NewVReg1) 6570 .addImm(LPadList.size())); 6571 } else { 6572 unsigned VReg1 = MRI->createVirtualRegister(TRC); 6573 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) 6574 .addImm(NumLPads & 0xFFFF)); 6575 6576 unsigned VReg2 = VReg1; 6577 if ((NumLPads & 0xFFFF0000) != 0) { 6578 VReg2 = MRI->createVirtualRegister(TRC); 6579 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) 6580 .addReg(VReg1) 6581 .addImm(NumLPads >> 16)); 6582 } 6583 6584 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) 6585 .addReg(NewVReg1) 6586 .addReg(VReg2)); 6587 } 6588 6589 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) 6590 .addMBB(TrapBB) 6591 .addImm(ARMCC::HI) 6592 .addReg(ARM::CPSR); 6593 6594 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6595 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3) 6596 .addJumpTableIndex(MJTI) 6597 .addImm(UId)); 6598 6599 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 6600 AddDefaultCC( 6601 AddDefaultPred( 6602 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) 6603 .addReg(NewVReg3, RegState::Kill) 6604 .addReg(NewVReg1) 6605 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); 6606 6607 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) 6608 .addReg(NewVReg4, RegState::Kill) 6609 .addReg(NewVReg1) 6610 .addJumpTableIndex(MJTI) 6611 .addImm(UId); 6612 } else if (Subtarget->isThumb()) { 6613 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6614 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) 6615 .addFrameIndex(FI) 6616 .addImm(1) 6617 .addMemOperand(FIMMOLd)); 6618 6619 if (NumLPads < 256) { 6620 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) 6621 .addReg(NewVReg1) 6622 .addImm(NumLPads)); 6623 } else { 6624 MachineConstantPool *ConstantPool = MF->getConstantPool(); 6625 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 6626 const Constant *C = ConstantInt::get(Int32Ty, NumLPads); 6627 6628 // MachineConstantPool wants an explicit alignment. 6629 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); 6630 if (Align == 0) 6631 Align = getDataLayout()->getTypeAllocSize(C->getType()); 6632 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 6633 6634 unsigned VReg1 = MRI->createVirtualRegister(TRC); 6635 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) 6636 .addReg(VReg1, RegState::Define) 6637 .addConstantPoolIndex(Idx)); 6638 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) 6639 .addReg(NewVReg1) 6640 .addReg(VReg1)); 6641 } 6642 6643 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) 6644 .addMBB(TrapBB) 6645 .addImm(ARMCC::HI) 6646 .addReg(ARM::CPSR); 6647 6648 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6649 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) 6650 .addReg(ARM::CPSR, RegState::Define) 6651 .addReg(NewVReg1) 6652 .addImm(2)); 6653 6654 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6655 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) 6656 .addJumpTableIndex(MJTI) 6657 .addImm(UId)); 6658 6659 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 6660 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) 6661 .addReg(ARM::CPSR, RegState::Define) 6662 .addReg(NewVReg2, RegState::Kill) 6663 .addReg(NewVReg3)); 6664 6665 MachineMemOperand *JTMMOLd = 6666 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(), 6667 MachineMemOperand::MOLoad, 4, 4); 6668 6669 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 6670 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) 6671 .addReg(NewVReg4, RegState::Kill) 6672 .addImm(0) 6673 .addMemOperand(JTMMOLd)); 6674 6675 unsigned NewVReg6 = NewVReg5; 6676 if (RelocM == Reloc::PIC_) { 6677 NewVReg6 = MRI->createVirtualRegister(TRC); 6678 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) 6679 .addReg(ARM::CPSR, RegState::Define) 6680 .addReg(NewVReg5, RegState::Kill) 6681 .addReg(NewVReg3)); 6682 } 6683 6684 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) 6685 .addReg(NewVReg6, RegState::Kill) 6686 .addJumpTableIndex(MJTI) 6687 .addImm(UId); 6688 } else { 6689 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6690 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) 6691 .addFrameIndex(FI) 6692 .addImm(4) 6693 .addMemOperand(FIMMOLd)); 6694 6695 if (NumLPads < 256) { 6696 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) 6697 .addReg(NewVReg1) 6698 .addImm(NumLPads)); 6699 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { 6700 unsigned VReg1 = MRI->createVirtualRegister(TRC); 6701 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) 6702 .addImm(NumLPads & 0xFFFF)); 6703 6704 unsigned VReg2 = VReg1; 6705 if ((NumLPads & 0xFFFF0000) != 0) { 6706 VReg2 = MRI->createVirtualRegister(TRC); 6707 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) 6708 .addReg(VReg1) 6709 .addImm(NumLPads >> 16)); 6710 } 6711 6712 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) 6713 .addReg(NewVReg1) 6714 .addReg(VReg2)); 6715 } else { 6716 MachineConstantPool *ConstantPool = MF->getConstantPool(); 6717 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 6718 const Constant *C = ConstantInt::get(Int32Ty, NumLPads); 6719 6720 // MachineConstantPool wants an explicit alignment. 6721 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); 6722 if (Align == 0) 6723 Align = getDataLayout()->getTypeAllocSize(C->getType()); 6724 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 6725 6726 unsigned VReg1 = MRI->createVirtualRegister(TRC); 6727 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) 6728 .addReg(VReg1, RegState::Define) 6729 .addConstantPoolIndex(Idx) 6730 .addImm(0)); 6731 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) 6732 .addReg(NewVReg1) 6733 .addReg(VReg1, RegState::Kill)); 6734 } 6735 6736 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) 6737 .addMBB(TrapBB) 6738 .addImm(ARMCC::HI) 6739 .addReg(ARM::CPSR); 6740 6741 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6742 AddDefaultCC( 6743 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) 6744 .addReg(NewVReg1) 6745 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); 6746 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 6747 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) 6748 .addJumpTableIndex(MJTI) 6749 .addImm(UId)); 6750 6751 MachineMemOperand *JTMMOLd = 6752 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(), 6753 MachineMemOperand::MOLoad, 4, 4); 6754 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 6755 AddDefaultPred( 6756 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) 6757 .addReg(NewVReg3, RegState::Kill) 6758 .addReg(NewVReg4) 6759 .addImm(0) 6760 .addMemOperand(JTMMOLd)); 6761 6762 if (RelocM == Reloc::PIC_) { 6763 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) 6764 .addReg(NewVReg5, RegState::Kill) 6765 .addReg(NewVReg4) 6766 .addJumpTableIndex(MJTI) 6767 .addImm(UId); 6768 } else { 6769 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) 6770 .addReg(NewVReg5, RegState::Kill) 6771 .addJumpTableIndex(MJTI) 6772 .addImm(UId); 6773 } 6774 } 6775 6776 // Add the jump table entries as successors to the MBB. 6777 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs; 6778 for (std::vector<MachineBasicBlock*>::iterator 6779 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) { 6780 MachineBasicBlock *CurMBB = *I; 6781 if (SeenMBBs.insert(CurMBB)) 6782 DispContBB->addSuccessor(CurMBB); 6783 } 6784 6785 // N.B. the order the invoke BBs are processed in doesn't matter here. 6786 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF); 6787 SmallVector<MachineBasicBlock*, 64> MBBLPads; 6788 for (SmallPtrSet<MachineBasicBlock*, 64>::iterator 6789 I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) { 6790 MachineBasicBlock *BB = *I; 6791 6792 // Remove the landing pad successor from the invoke block and replace it 6793 // with the new dispatch block. 6794 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(), 6795 BB->succ_end()); 6796 while (!Successors.empty()) { 6797 MachineBasicBlock *SMBB = Successors.pop_back_val(); 6798 if (SMBB->isLandingPad()) { 6799 BB->removeSuccessor(SMBB); 6800 MBBLPads.push_back(SMBB); 6801 } 6802 } 6803 6804 BB->addSuccessor(DispatchBB); 6805 6806 // Find the invoke call and mark all of the callee-saved registers as 6807 // 'implicit defined' so that they're spilled. This prevents code from 6808 // moving instructions to before the EH block, where they will never be 6809 // executed. 6810 for (MachineBasicBlock::reverse_iterator 6811 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { 6812 if (!II->isCall()) continue; 6813 6814 DenseMap<unsigned, bool> DefRegs; 6815 for (MachineInstr::mop_iterator 6816 OI = II->operands_begin(), OE = II->operands_end(); 6817 OI != OE; ++OI) { 6818 if (!OI->isReg()) continue; 6819 DefRegs[OI->getReg()] = true; 6820 } 6821 6822 MachineInstrBuilder MIB(*MF, &*II); 6823 6824 for (unsigned i = 0; SavedRegs[i] != 0; ++i) { 6825 unsigned Reg = SavedRegs[i]; 6826 if (Subtarget->isThumb2() && 6827 !ARM::tGPRRegClass.contains(Reg) && 6828 !ARM::hGPRRegClass.contains(Reg)) 6829 continue; 6830 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) 6831 continue; 6832 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) 6833 continue; 6834 if (!DefRegs[Reg]) 6835 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 6836 } 6837 6838 break; 6839 } 6840 } 6841 6842 // Mark all former landing pads as non-landing pads. The dispatch is the only 6843 // landing pad now. 6844 for (SmallVectorImpl<MachineBasicBlock*>::iterator 6845 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I) 6846 (*I)->setIsLandingPad(false); 6847 6848 // The instruction is gone now. 6849 MI->eraseFromParent(); 6850 6851 return MBB; 6852 } 6853 6854 static 6855 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { 6856 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 6857 E = MBB->succ_end(); I != E; ++I) 6858 if (*I != Succ) 6859 return *I; 6860 llvm_unreachable("Expecting a BB with two successors!"); 6861 } 6862 6863 /// Return the load opcode for a given load size. If load size >= 8, 6864 /// neon opcode will be returned. 6865 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) { 6866 if (LdSize >= 8) 6867 return LdSize == 16 ? ARM::VLD1q32wb_fixed 6868 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0; 6869 if (IsThumb1) 6870 return LdSize == 4 ? ARM::tLDRi 6871 : LdSize == 2 ? ARM::tLDRHi 6872 : LdSize == 1 ? ARM::tLDRBi : 0; 6873 if (IsThumb2) 6874 return LdSize == 4 ? ARM::t2LDR_POST 6875 : LdSize == 2 ? ARM::t2LDRH_POST 6876 : LdSize == 1 ? ARM::t2LDRB_POST : 0; 6877 return LdSize == 4 ? ARM::LDR_POST_IMM 6878 : LdSize == 2 ? ARM::LDRH_POST 6879 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0; 6880 } 6881 6882 /// Return the store opcode for a given store size. If store size >= 8, 6883 /// neon opcode will be returned. 6884 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) { 6885 if (StSize >= 8) 6886 return StSize == 16 ? ARM::VST1q32wb_fixed 6887 : StSize == 8 ? ARM::VST1d32wb_fixed : 0; 6888 if (IsThumb1) 6889 return StSize == 4 ? ARM::tSTRi 6890 : StSize == 2 ? ARM::tSTRHi 6891 : StSize == 1 ? ARM::tSTRBi : 0; 6892 if (IsThumb2) 6893 return StSize == 4 ? ARM::t2STR_POST 6894 : StSize == 2 ? ARM::t2STRH_POST 6895 : StSize == 1 ? ARM::t2STRB_POST : 0; 6896 return StSize == 4 ? ARM::STR_POST_IMM 6897 : StSize == 2 ? ARM::STRH_POST 6898 : StSize == 1 ? ARM::STRB_POST_IMM : 0; 6899 } 6900 6901 /// Emit a post-increment load operation with given size. The instructions 6902 /// will be added to BB at Pos. 6903 static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos, 6904 const TargetInstrInfo *TII, DebugLoc dl, 6905 unsigned LdSize, unsigned Data, unsigned AddrIn, 6906 unsigned AddrOut, bool IsThumb1, bool IsThumb2) { 6907 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2); 6908 assert(LdOpc != 0 && "Should have a load opcode"); 6909 if (LdSize >= 8) { 6910 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 6911 .addReg(AddrOut, RegState::Define).addReg(AddrIn) 6912 .addImm(0)); 6913 } else if (IsThumb1) { 6914 // load + update AddrIn 6915 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 6916 .addReg(AddrIn).addImm(0)); 6917 MachineInstrBuilder MIB = 6918 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut); 6919 MIB = AddDefaultT1CC(MIB); 6920 MIB.addReg(AddrIn).addImm(LdSize); 6921 AddDefaultPred(MIB); 6922 } else if (IsThumb2) { 6923 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 6924 .addReg(AddrOut, RegState::Define).addReg(AddrIn) 6925 .addImm(LdSize)); 6926 } else { // arm 6927 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 6928 .addReg(AddrOut, RegState::Define).addReg(AddrIn) 6929 .addReg(0).addImm(LdSize)); 6930 } 6931 } 6932 6933 /// Emit a post-increment store operation with given size. The instructions 6934 /// will be added to BB at Pos. 6935 static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos, 6936 const TargetInstrInfo *TII, DebugLoc dl, 6937 unsigned StSize, unsigned Data, unsigned AddrIn, 6938 unsigned AddrOut, bool IsThumb1, bool IsThumb2) { 6939 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2); 6940 assert(StOpc != 0 && "Should have a store opcode"); 6941 if (StSize >= 8) { 6942 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 6943 .addReg(AddrIn).addImm(0).addReg(Data)); 6944 } else if (IsThumb1) { 6945 // store + update AddrIn 6946 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data) 6947 .addReg(AddrIn).addImm(0)); 6948 MachineInstrBuilder MIB = 6949 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut); 6950 MIB = AddDefaultT1CC(MIB); 6951 MIB.addReg(AddrIn).addImm(StSize); 6952 AddDefaultPred(MIB); 6953 } else if (IsThumb2) { 6954 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 6955 .addReg(Data).addReg(AddrIn).addImm(StSize)); 6956 } else { // arm 6957 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 6958 .addReg(Data).addReg(AddrIn).addReg(0) 6959 .addImm(StSize)); 6960 } 6961 } 6962 6963 MachineBasicBlock * 6964 ARMTargetLowering::EmitStructByval(MachineInstr *MI, 6965 MachineBasicBlock *BB) const { 6966 // This pseudo instruction has 3 operands: dst, src, size 6967 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). 6968 // Otherwise, we will generate unrolled scalar copies. 6969 const TargetInstrInfo *TII = 6970 getTargetMachine().getSubtargetImpl()->getInstrInfo(); 6971 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6972 MachineFunction::iterator It = BB; 6973 ++It; 6974 6975 unsigned dest = MI->getOperand(0).getReg(); 6976 unsigned src = MI->getOperand(1).getReg(); 6977 unsigned SizeVal = MI->getOperand(2).getImm(); 6978 unsigned Align = MI->getOperand(3).getImm(); 6979 DebugLoc dl = MI->getDebugLoc(); 6980 6981 MachineFunction *MF = BB->getParent(); 6982 MachineRegisterInfo &MRI = MF->getRegInfo(); 6983 unsigned UnitSize = 0; 6984 const TargetRegisterClass *TRC = nullptr; 6985 const TargetRegisterClass *VecTRC = nullptr; 6986 6987 bool IsThumb1 = Subtarget->isThumb1Only(); 6988 bool IsThumb2 = Subtarget->isThumb2(); 6989 6990 if (Align & 1) { 6991 UnitSize = 1; 6992 } else if (Align & 2) { 6993 UnitSize = 2; 6994 } else { 6995 // Check whether we can use NEON instructions. 6996 if (!MF->getFunction()->getAttributes(). 6997 hasAttribute(AttributeSet::FunctionIndex, 6998 Attribute::NoImplicitFloat) && 6999 Subtarget->hasNEON()) { 7000 if ((Align % 16 == 0) && SizeVal >= 16) 7001 UnitSize = 16; 7002 else if ((Align % 8 == 0) && SizeVal >= 8) 7003 UnitSize = 8; 7004 } 7005 // Can't use NEON instructions. 7006 if (UnitSize == 0) 7007 UnitSize = 4; 7008 } 7009 7010 // Select the correct opcode and register class for unit size load/store 7011 bool IsNeon = UnitSize >= 8; 7012 TRC = (IsThumb1 || IsThumb2) ? (const TargetRegisterClass *)&ARM::tGPRRegClass 7013 : (const TargetRegisterClass *)&ARM::GPRRegClass; 7014 if (IsNeon) 7015 VecTRC = UnitSize == 16 7016 ? (const TargetRegisterClass *)&ARM::DPairRegClass 7017 : UnitSize == 8 7018 ? (const TargetRegisterClass *)&ARM::DPRRegClass 7019 : nullptr; 7020 7021 unsigned BytesLeft = SizeVal % UnitSize; 7022 unsigned LoopSize = SizeVal - BytesLeft; 7023 7024 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { 7025 // Use LDR and STR to copy. 7026 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) 7027 // [destOut] = STR_POST(scratch, destIn, UnitSize) 7028 unsigned srcIn = src; 7029 unsigned destIn = dest; 7030 for (unsigned i = 0; i < LoopSize; i+=UnitSize) { 7031 unsigned srcOut = MRI.createVirtualRegister(TRC); 7032 unsigned destOut = MRI.createVirtualRegister(TRC); 7033 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); 7034 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut, 7035 IsThumb1, IsThumb2); 7036 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut, 7037 IsThumb1, IsThumb2); 7038 srcIn = srcOut; 7039 destIn = destOut; 7040 } 7041 7042 // Handle the leftover bytes with LDRB and STRB. 7043 // [scratch, srcOut] = LDRB_POST(srcIn, 1) 7044 // [destOut] = STRB_POST(scratch, destIn, 1) 7045 for (unsigned i = 0; i < BytesLeft; i++) { 7046 unsigned srcOut = MRI.createVirtualRegister(TRC); 7047 unsigned destOut = MRI.createVirtualRegister(TRC); 7048 unsigned scratch = MRI.createVirtualRegister(TRC); 7049 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut, 7050 IsThumb1, IsThumb2); 7051 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut, 7052 IsThumb1, IsThumb2); 7053 srcIn = srcOut; 7054 destIn = destOut; 7055 } 7056 MI->eraseFromParent(); // The instruction is gone now. 7057 return BB; 7058 } 7059 7060 // Expand the pseudo op to a loop. 7061 // thisMBB: 7062 // ... 7063 // movw varEnd, # --> with thumb2 7064 // movt varEnd, # 7065 // ldrcp varEnd, idx --> without thumb2 7066 // fallthrough --> loopMBB 7067 // loopMBB: 7068 // PHI varPhi, varEnd, varLoop 7069 // PHI srcPhi, src, srcLoop 7070 // PHI destPhi, dst, destLoop 7071 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) 7072 // [destLoop] = STR_POST(scratch, destPhi, UnitSize) 7073 // subs varLoop, varPhi, #UnitSize 7074 // bne loopMBB 7075 // fallthrough --> exitMBB 7076 // exitMBB: 7077 // epilogue to handle left-over bytes 7078 // [scratch, srcOut] = LDRB_POST(srcLoop, 1) 7079 // [destOut] = STRB_POST(scratch, destLoop, 1) 7080 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 7081 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 7082 MF->insert(It, loopMBB); 7083 MF->insert(It, exitMBB); 7084 7085 // Transfer the remainder of BB and its successor edges to exitMBB. 7086 exitMBB->splice(exitMBB->begin(), BB, 7087 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7088 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 7089 7090 // Load an immediate to varEnd. 7091 unsigned varEnd = MRI.createVirtualRegister(TRC); 7092 if (IsThumb2) { 7093 unsigned Vtmp = varEnd; 7094 if ((LoopSize & 0xFFFF0000) != 0) 7095 Vtmp = MRI.createVirtualRegister(TRC); 7096 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), Vtmp) 7097 .addImm(LoopSize & 0xFFFF)); 7098 7099 if ((LoopSize & 0xFFFF0000) != 0) 7100 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd) 7101 .addReg(Vtmp).addImm(LoopSize >> 16)); 7102 } else { 7103 MachineConstantPool *ConstantPool = MF->getConstantPool(); 7104 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 7105 const Constant *C = ConstantInt::get(Int32Ty, LoopSize); 7106 7107 // MachineConstantPool wants an explicit alignment. 7108 unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty); 7109 if (Align == 0) 7110 Align = getDataLayout()->getTypeAllocSize(C->getType()); 7111 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 7112 7113 if (IsThumb1) 7114 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg( 7115 varEnd, RegState::Define).addConstantPoolIndex(Idx)); 7116 else 7117 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg( 7118 varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0)); 7119 } 7120 BB->addSuccessor(loopMBB); 7121 7122 // Generate the loop body: 7123 // varPhi = PHI(varLoop, varEnd) 7124 // srcPhi = PHI(srcLoop, src) 7125 // destPhi = PHI(destLoop, dst) 7126 MachineBasicBlock *entryBB = BB; 7127 BB = loopMBB; 7128 unsigned varLoop = MRI.createVirtualRegister(TRC); 7129 unsigned varPhi = MRI.createVirtualRegister(TRC); 7130 unsigned srcLoop = MRI.createVirtualRegister(TRC); 7131 unsigned srcPhi = MRI.createVirtualRegister(TRC); 7132 unsigned destLoop = MRI.createVirtualRegister(TRC); 7133 unsigned destPhi = MRI.createVirtualRegister(TRC); 7134 7135 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) 7136 .addReg(varLoop).addMBB(loopMBB) 7137 .addReg(varEnd).addMBB(entryBB); 7138 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) 7139 .addReg(srcLoop).addMBB(loopMBB) 7140 .addReg(src).addMBB(entryBB); 7141 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) 7142 .addReg(destLoop).addMBB(loopMBB) 7143 .addReg(dest).addMBB(entryBB); 7144 7145 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) 7146 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) 7147 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); 7148 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop, 7149 IsThumb1, IsThumb2); 7150 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop, 7151 IsThumb1, IsThumb2); 7152 7153 // Decrement loop variable by UnitSize. 7154 if (IsThumb1) { 7155 MachineInstrBuilder MIB = 7156 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop); 7157 MIB = AddDefaultT1CC(MIB); 7158 MIB.addReg(varPhi).addImm(UnitSize); 7159 AddDefaultPred(MIB); 7160 } else { 7161 MachineInstrBuilder MIB = 7162 BuildMI(*BB, BB->end(), dl, 7163 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); 7164 AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize))); 7165 MIB->getOperand(5).setReg(ARM::CPSR); 7166 MIB->getOperand(5).setIsDef(true); 7167 } 7168 BuildMI(*BB, BB->end(), dl, 7169 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc)) 7170 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 7171 7172 // loopMBB can loop back to loopMBB or fall through to exitMBB. 7173 BB->addSuccessor(loopMBB); 7174 BB->addSuccessor(exitMBB); 7175 7176 // Add epilogue to handle BytesLeft. 7177 BB = exitMBB; 7178 MachineInstr *StartOfExit = exitMBB->begin(); 7179 7180 // [scratch, srcOut] = LDRB_POST(srcLoop, 1) 7181 // [destOut] = STRB_POST(scratch, destLoop, 1) 7182 unsigned srcIn = srcLoop; 7183 unsigned destIn = destLoop; 7184 for (unsigned i = 0; i < BytesLeft; i++) { 7185 unsigned srcOut = MRI.createVirtualRegister(TRC); 7186 unsigned destOut = MRI.createVirtualRegister(TRC); 7187 unsigned scratch = MRI.createVirtualRegister(TRC); 7188 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut, 7189 IsThumb1, IsThumb2); 7190 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut, 7191 IsThumb1, IsThumb2); 7192 srcIn = srcOut; 7193 destIn = destOut; 7194 } 7195 7196 MI->eraseFromParent(); // The instruction is gone now. 7197 return BB; 7198 } 7199 7200 MachineBasicBlock * 7201 ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI, 7202 MachineBasicBlock *MBB) const { 7203 const TargetMachine &TM = getTargetMachine(); 7204 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo(); 7205 DebugLoc DL = MI->getDebugLoc(); 7206 7207 assert(Subtarget->isTargetWindows() && 7208 "__chkstk is only supported on Windows"); 7209 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode"); 7210 7211 // __chkstk takes the number of words to allocate on the stack in R4, and 7212 // returns the stack adjustment in number of bytes in R4. This will not 7213 // clober any other registers (other than the obvious lr). 7214 // 7215 // Although, technically, IP should be considered a register which may be 7216 // clobbered, the call itself will not touch it. Windows on ARM is a pure 7217 // thumb-2 environment, so there is no interworking required. As a result, we 7218 // do not expect a veneer to be emitted by the linker, clobbering IP. 7219 // 7220 // Each module receives its own copy of __chkstk, so no import thunk is 7221 // required, again, ensuring that IP is not clobbered. 7222 // 7223 // Finally, although some linkers may theoretically provide a trampoline for 7224 // out of range calls (which is quite common due to a 32M range limitation of 7225 // branches for Thumb), we can generate the long-call version via 7226 // -mcmodel=large, alleviating the need for the trampoline which may clobber 7227 // IP. 7228 7229 switch (TM.getCodeModel()) { 7230 case CodeModel::Small: 7231 case CodeModel::Medium: 7232 case CodeModel::Default: 7233 case CodeModel::Kernel: 7234 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL)) 7235 .addImm((unsigned)ARMCC::AL).addReg(0) 7236 .addExternalSymbol("__chkstk") 7237 .addReg(ARM::R4, RegState::Implicit | RegState::Kill) 7238 .addReg(ARM::R4, RegState::Implicit | RegState::Define) 7239 .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead); 7240 break; 7241 case CodeModel::Large: 7242 case CodeModel::JITDefault: { 7243 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 7244 unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 7245 7246 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg) 7247 .addExternalSymbol("__chkstk"); 7248 BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr)) 7249 .addImm((unsigned)ARMCC::AL).addReg(0) 7250 .addReg(Reg, RegState::Kill) 7251 .addReg(ARM::R4, RegState::Implicit | RegState::Kill) 7252 .addReg(ARM::R4, RegState::Implicit | RegState::Define) 7253 .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead); 7254 break; 7255 } 7256 } 7257 7258 AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), 7259 ARM::SP) 7260 .addReg(ARM::SP).addReg(ARM::R4))); 7261 7262 MI->eraseFromParent(); 7263 return MBB; 7264 } 7265 7266 MachineBasicBlock * 7267 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 7268 MachineBasicBlock *BB) const { 7269 const TargetInstrInfo *TII = 7270 getTargetMachine().getSubtargetImpl()->getInstrInfo(); 7271 DebugLoc dl = MI->getDebugLoc(); 7272 bool isThumb2 = Subtarget->isThumb2(); 7273 switch (MI->getOpcode()) { 7274 default: { 7275 MI->dump(); 7276 llvm_unreachable("Unexpected instr type to insert"); 7277 } 7278 // The Thumb2 pre-indexed stores have the same MI operands, they just 7279 // define them differently in the .td files from the isel patterns, so 7280 // they need pseudos. 7281 case ARM::t2STR_preidx: 7282 MI->setDesc(TII->get(ARM::t2STR_PRE)); 7283 return BB; 7284 case ARM::t2STRB_preidx: 7285 MI->setDesc(TII->get(ARM::t2STRB_PRE)); 7286 return BB; 7287 case ARM::t2STRH_preidx: 7288 MI->setDesc(TII->get(ARM::t2STRH_PRE)); 7289 return BB; 7290 7291 case ARM::STRi_preidx: 7292 case ARM::STRBi_preidx: { 7293 unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ? 7294 ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM; 7295 // Decode the offset. 7296 unsigned Offset = MI->getOperand(4).getImm(); 7297 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; 7298 Offset = ARM_AM::getAM2Offset(Offset); 7299 if (isSub) 7300 Offset = -Offset; 7301 7302 MachineMemOperand *MMO = *MI->memoperands_begin(); 7303 BuildMI(*BB, MI, dl, TII->get(NewOpc)) 7304 .addOperand(MI->getOperand(0)) // Rn_wb 7305 .addOperand(MI->getOperand(1)) // Rt 7306 .addOperand(MI->getOperand(2)) // Rn 7307 .addImm(Offset) // offset (skip GPR==zero_reg) 7308 .addOperand(MI->getOperand(5)) // pred 7309 .addOperand(MI->getOperand(6)) 7310 .addMemOperand(MMO); 7311 MI->eraseFromParent(); 7312 return BB; 7313 } 7314 case ARM::STRr_preidx: 7315 case ARM::STRBr_preidx: 7316 case ARM::STRH_preidx: { 7317 unsigned NewOpc; 7318 switch (MI->getOpcode()) { 7319 default: llvm_unreachable("unexpected opcode!"); 7320 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; 7321 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; 7322 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; 7323 } 7324 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); 7325 for (unsigned i = 0; i < MI->getNumOperands(); ++i) 7326 MIB.addOperand(MI->getOperand(i)); 7327 MI->eraseFromParent(); 7328 return BB; 7329 } 7330 7331 case ARM::tMOVCCr_pseudo: { 7332 // To "insert" a SELECT_CC instruction, we actually have to insert the 7333 // diamond control-flow pattern. The incoming instruction knows the 7334 // destination vreg to set, the condition code register to branch on, the 7335 // true/false values to select between, and a branch opcode to use. 7336 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7337 MachineFunction::iterator It = BB; 7338 ++It; 7339 7340 // thisMBB: 7341 // ... 7342 // TrueVal = ... 7343 // cmpTY ccX, r1, r2 7344 // bCC copy1MBB 7345 // fallthrough --> copy0MBB 7346 MachineBasicBlock *thisMBB = BB; 7347 MachineFunction *F = BB->getParent(); 7348 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 7349 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 7350 F->insert(It, copy0MBB); 7351 F->insert(It, sinkMBB); 7352 7353 // Transfer the remainder of BB and its successor edges to sinkMBB. 7354 sinkMBB->splice(sinkMBB->begin(), BB, 7355 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7356 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 7357 7358 BB->addSuccessor(copy0MBB); 7359 BB->addSuccessor(sinkMBB); 7360 7361 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) 7362 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); 7363 7364 // copy0MBB: 7365 // %FalseValue = ... 7366 // # fallthrough to sinkMBB 7367 BB = copy0MBB; 7368 7369 // Update machine-CFG edges 7370 BB->addSuccessor(sinkMBB); 7371 7372 // sinkMBB: 7373 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 7374 // ... 7375 BB = sinkMBB; 7376 BuildMI(*BB, BB->begin(), dl, 7377 TII->get(ARM::PHI), MI->getOperand(0).getReg()) 7378 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 7379 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 7380 7381 MI->eraseFromParent(); // The pseudo instruction is gone now. 7382 return BB; 7383 } 7384 7385 case ARM::BCCi64: 7386 case ARM::BCCZi64: { 7387 // If there is an unconditional branch to the other successor, remove it. 7388 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7389 7390 // Compare both parts that make up the double comparison separately for 7391 // equality. 7392 bool RHSisZero = MI->getOpcode() == ARM::BCCZi64; 7393 7394 unsigned LHS1 = MI->getOperand(1).getReg(); 7395 unsigned LHS2 = MI->getOperand(2).getReg(); 7396 if (RHSisZero) { 7397 AddDefaultPred(BuildMI(BB, dl, 7398 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 7399 .addReg(LHS1).addImm(0)); 7400 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 7401 .addReg(LHS2).addImm(0) 7402 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 7403 } else { 7404 unsigned RHS1 = MI->getOperand(3).getReg(); 7405 unsigned RHS2 = MI->getOperand(4).getReg(); 7406 AddDefaultPred(BuildMI(BB, dl, 7407 TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 7408 .addReg(LHS1).addReg(RHS1)); 7409 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 7410 .addReg(LHS2).addReg(RHS2) 7411 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 7412 } 7413 7414 MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB(); 7415 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); 7416 if (MI->getOperand(0).getImm() == ARMCC::NE) 7417 std::swap(destMBB, exitMBB); 7418 7419 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 7420 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); 7421 if (isThumb2) 7422 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB)); 7423 else 7424 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); 7425 7426 MI->eraseFromParent(); // The pseudo instruction is gone now. 7427 return BB; 7428 } 7429 7430 case ARM::Int_eh_sjlj_setjmp: 7431 case ARM::Int_eh_sjlj_setjmp_nofp: 7432 case ARM::tInt_eh_sjlj_setjmp: 7433 case ARM::t2Int_eh_sjlj_setjmp: 7434 case ARM::t2Int_eh_sjlj_setjmp_nofp: 7435 EmitSjLjDispatchBlock(MI, BB); 7436 return BB; 7437 7438 case ARM::ABS: 7439 case ARM::t2ABS: { 7440 // To insert an ABS instruction, we have to insert the 7441 // diamond control-flow pattern. The incoming instruction knows the 7442 // source vreg to test against 0, the destination vreg to set, 7443 // the condition code register to branch on, the 7444 // true/false values to select between, and a branch opcode to use. 7445 // It transforms 7446 // V1 = ABS V0 7447 // into 7448 // V2 = MOVS V0 7449 // BCC (branch to SinkBB if V0 >= 0) 7450 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) 7451 // SinkBB: V1 = PHI(V2, V3) 7452 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7453 MachineFunction::iterator BBI = BB; 7454 ++BBI; 7455 MachineFunction *Fn = BB->getParent(); 7456 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); 7457 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); 7458 Fn->insert(BBI, RSBBB); 7459 Fn->insert(BBI, SinkBB); 7460 7461 unsigned int ABSSrcReg = MI->getOperand(1).getReg(); 7462 unsigned int ABSDstReg = MI->getOperand(0).getReg(); 7463 bool isThumb2 = Subtarget->isThumb2(); 7464 MachineRegisterInfo &MRI = Fn->getRegInfo(); 7465 // In Thumb mode S must not be specified if source register is the SP or 7466 // PC and if destination register is the SP, so restrict register class 7467 unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ? 7468 (const TargetRegisterClass*)&ARM::rGPRRegClass : 7469 (const TargetRegisterClass*)&ARM::GPRRegClass); 7470 7471 // Transfer the remainder of BB and its successor edges to sinkMBB. 7472 SinkBB->splice(SinkBB->begin(), BB, 7473 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7474 SinkBB->transferSuccessorsAndUpdatePHIs(BB); 7475 7476 BB->addSuccessor(RSBBB); 7477 BB->addSuccessor(SinkBB); 7478 7479 // fall through to SinkMBB 7480 RSBBB->addSuccessor(SinkBB); 7481 7482 // insert a cmp at the end of BB 7483 AddDefaultPred(BuildMI(BB, dl, 7484 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 7485 .addReg(ABSSrcReg).addImm(0)); 7486 7487 // insert a bcc with opposite CC to ARMCC::MI at the end of BB 7488 BuildMI(BB, dl, 7489 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) 7490 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); 7491 7492 // insert rsbri in RSBBB 7493 // Note: BCC and rsbri will be converted into predicated rsbmi 7494 // by if-conversion pass 7495 BuildMI(*RSBBB, RSBBB->begin(), dl, 7496 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) 7497 .addReg(ABSSrcReg, RegState::Kill) 7498 .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); 7499 7500 // insert PHI in SinkBB, 7501 // reuse ABSDstReg to not change uses of ABS instruction 7502 BuildMI(*SinkBB, SinkBB->begin(), dl, 7503 TII->get(ARM::PHI), ABSDstReg) 7504 .addReg(NewRsbDstReg).addMBB(RSBBB) 7505 .addReg(ABSSrcReg).addMBB(BB); 7506 7507 // remove ABS instruction 7508 MI->eraseFromParent(); 7509 7510 // return last added BB 7511 return SinkBB; 7512 } 7513 case ARM::COPY_STRUCT_BYVAL_I32: 7514 ++NumLoopByVals; 7515 return EmitStructByval(MI, BB); 7516 case ARM::WIN__CHKSTK: 7517 return EmitLowered__chkstk(MI, BB); 7518 } 7519 } 7520 7521 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 7522 SDNode *Node) const { 7523 if (!MI->hasPostISelHook()) { 7524 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 7525 "Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'"); 7526 return; 7527 } 7528 7529 const MCInstrDesc *MCID = &MI->getDesc(); 7530 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, 7531 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional 7532 // operand is still set to noreg. If needed, set the optional operand's 7533 // register to CPSR, and remove the redundant implicit def. 7534 // 7535 // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>). 7536 7537 // Rename pseudo opcodes. 7538 unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode()); 7539 if (NewOpc) { 7540 const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>( 7541 getTargetMachine().getSubtargetImpl()->getInstrInfo()); 7542 MCID = &TII->get(NewOpc); 7543 7544 assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 && 7545 "converted opcode should be the same except for cc_out"); 7546 7547 MI->setDesc(*MCID); 7548 7549 // Add the optional cc_out operand 7550 MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); 7551 } 7552 unsigned ccOutIdx = MCID->getNumOperands() - 1; 7553 7554 // Any ARM instruction that sets the 's' bit should specify an optional 7555 // "cc_out" operand in the last operand position. 7556 if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) { 7557 assert(!NewOpc && "Optional cc_out operand required"); 7558 return; 7559 } 7560 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it 7561 // since we already have an optional CPSR def. 7562 bool definesCPSR = false; 7563 bool deadCPSR = false; 7564 for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands(); 7565 i != e; ++i) { 7566 const MachineOperand &MO = MI->getOperand(i); 7567 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { 7568 definesCPSR = true; 7569 if (MO.isDead()) 7570 deadCPSR = true; 7571 MI->RemoveOperand(i); 7572 break; 7573 } 7574 } 7575 if (!definesCPSR) { 7576 assert(!NewOpc && "Optional cc_out operand required"); 7577 return; 7578 } 7579 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); 7580 if (deadCPSR) { 7581 assert(!MI->getOperand(ccOutIdx).getReg() && 7582 "expect uninitialized optional cc_out operand"); 7583 return; 7584 } 7585 7586 // If this instruction was defined with an optional CPSR def and its dag node 7587 // had a live implicit CPSR def, then activate the optional CPSR def. 7588 MachineOperand &MO = MI->getOperand(ccOutIdx); 7589 MO.setReg(ARM::CPSR); 7590 MO.setIsDef(true); 7591 } 7592 7593 //===----------------------------------------------------------------------===// 7594 // ARM Optimization Hooks 7595 //===----------------------------------------------------------------------===// 7596 7597 // Helper function that checks if N is a null or all ones constant. 7598 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 7599 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 7600 if (!C) 7601 return false; 7602 return AllOnes ? C->isAllOnesValue() : C->isNullValue(); 7603 } 7604 7605 // Return true if N is conditionally 0 or all ones. 7606 // Detects these expressions where cc is an i1 value: 7607 // 7608 // (select cc 0, y) [AllOnes=0] 7609 // (select cc y, 0) [AllOnes=0] 7610 // (zext cc) [AllOnes=0] 7611 // (sext cc) [AllOnes=0/1] 7612 // (select cc -1, y) [AllOnes=1] 7613 // (select cc y, -1) [AllOnes=1] 7614 // 7615 // Invert is set when N is the null/all ones constant when CC is false. 7616 // OtherOp is set to the alternative value of N. 7617 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, 7618 SDValue &CC, bool &Invert, 7619 SDValue &OtherOp, 7620 SelectionDAG &DAG) { 7621 switch (N->getOpcode()) { 7622 default: return false; 7623 case ISD::SELECT: { 7624 CC = N->getOperand(0); 7625 SDValue N1 = N->getOperand(1); 7626 SDValue N2 = N->getOperand(2); 7627 if (isZeroOrAllOnes(N1, AllOnes)) { 7628 Invert = false; 7629 OtherOp = N2; 7630 return true; 7631 } 7632 if (isZeroOrAllOnes(N2, AllOnes)) { 7633 Invert = true; 7634 OtherOp = N1; 7635 return true; 7636 } 7637 return false; 7638 } 7639 case ISD::ZERO_EXTEND: 7640 // (zext cc) can never be the all ones value. 7641 if (AllOnes) 7642 return false; 7643 // Fall through. 7644 case ISD::SIGN_EXTEND: { 7645 EVT VT = N->getValueType(0); 7646 CC = N->getOperand(0); 7647 if (CC.getValueType() != MVT::i1) 7648 return false; 7649 Invert = !AllOnes; 7650 if (AllOnes) 7651 // When looking for an AllOnes constant, N is an sext, and the 'other' 7652 // value is 0. 7653 OtherOp = DAG.getConstant(0, VT); 7654 else if (N->getOpcode() == ISD::ZERO_EXTEND) 7655 // When looking for a 0 constant, N can be zext or sext. 7656 OtherOp = DAG.getConstant(1, VT); 7657 else 7658 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT); 7659 return true; 7660 } 7661 } 7662 } 7663 7664 // Combine a constant select operand into its use: 7665 // 7666 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 7667 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 7668 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 7669 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 7670 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 7671 // 7672 // The transform is rejected if the select doesn't have a constant operand that 7673 // is null, or all ones when AllOnes is set. 7674 // 7675 // Also recognize sext/zext from i1: 7676 // 7677 // (add (zext cc), x) -> (select cc (add x, 1), x) 7678 // (add (sext cc), x) -> (select cc (add x, -1), x) 7679 // 7680 // These transformations eventually create predicated instructions. 7681 // 7682 // @param N The node to transform. 7683 // @param Slct The N operand that is a select. 7684 // @param OtherOp The other N operand (x above). 7685 // @param DCI Context. 7686 // @param AllOnes Require the select constant to be all ones instead of null. 7687 // @returns The new node, or SDValue() on failure. 7688 static 7689 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 7690 TargetLowering::DAGCombinerInfo &DCI, 7691 bool AllOnes = false) { 7692 SelectionDAG &DAG = DCI.DAG; 7693 EVT VT = N->getValueType(0); 7694 SDValue NonConstantVal; 7695 SDValue CCOp; 7696 bool SwapSelectOps; 7697 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 7698 NonConstantVal, DAG)) 7699 return SDValue(); 7700 7701 // Slct is now know to be the desired identity constant when CC is true. 7702 SDValue TrueVal = OtherOp; 7703 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 7704 OtherOp, NonConstantVal); 7705 // Unless SwapSelectOps says CC should be false. 7706 if (SwapSelectOps) 7707 std::swap(TrueVal, FalseVal); 7708 7709 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 7710 CCOp, TrueVal, FalseVal); 7711 } 7712 7713 // Attempt combineSelectAndUse on each operand of a commutative operator N. 7714 static 7715 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, 7716 TargetLowering::DAGCombinerInfo &DCI) { 7717 SDValue N0 = N->getOperand(0); 7718 SDValue N1 = N->getOperand(1); 7719 if (N0.getNode()->hasOneUse()) { 7720 SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes); 7721 if (Result.getNode()) 7722 return Result; 7723 } 7724 if (N1.getNode()->hasOneUse()) { 7725 SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes); 7726 if (Result.getNode()) 7727 return Result; 7728 } 7729 return SDValue(); 7730 } 7731 7732 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction 7733 // (only after legalization). 7734 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1, 7735 TargetLowering::DAGCombinerInfo &DCI, 7736 const ARMSubtarget *Subtarget) { 7737 7738 // Only perform optimization if after legalize, and if NEON is available. We 7739 // also expected both operands to be BUILD_VECTORs. 7740 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() 7741 || N0.getOpcode() != ISD::BUILD_VECTOR 7742 || N1.getOpcode() != ISD::BUILD_VECTOR) 7743 return SDValue(); 7744 7745 // Check output type since VPADDL operand elements can only be 8, 16, or 32. 7746 EVT VT = N->getValueType(0); 7747 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) 7748 return SDValue(); 7749 7750 // Check that the vector operands are of the right form. 7751 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR 7752 // operands, where N is the size of the formed vector. 7753 // Each EXTRACT_VECTOR should have the same input vector and odd or even 7754 // index such that we have a pair wise add pattern. 7755 7756 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. 7757 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 7758 return SDValue(); 7759 SDValue Vec = N0->getOperand(0)->getOperand(0); 7760 SDNode *V = Vec.getNode(); 7761 unsigned nextIndex = 0; 7762 7763 // For each operands to the ADD which are BUILD_VECTORs, 7764 // check to see if each of their operands are an EXTRACT_VECTOR with 7765 // the same vector and appropriate index. 7766 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { 7767 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT 7768 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 7769 7770 SDValue ExtVec0 = N0->getOperand(i); 7771 SDValue ExtVec1 = N1->getOperand(i); 7772 7773 // First operand is the vector, verify its the same. 7774 if (V != ExtVec0->getOperand(0).getNode() || 7775 V != ExtVec1->getOperand(0).getNode()) 7776 return SDValue(); 7777 7778 // Second is the constant, verify its correct. 7779 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1)); 7780 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1)); 7781 7782 // For the constant, we want to see all the even or all the odd. 7783 if (!C0 || !C1 || C0->getZExtValue() != nextIndex 7784 || C1->getZExtValue() != nextIndex+1) 7785 return SDValue(); 7786 7787 // Increment index. 7788 nextIndex+=2; 7789 } else 7790 return SDValue(); 7791 } 7792 7793 // Create VPADDL node. 7794 SelectionDAG &DAG = DCI.DAG; 7795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7796 7797 // Build operand list. 7798 SmallVector<SDValue, 8> Ops; 7799 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, 7800 TLI.getPointerTy())); 7801 7802 // Input is the vector. 7803 Ops.push_back(Vec); 7804 7805 // Get widened type and narrowed type. 7806 MVT widenType; 7807 unsigned numElem = VT.getVectorNumElements(); 7808 7809 EVT inputLaneType = Vec.getValueType().getVectorElementType(); 7810 switch (inputLaneType.getSimpleVT().SimpleTy) { 7811 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; 7812 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; 7813 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; 7814 default: 7815 llvm_unreachable("Invalid vector element type for padd optimization."); 7816 } 7817 7818 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), widenType, Ops); 7819 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE; 7820 return DAG.getNode(ExtOp, SDLoc(N), VT, tmp); 7821 } 7822 7823 static SDValue findMUL_LOHI(SDValue V) { 7824 if (V->getOpcode() == ISD::UMUL_LOHI || 7825 V->getOpcode() == ISD::SMUL_LOHI) 7826 return V; 7827 return SDValue(); 7828 } 7829 7830 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode, 7831 TargetLowering::DAGCombinerInfo &DCI, 7832 const ARMSubtarget *Subtarget) { 7833 7834 if (Subtarget->isThumb1Only()) return SDValue(); 7835 7836 // Only perform the checks after legalize when the pattern is available. 7837 if (DCI.isBeforeLegalize()) return SDValue(); 7838 7839 // Look for multiply add opportunities. 7840 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where 7841 // each add nodes consumes a value from ISD::UMUL_LOHI and there is 7842 // a glue link from the first add to the second add. 7843 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by 7844 // a S/UMLAL instruction. 7845 // loAdd UMUL_LOHI 7846 // \ / :lo \ :hi 7847 // \ / \ [no multiline comment] 7848 // ADDC | hiAdd 7849 // \ :glue / / 7850 // \ / / 7851 // ADDE 7852 // 7853 assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC"); 7854 SDValue AddcOp0 = AddcNode->getOperand(0); 7855 SDValue AddcOp1 = AddcNode->getOperand(1); 7856 7857 // Check if the two operands are from the same mul_lohi node. 7858 if (AddcOp0.getNode() == AddcOp1.getNode()) 7859 return SDValue(); 7860 7861 assert(AddcNode->getNumValues() == 2 && 7862 AddcNode->getValueType(0) == MVT::i32 && 7863 "Expect ADDC with two result values. First: i32"); 7864 7865 // Check that we have a glued ADDC node. 7866 if (AddcNode->getValueType(1) != MVT::Glue) 7867 return SDValue(); 7868 7869 // Check that the ADDC adds the low result of the S/UMUL_LOHI. 7870 if (AddcOp0->getOpcode() != ISD::UMUL_LOHI && 7871 AddcOp0->getOpcode() != ISD::SMUL_LOHI && 7872 AddcOp1->getOpcode() != ISD::UMUL_LOHI && 7873 AddcOp1->getOpcode() != ISD::SMUL_LOHI) 7874 return SDValue(); 7875 7876 // Look for the glued ADDE. 7877 SDNode* AddeNode = AddcNode->getGluedUser(); 7878 if (!AddeNode) 7879 return SDValue(); 7880 7881 // Make sure it is really an ADDE. 7882 if (AddeNode->getOpcode() != ISD::ADDE) 7883 return SDValue(); 7884 7885 assert(AddeNode->getNumOperands() == 3 && 7886 AddeNode->getOperand(2).getValueType() == MVT::Glue && 7887 "ADDE node has the wrong inputs"); 7888 7889 // Check for the triangle shape. 7890 SDValue AddeOp0 = AddeNode->getOperand(0); 7891 SDValue AddeOp1 = AddeNode->getOperand(1); 7892 7893 // Make sure that the ADDE operands are not coming from the same node. 7894 if (AddeOp0.getNode() == AddeOp1.getNode()) 7895 return SDValue(); 7896 7897 // Find the MUL_LOHI node walking up ADDE's operands. 7898 bool IsLeftOperandMUL = false; 7899 SDValue MULOp = findMUL_LOHI(AddeOp0); 7900 if (MULOp == SDValue()) 7901 MULOp = findMUL_LOHI(AddeOp1); 7902 else 7903 IsLeftOperandMUL = true; 7904 if (MULOp == SDValue()) 7905 return SDValue(); 7906 7907 // Figure out the right opcode. 7908 unsigned Opc = MULOp->getOpcode(); 7909 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; 7910 7911 // Figure out the high and low input values to the MLAL node. 7912 SDValue* HiMul = &MULOp; 7913 SDValue* HiAdd = nullptr; 7914 SDValue* LoMul = nullptr; 7915 SDValue* LowAdd = nullptr; 7916 7917 if (IsLeftOperandMUL) 7918 HiAdd = &AddeOp1; 7919 else 7920 HiAdd = &AddeOp0; 7921 7922 7923 if (AddcOp0->getOpcode() == Opc) { 7924 LoMul = &AddcOp0; 7925 LowAdd = &AddcOp1; 7926 } 7927 if (AddcOp1->getOpcode() == Opc) { 7928 LoMul = &AddcOp1; 7929 LowAdd = &AddcOp0; 7930 } 7931 7932 if (!LoMul) 7933 return SDValue(); 7934 7935 if (LoMul->getNode() != HiMul->getNode()) 7936 return SDValue(); 7937 7938 // Create the merged node. 7939 SelectionDAG &DAG = DCI.DAG; 7940 7941 // Build operand list. 7942 SmallVector<SDValue, 8> Ops; 7943 Ops.push_back(LoMul->getOperand(0)); 7944 Ops.push_back(LoMul->getOperand(1)); 7945 Ops.push_back(*LowAdd); 7946 Ops.push_back(*HiAdd); 7947 7948 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode), 7949 DAG.getVTList(MVT::i32, MVT::i32), Ops); 7950 7951 // Replace the ADDs' nodes uses by the MLA node's values. 7952 SDValue HiMLALResult(MLALNode.getNode(), 1); 7953 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); 7954 7955 SDValue LoMLALResult(MLALNode.getNode(), 0); 7956 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); 7957 7958 // Return original node to notify the driver to stop replacing. 7959 SDValue resNode(AddcNode, 0); 7960 return resNode; 7961 } 7962 7963 /// PerformADDCCombine - Target-specific dag combine transform from 7964 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL. 7965 static SDValue PerformADDCCombine(SDNode *N, 7966 TargetLowering::DAGCombinerInfo &DCI, 7967 const ARMSubtarget *Subtarget) { 7968 7969 return AddCombineTo64bitMLAL(N, DCI, Subtarget); 7970 7971 } 7972 7973 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with 7974 /// operands N0 and N1. This is a helper for PerformADDCombine that is 7975 /// called with the default operands, and if that fails, with commuted 7976 /// operands. 7977 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, 7978 TargetLowering::DAGCombinerInfo &DCI, 7979 const ARMSubtarget *Subtarget){ 7980 7981 // Attempt to create vpaddl for this add. 7982 SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget); 7983 if (Result.getNode()) 7984 return Result; 7985 7986 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 7987 if (N0.getNode()->hasOneUse()) { 7988 SDValue Result = combineSelectAndUse(N, N0, N1, DCI); 7989 if (Result.getNode()) return Result; 7990 } 7991 return SDValue(); 7992 } 7993 7994 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. 7995 /// 7996 static SDValue PerformADDCombine(SDNode *N, 7997 TargetLowering::DAGCombinerInfo &DCI, 7998 const ARMSubtarget *Subtarget) { 7999 SDValue N0 = N->getOperand(0); 8000 SDValue N1 = N->getOperand(1); 8001 8002 // First try with the default operand order. 8003 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget); 8004 if (Result.getNode()) 8005 return Result; 8006 8007 // If that didn't work, try again with the operands commuted. 8008 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); 8009 } 8010 8011 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 8012 /// 8013 static SDValue PerformSUBCombine(SDNode *N, 8014 TargetLowering::DAGCombinerInfo &DCI) { 8015 SDValue N0 = N->getOperand(0); 8016 SDValue N1 = N->getOperand(1); 8017 8018 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 8019 if (N1.getNode()->hasOneUse()) { 8020 SDValue Result = combineSelectAndUse(N, N1, N0, DCI); 8021 if (Result.getNode()) return Result; 8022 } 8023 8024 return SDValue(); 8025 } 8026 8027 /// PerformVMULCombine 8028 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the 8029 /// special multiplier accumulator forwarding. 8030 /// vmul d3, d0, d2 8031 /// vmla d3, d1, d2 8032 /// is faster than 8033 /// vadd d3, d0, d1 8034 /// vmul d3, d3, d2 8035 // However, for (A + B) * (A + B), 8036 // vadd d2, d0, d1 8037 // vmul d3, d0, d2 8038 // vmla d3, d1, d2 8039 // is slower than 8040 // vadd d2, d0, d1 8041 // vmul d3, d2, d2 8042 static SDValue PerformVMULCombine(SDNode *N, 8043 TargetLowering::DAGCombinerInfo &DCI, 8044 const ARMSubtarget *Subtarget) { 8045 if (!Subtarget->hasVMLxForwarding()) 8046 return SDValue(); 8047 8048 SelectionDAG &DAG = DCI.DAG; 8049 SDValue N0 = N->getOperand(0); 8050 SDValue N1 = N->getOperand(1); 8051 unsigned Opcode = N0.getOpcode(); 8052 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 8053 Opcode != ISD::FADD && Opcode != ISD::FSUB) { 8054 Opcode = N1.getOpcode(); 8055 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 8056 Opcode != ISD::FADD && Opcode != ISD::FSUB) 8057 return SDValue(); 8058 std::swap(N0, N1); 8059 } 8060 8061 if (N0 == N1) 8062 return SDValue(); 8063 8064 EVT VT = N->getValueType(0); 8065 SDLoc DL(N); 8066 SDValue N00 = N0->getOperand(0); 8067 SDValue N01 = N0->getOperand(1); 8068 return DAG.getNode(Opcode, DL, VT, 8069 DAG.getNode(ISD::MUL, DL, VT, N00, N1), 8070 DAG.getNode(ISD::MUL, DL, VT, N01, N1)); 8071 } 8072 8073 static SDValue PerformMULCombine(SDNode *N, 8074 TargetLowering::DAGCombinerInfo &DCI, 8075 const ARMSubtarget *Subtarget) { 8076 SelectionDAG &DAG = DCI.DAG; 8077 8078 if (Subtarget->isThumb1Only()) 8079 return SDValue(); 8080 8081 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 8082 return SDValue(); 8083 8084 EVT VT = N->getValueType(0); 8085 if (VT.is64BitVector() || VT.is128BitVector()) 8086 return PerformVMULCombine(N, DCI, Subtarget); 8087 if (VT != MVT::i32) 8088 return SDValue(); 8089 8090 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8091 if (!C) 8092 return SDValue(); 8093 8094 int64_t MulAmt = C->getSExtValue(); 8095 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt); 8096 8097 ShiftAmt = ShiftAmt & (32 - 1); 8098 SDValue V = N->getOperand(0); 8099 SDLoc DL(N); 8100 8101 SDValue Res; 8102 MulAmt >>= ShiftAmt; 8103 8104 if (MulAmt >= 0) { 8105 if (isPowerOf2_32(MulAmt - 1)) { 8106 // (mul x, 2^N + 1) => (add (shl x, N), x) 8107 Res = DAG.getNode(ISD::ADD, DL, VT, 8108 V, 8109 DAG.getNode(ISD::SHL, DL, VT, 8110 V, 8111 DAG.getConstant(Log2_32(MulAmt - 1), 8112 MVT::i32))); 8113 } else if (isPowerOf2_32(MulAmt + 1)) { 8114 // (mul x, 2^N - 1) => (sub (shl x, N), x) 8115 Res = DAG.getNode(ISD::SUB, DL, VT, 8116 DAG.getNode(ISD::SHL, DL, VT, 8117 V, 8118 DAG.getConstant(Log2_32(MulAmt + 1), 8119 MVT::i32)), 8120 V); 8121 } else 8122 return SDValue(); 8123 } else { 8124 uint64_t MulAmtAbs = -MulAmt; 8125 if (isPowerOf2_32(MulAmtAbs + 1)) { 8126 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 8127 Res = DAG.getNode(ISD::SUB, DL, VT, 8128 V, 8129 DAG.getNode(ISD::SHL, DL, VT, 8130 V, 8131 DAG.getConstant(Log2_32(MulAmtAbs + 1), 8132 MVT::i32))); 8133 } else if (isPowerOf2_32(MulAmtAbs - 1)) { 8134 // (mul x, -(2^N + 1)) => - (add (shl x, N), x) 8135 Res = DAG.getNode(ISD::ADD, DL, VT, 8136 V, 8137 DAG.getNode(ISD::SHL, DL, VT, 8138 V, 8139 DAG.getConstant(Log2_32(MulAmtAbs-1), 8140 MVT::i32))); 8141 Res = DAG.getNode(ISD::SUB, DL, VT, 8142 DAG.getConstant(0, MVT::i32),Res); 8143 8144 } else 8145 return SDValue(); 8146 } 8147 8148 if (ShiftAmt != 0) 8149 Res = DAG.getNode(ISD::SHL, DL, VT, 8150 Res, DAG.getConstant(ShiftAmt, MVT::i32)); 8151 8152 // Do not add new nodes to DAG combiner worklist. 8153 DCI.CombineTo(N, Res, false); 8154 return SDValue(); 8155 } 8156 8157 static SDValue PerformANDCombine(SDNode *N, 8158 TargetLowering::DAGCombinerInfo &DCI, 8159 const ARMSubtarget *Subtarget) { 8160 8161 // Attempt to use immediate-form VBIC 8162 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 8163 SDLoc dl(N); 8164 EVT VT = N->getValueType(0); 8165 SelectionDAG &DAG = DCI.DAG; 8166 8167 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8168 return SDValue(); 8169 8170 APInt SplatBits, SplatUndef; 8171 unsigned SplatBitSize; 8172 bool HasAnyUndefs; 8173 if (BVN && 8174 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 8175 if (SplatBitSize <= 64) { 8176 EVT VbicVT; 8177 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(), 8178 SplatUndef.getZExtValue(), SplatBitSize, 8179 DAG, VbicVT, VT.is128BitVector(), 8180 OtherModImm); 8181 if (Val.getNode()) { 8182 SDValue Input = 8183 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); 8184 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); 8185 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); 8186 } 8187 } 8188 } 8189 8190 if (!Subtarget->isThumb1Only()) { 8191 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) 8192 SDValue Result = combineSelectAndUseCommutative(N, true, DCI); 8193 if (Result.getNode()) 8194 return Result; 8195 } 8196 8197 return SDValue(); 8198 } 8199 8200 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR 8201 static SDValue PerformORCombine(SDNode *N, 8202 TargetLowering::DAGCombinerInfo &DCI, 8203 const ARMSubtarget *Subtarget) { 8204 // Attempt to use immediate-form VORR 8205 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 8206 SDLoc dl(N); 8207 EVT VT = N->getValueType(0); 8208 SelectionDAG &DAG = DCI.DAG; 8209 8210 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8211 return SDValue(); 8212 8213 APInt SplatBits, SplatUndef; 8214 unsigned SplatBitSize; 8215 bool HasAnyUndefs; 8216 if (BVN && Subtarget->hasNEON() && 8217 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 8218 if (SplatBitSize <= 64) { 8219 EVT VorrVT; 8220 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), 8221 SplatUndef.getZExtValue(), SplatBitSize, 8222 DAG, VorrVT, VT.is128BitVector(), 8223 OtherModImm); 8224 if (Val.getNode()) { 8225 SDValue Input = 8226 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); 8227 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); 8228 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); 8229 } 8230 } 8231 } 8232 8233 if (!Subtarget->isThumb1Only()) { 8234 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 8235 SDValue Result = combineSelectAndUseCommutative(N, false, DCI); 8236 if (Result.getNode()) 8237 return Result; 8238 } 8239 8240 // The code below optimizes (or (and X, Y), Z). 8241 // The AND operand needs to have a single user to make these optimizations 8242 // profitable. 8243 SDValue N0 = N->getOperand(0); 8244 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 8245 return SDValue(); 8246 SDValue N1 = N->getOperand(1); 8247 8248 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. 8249 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && 8250 DAG.getTargetLoweringInfo().isTypeLegal(VT)) { 8251 APInt SplatUndef; 8252 unsigned SplatBitSize; 8253 bool HasAnyUndefs; 8254 8255 APInt SplatBits0, SplatBits1; 8256 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); 8257 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); 8258 // Ensure that the second operand of both ands are constants 8259 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, 8260 HasAnyUndefs) && !HasAnyUndefs) { 8261 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, 8262 HasAnyUndefs) && !HasAnyUndefs) { 8263 // Ensure that the bit width of the constants are the same and that 8264 // the splat arguments are logical inverses as per the pattern we 8265 // are trying to simplify. 8266 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() && 8267 SplatBits0 == ~SplatBits1) { 8268 // Canonicalize the vector type to make instruction selection 8269 // simpler. 8270 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 8271 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT, 8272 N0->getOperand(1), 8273 N0->getOperand(0), 8274 N1->getOperand(0)); 8275 return DAG.getNode(ISD::BITCAST, dl, VT, Result); 8276 } 8277 } 8278 } 8279 } 8280 8281 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when 8282 // reasonable. 8283 8284 // BFI is only available on V6T2+ 8285 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) 8286 return SDValue(); 8287 8288 SDLoc DL(N); 8289 // 1) or (and A, mask), val => ARMbfi A, val, mask 8290 // iff (val & mask) == val 8291 // 8292 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 8293 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) 8294 // && mask == ~mask2 8295 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) 8296 // && ~mask == mask2 8297 // (i.e., copy a bitfield value into another bitfield of the same width) 8298 8299 if (VT != MVT::i32) 8300 return SDValue(); 8301 8302 SDValue N00 = N0.getOperand(0); 8303 8304 // The value and the mask need to be constants so we can verify this is 8305 // actually a bitfield set. If the mask is 0xffff, we can do better 8306 // via a movt instruction, so don't use BFI in that case. 8307 SDValue MaskOp = N0.getOperand(1); 8308 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp); 8309 if (!MaskC) 8310 return SDValue(); 8311 unsigned Mask = MaskC->getZExtValue(); 8312 if (Mask == 0xffff) 8313 return SDValue(); 8314 SDValue Res; 8315 // Case (1): or (and A, mask), val => ARMbfi A, val, mask 8316 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 8317 if (N1C) { 8318 unsigned Val = N1C->getZExtValue(); 8319 if ((Val & ~Mask) != Val) 8320 return SDValue(); 8321 8322 if (ARM::isBitFieldInvertedMask(Mask)) { 8323 Val >>= countTrailingZeros(~Mask); 8324 8325 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, 8326 DAG.getConstant(Val, MVT::i32), 8327 DAG.getConstant(Mask, MVT::i32)); 8328 8329 // Do not add new nodes to DAG combiner worklist. 8330 DCI.CombineTo(N, Res, false); 8331 return SDValue(); 8332 } 8333 } else if (N1.getOpcode() == ISD::AND) { 8334 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 8335 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 8336 if (!N11C) 8337 return SDValue(); 8338 unsigned Mask2 = N11C->getZExtValue(); 8339 8340 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern 8341 // as is to match. 8342 if (ARM::isBitFieldInvertedMask(Mask) && 8343 (Mask == ~Mask2)) { 8344 // The pack halfword instruction works better for masks that fit it, 8345 // so use that when it's available. 8346 if (Subtarget->hasT2ExtractPack() && 8347 (Mask == 0xffff || Mask == 0xffff0000)) 8348 return SDValue(); 8349 // 2a 8350 unsigned amt = countTrailingZeros(Mask2); 8351 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), 8352 DAG.getConstant(amt, MVT::i32)); 8353 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, 8354 DAG.getConstant(Mask, MVT::i32)); 8355 // Do not add new nodes to DAG combiner worklist. 8356 DCI.CombineTo(N, Res, false); 8357 return SDValue(); 8358 } else if (ARM::isBitFieldInvertedMask(~Mask) && 8359 (~Mask == Mask2)) { 8360 // The pack halfword instruction works better for masks that fit it, 8361 // so use that when it's available. 8362 if (Subtarget->hasT2ExtractPack() && 8363 (Mask2 == 0xffff || Mask2 == 0xffff0000)) 8364 return SDValue(); 8365 // 2b 8366 unsigned lsb = countTrailingZeros(Mask); 8367 Res = DAG.getNode(ISD::SRL, DL, VT, N00, 8368 DAG.getConstant(lsb, MVT::i32)); 8369 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, 8370 DAG.getConstant(Mask2, MVT::i32)); 8371 // Do not add new nodes to DAG combiner worklist. 8372 DCI.CombineTo(N, Res, false); 8373 return SDValue(); 8374 } 8375 } 8376 8377 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && 8378 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) && 8379 ARM::isBitFieldInvertedMask(~Mask)) { 8380 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask 8381 // where lsb(mask) == #shamt and masked bits of B are known zero. 8382 SDValue ShAmt = N00.getOperand(1); 8383 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 8384 unsigned LSB = countTrailingZeros(Mask); 8385 if (ShAmtC != LSB) 8386 return SDValue(); 8387 8388 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), 8389 DAG.getConstant(~Mask, MVT::i32)); 8390 8391 // Do not add new nodes to DAG combiner worklist. 8392 DCI.CombineTo(N, Res, false); 8393 } 8394 8395 return SDValue(); 8396 } 8397 8398 static SDValue PerformXORCombine(SDNode *N, 8399 TargetLowering::DAGCombinerInfo &DCI, 8400 const ARMSubtarget *Subtarget) { 8401 EVT VT = N->getValueType(0); 8402 SelectionDAG &DAG = DCI.DAG; 8403 8404 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8405 return SDValue(); 8406 8407 if (!Subtarget->isThumb1Only()) { 8408 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 8409 SDValue Result = combineSelectAndUseCommutative(N, false, DCI); 8410 if (Result.getNode()) 8411 return Result; 8412 } 8413 8414 return SDValue(); 8415 } 8416 8417 /// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff 8418 /// the bits being cleared by the AND are not demanded by the BFI. 8419 static SDValue PerformBFICombine(SDNode *N, 8420 TargetLowering::DAGCombinerInfo &DCI) { 8421 SDValue N1 = N->getOperand(1); 8422 if (N1.getOpcode() == ISD::AND) { 8423 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 8424 if (!N11C) 8425 return SDValue(); 8426 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); 8427 unsigned LSB = countTrailingZeros(~InvMask); 8428 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB; 8429 unsigned Mask = (1 << Width)-1; 8430 unsigned Mask2 = N11C->getZExtValue(); 8431 if ((Mask & (~Mask2)) == 0) 8432 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0), 8433 N->getOperand(0), N1.getOperand(0), 8434 N->getOperand(2)); 8435 } 8436 return SDValue(); 8437 } 8438 8439 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for 8440 /// ARMISD::VMOVRRD. 8441 static SDValue PerformVMOVRRDCombine(SDNode *N, 8442 TargetLowering::DAGCombinerInfo &DCI) { 8443 // vmovrrd(vmovdrr x, y) -> x,y 8444 SDValue InDouble = N->getOperand(0); 8445 if (InDouble.getOpcode() == ARMISD::VMOVDRR) 8446 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); 8447 8448 // vmovrrd(load f64) -> (load i32), (load i32) 8449 SDNode *InNode = InDouble.getNode(); 8450 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && 8451 InNode->getValueType(0) == MVT::f64 && 8452 InNode->getOperand(1).getOpcode() == ISD::FrameIndex && 8453 !cast<LoadSDNode>(InNode)->isVolatile()) { 8454 // TODO: Should this be done for non-FrameIndex operands? 8455 LoadSDNode *LD = cast<LoadSDNode>(InNode); 8456 8457 SelectionDAG &DAG = DCI.DAG; 8458 SDLoc DL(LD); 8459 SDValue BasePtr = LD->getBasePtr(); 8460 SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, 8461 LD->getPointerInfo(), LD->isVolatile(), 8462 LD->isNonTemporal(), LD->isInvariant(), 8463 LD->getAlignment()); 8464 8465 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 8466 DAG.getConstant(4, MVT::i32)); 8467 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, 8468 LD->getPointerInfo(), LD->isVolatile(), 8469 LD->isNonTemporal(), LD->isInvariant(), 8470 std::min(4U, LD->getAlignment() / 2)); 8471 8472 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); 8473 if (DCI.DAG.getTargetLoweringInfo().isBigEndian()) 8474 std::swap (NewLD1, NewLD2); 8475 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); 8476 return Result; 8477 } 8478 8479 return SDValue(); 8480 } 8481 8482 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for 8483 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. 8484 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { 8485 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) 8486 SDValue Op0 = N->getOperand(0); 8487 SDValue Op1 = N->getOperand(1); 8488 if (Op0.getOpcode() == ISD::BITCAST) 8489 Op0 = Op0.getOperand(0); 8490 if (Op1.getOpcode() == ISD::BITCAST) 8491 Op1 = Op1.getOperand(0); 8492 if (Op0.getOpcode() == ARMISD::VMOVRRD && 8493 Op0.getNode() == Op1.getNode() && 8494 Op0.getResNo() == 0 && Op1.getResNo() == 1) 8495 return DAG.getNode(ISD::BITCAST, SDLoc(N), 8496 N->getValueType(0), Op0.getOperand(0)); 8497 return SDValue(); 8498 } 8499 8500 /// PerformSTORECombine - Target-specific dag combine xforms for 8501 /// ISD::STORE. 8502 static SDValue PerformSTORECombine(SDNode *N, 8503 TargetLowering::DAGCombinerInfo &DCI) { 8504 StoreSDNode *St = cast<StoreSDNode>(N); 8505 if (St->isVolatile()) 8506 return SDValue(); 8507 8508 // Optimize trunc store (of multiple scalars) to shuffle and store. First, 8509 // pack all of the elements in one place. Next, store to memory in fewer 8510 // chunks. 8511 SDValue StVal = St->getValue(); 8512 EVT VT = StVal.getValueType(); 8513 if (St->isTruncatingStore() && VT.isVector()) { 8514 SelectionDAG &DAG = DCI.DAG; 8515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8516 EVT StVT = St->getMemoryVT(); 8517 unsigned NumElems = VT.getVectorNumElements(); 8518 assert(StVT != VT && "Cannot truncate to the same type"); 8519 unsigned FromEltSz = VT.getVectorElementType().getSizeInBits(); 8520 unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits(); 8521 8522 // From, To sizes and ElemCount must be pow of two 8523 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue(); 8524 8525 // We are going to use the original vector elt for storing. 8526 // Accumulated smaller vector elements must be a multiple of the store size. 8527 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue(); 8528 8529 unsigned SizeRatio = FromEltSz / ToEltSz; 8530 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); 8531 8532 // Create a type on which we perform the shuffle. 8533 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), 8534 NumElems*SizeRatio); 8535 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); 8536 8537 SDLoc DL(St); 8538 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); 8539 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); 8540 for (unsigned i = 0; i < NumElems; ++i) 8541 ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio; 8542 8543 // Can't shuffle using an illegal type. 8544 if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); 8545 8546 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec, 8547 DAG.getUNDEF(WideVec.getValueType()), 8548 ShuffleVec.data()); 8549 // At this point all of the data is stored at the bottom of the 8550 // register. We now need to save it to mem. 8551 8552 // Find the largest store unit 8553 MVT StoreType = MVT::i8; 8554 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE; 8555 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) { 8556 MVT Tp = (MVT::SimpleValueType)tp; 8557 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) 8558 StoreType = Tp; 8559 } 8560 // Didn't find a legal store type. 8561 if (!TLI.isTypeLegal(StoreType)) 8562 return SDValue(); 8563 8564 // Bitcast the original vector into a vector of store-size units 8565 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), 8566 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits()); 8567 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); 8568 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); 8569 SmallVector<SDValue, 8> Chains; 8570 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8, 8571 TLI.getPointerTy()); 8572 SDValue BasePtr = St->getBasePtr(); 8573 8574 // Perform one or more big stores into memory. 8575 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits(); 8576 for (unsigned I = 0; I < E; I++) { 8577 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 8578 StoreType, ShuffWide, 8579 DAG.getIntPtrConstant(I)); 8580 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr, 8581 St->getPointerInfo(), St->isVolatile(), 8582 St->isNonTemporal(), St->getAlignment()); 8583 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 8584 Increment); 8585 Chains.push_back(Ch); 8586 } 8587 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 8588 } 8589 8590 if (!ISD::isNormalStore(St)) 8591 return SDValue(); 8592 8593 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and 8594 // ARM stores of arguments in the same cache line. 8595 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && 8596 StVal.getNode()->hasOneUse()) { 8597 SelectionDAG &DAG = DCI.DAG; 8598 bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian(); 8599 SDLoc DL(St); 8600 SDValue BasePtr = St->getBasePtr(); 8601 SDValue NewST1 = DAG.getStore(St->getChain(), DL, 8602 StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ), 8603 BasePtr, St->getPointerInfo(), St->isVolatile(), 8604 St->isNonTemporal(), St->getAlignment()); 8605 8606 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 8607 DAG.getConstant(4, MVT::i32)); 8608 return DAG.getStore(NewST1.getValue(0), DL, 8609 StVal.getNode()->getOperand(isBigEndian ? 0 : 1), 8610 OffsetPtr, St->getPointerInfo(), St->isVolatile(), 8611 St->isNonTemporal(), 8612 std::min(4U, St->getAlignment() / 2)); 8613 } 8614 8615 if (StVal.getValueType() != MVT::i64 || 8616 StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 8617 return SDValue(); 8618 8619 // Bitcast an i64 store extracted from a vector to f64. 8620 // Otherwise, the i64 value will be legalized to a pair of i32 values. 8621 SelectionDAG &DAG = DCI.DAG; 8622 SDLoc dl(StVal); 8623 SDValue IntVec = StVal.getOperand(0); 8624 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 8625 IntVec.getValueType().getVectorNumElements()); 8626 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); 8627 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, 8628 Vec, StVal.getOperand(1)); 8629 dl = SDLoc(N); 8630 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); 8631 // Make the DAGCombiner fold the bitcasts. 8632 DCI.AddToWorklist(Vec.getNode()); 8633 DCI.AddToWorklist(ExtElt.getNode()); 8634 DCI.AddToWorklist(V.getNode()); 8635 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), 8636 St->getPointerInfo(), St->isVolatile(), 8637 St->isNonTemporal(), St->getAlignment(), 8638 St->getAAInfo()); 8639 } 8640 8641 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node 8642 /// are normal, non-volatile loads. If so, it is profitable to bitcast an 8643 /// i64 vector to have f64 elements, since the value can then be loaded 8644 /// directly into a VFP register. 8645 static bool hasNormalLoadOperand(SDNode *N) { 8646 unsigned NumElts = N->getValueType(0).getVectorNumElements(); 8647 for (unsigned i = 0; i < NumElts; ++i) { 8648 SDNode *Elt = N->getOperand(i).getNode(); 8649 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile()) 8650 return true; 8651 } 8652 return false; 8653 } 8654 8655 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for 8656 /// ISD::BUILD_VECTOR. 8657 static SDValue PerformBUILD_VECTORCombine(SDNode *N, 8658 TargetLowering::DAGCombinerInfo &DCI){ 8659 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): 8660 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value 8661 // into a pair of GPRs, which is fine when the value is used as a scalar, 8662 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. 8663 SelectionDAG &DAG = DCI.DAG; 8664 if (N->getNumOperands() == 2) { 8665 SDValue RV = PerformVMOVDRRCombine(N, DAG); 8666 if (RV.getNode()) 8667 return RV; 8668 } 8669 8670 // Load i64 elements as f64 values so that type legalization does not split 8671 // them up into i32 values. 8672 EVT VT = N->getValueType(0); 8673 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) 8674 return SDValue(); 8675 SDLoc dl(N); 8676 SmallVector<SDValue, 8> Ops; 8677 unsigned NumElts = VT.getVectorNumElements(); 8678 for (unsigned i = 0; i < NumElts; ++i) { 8679 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); 8680 Ops.push_back(V); 8681 // Make the DAGCombiner fold the bitcast. 8682 DCI.AddToWorklist(V.getNode()); 8683 } 8684 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); 8685 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops); 8686 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 8687 } 8688 8689 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR. 8690 static SDValue 8691 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 8692 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR. 8693 // At that time, we may have inserted bitcasts from integer to float. 8694 // If these bitcasts have survived DAGCombine, change the lowering of this 8695 // BUILD_VECTOR in something more vector friendly, i.e., that does not 8696 // force to use floating point types. 8697 8698 // Make sure we can change the type of the vector. 8699 // This is possible iff: 8700 // 1. The vector is only used in a bitcast to a integer type. I.e., 8701 // 1.1. Vector is used only once. 8702 // 1.2. Use is a bit convert to an integer type. 8703 // 2. The size of its operands are 32-bits (64-bits are not legal). 8704 EVT VT = N->getValueType(0); 8705 EVT EltVT = VT.getVectorElementType(); 8706 8707 // Check 1.1. and 2. 8708 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse()) 8709 return SDValue(); 8710 8711 // By construction, the input type must be float. 8712 assert(EltVT == MVT::f32 && "Unexpected type!"); 8713 8714 // Check 1.2. 8715 SDNode *Use = *N->use_begin(); 8716 if (Use->getOpcode() != ISD::BITCAST || 8717 Use->getValueType(0).isFloatingPoint()) 8718 return SDValue(); 8719 8720 // Check profitability. 8721 // Model is, if more than half of the relevant operands are bitcast from 8722 // i32, turn the build_vector into a sequence of insert_vector_elt. 8723 // Relevant operands are everything that is not statically 8724 // (i.e., at compile time) bitcasted. 8725 unsigned NumOfBitCastedElts = 0; 8726 unsigned NumElts = VT.getVectorNumElements(); 8727 unsigned NumOfRelevantElts = NumElts; 8728 for (unsigned Idx = 0; Idx < NumElts; ++Idx) { 8729 SDValue Elt = N->getOperand(Idx); 8730 if (Elt->getOpcode() == ISD::BITCAST) { 8731 // Assume only bit cast to i32 will go away. 8732 if (Elt->getOperand(0).getValueType() == MVT::i32) 8733 ++NumOfBitCastedElts; 8734 } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt)) 8735 // Constants are statically casted, thus do not count them as 8736 // relevant operands. 8737 --NumOfRelevantElts; 8738 } 8739 8740 // Check if more than half of the elements require a non-free bitcast. 8741 if (NumOfBitCastedElts <= NumOfRelevantElts / 2) 8742 return SDValue(); 8743 8744 SelectionDAG &DAG = DCI.DAG; 8745 // Create the new vector type. 8746 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); 8747 // Check if the type is legal. 8748 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8749 if (!TLI.isTypeLegal(VecVT)) 8750 return SDValue(); 8751 8752 // Combine: 8753 // ARMISD::BUILD_VECTOR E1, E2, ..., EN. 8754 // => BITCAST INSERT_VECTOR_ELT 8755 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1), 8756 // (BITCAST EN), N. 8757 SDValue Vec = DAG.getUNDEF(VecVT); 8758 SDLoc dl(N); 8759 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) { 8760 SDValue V = N->getOperand(Idx); 8761 if (V.getOpcode() == ISD::UNDEF) 8762 continue; 8763 if (V.getOpcode() == ISD::BITCAST && 8764 V->getOperand(0).getValueType() == MVT::i32) 8765 // Fold obvious case. 8766 V = V.getOperand(0); 8767 else { 8768 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V); 8769 // Make the DAGCombiner fold the bitcasts. 8770 DCI.AddToWorklist(V.getNode()); 8771 } 8772 SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32); 8773 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx); 8774 } 8775 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec); 8776 // Make the DAGCombiner fold the bitcasts. 8777 DCI.AddToWorklist(Vec.getNode()); 8778 return Vec; 8779 } 8780 8781 /// PerformInsertEltCombine - Target-specific dag combine xforms for 8782 /// ISD::INSERT_VECTOR_ELT. 8783 static SDValue PerformInsertEltCombine(SDNode *N, 8784 TargetLowering::DAGCombinerInfo &DCI) { 8785 // Bitcast an i64 load inserted into a vector to f64. 8786 // Otherwise, the i64 value will be legalized to a pair of i32 values. 8787 EVT VT = N->getValueType(0); 8788 SDNode *Elt = N->getOperand(1).getNode(); 8789 if (VT.getVectorElementType() != MVT::i64 || 8790 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile()) 8791 return SDValue(); 8792 8793 SelectionDAG &DAG = DCI.DAG; 8794 SDLoc dl(N); 8795 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 8796 VT.getVectorNumElements()); 8797 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); 8798 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); 8799 // Make the DAGCombiner fold the bitcasts. 8800 DCI.AddToWorklist(Vec.getNode()); 8801 DCI.AddToWorklist(V.getNode()); 8802 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, 8803 Vec, V, N->getOperand(2)); 8804 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); 8805 } 8806 8807 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for 8808 /// ISD::VECTOR_SHUFFLE. 8809 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { 8810 // The LLVM shufflevector instruction does not require the shuffle mask 8811 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does 8812 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the 8813 // operands do not match the mask length, they are extended by concatenating 8814 // them with undef vectors. That is probably the right thing for other 8815 // targets, but for NEON it is better to concatenate two double-register 8816 // size vector operands into a single quad-register size vector. Do that 8817 // transformation here: 8818 // shuffle(concat(v1, undef), concat(v2, undef)) -> 8819 // shuffle(concat(v1, v2), undef) 8820 SDValue Op0 = N->getOperand(0); 8821 SDValue Op1 = N->getOperand(1); 8822 if (Op0.getOpcode() != ISD::CONCAT_VECTORS || 8823 Op1.getOpcode() != ISD::CONCAT_VECTORS || 8824 Op0.getNumOperands() != 2 || 8825 Op1.getNumOperands() != 2) 8826 return SDValue(); 8827 SDValue Concat0Op1 = Op0.getOperand(1); 8828 SDValue Concat1Op1 = Op1.getOperand(1); 8829 if (Concat0Op1.getOpcode() != ISD::UNDEF || 8830 Concat1Op1.getOpcode() != ISD::UNDEF) 8831 return SDValue(); 8832 // Skip the transformation if any of the types are illegal. 8833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8834 EVT VT = N->getValueType(0); 8835 if (!TLI.isTypeLegal(VT) || 8836 !TLI.isTypeLegal(Concat0Op1.getValueType()) || 8837 !TLI.isTypeLegal(Concat1Op1.getValueType())) 8838 return SDValue(); 8839 8840 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 8841 Op0.getOperand(0), Op1.getOperand(0)); 8842 // Translate the shuffle mask. 8843 SmallVector<int, 16> NewMask; 8844 unsigned NumElts = VT.getVectorNumElements(); 8845 unsigned HalfElts = NumElts/2; 8846 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 8847 for (unsigned n = 0; n < NumElts; ++n) { 8848 int MaskElt = SVN->getMaskElt(n); 8849 int NewElt = -1; 8850 if (MaskElt < (int)HalfElts) 8851 NewElt = MaskElt; 8852 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) 8853 NewElt = HalfElts + MaskElt - NumElts; 8854 NewMask.push_back(NewElt); 8855 } 8856 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat, 8857 DAG.getUNDEF(VT), NewMask.data()); 8858 } 8859 8860 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and 8861 /// NEON load/store intrinsics to merge base address updates. 8862 static SDValue CombineBaseUpdate(SDNode *N, 8863 TargetLowering::DAGCombinerInfo &DCI) { 8864 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 8865 return SDValue(); 8866 8867 SelectionDAG &DAG = DCI.DAG; 8868 bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || 8869 N->getOpcode() == ISD::INTRINSIC_W_CHAIN); 8870 unsigned AddrOpIdx = (isIntrinsic ? 2 : 1); 8871 SDValue Addr = N->getOperand(AddrOpIdx); 8872 8873 // Search for a use of the address operand that is an increment. 8874 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 8875 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 8876 SDNode *User = *UI; 8877 if (User->getOpcode() != ISD::ADD || 8878 UI.getUse().getResNo() != Addr.getResNo()) 8879 continue; 8880 8881 // Check that the add is independent of the load/store. Otherwise, folding 8882 // it would create a cycle. 8883 if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) 8884 continue; 8885 8886 // Find the new opcode for the updating load/store. 8887 bool isLoad = true; 8888 bool isLaneOp = false; 8889 unsigned NewOpc = 0; 8890 unsigned NumVecs = 0; 8891 if (isIntrinsic) { 8892 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 8893 switch (IntNo) { 8894 default: llvm_unreachable("unexpected intrinsic for Neon base update"); 8895 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; 8896 NumVecs = 1; break; 8897 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; 8898 NumVecs = 2; break; 8899 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; 8900 NumVecs = 3; break; 8901 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; 8902 NumVecs = 4; break; 8903 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; 8904 NumVecs = 2; isLaneOp = true; break; 8905 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; 8906 NumVecs = 3; isLaneOp = true; break; 8907 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; 8908 NumVecs = 4; isLaneOp = true; break; 8909 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; 8910 NumVecs = 1; isLoad = false; break; 8911 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; 8912 NumVecs = 2; isLoad = false; break; 8913 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; 8914 NumVecs = 3; isLoad = false; break; 8915 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; 8916 NumVecs = 4; isLoad = false; break; 8917 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; 8918 NumVecs = 2; isLoad = false; isLaneOp = true; break; 8919 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; 8920 NumVecs = 3; isLoad = false; isLaneOp = true; break; 8921 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; 8922 NumVecs = 4; isLoad = false; isLaneOp = true; break; 8923 } 8924 } else { 8925 isLaneOp = true; 8926 switch (N->getOpcode()) { 8927 default: llvm_unreachable("unexpected opcode for Neon base update"); 8928 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; 8929 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; 8930 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; 8931 } 8932 } 8933 8934 // Find the size of memory referenced by the load/store. 8935 EVT VecTy; 8936 if (isLoad) 8937 VecTy = N->getValueType(0); 8938 else 8939 VecTy = N->getOperand(AddrOpIdx+1).getValueType(); 8940 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 8941 if (isLaneOp) 8942 NumBytes /= VecTy.getVectorNumElements(); 8943 8944 // If the increment is a constant, it must match the memory ref size. 8945 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 8946 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 8947 uint64_t IncVal = CInc->getZExtValue(); 8948 if (IncVal != NumBytes) 8949 continue; 8950 } else if (NumBytes >= 3 * 16) { 8951 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two 8952 // separate instructions that make it harder to use a non-constant update. 8953 continue; 8954 } 8955 8956 // Create the new updating load/store node. 8957 EVT Tys[6]; 8958 unsigned NumResultVecs = (isLoad ? NumVecs : 0); 8959 unsigned n; 8960 for (n = 0; n < NumResultVecs; ++n) 8961 Tys[n] = VecTy; 8962 Tys[n++] = MVT::i32; 8963 Tys[n] = MVT::Other; 8964 SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumResultVecs+2)); 8965 SmallVector<SDValue, 8> Ops; 8966 Ops.push_back(N->getOperand(0)); // incoming chain 8967 Ops.push_back(N->getOperand(AddrOpIdx)); 8968 Ops.push_back(Inc); 8969 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) { 8970 Ops.push_back(N->getOperand(i)); 8971 } 8972 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); 8973 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, 8974 Ops, MemInt->getMemoryVT(), 8975 MemInt->getMemOperand()); 8976 8977 // Update the uses. 8978 std::vector<SDValue> NewResults; 8979 for (unsigned i = 0; i < NumResultVecs; ++i) { 8980 NewResults.push_back(SDValue(UpdN.getNode(), i)); 8981 } 8982 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain 8983 DCI.CombineTo(N, NewResults); 8984 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 8985 8986 break; 8987 } 8988 return SDValue(); 8989 } 8990 8991 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a 8992 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic 8993 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and 8994 /// return true. 8995 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 8996 SelectionDAG &DAG = DCI.DAG; 8997 EVT VT = N->getValueType(0); 8998 // vldN-dup instructions only support 64-bit vectors for N > 1. 8999 if (!VT.is64BitVector()) 9000 return false; 9001 9002 // Check if the VDUPLANE operand is a vldN-dup intrinsic. 9003 SDNode *VLD = N->getOperand(0).getNode(); 9004 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) 9005 return false; 9006 unsigned NumVecs = 0; 9007 unsigned NewOpc = 0; 9008 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue(); 9009 if (IntNo == Intrinsic::arm_neon_vld2lane) { 9010 NumVecs = 2; 9011 NewOpc = ARMISD::VLD2DUP; 9012 } else if (IntNo == Intrinsic::arm_neon_vld3lane) { 9013 NumVecs = 3; 9014 NewOpc = ARMISD::VLD3DUP; 9015 } else if (IntNo == Intrinsic::arm_neon_vld4lane) { 9016 NumVecs = 4; 9017 NewOpc = ARMISD::VLD4DUP; 9018 } else { 9019 return false; 9020 } 9021 9022 // First check that all the vldN-lane uses are VDUPLANEs and that the lane 9023 // numbers match the load. 9024 unsigned VLDLaneNo = 9025 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue(); 9026 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 9027 UI != UE; ++UI) { 9028 // Ignore uses of the chain result. 9029 if (UI.getUse().getResNo() == NumVecs) 9030 continue; 9031 SDNode *User = *UI; 9032 if (User->getOpcode() != ARMISD::VDUPLANE || 9033 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue()) 9034 return false; 9035 } 9036 9037 // Create the vldN-dup node. 9038 EVT Tys[5]; 9039 unsigned n; 9040 for (n = 0; n < NumVecs; ++n) 9041 Tys[n] = VT; 9042 Tys[n] = MVT::Other; 9043 SDVTList SDTys = DAG.getVTList(ArrayRef<EVT>(Tys, NumVecs+1)); 9044 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; 9045 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); 9046 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, 9047 Ops, VLDMemInt->getMemoryVT(), 9048 VLDMemInt->getMemOperand()); 9049 9050 // Update the uses. 9051 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 9052 UI != UE; ++UI) { 9053 unsigned ResNo = UI.getUse().getResNo(); 9054 // Ignore uses of the chain result. 9055 if (ResNo == NumVecs) 9056 continue; 9057 SDNode *User = *UI; 9058 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); 9059 } 9060 9061 // Now the vldN-lane intrinsic is dead except for its chain result. 9062 // Update uses of the chain. 9063 std::vector<SDValue> VLDDupResults; 9064 for (unsigned n = 0; n < NumVecs; ++n) 9065 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); 9066 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); 9067 DCI.CombineTo(VLD, VLDDupResults); 9068 9069 return true; 9070 } 9071 9072 /// PerformVDUPLANECombine - Target-specific dag combine xforms for 9073 /// ARMISD::VDUPLANE. 9074 static SDValue PerformVDUPLANECombine(SDNode *N, 9075 TargetLowering::DAGCombinerInfo &DCI) { 9076 SDValue Op = N->getOperand(0); 9077 9078 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses 9079 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. 9080 if (CombineVLDDUP(N, DCI)) 9081 return SDValue(N, 0); 9082 9083 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is 9084 // redundant. Ignore bit_converts for now; element sizes are checked below. 9085 while (Op.getOpcode() == ISD::BITCAST) 9086 Op = Op.getOperand(0); 9087 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) 9088 return SDValue(); 9089 9090 // Make sure the VMOV element size is not bigger than the VDUPLANE elements. 9091 unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits(); 9092 // The canonical VMOV for a zero vector uses a 32-bit element size. 9093 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9094 unsigned EltBits; 9095 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0) 9096 EltSize = 8; 9097 EVT VT = N->getValueType(0); 9098 if (EltSize > VT.getVectorElementType().getSizeInBits()) 9099 return SDValue(); 9100 9101 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 9102 } 9103 9104 // isConstVecPow2 - Return true if each vector element is a power of 2, all 9105 // elements are the same constant, C, and Log2(C) ranges from 1 to 32. 9106 static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C) 9107 { 9108 integerPart cN; 9109 integerPart c0 = 0; 9110 for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements(); 9111 I != E; I++) { 9112 ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I)); 9113 if (!C) 9114 return false; 9115 9116 bool isExact; 9117 APFloat APF = C->getValueAPF(); 9118 if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact) 9119 != APFloat::opOK || !isExact) 9120 return false; 9121 9122 c0 = (I == 0) ? cN : c0; 9123 if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32) 9124 return false; 9125 } 9126 C = c0; 9127 return true; 9128 } 9129 9130 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) 9131 /// can replace combinations of VMUL and VCVT (floating-point to integer) 9132 /// when the VMUL has a constant operand that is a power of 2. 9133 /// 9134 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 9135 /// vmul.f32 d16, d17, d16 9136 /// vcvt.s32.f32 d16, d16 9137 /// becomes: 9138 /// vcvt.s32.f32 d16, d16, #3 9139 static SDValue PerformVCVTCombine(SDNode *N, 9140 TargetLowering::DAGCombinerInfo &DCI, 9141 const ARMSubtarget *Subtarget) { 9142 SelectionDAG &DAG = DCI.DAG; 9143 SDValue Op = N->getOperand(0); 9144 9145 if (!Subtarget->hasNEON() || !Op.getValueType().isVector() || 9146 Op.getOpcode() != ISD::FMUL) 9147 return SDValue(); 9148 9149 uint64_t C; 9150 SDValue N0 = Op->getOperand(0); 9151 SDValue ConstVec = Op->getOperand(1); 9152 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; 9153 9154 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || 9155 !isConstVecPow2(ConstVec, isSigned, C)) 9156 return SDValue(); 9157 9158 MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); 9159 MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); 9160 if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) { 9161 // These instructions only exist converting from f32 to i32. We can handle 9162 // smaller integers by generating an extra truncate, but larger ones would 9163 // be lossy. 9164 return SDValue(); 9165 } 9166 9167 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : 9168 Intrinsic::arm_neon_vcvtfp2fxu; 9169 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 9170 SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), 9171 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, 9172 DAG.getConstant(IntrinsicOpcode, MVT::i32), N0, 9173 DAG.getConstant(Log2_64(C), MVT::i32)); 9174 9175 if (IntTy.getSizeInBits() < FloatTy.getSizeInBits()) 9176 FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv); 9177 9178 return FixConv; 9179 } 9180 9181 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) 9182 /// can replace combinations of VCVT (integer to floating-point) and VDIV 9183 /// when the VDIV has a constant operand that is a power of 2. 9184 /// 9185 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 9186 /// vcvt.f32.s32 d16, d16 9187 /// vdiv.f32 d16, d17, d16 9188 /// becomes: 9189 /// vcvt.f32.s32 d16, d16, #3 9190 static SDValue PerformVDIVCombine(SDNode *N, 9191 TargetLowering::DAGCombinerInfo &DCI, 9192 const ARMSubtarget *Subtarget) { 9193 SelectionDAG &DAG = DCI.DAG; 9194 SDValue Op = N->getOperand(0); 9195 unsigned OpOpcode = Op.getNode()->getOpcode(); 9196 9197 if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() || 9198 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) 9199 return SDValue(); 9200 9201 uint64_t C; 9202 SDValue ConstVec = N->getOperand(1); 9203 bool isSigned = OpOpcode == ISD::SINT_TO_FP; 9204 9205 if (ConstVec.getOpcode() != ISD::BUILD_VECTOR || 9206 !isConstVecPow2(ConstVec, isSigned, C)) 9207 return SDValue(); 9208 9209 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); 9210 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); 9211 if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) { 9212 // These instructions only exist converting from i32 to f32. We can handle 9213 // smaller integers by generating an extra extend, but larger ones would 9214 // be lossy. 9215 return SDValue(); 9216 } 9217 9218 SDValue ConvInput = Op.getOperand(0); 9219 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 9220 if (IntTy.getSizeInBits() < FloatTy.getSizeInBits()) 9221 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 9222 SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, 9223 ConvInput); 9224 9225 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : 9226 Intrinsic::arm_neon_vcvtfxu2fp; 9227 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), 9228 Op.getValueType(), 9229 DAG.getConstant(IntrinsicOpcode, MVT::i32), 9230 ConvInput, DAG.getConstant(Log2_64(C), MVT::i32)); 9231 } 9232 9233 /// Getvshiftimm - Check if this is a valid build_vector for the immediate 9234 /// operand of a vector shift operation, where all the elements of the 9235 /// build_vector must have the same constant integer value. 9236 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 9237 // Ignore bit_converts. 9238 while (Op.getOpcode() == ISD::BITCAST) 9239 Op = Op.getOperand(0); 9240 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 9241 APInt SplatBits, SplatUndef; 9242 unsigned SplatBitSize; 9243 bool HasAnyUndefs; 9244 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, 9245 HasAnyUndefs, ElementBits) || 9246 SplatBitSize > ElementBits) 9247 return false; 9248 Cnt = SplatBits.getSExtValue(); 9249 return true; 9250 } 9251 9252 /// isVShiftLImm - Check if this is a valid build_vector for the immediate 9253 /// operand of a vector shift left operation. That value must be in the range: 9254 /// 0 <= Value < ElementBits for a left shift; or 9255 /// 0 <= Value <= ElementBits for a long left shift. 9256 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 9257 assert(VT.isVector() && "vector shift count is not a vector type"); 9258 unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); 9259 if (! getVShiftImm(Op, ElementBits, Cnt)) 9260 return false; 9261 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); 9262 } 9263 9264 /// isVShiftRImm - Check if this is a valid build_vector for the immediate 9265 /// operand of a vector shift right operation. For a shift opcode, the value 9266 /// is positive, but for an intrinsic the value count must be negative. The 9267 /// absolute value must be in the range: 9268 /// 1 <= |Value| <= ElementBits for a right shift; or 9269 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. 9270 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, 9271 int64_t &Cnt) { 9272 assert(VT.isVector() && "vector shift count is not a vector type"); 9273 unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); 9274 if (! getVShiftImm(Op, ElementBits, Cnt)) 9275 return false; 9276 if (isIntrinsic) 9277 Cnt = -Cnt; 9278 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); 9279 } 9280 9281 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. 9282 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { 9283 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 9284 switch (IntNo) { 9285 default: 9286 // Don't do anything for most intrinsics. 9287 break; 9288 9289 // Vector shifts: check for immediate versions and lower them. 9290 // Note: This is done during DAG combining instead of DAG legalizing because 9291 // the build_vectors for 64-bit vector element shift counts are generally 9292 // not legal, and it is hard to see their values after they get legalized to 9293 // loads from a constant pool. 9294 case Intrinsic::arm_neon_vshifts: 9295 case Intrinsic::arm_neon_vshiftu: 9296 case Intrinsic::arm_neon_vrshifts: 9297 case Intrinsic::arm_neon_vrshiftu: 9298 case Intrinsic::arm_neon_vrshiftn: 9299 case Intrinsic::arm_neon_vqshifts: 9300 case Intrinsic::arm_neon_vqshiftu: 9301 case Intrinsic::arm_neon_vqshiftsu: 9302 case Intrinsic::arm_neon_vqshiftns: 9303 case Intrinsic::arm_neon_vqshiftnu: 9304 case Intrinsic::arm_neon_vqshiftnsu: 9305 case Intrinsic::arm_neon_vqrshiftns: 9306 case Intrinsic::arm_neon_vqrshiftnu: 9307 case Intrinsic::arm_neon_vqrshiftnsu: { 9308 EVT VT = N->getOperand(1).getValueType(); 9309 int64_t Cnt; 9310 unsigned VShiftOpc = 0; 9311 9312 switch (IntNo) { 9313 case Intrinsic::arm_neon_vshifts: 9314 case Intrinsic::arm_neon_vshiftu: 9315 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { 9316 VShiftOpc = ARMISD::VSHL; 9317 break; 9318 } 9319 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { 9320 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? 9321 ARMISD::VSHRs : ARMISD::VSHRu); 9322 break; 9323 } 9324 return SDValue(); 9325 9326 case Intrinsic::arm_neon_vrshifts: 9327 case Intrinsic::arm_neon_vrshiftu: 9328 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) 9329 break; 9330 return SDValue(); 9331 9332 case Intrinsic::arm_neon_vqshifts: 9333 case Intrinsic::arm_neon_vqshiftu: 9334 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 9335 break; 9336 return SDValue(); 9337 9338 case Intrinsic::arm_neon_vqshiftsu: 9339 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 9340 break; 9341 llvm_unreachable("invalid shift count for vqshlu intrinsic"); 9342 9343 case Intrinsic::arm_neon_vrshiftn: 9344 case Intrinsic::arm_neon_vqshiftns: 9345 case Intrinsic::arm_neon_vqshiftnu: 9346 case Intrinsic::arm_neon_vqshiftnsu: 9347 case Intrinsic::arm_neon_vqrshiftns: 9348 case Intrinsic::arm_neon_vqrshiftnu: 9349 case Intrinsic::arm_neon_vqrshiftnsu: 9350 // Narrowing shifts require an immediate right shift. 9351 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) 9352 break; 9353 llvm_unreachable("invalid shift count for narrowing vector shift " 9354 "intrinsic"); 9355 9356 default: 9357 llvm_unreachable("unhandled vector shift"); 9358 } 9359 9360 switch (IntNo) { 9361 case Intrinsic::arm_neon_vshifts: 9362 case Intrinsic::arm_neon_vshiftu: 9363 // Opcode already set above. 9364 break; 9365 case Intrinsic::arm_neon_vrshifts: 9366 VShiftOpc = ARMISD::VRSHRs; break; 9367 case Intrinsic::arm_neon_vrshiftu: 9368 VShiftOpc = ARMISD::VRSHRu; break; 9369 case Intrinsic::arm_neon_vrshiftn: 9370 VShiftOpc = ARMISD::VRSHRN; break; 9371 case Intrinsic::arm_neon_vqshifts: 9372 VShiftOpc = ARMISD::VQSHLs; break; 9373 case Intrinsic::arm_neon_vqshiftu: 9374 VShiftOpc = ARMISD::VQSHLu; break; 9375 case Intrinsic::arm_neon_vqshiftsu: 9376 VShiftOpc = ARMISD::VQSHLsu; break; 9377 case Intrinsic::arm_neon_vqshiftns: 9378 VShiftOpc = ARMISD::VQSHRNs; break; 9379 case Intrinsic::arm_neon_vqshiftnu: 9380 VShiftOpc = ARMISD::VQSHRNu; break; 9381 case Intrinsic::arm_neon_vqshiftnsu: 9382 VShiftOpc = ARMISD::VQSHRNsu; break; 9383 case Intrinsic::arm_neon_vqrshiftns: 9384 VShiftOpc = ARMISD::VQRSHRNs; break; 9385 case Intrinsic::arm_neon_vqrshiftnu: 9386 VShiftOpc = ARMISD::VQRSHRNu; break; 9387 case Intrinsic::arm_neon_vqrshiftnsu: 9388 VShiftOpc = ARMISD::VQRSHRNsu; break; 9389 } 9390 9391 return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0), 9392 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); 9393 } 9394 9395 case Intrinsic::arm_neon_vshiftins: { 9396 EVT VT = N->getOperand(1).getValueType(); 9397 int64_t Cnt; 9398 unsigned VShiftOpc = 0; 9399 9400 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) 9401 VShiftOpc = ARMISD::VSLI; 9402 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) 9403 VShiftOpc = ARMISD::VSRI; 9404 else { 9405 llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); 9406 } 9407 9408 return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0), 9409 N->getOperand(1), N->getOperand(2), 9410 DAG.getConstant(Cnt, MVT::i32)); 9411 } 9412 9413 case Intrinsic::arm_neon_vqrshifts: 9414 case Intrinsic::arm_neon_vqrshiftu: 9415 // No immediate versions of these to check for. 9416 break; 9417 } 9418 9419 return SDValue(); 9420 } 9421 9422 /// PerformShiftCombine - Checks for immediate versions of vector shifts and 9423 /// lowers them. As with the vector shift intrinsics, this is done during DAG 9424 /// combining instead of DAG legalizing because the build_vectors for 64-bit 9425 /// vector element shift counts are generally not legal, and it is hard to see 9426 /// their values after they get legalized to loads from a constant pool. 9427 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, 9428 const ARMSubtarget *ST) { 9429 EVT VT = N->getValueType(0); 9430 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) { 9431 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high 9432 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16. 9433 SDValue N1 = N->getOperand(1); 9434 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 9435 SDValue N0 = N->getOperand(0); 9436 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP && 9437 DAG.MaskedValueIsZero(N0.getOperand(0), 9438 APInt::getHighBitsSet(32, 16))) 9439 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1); 9440 } 9441 } 9442 9443 // Nothing to be done for scalar shifts. 9444 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9445 if (!VT.isVector() || !TLI.isTypeLegal(VT)) 9446 return SDValue(); 9447 9448 assert(ST->hasNEON() && "unexpected vector shift"); 9449 int64_t Cnt; 9450 9451 switch (N->getOpcode()) { 9452 default: llvm_unreachable("unexpected shift opcode"); 9453 9454 case ISD::SHL: 9455 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) 9456 return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0), 9457 DAG.getConstant(Cnt, MVT::i32)); 9458 break; 9459 9460 case ISD::SRA: 9461 case ISD::SRL: 9462 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { 9463 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? 9464 ARMISD::VSHRs : ARMISD::VSHRu); 9465 return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0), 9466 DAG.getConstant(Cnt, MVT::i32)); 9467 } 9468 } 9469 return SDValue(); 9470 } 9471 9472 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, 9473 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. 9474 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, 9475 const ARMSubtarget *ST) { 9476 SDValue N0 = N->getOperand(0); 9477 9478 // Check for sign- and zero-extensions of vector extract operations of 8- 9479 // and 16-bit vector elements. NEON supports these directly. They are 9480 // handled during DAG combining because type legalization will promote them 9481 // to 32-bit types and it is messy to recognize the operations after that. 9482 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 9483 SDValue Vec = N0.getOperand(0); 9484 SDValue Lane = N0.getOperand(1); 9485 EVT VT = N->getValueType(0); 9486 EVT EltVT = N0.getValueType(); 9487 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9488 9489 if (VT == MVT::i32 && 9490 (EltVT == MVT::i8 || EltVT == MVT::i16) && 9491 TLI.isTypeLegal(Vec.getValueType()) && 9492 isa<ConstantSDNode>(Lane)) { 9493 9494 unsigned Opc = 0; 9495 switch (N->getOpcode()) { 9496 default: llvm_unreachable("unexpected opcode"); 9497 case ISD::SIGN_EXTEND: 9498 Opc = ARMISD::VGETLANEs; 9499 break; 9500 case ISD::ZERO_EXTEND: 9501 case ISD::ANY_EXTEND: 9502 Opc = ARMISD::VGETLANEu; 9503 break; 9504 } 9505 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane); 9506 } 9507 } 9508 9509 return SDValue(); 9510 } 9511 9512 /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC 9513 /// to match f32 max/min patterns to use NEON vmax/vmin instructions. 9514 static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, 9515 const ARMSubtarget *ST) { 9516 // If the target supports NEON, try to use vmax/vmin instructions for f32 9517 // selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set, 9518 // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is 9519 // a NaN; only do the transformation when it matches that behavior. 9520 9521 // For now only do this when using NEON for FP operations; if using VFP, it 9522 // is not obvious that the benefit outweighs the cost of switching to the 9523 // NEON pipeline. 9524 if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() || 9525 N->getValueType(0) != MVT::f32) 9526 return SDValue(); 9527 9528 SDValue CondLHS = N->getOperand(0); 9529 SDValue CondRHS = N->getOperand(1); 9530 SDValue LHS = N->getOperand(2); 9531 SDValue RHS = N->getOperand(3); 9532 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); 9533 9534 unsigned Opcode = 0; 9535 bool IsReversed; 9536 if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) { 9537 IsReversed = false; // x CC y ? x : y 9538 } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) { 9539 IsReversed = true ; // x CC y ? y : x 9540 } else { 9541 return SDValue(); 9542 } 9543 9544 bool IsUnordered; 9545 switch (CC) { 9546 default: break; 9547 case ISD::SETOLT: 9548 case ISD::SETOLE: 9549 case ISD::SETLT: 9550 case ISD::SETLE: 9551 case ISD::SETULT: 9552 case ISD::SETULE: 9553 // If LHS is NaN, an ordered comparison will be false and the result will 9554 // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS 9555 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. 9556 IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE); 9557 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) 9558 break; 9559 // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin 9560 // will return -0, so vmin can only be used for unsafe math or if one of 9561 // the operands is known to be nonzero. 9562 if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) && 9563 !DAG.getTarget().Options.UnsafeFPMath && 9564 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) 9565 break; 9566 Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN; 9567 break; 9568 9569 case ISD::SETOGT: 9570 case ISD::SETOGE: 9571 case ISD::SETGT: 9572 case ISD::SETGE: 9573 case ISD::SETUGT: 9574 case ISD::SETUGE: 9575 // If LHS is NaN, an ordered comparison will be false and the result will 9576 // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS 9577 // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. 9578 IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE); 9579 if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) 9580 break; 9581 // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax 9582 // will return +0, so vmax can only be used for unsafe math or if one of 9583 // the operands is known to be nonzero. 9584 if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) && 9585 !DAG.getTarget().Options.UnsafeFPMath && 9586 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) 9587 break; 9588 Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX; 9589 break; 9590 } 9591 9592 if (!Opcode) 9593 return SDValue(); 9594 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS); 9595 } 9596 9597 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. 9598 SDValue 9599 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { 9600 SDValue Cmp = N->getOperand(4); 9601 if (Cmp.getOpcode() != ARMISD::CMPZ) 9602 // Only looking at EQ and NE cases. 9603 return SDValue(); 9604 9605 EVT VT = N->getValueType(0); 9606 SDLoc dl(N); 9607 SDValue LHS = Cmp.getOperand(0); 9608 SDValue RHS = Cmp.getOperand(1); 9609 SDValue FalseVal = N->getOperand(0); 9610 SDValue TrueVal = N->getOperand(1); 9611 SDValue ARMcc = N->getOperand(2); 9612 ARMCC::CondCodes CC = 9613 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); 9614 9615 // Simplify 9616 // mov r1, r0 9617 // cmp r1, x 9618 // mov r0, y 9619 // moveq r0, x 9620 // to 9621 // cmp r0, x 9622 // movne r0, y 9623 // 9624 // mov r1, r0 9625 // cmp r1, x 9626 // mov r0, x 9627 // movne r0, y 9628 // to 9629 // cmp r0, x 9630 // movne r0, y 9631 /// FIXME: Turn this into a target neutral optimization? 9632 SDValue Res; 9633 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { 9634 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, 9635 N->getOperand(3), Cmp); 9636 } else if (CC == ARMCC::EQ && TrueVal == RHS) { 9637 SDValue ARMcc; 9638 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); 9639 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, 9640 N->getOperand(3), NewCmp); 9641 } 9642 9643 if (Res.getNode()) { 9644 APInt KnownZero, KnownOne; 9645 DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne); 9646 // Capture demanded bits information that would be otherwise lost. 9647 if (KnownZero == 0xfffffffe) 9648 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 9649 DAG.getValueType(MVT::i1)); 9650 else if (KnownZero == 0xffffff00) 9651 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 9652 DAG.getValueType(MVT::i8)); 9653 else if (KnownZero == 0xffff0000) 9654 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 9655 DAG.getValueType(MVT::i16)); 9656 } 9657 9658 return Res; 9659 } 9660 9661 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, 9662 DAGCombinerInfo &DCI) const { 9663 switch (N->getOpcode()) { 9664 default: break; 9665 case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget); 9666 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); 9667 case ISD::SUB: return PerformSUBCombine(N, DCI); 9668 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); 9669 case ISD::OR: return PerformORCombine(N, DCI, Subtarget); 9670 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); 9671 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); 9672 case ARMISD::BFI: return PerformBFICombine(N, DCI); 9673 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI); 9674 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); 9675 case ISD::STORE: return PerformSTORECombine(N, DCI); 9676 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI); 9677 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); 9678 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); 9679 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI); 9680 case ISD::FP_TO_SINT: 9681 case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget); 9682 case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget); 9683 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); 9684 case ISD::SHL: 9685 case ISD::SRA: 9686 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); 9687 case ISD::SIGN_EXTEND: 9688 case ISD::ZERO_EXTEND: 9689 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); 9690 case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget); 9691 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); 9692 case ARMISD::VLD2DUP: 9693 case ARMISD::VLD3DUP: 9694 case ARMISD::VLD4DUP: 9695 return CombineBaseUpdate(N, DCI); 9696 case ARMISD::BUILD_VECTOR: 9697 return PerformARMBUILD_VECTORCombine(N, DCI); 9698 case ISD::INTRINSIC_VOID: 9699 case ISD::INTRINSIC_W_CHAIN: 9700 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 9701 case Intrinsic::arm_neon_vld1: 9702 case Intrinsic::arm_neon_vld2: 9703 case Intrinsic::arm_neon_vld3: 9704 case Intrinsic::arm_neon_vld4: 9705 case Intrinsic::arm_neon_vld2lane: 9706 case Intrinsic::arm_neon_vld3lane: 9707 case Intrinsic::arm_neon_vld4lane: 9708 case Intrinsic::arm_neon_vst1: 9709 case Intrinsic::arm_neon_vst2: 9710 case Intrinsic::arm_neon_vst3: 9711 case Intrinsic::arm_neon_vst4: 9712 case Intrinsic::arm_neon_vst2lane: 9713 case Intrinsic::arm_neon_vst3lane: 9714 case Intrinsic::arm_neon_vst4lane: 9715 return CombineBaseUpdate(N, DCI); 9716 default: break; 9717 } 9718 break; 9719 } 9720 return SDValue(); 9721 } 9722 9723 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, 9724 EVT VT) const { 9725 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); 9726 } 9727 9728 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 9729 unsigned, 9730 unsigned, 9731 bool *Fast) const { 9732 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus 9733 bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); 9734 9735 switch (VT.getSimpleVT().SimpleTy) { 9736 default: 9737 return false; 9738 case MVT::i8: 9739 case MVT::i16: 9740 case MVT::i32: { 9741 // Unaligned access can use (for example) LRDB, LRDH, LDR 9742 if (AllowsUnaligned) { 9743 if (Fast) 9744 *Fast = Subtarget->hasV7Ops(); 9745 return true; 9746 } 9747 return false; 9748 } 9749 case MVT::f64: 9750 case MVT::v2f64: { 9751 // For any little-endian targets with neon, we can support unaligned ld/st 9752 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. 9753 // A big-endian target may also explicitly support unaligned accesses 9754 if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) { 9755 if (Fast) 9756 *Fast = true; 9757 return true; 9758 } 9759 return false; 9760 } 9761 } 9762 } 9763 9764 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, 9765 unsigned AlignCheck) { 9766 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && 9767 (DstAlign == 0 || DstAlign % AlignCheck == 0)); 9768 } 9769 9770 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size, 9771 unsigned DstAlign, unsigned SrcAlign, 9772 bool IsMemset, bool ZeroMemset, 9773 bool MemcpyStrSrc, 9774 MachineFunction &MF) const { 9775 const Function *F = MF.getFunction(); 9776 9777 // See if we can use NEON instructions for this... 9778 if ((!IsMemset || ZeroMemset) && 9779 Subtarget->hasNEON() && 9780 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 9781 Attribute::NoImplicitFloat)) { 9782 bool Fast; 9783 if (Size >= 16 && 9784 (memOpAlign(SrcAlign, DstAlign, 16) || 9785 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) { 9786 return MVT::v2f64; 9787 } else if (Size >= 8 && 9788 (memOpAlign(SrcAlign, DstAlign, 8) || 9789 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) && 9790 Fast))) { 9791 return MVT::f64; 9792 } 9793 } 9794 9795 // Lowering to i32/i16 if the size permits. 9796 if (Size >= 4) 9797 return MVT::i32; 9798 else if (Size >= 2) 9799 return MVT::i16; 9800 9801 // Let the target-independent logic figure it out. 9802 return MVT::Other; 9803 } 9804 9805 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 9806 if (Val.getOpcode() != ISD::LOAD) 9807 return false; 9808 9809 EVT VT1 = Val.getValueType(); 9810 if (!VT1.isSimple() || !VT1.isInteger() || 9811 !VT2.isSimple() || !VT2.isInteger()) 9812 return false; 9813 9814 switch (VT1.getSimpleVT().SimpleTy) { 9815 default: break; 9816 case MVT::i1: 9817 case MVT::i8: 9818 case MVT::i16: 9819 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. 9820 return true; 9821 } 9822 9823 return false; 9824 } 9825 9826 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { 9827 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 9828 return false; 9829 9830 if (!isTypeLegal(EVT::getEVT(Ty1))) 9831 return false; 9832 9833 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); 9834 9835 // Assuming the caller doesn't have a zeroext or signext return parameter, 9836 // truncation all the way down to i1 is valid. 9837 return true; 9838 } 9839 9840 9841 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { 9842 if (V < 0) 9843 return false; 9844 9845 unsigned Scale = 1; 9846 switch (VT.getSimpleVT().SimpleTy) { 9847 default: return false; 9848 case MVT::i1: 9849 case MVT::i8: 9850 // Scale == 1; 9851 break; 9852 case MVT::i16: 9853 // Scale == 2; 9854 Scale = 2; 9855 break; 9856 case MVT::i32: 9857 // Scale == 4; 9858 Scale = 4; 9859 break; 9860 } 9861 9862 if ((V & (Scale - 1)) != 0) 9863 return false; 9864 V /= Scale; 9865 return V == (V & ((1LL << 5) - 1)); 9866 } 9867 9868 static bool isLegalT2AddressImmediate(int64_t V, EVT VT, 9869 const ARMSubtarget *Subtarget) { 9870 bool isNeg = false; 9871 if (V < 0) { 9872 isNeg = true; 9873 V = - V; 9874 } 9875 9876 switch (VT.getSimpleVT().SimpleTy) { 9877 default: return false; 9878 case MVT::i1: 9879 case MVT::i8: 9880 case MVT::i16: 9881 case MVT::i32: 9882 // + imm12 or - imm8 9883 if (isNeg) 9884 return V == (V & ((1LL << 8) - 1)); 9885 return V == (V & ((1LL << 12) - 1)); 9886 case MVT::f32: 9887 case MVT::f64: 9888 // Same as ARM mode. FIXME: NEON? 9889 if (!Subtarget->hasVFP2()) 9890 return false; 9891 if ((V & 3) != 0) 9892 return false; 9893 V >>= 2; 9894 return V == (V & ((1LL << 8) - 1)); 9895 } 9896 } 9897 9898 /// isLegalAddressImmediate - Return true if the integer value can be used 9899 /// as the offset of the target addressing mode for load / store of the 9900 /// given type. 9901 static bool isLegalAddressImmediate(int64_t V, EVT VT, 9902 const ARMSubtarget *Subtarget) { 9903 if (V == 0) 9904 return true; 9905 9906 if (!VT.isSimple()) 9907 return false; 9908 9909 if (Subtarget->isThumb1Only()) 9910 return isLegalT1AddressImmediate(V, VT); 9911 else if (Subtarget->isThumb2()) 9912 return isLegalT2AddressImmediate(V, VT, Subtarget); 9913 9914 // ARM mode. 9915 if (V < 0) 9916 V = - V; 9917 switch (VT.getSimpleVT().SimpleTy) { 9918 default: return false; 9919 case MVT::i1: 9920 case MVT::i8: 9921 case MVT::i32: 9922 // +- imm12 9923 return V == (V & ((1LL << 12) - 1)); 9924 case MVT::i16: 9925 // +- imm8 9926 return V == (V & ((1LL << 8) - 1)); 9927 case MVT::f32: 9928 case MVT::f64: 9929 if (!Subtarget->hasVFP2()) // FIXME: NEON? 9930 return false; 9931 if ((V & 3) != 0) 9932 return false; 9933 V >>= 2; 9934 return V == (V & ((1LL << 8) - 1)); 9935 } 9936 } 9937 9938 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, 9939 EVT VT) const { 9940 int Scale = AM.Scale; 9941 if (Scale < 0) 9942 return false; 9943 9944 switch (VT.getSimpleVT().SimpleTy) { 9945 default: return false; 9946 case MVT::i1: 9947 case MVT::i8: 9948 case MVT::i16: 9949 case MVT::i32: 9950 if (Scale == 1) 9951 return true; 9952 // r + r << imm 9953 Scale = Scale & ~1; 9954 return Scale == 2 || Scale == 4 || Scale == 8; 9955 case MVT::i64: 9956 // r + r 9957 if (((unsigned)AM.HasBaseReg + Scale) <= 2) 9958 return true; 9959 return false; 9960 case MVT::isVoid: 9961 // Note, we allow "void" uses (basically, uses that aren't loads or 9962 // stores), because arm allows folding a scale into many arithmetic 9963 // operations. This should be made more precise and revisited later. 9964 9965 // Allow r << imm, but the imm has to be a multiple of two. 9966 if (Scale & 1) return false; 9967 return isPowerOf2_32(Scale); 9968 } 9969 } 9970 9971 /// isLegalAddressingMode - Return true if the addressing mode represented 9972 /// by AM is legal for this target, for a load/store of the specified type. 9973 bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, 9974 Type *Ty) const { 9975 EVT VT = getValueType(Ty, true); 9976 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) 9977 return false; 9978 9979 // Can never fold addr of global into load/store. 9980 if (AM.BaseGV) 9981 return false; 9982 9983 switch (AM.Scale) { 9984 case 0: // no scale reg, must be "r+i" or "r", or "i". 9985 break; 9986 case 1: 9987 if (Subtarget->isThumb1Only()) 9988 return false; 9989 // FALL THROUGH. 9990 default: 9991 // ARM doesn't support any R+R*scale+imm addr modes. 9992 if (AM.BaseOffs) 9993 return false; 9994 9995 if (!VT.isSimple()) 9996 return false; 9997 9998 if (Subtarget->isThumb2()) 9999 return isLegalT2ScaledAddressingMode(AM, VT); 10000 10001 int Scale = AM.Scale; 10002 switch (VT.getSimpleVT().SimpleTy) { 10003 default: return false; 10004 case MVT::i1: 10005 case MVT::i8: 10006 case MVT::i32: 10007 if (Scale < 0) Scale = -Scale; 10008 if (Scale == 1) 10009 return true; 10010 // r + r << imm 10011 return isPowerOf2_32(Scale & ~1); 10012 case MVT::i16: 10013 case MVT::i64: 10014 // r + r 10015 if (((unsigned)AM.HasBaseReg + Scale) <= 2) 10016 return true; 10017 return false; 10018 10019 case MVT::isVoid: 10020 // Note, we allow "void" uses (basically, uses that aren't loads or 10021 // stores), because arm allows folding a scale into many arithmetic 10022 // operations. This should be made more precise and revisited later. 10023 10024 // Allow r << imm, but the imm has to be a multiple of two. 10025 if (Scale & 1) return false; 10026 return isPowerOf2_32(Scale); 10027 } 10028 } 10029 return true; 10030 } 10031 10032 /// isLegalICmpImmediate - Return true if the specified immediate is legal 10033 /// icmp immediate, that is the target has icmp instructions which can compare 10034 /// a register against the immediate without having to materialize the 10035 /// immediate into a register. 10036 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 10037 // Thumb2 and ARM modes can use cmn for negative immediates. 10038 if (!Subtarget->isThumb()) 10039 return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1; 10040 if (Subtarget->isThumb2()) 10041 return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1; 10042 // Thumb1 doesn't have cmn, and only 8-bit immediates. 10043 return Imm >= 0 && Imm <= 255; 10044 } 10045 10046 /// isLegalAddImmediate - Return true if the specified immediate is a legal add 10047 /// *or sub* immediate, that is the target has add or sub instructions which can 10048 /// add a register with the immediate without having to materialize the 10049 /// immediate into a register. 10050 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { 10051 // Same encoding for add/sub, just flip the sign. 10052 int64_t AbsImm = llvm::abs64(Imm); 10053 if (!Subtarget->isThumb()) 10054 return ARM_AM::getSOImmVal(AbsImm) != -1; 10055 if (Subtarget->isThumb2()) 10056 return ARM_AM::getT2SOImmVal(AbsImm) != -1; 10057 // Thumb1 only has 8-bit unsigned immediate. 10058 return AbsImm >= 0 && AbsImm <= 255; 10059 } 10060 10061 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, 10062 bool isSEXTLoad, SDValue &Base, 10063 SDValue &Offset, bool &isInc, 10064 SelectionDAG &DAG) { 10065 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 10066 return false; 10067 10068 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { 10069 // AddressingMode 3 10070 Base = Ptr->getOperand(0); 10071 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 10072 int RHSC = (int)RHS->getZExtValue(); 10073 if (RHSC < 0 && RHSC > -256) { 10074 assert(Ptr->getOpcode() == ISD::ADD); 10075 isInc = false; 10076 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 10077 return true; 10078 } 10079 } 10080 isInc = (Ptr->getOpcode() == ISD::ADD); 10081 Offset = Ptr->getOperand(1); 10082 return true; 10083 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { 10084 // AddressingMode 2 10085 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 10086 int RHSC = (int)RHS->getZExtValue(); 10087 if (RHSC < 0 && RHSC > -0x1000) { 10088 assert(Ptr->getOpcode() == ISD::ADD); 10089 isInc = false; 10090 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 10091 Base = Ptr->getOperand(0); 10092 return true; 10093 } 10094 } 10095 10096 if (Ptr->getOpcode() == ISD::ADD) { 10097 isInc = true; 10098 ARM_AM::ShiftOpc ShOpcVal= 10099 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); 10100 if (ShOpcVal != ARM_AM::no_shift) { 10101 Base = Ptr->getOperand(1); 10102 Offset = Ptr->getOperand(0); 10103 } else { 10104 Base = Ptr->getOperand(0); 10105 Offset = Ptr->getOperand(1); 10106 } 10107 return true; 10108 } 10109 10110 isInc = (Ptr->getOpcode() == ISD::ADD); 10111 Base = Ptr->getOperand(0); 10112 Offset = Ptr->getOperand(1); 10113 return true; 10114 } 10115 10116 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. 10117 return false; 10118 } 10119 10120 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, 10121 bool isSEXTLoad, SDValue &Base, 10122 SDValue &Offset, bool &isInc, 10123 SelectionDAG &DAG) { 10124 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 10125 return false; 10126 10127 Base = Ptr->getOperand(0); 10128 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 10129 int RHSC = (int)RHS->getZExtValue(); 10130 if (RHSC < 0 && RHSC > -0x100) { // 8 bits. 10131 assert(Ptr->getOpcode() == ISD::ADD); 10132 isInc = false; 10133 Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); 10134 return true; 10135 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. 10136 isInc = Ptr->getOpcode() == ISD::ADD; 10137 Offset = DAG.getConstant(RHSC, RHS->getValueType(0)); 10138 return true; 10139 } 10140 } 10141 10142 return false; 10143 } 10144 10145 /// getPreIndexedAddressParts - returns true by value, base pointer and 10146 /// offset pointer and addressing mode by reference if the node's address 10147 /// can be legally represented as pre-indexed load / store address. 10148 bool 10149 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 10150 SDValue &Offset, 10151 ISD::MemIndexedMode &AM, 10152 SelectionDAG &DAG) const { 10153 if (Subtarget->isThumb1Only()) 10154 return false; 10155 10156 EVT VT; 10157 SDValue Ptr; 10158 bool isSEXTLoad = false; 10159 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 10160 Ptr = LD->getBasePtr(); 10161 VT = LD->getMemoryVT(); 10162 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 10163 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 10164 Ptr = ST->getBasePtr(); 10165 VT = ST->getMemoryVT(); 10166 } else 10167 return false; 10168 10169 bool isInc; 10170 bool isLegal = false; 10171 if (Subtarget->isThumb2()) 10172 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 10173 Offset, isInc, DAG); 10174 else 10175 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 10176 Offset, isInc, DAG); 10177 if (!isLegal) 10178 return false; 10179 10180 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; 10181 return true; 10182 } 10183 10184 /// getPostIndexedAddressParts - returns true by value, base pointer and 10185 /// offset pointer and addressing mode by reference if this node can be 10186 /// combined with a load / store to form a post-indexed load / store. 10187 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 10188 SDValue &Base, 10189 SDValue &Offset, 10190 ISD::MemIndexedMode &AM, 10191 SelectionDAG &DAG) const { 10192 if (Subtarget->isThumb1Only()) 10193 return false; 10194 10195 EVT VT; 10196 SDValue Ptr; 10197 bool isSEXTLoad = false; 10198 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 10199 VT = LD->getMemoryVT(); 10200 Ptr = LD->getBasePtr(); 10201 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 10202 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 10203 VT = ST->getMemoryVT(); 10204 Ptr = ST->getBasePtr(); 10205 } else 10206 return false; 10207 10208 bool isInc; 10209 bool isLegal = false; 10210 if (Subtarget->isThumb2()) 10211 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 10212 isInc, DAG); 10213 else 10214 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 10215 isInc, DAG); 10216 if (!isLegal) 10217 return false; 10218 10219 if (Ptr != Base) { 10220 // Swap base ptr and offset to catch more post-index load / store when 10221 // it's legal. In Thumb2 mode, offset must be an immediate. 10222 if (Ptr == Offset && Op->getOpcode() == ISD::ADD && 10223 !Subtarget->isThumb2()) 10224 std::swap(Base, Offset); 10225 10226 // Post-indexed load / store update the base pointer. 10227 if (Ptr != Base) 10228 return false; 10229 } 10230 10231 AM = isInc ? ISD::POST_INC : ISD::POST_DEC; 10232 return true; 10233 } 10234 10235 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 10236 APInt &KnownZero, 10237 APInt &KnownOne, 10238 const SelectionDAG &DAG, 10239 unsigned Depth) const { 10240 unsigned BitWidth = KnownOne.getBitWidth(); 10241 KnownZero = KnownOne = APInt(BitWidth, 0); 10242 switch (Op.getOpcode()) { 10243 default: break; 10244 case ARMISD::ADDC: 10245 case ARMISD::ADDE: 10246 case ARMISD::SUBC: 10247 case ARMISD::SUBE: 10248 // These nodes' second result is a boolean 10249 if (Op.getResNo() == 0) 10250 break; 10251 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 10252 break; 10253 case ARMISD::CMOV: { 10254 // Bits are known zero/one if known on the LHS and RHS. 10255 DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 10256 if (KnownZero == 0 && KnownOne == 0) return; 10257 10258 APInt KnownZeroRHS, KnownOneRHS; 10259 DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1); 10260 KnownZero &= KnownZeroRHS; 10261 KnownOne &= KnownOneRHS; 10262 return; 10263 } 10264 case ISD::INTRINSIC_W_CHAIN: { 10265 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); 10266 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 10267 switch (IntID) { 10268 default: return; 10269 case Intrinsic::arm_ldaex: 10270 case Intrinsic::arm_ldrex: { 10271 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); 10272 unsigned MemBits = VT.getScalarType().getSizeInBits(); 10273 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 10274 return; 10275 } 10276 } 10277 } 10278 } 10279 } 10280 10281 //===----------------------------------------------------------------------===// 10282 // ARM Inline Assembly Support 10283 //===----------------------------------------------------------------------===// 10284 10285 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { 10286 // Looking for "rev" which is V6+. 10287 if (!Subtarget->hasV6Ops()) 10288 return false; 10289 10290 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); 10291 std::string AsmStr = IA->getAsmString(); 10292 SmallVector<StringRef, 4> AsmPieces; 10293 SplitString(AsmStr, AsmPieces, ";\n"); 10294 10295 switch (AsmPieces.size()) { 10296 default: return false; 10297 case 1: 10298 AsmStr = AsmPieces[0]; 10299 AsmPieces.clear(); 10300 SplitString(AsmStr, AsmPieces, " \t,"); 10301 10302 // rev $0, $1 10303 if (AsmPieces.size() == 3 && 10304 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && 10305 IA->getConstraintString().compare(0, 4, "=l,l") == 0) { 10306 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); 10307 if (Ty && Ty->getBitWidth() == 32) 10308 return IntrinsicLowering::LowerToByteSwap(CI); 10309 } 10310 break; 10311 } 10312 10313 return false; 10314 } 10315 10316 /// getConstraintType - Given a constraint letter, return the type of 10317 /// constraint it is for this target. 10318 ARMTargetLowering::ConstraintType 10319 ARMTargetLowering::getConstraintType(const std::string &Constraint) const { 10320 if (Constraint.size() == 1) { 10321 switch (Constraint[0]) { 10322 default: break; 10323 case 'l': return C_RegisterClass; 10324 case 'w': return C_RegisterClass; 10325 case 'h': return C_RegisterClass; 10326 case 'x': return C_RegisterClass; 10327 case 't': return C_RegisterClass; 10328 case 'j': return C_Other; // Constant for movw. 10329 // An address with a single base register. Due to the way we 10330 // currently handle addresses it is the same as an 'r' memory constraint. 10331 case 'Q': return C_Memory; 10332 } 10333 } else if (Constraint.size() == 2) { 10334 switch (Constraint[0]) { 10335 default: break; 10336 // All 'U+' constraints are addresses. 10337 case 'U': return C_Memory; 10338 } 10339 } 10340 return TargetLowering::getConstraintType(Constraint); 10341 } 10342 10343 /// Examine constraint type and operand type and determine a weight value. 10344 /// This object must already have been set up with the operand type 10345 /// and the current alternative constraint selected. 10346 TargetLowering::ConstraintWeight 10347 ARMTargetLowering::getSingleConstraintMatchWeight( 10348 AsmOperandInfo &info, const char *constraint) const { 10349 ConstraintWeight weight = CW_Invalid; 10350 Value *CallOperandVal = info.CallOperandVal; 10351 // If we don't have a value, we can't do a match, 10352 // but allow it at the lowest weight. 10353 if (!CallOperandVal) 10354 return CW_Default; 10355 Type *type = CallOperandVal->getType(); 10356 // Look at the constraint type. 10357 switch (*constraint) { 10358 default: 10359 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 10360 break; 10361 case 'l': 10362 if (type->isIntegerTy()) { 10363 if (Subtarget->isThumb()) 10364 weight = CW_SpecificReg; 10365 else 10366 weight = CW_Register; 10367 } 10368 break; 10369 case 'w': 10370 if (type->isFloatingPointTy()) 10371 weight = CW_Register; 10372 break; 10373 } 10374 return weight; 10375 } 10376 10377 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair; 10378 RCPair 10379 ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 10380 MVT VT) const { 10381 if (Constraint.size() == 1) { 10382 // GCC ARM Constraint Letters 10383 switch (Constraint[0]) { 10384 case 'l': // Low regs or general regs. 10385 if (Subtarget->isThumb()) 10386 return RCPair(0U, &ARM::tGPRRegClass); 10387 return RCPair(0U, &ARM::GPRRegClass); 10388 case 'h': // High regs or no regs. 10389 if (Subtarget->isThumb()) 10390 return RCPair(0U, &ARM::hGPRRegClass); 10391 break; 10392 case 'r': 10393 return RCPair(0U, &ARM::GPRRegClass); 10394 case 'w': 10395 if (VT == MVT::Other) 10396 break; 10397 if (VT == MVT::f32) 10398 return RCPair(0U, &ARM::SPRRegClass); 10399 if (VT.getSizeInBits() == 64) 10400 return RCPair(0U, &ARM::DPRRegClass); 10401 if (VT.getSizeInBits() == 128) 10402 return RCPair(0U, &ARM::QPRRegClass); 10403 break; 10404 case 'x': 10405 if (VT == MVT::Other) 10406 break; 10407 if (VT == MVT::f32) 10408 return RCPair(0U, &ARM::SPR_8RegClass); 10409 if (VT.getSizeInBits() == 64) 10410 return RCPair(0U, &ARM::DPR_8RegClass); 10411 if (VT.getSizeInBits() == 128) 10412 return RCPair(0U, &ARM::QPR_8RegClass); 10413 break; 10414 case 't': 10415 if (VT == MVT::f32) 10416 return RCPair(0U, &ARM::SPRRegClass); 10417 break; 10418 } 10419 } 10420 if (StringRef("{cc}").equals_lower(Constraint)) 10421 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); 10422 10423 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 10424 } 10425 10426 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 10427 /// vector. If it is invalid, don't add anything to Ops. 10428 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 10429 std::string &Constraint, 10430 std::vector<SDValue>&Ops, 10431 SelectionDAG &DAG) const { 10432 SDValue Result; 10433 10434 // Currently only support length 1 constraints. 10435 if (Constraint.length() != 1) return; 10436 10437 char ConstraintLetter = Constraint[0]; 10438 switch (ConstraintLetter) { 10439 default: break; 10440 case 'j': 10441 case 'I': case 'J': case 'K': case 'L': 10442 case 'M': case 'N': case 'O': 10443 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 10444 if (!C) 10445 return; 10446 10447 int64_t CVal64 = C->getSExtValue(); 10448 int CVal = (int) CVal64; 10449 // None of these constraints allow values larger than 32 bits. Check 10450 // that the value fits in an int. 10451 if (CVal != CVal64) 10452 return; 10453 10454 switch (ConstraintLetter) { 10455 case 'j': 10456 // Constant suitable for movw, must be between 0 and 10457 // 65535. 10458 if (Subtarget->hasV6T2Ops()) 10459 if (CVal >= 0 && CVal <= 65535) 10460 break; 10461 return; 10462 case 'I': 10463 if (Subtarget->isThumb1Only()) { 10464 // This must be a constant between 0 and 255, for ADD 10465 // immediates. 10466 if (CVal >= 0 && CVal <= 255) 10467 break; 10468 } else if (Subtarget->isThumb2()) { 10469 // A constant that can be used as an immediate value in a 10470 // data-processing instruction. 10471 if (ARM_AM::getT2SOImmVal(CVal) != -1) 10472 break; 10473 } else { 10474 // A constant that can be used as an immediate value in a 10475 // data-processing instruction. 10476 if (ARM_AM::getSOImmVal(CVal) != -1) 10477 break; 10478 } 10479 return; 10480 10481 case 'J': 10482 if (Subtarget->isThumb()) { // FIXME thumb2 10483 // This must be a constant between -255 and -1, for negated ADD 10484 // immediates. This can be used in GCC with an "n" modifier that 10485 // prints the negated value, for use with SUB instructions. It is 10486 // not useful otherwise but is implemented for compatibility. 10487 if (CVal >= -255 && CVal <= -1) 10488 break; 10489 } else { 10490 // This must be a constant between -4095 and 4095. It is not clear 10491 // what this constraint is intended for. Implemented for 10492 // compatibility with GCC. 10493 if (CVal >= -4095 && CVal <= 4095) 10494 break; 10495 } 10496 return; 10497 10498 case 'K': 10499 if (Subtarget->isThumb1Only()) { 10500 // A 32-bit value where only one byte has a nonzero value. Exclude 10501 // zero to match GCC. This constraint is used by GCC internally for 10502 // constants that can be loaded with a move/shift combination. 10503 // It is not useful otherwise but is implemented for compatibility. 10504 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) 10505 break; 10506 } else if (Subtarget->isThumb2()) { 10507 // A constant whose bitwise inverse can be used as an immediate 10508 // value in a data-processing instruction. This can be used in GCC 10509 // with a "B" modifier that prints the inverted value, for use with 10510 // BIC and MVN instructions. It is not useful otherwise but is 10511 // implemented for compatibility. 10512 if (ARM_AM::getT2SOImmVal(~CVal) != -1) 10513 break; 10514 } else { 10515 // A constant whose bitwise inverse can be used as an immediate 10516 // value in a data-processing instruction. This can be used in GCC 10517 // with a "B" modifier that prints the inverted value, for use with 10518 // BIC and MVN instructions. It is not useful otherwise but is 10519 // implemented for compatibility. 10520 if (ARM_AM::getSOImmVal(~CVal) != -1) 10521 break; 10522 } 10523 return; 10524 10525 case 'L': 10526 if (Subtarget->isThumb1Only()) { 10527 // This must be a constant between -7 and 7, 10528 // for 3-operand ADD/SUB immediate instructions. 10529 if (CVal >= -7 && CVal < 7) 10530 break; 10531 } else if (Subtarget->isThumb2()) { 10532 // A constant whose negation can be used as an immediate value in a 10533 // data-processing instruction. This can be used in GCC with an "n" 10534 // modifier that prints the negated value, for use with SUB 10535 // instructions. It is not useful otherwise but is implemented for 10536 // compatibility. 10537 if (ARM_AM::getT2SOImmVal(-CVal) != -1) 10538 break; 10539 } else { 10540 // A constant whose negation can be used as an immediate value in a 10541 // data-processing instruction. This can be used in GCC with an "n" 10542 // modifier that prints the negated value, for use with SUB 10543 // instructions. It is not useful otherwise but is implemented for 10544 // compatibility. 10545 if (ARM_AM::getSOImmVal(-CVal) != -1) 10546 break; 10547 } 10548 return; 10549 10550 case 'M': 10551 if (Subtarget->isThumb()) { // FIXME thumb2 10552 // This must be a multiple of 4 between 0 and 1020, for 10553 // ADD sp + immediate. 10554 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) 10555 break; 10556 } else { 10557 // A power of two or a constant between 0 and 32. This is used in 10558 // GCC for the shift amount on shifted register operands, but it is 10559 // useful in general for any shift amounts. 10560 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) 10561 break; 10562 } 10563 return; 10564 10565 case 'N': 10566 if (Subtarget->isThumb()) { // FIXME thumb2 10567 // This must be a constant between 0 and 31, for shift amounts. 10568 if (CVal >= 0 && CVal <= 31) 10569 break; 10570 } 10571 return; 10572 10573 case 'O': 10574 if (Subtarget->isThumb()) { // FIXME thumb2 10575 // This must be a multiple of 4 between -508 and 508, for 10576 // ADD/SUB sp = sp + immediate. 10577 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) 10578 break; 10579 } 10580 return; 10581 } 10582 Result = DAG.getTargetConstant(CVal, Op.getValueType()); 10583 break; 10584 } 10585 10586 if (Result.getNode()) { 10587 Ops.push_back(Result); 10588 return; 10589 } 10590 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 10591 } 10592 10593 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { 10594 assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only"); 10595 unsigned Opcode = Op->getOpcode(); 10596 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && 10597 "Invalid opcode for Div/Rem lowering"); 10598 bool isSigned = (Opcode == ISD::SDIVREM); 10599 EVT VT = Op->getValueType(0); 10600 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 10601 10602 RTLIB::Libcall LC; 10603 switch (VT.getSimpleVT().SimpleTy) { 10604 default: llvm_unreachable("Unexpected request for libcall!"); 10605 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 10606 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 10607 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 10608 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 10609 } 10610 10611 SDValue InChain = DAG.getEntryNode(); 10612 10613 TargetLowering::ArgListTy Args; 10614 TargetLowering::ArgListEntry Entry; 10615 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) { 10616 EVT ArgVT = Op->getOperand(i).getValueType(); 10617 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 10618 Entry.Node = Op->getOperand(i); 10619 Entry.Ty = ArgTy; 10620 Entry.isSExt = isSigned; 10621 Entry.isZExt = !isSigned; 10622 Args.push_back(Entry); 10623 } 10624 10625 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 10626 getPointerTy()); 10627 10628 Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL); 10629 10630 SDLoc dl(Op); 10631 TargetLowering::CallLoweringInfo CLI(DAG); 10632 CLI.setDebugLoc(dl).setChain(InChain) 10633 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 10634 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); 10635 10636 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 10637 return CallInfo.first; 10638 } 10639 10640 SDValue 10641 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 10642 assert(Subtarget->isTargetWindows() && "unsupported target platform"); 10643 SDLoc DL(Op); 10644 10645 // Get the inputs. 10646 SDValue Chain = Op.getOperand(0); 10647 SDValue Size = Op.getOperand(1); 10648 10649 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size, 10650 DAG.getConstant(2, MVT::i32)); 10651 10652 SDValue Flag; 10653 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag); 10654 Flag = Chain.getValue(1); 10655 10656 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10657 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag); 10658 10659 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); 10660 Chain = NewSP.getValue(1); 10661 10662 SDValue Ops[2] = { NewSP, Chain }; 10663 return DAG.getMergeValues(Ops, DL); 10664 } 10665 10666 bool 10667 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 10668 // The ARM target isn't yet aware of offsets. 10669 return false; 10670 } 10671 10672 bool ARM::isBitFieldInvertedMask(unsigned v) { 10673 if (v == 0xffffffff) 10674 return false; 10675 10676 // there can be 1's on either or both "outsides", all the "inside" 10677 // bits must be 0's 10678 unsigned TO = CountTrailingOnes_32(v); 10679 unsigned LO = CountLeadingOnes_32(v); 10680 v = (v >> TO) << TO; 10681 v = (v << LO) >> LO; 10682 return v == 0; 10683 } 10684 10685 /// isFPImmLegal - Returns true if the target can instruction select the 10686 /// specified FP immediate natively. If false, the legalizer will 10687 /// materialize the FP immediate as a load from a constant pool. 10688 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 10689 if (!Subtarget->hasVFP3()) 10690 return false; 10691 if (VT == MVT::f32) 10692 return ARM_AM::getFP32Imm(Imm) != -1; 10693 if (VT == MVT::f64) 10694 return ARM_AM::getFP64Imm(Imm) != -1; 10695 return false; 10696 } 10697 10698 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 10699 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 10700 /// specified in the intrinsic calls. 10701 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 10702 const CallInst &I, 10703 unsigned Intrinsic) const { 10704 switch (Intrinsic) { 10705 case Intrinsic::arm_neon_vld1: 10706 case Intrinsic::arm_neon_vld2: 10707 case Intrinsic::arm_neon_vld3: 10708 case Intrinsic::arm_neon_vld4: 10709 case Intrinsic::arm_neon_vld2lane: 10710 case Intrinsic::arm_neon_vld3lane: 10711 case Intrinsic::arm_neon_vld4lane: { 10712 Info.opc = ISD::INTRINSIC_W_CHAIN; 10713 // Conservatively set memVT to the entire set of vectors loaded. 10714 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; 10715 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 10716 Info.ptrVal = I.getArgOperand(0); 10717 Info.offset = 0; 10718 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); 10719 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); 10720 Info.vol = false; // volatile loads with NEON intrinsics not supported 10721 Info.readMem = true; 10722 Info.writeMem = false; 10723 return true; 10724 } 10725 case Intrinsic::arm_neon_vst1: 10726 case Intrinsic::arm_neon_vst2: 10727 case Intrinsic::arm_neon_vst3: 10728 case Intrinsic::arm_neon_vst4: 10729 case Intrinsic::arm_neon_vst2lane: 10730 case Intrinsic::arm_neon_vst3lane: 10731 case Intrinsic::arm_neon_vst4lane: { 10732 Info.opc = ISD::INTRINSIC_VOID; 10733 // Conservatively set memVT to the entire set of vectors stored. 10734 unsigned NumElts = 0; 10735 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { 10736 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 10737 if (!ArgTy->isVectorTy()) 10738 break; 10739 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; 10740 } 10741 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 10742 Info.ptrVal = I.getArgOperand(0); 10743 Info.offset = 0; 10744 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); 10745 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); 10746 Info.vol = false; // volatile stores with NEON intrinsics not supported 10747 Info.readMem = false; 10748 Info.writeMem = true; 10749 return true; 10750 } 10751 case Intrinsic::arm_ldaex: 10752 case Intrinsic::arm_ldrex: { 10753 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 10754 Info.opc = ISD::INTRINSIC_W_CHAIN; 10755 Info.memVT = MVT::getVT(PtrTy->getElementType()); 10756 Info.ptrVal = I.getArgOperand(0); 10757 Info.offset = 0; 10758 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); 10759 Info.vol = true; 10760 Info.readMem = true; 10761 Info.writeMem = false; 10762 return true; 10763 } 10764 case Intrinsic::arm_stlex: 10765 case Intrinsic::arm_strex: { 10766 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 10767 Info.opc = ISD::INTRINSIC_W_CHAIN; 10768 Info.memVT = MVT::getVT(PtrTy->getElementType()); 10769 Info.ptrVal = I.getArgOperand(1); 10770 Info.offset = 0; 10771 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); 10772 Info.vol = true; 10773 Info.readMem = false; 10774 Info.writeMem = true; 10775 return true; 10776 } 10777 case Intrinsic::arm_stlexd: 10778 case Intrinsic::arm_strexd: { 10779 Info.opc = ISD::INTRINSIC_W_CHAIN; 10780 Info.memVT = MVT::i64; 10781 Info.ptrVal = I.getArgOperand(2); 10782 Info.offset = 0; 10783 Info.align = 8; 10784 Info.vol = true; 10785 Info.readMem = false; 10786 Info.writeMem = true; 10787 return true; 10788 } 10789 case Intrinsic::arm_ldaexd: 10790 case Intrinsic::arm_ldrexd: { 10791 Info.opc = ISD::INTRINSIC_W_CHAIN; 10792 Info.memVT = MVT::i64; 10793 Info.ptrVal = I.getArgOperand(0); 10794 Info.offset = 0; 10795 Info.align = 8; 10796 Info.vol = true; 10797 Info.readMem = true; 10798 Info.writeMem = false; 10799 return true; 10800 } 10801 default: 10802 break; 10803 } 10804 10805 return false; 10806 } 10807 10808 /// \brief Returns true if it is beneficial to convert a load of a constant 10809 /// to just the constant itself. 10810 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 10811 Type *Ty) const { 10812 assert(Ty->isIntegerTy()); 10813 10814 unsigned Bits = Ty->getPrimitiveSizeInBits(); 10815 if (Bits == 0 || Bits > 32) 10816 return false; 10817 return true; 10818 } 10819 10820 bool ARMTargetLowering::shouldExpandAtomicInIR(Instruction *Inst) const { 10821 // Loads and stores less than 64-bits are already atomic; ones above that 10822 // are doomed anyway, so defer to the default libcall and blame the OS when 10823 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit 10824 // anything for those. 10825 bool IsMClass = Subtarget->isMClass(); 10826 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 10827 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); 10828 return Size == 64 && !IsMClass; 10829 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 10830 return LI->getType()->getPrimitiveSizeInBits() == 64 && !IsMClass; 10831 } 10832 10833 // For the real atomic operations, we have ldrex/strex up to 32 bits, 10834 // and up to 64 bits on the non-M profiles 10835 unsigned AtomicLimit = IsMClass ? 32 : 64; 10836 return Inst->getType()->getPrimitiveSizeInBits() <= AtomicLimit; 10837 } 10838 10839 // This has so far only been implemented for MachO. 10840 bool ARMTargetLowering::useLoadStackGuardNode() const { 10841 return Subtarget->getTargetTriple().getObjectFormat() == Triple::MachO; 10842 } 10843 10844 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 10845 AtomicOrdering Ord) const { 10846 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10847 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); 10848 bool IsAcquire = 10849 Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent; 10850 10851 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd 10852 // intrinsic must return {i32, i32} and we have to recombine them into a 10853 // single i64 here. 10854 if (ValTy->getPrimitiveSizeInBits() == 64) { 10855 Intrinsic::ID Int = 10856 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd; 10857 Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int); 10858 10859 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 10860 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi"); 10861 10862 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 10863 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 10864 if (!Subtarget->isLittle()) 10865 std::swap (Lo, Hi); 10866 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 10867 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 10868 return Builder.CreateOr( 10869 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64"); 10870 } 10871 10872 Type *Tys[] = { Addr->getType() }; 10873 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex; 10874 Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys); 10875 10876 return Builder.CreateTruncOrBitCast( 10877 Builder.CreateCall(Ldrex, Addr), 10878 cast<PointerType>(Addr->getType())->getElementType()); 10879 } 10880 10881 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val, 10882 Value *Addr, 10883 AtomicOrdering Ord) const { 10884 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 10885 bool IsRelease = 10886 Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent; 10887 10888 // Since the intrinsics must have legal type, the i64 intrinsics take two 10889 // parameters: "i32, i32". We must marshal Val into the appropriate form 10890 // before the call. 10891 if (Val->getType()->getPrimitiveSizeInBits() == 64) { 10892 Intrinsic::ID Int = 10893 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd; 10894 Function *Strex = Intrinsic::getDeclaration(M, Int); 10895 Type *Int32Ty = Type::getInt32Ty(M->getContext()); 10896 10897 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo"); 10898 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi"); 10899 if (!Subtarget->isLittle()) 10900 std::swap (Lo, Hi); 10901 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 10902 return Builder.CreateCall3(Strex, Lo, Hi, Addr); 10903 } 10904 10905 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex; 10906 Type *Tys[] = { Addr->getType() }; 10907 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys); 10908 10909 return Builder.CreateCall2( 10910 Strex, Builder.CreateZExtOrBitCast( 10911 Val, Strex->getFunctionType()->getParamType(0)), 10912 Addr); 10913 } 10914 10915 enum HABaseType { 10916 HA_UNKNOWN = 0, 10917 HA_FLOAT, 10918 HA_DOUBLE, 10919 HA_VECT64, 10920 HA_VECT128 10921 }; 10922 10923 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base, 10924 uint64_t &Members) { 10925 if (const StructType *ST = dyn_cast<StructType>(Ty)) { 10926 for (unsigned i = 0; i < ST->getNumElements(); ++i) { 10927 uint64_t SubMembers = 0; 10928 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers)) 10929 return false; 10930 Members += SubMembers; 10931 } 10932 } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 10933 uint64_t SubMembers = 0; 10934 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers)) 10935 return false; 10936 Members += SubMembers * AT->getNumElements(); 10937 } else if (Ty->isFloatTy()) { 10938 if (Base != HA_UNKNOWN && Base != HA_FLOAT) 10939 return false; 10940 Members = 1; 10941 Base = HA_FLOAT; 10942 } else if (Ty->isDoubleTy()) { 10943 if (Base != HA_UNKNOWN && Base != HA_DOUBLE) 10944 return false; 10945 Members = 1; 10946 Base = HA_DOUBLE; 10947 } else if (const VectorType *VT = dyn_cast<VectorType>(Ty)) { 10948 Members = 1; 10949 switch (Base) { 10950 case HA_FLOAT: 10951 case HA_DOUBLE: 10952 return false; 10953 case HA_VECT64: 10954 return VT->getBitWidth() == 64; 10955 case HA_VECT128: 10956 return VT->getBitWidth() == 128; 10957 case HA_UNKNOWN: 10958 switch (VT->getBitWidth()) { 10959 case 64: 10960 Base = HA_VECT64; 10961 return true; 10962 case 128: 10963 Base = HA_VECT128; 10964 return true; 10965 default: 10966 return false; 10967 } 10968 } 10969 } 10970 10971 return (Members > 0 && Members <= 4); 10972 } 10973 10974 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate. 10975 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters( 10976 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { 10977 if (getEffectiveCallingConv(CallConv, isVarArg) != 10978 CallingConv::ARM_AAPCS_VFP) 10979 return false; 10980 10981 HABaseType Base = HA_UNKNOWN; 10982 uint64_t Members = 0; 10983 bool result = isHomogeneousAggregate(Ty, Base, Members); 10984 DEBUG(dbgs() << "isHA: " << result << " "; Ty->dump()); 10985 return result; 10986 } 10987