1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
114 
115 using namespace llvm;
116 using namespace llvm::PatternMatch;
117 
118 #define DEBUG_TYPE "arm-isel"
119 
120 STATISTIC(NumTailCalls, "Number of tail calls");
121 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted,
124   "Number of constants with their storage promoted into constant pools");
125 
126 static cl::opt<bool>
127 ARMInterworking("arm-interworking", cl::Hidden,
128   cl::desc("Enable / disable ARM interworking (for debugging only)"),
129   cl::init(true));
130 
131 static cl::opt<bool> EnableConstpoolPromotion(
132     "arm-promote-constant", cl::Hidden,
133     cl::desc("Enable / disable promotion of unnamed_addr constants into "
134              "constant pools"),
135     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
137     "arm-promote-constant-max-size", cl::Hidden,
138     cl::desc("Maximum size of constant to promote into a constant pool"),
139     cl::init(64));
140 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
141     "arm-promote-constant-max-total", cl::Hidden,
142     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
143     cl::init(128));
144 
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs[] = {
147   ARM::R0, ARM::R1, ARM::R2, ARM::R3
148 };
149 
150 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
151                                        MVT PromotedBitwiseVT) {
152   if (VT != PromotedLdStVT) {
153     setOperationAction(ISD::LOAD, VT, Promote);
154     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
155 
156     setOperationAction(ISD::STORE, VT, Promote);
157     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
158   }
159 
160   MVT ElemTy = VT.getVectorElementType();
161   if (ElemTy != MVT::f64)
162     setOperationAction(ISD::SETCC, VT, Custom);
163   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
164   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
165   if (ElemTy == MVT::i32) {
166     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
167     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
168     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
169     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
170   } else {
171     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
172     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
173     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
174     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
175   }
176   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
177   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
178   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
179   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
180   setOperationAction(ISD::SELECT,            VT, Expand);
181   setOperationAction(ISD::SELECT_CC,         VT, Expand);
182   setOperationAction(ISD::VSELECT,           VT, Expand);
183   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
184   if (VT.isInteger()) {
185     setOperationAction(ISD::SHL, VT, Custom);
186     setOperationAction(ISD::SRA, VT, Custom);
187     setOperationAction(ISD::SRL, VT, Custom);
188   }
189 
190   // Promote all bit-wise operations.
191   if (VT.isInteger() && VT != PromotedBitwiseVT) {
192     setOperationAction(ISD::AND, VT, Promote);
193     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
194     setOperationAction(ISD::OR,  VT, Promote);
195     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
196     setOperationAction(ISD::XOR, VT, Promote);
197     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
198   }
199 
200   // Neon does not support vector divide/remainder operations.
201   setOperationAction(ISD::SDIV, VT, Expand);
202   setOperationAction(ISD::UDIV, VT, Expand);
203   setOperationAction(ISD::FDIV, VT, Expand);
204   setOperationAction(ISD::SREM, VT, Expand);
205   setOperationAction(ISD::UREM, VT, Expand);
206   setOperationAction(ISD::FREM, VT, Expand);
207 
208   if (!VT.isFloatingPoint() &&
209       VT != MVT::v2i64 && VT != MVT::v1i64)
210     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
211       setOperationAction(Opcode, VT, Legal);
212 }
213 
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
215   addRegisterClass(VT, &ARM::DPRRegClass);
216   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
217 }
218 
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
220   addRegisterClass(VT, &ARM::DPairRegClass);
221   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
222 }
223 
224 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
225                                      const ARMSubtarget &STI)
226     : TargetLowering(TM), Subtarget(&STI) {
227   RegInfo = Subtarget->getRegisterInfo();
228   Itins = Subtarget->getInstrItineraryData();
229 
230   setBooleanContents(ZeroOrOneBooleanContent);
231   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
232 
233   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
234       !Subtarget->isTargetWatchOS()) {
235     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
236     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
237       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
238                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
239                                        : CallingConv::ARM_AAPCS);
240   }
241 
242   if (Subtarget->isTargetMachO()) {
243     // Uses VFP for Thumb libfuncs if available.
244     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
245         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
246       static const struct {
247         const RTLIB::Libcall Op;
248         const char * const Name;
249         const ISD::CondCode Cond;
250       } LibraryCalls[] = {
251         // Single-precision floating-point arithmetic.
252         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
253         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
254         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
255         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
256 
257         // Double-precision floating-point arithmetic.
258         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
259         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
260         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
261         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
262 
263         // Single-precision comparisons.
264         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
265         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
266         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
267         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
268         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
269         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
270         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
271         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
272 
273         // Double-precision comparisons.
274         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
275         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
276         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
277         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
278         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
279         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
280         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
281         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
282 
283         // Floating-point to integer conversions.
284         // i64 conversions are done via library routines even when generating VFP
285         // instructions, so use the same ones.
286         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
287         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
288         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
289         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
290 
291         // Conversions between floating types.
292         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
293         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
294 
295         // Integer to floating-point conversions.
296         // i64 conversions are done via library routines even when generating VFP
297         // instructions, so use the same ones.
298         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
299         // e.g., __floatunsidf vs. __floatunssidfvfp.
300         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
301         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
302         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
303         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
304       };
305 
306       for (const auto &LC : LibraryCalls) {
307         setLibcallName(LC.Op, LC.Name);
308         if (LC.Cond != ISD::SETCC_INVALID)
309           setCmpLibcallCC(LC.Op, LC.Cond);
310       }
311     }
312   }
313 
314   // These libcalls are not available in 32-bit.
315   setLibcallName(RTLIB::SHL_I128, nullptr);
316   setLibcallName(RTLIB::SRL_I128, nullptr);
317   setLibcallName(RTLIB::SRA_I128, nullptr);
318 
319   // RTLIB
320   if (Subtarget->isAAPCS_ABI() &&
321       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
322        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
323     static const struct {
324       const RTLIB::Libcall Op;
325       const char * const Name;
326       const CallingConv::ID CC;
327       const ISD::CondCode Cond;
328     } LibraryCalls[] = {
329       // Double-precision floating-point arithmetic helper functions
330       // RTABI chapter 4.1.2, Table 2
331       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
335 
336       // Double-precision floating-point comparison helper functions
337       // RTABI chapter 4.1.2, Table 3
338       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
339       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
340       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
341       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
342       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
343       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
344       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
345       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
346 
347       // Single-precision floating-point arithmetic helper functions
348       // RTABI chapter 4.1.2, Table 4
349       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
350       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
351       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
352       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
353 
354       // Single-precision floating-point comparison helper functions
355       // RTABI chapter 4.1.2, Table 5
356       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
357       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
358       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
359       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
360       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
361       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
362       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
363       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
364 
365       // Floating-point to integer conversions.
366       // RTABI chapter 4.1.2, Table 6
367       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
368       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
369       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
370       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
371       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
372       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
373       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
374       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
375 
376       // Conversions between floating types.
377       // RTABI chapter 4.1.2, Table 7
378       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
379       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
380       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
381 
382       // Integer to floating-point conversions.
383       // RTABI chapter 4.1.2, Table 8
384       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
385       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
386       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
387       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
388       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
389       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
390       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
391       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
392 
393       // Long long helper functions
394       // RTABI chapter 4.2, Table 9
395       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
396       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
397       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
398       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
399 
400       // Integer division functions
401       // RTABI chapter 4.3.1
402       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
403       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
404       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
405       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
406       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
407       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
408       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
409       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
410     };
411 
412     for (const auto &LC : LibraryCalls) {
413       setLibcallName(LC.Op, LC.Name);
414       setLibcallCallingConv(LC.Op, LC.CC);
415       if (LC.Cond != ISD::SETCC_INVALID)
416         setCmpLibcallCC(LC.Op, LC.Cond);
417     }
418 
419     // EABI dependent RTLIB
420     if (TM.Options.EABIVersion == EABI::EABI4 ||
421         TM.Options.EABIVersion == EABI::EABI5) {
422       static const struct {
423         const RTLIB::Libcall Op;
424         const char *const Name;
425         const CallingConv::ID CC;
426         const ISD::CondCode Cond;
427       } MemOpsLibraryCalls[] = {
428         // Memory operations
429         // RTABI chapter 4.3.4
430         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
431         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
432         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
433       };
434 
435       for (const auto &LC : MemOpsLibraryCalls) {
436         setLibcallName(LC.Op, LC.Name);
437         setLibcallCallingConv(LC.Op, LC.CC);
438         if (LC.Cond != ISD::SETCC_INVALID)
439           setCmpLibcallCC(LC.Op, LC.Cond);
440       }
441     }
442   }
443 
444   if (Subtarget->isTargetWindows()) {
445     static const struct {
446       const RTLIB::Libcall Op;
447       const char * const Name;
448       const CallingConv::ID CC;
449     } LibraryCalls[] = {
450       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
451       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
452       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
453       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
454       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
455       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
456       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
457       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
458     };
459 
460     for (const auto &LC : LibraryCalls) {
461       setLibcallName(LC.Op, LC.Name);
462       setLibcallCallingConv(LC.Op, LC.CC);
463     }
464   }
465 
466   // Use divmod compiler-rt calls for iOS 5.0 and later.
467   if (Subtarget->isTargetMachO() &&
468       !(Subtarget->isTargetIOS() &&
469         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
470     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
471     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
472   }
473 
474   // The half <-> float conversion functions are always soft-float on
475   // non-watchos platforms, but are needed for some targets which use a
476   // hard-float calling convention by default.
477   if (!Subtarget->isTargetWatchABI()) {
478     if (Subtarget->isAAPCS_ABI()) {
479       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
480       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
481       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
482     } else {
483       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
484       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
485       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
486     }
487   }
488 
489   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
490   // a __gnu_ prefix (which is the default).
491   if (Subtarget->isTargetAEABI()) {
492     static const struct {
493       const RTLIB::Libcall Op;
494       const char * const Name;
495       const CallingConv::ID CC;
496     } LibraryCalls[] = {
497       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
498       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
499       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
500     };
501 
502     for (const auto &LC : LibraryCalls) {
503       setLibcallName(LC.Op, LC.Name);
504       setLibcallCallingConv(LC.Op, LC.CC);
505     }
506   }
507 
508   if (Subtarget->isThumb1Only())
509     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
510   else
511     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
512 
513   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
514       !Subtarget->isThumb1Only()) {
515     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
516     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
517   }
518 
519   if (Subtarget->hasFullFP16()) {
520     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
521     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
522     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
523     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
524 
525     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
526     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
527   }
528 
529   for (MVT VT : MVT::vector_valuetypes()) {
530     for (MVT InnerVT : MVT::vector_valuetypes()) {
531       setTruncStoreAction(VT, InnerVT, Expand);
532       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
533       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
534       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
535     }
536 
537     setOperationAction(ISD::MULHS, VT, Expand);
538     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
539     setOperationAction(ISD::MULHU, VT, Expand);
540     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
541 
542     setOperationAction(ISD::BSWAP, VT, Expand);
543   }
544 
545   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
546   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
547 
548   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
549   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
550 
551   if (Subtarget->hasNEON()) {
552     addDRTypeForNEON(MVT::v2f32);
553     addDRTypeForNEON(MVT::v8i8);
554     addDRTypeForNEON(MVT::v4i16);
555     addDRTypeForNEON(MVT::v2i32);
556     addDRTypeForNEON(MVT::v1i64);
557 
558     addQRTypeForNEON(MVT::v4f32);
559     addQRTypeForNEON(MVT::v2f64);
560     addQRTypeForNEON(MVT::v16i8);
561     addQRTypeForNEON(MVT::v8i16);
562     addQRTypeForNEON(MVT::v4i32);
563     addQRTypeForNEON(MVT::v2i64);
564 
565     if (Subtarget->hasFullFP16()) {
566       addQRTypeForNEON(MVT::v8f16);
567       addDRTypeForNEON(MVT::v4f16);
568     }
569 
570     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
571     // neither Neon nor VFP support any arithmetic operations on it.
572     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
573     // supported for v4f32.
574     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
575     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
576     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
577     // FIXME: Code duplication: FDIV and FREM are expanded always, see
578     // ARMTargetLowering::addTypeForNEON method for details.
579     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
580     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
581     // FIXME: Create unittest.
582     // In another words, find a way when "copysign" appears in DAG with vector
583     // operands.
584     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
585     // FIXME: Code duplication: SETCC has custom operation action, see
586     // ARMTargetLowering::addTypeForNEON method for details.
587     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
588     // FIXME: Create unittest for FNEG and for FABS.
589     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
590     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
591     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
592     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
593     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
594     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
595     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
596     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
597     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
598     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
599     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
600     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
601     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
602     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
603     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
604     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
605     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
606     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
607 
608     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
609     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
610     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
611     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
612     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
613     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
614     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
615     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
616     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
617     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
618     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
619     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
620     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
621     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
622 
623     // Mark v2f32 intrinsics.
624     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
625     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
626     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
627     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
628     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
629     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
630     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
631     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
632     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
633     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
634     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
635     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
636     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
637     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
638 
639     // Neon does not support some operations on v1i64 and v2i64 types.
640     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
641     // Custom handling for some quad-vector types to detect VMULL.
642     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
643     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
644     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
645     // Custom handling for some vector types to avoid expensive expansions
646     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
647     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
648     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
649     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
650     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
651     // a destination type that is wider than the source, and nor does
652     // it have a FP_TO_[SU]INT instruction with a narrower destination than
653     // source.
654     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
655     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
656     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
657     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
658     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
659     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
660     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
661     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
662 
663     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
664     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
665 
666     // NEON does not have single instruction CTPOP for vectors with element
667     // types wider than 8-bits.  However, custom lowering can leverage the
668     // v8i8/v16i8 vcnt instruction.
669     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
670     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
671     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
672     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
673     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
674     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
675 
676     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
677     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
678 
679     // NEON does not have single instruction CTTZ for vectors.
680     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
681     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
682     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
683     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
684 
685     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
686     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
687     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
688     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
689 
690     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
691     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
692     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
693     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
694 
695     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
696     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
697     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
698     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
699 
700     // NEON only has FMA instructions as of VFP4.
701     if (!Subtarget->hasVFP4Base()) {
702       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
703       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
704     }
705 
706     setTargetDAGCombine(ISD::INTRINSIC_VOID);
707     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
708     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
709     setTargetDAGCombine(ISD::SHL);
710     setTargetDAGCombine(ISD::SRL);
711     setTargetDAGCombine(ISD::SRA);
712     setTargetDAGCombine(ISD::SIGN_EXTEND);
713     setTargetDAGCombine(ISD::ZERO_EXTEND);
714     setTargetDAGCombine(ISD::ANY_EXTEND);
715     setTargetDAGCombine(ISD::BUILD_VECTOR);
716     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
717     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
718     setTargetDAGCombine(ISD::STORE);
719     setTargetDAGCombine(ISD::FP_TO_SINT);
720     setTargetDAGCombine(ISD::FP_TO_UINT);
721     setTargetDAGCombine(ISD::FDIV);
722     setTargetDAGCombine(ISD::LOAD);
723 
724     // It is legal to extload from v4i8 to v4i16 or v4i32.
725     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
726                    MVT::v2i32}) {
727       for (MVT VT : MVT::integer_vector_valuetypes()) {
728         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
729         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
730         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
731       }
732     }
733   }
734 
735   if (!Subtarget->hasFP64()) {
736     // When targeting a floating-point unit with only single-precision
737     // operations, f64 is legal for the few double-precision instructions which
738     // are present However, no double-precision operations other than moves,
739     // loads and stores are provided by the hardware.
740     setOperationAction(ISD::FADD,       MVT::f64, Expand);
741     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
742     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
743     setOperationAction(ISD::FMA,        MVT::f64, Expand);
744     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
745     setOperationAction(ISD::FREM,       MVT::f64, Expand);
746     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
747     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
748     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
749     setOperationAction(ISD::FABS,       MVT::f64, Expand);
750     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
751     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
752     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
753     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
754     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
755     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
756     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
757     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
758     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
759     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
760     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
761     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
762     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
763     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
764     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
765     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
766     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
767     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
768     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
769     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
770     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
771     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
772   }
773 
774   computeRegisterProperties(Subtarget->getRegisterInfo());
775 
776   // ARM does not have floating-point extending loads.
777   for (MVT VT : MVT::fp_valuetypes()) {
778     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
779     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
780   }
781 
782   // ... or truncating stores
783   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
784   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
785   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
786 
787   // ARM does not have i1 sign extending load.
788   for (MVT VT : MVT::integer_valuetypes())
789     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
790 
791   // ARM supports all 4 flavors of integer indexed load / store.
792   if (!Subtarget->isThumb1Only()) {
793     for (unsigned im = (unsigned)ISD::PRE_INC;
794          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
795       setIndexedLoadAction(im,  MVT::i1,  Legal);
796       setIndexedLoadAction(im,  MVT::i8,  Legal);
797       setIndexedLoadAction(im,  MVT::i16, Legal);
798       setIndexedLoadAction(im,  MVT::i32, Legal);
799       setIndexedStoreAction(im, MVT::i1,  Legal);
800       setIndexedStoreAction(im, MVT::i8,  Legal);
801       setIndexedStoreAction(im, MVT::i16, Legal);
802       setIndexedStoreAction(im, MVT::i32, Legal);
803     }
804   } else {
805     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
806     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
807     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
808   }
809 
810   setOperationAction(ISD::SADDO, MVT::i32, Custom);
811   setOperationAction(ISD::UADDO, MVT::i32, Custom);
812   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
813   setOperationAction(ISD::USUBO, MVT::i32, Custom);
814 
815   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
816   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
817 
818   // i64 operation support.
819   setOperationAction(ISD::MUL,     MVT::i64, Expand);
820   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
821   if (Subtarget->isThumb1Only()) {
822     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
823     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
824   }
825   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
826       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
827     setOperationAction(ISD::MULHS, MVT::i32, Expand);
828 
829   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
830   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
831   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
832   setOperationAction(ISD::SRL,       MVT::i64, Custom);
833   setOperationAction(ISD::SRA,       MVT::i64, Custom);
834   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
835 
836   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
837   if (Subtarget->isThumb1Only()) {
838     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
839     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
840     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
841   }
842 
843   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
844     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
845 
846   // ARM does not have ROTL.
847   setOperationAction(ISD::ROTL, MVT::i32, Expand);
848   for (MVT VT : MVT::vector_valuetypes()) {
849     setOperationAction(ISD::ROTL, VT, Expand);
850     setOperationAction(ISD::ROTR, VT, Expand);
851   }
852   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
853   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
854   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
855     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
856     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
857   }
858 
859   // @llvm.readcyclecounter requires the Performance Monitors extension.
860   // Default to the 0 expansion on unsupported platforms.
861   // FIXME: Technically there are older ARM CPUs that have
862   // implementation-specific ways of obtaining this information.
863   if (Subtarget->hasPerfMon())
864     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
865 
866   // Only ARMv6 has BSWAP.
867   if (!Subtarget->hasV6Ops())
868     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
869 
870   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
871                                         : Subtarget->hasDivideInARMMode();
872   if (!hasDivide) {
873     // These are expanded into libcalls if the cpu doesn't have HW divider.
874     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
875     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
876   }
877 
878   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
879     setOperationAction(ISD::SDIV, MVT::i32, Custom);
880     setOperationAction(ISD::UDIV, MVT::i32, Custom);
881 
882     setOperationAction(ISD::SDIV, MVT::i64, Custom);
883     setOperationAction(ISD::UDIV, MVT::i64, Custom);
884   }
885 
886   setOperationAction(ISD::SREM,  MVT::i32, Expand);
887   setOperationAction(ISD::UREM,  MVT::i32, Expand);
888 
889   // Register based DivRem for AEABI (RTABI 4.2)
890   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
891       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
892       Subtarget->isTargetWindows()) {
893     setOperationAction(ISD::SREM, MVT::i64, Custom);
894     setOperationAction(ISD::UREM, MVT::i64, Custom);
895     HasStandaloneRem = false;
896 
897     if (Subtarget->isTargetWindows()) {
898       const struct {
899         const RTLIB::Libcall Op;
900         const char * const Name;
901         const CallingConv::ID CC;
902       } LibraryCalls[] = {
903         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
904         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
905         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
906         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
907 
908         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
909         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
910         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
911         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
912       };
913 
914       for (const auto &LC : LibraryCalls) {
915         setLibcallName(LC.Op, LC.Name);
916         setLibcallCallingConv(LC.Op, LC.CC);
917       }
918     } else {
919       const struct {
920         const RTLIB::Libcall Op;
921         const char * const Name;
922         const CallingConv::ID CC;
923       } LibraryCalls[] = {
924         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
925         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
926         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
927         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
928 
929         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
930         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
931         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
932         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
933       };
934 
935       for (const auto &LC : LibraryCalls) {
936         setLibcallName(LC.Op, LC.Name);
937         setLibcallCallingConv(LC.Op, LC.CC);
938       }
939     }
940 
941     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
942     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
943     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
944     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
945   } else {
946     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
947     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
948   }
949 
950   if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
951     for (auto &VT : {MVT::f32, MVT::f64})
952       setOperationAction(ISD::FPOWI, VT, Custom);
953 
954   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
955   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
956   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
957   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
958 
959   setOperationAction(ISD::TRAP, MVT::Other, Legal);
960   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
961 
962   // Use the default implementation.
963   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
964   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
965   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
966   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
967   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
968   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
969 
970   if (Subtarget->isTargetWindows())
971     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
972   else
973     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
974 
975   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
976   // the default expansion.
977   InsertFencesForAtomic = false;
978   if (Subtarget->hasAnyDataBarrier() &&
979       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
980     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
981     // to ldrex/strex loops already.
982     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
983     if (!Subtarget->isThumb() || !Subtarget->isMClass())
984       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
985 
986     // On v8, we have particularly efficient implementations of atomic fences
987     // if they can be combined with nearby atomic loads and stores.
988     if (!Subtarget->hasAcquireRelease() ||
989         getTargetMachine().getOptLevel() == 0) {
990       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
991       InsertFencesForAtomic = true;
992     }
993   } else {
994     // If there's anything we can use as a barrier, go through custom lowering
995     // for ATOMIC_FENCE.
996     // If target has DMB in thumb, Fences can be inserted.
997     if (Subtarget->hasDataBarrier())
998       InsertFencesForAtomic = true;
999 
1000     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1001                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1002 
1003     // Set them all for expansion, which will force libcalls.
1004     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1005     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1006     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1007     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1008     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1009     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1010     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1011     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1012     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1013     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1014     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1015     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1016     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1017     // Unordered/Monotonic case.
1018     if (!InsertFencesForAtomic) {
1019       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1020       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1021     }
1022   }
1023 
1024   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1025 
1026   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1027   if (!Subtarget->hasV6Ops()) {
1028     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1029     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1030   }
1031   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1032 
1033   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1034       !Subtarget->isThumb1Only()) {
1035     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1036     // iff target supports vfp2.
1037     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1038     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1039   }
1040 
1041   // We want to custom lower some of our intrinsics.
1042   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1043   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1044   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1045   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1046   if (Subtarget->useSjLjEH())
1047     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1048 
1049   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1050   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1051   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1052   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1053   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1054   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1055   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1056   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1057   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1058   if (Subtarget->hasFullFP16()) {
1059     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1060     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1061     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1062   }
1063 
1064   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1065 
1066   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1067   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1068   if (Subtarget->hasFullFP16())
1069       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1070   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1071   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1072   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1073 
1074   // We don't support sin/cos/fmod/copysign/pow
1075   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1076   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1077   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1078   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1079   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1080   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1081   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1082   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1083   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1084       !Subtarget->isThumb1Only()) {
1085     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1086     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1087   }
1088   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1089   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1090 
1091   if (!Subtarget->hasVFP4Base()) {
1092     setOperationAction(ISD::FMA, MVT::f64, Expand);
1093     setOperationAction(ISD::FMA, MVT::f32, Expand);
1094   }
1095 
1096   // Various VFP goodness
1097   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1098     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1099     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1100       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1101       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1102     }
1103 
1104     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1105     if (!Subtarget->hasFP16()) {
1106       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1107       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1108     }
1109   }
1110 
1111   // Use __sincos_stret if available.
1112   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1113       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1114     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1115     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1116   }
1117 
1118   // FP-ARMv8 implements a lot of rounding-like FP operations.
1119   if (Subtarget->hasFPARMv8Base()) {
1120     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1121     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1122     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1123     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1124     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1125     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1126     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1127     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1128     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1129     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1130     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1131     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1132 
1133     if (Subtarget->hasFP64()) {
1134       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1135       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1136       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1137       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1138       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1139       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1140       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1141       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1142     }
1143   }
1144 
1145   // FP16 often need to be promoted to call lib functions
1146   if (Subtarget->hasFullFP16()) {
1147     setOperationAction(ISD::FREM, MVT::f16, Promote);
1148     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1149     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1150     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1151     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1152     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1153     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1154     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1155     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1156     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1157     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1158     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1159 
1160     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1161   }
1162 
1163   if (Subtarget->hasNEON()) {
1164     // vmin and vmax aren't available in a scalar form, so we use
1165     // a NEON instruction with an undef lane instead.
1166     setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1167     setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1168     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1169     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1170     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1171     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1172     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1173     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1174 
1175     if (Subtarget->hasFullFP16()) {
1176       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1177       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1178       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1179       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1180 
1181       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1182       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1183       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1184       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1185     }
1186   }
1187 
1188   // We have target-specific dag combine patterns for the following nodes:
1189   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1190   setTargetDAGCombine(ISD::ADD);
1191   setTargetDAGCombine(ISD::SUB);
1192   setTargetDAGCombine(ISD::MUL);
1193   setTargetDAGCombine(ISD::AND);
1194   setTargetDAGCombine(ISD::OR);
1195   setTargetDAGCombine(ISD::XOR);
1196 
1197   if (Subtarget->hasV6Ops())
1198     setTargetDAGCombine(ISD::SRL);
1199   if (Subtarget->isThumb1Only())
1200     setTargetDAGCombine(ISD::SHL);
1201 
1202   setStackPointerRegisterToSaveRestore(ARM::SP);
1203 
1204   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1205       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1206     setSchedulingPreference(Sched::RegPressure);
1207   else
1208     setSchedulingPreference(Sched::Hybrid);
1209 
1210   //// temporary - rewrite interface to use type
1211   MaxStoresPerMemset = 8;
1212   MaxStoresPerMemsetOptSize = 4;
1213   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1214   MaxStoresPerMemcpyOptSize = 2;
1215   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1216   MaxStoresPerMemmoveOptSize = 2;
1217 
1218   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1219   // are at least 4 bytes aligned.
1220   setMinStackArgumentAlignment(4);
1221 
1222   // Prefer likely predicted branches to selects on out-of-order cores.
1223   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1224 
1225   setPrefLoopAlignment(Subtarget->getPrefLoopAlignment());
1226 
1227   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1228 
1229   if (Subtarget->isThumb() || Subtarget->isThumb2())
1230     setTargetDAGCombine(ISD::ABS);
1231 }
1232 
1233 bool ARMTargetLowering::useSoftFloat() const {
1234   return Subtarget->useSoftFloat();
1235 }
1236 
1237 // FIXME: It might make sense to define the representative register class as the
1238 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1239 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1240 // SPR's representative would be DPR_VFP2. This should work well if register
1241 // pressure tracking were modified such that a register use would increment the
1242 // pressure of the register class's representative and all of it's super
1243 // classes' representatives transitively. We have not implemented this because
1244 // of the difficulty prior to coalescing of modeling operand register classes
1245 // due to the common occurrence of cross class copies and subregister insertions
1246 // and extractions.
1247 std::pair<const TargetRegisterClass *, uint8_t>
1248 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1249                                            MVT VT) const {
1250   const TargetRegisterClass *RRC = nullptr;
1251   uint8_t Cost = 1;
1252   switch (VT.SimpleTy) {
1253   default:
1254     return TargetLowering::findRepresentativeClass(TRI, VT);
1255   // Use DPR as representative register class for all floating point
1256   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1257   // the cost is 1 for both f32 and f64.
1258   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1259   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1260     RRC = &ARM::DPRRegClass;
1261     // When NEON is used for SP, only half of the register file is available
1262     // because operations that define both SP and DP results will be constrained
1263     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1264     // coalescing by double-counting the SP regs. See the FIXME above.
1265     if (Subtarget->useNEONForSinglePrecisionFP())
1266       Cost = 2;
1267     break;
1268   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1269   case MVT::v4f32: case MVT::v2f64:
1270     RRC = &ARM::DPRRegClass;
1271     Cost = 2;
1272     break;
1273   case MVT::v4i64:
1274     RRC = &ARM::DPRRegClass;
1275     Cost = 4;
1276     break;
1277   case MVT::v8i64:
1278     RRC = &ARM::DPRRegClass;
1279     Cost = 8;
1280     break;
1281   }
1282   return std::make_pair(RRC, Cost);
1283 }
1284 
1285 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1286   switch ((ARMISD::NodeType)Opcode) {
1287   case ARMISD::FIRST_NUMBER:  break;
1288   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1289   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1290   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1291   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1292   case ARMISD::CALL:          return "ARMISD::CALL";
1293   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1294   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1295   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1296   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1297   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1298   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1299   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1300   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1301   case ARMISD::CMP:           return "ARMISD::CMP";
1302   case ARMISD::CMN:           return "ARMISD::CMN";
1303   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1304   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1305   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1306   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1307   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1308 
1309   case ARMISD::CMOV:          return "ARMISD::CMOV";
1310   case ARMISD::SUBS:          return "ARMISD::SUBS";
1311 
1312   case ARMISD::SSAT:          return "ARMISD::SSAT";
1313   case ARMISD::USAT:          return "ARMISD::USAT";
1314 
1315   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1316   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1317   case ARMISD::RRX:           return "ARMISD::RRX";
1318 
1319   case ARMISD::ADDC:          return "ARMISD::ADDC";
1320   case ARMISD::ADDE:          return "ARMISD::ADDE";
1321   case ARMISD::SUBC:          return "ARMISD::SUBC";
1322   case ARMISD::SUBE:          return "ARMISD::SUBE";
1323 
1324   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1325   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1326   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
1327   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
1328   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
1329 
1330   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1331   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1332   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1333 
1334   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1335 
1336   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1337 
1338   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1339 
1340   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1341 
1342   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1343 
1344   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1345   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1346 
1347   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1348   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1349   case ARMISD::VCGE:          return "ARMISD::VCGE";
1350   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1351   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1352   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1353   case ARMISD::VCGT:          return "ARMISD::VCGT";
1354   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1355   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1356   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1357   case ARMISD::VTST:          return "ARMISD::VTST";
1358 
1359   case ARMISD::VSHL:          return "ARMISD::VSHL";
1360   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1361   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1362   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1363   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1364   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1365   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1366   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1367   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1368   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1369   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1370   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1371   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1372   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1373   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1374   case ARMISD::VSLI:          return "ARMISD::VSLI";
1375   case ARMISD::VSRI:          return "ARMISD::VSRI";
1376   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1377   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1378   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1379   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1380   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1381   case ARMISD::VDUP:          return "ARMISD::VDUP";
1382   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1383   case ARMISD::VEXT:          return "ARMISD::VEXT";
1384   case ARMISD::VREV64:        return "ARMISD::VREV64";
1385   case ARMISD::VREV32:        return "ARMISD::VREV32";
1386   case ARMISD::VREV16:        return "ARMISD::VREV16";
1387   case ARMISD::VZIP:          return "ARMISD::VZIP";
1388   case ARMISD::VUZP:          return "ARMISD::VUZP";
1389   case ARMISD::VTRN:          return "ARMISD::VTRN";
1390   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1391   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1392   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1393   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1394   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1395   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1396   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1397   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
1398   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
1399   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
1400   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
1401   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
1402   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
1403   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
1404   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
1405   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
1406   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
1407   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
1408   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
1409   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1410   case ARMISD::BFI:           return "ARMISD::BFI";
1411   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1412   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1413   case ARMISD::VBSL:          return "ARMISD::VBSL";
1414   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1415   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1416   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1417   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1418   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1419   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1420   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1421   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1422   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1423   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1424   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1425   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1426   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1427   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1428   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1429   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1430   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1431   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1432   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1433   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1434   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1435   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1436   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1437   }
1438   return nullptr;
1439 }
1440 
1441 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1442                                           EVT VT) const {
1443   if (!VT.isVector())
1444     return getPointerTy(DL);
1445   return VT.changeVectorElementTypeToInteger();
1446 }
1447 
1448 /// getRegClassFor - Return the register class that should be used for the
1449 /// specified value type.
1450 const TargetRegisterClass *
1451 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1452   (void)isDivergent;
1453   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1454   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1455   // load / store 4 to 8 consecutive D registers.
1456   if (Subtarget->hasNEON()) {
1457     if (VT == MVT::v4i64)
1458       return &ARM::QQPRRegClass;
1459     if (VT == MVT::v8i64)
1460       return &ARM::QQQQPRRegClass;
1461   }
1462   return TargetLowering::getRegClassFor(VT);
1463 }
1464 
1465 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1466 // source/dest is aligned and the copy size is large enough. We therefore want
1467 // to align such objects passed to memory intrinsics.
1468 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1469                                                unsigned &PrefAlign) const {
1470   if (!isa<MemIntrinsic>(CI))
1471     return false;
1472   MinSize = 8;
1473   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1474   // cycle faster than 4-byte aligned LDM.
1475   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1476   return true;
1477 }
1478 
1479 // Create a fast isel object.
1480 FastISel *
1481 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1482                                   const TargetLibraryInfo *libInfo) const {
1483   return ARM::createFastISel(funcInfo, libInfo);
1484 }
1485 
1486 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1487   unsigned NumVals = N->getNumValues();
1488   if (!NumVals)
1489     return Sched::RegPressure;
1490 
1491   for (unsigned i = 0; i != NumVals; ++i) {
1492     EVT VT = N->getValueType(i);
1493     if (VT == MVT::Glue || VT == MVT::Other)
1494       continue;
1495     if (VT.isFloatingPoint() || VT.isVector())
1496       return Sched::ILP;
1497   }
1498 
1499   if (!N->isMachineOpcode())
1500     return Sched::RegPressure;
1501 
1502   // Load are scheduled for latency even if there instruction itinerary
1503   // is not available.
1504   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1505   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1506 
1507   if (MCID.getNumDefs() == 0)
1508     return Sched::RegPressure;
1509   if (!Itins->isEmpty() &&
1510       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1511     return Sched::ILP;
1512 
1513   return Sched::RegPressure;
1514 }
1515 
1516 //===----------------------------------------------------------------------===//
1517 // Lowering Code
1518 //===----------------------------------------------------------------------===//
1519 
1520 static bool isSRL16(const SDValue &Op) {
1521   if (Op.getOpcode() != ISD::SRL)
1522     return false;
1523   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1524     return Const->getZExtValue() == 16;
1525   return false;
1526 }
1527 
1528 static bool isSRA16(const SDValue &Op) {
1529   if (Op.getOpcode() != ISD::SRA)
1530     return false;
1531   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1532     return Const->getZExtValue() == 16;
1533   return false;
1534 }
1535 
1536 static bool isSHL16(const SDValue &Op) {
1537   if (Op.getOpcode() != ISD::SHL)
1538     return false;
1539   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1540     return Const->getZExtValue() == 16;
1541   return false;
1542 }
1543 
1544 // Check for a signed 16-bit value. We special case SRA because it makes it
1545 // more simple when also looking for SRAs that aren't sign extending a
1546 // smaller value. Without the check, we'd need to take extra care with
1547 // checking order for some operations.
1548 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1549   if (isSRA16(Op))
1550     return isSHL16(Op.getOperand(0));
1551   return DAG.ComputeNumSignBits(Op) == 17;
1552 }
1553 
1554 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1555 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1556   switch (CC) {
1557   default: llvm_unreachable("Unknown condition code!");
1558   case ISD::SETNE:  return ARMCC::NE;
1559   case ISD::SETEQ:  return ARMCC::EQ;
1560   case ISD::SETGT:  return ARMCC::GT;
1561   case ISD::SETGE:  return ARMCC::GE;
1562   case ISD::SETLT:  return ARMCC::LT;
1563   case ISD::SETLE:  return ARMCC::LE;
1564   case ISD::SETUGT: return ARMCC::HI;
1565   case ISD::SETUGE: return ARMCC::HS;
1566   case ISD::SETULT: return ARMCC::LO;
1567   case ISD::SETULE: return ARMCC::LS;
1568   }
1569 }
1570 
1571 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1572 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1573                         ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1574   CondCode2 = ARMCC::AL;
1575   InvalidOnQNaN = true;
1576   switch (CC) {
1577   default: llvm_unreachable("Unknown FP condition!");
1578   case ISD::SETEQ:
1579   case ISD::SETOEQ:
1580     CondCode = ARMCC::EQ;
1581     InvalidOnQNaN = false;
1582     break;
1583   case ISD::SETGT:
1584   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1585   case ISD::SETGE:
1586   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1587   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1588   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1589   case ISD::SETONE:
1590     CondCode = ARMCC::MI;
1591     CondCode2 = ARMCC::GT;
1592     InvalidOnQNaN = false;
1593     break;
1594   case ISD::SETO:   CondCode = ARMCC::VC; break;
1595   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1596   case ISD::SETUEQ:
1597     CondCode = ARMCC::EQ;
1598     CondCode2 = ARMCC::VS;
1599     InvalidOnQNaN = false;
1600     break;
1601   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1602   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1603   case ISD::SETLT:
1604   case ISD::SETULT: CondCode = ARMCC::LT; break;
1605   case ISD::SETLE:
1606   case ISD::SETULE: CondCode = ARMCC::LE; break;
1607   case ISD::SETNE:
1608   case ISD::SETUNE:
1609     CondCode = ARMCC::NE;
1610     InvalidOnQNaN = false;
1611     break;
1612   }
1613 }
1614 
1615 //===----------------------------------------------------------------------===//
1616 //                      Calling Convention Implementation
1617 //===----------------------------------------------------------------------===//
1618 
1619 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1620 /// account presence of floating point hardware and calling convention
1621 /// limitations, such as support for variadic functions.
1622 CallingConv::ID
1623 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1624                                            bool isVarArg) const {
1625   switch (CC) {
1626   default:
1627     report_fatal_error("Unsupported calling convention");
1628   case CallingConv::ARM_AAPCS:
1629   case CallingConv::ARM_APCS:
1630   case CallingConv::GHC:
1631     return CC;
1632   case CallingConv::PreserveMost:
1633     return CallingConv::PreserveMost;
1634   case CallingConv::ARM_AAPCS_VFP:
1635   case CallingConv::Swift:
1636     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1637   case CallingConv::C:
1638     if (!Subtarget->isAAPCS_ABI())
1639       return CallingConv::ARM_APCS;
1640     else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
1641              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1642              !isVarArg)
1643       return CallingConv::ARM_AAPCS_VFP;
1644     else
1645       return CallingConv::ARM_AAPCS;
1646   case CallingConv::Fast:
1647   case CallingConv::CXX_FAST_TLS:
1648     if (!Subtarget->isAAPCS_ABI()) {
1649       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
1650         return CallingConv::Fast;
1651       return CallingConv::ARM_APCS;
1652     } else if (Subtarget->hasVFP2Base() &&
1653                !Subtarget->isThumb1Only() && !isVarArg)
1654       return CallingConv::ARM_AAPCS_VFP;
1655     else
1656       return CallingConv::ARM_AAPCS;
1657   }
1658 }
1659 
1660 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1661                                                  bool isVarArg) const {
1662   return CCAssignFnForNode(CC, false, isVarArg);
1663 }
1664 
1665 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1666                                                    bool isVarArg) const {
1667   return CCAssignFnForNode(CC, true, isVarArg);
1668 }
1669 
1670 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1671 /// CallingConvention.
1672 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1673                                                  bool Return,
1674                                                  bool isVarArg) const {
1675   switch (getEffectiveCallingConv(CC, isVarArg)) {
1676   default:
1677     report_fatal_error("Unsupported calling convention");
1678   case CallingConv::ARM_APCS:
1679     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1680   case CallingConv::ARM_AAPCS:
1681     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1682   case CallingConv::ARM_AAPCS_VFP:
1683     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1684   case CallingConv::Fast:
1685     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1686   case CallingConv::GHC:
1687     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1688   case CallingConv::PreserveMost:
1689     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1690   }
1691 }
1692 
1693 /// LowerCallResult - Lower the result values of a call into the
1694 /// appropriate copies out of appropriate physical registers.
1695 SDValue ARMTargetLowering::LowerCallResult(
1696     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1697     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1698     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1699     SDValue ThisVal) const {
1700   // Assign locations to each value returned by this call.
1701   SmallVector<CCValAssign, 16> RVLocs;
1702   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1703                  *DAG.getContext());
1704   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1705 
1706   // Copy all of the result registers out of their specified physreg.
1707   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1708     CCValAssign VA = RVLocs[i];
1709 
1710     // Pass 'this' value directly from the argument to return value, to avoid
1711     // reg unit interference
1712     if (i == 0 && isThisReturn) {
1713       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1714              "unexpected return calling convention register assignment");
1715       InVals.push_back(ThisVal);
1716       continue;
1717     }
1718 
1719     SDValue Val;
1720     if (VA.needsCustom()) {
1721       // Handle f64 or half of a v2f64.
1722       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1723                                       InFlag);
1724       Chain = Lo.getValue(1);
1725       InFlag = Lo.getValue(2);
1726       VA = RVLocs[++i]; // skip ahead to next loc
1727       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1728                                       InFlag);
1729       Chain = Hi.getValue(1);
1730       InFlag = Hi.getValue(2);
1731       if (!Subtarget->isLittle())
1732         std::swap (Lo, Hi);
1733       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1734 
1735       if (VA.getLocVT() == MVT::v2f64) {
1736         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1737         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1738                           DAG.getConstant(0, dl, MVT::i32));
1739 
1740         VA = RVLocs[++i]; // skip ahead to next loc
1741         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1742         Chain = Lo.getValue(1);
1743         InFlag = Lo.getValue(2);
1744         VA = RVLocs[++i]; // skip ahead to next loc
1745         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1746         Chain = Hi.getValue(1);
1747         InFlag = Hi.getValue(2);
1748         if (!Subtarget->isLittle())
1749           std::swap (Lo, Hi);
1750         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1751         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1752                           DAG.getConstant(1, dl, MVT::i32));
1753       }
1754     } else {
1755       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1756                                InFlag);
1757       Chain = Val.getValue(1);
1758       InFlag = Val.getValue(2);
1759     }
1760 
1761     switch (VA.getLocInfo()) {
1762     default: llvm_unreachable("Unknown loc info!");
1763     case CCValAssign::Full: break;
1764     case CCValAssign::BCvt:
1765       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1766       break;
1767     }
1768 
1769     InVals.push_back(Val);
1770   }
1771 
1772   return Chain;
1773 }
1774 
1775 /// LowerMemOpCallTo - Store the argument to the stack.
1776 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1777                                             SDValue Arg, const SDLoc &dl,
1778                                             SelectionDAG &DAG,
1779                                             const CCValAssign &VA,
1780                                             ISD::ArgFlagsTy Flags) const {
1781   unsigned LocMemOffset = VA.getLocMemOffset();
1782   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1783   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1784                        StackPtr, PtrOff);
1785   return DAG.getStore(
1786       Chain, dl, Arg, PtrOff,
1787       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1788 }
1789 
1790 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1791                                          SDValue Chain, SDValue &Arg,
1792                                          RegsToPassVector &RegsToPass,
1793                                          CCValAssign &VA, CCValAssign &NextVA,
1794                                          SDValue &StackPtr,
1795                                          SmallVectorImpl<SDValue> &MemOpChains,
1796                                          ISD::ArgFlagsTy Flags) const {
1797   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1798                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1799   unsigned id = Subtarget->isLittle() ? 0 : 1;
1800   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1801 
1802   if (NextVA.isRegLoc())
1803     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1804   else {
1805     assert(NextVA.isMemLoc());
1806     if (!StackPtr.getNode())
1807       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1808                                     getPointerTy(DAG.getDataLayout()));
1809 
1810     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1811                                            dl, DAG, NextVA,
1812                                            Flags));
1813   }
1814 }
1815 
1816 /// LowerCall - Lowering a call into a callseq_start <-
1817 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1818 /// nodes.
1819 SDValue
1820 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1821                              SmallVectorImpl<SDValue> &InVals) const {
1822   SelectionDAG &DAG                     = CLI.DAG;
1823   SDLoc &dl                             = CLI.DL;
1824   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1825   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1826   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1827   SDValue Chain                         = CLI.Chain;
1828   SDValue Callee                        = CLI.Callee;
1829   bool &isTailCall                      = CLI.IsTailCall;
1830   CallingConv::ID CallConv              = CLI.CallConv;
1831   bool doesNotRet                       = CLI.DoesNotReturn;
1832   bool isVarArg                         = CLI.IsVarArg;
1833 
1834   MachineFunction &MF = DAG.getMachineFunction();
1835   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1836   bool isThisReturn = false;
1837   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
1838   bool PreferIndirect = false;
1839 
1840   // Disable tail calls if they're not supported.
1841   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1842     isTailCall = false;
1843 
1844   if (isa<GlobalAddressSDNode>(Callee)) {
1845     // If we're optimizing for minimum size and the function is called three or
1846     // more times in this block, we can improve codesize by calling indirectly
1847     // as BLXr has a 16-bit encoding.
1848     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
1849     auto *BB = CLI.CS.getParent();
1850     PreferIndirect =
1851         Subtarget->isThumb() && Subtarget->hasMinSize() &&
1852         count_if(GV->users(), [&BB](const User *U) {
1853           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
1854         }) > 2;
1855   }
1856   if (isTailCall) {
1857     // Check if it's really possible to do a tail call.
1858     isTailCall = IsEligibleForTailCallOptimization(
1859         Callee, CallConv, isVarArg, isStructRet,
1860         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
1861         PreferIndirect);
1862     if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
1863       report_fatal_error("failed to perform tail call elimination on a call "
1864                          "site marked musttail");
1865     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1866     // detected sibcalls.
1867     if (isTailCall)
1868       ++NumTailCalls;
1869   }
1870 
1871   // Analyze operands of the call, assigning locations to each operand.
1872   SmallVector<CCValAssign, 16> ArgLocs;
1873   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1874                  *DAG.getContext());
1875   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
1876 
1877   // Get a count of how many bytes are to be pushed on the stack.
1878   unsigned NumBytes = CCInfo.getNextStackOffset();
1879 
1880   if (isTailCall) {
1881     // For tail calls, memory operands are available in our caller's stack.
1882     NumBytes = 0;
1883   } else {
1884     // Adjust the stack pointer for the new arguments...
1885     // These operations are automatically eliminated by the prolog/epilog pass
1886     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1887   }
1888 
1889   SDValue StackPtr =
1890       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1891 
1892   RegsToPassVector RegsToPass;
1893   SmallVector<SDValue, 8> MemOpChains;
1894 
1895   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1896   // of tail call optimization, arguments are handled later.
1897   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1898        i != e;
1899        ++i, ++realArgIdx) {
1900     CCValAssign &VA = ArgLocs[i];
1901     SDValue Arg = OutVals[realArgIdx];
1902     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1903     bool isByVal = Flags.isByVal();
1904 
1905     // Promote the value if needed.
1906     switch (VA.getLocInfo()) {
1907     default: llvm_unreachable("Unknown loc info!");
1908     case CCValAssign::Full: break;
1909     case CCValAssign::SExt:
1910       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1911       break;
1912     case CCValAssign::ZExt:
1913       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1914       break;
1915     case CCValAssign::AExt:
1916       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1917       break;
1918     case CCValAssign::BCvt:
1919       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1920       break;
1921     }
1922 
1923     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1924     if (VA.needsCustom()) {
1925       if (VA.getLocVT() == MVT::v2f64) {
1926         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1927                                   DAG.getConstant(0, dl, MVT::i32));
1928         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1929                                   DAG.getConstant(1, dl, MVT::i32));
1930 
1931         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1932                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1933 
1934         VA = ArgLocs[++i]; // skip ahead to next loc
1935         if (VA.isRegLoc()) {
1936           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1937                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1938         } else {
1939           assert(VA.isMemLoc());
1940 
1941           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1942                                                  dl, DAG, VA, Flags));
1943         }
1944       } else {
1945         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1946                          StackPtr, MemOpChains, Flags);
1947       }
1948     } else if (VA.isRegLoc()) {
1949       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
1950           Outs[0].VT == MVT::i32) {
1951         assert(VA.getLocVT() == MVT::i32 &&
1952                "unexpected calling convention register assignment");
1953         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1954                "unexpected use of 'returned'");
1955         isThisReturn = true;
1956       }
1957       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1958     } else if (isByVal) {
1959       assert(VA.isMemLoc());
1960       unsigned offset = 0;
1961 
1962       // True if this byval aggregate will be split between registers
1963       // and memory.
1964       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1965       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1966 
1967       if (CurByValIdx < ByValArgsCount) {
1968 
1969         unsigned RegBegin, RegEnd;
1970         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1971 
1972         EVT PtrVT =
1973             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1974         unsigned int i, j;
1975         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1976           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1977           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1978           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1979                                      MachinePointerInfo(),
1980                                      DAG.InferPtrAlignment(AddArg));
1981           MemOpChains.push_back(Load.getValue(1));
1982           RegsToPass.push_back(std::make_pair(j, Load));
1983         }
1984 
1985         // If parameter size outsides register area, "offset" value
1986         // helps us to calculate stack slot for remained part properly.
1987         offset = RegEnd - RegBegin;
1988 
1989         CCInfo.nextInRegsParam();
1990       }
1991 
1992       if (Flags.getByValSize() > 4*offset) {
1993         auto PtrVT = getPointerTy(DAG.getDataLayout());
1994         unsigned LocMemOffset = VA.getLocMemOffset();
1995         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1996         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1997         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1998         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1999         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2000                                            MVT::i32);
2001         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
2002                                             MVT::i32);
2003 
2004         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2005         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2006         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2007                                           Ops));
2008       }
2009     } else if (!isTailCall) {
2010       assert(VA.isMemLoc());
2011 
2012       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2013                                              dl, DAG, VA, Flags));
2014     }
2015   }
2016 
2017   if (!MemOpChains.empty())
2018     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2019 
2020   // Build a sequence of copy-to-reg nodes chained together with token chain
2021   // and flag operands which copy the outgoing args into the appropriate regs.
2022   SDValue InFlag;
2023   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2024     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2025                              RegsToPass[i].second, InFlag);
2026     InFlag = Chain.getValue(1);
2027   }
2028 
2029   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2030   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2031   // node so that legalize doesn't hack it.
2032   bool isDirect = false;
2033 
2034   const TargetMachine &TM = getTargetMachine();
2035   const Module *Mod = MF.getFunction().getParent();
2036   const GlobalValue *GV = nullptr;
2037   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2038     GV = G->getGlobal();
2039   bool isStub =
2040       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2041 
2042   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2043   bool isLocalARMFunc = false;
2044   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2045   auto PtrVt = getPointerTy(DAG.getDataLayout());
2046 
2047   if (Subtarget->genLongCalls()) {
2048     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2049            "long-calls codegen is not position independent!");
2050     // Handle a global address or an external symbol. If it's not one of
2051     // those, the target's already in a register, so we don't need to do
2052     // anything extra.
2053     if (isa<GlobalAddressSDNode>(Callee)) {
2054       // Create a constant pool entry for the callee address
2055       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2056       ARMConstantPoolValue *CPV =
2057         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2058 
2059       // Get the address of the callee into a register
2060       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2061       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2062       Callee = DAG.getLoad(
2063           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2064           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2065     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2066       const char *Sym = S->getSymbol();
2067 
2068       // Create a constant pool entry for the callee address
2069       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2070       ARMConstantPoolValue *CPV =
2071         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2072                                       ARMPCLabelIndex, 0);
2073       // Get the address of the callee into a register
2074       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2075       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2076       Callee = DAG.getLoad(
2077           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2078           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2079     }
2080   } else if (isa<GlobalAddressSDNode>(Callee)) {
2081     if (!PreferIndirect) {
2082       isDirect = true;
2083       bool isDef = GV->isStrongDefinitionForLinker();
2084 
2085       // ARM call to a local ARM function is predicable.
2086       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2087       // tBX takes a register source operand.
2088       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2089         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2090         Callee = DAG.getNode(
2091             ARMISD::WrapperPIC, dl, PtrVt,
2092             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2093         Callee = DAG.getLoad(
2094             PtrVt, dl, DAG.getEntryNode(), Callee,
2095             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2096             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2097                                      MachineMemOperand::MOInvariant);
2098       } else if (Subtarget->isTargetCOFF()) {
2099         assert(Subtarget->isTargetWindows() &&
2100                "Windows is the only supported COFF target");
2101         unsigned TargetFlags = GV->hasDLLImportStorageClass()
2102                                    ? ARMII::MO_DLLIMPORT
2103                                    : ARMII::MO_NO_FLAG;
2104         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
2105                                             TargetFlags);
2106         if (GV->hasDLLImportStorageClass())
2107           Callee =
2108               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2109                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2110                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2111       } else {
2112         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2113       }
2114     }
2115   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2116     isDirect = true;
2117     // tBX takes a register source operand.
2118     const char *Sym = S->getSymbol();
2119     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2120       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2121       ARMConstantPoolValue *CPV =
2122         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2123                                       ARMPCLabelIndex, 4);
2124       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2125       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2126       Callee = DAG.getLoad(
2127           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2128           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2129       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2130       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2131     } else {
2132       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2133     }
2134   }
2135 
2136   // FIXME: handle tail calls differently.
2137   unsigned CallOpc;
2138   if (Subtarget->isThumb()) {
2139     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2140       CallOpc = ARMISD::CALL_NOLINK;
2141     else
2142       CallOpc = ARMISD::CALL;
2143   } else {
2144     if (!isDirect && !Subtarget->hasV5TOps())
2145       CallOpc = ARMISD::CALL_NOLINK;
2146     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2147              // Emit regular call when code size is the priority
2148              !Subtarget->hasMinSize())
2149       // "mov lr, pc; b _foo" to avoid confusing the RSP
2150       CallOpc = ARMISD::CALL_NOLINK;
2151     else
2152       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2153   }
2154 
2155   std::vector<SDValue> Ops;
2156   Ops.push_back(Chain);
2157   Ops.push_back(Callee);
2158 
2159   // Add argument registers to the end of the list so that they are known live
2160   // into the call.
2161   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2162     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2163                                   RegsToPass[i].second.getValueType()));
2164 
2165   // Add a register mask operand representing the call-preserved registers.
2166   if (!isTailCall) {
2167     const uint32_t *Mask;
2168     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2169     if (isThisReturn) {
2170       // For 'this' returns, use the R0-preserving mask if applicable
2171       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2172       if (!Mask) {
2173         // Set isThisReturn to false if the calling convention is not one that
2174         // allows 'returned' to be modeled in this way, so LowerCallResult does
2175         // not try to pass 'this' straight through
2176         isThisReturn = false;
2177         Mask = ARI->getCallPreservedMask(MF, CallConv);
2178       }
2179     } else
2180       Mask = ARI->getCallPreservedMask(MF, CallConv);
2181 
2182     assert(Mask && "Missing call preserved mask for calling convention");
2183     Ops.push_back(DAG.getRegisterMask(Mask));
2184   }
2185 
2186   if (InFlag.getNode())
2187     Ops.push_back(InFlag);
2188 
2189   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2190   if (isTailCall) {
2191     MF.getFrameInfo().setHasTailCall();
2192     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2193   }
2194 
2195   // Returns a chain and a flag for retval copy to use.
2196   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2197   InFlag = Chain.getValue(1);
2198 
2199   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2200                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2201   if (!Ins.empty())
2202     InFlag = Chain.getValue(1);
2203 
2204   // Handle result values, copying them out of physregs into vregs that we
2205   // return.
2206   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2207                          InVals, isThisReturn,
2208                          isThisReturn ? OutVals[0] : SDValue());
2209 }
2210 
2211 /// HandleByVal - Every parameter *after* a byval parameter is passed
2212 /// on the stack.  Remember the next parameter register to allocate,
2213 /// and then confiscate the rest of the parameter registers to insure
2214 /// this.
2215 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2216                                     unsigned Align) const {
2217   // Byval (as with any stack) slots are always at least 4 byte aligned.
2218   Align = std::max(Align, 4U);
2219 
2220   unsigned Reg = State->AllocateReg(GPRArgRegs);
2221   if (!Reg)
2222     return;
2223 
2224   unsigned AlignInRegs = Align / 4;
2225   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2226   for (unsigned i = 0; i < Waste; ++i)
2227     Reg = State->AllocateReg(GPRArgRegs);
2228 
2229   if (!Reg)
2230     return;
2231 
2232   unsigned Excess = 4 * (ARM::R4 - Reg);
2233 
2234   // Special case when NSAA != SP and parameter size greater than size of
2235   // all remained GPR regs. In that case we can't split parameter, we must
2236   // send it to stack. We also must set NCRN to R4, so waste all
2237   // remained registers.
2238   const unsigned NSAAOffset = State->getNextStackOffset();
2239   if (NSAAOffset != 0 && Size > Excess) {
2240     while (State->AllocateReg(GPRArgRegs))
2241       ;
2242     return;
2243   }
2244 
2245   // First register for byval parameter is the first register that wasn't
2246   // allocated before this method call, so it would be "reg".
2247   // If parameter is small enough to be saved in range [reg, r4), then
2248   // the end (first after last) register would be reg + param-size-in-regs,
2249   // else parameter would be splitted between registers and stack,
2250   // end register would be r4 in this case.
2251   unsigned ByValRegBegin = Reg;
2252   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2253   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2254   // Note, first register is allocated in the beginning of function already,
2255   // allocate remained amount of registers we need.
2256   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2257     State->AllocateReg(GPRArgRegs);
2258   // A byval parameter that is split between registers and memory needs its
2259   // size truncated here.
2260   // In the case where the entire structure fits in registers, we set the
2261   // size in memory to zero.
2262   Size = std::max<int>(Size - Excess, 0);
2263 }
2264 
2265 /// MatchingStackOffset - Return true if the given stack call argument is
2266 /// already available in the same position (relatively) of the caller's
2267 /// incoming argument stack.
2268 static
2269 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2270                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2271                          const TargetInstrInfo *TII) {
2272   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2273   int FI = std::numeric_limits<int>::max();
2274   if (Arg.getOpcode() == ISD::CopyFromReg) {
2275     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2276     if (!TargetRegisterInfo::isVirtualRegister(VR))
2277       return false;
2278     MachineInstr *Def = MRI->getVRegDef(VR);
2279     if (!Def)
2280       return false;
2281     if (!Flags.isByVal()) {
2282       if (!TII->isLoadFromStackSlot(*Def, FI))
2283         return false;
2284     } else {
2285       return false;
2286     }
2287   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2288     if (Flags.isByVal())
2289       // ByVal argument is passed in as a pointer but it's now being
2290       // dereferenced. e.g.
2291       // define @foo(%struct.X* %A) {
2292       //   tail call @bar(%struct.X* byval %A)
2293       // }
2294       return false;
2295     SDValue Ptr = Ld->getBasePtr();
2296     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2297     if (!FINode)
2298       return false;
2299     FI = FINode->getIndex();
2300   } else
2301     return false;
2302 
2303   assert(FI != std::numeric_limits<int>::max());
2304   if (!MFI.isFixedObjectIndex(FI))
2305     return false;
2306   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2307 }
2308 
2309 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2310 /// for tail call optimization. Targets which want to do tail call
2311 /// optimization should implement this function.
2312 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2313     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2314     bool isCalleeStructRet, bool isCallerStructRet,
2315     const SmallVectorImpl<ISD::OutputArg> &Outs,
2316     const SmallVectorImpl<SDValue> &OutVals,
2317     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2318     const bool isIndirect) const {
2319   MachineFunction &MF = DAG.getMachineFunction();
2320   const Function &CallerF = MF.getFunction();
2321   CallingConv::ID CallerCC = CallerF.getCallingConv();
2322 
2323   assert(Subtarget->supportsTailCall());
2324 
2325   // Indirect tail calls cannot be optimized for Thumb1 if the args
2326   // to the call take up r0-r3. The reason is that there are no legal registers
2327   // left to hold the pointer to the function to be called.
2328   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2329       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2330     return false;
2331 
2332   // Look for obvious safe cases to perform tail call optimization that do not
2333   // require ABI changes. This is what gcc calls sibcall.
2334 
2335   // Exception-handling functions need a special set of instructions to indicate
2336   // a return to the hardware. Tail-calling another function would probably
2337   // break this.
2338   if (CallerF.hasFnAttribute("interrupt"))
2339     return false;
2340 
2341   // Also avoid sibcall optimization if either caller or callee uses struct
2342   // return semantics.
2343   if (isCalleeStructRet || isCallerStructRet)
2344     return false;
2345 
2346   // Externally-defined functions with weak linkage should not be
2347   // tail-called on ARM when the OS does not support dynamic
2348   // pre-emption of symbols, as the AAELF spec requires normal calls
2349   // to undefined weak functions to be replaced with a NOP or jump to the
2350   // next instruction. The behaviour of branch instructions in this
2351   // situation (as used for tail calls) is implementation-defined, so we
2352   // cannot rely on the linker replacing the tail call with a return.
2353   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2354     const GlobalValue *GV = G->getGlobal();
2355     const Triple &TT = getTargetMachine().getTargetTriple();
2356     if (GV->hasExternalWeakLinkage() &&
2357         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2358       return false;
2359   }
2360 
2361   // Check that the call results are passed in the same way.
2362   LLVMContext &C = *DAG.getContext();
2363   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2364                                   CCAssignFnForReturn(CalleeCC, isVarArg),
2365                                   CCAssignFnForReturn(CallerCC, isVarArg)))
2366     return false;
2367   // The callee has to preserve all registers the caller needs to preserve.
2368   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2369   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2370   if (CalleeCC != CallerCC) {
2371     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2372     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2373       return false;
2374   }
2375 
2376   // If Caller's vararg or byval argument has been split between registers and
2377   // stack, do not perform tail call, since part of the argument is in caller's
2378   // local frame.
2379   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2380   if (AFI_Caller->getArgRegsSaveSize())
2381     return false;
2382 
2383   // If the callee takes no arguments then go on to check the results of the
2384   // call.
2385   if (!Outs.empty()) {
2386     // Check if stack adjustment is needed. For now, do not do this if any
2387     // argument is passed on the stack.
2388     SmallVector<CCValAssign, 16> ArgLocs;
2389     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2390     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2391     if (CCInfo.getNextStackOffset()) {
2392       // Check if the arguments are already laid out in the right way as
2393       // the caller's fixed stack objects.
2394       MachineFrameInfo &MFI = MF.getFrameInfo();
2395       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2396       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2397       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2398            i != e;
2399            ++i, ++realArgIdx) {
2400         CCValAssign &VA = ArgLocs[i];
2401         EVT RegVT = VA.getLocVT();
2402         SDValue Arg = OutVals[realArgIdx];
2403         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2404         if (VA.getLocInfo() == CCValAssign::Indirect)
2405           return false;
2406         if (VA.needsCustom()) {
2407           // f64 and vector types are split into multiple registers or
2408           // register/stack-slot combinations.  The types will not match
2409           // the registers; give up on memory f64 refs until we figure
2410           // out what to do about this.
2411           if (!VA.isRegLoc())
2412             return false;
2413           if (!ArgLocs[++i].isRegLoc())
2414             return false;
2415           if (RegVT == MVT::v2f64) {
2416             if (!ArgLocs[++i].isRegLoc())
2417               return false;
2418             if (!ArgLocs[++i].isRegLoc())
2419               return false;
2420           }
2421         } else if (!VA.isRegLoc()) {
2422           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2423                                    MFI, MRI, TII))
2424             return false;
2425         }
2426       }
2427     }
2428 
2429     const MachineRegisterInfo &MRI = MF.getRegInfo();
2430     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2431       return false;
2432   }
2433 
2434   return true;
2435 }
2436 
2437 bool
2438 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2439                                   MachineFunction &MF, bool isVarArg,
2440                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2441                                   LLVMContext &Context) const {
2442   SmallVector<CCValAssign, 16> RVLocs;
2443   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2444   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2445 }
2446 
2447 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2448                                     const SDLoc &DL, SelectionDAG &DAG) {
2449   const MachineFunction &MF = DAG.getMachineFunction();
2450   const Function &F = MF.getFunction();
2451 
2452   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2453 
2454   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2455   // version of the "preferred return address". These offsets affect the return
2456   // instruction if this is a return from PL1 without hypervisor extensions.
2457   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2458   //    SWI:     0      "subs pc, lr, #0"
2459   //    ABORT:   +4     "subs pc, lr, #4"
2460   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2461   // UNDEF varies depending on where the exception came from ARM or Thumb
2462   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2463 
2464   int64_t LROffset;
2465   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2466       IntKind == "ABORT")
2467     LROffset = 4;
2468   else if (IntKind == "SWI" || IntKind == "UNDEF")
2469     LROffset = 0;
2470   else
2471     report_fatal_error("Unsupported interrupt attribute. If present, value "
2472                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2473 
2474   RetOps.insert(RetOps.begin() + 1,
2475                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2476 
2477   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2478 }
2479 
2480 SDValue
2481 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2482                                bool isVarArg,
2483                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2484                                const SmallVectorImpl<SDValue> &OutVals,
2485                                const SDLoc &dl, SelectionDAG &DAG) const {
2486   // CCValAssign - represent the assignment of the return value to a location.
2487   SmallVector<CCValAssign, 16> RVLocs;
2488 
2489   // CCState - Info about the registers and stack slots.
2490   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2491                  *DAG.getContext());
2492 
2493   // Analyze outgoing return values.
2494   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2495 
2496   SDValue Flag;
2497   SmallVector<SDValue, 4> RetOps;
2498   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2499   bool isLittleEndian = Subtarget->isLittle();
2500 
2501   MachineFunction &MF = DAG.getMachineFunction();
2502   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2503   AFI->setReturnRegsCount(RVLocs.size());
2504 
2505   // Copy the result values into the output registers.
2506   for (unsigned i = 0, realRVLocIdx = 0;
2507        i != RVLocs.size();
2508        ++i, ++realRVLocIdx) {
2509     CCValAssign &VA = RVLocs[i];
2510     assert(VA.isRegLoc() && "Can only return in registers!");
2511 
2512     SDValue Arg = OutVals[realRVLocIdx];
2513     bool ReturnF16 = false;
2514 
2515     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2516       // Half-precision return values can be returned like this:
2517       //
2518       // t11 f16 = fadd ...
2519       // t12: i16 = bitcast t11
2520       //   t13: i32 = zero_extend t12
2521       // t14: f32 = bitcast t13  <~~~~~~~ Arg
2522       //
2523       // to avoid code generation for bitcasts, we simply set Arg to the node
2524       // that produces the f16 value, t11 in this case.
2525       //
2526       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2527         SDValue ZE = Arg.getOperand(0);
2528         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2529           SDValue BC = ZE.getOperand(0);
2530           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2531             Arg = BC.getOperand(0);
2532             ReturnF16 = true;
2533           }
2534         }
2535       }
2536     }
2537 
2538     switch (VA.getLocInfo()) {
2539     default: llvm_unreachable("Unknown loc info!");
2540     case CCValAssign::Full: break;
2541     case CCValAssign::BCvt:
2542       if (!ReturnF16)
2543         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2544       break;
2545     }
2546 
2547     if (VA.needsCustom()) {
2548       if (VA.getLocVT() == MVT::v2f64) {
2549         // Extract the first half and return it in two registers.
2550         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2551                                    DAG.getConstant(0, dl, MVT::i32));
2552         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2553                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2554 
2555         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2556                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2557                                  Flag);
2558         Flag = Chain.getValue(1);
2559         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2560         VA = RVLocs[++i]; // skip ahead to next loc
2561         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2562                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2563                                  Flag);
2564         Flag = Chain.getValue(1);
2565         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2566         VA = RVLocs[++i]; // skip ahead to next loc
2567 
2568         // Extract the 2nd half and fall through to handle it as an f64 value.
2569         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2570                           DAG.getConstant(1, dl, MVT::i32));
2571       }
2572       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2573       // available.
2574       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2575                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2576       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2577                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2578                                Flag);
2579       Flag = Chain.getValue(1);
2580       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2581       VA = RVLocs[++i]; // skip ahead to next loc
2582       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2583                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2584                                Flag);
2585     } else
2586       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2587 
2588     // Guarantee that all emitted copies are
2589     // stuck together, avoiding something bad.
2590     Flag = Chain.getValue(1);
2591     RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2592                                      ReturnF16 ? MVT::f16 : VA.getLocVT()));
2593   }
2594   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2595   const MCPhysReg *I =
2596       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2597   if (I) {
2598     for (; *I; ++I) {
2599       if (ARM::GPRRegClass.contains(*I))
2600         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2601       else if (ARM::DPRRegClass.contains(*I))
2602         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2603       else
2604         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2605     }
2606   }
2607 
2608   // Update chain and glue.
2609   RetOps[0] = Chain;
2610   if (Flag.getNode())
2611     RetOps.push_back(Flag);
2612 
2613   // CPUs which aren't M-class use a special sequence to return from
2614   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2615   // though we use "subs pc, lr, #N").
2616   //
2617   // M-class CPUs actually use a normal return sequence with a special
2618   // (hardware-provided) value in LR, so the normal code path works.
2619   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2620       !Subtarget->isMClass()) {
2621     if (Subtarget->isThumb1Only())
2622       report_fatal_error("interrupt attribute is not supported in Thumb1");
2623     return LowerInterruptReturn(RetOps, dl, DAG);
2624   }
2625 
2626   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2627 }
2628 
2629 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2630   if (N->getNumValues() != 1)
2631     return false;
2632   if (!N->hasNUsesOfValue(1, 0))
2633     return false;
2634 
2635   SDValue TCChain = Chain;
2636   SDNode *Copy = *N->use_begin();
2637   if (Copy->getOpcode() == ISD::CopyToReg) {
2638     // If the copy has a glue operand, we conservatively assume it isn't safe to
2639     // perform a tail call.
2640     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2641       return false;
2642     TCChain = Copy->getOperand(0);
2643   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2644     SDNode *VMov = Copy;
2645     // f64 returned in a pair of GPRs.
2646     SmallPtrSet<SDNode*, 2> Copies;
2647     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2648          UI != UE; ++UI) {
2649       if (UI->getOpcode() != ISD::CopyToReg)
2650         return false;
2651       Copies.insert(*UI);
2652     }
2653     if (Copies.size() > 2)
2654       return false;
2655 
2656     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2657          UI != UE; ++UI) {
2658       SDValue UseChain = UI->getOperand(0);
2659       if (Copies.count(UseChain.getNode()))
2660         // Second CopyToReg
2661         Copy = *UI;
2662       else {
2663         // We are at the top of this chain.
2664         // If the copy has a glue operand, we conservatively assume it
2665         // isn't safe to perform a tail call.
2666         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2667           return false;
2668         // First CopyToReg
2669         TCChain = UseChain;
2670       }
2671     }
2672   } else if (Copy->getOpcode() == ISD::BITCAST) {
2673     // f32 returned in a single GPR.
2674     if (!Copy->hasOneUse())
2675       return false;
2676     Copy = *Copy->use_begin();
2677     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2678       return false;
2679     // If the copy has a glue operand, we conservatively assume it isn't safe to
2680     // perform a tail call.
2681     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2682       return false;
2683     TCChain = Copy->getOperand(0);
2684   } else {
2685     return false;
2686   }
2687 
2688   bool HasRet = false;
2689   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2690        UI != UE; ++UI) {
2691     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2692         UI->getOpcode() != ARMISD::INTRET_FLAG)
2693       return false;
2694     HasRet = true;
2695   }
2696 
2697   if (!HasRet)
2698     return false;
2699 
2700   Chain = TCChain;
2701   return true;
2702 }
2703 
2704 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2705   if (!Subtarget->supportsTailCall())
2706     return false;
2707 
2708   auto Attr =
2709       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2710   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2711     return false;
2712 
2713   return true;
2714 }
2715 
2716 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2717 // and pass the lower and high parts through.
2718 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2719   SDLoc DL(Op);
2720   SDValue WriteValue = Op->getOperand(2);
2721 
2722   // This function is only supposed to be called for i64 type argument.
2723   assert(WriteValue.getValueType() == MVT::i64
2724           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2725 
2726   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2727                            DAG.getConstant(0, DL, MVT::i32));
2728   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2729                            DAG.getConstant(1, DL, MVT::i32));
2730   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2731   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2732 }
2733 
2734 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2735 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2736 // one of the above mentioned nodes. It has to be wrapped because otherwise
2737 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2738 // be used to form addressing mode. These wrapped nodes will be selected
2739 // into MOVi.
2740 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2741                                              SelectionDAG &DAG) const {
2742   EVT PtrVT = Op.getValueType();
2743   // FIXME there is no actual debug info here
2744   SDLoc dl(Op);
2745   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2746   SDValue Res;
2747 
2748   // When generating execute-only code Constant Pools must be promoted to the
2749   // global data section. It's a bit ugly that we can't share them across basic
2750   // blocks, but this way we guarantee that execute-only behaves correct with
2751   // position-independent addressing modes.
2752   if (Subtarget->genExecuteOnly()) {
2753     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2754     auto T = const_cast<Type*>(CP->getType());
2755     auto C = const_cast<Constant*>(CP->getConstVal());
2756     auto M = const_cast<Module*>(DAG.getMachineFunction().
2757                                  getFunction().getParent());
2758     auto GV = new GlobalVariable(
2759                     *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
2760                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2761                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2762                     Twine(AFI->createPICLabelUId())
2763                   );
2764     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2765                                             dl, PtrVT);
2766     return LowerGlobalAddress(GA, DAG);
2767   }
2768 
2769   if (CP->isMachineConstantPoolEntry())
2770     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2771                                     CP->getAlignment());
2772   else
2773     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2774                                     CP->getAlignment());
2775   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2776 }
2777 
2778 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2779   return MachineJumpTableInfo::EK_Inline;
2780 }
2781 
2782 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2783                                              SelectionDAG &DAG) const {
2784   MachineFunction &MF = DAG.getMachineFunction();
2785   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2786   unsigned ARMPCLabelIndex = 0;
2787   SDLoc DL(Op);
2788   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2789   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2790   SDValue CPAddr;
2791   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2792   if (!IsPositionIndependent) {
2793     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2794   } else {
2795     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2796     ARMPCLabelIndex = AFI->createPICLabelUId();
2797     ARMConstantPoolValue *CPV =
2798       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2799                                       ARMCP::CPBlockAddress, PCAdj);
2800     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2801   }
2802   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2803   SDValue Result = DAG.getLoad(
2804       PtrVT, DL, DAG.getEntryNode(), CPAddr,
2805       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2806   if (!IsPositionIndependent)
2807     return Result;
2808   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2809   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2810 }
2811 
2812 /// Convert a TLS address reference into the correct sequence of loads
2813 /// and calls to compute the variable's address for Darwin, and return an
2814 /// SDValue containing the final node.
2815 
2816 /// Darwin only has one TLS scheme which must be capable of dealing with the
2817 /// fully general situation, in the worst case. This means:
2818 ///     + "extern __thread" declaration.
2819 ///     + Defined in a possibly unknown dynamic library.
2820 ///
2821 /// The general system is that each __thread variable has a [3 x i32] descriptor
2822 /// which contains information used by the runtime to calculate the address. The
2823 /// only part of this the compiler needs to know about is the first word, which
2824 /// contains a function pointer that must be called with the address of the
2825 /// entire descriptor in "r0".
2826 ///
2827 /// Since this descriptor may be in a different unit, in general access must
2828 /// proceed along the usual ARM rules. A common sequence to produce is:
2829 ///
2830 ///     movw rT1, :lower16:_var$non_lazy_ptr
2831 ///     movt rT1, :upper16:_var$non_lazy_ptr
2832 ///     ldr r0, [rT1]
2833 ///     ldr rT2, [r0]
2834 ///     blx rT2
2835 ///     [...address now in r0...]
2836 SDValue
2837 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2838                                                SelectionDAG &DAG) const {
2839   assert(Subtarget->isTargetDarwin() &&
2840          "This function expects a Darwin target");
2841   SDLoc DL(Op);
2842 
2843   // First step is to get the address of the actua global symbol. This is where
2844   // the TLS descriptor lives.
2845   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2846 
2847   // The first entry in the descriptor is a function pointer that we must call
2848   // to obtain the address of the variable.
2849   SDValue Chain = DAG.getEntryNode();
2850   SDValue FuncTLVGet = DAG.getLoad(
2851       MVT::i32, DL, Chain, DescAddr,
2852       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2853       /* Alignment = */ 4,
2854       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2855           MachineMemOperand::MOInvariant);
2856   Chain = FuncTLVGet.getValue(1);
2857 
2858   MachineFunction &F = DAG.getMachineFunction();
2859   MachineFrameInfo &MFI = F.getFrameInfo();
2860   MFI.setAdjustsStack(true);
2861 
2862   // TLS calls preserve all registers except those that absolutely must be
2863   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2864   // silly).
2865   auto TRI =
2866       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
2867   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2868   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2869 
2870   // Finally, we can make the call. This is just a degenerate version of a
2871   // normal AArch64 call node: r0 takes the address of the descriptor, and
2872   // returns the address of the variable in this thread.
2873   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2874   Chain =
2875       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2876                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2877                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2878   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2879 }
2880 
2881 SDValue
2882 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2883                                                 SelectionDAG &DAG) const {
2884   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2885 
2886   SDValue Chain = DAG.getEntryNode();
2887   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2888   SDLoc DL(Op);
2889 
2890   // Load the current TEB (thread environment block)
2891   SDValue Ops[] = {Chain,
2892                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2893                    DAG.getConstant(15, DL, MVT::i32),
2894                    DAG.getConstant(0, DL, MVT::i32),
2895                    DAG.getConstant(13, DL, MVT::i32),
2896                    DAG.getConstant(0, DL, MVT::i32),
2897                    DAG.getConstant(2, DL, MVT::i32)};
2898   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2899                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2900 
2901   SDValue TEB = CurrentTEB.getValue(0);
2902   Chain = CurrentTEB.getValue(1);
2903 
2904   // Load the ThreadLocalStoragePointer from the TEB
2905   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2906   SDValue TLSArray =
2907       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2908   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
2909 
2910   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2911   // offset into the TLSArray.
2912 
2913   // Load the TLS index from the C runtime
2914   SDValue TLSIndex =
2915       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2916   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2917   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
2918 
2919   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2920                               DAG.getConstant(2, DL, MVT::i32));
2921   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2922                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2923                             MachinePointerInfo());
2924 
2925   // Get the offset of the start of the .tls section (section base)
2926   const auto *GA = cast<GlobalAddressSDNode>(Op);
2927   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2928   SDValue Offset = DAG.getLoad(
2929       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2930                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2931       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2932 
2933   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2934 }
2935 
2936 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2937 SDValue
2938 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2939                                                  SelectionDAG &DAG) const {
2940   SDLoc dl(GA);
2941   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2942   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2943   MachineFunction &MF = DAG.getMachineFunction();
2944   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2945   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2946   ARMConstantPoolValue *CPV =
2947     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2948                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2949   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2950   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2951   Argument = DAG.getLoad(
2952       PtrVT, dl, DAG.getEntryNode(), Argument,
2953       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2954   SDValue Chain = Argument.getValue(1);
2955 
2956   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2957   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2958 
2959   // call __tls_get_addr.
2960   ArgListTy Args;
2961   ArgListEntry Entry;
2962   Entry.Node = Argument;
2963   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2964   Args.push_back(Entry);
2965 
2966   // FIXME: is there useful debug info available here?
2967   TargetLowering::CallLoweringInfo CLI(DAG);
2968   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
2969       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2970       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2971 
2972   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2973   return CallResult.first;
2974 }
2975 
2976 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2977 // "local exec" model.
2978 SDValue
2979 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2980                                         SelectionDAG &DAG,
2981                                         TLSModel::Model model) const {
2982   const GlobalValue *GV = GA->getGlobal();
2983   SDLoc dl(GA);
2984   SDValue Offset;
2985   SDValue Chain = DAG.getEntryNode();
2986   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2987   // Get the Thread Pointer
2988   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2989 
2990   if (model == TLSModel::InitialExec) {
2991     MachineFunction &MF = DAG.getMachineFunction();
2992     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2993     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2994     // Initial exec model.
2995     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2996     ARMConstantPoolValue *CPV =
2997       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2998                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2999                                       true);
3000     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3001     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3002     Offset = DAG.getLoad(
3003         PtrVT, dl, Chain, Offset,
3004         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3005     Chain = Offset.getValue(1);
3006 
3007     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3008     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3009 
3010     Offset = DAG.getLoad(
3011         PtrVT, dl, Chain, Offset,
3012         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3013   } else {
3014     // local exec model
3015     assert(model == TLSModel::LocalExec);
3016     ARMConstantPoolValue *CPV =
3017       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3018     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3019     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3020     Offset = DAG.getLoad(
3021         PtrVT, dl, Chain, Offset,
3022         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3023   }
3024 
3025   // The address of the thread local variable is the add of the thread
3026   // pointer with the offset of the variable.
3027   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3028 }
3029 
3030 SDValue
3031 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3032   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3033   if (DAG.getTarget().useEmulatedTLS())
3034     return LowerToTLSEmulatedModel(GA, DAG);
3035 
3036   if (Subtarget->isTargetDarwin())
3037     return LowerGlobalTLSAddressDarwin(Op, DAG);
3038 
3039   if (Subtarget->isTargetWindows())
3040     return LowerGlobalTLSAddressWindows(Op, DAG);
3041 
3042   // TODO: implement the "local dynamic" model
3043   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3044   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3045 
3046   switch (model) {
3047     case TLSModel::GeneralDynamic:
3048     case TLSModel::LocalDynamic:
3049       return LowerToTLSGeneralDynamicModel(GA, DAG);
3050     case TLSModel::InitialExec:
3051     case TLSModel::LocalExec:
3052       return LowerToTLSExecModels(GA, DAG, model);
3053   }
3054   llvm_unreachable("bogus TLS model");
3055 }
3056 
3057 /// Return true if all users of V are within function F, looking through
3058 /// ConstantExprs.
3059 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3060   SmallVector<const User*,4> Worklist;
3061   for (auto *U : V->users())
3062     Worklist.push_back(U);
3063   while (!Worklist.empty()) {
3064     auto *U = Worklist.pop_back_val();
3065     if (isa<ConstantExpr>(U)) {
3066       for (auto *UU : U->users())
3067         Worklist.push_back(UU);
3068       continue;
3069     }
3070 
3071     auto *I = dyn_cast<Instruction>(U);
3072     if (!I || I->getParent()->getParent() != F)
3073       return false;
3074   }
3075   return true;
3076 }
3077 
3078 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3079                                      const GlobalValue *GV, SelectionDAG &DAG,
3080                                      EVT PtrVT, const SDLoc &dl) {
3081   // If we're creating a pool entry for a constant global with unnamed address,
3082   // and the global is small enough, we can emit it inline into the constant pool
3083   // to save ourselves an indirection.
3084   //
3085   // This is a win if the constant is only used in one function (so it doesn't
3086   // need to be duplicated) or duplicating the constant wouldn't increase code
3087   // size (implying the constant is no larger than 4 bytes).
3088   const Function &F = DAG.getMachineFunction().getFunction();
3089 
3090   // We rely on this decision to inline being idemopotent and unrelated to the
3091   // use-site. We know that if we inline a variable at one use site, we'll
3092   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3093   // doesn't know about this optimization, so bail out if it's enabled else
3094   // we could decide to inline here (and thus never emit the GV) but require
3095   // the GV from fast-isel generated code.
3096   if (!EnableConstpoolPromotion ||
3097       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3098       return SDValue();
3099 
3100   auto *GVar = dyn_cast<GlobalVariable>(GV);
3101   if (!GVar || !GVar->hasInitializer() ||
3102       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3103       !GVar->hasLocalLinkage())
3104     return SDValue();
3105 
3106   // If we inline a value that contains relocations, we move the relocations
3107   // from .data to .text. This is not allowed in position-independent code.
3108   auto *Init = GVar->getInitializer();
3109   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3110       Init->needsRelocation())
3111     return SDValue();
3112 
3113   // The constant islands pass can only really deal with alignment requests
3114   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3115   // any type wanting greater alignment requirements than 4 bytes. We also
3116   // can only promote constants that are multiples of 4 bytes in size or
3117   // are paddable to a multiple of 4. Currently we only try and pad constants
3118   // that are strings for simplicity.
3119   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3120   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3121   unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
3122   unsigned RequiredPadding = 4 - (Size % 4);
3123   bool PaddingPossible =
3124     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3125   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3126       Size == 0)
3127     return SDValue();
3128 
3129   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3130   MachineFunction &MF = DAG.getMachineFunction();
3131   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3132 
3133   // We can't bloat the constant pool too much, else the ConstantIslands pass
3134   // may fail to converge. If we haven't promoted this global yet (it may have
3135   // multiple uses), and promoting it would increase the constant pool size (Sz
3136   // > 4), ensure we have space to do so up to MaxTotal.
3137   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3138     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3139         ConstpoolPromotionMaxTotal)
3140       return SDValue();
3141 
3142   // This is only valid if all users are in a single function; we can't clone
3143   // the constant in general. The LLVM IR unnamed_addr allows merging
3144   // constants, but not cloning them.
3145   //
3146   // We could potentially allow cloning if we could prove all uses of the
3147   // constant in the current function don't care about the address, like
3148   // printf format strings. But that isn't implemented for now.
3149   if (!allUsersAreInFunction(GVar, &F))
3150     return SDValue();
3151 
3152   // We're going to inline this global. Pad it out if needed.
3153   if (RequiredPadding != 4) {
3154     StringRef S = CDAInit->getAsString();
3155 
3156     SmallVector<uint8_t,16> V(S.size());
3157     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3158     while (RequiredPadding--)
3159       V.push_back(0);
3160     Init = ConstantDataArray::get(*DAG.getContext(), V);
3161   }
3162 
3163   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3164   SDValue CPAddr =
3165     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3166   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3167     AFI->markGlobalAsPromotedToConstantPool(GVar);
3168     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3169                                       PaddedSize - 4);
3170   }
3171   ++NumConstpoolPromoted;
3172   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3173 }
3174 
3175 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3176   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3177     if (!(GV = GA->getBaseObject()))
3178       return false;
3179   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3180     return V->isConstant();
3181   return isa<Function>(GV);
3182 }
3183 
3184 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3185                                               SelectionDAG &DAG) const {
3186   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3187   default: llvm_unreachable("unknown object format");
3188   case Triple::COFF:
3189     return LowerGlobalAddressWindows(Op, DAG);
3190   case Triple::ELF:
3191     return LowerGlobalAddressELF(Op, DAG);
3192   case Triple::MachO:
3193     return LowerGlobalAddressDarwin(Op, DAG);
3194   }
3195 }
3196 
3197 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3198                                                  SelectionDAG &DAG) const {
3199   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3200   SDLoc dl(Op);
3201   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3202   const TargetMachine &TM = getTargetMachine();
3203   bool IsRO = isReadOnly(GV);
3204 
3205   // promoteToConstantPool only if not generating XO text section
3206   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3207     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3208       return V;
3209 
3210   if (isPositionIndependent()) {
3211     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3212     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3213                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3214     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3215     if (UseGOT_PREL)
3216       Result =
3217           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3218                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3219     return Result;
3220   } else if (Subtarget->isROPI() && IsRO) {
3221     // PC-relative.
3222     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3223     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3224     return Result;
3225   } else if (Subtarget->isRWPI() && !IsRO) {
3226     // SB-relative.
3227     SDValue RelAddr;
3228     if (Subtarget->useMovt()) {
3229       ++NumMovwMovt;
3230       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3231       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3232     } else { // use literal pool for address constant
3233       ARMConstantPoolValue *CPV =
3234         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3235       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3236       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3237       RelAddr = DAG.getLoad(
3238           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3239           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3240     }
3241     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3242     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3243     return Result;
3244   }
3245 
3246   // If we have T2 ops, we can materialize the address directly via movt/movw
3247   // pair. This is always cheaper.
3248   if (Subtarget->useMovt()) {
3249     ++NumMovwMovt;
3250     // FIXME: Once remat is capable of dealing with instructions with register
3251     // operands, expand this into two nodes.
3252     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3253                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3254   } else {
3255     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3256     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3257     return DAG.getLoad(
3258         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3259         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3260   }
3261 }
3262 
3263 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3264                                                     SelectionDAG &DAG) const {
3265   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3266          "ROPI/RWPI not currently supported for Darwin");
3267   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3268   SDLoc dl(Op);
3269   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3270 
3271   if (Subtarget->useMovt())
3272     ++NumMovwMovt;
3273 
3274   // FIXME: Once remat is capable of dealing with instructions with register
3275   // operands, expand this into multiple nodes
3276   unsigned Wrapper =
3277       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3278 
3279   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3280   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3281 
3282   if (Subtarget->isGVIndirectSymbol(GV))
3283     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3284                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3285   return Result;
3286 }
3287 
3288 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3289                                                      SelectionDAG &DAG) const {
3290   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3291   assert(Subtarget->useMovt() &&
3292          "Windows on ARM expects to use movw/movt");
3293   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3294          "ROPI/RWPI not currently supported for Windows");
3295 
3296   const TargetMachine &TM = getTargetMachine();
3297   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3298   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3299   if (GV->hasDLLImportStorageClass())
3300     TargetFlags = ARMII::MO_DLLIMPORT;
3301   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3302     TargetFlags = ARMII::MO_COFFSTUB;
3303   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3304   SDValue Result;
3305   SDLoc DL(Op);
3306 
3307   ++NumMovwMovt;
3308 
3309   // FIXME: Once remat is capable of dealing with instructions with register
3310   // operands, expand this into two nodes.
3311   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3312                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3313                                                   TargetFlags));
3314   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3315     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3316                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3317   return Result;
3318 }
3319 
3320 SDValue
3321 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3322   SDLoc dl(Op);
3323   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3324   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3325                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3326                      Op.getOperand(1), Val);
3327 }
3328 
3329 SDValue
3330 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3331   SDLoc dl(Op);
3332   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3333                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3334 }
3335 
3336 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3337                                                       SelectionDAG &DAG) const {
3338   SDLoc dl(Op);
3339   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3340                      Op.getOperand(0));
3341 }
3342 
3343 SDValue
3344 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3345                                           const ARMSubtarget *Subtarget) const {
3346   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3347   SDLoc dl(Op);
3348   switch (IntNo) {
3349   default: return SDValue();    // Don't custom lower most intrinsics.
3350   case Intrinsic::thread_pointer: {
3351     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3352     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3353   }
3354   case Intrinsic::eh_sjlj_lsda: {
3355     MachineFunction &MF = DAG.getMachineFunction();
3356     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3357     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3358     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3359     SDValue CPAddr;
3360     bool IsPositionIndependent = isPositionIndependent();
3361     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3362     ARMConstantPoolValue *CPV =
3363       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3364                                       ARMCP::CPLSDA, PCAdj);
3365     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3366     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3367     SDValue Result = DAG.getLoad(
3368         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3369         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3370 
3371     if (IsPositionIndependent) {
3372       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3373       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3374     }
3375     return Result;
3376   }
3377   case Intrinsic::arm_neon_vabs:
3378     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3379                         Op.getOperand(1));
3380   case Intrinsic::arm_neon_vmulls:
3381   case Intrinsic::arm_neon_vmullu: {
3382     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3383       ? ARMISD::VMULLs : ARMISD::VMULLu;
3384     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3385                        Op.getOperand(1), Op.getOperand(2));
3386   }
3387   case Intrinsic::arm_neon_vminnm:
3388   case Intrinsic::arm_neon_vmaxnm: {
3389     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3390       ? ISD::FMINNUM : ISD::FMAXNUM;
3391     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3392                        Op.getOperand(1), Op.getOperand(2));
3393   }
3394   case Intrinsic::arm_neon_vminu:
3395   case Intrinsic::arm_neon_vmaxu: {
3396     if (Op.getValueType().isFloatingPoint())
3397       return SDValue();
3398     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3399       ? ISD::UMIN : ISD::UMAX;
3400     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3401                          Op.getOperand(1), Op.getOperand(2));
3402   }
3403   case Intrinsic::arm_neon_vmins:
3404   case Intrinsic::arm_neon_vmaxs: {
3405     // v{min,max}s is overloaded between signed integers and floats.
3406     if (!Op.getValueType().isFloatingPoint()) {
3407       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3408         ? ISD::SMIN : ISD::SMAX;
3409       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3410                          Op.getOperand(1), Op.getOperand(2));
3411     }
3412     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3413       ? ISD::FMINIMUM : ISD::FMAXIMUM;
3414     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3415                        Op.getOperand(1), Op.getOperand(2));
3416   }
3417   case Intrinsic::arm_neon_vtbl1:
3418     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3419                        Op.getOperand(1), Op.getOperand(2));
3420   case Intrinsic::arm_neon_vtbl2:
3421     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3422                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3423   }
3424 }
3425 
3426 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3427                                  const ARMSubtarget *Subtarget) {
3428   SDLoc dl(Op);
3429   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3430   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3431   if (SSID == SyncScope::SingleThread)
3432     return Op;
3433 
3434   if (!Subtarget->hasDataBarrier()) {
3435     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3436     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3437     // here.
3438     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3439            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3440     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3441                        DAG.getConstant(0, dl, MVT::i32));
3442   }
3443 
3444   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3445   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3446   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3447   if (Subtarget->isMClass()) {
3448     // Only a full system barrier exists in the M-class architectures.
3449     Domain = ARM_MB::SY;
3450   } else if (Subtarget->preferISHSTBarriers() &&
3451              Ord == AtomicOrdering::Release) {
3452     // Swift happens to implement ISHST barriers in a way that's compatible with
3453     // Release semantics but weaker than ISH so we'd be fools not to use
3454     // it. Beware: other processors probably don't!
3455     Domain = ARM_MB::ISHST;
3456   }
3457 
3458   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3459                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3460                      DAG.getConstant(Domain, dl, MVT::i32));
3461 }
3462 
3463 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3464                              const ARMSubtarget *Subtarget) {
3465   // ARM pre v5TE and Thumb1 does not have preload instructions.
3466   if (!(Subtarget->isThumb2() ||
3467         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3468     // Just preserve the chain.
3469     return Op.getOperand(0);
3470 
3471   SDLoc dl(Op);
3472   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3473   if (!isRead &&
3474       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3475     // ARMv7 with MP extension has PLDW.
3476     return Op.getOperand(0);
3477 
3478   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3479   if (Subtarget->isThumb()) {
3480     // Invert the bits.
3481     isRead = ~isRead & 1;
3482     isData = ~isData & 1;
3483   }
3484 
3485   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3486                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3487                      DAG.getConstant(isData, dl, MVT::i32));
3488 }
3489 
3490 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3491   MachineFunction &MF = DAG.getMachineFunction();
3492   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3493 
3494   // vastart just stores the address of the VarArgsFrameIndex slot into the
3495   // memory location argument.
3496   SDLoc dl(Op);
3497   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3498   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3499   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3500   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3501                       MachinePointerInfo(SV));
3502 }
3503 
3504 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3505                                                 CCValAssign &NextVA,
3506                                                 SDValue &Root,
3507                                                 SelectionDAG &DAG,
3508                                                 const SDLoc &dl) const {
3509   MachineFunction &MF = DAG.getMachineFunction();
3510   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3511 
3512   const TargetRegisterClass *RC;
3513   if (AFI->isThumb1OnlyFunction())
3514     RC = &ARM::tGPRRegClass;
3515   else
3516     RC = &ARM::GPRRegClass;
3517 
3518   // Transform the arguments stored in physical registers into virtual ones.
3519   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3520   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3521 
3522   SDValue ArgValue2;
3523   if (NextVA.isMemLoc()) {
3524     MachineFrameInfo &MFI = MF.getFrameInfo();
3525     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3526 
3527     // Create load node to retrieve arguments from the stack.
3528     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3529     ArgValue2 = DAG.getLoad(
3530         MVT::i32, dl, Root, FIN,
3531         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3532   } else {
3533     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3534     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3535   }
3536   if (!Subtarget->isLittle())
3537     std::swap (ArgValue, ArgValue2);
3538   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3539 }
3540 
3541 // The remaining GPRs hold either the beginning of variable-argument
3542 // data, or the beginning of an aggregate passed by value (usually
3543 // byval).  Either way, we allocate stack slots adjacent to the data
3544 // provided by our caller, and store the unallocated registers there.
3545 // If this is a variadic function, the va_list pointer will begin with
3546 // these values; otherwise, this reassembles a (byval) structure that
3547 // was split between registers and memory.
3548 // Return: The frame index registers were stored into.
3549 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3550                                       const SDLoc &dl, SDValue &Chain,
3551                                       const Value *OrigArg,
3552                                       unsigned InRegsParamRecordIdx,
3553                                       int ArgOffset, unsigned ArgSize) const {
3554   // Currently, two use-cases possible:
3555   // Case #1. Non-var-args function, and we meet first byval parameter.
3556   //          Setup first unallocated register as first byval register;
3557   //          eat all remained registers
3558   //          (these two actions are performed by HandleByVal method).
3559   //          Then, here, we initialize stack frame with
3560   //          "store-reg" instructions.
3561   // Case #2. Var-args function, that doesn't contain byval parameters.
3562   //          The same: eat all remained unallocated registers,
3563   //          initialize stack frame.
3564 
3565   MachineFunction &MF = DAG.getMachineFunction();
3566   MachineFrameInfo &MFI = MF.getFrameInfo();
3567   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3568   unsigned RBegin, REnd;
3569   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3570     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3571   } else {
3572     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3573     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3574     REnd = ARM::R4;
3575   }
3576 
3577   if (REnd != RBegin)
3578     ArgOffset = -4 * (ARM::R4 - RBegin);
3579 
3580   auto PtrVT = getPointerTy(DAG.getDataLayout());
3581   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3582   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3583 
3584   SmallVector<SDValue, 4> MemOps;
3585   const TargetRegisterClass *RC =
3586       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3587 
3588   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3589     unsigned VReg = MF.addLiveIn(Reg, RC);
3590     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3591     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3592                                  MachinePointerInfo(OrigArg, 4 * i));
3593     MemOps.push_back(Store);
3594     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3595   }
3596 
3597   if (!MemOps.empty())
3598     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3599   return FrameIndex;
3600 }
3601 
3602 // Setup stack frame, the va_list pointer will start from.
3603 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3604                                              const SDLoc &dl, SDValue &Chain,
3605                                              unsigned ArgOffset,
3606                                              unsigned TotalArgRegsSaveSize,
3607                                              bool ForceMutable) const {
3608   MachineFunction &MF = DAG.getMachineFunction();
3609   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3610 
3611   // Try to store any remaining integer argument regs
3612   // to their spots on the stack so that they may be loaded by dereferencing
3613   // the result of va_next.
3614   // If there is no regs to be stored, just point address after last
3615   // argument passed via stack.
3616   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3617                                   CCInfo.getInRegsParamsCount(),
3618                                   CCInfo.getNextStackOffset(), 4);
3619   AFI->setVarArgsFrameIndex(FrameIndex);
3620 }
3621 
3622 SDValue ARMTargetLowering::LowerFormalArguments(
3623     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3624     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3625     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3626   MachineFunction &MF = DAG.getMachineFunction();
3627   MachineFrameInfo &MFI = MF.getFrameInfo();
3628 
3629   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3630 
3631   // Assign locations to all of the incoming arguments.
3632   SmallVector<CCValAssign, 16> ArgLocs;
3633   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3634                  *DAG.getContext());
3635   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3636 
3637   SmallVector<SDValue, 16> ArgValues;
3638   SDValue ArgValue;
3639   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3640   unsigned CurArgIdx = 0;
3641 
3642   // Initially ArgRegsSaveSize is zero.
3643   // Then we increase this value each time we meet byval parameter.
3644   // We also increase this value in case of varargs function.
3645   AFI->setArgRegsSaveSize(0);
3646 
3647   // Calculate the amount of stack space that we need to allocate to store
3648   // byval and variadic arguments that are passed in registers.
3649   // We need to know this before we allocate the first byval or variadic
3650   // argument, as they will be allocated a stack slot below the CFA (Canonical
3651   // Frame Address, the stack pointer at entry to the function).
3652   unsigned ArgRegBegin = ARM::R4;
3653   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3654     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3655       break;
3656 
3657     CCValAssign &VA = ArgLocs[i];
3658     unsigned Index = VA.getValNo();
3659     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3660     if (!Flags.isByVal())
3661       continue;
3662 
3663     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3664     unsigned RBegin, REnd;
3665     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3666     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3667 
3668     CCInfo.nextInRegsParam();
3669   }
3670   CCInfo.rewindByValRegsInfo();
3671 
3672   int lastInsIndex = -1;
3673   if (isVarArg && MFI.hasVAStart()) {
3674     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3675     if (RegIdx != array_lengthof(GPRArgRegs))
3676       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3677   }
3678 
3679   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3680   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3681   auto PtrVT = getPointerTy(DAG.getDataLayout());
3682 
3683   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3684     CCValAssign &VA = ArgLocs[i];
3685     if (Ins[VA.getValNo()].isOrigArg()) {
3686       std::advance(CurOrigArg,
3687                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3688       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3689     }
3690     // Arguments stored in registers.
3691     if (VA.isRegLoc()) {
3692       EVT RegVT = VA.getLocVT();
3693 
3694       if (VA.needsCustom()) {
3695         // f64 and vector types are split up into multiple registers or
3696         // combinations of registers and stack slots.
3697         if (VA.getLocVT() == MVT::v2f64) {
3698           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3699                                                    Chain, DAG, dl);
3700           VA = ArgLocs[++i]; // skip ahead to next loc
3701           SDValue ArgValue2;
3702           if (VA.isMemLoc()) {
3703             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3704             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3705             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3706                                     MachinePointerInfo::getFixedStack(
3707                                         DAG.getMachineFunction(), FI));
3708           } else {
3709             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3710                                              Chain, DAG, dl);
3711           }
3712           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3713           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3714                                  ArgValue, ArgValue1,
3715                                  DAG.getIntPtrConstant(0, dl));
3716           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3717                                  ArgValue, ArgValue2,
3718                                  DAG.getIntPtrConstant(1, dl));
3719         } else
3720           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3721       } else {
3722         const TargetRegisterClass *RC;
3723 
3724 
3725         if (RegVT == MVT::f16)
3726           RC = &ARM::HPRRegClass;
3727         else if (RegVT == MVT::f32)
3728           RC = &ARM::SPRRegClass;
3729         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3730           RC = &ARM::DPRRegClass;
3731         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3732           RC = &ARM::QPRRegClass;
3733         else if (RegVT == MVT::i32)
3734           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3735                                            : &ARM::GPRRegClass;
3736         else
3737           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3738 
3739         // Transform the arguments in physical registers into virtual ones.
3740         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3741         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3742       }
3743 
3744       // If this is an 8 or 16-bit value, it is really passed promoted
3745       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3746       // truncate to the right size.
3747       switch (VA.getLocInfo()) {
3748       default: llvm_unreachable("Unknown loc info!");
3749       case CCValAssign::Full: break;
3750       case CCValAssign::BCvt:
3751         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3752         break;
3753       case CCValAssign::SExt:
3754         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3755                                DAG.getValueType(VA.getValVT()));
3756         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3757         break;
3758       case CCValAssign::ZExt:
3759         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3760                                DAG.getValueType(VA.getValVT()));
3761         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3762         break;
3763       }
3764 
3765       InVals.push_back(ArgValue);
3766     } else { // VA.isRegLoc()
3767       // sanity check
3768       assert(VA.isMemLoc());
3769       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3770 
3771       int index = VA.getValNo();
3772 
3773       // Some Ins[] entries become multiple ArgLoc[] entries.
3774       // Process them only once.
3775       if (index != lastInsIndex)
3776         {
3777           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3778           // FIXME: For now, all byval parameter objects are marked mutable.
3779           // This can be changed with more analysis.
3780           // In case of tail call optimization mark all arguments mutable.
3781           // Since they could be overwritten by lowering of arguments in case of
3782           // a tail call.
3783           if (Flags.isByVal()) {
3784             assert(Ins[index].isOrigArg() &&
3785                    "Byval arguments cannot be implicit");
3786             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3787 
3788             int FrameIndex = StoreByValRegs(
3789                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3790                 VA.getLocMemOffset(), Flags.getByValSize());
3791             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3792             CCInfo.nextInRegsParam();
3793           } else {
3794             unsigned FIOffset = VA.getLocMemOffset();
3795             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3796                                            FIOffset, true);
3797 
3798             // Create load nodes to retrieve arguments from the stack.
3799             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3800             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3801                                          MachinePointerInfo::getFixedStack(
3802                                              DAG.getMachineFunction(), FI)));
3803           }
3804           lastInsIndex = index;
3805         }
3806     }
3807   }
3808 
3809   // varargs
3810   if (isVarArg && MFI.hasVAStart())
3811     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3812                          CCInfo.getNextStackOffset(),
3813                          TotalArgRegsSaveSize);
3814 
3815   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3816 
3817   return Chain;
3818 }
3819 
3820 /// isFloatingPointZero - Return true if this is +0.0.
3821 static bool isFloatingPointZero(SDValue Op) {
3822   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3823     return CFP->getValueAPF().isPosZero();
3824   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3825     // Maybe this has already been legalized into the constant pool?
3826     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3827       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3828       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3829         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3830           return CFP->getValueAPF().isPosZero();
3831     }
3832   } else if (Op->getOpcode() == ISD::BITCAST &&
3833              Op->getValueType(0) == MVT::f64) {
3834     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3835     // created by LowerConstantFP().
3836     SDValue BitcastOp = Op->getOperand(0);
3837     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3838         isNullConstant(BitcastOp->getOperand(0)))
3839       return true;
3840   }
3841   return false;
3842 }
3843 
3844 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3845 /// the given operands.
3846 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3847                                      SDValue &ARMcc, SelectionDAG &DAG,
3848                                      const SDLoc &dl) const {
3849   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3850     unsigned C = RHSC->getZExtValue();
3851     if (!isLegalICmpImmediate((int32_t)C)) {
3852       // Constant does not fit, try adjusting it by one.
3853       switch (CC) {
3854       default: break;
3855       case ISD::SETLT:
3856       case ISD::SETGE:
3857         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3858           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3859           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3860         }
3861         break;
3862       case ISD::SETULT:
3863       case ISD::SETUGE:
3864         if (C != 0 && isLegalICmpImmediate(C-1)) {
3865           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3866           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3867         }
3868         break;
3869       case ISD::SETLE:
3870       case ISD::SETGT:
3871         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3872           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3873           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3874         }
3875         break;
3876       case ISD::SETULE:
3877       case ISD::SETUGT:
3878         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3879           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3880           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3881         }
3882         break;
3883       }
3884     }
3885   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
3886              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
3887     // In ARM and Thumb-2, the compare instructions can shift their second
3888     // operand.
3889     CC = ISD::getSetCCSwappedOperands(CC);
3890     std::swap(LHS, RHS);
3891   }
3892 
3893   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3894   ARMISD::NodeType CompareType;
3895   switch (CondCode) {
3896   default:
3897     CompareType = ARMISD::CMP;
3898     break;
3899   case ARMCC::EQ:
3900   case ARMCC::NE:
3901     // Uses only Z Flag
3902     CompareType = ARMISD::CMPZ;
3903     break;
3904   }
3905   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3906   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3907 }
3908 
3909 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
3910 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3911                                      SelectionDAG &DAG, const SDLoc &dl,
3912                                      bool InvalidOnQNaN) const {
3913   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
3914   SDValue Cmp;
3915   SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
3916   if (!isFloatingPointZero(RHS))
3917     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
3918   else
3919     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
3920   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3921 }
3922 
3923 /// duplicateCmp - Glue values can have only one use, so this function
3924 /// duplicates a comparison node.
3925 SDValue
3926 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3927   unsigned Opc = Cmp.getOpcode();
3928   SDLoc DL(Cmp);
3929   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3930     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3931 
3932   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3933   Cmp = Cmp.getOperand(0);
3934   Opc = Cmp.getOpcode();
3935   if (Opc == ARMISD::CMPFP)
3936     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3937                       Cmp.getOperand(1), Cmp.getOperand(2));
3938   else {
3939     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3940     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
3941                       Cmp.getOperand(1));
3942   }
3943   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3944 }
3945 
3946 // This function returns three things: the arithmetic computation itself
3947 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
3948 // comparison and the condition code define the case in which the arithmetic
3949 // computation *does not* overflow.
3950 std::pair<SDValue, SDValue>
3951 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3952                                  SDValue &ARMcc) const {
3953   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3954 
3955   SDValue Value, OverflowCmp;
3956   SDValue LHS = Op.getOperand(0);
3957   SDValue RHS = Op.getOperand(1);
3958   SDLoc dl(Op);
3959 
3960   // FIXME: We are currently always generating CMPs because we don't support
3961   // generating CMN through the backend. This is not as good as the natural
3962   // CMP case because it causes a register dependency and cannot be folded
3963   // later.
3964 
3965   switch (Op.getOpcode()) {
3966   default:
3967     llvm_unreachable("Unknown overflow instruction!");
3968   case ISD::SADDO:
3969     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3970     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3971     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3972     break;
3973   case ISD::UADDO:
3974     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3975     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
3976     // We do not use it in the USUBO case as Value may not be used.
3977     Value = DAG.getNode(ARMISD::ADDC, dl,
3978                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
3979                 .getValue(0);
3980     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3981     break;
3982   case ISD::SSUBO:
3983     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3984     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3985     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3986     break;
3987   case ISD::USUBO:
3988     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3989     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3990     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3991     break;
3992   case ISD::UMULO:
3993     // We generate a UMUL_LOHI and then check if the high word is 0.
3994     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
3995     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
3996                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
3997                         LHS, RHS);
3998     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
3999                               DAG.getConstant(0, dl, MVT::i32));
4000     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4001     break;
4002   case ISD::SMULO:
4003     // We generate a SMUL_LOHI and then check if all the bits of the high word
4004     // are the same as the sign bit of the low word.
4005     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4006     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4007                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4008                         LHS, RHS);
4009     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4010                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4011                                           Value.getValue(0),
4012                                           DAG.getConstant(31, dl, MVT::i32)));
4013     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4014     break;
4015   } // switch (...)
4016 
4017   return std::make_pair(Value, OverflowCmp);
4018 }
4019 
4020 SDValue
4021 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4022   // Let legalize expand this if it isn't a legal type yet.
4023   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4024     return SDValue();
4025 
4026   SDValue Value, OverflowCmp;
4027   SDValue ARMcc;
4028   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4029   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4030   SDLoc dl(Op);
4031   // We use 0 and 1 as false and true values.
4032   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4033   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4034   EVT VT = Op.getValueType();
4035 
4036   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4037                                  ARMcc, CCR, OverflowCmp);
4038 
4039   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4040   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4041 }
4042 
4043 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4044                                               SelectionDAG &DAG) {
4045   SDLoc DL(BoolCarry);
4046   EVT CarryVT = BoolCarry.getValueType();
4047 
4048   // This converts the boolean value carry into the carry flag by doing
4049   // ARMISD::SUBC Carry, 1
4050   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4051                               DAG.getVTList(CarryVT, MVT::i32),
4052                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4053   return Carry.getValue(1);
4054 }
4055 
4056 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4057                                               SelectionDAG &DAG) {
4058   SDLoc DL(Flags);
4059 
4060   // Now convert the carry flag into a boolean carry. We do this
4061   // using ARMISD:ADDE 0, 0, Carry
4062   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4063                      DAG.getConstant(0, DL, MVT::i32),
4064                      DAG.getConstant(0, DL, MVT::i32), Flags);
4065 }
4066 
4067 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4068                                              SelectionDAG &DAG) const {
4069   // Let legalize expand this if it isn't a legal type yet.
4070   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4071     return SDValue();
4072 
4073   SDValue LHS = Op.getOperand(0);
4074   SDValue RHS = Op.getOperand(1);
4075   SDLoc dl(Op);
4076 
4077   EVT VT = Op.getValueType();
4078   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4079   SDValue Value;
4080   SDValue Overflow;
4081   switch (Op.getOpcode()) {
4082   default:
4083     llvm_unreachable("Unknown overflow instruction!");
4084   case ISD::UADDO:
4085     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4086     // Convert the carry flag into a boolean value.
4087     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4088     break;
4089   case ISD::USUBO: {
4090     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4091     // Convert the carry flag into a boolean value.
4092     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4093     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4094     // value. So compute 1 - C.
4095     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4096                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4097     break;
4098   }
4099   }
4100 
4101   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4102 }
4103 
4104 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4105   SDValue Cond = Op.getOperand(0);
4106   SDValue SelectTrue = Op.getOperand(1);
4107   SDValue SelectFalse = Op.getOperand(2);
4108   SDLoc dl(Op);
4109   unsigned Opc = Cond.getOpcode();
4110 
4111   if (Cond.getResNo() == 1 &&
4112       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4113        Opc == ISD::USUBO)) {
4114     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4115       return SDValue();
4116 
4117     SDValue Value, OverflowCmp;
4118     SDValue ARMcc;
4119     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4120     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4121     EVT VT = Op.getValueType();
4122 
4123     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4124                    OverflowCmp, DAG);
4125   }
4126 
4127   // Convert:
4128   //
4129   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4130   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4131   //
4132   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4133     const ConstantSDNode *CMOVTrue =
4134       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4135     const ConstantSDNode *CMOVFalse =
4136       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4137 
4138     if (CMOVTrue && CMOVFalse) {
4139       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4140       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4141 
4142       SDValue True;
4143       SDValue False;
4144       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4145         True = SelectTrue;
4146         False = SelectFalse;
4147       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4148         True = SelectFalse;
4149         False = SelectTrue;
4150       }
4151 
4152       if (True.getNode() && False.getNode()) {
4153         EVT VT = Op.getValueType();
4154         SDValue ARMcc = Cond.getOperand(2);
4155         SDValue CCR = Cond.getOperand(3);
4156         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4157         assert(True.getValueType() == VT);
4158         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4159       }
4160     }
4161   }
4162 
4163   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4164   // undefined bits before doing a full-word comparison with zero.
4165   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4166                      DAG.getConstant(1, dl, Cond.getValueType()));
4167 
4168   return DAG.getSelectCC(dl, Cond,
4169                          DAG.getConstant(0, dl, Cond.getValueType()),
4170                          SelectTrue, SelectFalse, ISD::SETNE);
4171 }
4172 
4173 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4174                                  bool &swpCmpOps, bool &swpVselOps) {
4175   // Start by selecting the GE condition code for opcodes that return true for
4176   // 'equality'
4177   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4178       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
4179     CondCode = ARMCC::GE;
4180 
4181   // and GT for opcodes that return false for 'equality'.
4182   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4183            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
4184     CondCode = ARMCC::GT;
4185 
4186   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4187   // to swap the compare operands.
4188   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4189       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
4190     swpCmpOps = true;
4191 
4192   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4193   // If we have an unordered opcode, we need to swap the operands to the VSEL
4194   // instruction (effectively negating the condition).
4195   //
4196   // This also has the effect of swapping which one of 'less' or 'greater'
4197   // returns true, so we also swap the compare operands. It also switches
4198   // whether we return true for 'equality', so we compensate by picking the
4199   // opposite condition code to our original choice.
4200   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4201       CC == ISD::SETUGT) {
4202     swpCmpOps = !swpCmpOps;
4203     swpVselOps = !swpVselOps;
4204     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4205   }
4206 
4207   // 'ordered' is 'anything but unordered', so use the VS condition code and
4208   // swap the VSEL operands.
4209   if (CC == ISD::SETO) {
4210     CondCode = ARMCC::VS;
4211     swpVselOps = true;
4212   }
4213 
4214   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4215   // code and swap the VSEL operands. Also do this if we don't care about the
4216   // unordered case.
4217   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4218     CondCode = ARMCC::EQ;
4219     swpVselOps = true;
4220   }
4221 }
4222 
4223 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4224                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4225                                    SDValue Cmp, SelectionDAG &DAG) const {
4226   if (!Subtarget->hasFP64() && VT == MVT::f64) {
4227     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4228                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4229     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4230                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4231 
4232     SDValue TrueLow = TrueVal.getValue(0);
4233     SDValue TrueHigh = TrueVal.getValue(1);
4234     SDValue FalseLow = FalseVal.getValue(0);
4235     SDValue FalseHigh = FalseVal.getValue(1);
4236 
4237     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4238                               ARMcc, CCR, Cmp);
4239     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4240                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4241 
4242     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4243   } else {
4244     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4245                        Cmp);
4246   }
4247 }
4248 
4249 static bool isGTorGE(ISD::CondCode CC) {
4250   return CC == ISD::SETGT || CC == ISD::SETGE;
4251 }
4252 
4253 static bool isLTorLE(ISD::CondCode CC) {
4254   return CC == ISD::SETLT || CC == ISD::SETLE;
4255 }
4256 
4257 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4258 // All of these conditions (and their <= and >= counterparts) will do:
4259 //          x < k ? k : x
4260 //          x > k ? x : k
4261 //          k < x ? x : k
4262 //          k > x ? k : x
4263 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4264                             const SDValue TrueVal, const SDValue FalseVal,
4265                             const ISD::CondCode CC, const SDValue K) {
4266   return (isGTorGE(CC) &&
4267           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4268          (isLTorLE(CC) &&
4269           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4270 }
4271 
4272 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4273 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4274                             const SDValue TrueVal, const SDValue FalseVal,
4275                             const ISD::CondCode CC, const SDValue K) {
4276   return (isGTorGE(CC) &&
4277           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4278          (isLTorLE(CC) &&
4279           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4280 }
4281 
4282 // Check if two chained conditionals could be converted into SSAT or USAT.
4283 //
4284 // SSAT can replace a set of two conditional selectors that bound a number to an
4285 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4286 //
4287 //     x < -k ? -k : (x > k ? k : x)
4288 //     x < -k ? -k : (x < k ? x : k)
4289 //     x > -k ? (x > k ? k : x) : -k
4290 //     x < k ? (x < -k ? -k : x) : k
4291 //     etc.
4292 //
4293 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4294 // a power of 2.
4295 //
4296 // It returns true if the conversion can be done, false otherwise.
4297 // Additionally, the variable is returned in parameter V, the constant in K and
4298 // usat is set to true if the conditional represents an unsigned saturation
4299 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4300                                     uint64_t &K, bool &usat) {
4301   SDValue LHS1 = Op.getOperand(0);
4302   SDValue RHS1 = Op.getOperand(1);
4303   SDValue TrueVal1 = Op.getOperand(2);
4304   SDValue FalseVal1 = Op.getOperand(3);
4305   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4306 
4307   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4308   if (Op2.getOpcode() != ISD::SELECT_CC)
4309     return false;
4310 
4311   SDValue LHS2 = Op2.getOperand(0);
4312   SDValue RHS2 = Op2.getOperand(1);
4313   SDValue TrueVal2 = Op2.getOperand(2);
4314   SDValue FalseVal2 = Op2.getOperand(3);
4315   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4316 
4317   // Find out which are the constants and which are the variables
4318   // in each conditional
4319   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4320                                                         ? &RHS1
4321                                                         : nullptr;
4322   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4323                                                         ? &RHS2
4324                                                         : nullptr;
4325   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4326   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4327   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4328   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4329 
4330   // We must detect cases where the original operations worked with 16- or
4331   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4332   // must work with sign-extended values but the select operations return
4333   // the original non-extended value.
4334   SDValue V2TmpReg = V2Tmp;
4335   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4336     V2TmpReg = V2Tmp->getOperand(0);
4337 
4338   // Check that the registers and the constants have the correct values
4339   // in both conditionals
4340   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4341       V2TmpReg != V2)
4342     return false;
4343 
4344   // Figure out which conditional is saturating the lower/upper bound.
4345   const SDValue *LowerCheckOp =
4346       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4347           ? &Op
4348           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4349                 ? &Op2
4350                 : nullptr;
4351   const SDValue *UpperCheckOp =
4352       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4353           ? &Op
4354           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4355                 ? &Op2
4356                 : nullptr;
4357 
4358   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4359     return false;
4360 
4361   // Check that the constant in the lower-bound check is
4362   // the opposite of the constant in the upper-bound check
4363   // in 1's complement.
4364   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4365   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4366   int64_t PosVal = std::max(Val1, Val2);
4367   int64_t NegVal = std::min(Val1, Val2);
4368 
4369   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4370        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4371       isPowerOf2_64(PosVal + 1)) {
4372 
4373     // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4374     if (Val1 == ~Val2)
4375       usat = false;
4376     else if (NegVal == 0)
4377       usat = true;
4378     else
4379       return false;
4380 
4381     V = V2;
4382     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4383 
4384     return true;
4385   }
4386 
4387   return false;
4388 }
4389 
4390 // Check if a condition of the type x < k ? k : x can be converted into a
4391 // bit operation instead of conditional moves.
4392 // Currently this is allowed given:
4393 // - The conditions and values match up
4394 // - k is 0 or -1 (all ones)
4395 // This function will not check the last condition, thats up to the caller
4396 // It returns true if the transformation can be made, and in such case
4397 // returns x in V, and k in SatK.
4398 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4399                                          SDValue &SatK)
4400 {
4401   SDValue LHS = Op.getOperand(0);
4402   SDValue RHS = Op.getOperand(1);
4403   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4404   SDValue TrueVal = Op.getOperand(2);
4405   SDValue FalseVal = Op.getOperand(3);
4406 
4407   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4408                                                ? &RHS
4409                                                : nullptr;
4410 
4411   // No constant operation in comparison, early out
4412   if (!K)
4413     return false;
4414 
4415   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4416   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4417   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4418 
4419   // If the constant on left and right side, or variable on left and right,
4420   // does not match, early out
4421   if (*K != KTmp || V != VTmp)
4422     return false;
4423 
4424   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4425     SatK = *K;
4426     return true;
4427   }
4428 
4429   return false;
4430 }
4431 
4432 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4433   EVT VT = Op.getValueType();
4434   SDLoc dl(Op);
4435 
4436   // Try to convert two saturating conditional selects into a single SSAT
4437   SDValue SatValue;
4438   uint64_t SatConstant;
4439   bool SatUSat;
4440   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4441       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4442     if (SatUSat)
4443       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4444                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4445     else
4446       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4447                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4448   }
4449 
4450   // Try to convert expressions of the form x < k ? k : x (and similar forms)
4451   // into more efficient bit operations, which is possible when k is 0 or -1
4452   // On ARM and Thumb-2 which have flexible operand 2 this will result in
4453   // single instructions. On Thumb the shift and the bit operation will be two
4454   // instructions.
4455   // Only allow this transformation on full-width (32-bit) operations
4456   SDValue LowerSatConstant;
4457   if (VT == MVT::i32 &&
4458       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4459     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4460                                  DAG.getConstant(31, dl, VT));
4461     if (isNullConstant(LowerSatConstant)) {
4462       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4463                                       DAG.getAllOnesConstant(dl, VT));
4464       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4465     } else if (isAllOnesConstant(LowerSatConstant))
4466       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4467   }
4468 
4469   SDValue LHS = Op.getOperand(0);
4470   SDValue RHS = Op.getOperand(1);
4471   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4472   SDValue TrueVal = Op.getOperand(2);
4473   SDValue FalseVal = Op.getOperand(3);
4474 
4475   if (!Subtarget->hasFP64() && LHS.getValueType() == MVT::f64) {
4476     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4477                                                     dl);
4478 
4479     // If softenSetCCOperands only returned one value, we should compare it to
4480     // zero.
4481     if (!RHS.getNode()) {
4482       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4483       CC = ISD::SETNE;
4484     }
4485   }
4486 
4487   if (LHS.getValueType() == MVT::i32) {
4488     // Try to generate VSEL on ARMv8.
4489     // The VSEL instruction can't use all the usual ARM condition
4490     // codes: it only has two bits to select the condition code, so it's
4491     // constrained to use only GE, GT, VS and EQ.
4492     //
4493     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4494     // swap the operands of the previous compare instruction (effectively
4495     // inverting the compare condition, swapping 'less' and 'greater') and
4496     // sometimes need to swap the operands to the VSEL (which inverts the
4497     // condition in the sense of firing whenever the previous condition didn't)
4498     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
4499                                         TrueVal.getValueType() == MVT::f32 ||
4500                                         TrueVal.getValueType() == MVT::f64)) {
4501       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4502       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4503           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4504         CC = ISD::getSetCCInverse(CC, true);
4505         std::swap(TrueVal, FalseVal);
4506       }
4507     }
4508 
4509     SDValue ARMcc;
4510     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4511     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4512     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4513   }
4514 
4515   ARMCC::CondCodes CondCode, CondCode2;
4516   bool InvalidOnQNaN;
4517   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4518 
4519   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4520   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4521   // must use VSEL (limited condition codes), due to not having conditional f16
4522   // moves.
4523   if (Subtarget->hasFPARMv8Base() &&
4524       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
4525       (TrueVal.getValueType() == MVT::f16 ||
4526        TrueVal.getValueType() == MVT::f32 ||
4527        TrueVal.getValueType() == MVT::f64)) {
4528     bool swpCmpOps = false;
4529     bool swpVselOps = false;
4530     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4531 
4532     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4533         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4534       if (swpCmpOps)
4535         std::swap(LHS, RHS);
4536       if (swpVselOps)
4537         std::swap(TrueVal, FalseVal);
4538     }
4539   }
4540 
4541   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4542   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4543   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4544   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4545   if (CondCode2 != ARMCC::AL) {
4546     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4547     // FIXME: Needs another CMP because flag can have but one use.
4548     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4549     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4550   }
4551   return Result;
4552 }
4553 
4554 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4555 /// to morph to an integer compare sequence.
4556 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4557                            const ARMSubtarget *Subtarget) {
4558   SDNode *N = Op.getNode();
4559   if (!N->hasOneUse())
4560     // Otherwise it requires moving the value from fp to integer registers.
4561     return false;
4562   if (!N->getNumValues())
4563     return false;
4564   EVT VT = Op.getValueType();
4565   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4566     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4567     // vmrs are very slow, e.g. cortex-a8.
4568     return false;
4569 
4570   if (isFloatingPointZero(Op)) {
4571     SeenZero = true;
4572     return true;
4573   }
4574   return ISD::isNormalLoad(N);
4575 }
4576 
4577 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4578   if (isFloatingPointZero(Op))
4579     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4580 
4581   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4582     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4583                        Ld->getPointerInfo(), Ld->getAlignment(),
4584                        Ld->getMemOperand()->getFlags());
4585 
4586   llvm_unreachable("Unknown VFP cmp argument!");
4587 }
4588 
4589 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4590                            SDValue &RetVal1, SDValue &RetVal2) {
4591   SDLoc dl(Op);
4592 
4593   if (isFloatingPointZero(Op)) {
4594     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4595     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4596     return;
4597   }
4598 
4599   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4600     SDValue Ptr = Ld->getBasePtr();
4601     RetVal1 =
4602         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4603                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4604 
4605     EVT PtrType = Ptr.getValueType();
4606     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4607     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4608                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4609     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4610                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
4611                           Ld->getMemOperand()->getFlags());
4612     return;
4613   }
4614 
4615   llvm_unreachable("Unknown VFP cmp argument!");
4616 }
4617 
4618 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4619 /// f32 and even f64 comparisons to integer ones.
4620 SDValue
4621 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4622   SDValue Chain = Op.getOperand(0);
4623   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4624   SDValue LHS = Op.getOperand(2);
4625   SDValue RHS = Op.getOperand(3);
4626   SDValue Dest = Op.getOperand(4);
4627   SDLoc dl(Op);
4628 
4629   bool LHSSeenZero = false;
4630   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4631   bool RHSSeenZero = false;
4632   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4633   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4634     // If unsafe fp math optimization is enabled and there are no other uses of
4635     // the CMP operands, and the condition code is EQ or NE, we can optimize it
4636     // to an integer comparison.
4637     if (CC == ISD::SETOEQ)
4638       CC = ISD::SETEQ;
4639     else if (CC == ISD::SETUNE)
4640       CC = ISD::SETNE;
4641 
4642     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4643     SDValue ARMcc;
4644     if (LHS.getValueType() == MVT::f32) {
4645       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4646                         bitcastf32Toi32(LHS, DAG), Mask);
4647       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4648                         bitcastf32Toi32(RHS, DAG), Mask);
4649       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4650       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4651       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4652                          Chain, Dest, ARMcc, CCR, Cmp);
4653     }
4654 
4655     SDValue LHS1, LHS2;
4656     SDValue RHS1, RHS2;
4657     expandf64Toi32(LHS, DAG, LHS1, LHS2);
4658     expandf64Toi32(RHS, DAG, RHS1, RHS2);
4659     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4660     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4661     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4662     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4663     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4664     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4665     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4666   }
4667 
4668   return SDValue();
4669 }
4670 
4671 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4672   SDValue Chain = Op.getOperand(0);
4673   SDValue Cond = Op.getOperand(1);
4674   SDValue Dest = Op.getOperand(2);
4675   SDLoc dl(Op);
4676 
4677   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4678   // instruction.
4679   unsigned Opc = Cond.getOpcode();
4680   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4681                       !Subtarget->isThumb1Only();
4682   if (Cond.getResNo() == 1 &&
4683       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4684        Opc == ISD::USUBO || OptimizeMul)) {
4685     // Only lower legal XALUO ops.
4686     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4687       return SDValue();
4688 
4689     // The actual operation with overflow check.
4690     SDValue Value, OverflowCmp;
4691     SDValue ARMcc;
4692     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4693 
4694     // Reverse the condition code.
4695     ARMCC::CondCodes CondCode =
4696         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4697     CondCode = ARMCC::getOppositeCondition(CondCode);
4698     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4699     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4700 
4701     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4702                        OverflowCmp);
4703   }
4704 
4705   return SDValue();
4706 }
4707 
4708 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4709   SDValue Chain = Op.getOperand(0);
4710   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4711   SDValue LHS = Op.getOperand(2);
4712   SDValue RHS = Op.getOperand(3);
4713   SDValue Dest = Op.getOperand(4);
4714   SDLoc dl(Op);
4715 
4716   if (!Subtarget->hasFP64() && LHS.getValueType() == MVT::f64) {
4717     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4718                                                     dl);
4719 
4720     // If softenSetCCOperands only returned one value, we should compare it to
4721     // zero.
4722     if (!RHS.getNode()) {
4723       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4724       CC = ISD::SETNE;
4725     }
4726   }
4727 
4728   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4729   // instruction.
4730   unsigned Opc = LHS.getOpcode();
4731   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4732                       !Subtarget->isThumb1Only();
4733   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
4734       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4735        Opc == ISD::USUBO || OptimizeMul) &&
4736       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4737     // Only lower legal XALUO ops.
4738     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4739       return SDValue();
4740 
4741     // The actual operation with overflow check.
4742     SDValue Value, OverflowCmp;
4743     SDValue ARMcc;
4744     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
4745 
4746     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
4747       // Reverse the condition code.
4748       ARMCC::CondCodes CondCode =
4749           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4750       CondCode = ARMCC::getOppositeCondition(CondCode);
4751       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4752     }
4753     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4754 
4755     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4756                        OverflowCmp);
4757   }
4758 
4759   if (LHS.getValueType() == MVT::i32) {
4760     SDValue ARMcc;
4761     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4762     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4763     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4764                        Chain, Dest, ARMcc, CCR, Cmp);
4765   }
4766 
4767   if (getTargetMachine().Options.UnsafeFPMath &&
4768       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4769        CC == ISD::SETNE || CC == ISD::SETUNE)) {
4770     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4771       return Result;
4772   }
4773 
4774   ARMCC::CondCodes CondCode, CondCode2;
4775   bool InvalidOnQNaN;
4776   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4777 
4778   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4779   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4780   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4781   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4782   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4783   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4784   if (CondCode2 != ARMCC::AL) {
4785     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4786     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4787     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4788   }
4789   return Res;
4790 }
4791 
4792 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4793   SDValue Chain = Op.getOperand(0);
4794   SDValue Table = Op.getOperand(1);
4795   SDValue Index = Op.getOperand(2);
4796   SDLoc dl(Op);
4797 
4798   EVT PTy = getPointerTy(DAG.getDataLayout());
4799   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4800   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4801   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4802   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4803   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
4804   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
4805     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4806     // which does another jump to the destination. This also makes it easier
4807     // to translate it to TBB / TBH later (Thumb2 only).
4808     // FIXME: This might not work if the function is extremely large.
4809     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4810                        Addr, Op.getOperand(2), JTI);
4811   }
4812   if (isPositionIndependent() || Subtarget->isROPI()) {
4813     Addr =
4814         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4815                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4816     Chain = Addr.getValue(1);
4817     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
4818     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4819   } else {
4820     Addr =
4821         DAG.getLoad(PTy, dl, Chain, Addr,
4822                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4823     Chain = Addr.getValue(1);
4824     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4825   }
4826 }
4827 
4828 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4829   EVT VT = Op.getValueType();
4830   SDLoc dl(Op);
4831 
4832   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4833     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4834       return Op;
4835     return DAG.UnrollVectorOp(Op.getNode());
4836   }
4837 
4838   const bool HasFullFP16 =
4839     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
4840 
4841   EVT NewTy;
4842   const EVT OpTy = Op.getOperand(0).getValueType();
4843   if (OpTy == MVT::v4f32)
4844     NewTy = MVT::v4i32;
4845   else if (OpTy == MVT::v4f16 && HasFullFP16)
4846     NewTy = MVT::v4i16;
4847   else if (OpTy == MVT::v8f16 && HasFullFP16)
4848     NewTy = MVT::v8i16;
4849   else
4850     llvm_unreachable("Invalid type for custom lowering!");
4851 
4852   if (VT != MVT::v4i16 && VT != MVT::v8i16)
4853     return DAG.UnrollVectorOp(Op.getNode());
4854 
4855   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
4856   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4857 }
4858 
4859 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4860   EVT VT = Op.getValueType();
4861   if (VT.isVector())
4862     return LowerVectorFP_TO_INT(Op, DAG);
4863   if (!Subtarget->hasFP64() && Op.getOperand(0).getValueType() == MVT::f64) {
4864     RTLIB::Libcall LC;
4865     if (Op.getOpcode() == ISD::FP_TO_SINT)
4866       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4867                               Op.getValueType());
4868     else
4869       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4870                               Op.getValueType());
4871     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4872                        /*isSigned*/ false, SDLoc(Op)).first;
4873   }
4874 
4875   return Op;
4876 }
4877 
4878 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4879   EVT VT = Op.getValueType();
4880   SDLoc dl(Op);
4881 
4882   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4883     if (VT.getVectorElementType() == MVT::f32)
4884       return Op;
4885     return DAG.UnrollVectorOp(Op.getNode());
4886   }
4887 
4888   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
4889           Op.getOperand(0).getValueType() == MVT::v8i16) &&
4890          "Invalid type for custom lowering!");
4891 
4892   const bool HasFullFP16 =
4893     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
4894 
4895   EVT DestVecType;
4896   if (VT == MVT::v4f32)
4897     DestVecType = MVT::v4i32;
4898   else if (VT == MVT::v4f16 && HasFullFP16)
4899     DestVecType = MVT::v4i16;
4900   else if (VT == MVT::v8f16 && HasFullFP16)
4901     DestVecType = MVT::v8i16;
4902   else
4903     return DAG.UnrollVectorOp(Op.getNode());
4904 
4905   unsigned CastOpc;
4906   unsigned Opc;
4907   switch (Op.getOpcode()) {
4908   default: llvm_unreachable("Invalid opcode!");
4909   case ISD::SINT_TO_FP:
4910     CastOpc = ISD::SIGN_EXTEND;
4911     Opc = ISD::SINT_TO_FP;
4912     break;
4913   case ISD::UINT_TO_FP:
4914     CastOpc = ISD::ZERO_EXTEND;
4915     Opc = ISD::UINT_TO_FP;
4916     break;
4917   }
4918 
4919   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
4920   return DAG.getNode(Opc, dl, VT, Op);
4921 }
4922 
4923 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4924   EVT VT = Op.getValueType();
4925   if (VT.isVector())
4926     return LowerVectorINT_TO_FP(Op, DAG);
4927   if (!Subtarget->hasFP64() && Op.getValueType() == MVT::f64) {
4928     RTLIB::Libcall LC;
4929     if (Op.getOpcode() == ISD::SINT_TO_FP)
4930       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4931                               Op.getValueType());
4932     else
4933       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4934                               Op.getValueType());
4935     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4936                        /*isSigned*/ false, SDLoc(Op)).first;
4937   }
4938 
4939   return Op;
4940 }
4941 
4942 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4943   // Implement fcopysign with a fabs and a conditional fneg.
4944   SDValue Tmp0 = Op.getOperand(0);
4945   SDValue Tmp1 = Op.getOperand(1);
4946   SDLoc dl(Op);
4947   EVT VT = Op.getValueType();
4948   EVT SrcVT = Tmp1.getValueType();
4949   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4950     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4951   bool UseNEON = !InGPR && Subtarget->hasNEON();
4952 
4953   if (UseNEON) {
4954     // Use VBSL to copy the sign bit.
4955     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4956     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4957                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4958     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4959     if (VT == MVT::f64)
4960       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4961                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4962                          DAG.getConstant(32, dl, MVT::i32));
4963     else /*if (VT == MVT::f32)*/
4964       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4965     if (SrcVT == MVT::f32) {
4966       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4967       if (VT == MVT::f64)
4968         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4969                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4970                            DAG.getConstant(32, dl, MVT::i32));
4971     } else if (VT == MVT::f32)
4972       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4973                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4974                          DAG.getConstant(32, dl, MVT::i32));
4975     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4976     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4977 
4978     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4979                                             dl, MVT::i32);
4980     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4981     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4982                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4983 
4984     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4985                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4986                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4987     if (VT == MVT::f32) {
4988       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4989       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4990                         DAG.getConstant(0, dl, MVT::i32));
4991     } else {
4992       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4993     }
4994 
4995     return Res;
4996   }
4997 
4998   // Bitcast operand 1 to i32.
4999   if (SrcVT == MVT::f64)
5000     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5001                        Tmp1).getValue(1);
5002   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5003 
5004   // Or in the signbit with integer operations.
5005   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5006   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5007   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5008   if (VT == MVT::f32) {
5009     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5010                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5011     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5012                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5013   }
5014 
5015   // f64: Or the high part with signbit and then combine two parts.
5016   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5017                      Tmp0);
5018   SDValue Lo = Tmp0.getValue(0);
5019   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5020   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5021   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5022 }
5023 
5024 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5025   MachineFunction &MF = DAG.getMachineFunction();
5026   MachineFrameInfo &MFI = MF.getFrameInfo();
5027   MFI.setReturnAddressIsTaken(true);
5028 
5029   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5030     return SDValue();
5031 
5032   EVT VT = Op.getValueType();
5033   SDLoc dl(Op);
5034   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5035   if (Depth) {
5036     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5037     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5038     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5039                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5040                        MachinePointerInfo());
5041   }
5042 
5043   // Return LR, which contains the return address. Mark it an implicit live-in.
5044   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5045   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5046 }
5047 
5048 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5049   const ARMBaseRegisterInfo &ARI =
5050     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5051   MachineFunction &MF = DAG.getMachineFunction();
5052   MachineFrameInfo &MFI = MF.getFrameInfo();
5053   MFI.setFrameAddressIsTaken(true);
5054 
5055   EVT VT = Op.getValueType();
5056   SDLoc dl(Op);  // FIXME probably not meaningful
5057   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5058   unsigned FrameReg = ARI.getFrameRegister(MF);
5059   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5060   while (Depth--)
5061     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5062                             MachinePointerInfo());
5063   return FrameAddr;
5064 }
5065 
5066 // FIXME? Maybe this could be a TableGen attribute on some registers and
5067 // this table could be generated automatically from RegInfo.
5068 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5069                                               SelectionDAG &DAG) const {
5070   unsigned Reg = StringSwitch<unsigned>(RegName)
5071                        .Case("sp", ARM::SP)
5072                        .Default(0);
5073   if (Reg)
5074     return Reg;
5075   report_fatal_error(Twine("Invalid register name \""
5076                               + StringRef(RegName)  + "\"."));
5077 }
5078 
5079 // Result is 64 bit value so split into two 32 bit values and return as a
5080 // pair of values.
5081 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5082                                 SelectionDAG &DAG) {
5083   SDLoc DL(N);
5084 
5085   // This function is only supposed to be called for i64 type destination.
5086   assert(N->getValueType(0) == MVT::i64
5087           && "ExpandREAD_REGISTER called for non-i64 type result.");
5088 
5089   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5090                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5091                              N->getOperand(0),
5092                              N->getOperand(1));
5093 
5094   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5095                     Read.getValue(1)));
5096   Results.push_back(Read.getOperand(0));
5097 }
5098 
5099 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5100 /// When \p DstVT, the destination type of \p BC, is on the vector
5101 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5102 /// it might be possible to combine them, such that everything stays on the
5103 /// vector register bank.
5104 /// \p return The node that would replace \p BT, if the combine
5105 /// is possible.
5106 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5107                                                 SelectionDAG &DAG) {
5108   SDValue Op = BC->getOperand(0);
5109   EVT DstVT = BC->getValueType(0);
5110 
5111   // The only vector instruction that can produce a scalar (remember,
5112   // since the bitcast was about to be turned into VMOVDRR, the source
5113   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5114   // Moreover, we can do this combine only if there is one use.
5115   // Finally, if the destination type is not a vector, there is not
5116   // much point on forcing everything on the vector bank.
5117   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5118       !Op.hasOneUse())
5119     return SDValue();
5120 
5121   // If the index is not constant, we will introduce an additional
5122   // multiply that will stick.
5123   // Give up in that case.
5124   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5125   if (!Index)
5126     return SDValue();
5127   unsigned DstNumElt = DstVT.getVectorNumElements();
5128 
5129   // Compute the new index.
5130   const APInt &APIntIndex = Index->getAPIntValue();
5131   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5132   NewIndex *= APIntIndex;
5133   // Check if the new constant index fits into i32.
5134   if (NewIndex.getBitWidth() > 32)
5135     return SDValue();
5136 
5137   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5138   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5139   SDLoc dl(Op);
5140   SDValue ExtractSrc = Op.getOperand(0);
5141   EVT VecVT = EVT::getVectorVT(
5142       *DAG.getContext(), DstVT.getScalarType(),
5143       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5144   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5145   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5146                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5147 }
5148 
5149 /// ExpandBITCAST - If the target supports VFP, this function is called to
5150 /// expand a bit convert where either the source or destination type is i64 to
5151 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5152 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5153 /// vectors), since the legalizer won't know what to do with that.
5154 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5155                              const ARMSubtarget *Subtarget) {
5156   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5157   SDLoc dl(N);
5158   SDValue Op = N->getOperand(0);
5159 
5160   // This function is only supposed to be called for i64 types, either as the
5161   // source or destination of the bit convert.
5162   EVT SrcVT = Op.getValueType();
5163   EVT DstVT = N->getValueType(0);
5164   const bool HasFullFP16 = Subtarget->hasFullFP16();
5165 
5166   if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5167      // FullFP16: half values are passed in S-registers, and we don't
5168      // need any of the bitcast and moves:
5169      //
5170      // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5171      //   t5: i32 = bitcast t2
5172      // t18: f16 = ARMISD::VMOVhr t5
5173      if (Op.getOpcode() != ISD::CopyFromReg ||
5174          Op.getValueType() != MVT::f32)
5175        return SDValue();
5176 
5177      auto Move = N->use_begin();
5178      if (Move->getOpcode() != ARMISD::VMOVhr)
5179        return SDValue();
5180 
5181      SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5182      SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5183      DAG.ReplaceAllUsesWith(*Move, &Copy);
5184      return Copy;
5185   }
5186 
5187   if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5188     if (!HasFullFP16)
5189       return SDValue();
5190     // SoftFP: read half-precision arguments:
5191     //
5192     // t2: i32,ch = ...
5193     //        t7: i16 = truncate t2 <~~~~ Op
5194     //      t8: f16 = bitcast t7    <~~~~ N
5195     //
5196     if (Op.getOperand(0).getValueType() == MVT::i32)
5197       return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5198                          MVT::f16, Op.getOperand(0));
5199 
5200     return SDValue();
5201   }
5202 
5203   // Half-precision return values
5204   if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5205     if (!HasFullFP16)
5206       return SDValue();
5207     //
5208     //          t11: f16 = fadd t8, t10
5209     //        t12: i16 = bitcast t11       <~~~ SDNode N
5210     //      t13: i32 = zero_extend t12
5211     //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5212     //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5213     //
5214     // transform this into:
5215     //
5216     //    t20: i32 = ARMISD::VMOVrh t11
5217     //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5218     //
5219     auto ZeroExtend = N->use_begin();
5220     if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5221         ZeroExtend->getValueType(0) != MVT::i32)
5222       return SDValue();
5223 
5224     auto Copy = ZeroExtend->use_begin();
5225     if (Copy->getOpcode() == ISD::CopyToReg &&
5226         Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5227       SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5228       DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5229       return Cvt;
5230     }
5231     return SDValue();
5232   }
5233 
5234   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5235     return SDValue();
5236 
5237   // Turn i64->f64 into VMOVDRR.
5238   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5239     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5240     // if we can combine the bitcast with its source.
5241     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5242       return Val;
5243 
5244     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5245                              DAG.getConstant(0, dl, MVT::i32));
5246     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5247                              DAG.getConstant(1, dl, MVT::i32));
5248     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5249                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5250   }
5251 
5252   // Turn f64->i64 into VMOVRRD.
5253   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5254     SDValue Cvt;
5255     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5256         SrcVT.getVectorNumElements() > 1)
5257       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5258                         DAG.getVTList(MVT::i32, MVT::i32),
5259                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5260     else
5261       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5262                         DAG.getVTList(MVT::i32, MVT::i32), Op);
5263     // Merge the pieces into a single i64 value.
5264     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5265   }
5266 
5267   return SDValue();
5268 }
5269 
5270 /// getZeroVector - Returns a vector of specified type with all zero elements.
5271 /// Zero vectors are used to represent vector negation and in those cases
5272 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
5273 /// not support i64 elements, so sometimes the zero vectors will need to be
5274 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
5275 /// zero vector.
5276 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5277   assert(VT.isVector() && "Expected a vector type");
5278   // The canonical modified immediate encoding of a zero vector is....0!
5279   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5280   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5281   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5282   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5283 }
5284 
5285 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5286 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5287 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5288                                                 SelectionDAG &DAG) const {
5289   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5290   EVT VT = Op.getValueType();
5291   unsigned VTBits = VT.getSizeInBits();
5292   SDLoc dl(Op);
5293   SDValue ShOpLo = Op.getOperand(0);
5294   SDValue ShOpHi = Op.getOperand(1);
5295   SDValue ShAmt  = Op.getOperand(2);
5296   SDValue ARMcc;
5297   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5298   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5299 
5300   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5301 
5302   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5303                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5304   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5305   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5306                                    DAG.getConstant(VTBits, dl, MVT::i32));
5307   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5308   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5309   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5310   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5311                             ISD::SETGE, ARMcc, DAG, dl);
5312   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5313                            ARMcc, CCR, CmpLo);
5314 
5315   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5316   SDValue HiBigShift = Opc == ISD::SRA
5317                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
5318                                          DAG.getConstant(VTBits - 1, dl, VT))
5319                            : DAG.getConstant(0, dl, VT);
5320   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5321                             ISD::SETGE, ARMcc, DAG, dl);
5322   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5323                            ARMcc, CCR, CmpHi);
5324 
5325   SDValue Ops[2] = { Lo, Hi };
5326   return DAG.getMergeValues(Ops, dl);
5327 }
5328 
5329 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5330 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5331 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5332                                                SelectionDAG &DAG) const {
5333   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5334   EVT VT = Op.getValueType();
5335   unsigned VTBits = VT.getSizeInBits();
5336   SDLoc dl(Op);
5337   SDValue ShOpLo = Op.getOperand(0);
5338   SDValue ShOpHi = Op.getOperand(1);
5339   SDValue ShAmt  = Op.getOperand(2);
5340   SDValue ARMcc;
5341   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5342 
5343   assert(Op.getOpcode() == ISD::SHL_PARTS);
5344   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5345                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5346   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5347   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5348   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5349 
5350   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5351                                    DAG.getConstant(VTBits, dl, MVT::i32));
5352   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5353   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5354                             ISD::SETGE, ARMcc, DAG, dl);
5355   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5356                            ARMcc, CCR, CmpHi);
5357 
5358   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5359                           ISD::SETGE, ARMcc, DAG, dl);
5360   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5361   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5362                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5363 
5364   SDValue Ops[2] = { Lo, Hi };
5365   return DAG.getMergeValues(Ops, dl);
5366 }
5367 
5368 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5369                                             SelectionDAG &DAG) const {
5370   // The rounding mode is in bits 23:22 of the FPSCR.
5371   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5372   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5373   // so that the shift + and get folded into a bitfield extract.
5374   SDLoc dl(Op);
5375   SDValue Ops[] = { DAG.getEntryNode(),
5376                     DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5377 
5378   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5379   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5380                                   DAG.getConstant(1U << 22, dl, MVT::i32));
5381   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5382                               DAG.getConstant(22, dl, MVT::i32));
5383   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5384                      DAG.getConstant(3, dl, MVT::i32));
5385 }
5386 
5387 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5388                          const ARMSubtarget *ST) {
5389   SDLoc dl(N);
5390   EVT VT = N->getValueType(0);
5391   if (VT.isVector()) {
5392     assert(ST->hasNEON());
5393 
5394     // Compute the least significant set bit: LSB = X & -X
5395     SDValue X = N->getOperand(0);
5396     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5397     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5398 
5399     EVT ElemTy = VT.getVectorElementType();
5400 
5401     if (ElemTy == MVT::i8) {
5402       // Compute with: cttz(x) = ctpop(lsb - 1)
5403       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5404                                 DAG.getTargetConstant(1, dl, ElemTy));
5405       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5406       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5407     }
5408 
5409     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5410         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5411       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5412       unsigned NumBits = ElemTy.getSizeInBits();
5413       SDValue WidthMinus1 =
5414           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5415                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5416       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5417       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5418     }
5419 
5420     // Compute with: cttz(x) = ctpop(lsb - 1)
5421 
5422     // Compute LSB - 1.
5423     SDValue Bits;
5424     if (ElemTy == MVT::i64) {
5425       // Load constant 0xffff'ffff'ffff'ffff to register.
5426       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5427                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5428       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5429     } else {
5430       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5431                                 DAG.getTargetConstant(1, dl, ElemTy));
5432       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5433     }
5434     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5435   }
5436 
5437   if (!ST->hasV6T2Ops())
5438     return SDValue();
5439 
5440   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5441   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5442 }
5443 
5444 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5445                           const ARMSubtarget *ST) {
5446   EVT VT = N->getValueType(0);
5447   SDLoc DL(N);
5448 
5449   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5450   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
5451           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
5452          "Unexpected type for custom ctpop lowering");
5453 
5454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5455   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5456   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
5457   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
5458 
5459   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5460   unsigned EltSize = 8;
5461   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
5462   while (EltSize != VT.getScalarSizeInBits()) {
5463     SmallVector<SDValue, 8> Ops;
5464     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
5465                                   TLI.getPointerTy(DAG.getDataLayout())));
5466     Ops.push_back(Res);
5467 
5468     EltSize *= 2;
5469     NumElts /= 2;
5470     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
5471     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
5472   }
5473 
5474   return Res;
5475 }
5476 
5477 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5478                           const ARMSubtarget *ST) {
5479   EVT VT = N->getValueType(0);
5480   SDLoc dl(N);
5481 
5482   if (!VT.isVector())
5483     return SDValue();
5484 
5485   // Lower vector shifts on NEON to use VSHL.
5486   assert(ST->hasNEON() && "unexpected vector shift");
5487 
5488   // Left shifts translate directly to the vshiftu intrinsic.
5489   if (N->getOpcode() == ISD::SHL)
5490     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5491                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
5492                                        MVT::i32),
5493                        N->getOperand(0), N->getOperand(1));
5494 
5495   assert((N->getOpcode() == ISD::SRA ||
5496           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5497 
5498   // NEON uses the same intrinsics for both left and right shifts.  For
5499   // right shifts, the shift amounts are negative, so negate the vector of
5500   // shift amounts.
5501   EVT ShiftVT = N->getOperand(1).getValueType();
5502   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5503                                      getZeroVector(ShiftVT, DAG, dl),
5504                                      N->getOperand(1));
5505   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5506                              Intrinsic::arm_neon_vshifts :
5507                              Intrinsic::arm_neon_vshiftu);
5508   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5509                      DAG.getConstant(vshiftInt, dl, MVT::i32),
5510                      N->getOperand(0), NegatedCount);
5511 }
5512 
5513 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5514                                 const ARMSubtarget *ST) {
5515   EVT VT = N->getValueType(0);
5516   SDLoc dl(N);
5517 
5518   // We can get here for a node like i32 = ISD::SHL i32, i64
5519   if (VT != MVT::i64)
5520     return SDValue();
5521 
5522   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
5523          "Unknown shift to lower!");
5524 
5525   // We only lower SRA, SRL of 1 here, all others use generic lowering.
5526   if (!isOneConstant(N->getOperand(1)))
5527     return SDValue();
5528 
5529   // If we are in thumb mode, we don't have RRX.
5530   if (ST->isThumb1Only()) return SDValue();
5531 
5532   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
5533   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5534                            DAG.getConstant(0, dl, MVT::i32));
5535   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5536                            DAG.getConstant(1, dl, MVT::i32));
5537 
5538   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5539   // captures the result into a carry flag.
5540   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5541   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5542 
5543   // The low part is an ARMISD::RRX operand, which shifts the carry in.
5544   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5545 
5546   // Merge the pieces into a single i64 value.
5547  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5548 }
5549 
5550 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5551   SDValue TmpOp0, TmpOp1;
5552   bool Invert = false;
5553   bool Swap = false;
5554   unsigned Opc = 0;
5555 
5556   SDValue Op0 = Op.getOperand(0);
5557   SDValue Op1 = Op.getOperand(1);
5558   SDValue CC = Op.getOperand(2);
5559   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5560   EVT VT = Op.getValueType();
5561   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5562   SDLoc dl(Op);
5563 
5564   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5565       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5566     // Special-case integer 64-bit equality comparisons. They aren't legal,
5567     // but they can be lowered with a few vector instructions.
5568     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5569     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5570     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5571     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5572     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5573                               DAG.getCondCode(ISD::SETEQ));
5574     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5575     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5576     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5577     if (SetCCOpcode == ISD::SETNE)
5578       Merged = DAG.getNOT(dl, Merged, CmpVT);
5579     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5580     return Merged;
5581   }
5582 
5583   if (CmpVT.getVectorElementType() == MVT::i64)
5584     // 64-bit comparisons are not legal in general.
5585     return SDValue();
5586 
5587   if (Op1.getValueType().isFloatingPoint()) {
5588     switch (SetCCOpcode) {
5589     default: llvm_unreachable("Illegal FP comparison");
5590     case ISD::SETUNE:
5591     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5592     case ISD::SETOEQ:
5593     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5594     case ISD::SETOLT:
5595     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5596     case ISD::SETOGT:
5597     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5598     case ISD::SETOLE:
5599     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5600     case ISD::SETOGE:
5601     case ISD::SETGE: Opc = ARMISD::VCGE; break;
5602     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5603     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5604     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5605     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5606     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5607     case ISD::SETONE:
5608       // Expand this to (OLT | OGT).
5609       TmpOp0 = Op0;
5610       TmpOp1 = Op1;
5611       Opc = ISD::OR;
5612       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5613       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5614       break;
5615     case ISD::SETUO:
5616       Invert = true;
5617       LLVM_FALLTHROUGH;
5618     case ISD::SETO:
5619       // Expand this to (OLT | OGE).
5620       TmpOp0 = Op0;
5621       TmpOp1 = Op1;
5622       Opc = ISD::OR;
5623       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5624       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5625       break;
5626     }
5627   } else {
5628     // Integer comparisons.
5629     switch (SetCCOpcode) {
5630     default: llvm_unreachable("Illegal integer comparison");
5631     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5632     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5633     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
5634     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5635     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5636     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
5637     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
5638     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5639     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
5640     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5641     }
5642 
5643     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5644     if (Opc == ARMISD::VCEQ) {
5645       SDValue AndOp;
5646       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5647         AndOp = Op0;
5648       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5649         AndOp = Op1;
5650 
5651       // Ignore bitconvert.
5652       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5653         AndOp = AndOp.getOperand(0);
5654 
5655       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5656         Opc = ARMISD::VTST;
5657         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5658         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5659         Invert = !Invert;
5660       }
5661     }
5662   }
5663 
5664   if (Swap)
5665     std::swap(Op0, Op1);
5666 
5667   // If one of the operands is a constant vector zero, attempt to fold the
5668   // comparison to a specialized compare-against-zero form.
5669   SDValue SingleOp;
5670   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5671     SingleOp = Op0;
5672   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5673     if (Opc == ARMISD::VCGE)
5674       Opc = ARMISD::VCLEZ;
5675     else if (Opc == ARMISD::VCGT)
5676       Opc = ARMISD::VCLTZ;
5677     SingleOp = Op1;
5678   }
5679 
5680   SDValue Result;
5681   if (SingleOp.getNode()) {
5682     switch (Opc) {
5683     case ARMISD::VCEQ:
5684       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5685     case ARMISD::VCGE:
5686       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5687     case ARMISD::VCLEZ:
5688       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5689     case ARMISD::VCGT:
5690       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5691     case ARMISD::VCLTZ:
5692       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5693     default:
5694       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5695     }
5696   } else {
5697      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5698   }
5699 
5700   Result = DAG.getSExtOrTrunc(Result, dl, VT);
5701 
5702   if (Invert)
5703     Result = DAG.getNOT(dl, Result, VT);
5704 
5705   return Result;
5706 }
5707 
5708 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
5709   SDValue LHS = Op.getOperand(0);
5710   SDValue RHS = Op.getOperand(1);
5711   SDValue Carry = Op.getOperand(2);
5712   SDValue Cond = Op.getOperand(3);
5713   SDLoc DL(Op);
5714 
5715   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
5716 
5717   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
5718   // have to invert the carry first.
5719   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
5720                       DAG.getConstant(1, DL, MVT::i32), Carry);
5721   // This converts the boolean value carry into the carry flag.
5722   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
5723 
5724   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5725   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5726 
5727   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5728   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5729   SDValue ARMcc = DAG.getConstant(
5730       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5731   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5732   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5733                                    Cmp.getValue(1), SDValue());
5734   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5735                      CCR, Chain.getValue(1));
5736 }
5737 
5738 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5739 /// valid vector constant for a NEON instruction with a "modified immediate"
5740 /// operand (e.g., VMOV).  If so, return the encoded value.
5741 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5742                                  unsigned SplatBitSize, SelectionDAG &DAG,
5743                                  const SDLoc &dl, EVT &VT, bool is128Bits,
5744                                  NEONModImmType type) {
5745   unsigned OpCmode, Imm;
5746 
5747   // SplatBitSize is set to the smallest size that splats the vector, so a
5748   // zero vector will always have SplatBitSize == 8.  However, NEON modified
5749   // immediate instructions others than VMOV do not support the 8-bit encoding
5750   // of a zero vector, and the default encoding of zero is supposed to be the
5751   // 32-bit version.
5752   if (SplatBits == 0)
5753     SplatBitSize = 32;
5754 
5755   switch (SplatBitSize) {
5756   case 8:
5757     if (type != VMOVModImm)
5758       return SDValue();
5759     // Any 1-byte value is OK.  Op=0, Cmode=1110.
5760     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5761     OpCmode = 0xe;
5762     Imm = SplatBits;
5763     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5764     break;
5765 
5766   case 16:
5767     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5768     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5769     if ((SplatBits & ~0xff) == 0) {
5770       // Value = 0x00nn: Op=x, Cmode=100x.
5771       OpCmode = 0x8;
5772       Imm = SplatBits;
5773       break;
5774     }
5775     if ((SplatBits & ~0xff00) == 0) {
5776       // Value = 0xnn00: Op=x, Cmode=101x.
5777       OpCmode = 0xa;
5778       Imm = SplatBits >> 8;
5779       break;
5780     }
5781     return SDValue();
5782 
5783   case 32:
5784     // NEON's 32-bit VMOV supports splat values where:
5785     // * only one byte is nonzero, or
5786     // * the least significant byte is 0xff and the second byte is nonzero, or
5787     // * the least significant 2 bytes are 0xff and the third is nonzero.
5788     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5789     if ((SplatBits & ~0xff) == 0) {
5790       // Value = 0x000000nn: Op=x, Cmode=000x.
5791       OpCmode = 0;
5792       Imm = SplatBits;
5793       break;
5794     }
5795     if ((SplatBits & ~0xff00) == 0) {
5796       // Value = 0x0000nn00: Op=x, Cmode=001x.
5797       OpCmode = 0x2;
5798       Imm = SplatBits >> 8;
5799       break;
5800     }
5801     if ((SplatBits & ~0xff0000) == 0) {
5802       // Value = 0x00nn0000: Op=x, Cmode=010x.
5803       OpCmode = 0x4;
5804       Imm = SplatBits >> 16;
5805       break;
5806     }
5807     if ((SplatBits & ~0xff000000) == 0) {
5808       // Value = 0xnn000000: Op=x, Cmode=011x.
5809       OpCmode = 0x6;
5810       Imm = SplatBits >> 24;
5811       break;
5812     }
5813 
5814     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5815     if (type == OtherModImm) return SDValue();
5816 
5817     if ((SplatBits & ~0xffff) == 0 &&
5818         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5819       // Value = 0x0000nnff: Op=x, Cmode=1100.
5820       OpCmode = 0xc;
5821       Imm = SplatBits >> 8;
5822       break;
5823     }
5824 
5825     if ((SplatBits & ~0xffffff) == 0 &&
5826         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5827       // Value = 0x00nnffff: Op=x, Cmode=1101.
5828       OpCmode = 0xd;
5829       Imm = SplatBits >> 16;
5830       break;
5831     }
5832 
5833     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5834     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5835     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5836     // and fall through here to test for a valid 64-bit splat.  But, then the
5837     // caller would also need to check and handle the change in size.
5838     return SDValue();
5839 
5840   case 64: {
5841     if (type != VMOVModImm)
5842       return SDValue();
5843     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5844     uint64_t BitMask = 0xff;
5845     uint64_t Val = 0;
5846     unsigned ImmMask = 1;
5847     Imm = 0;
5848     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5849       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5850         Val |= BitMask;
5851         Imm |= ImmMask;
5852       } else if ((SplatBits & BitMask) != 0) {
5853         return SDValue();
5854       }
5855       BitMask <<= 8;
5856       ImmMask <<= 1;
5857     }
5858 
5859     if (DAG.getDataLayout().isBigEndian())
5860       // swap higher and lower 32 bit word
5861       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5862 
5863     // Op=1, Cmode=1110.
5864     OpCmode = 0x1e;
5865     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5866     break;
5867   }
5868 
5869   default:
5870     llvm_unreachable("unexpected size for isNEONModifiedImm");
5871   }
5872 
5873   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5874   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5875 }
5876 
5877 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5878                                            const ARMSubtarget *ST) const {
5879   EVT VT = Op.getValueType();
5880   bool IsDouble = (VT == MVT::f64);
5881   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5882   const APFloat &FPVal = CFP->getValueAPF();
5883 
5884   // Prevent floating-point constants from using literal loads
5885   // when execute-only is enabled.
5886   if (ST->genExecuteOnly()) {
5887     // If we can represent the constant as an immediate, don't lower it
5888     if (isFPImmLegal(FPVal, VT))
5889       return Op;
5890     // Otherwise, construct as integer, and move to float register
5891     APInt INTVal = FPVal.bitcastToAPInt();
5892     SDLoc DL(CFP);
5893     switch (VT.getSimpleVT().SimpleTy) {
5894       default:
5895         llvm_unreachable("Unknown floating point type!");
5896         break;
5897       case MVT::f64: {
5898         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
5899         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
5900         if (!ST->isLittle())
5901           std::swap(Lo, Hi);
5902         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
5903       }
5904       case MVT::f32:
5905           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
5906               DAG.getConstant(INTVal, DL, MVT::i32));
5907     }
5908   }
5909 
5910   if (!ST->hasVFP3Base())
5911     return SDValue();
5912 
5913   // Use the default (constant pool) lowering for double constants when we have
5914   // an SP-only FPU
5915   if (IsDouble && !Subtarget->hasFP64())
5916     return SDValue();
5917 
5918   // Try splatting with a VMOV.f32...
5919   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5920 
5921   if (ImmVal != -1) {
5922     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
5923       // We have code in place to select a valid ConstantFP already, no need to
5924       // do any mangling.
5925       return Op;
5926     }
5927 
5928     // It's a float and we are trying to use NEON operations where
5929     // possible. Lower it to a splat followed by an extract.
5930     SDLoc DL(Op);
5931     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
5932     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
5933                                       NewVal);
5934     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
5935                        DAG.getConstant(0, DL, MVT::i32));
5936   }
5937 
5938   // The rest of our options are NEON only, make sure that's allowed before
5939   // proceeding..
5940   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
5941     return SDValue();
5942 
5943   EVT VMovVT;
5944   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
5945 
5946   // It wouldn't really be worth bothering for doubles except for one very
5947   // important value, which does happen to match: 0.0. So make sure we don't do
5948   // anything stupid.
5949   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
5950     return SDValue();
5951 
5952   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
5953   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
5954                                      VMovVT, false, VMOVModImm);
5955   if (NewVal != SDValue()) {
5956     SDLoc DL(Op);
5957     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
5958                                       NewVal);
5959     if (IsDouble)
5960       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5961 
5962     // It's a float: cast and extract a vector element.
5963     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5964                                        VecConstant);
5965     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5966                        DAG.getConstant(0, DL, MVT::i32));
5967   }
5968 
5969   // Finally, try a VMVN.i32
5970   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
5971                              false, VMVNModImm);
5972   if (NewVal != SDValue()) {
5973     SDLoc DL(Op);
5974     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
5975 
5976     if (IsDouble)
5977       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5978 
5979     // It's a float: cast and extract a vector element.
5980     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5981                                        VecConstant);
5982     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5983                        DAG.getConstant(0, DL, MVT::i32));
5984   }
5985 
5986   return SDValue();
5987 }
5988 
5989 // check if an VEXT instruction can handle the shuffle mask when the
5990 // vector sources of the shuffle are the same.
5991 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5992   unsigned NumElts = VT.getVectorNumElements();
5993 
5994   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5995   if (M[0] < 0)
5996     return false;
5997 
5998   Imm = M[0];
5999 
6000   // If this is a VEXT shuffle, the immediate value is the index of the first
6001   // element.  The other shuffle indices must be the successive elements after
6002   // the first one.
6003   unsigned ExpectedElt = Imm;
6004   for (unsigned i = 1; i < NumElts; ++i) {
6005     // Increment the expected index.  If it wraps around, just follow it
6006     // back to index zero and keep going.
6007     ++ExpectedElt;
6008     if (ExpectedElt == NumElts)
6009       ExpectedElt = 0;
6010 
6011     if (M[i] < 0) continue; // ignore UNDEF indices
6012     if (ExpectedElt != static_cast<unsigned>(M[i]))
6013       return false;
6014   }
6015 
6016   return true;
6017 }
6018 
6019 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6020                        bool &ReverseVEXT, unsigned &Imm) {
6021   unsigned NumElts = VT.getVectorNumElements();
6022   ReverseVEXT = false;
6023 
6024   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6025   if (M[0] < 0)
6026     return false;
6027 
6028   Imm = M[0];
6029 
6030   // If this is a VEXT shuffle, the immediate value is the index of the first
6031   // element.  The other shuffle indices must be the successive elements after
6032   // the first one.
6033   unsigned ExpectedElt = Imm;
6034   for (unsigned i = 1; i < NumElts; ++i) {
6035     // Increment the expected index.  If it wraps around, it may still be
6036     // a VEXT but the source vectors must be swapped.
6037     ExpectedElt += 1;
6038     if (ExpectedElt == NumElts * 2) {
6039       ExpectedElt = 0;
6040       ReverseVEXT = true;
6041     }
6042 
6043     if (M[i] < 0) continue; // ignore UNDEF indices
6044     if (ExpectedElt != static_cast<unsigned>(M[i]))
6045       return false;
6046   }
6047 
6048   // Adjust the index value if the source operands will be swapped.
6049   if (ReverseVEXT)
6050     Imm -= NumElts;
6051 
6052   return true;
6053 }
6054 
6055 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6056 /// instruction with the specified blocksize.  (The order of the elements
6057 /// within each block of the vector is reversed.)
6058 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6059   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6060          "Only possible block sizes for VREV are: 16, 32, 64");
6061 
6062   unsigned EltSz = VT.getScalarSizeInBits();
6063   if (EltSz == 64)
6064     return false;
6065 
6066   unsigned NumElts = VT.getVectorNumElements();
6067   unsigned BlockElts = M[0] + 1;
6068   // If the first shuffle index is UNDEF, be optimistic.
6069   if (M[0] < 0)
6070     BlockElts = BlockSize / EltSz;
6071 
6072   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6073     return false;
6074 
6075   for (unsigned i = 0; i < NumElts; ++i) {
6076     if (M[i] < 0) continue; // ignore UNDEF indices
6077     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6078       return false;
6079   }
6080 
6081   return true;
6082 }
6083 
6084 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6085   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6086   // range, then 0 is placed into the resulting vector. So pretty much any mask
6087   // of 8 elements can work here.
6088   return VT == MVT::v8i8 && M.size() == 8;
6089 }
6090 
6091 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6092                                unsigned Index) {
6093   if (Mask.size() == Elements * 2)
6094     return Index / Elements;
6095   return Mask[Index] == 0 ? 0 : 1;
6096 }
6097 
6098 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6099 // checking that pairs of elements in the shuffle mask represent the same index
6100 // in each vector, incrementing the expected index by 2 at each step.
6101 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6102 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6103 //  v2={e,f,g,h}
6104 // WhichResult gives the offset for each element in the mask based on which
6105 // of the two results it belongs to.
6106 //
6107 // The transpose can be represented either as:
6108 // result1 = shufflevector v1, v2, result1_shuffle_mask
6109 // result2 = shufflevector v1, v2, result2_shuffle_mask
6110 // where v1/v2 and the shuffle masks have the same number of elements
6111 // (here WhichResult (see below) indicates which result is being checked)
6112 //
6113 // or as:
6114 // results = shufflevector v1, v2, shuffle_mask
6115 // where both results are returned in one vector and the shuffle mask has twice
6116 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6117 // want to check the low half and high half of the shuffle mask as if it were
6118 // the other case
6119 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6120   unsigned EltSz = VT.getScalarSizeInBits();
6121   if (EltSz == 64)
6122     return false;
6123 
6124   unsigned NumElts = VT.getVectorNumElements();
6125   if (M.size() != NumElts && M.size() != NumElts*2)
6126     return false;
6127 
6128   // If the mask is twice as long as the input vector then we need to check the
6129   // upper and lower parts of the mask with a matching value for WhichResult
6130   // FIXME: A mask with only even values will be rejected in case the first
6131   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6132   // M[0] is used to determine WhichResult
6133   for (unsigned i = 0; i < M.size(); i += NumElts) {
6134     WhichResult = SelectPairHalf(NumElts, M, i);
6135     for (unsigned j = 0; j < NumElts; j += 2) {
6136       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6137           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6138         return false;
6139     }
6140   }
6141 
6142   if (M.size() == NumElts*2)
6143     WhichResult = 0;
6144 
6145   return true;
6146 }
6147 
6148 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6149 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6150 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6151 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6152   unsigned EltSz = VT.getScalarSizeInBits();
6153   if (EltSz == 64)
6154     return false;
6155 
6156   unsigned NumElts = VT.getVectorNumElements();
6157   if (M.size() != NumElts && M.size() != NumElts*2)
6158     return false;
6159 
6160   for (unsigned i = 0; i < M.size(); i += NumElts) {
6161     WhichResult = SelectPairHalf(NumElts, M, i);
6162     for (unsigned j = 0; j < NumElts; j += 2) {
6163       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6164           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6165         return false;
6166     }
6167   }
6168 
6169   if (M.size() == NumElts*2)
6170     WhichResult = 0;
6171 
6172   return true;
6173 }
6174 
6175 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6176 // that the mask elements are either all even and in steps of size 2 or all odd
6177 // and in steps of size 2.
6178 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6179 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6180 //  v2={e,f,g,h}
6181 // Requires similar checks to that of isVTRNMask with
6182 // respect the how results are returned.
6183 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6184   unsigned EltSz = VT.getScalarSizeInBits();
6185   if (EltSz == 64)
6186     return false;
6187 
6188   unsigned NumElts = VT.getVectorNumElements();
6189   if (M.size() != NumElts && M.size() != NumElts*2)
6190     return false;
6191 
6192   for (unsigned i = 0; i < M.size(); i += NumElts) {
6193     WhichResult = SelectPairHalf(NumElts, M, i);
6194     for (unsigned j = 0; j < NumElts; ++j) {
6195       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6196         return false;
6197     }
6198   }
6199 
6200   if (M.size() == NumElts*2)
6201     WhichResult = 0;
6202 
6203   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6204   if (VT.is64BitVector() && EltSz == 32)
6205     return false;
6206 
6207   return true;
6208 }
6209 
6210 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6211 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6212 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6213 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6214   unsigned EltSz = VT.getScalarSizeInBits();
6215   if (EltSz == 64)
6216     return false;
6217 
6218   unsigned NumElts = VT.getVectorNumElements();
6219   if (M.size() != NumElts && M.size() != NumElts*2)
6220     return false;
6221 
6222   unsigned Half = NumElts / 2;
6223   for (unsigned i = 0; i < M.size(); i += NumElts) {
6224     WhichResult = SelectPairHalf(NumElts, M, i);
6225     for (unsigned j = 0; j < NumElts; j += Half) {
6226       unsigned Idx = WhichResult;
6227       for (unsigned k = 0; k < Half; ++k) {
6228         int MIdx = M[i + j + k];
6229         if (MIdx >= 0 && (unsigned) MIdx != Idx)
6230           return false;
6231         Idx += 2;
6232       }
6233     }
6234   }
6235 
6236   if (M.size() == NumElts*2)
6237     WhichResult = 0;
6238 
6239   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6240   if (VT.is64BitVector() && EltSz == 32)
6241     return false;
6242 
6243   return true;
6244 }
6245 
6246 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6247 // that pairs of elements of the shufflemask represent the same index in each
6248 // vector incrementing sequentially through the vectors.
6249 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6250 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6251 //  v2={e,f,g,h}
6252 // Requires similar checks to that of isVTRNMask with respect the how results
6253 // are returned.
6254 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6255   unsigned EltSz = VT.getScalarSizeInBits();
6256   if (EltSz == 64)
6257     return false;
6258 
6259   unsigned NumElts = VT.getVectorNumElements();
6260   if (M.size() != NumElts && M.size() != NumElts*2)
6261     return false;
6262 
6263   for (unsigned i = 0; i < M.size(); i += NumElts) {
6264     WhichResult = SelectPairHalf(NumElts, M, i);
6265     unsigned Idx = WhichResult * NumElts / 2;
6266     for (unsigned j = 0; j < NumElts; j += 2) {
6267       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6268           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6269         return false;
6270       Idx += 1;
6271     }
6272   }
6273 
6274   if (M.size() == NumElts*2)
6275     WhichResult = 0;
6276 
6277   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6278   if (VT.is64BitVector() && EltSz == 32)
6279     return false;
6280 
6281   return true;
6282 }
6283 
6284 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6285 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6286 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6287 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6288   unsigned EltSz = VT.getScalarSizeInBits();
6289   if (EltSz == 64)
6290     return false;
6291 
6292   unsigned NumElts = VT.getVectorNumElements();
6293   if (M.size() != NumElts && M.size() != NumElts*2)
6294     return false;
6295 
6296   for (unsigned i = 0; i < M.size(); i += NumElts) {
6297     WhichResult = SelectPairHalf(NumElts, M, i);
6298     unsigned Idx = WhichResult * NumElts / 2;
6299     for (unsigned j = 0; j < NumElts; j += 2) {
6300       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6301           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6302         return false;
6303       Idx += 1;
6304     }
6305   }
6306 
6307   if (M.size() == NumElts*2)
6308     WhichResult = 0;
6309 
6310   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6311   if (VT.is64BitVector() && EltSz == 32)
6312     return false;
6313 
6314   return true;
6315 }
6316 
6317 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6318 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6319 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6320                                            unsigned &WhichResult,
6321                                            bool &isV_UNDEF) {
6322   isV_UNDEF = false;
6323   if (isVTRNMask(ShuffleMask, VT, WhichResult))
6324     return ARMISD::VTRN;
6325   if (isVUZPMask(ShuffleMask, VT, WhichResult))
6326     return ARMISD::VUZP;
6327   if (isVZIPMask(ShuffleMask, VT, WhichResult))
6328     return ARMISD::VZIP;
6329 
6330   isV_UNDEF = true;
6331   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6332     return ARMISD::VTRN;
6333   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6334     return ARMISD::VUZP;
6335   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6336     return ARMISD::VZIP;
6337 
6338   return 0;
6339 }
6340 
6341 /// \return true if this is a reverse operation on an vector.
6342 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6343   unsigned NumElts = VT.getVectorNumElements();
6344   // Make sure the mask has the right size.
6345   if (NumElts != M.size())
6346       return false;
6347 
6348   // Look for <15, ..., 3, -1, 1, 0>.
6349   for (unsigned i = 0; i != NumElts; ++i)
6350     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6351       return false;
6352 
6353   return true;
6354 }
6355 
6356 // If N is an integer constant that can be moved into a register in one
6357 // instruction, return an SDValue of such a constant (will become a MOV
6358 // instruction).  Otherwise return null.
6359 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6360                                      const ARMSubtarget *ST, const SDLoc &dl) {
6361   uint64_t Val;
6362   if (!isa<ConstantSDNode>(N))
6363     return SDValue();
6364   Val = cast<ConstantSDNode>(N)->getZExtValue();
6365 
6366   if (ST->isThumb1Only()) {
6367     if (Val <= 255 || ~Val <= 255)
6368       return DAG.getConstant(Val, dl, MVT::i32);
6369   } else {
6370     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6371       return DAG.getConstant(Val, dl, MVT::i32);
6372   }
6373   return SDValue();
6374 }
6375 
6376 // If this is a case we can't handle, return null and let the default
6377 // expansion code take care of it.
6378 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6379                                              const ARMSubtarget *ST) const {
6380   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6381   SDLoc dl(Op);
6382   EVT VT = Op.getValueType();
6383 
6384   APInt SplatBits, SplatUndef;
6385   unsigned SplatBitSize;
6386   bool HasAnyUndefs;
6387   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6388     if (SplatUndef.isAllOnesValue())
6389       return DAG.getUNDEF(VT);
6390 
6391     if (SplatBitSize <= 64) {
6392       // Check if an immediate VMOV works.
6393       EVT VmovVT;
6394       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6395                                       SplatUndef.getZExtValue(), SplatBitSize,
6396                                       DAG, dl, VmovVT, VT.is128BitVector(),
6397                                       VMOVModImm);
6398       if (Val.getNode()) {
6399         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6400         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6401       }
6402 
6403       // Try an immediate VMVN.
6404       uint64_t NegatedImm = (~SplatBits).getZExtValue();
6405       Val = isNEONModifiedImm(NegatedImm,
6406                                       SplatUndef.getZExtValue(), SplatBitSize,
6407                                       DAG, dl, VmovVT, VT.is128BitVector(),
6408                                       VMVNModImm);
6409       if (Val.getNode()) {
6410         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6411         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6412       }
6413 
6414       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6415       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6416         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6417         if (ImmVal != -1) {
6418           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6419           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6420         }
6421       }
6422     }
6423   }
6424 
6425   // Scan through the operands to see if only one value is used.
6426   //
6427   // As an optimisation, even if more than one value is used it may be more
6428   // profitable to splat with one value then change some lanes.
6429   //
6430   // Heuristically we decide to do this if the vector has a "dominant" value,
6431   // defined as splatted to more than half of the lanes.
6432   unsigned NumElts = VT.getVectorNumElements();
6433   bool isOnlyLowElement = true;
6434   bool usesOnlyOneValue = true;
6435   bool hasDominantValue = false;
6436   bool isConstant = true;
6437 
6438   // Map of the number of times a particular SDValue appears in the
6439   // element list.
6440   DenseMap<SDValue, unsigned> ValueCounts;
6441   SDValue Value;
6442   for (unsigned i = 0; i < NumElts; ++i) {
6443     SDValue V = Op.getOperand(i);
6444     if (V.isUndef())
6445       continue;
6446     if (i > 0)
6447       isOnlyLowElement = false;
6448     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6449       isConstant = false;
6450 
6451     ValueCounts.insert(std::make_pair(V, 0));
6452     unsigned &Count = ValueCounts[V];
6453 
6454     // Is this value dominant? (takes up more than half of the lanes)
6455     if (++Count > (NumElts / 2)) {
6456       hasDominantValue = true;
6457       Value = V;
6458     }
6459   }
6460   if (ValueCounts.size() != 1)
6461     usesOnlyOneValue = false;
6462   if (!Value.getNode() && !ValueCounts.empty())
6463     Value = ValueCounts.begin()->first;
6464 
6465   if (ValueCounts.empty())
6466     return DAG.getUNDEF(VT);
6467 
6468   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6469   // Keep going if we are hitting this case.
6470   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6471     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6472 
6473   unsigned EltSize = VT.getScalarSizeInBits();
6474 
6475   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
6476   // i32 and try again.
6477   if (hasDominantValue && EltSize <= 32) {
6478     if (!isConstant) {
6479       SDValue N;
6480 
6481       // If we are VDUPing a value that comes directly from a vector, that will
6482       // cause an unnecessary move to and from a GPR, where instead we could
6483       // just use VDUPLANE. We can only do this if the lane being extracted
6484       // is at a constant index, as the VDUP from lane instructions only have
6485       // constant-index forms.
6486       ConstantSDNode *constIndex;
6487       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6488           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6489         // We need to create a new undef vector to use for the VDUPLANE if the
6490         // size of the vector from which we get the value is different than the
6491         // size of the vector that we need to create. We will insert the element
6492         // such that the register coalescer will remove unnecessary copies.
6493         if (VT != Value->getOperand(0).getValueType()) {
6494           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6495                              VT.getVectorNumElements();
6496           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6497                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6498                         Value, DAG.getConstant(index, dl, MVT::i32)),
6499                            DAG.getConstant(index, dl, MVT::i32));
6500         } else
6501           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6502                         Value->getOperand(0), Value->getOperand(1));
6503       } else
6504         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6505 
6506       if (!usesOnlyOneValue) {
6507         // The dominant value was splatted as 'N', but we now have to insert
6508         // all differing elements.
6509         for (unsigned I = 0; I < NumElts; ++I) {
6510           if (Op.getOperand(I) == Value)
6511             continue;
6512           SmallVector<SDValue, 3> Ops;
6513           Ops.push_back(N);
6514           Ops.push_back(Op.getOperand(I));
6515           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6516           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6517         }
6518       }
6519       return N;
6520     }
6521     if (VT.getVectorElementType().isFloatingPoint()) {
6522       SmallVector<SDValue, 8> Ops;
6523       for (unsigned i = 0; i < NumElts; ++i)
6524         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
6525                                   Op.getOperand(i)));
6526       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
6527       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6528       Val = LowerBUILD_VECTOR(Val, DAG, ST);
6529       if (Val.getNode())
6530         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6531     }
6532     if (usesOnlyOneValue) {
6533       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6534       if (isConstant && Val.getNode())
6535         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6536     }
6537   }
6538 
6539   // If all elements are constants and the case above didn't get hit, fall back
6540   // to the default expansion, which will generate a load from the constant
6541   // pool.
6542   if (isConstant)
6543     return SDValue();
6544 
6545   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6546   if (NumElts >= 4) {
6547     SDValue shuffle = ReconstructShuffle(Op, DAG);
6548     if (shuffle != SDValue())
6549       return shuffle;
6550   }
6551 
6552   if (VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
6553     // If we haven't found an efficient lowering, try splitting a 128-bit vector
6554     // into two 64-bit vectors; we might discover a better way to lower it.
6555     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
6556     EVT ExtVT = VT.getVectorElementType();
6557     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
6558     SDValue Lower =
6559         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
6560     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
6561       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
6562     SDValue Upper = DAG.getBuildVector(
6563         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
6564     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
6565       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
6566     if (Lower && Upper)
6567       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
6568   }
6569 
6570   // Vectors with 32- or 64-bit elements can be built by directly assigning
6571   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
6572   // will be legalized.
6573   if (EltSize >= 32) {
6574     // Do the expansion with floating-point types, since that is what the VFP
6575     // registers are defined to use, and since i64 is not legal.
6576     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6577     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6578     SmallVector<SDValue, 8> Ops;
6579     for (unsigned i = 0; i < NumElts; ++i)
6580       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6581     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6582     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6583   }
6584 
6585   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6586   // know the default expansion would otherwise fall back on something even
6587   // worse. For a vector with one or two non-undef values, that's
6588   // scalar_to_vector for the elements followed by a shuffle (provided the
6589   // shuffle is valid for the target) and materialization element by element
6590   // on the stack followed by a load for everything else.
6591   if (!isConstant && !usesOnlyOneValue) {
6592     SDValue Vec = DAG.getUNDEF(VT);
6593     for (unsigned i = 0 ; i < NumElts; ++i) {
6594       SDValue V = Op.getOperand(i);
6595       if (V.isUndef())
6596         continue;
6597       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6598       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6599     }
6600     return Vec;
6601   }
6602 
6603   return SDValue();
6604 }
6605 
6606 // Gather data to see if the operation can be modelled as a
6607 // shuffle in combination with VEXTs.
6608 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6609                                               SelectionDAG &DAG) const {
6610   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6611   SDLoc dl(Op);
6612   EVT VT = Op.getValueType();
6613   unsigned NumElts = VT.getVectorNumElements();
6614 
6615   struct ShuffleSourceInfo {
6616     SDValue Vec;
6617     unsigned MinElt = std::numeric_limits<unsigned>::max();
6618     unsigned MaxElt = 0;
6619 
6620     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6621     // be compatible with the shuffle we intend to construct. As a result
6622     // ShuffleVec will be some sliding window into the original Vec.
6623     SDValue ShuffleVec;
6624 
6625     // Code should guarantee that element i in Vec starts at element "WindowBase
6626     // + i * WindowScale in ShuffleVec".
6627     int WindowBase = 0;
6628     int WindowScale = 1;
6629 
6630     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
6631 
6632     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6633   };
6634 
6635   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6636   // node.
6637   SmallVector<ShuffleSourceInfo, 2> Sources;
6638   for (unsigned i = 0; i < NumElts; ++i) {
6639     SDValue V = Op.getOperand(i);
6640     if (V.isUndef())
6641       continue;
6642     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6643       // A shuffle can only come from building a vector from various
6644       // elements of other vectors.
6645       return SDValue();
6646     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6647       // Furthermore, shuffles require a constant mask, whereas extractelts
6648       // accept variable indices.
6649       return SDValue();
6650     }
6651 
6652     // Add this element source to the list if it's not already there.
6653     SDValue SourceVec = V.getOperand(0);
6654     auto Source = llvm::find(Sources, SourceVec);
6655     if (Source == Sources.end())
6656       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6657 
6658     // Update the minimum and maximum lane number seen.
6659     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6660     Source->MinElt = std::min(Source->MinElt, EltNo);
6661     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6662   }
6663 
6664   // Currently only do something sane when at most two source vectors
6665   // are involved.
6666   if (Sources.size() > 2)
6667     return SDValue();
6668 
6669   // Find out the smallest element size among result and two sources, and use
6670   // it as element size to build the shuffle_vector.
6671   EVT SmallestEltTy = VT.getVectorElementType();
6672   for (auto &Source : Sources) {
6673     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6674     if (SrcEltTy.bitsLT(SmallestEltTy))
6675       SmallestEltTy = SrcEltTy;
6676   }
6677   unsigned ResMultiplier =
6678       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6679   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6680   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6681 
6682   // If the source vector is too wide or too narrow, we may nevertheless be able
6683   // to construct a compatible shuffle either by concatenating it with UNDEF or
6684   // extracting a suitable range of elements.
6685   for (auto &Src : Sources) {
6686     EVT SrcVT = Src.ShuffleVec.getValueType();
6687 
6688     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6689       continue;
6690 
6691     // This stage of the search produces a source with the same element type as
6692     // the original, but with a total width matching the BUILD_VECTOR output.
6693     EVT EltVT = SrcVT.getVectorElementType();
6694     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6695     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6696 
6697     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6698       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6699         return SDValue();
6700       // We can pad out the smaller vector for free, so if it's part of a
6701       // shuffle...
6702       Src.ShuffleVec =
6703           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6704                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6705       continue;
6706     }
6707 
6708     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6709       return SDValue();
6710 
6711     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6712       // Span too large for a VEXT to cope
6713       return SDValue();
6714     }
6715 
6716     if (Src.MinElt >= NumSrcElts) {
6717       // The extraction can just take the second half
6718       Src.ShuffleVec =
6719           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6720                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6721       Src.WindowBase = -NumSrcElts;
6722     } else if (Src.MaxElt < NumSrcElts) {
6723       // The extraction can just take the first half
6724       Src.ShuffleVec =
6725           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6726                       DAG.getConstant(0, dl, MVT::i32));
6727     } else {
6728       // An actual VEXT is needed
6729       SDValue VEXTSrc1 =
6730           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6731                       DAG.getConstant(0, dl, MVT::i32));
6732       SDValue VEXTSrc2 =
6733           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6734                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6735 
6736       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6737                                    VEXTSrc2,
6738                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
6739       Src.WindowBase = -Src.MinElt;
6740     }
6741   }
6742 
6743   // Another possible incompatibility occurs from the vector element types. We
6744   // can fix this by bitcasting the source vectors to the same type we intend
6745   // for the shuffle.
6746   for (auto &Src : Sources) {
6747     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6748     if (SrcEltTy == SmallestEltTy)
6749       continue;
6750     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6751     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6752     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6753     Src.WindowBase *= Src.WindowScale;
6754   }
6755 
6756   // Final sanity check before we try to actually produce a shuffle.
6757   LLVM_DEBUG(for (auto Src
6758                   : Sources)
6759                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6760 
6761   // The stars all align, our next step is to produce the mask for the shuffle.
6762   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6763   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6764   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6765     SDValue Entry = Op.getOperand(i);
6766     if (Entry.isUndef())
6767       continue;
6768 
6769     auto Src = llvm::find(Sources, Entry.getOperand(0));
6770     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6771 
6772     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6773     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6774     // segment.
6775     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6776     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6777                                VT.getScalarSizeInBits());
6778     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6779 
6780     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6781     // starting at the appropriate offset.
6782     int *LaneMask = &Mask[i * ResMultiplier];
6783 
6784     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6785     ExtractBase += NumElts * (Src - Sources.begin());
6786     for (int j = 0; j < LanesDefined; ++j)
6787       LaneMask[j] = ExtractBase + j;
6788   }
6789 
6790   // Final check before we try to produce nonsense...
6791   if (!isShuffleMaskLegal(Mask, ShuffleVT))
6792     return SDValue();
6793 
6794   // We can't handle more than two sources. This should have already
6795   // been checked before this point.
6796   assert(Sources.size() <= 2 && "Too many sources!");
6797 
6798   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6799   for (unsigned i = 0; i < Sources.size(); ++i)
6800     ShuffleOps[i] = Sources[i].ShuffleVec;
6801 
6802   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6803                                          ShuffleOps[1], Mask);
6804   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6805 }
6806 
6807 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6808 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6809 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6810 /// are assumed to be legal.
6811 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
6812   if (VT.getVectorNumElements() == 4 &&
6813       (VT.is128BitVector() || VT.is64BitVector())) {
6814     unsigned PFIndexes[4];
6815     for (unsigned i = 0; i != 4; ++i) {
6816       if (M[i] < 0)
6817         PFIndexes[i] = 8;
6818       else
6819         PFIndexes[i] = M[i];
6820     }
6821 
6822     // Compute the index in the perfect shuffle table.
6823     unsigned PFTableIndex =
6824       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6825     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6826     unsigned Cost = (PFEntry >> 30);
6827 
6828     if (Cost <= 4)
6829       return true;
6830   }
6831 
6832   bool ReverseVEXT, isV_UNDEF;
6833   unsigned Imm, WhichResult;
6834 
6835   unsigned EltSize = VT.getScalarSizeInBits();
6836   return (EltSize >= 32 ||
6837           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6838           isVREVMask(M, VT, 64) ||
6839           isVREVMask(M, VT, 32) ||
6840           isVREVMask(M, VT, 16) ||
6841           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6842           isVTBLMask(M, VT) ||
6843           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6844           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6845 }
6846 
6847 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6848 /// the specified operations to build the shuffle.
6849 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6850                                       SDValue RHS, SelectionDAG &DAG,
6851                                       const SDLoc &dl) {
6852   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6853   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6854   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
6855 
6856   enum {
6857     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6858     OP_VREV,
6859     OP_VDUP0,
6860     OP_VDUP1,
6861     OP_VDUP2,
6862     OP_VDUP3,
6863     OP_VEXT1,
6864     OP_VEXT2,
6865     OP_VEXT3,
6866     OP_VUZPL, // VUZP, left result
6867     OP_VUZPR, // VUZP, right result
6868     OP_VZIPL, // VZIP, left result
6869     OP_VZIPR, // VZIP, right result
6870     OP_VTRNL, // VTRN, left result
6871     OP_VTRNR  // VTRN, right result
6872   };
6873 
6874   if (OpNum == OP_COPY) {
6875     if (LHSID == (1*9+2)*9+3) return LHS;
6876     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6877     return RHS;
6878   }
6879 
6880   SDValue OpLHS, OpRHS;
6881   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6882   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6883   EVT VT = OpLHS.getValueType();
6884 
6885   switch (OpNum) {
6886   default: llvm_unreachable("Unknown shuffle opcode!");
6887   case OP_VREV:
6888     // VREV divides the vector in half and swaps within the half.
6889     if (VT.getVectorElementType() == MVT::i32 ||
6890         VT.getVectorElementType() == MVT::f32)
6891       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6892     // vrev <4 x i16> -> VREV32
6893     if (VT.getVectorElementType() == MVT::i16)
6894       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6895     // vrev <4 x i8> -> VREV16
6896     assert(VT.getVectorElementType() == MVT::i8);
6897     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6898   case OP_VDUP0:
6899   case OP_VDUP1:
6900   case OP_VDUP2:
6901   case OP_VDUP3:
6902     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6903                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6904   case OP_VEXT1:
6905   case OP_VEXT2:
6906   case OP_VEXT3:
6907     return DAG.getNode(ARMISD::VEXT, dl, VT,
6908                        OpLHS, OpRHS,
6909                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6910   case OP_VUZPL:
6911   case OP_VUZPR:
6912     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6913                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6914   case OP_VZIPL:
6915   case OP_VZIPR:
6916     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6917                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6918   case OP_VTRNL:
6919   case OP_VTRNR:
6920     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6921                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6922   }
6923 }
6924 
6925 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
6926                                        ArrayRef<int> ShuffleMask,
6927                                        SelectionDAG &DAG) {
6928   // Check to see if we can use the VTBL instruction.
6929   SDValue V1 = Op.getOperand(0);
6930   SDValue V2 = Op.getOperand(1);
6931   SDLoc DL(Op);
6932 
6933   SmallVector<SDValue, 8> VTBLMask;
6934   for (ArrayRef<int>::iterator
6935          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
6936     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
6937 
6938   if (V2.getNode()->isUndef())
6939     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
6940                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6941 
6942   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
6943                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6944 }
6945 
6946 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
6947                                                       SelectionDAG &DAG) {
6948   SDLoc DL(Op);
6949   SDValue OpLHS = Op.getOperand(0);
6950   EVT VT = OpLHS.getValueType();
6951 
6952   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
6953          "Expect an v8i16/v16i8 type");
6954   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
6955   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
6956   // extract the first 8 bytes into the top double word and the last 8 bytes
6957   // into the bottom double word. The v8i16 case is similar.
6958   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
6959   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
6960                      DAG.getConstant(ExtractNum, DL, MVT::i32));
6961 }
6962 
6963 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
6964   SDValue V1 = Op.getOperand(0);
6965   SDValue V2 = Op.getOperand(1);
6966   SDLoc dl(Op);
6967   EVT VT = Op.getValueType();
6968   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6969 
6970   // Convert shuffles that are directly supported on NEON to target-specific
6971   // DAG nodes, instead of keeping them as shuffles and matching them again
6972   // during code selection.  This is more efficient and avoids the possibility
6973   // of inconsistencies between legalization and selection.
6974   // FIXME: floating-point vectors should be canonicalized to integer vectors
6975   // of the same time so that they get CSEd properly.
6976   ArrayRef<int> ShuffleMask = SVN->getMask();
6977 
6978   unsigned EltSize = VT.getScalarSizeInBits();
6979   if (EltSize <= 32) {
6980     if (SVN->isSplat()) {
6981       int Lane = SVN->getSplatIndex();
6982       // If this is undef splat, generate it via "just" vdup, if possible.
6983       if (Lane == -1) Lane = 0;
6984 
6985       // Test if V1 is a SCALAR_TO_VECTOR.
6986       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6987         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6988       }
6989       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
6990       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
6991       // reaches it).
6992       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
6993           !isa<ConstantSDNode>(V1.getOperand(0))) {
6994         bool IsScalarToVector = true;
6995         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
6996           if (!V1.getOperand(i).isUndef()) {
6997             IsScalarToVector = false;
6998             break;
6999           }
7000         if (IsScalarToVector)
7001           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7002       }
7003       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7004                          DAG.getConstant(Lane, dl, MVT::i32));
7005     }
7006 
7007     bool ReverseVEXT = false;
7008     unsigned Imm = 0;
7009     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7010       if (ReverseVEXT)
7011         std::swap(V1, V2);
7012       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7013                          DAG.getConstant(Imm, dl, MVT::i32));
7014     }
7015 
7016     if (isVREVMask(ShuffleMask, VT, 64))
7017       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7018     if (isVREVMask(ShuffleMask, VT, 32))
7019       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7020     if (isVREVMask(ShuffleMask, VT, 16))
7021       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7022 
7023     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7024       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7025                          DAG.getConstant(Imm, dl, MVT::i32));
7026     }
7027 
7028     // Check for Neon shuffles that modify both input vectors in place.
7029     // If both results are used, i.e., if there are two shuffles with the same
7030     // source operands and with masks corresponding to both results of one of
7031     // these operations, DAG memoization will ensure that a single node is
7032     // used for both shuffles.
7033     unsigned WhichResult = 0;
7034     bool isV_UNDEF = false;
7035     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7036             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7037       if (isV_UNDEF)
7038         V2 = V1;
7039       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7040           .getValue(WhichResult);
7041     }
7042 
7043     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7044     // shuffles that produce a result larger than their operands with:
7045     //   shuffle(concat(v1, undef), concat(v2, undef))
7046     // ->
7047     //   shuffle(concat(v1, v2), undef)
7048     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7049     //
7050     // This is useful in the general case, but there are special cases where
7051     // native shuffles produce larger results: the two-result ops.
7052     //
7053     // Look through the concat when lowering them:
7054     //   shuffle(concat(v1, v2), undef)
7055     // ->
7056     //   concat(VZIP(v1, v2):0, :1)
7057     //
7058     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7059       SDValue SubV1 = V1->getOperand(0);
7060       SDValue SubV2 = V1->getOperand(1);
7061       EVT SubVT = SubV1.getValueType();
7062 
7063       // We expect these to have been canonicalized to -1.
7064       assert(llvm::all_of(ShuffleMask, [&](int i) {
7065         return i < (int)VT.getVectorNumElements();
7066       }) && "Unexpected shuffle index into UNDEF operand!");
7067 
7068       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7069               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7070         if (isV_UNDEF)
7071           SubV2 = SubV1;
7072         assert((WhichResult == 0) &&
7073                "In-place shuffle of concat can only have one result!");
7074         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7075                                   SubV1, SubV2);
7076         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7077                            Res.getValue(1));
7078       }
7079     }
7080   }
7081 
7082   // If the shuffle is not directly supported and it has 4 elements, use
7083   // the PerfectShuffle-generated table to synthesize it from other shuffles.
7084   unsigned NumElts = VT.getVectorNumElements();
7085   if (NumElts == 4) {
7086     unsigned PFIndexes[4];
7087     for (unsigned i = 0; i != 4; ++i) {
7088       if (ShuffleMask[i] < 0)
7089         PFIndexes[i] = 8;
7090       else
7091         PFIndexes[i] = ShuffleMask[i];
7092     }
7093 
7094     // Compute the index in the perfect shuffle table.
7095     unsigned PFTableIndex =
7096       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7097     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7098     unsigned Cost = (PFEntry >> 30);
7099 
7100     if (Cost <= 4)
7101       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7102   }
7103 
7104   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7105   if (EltSize >= 32) {
7106     // Do the expansion with floating-point types, since that is what the VFP
7107     // registers are defined to use, and since i64 is not legal.
7108     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7109     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7110     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7111     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7112     SmallVector<SDValue, 8> Ops;
7113     for (unsigned i = 0; i < NumElts; ++i) {
7114       if (ShuffleMask[i] < 0)
7115         Ops.push_back(DAG.getUNDEF(EltVT));
7116       else
7117         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7118                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
7119                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7120                                                   dl, MVT::i32)));
7121     }
7122     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7123     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7124   }
7125 
7126   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7127     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7128 
7129   if (VT == MVT::v8i8)
7130     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7131       return NewOp;
7132 
7133   return SDValue();
7134 }
7135 
7136 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7137   // INSERT_VECTOR_ELT is legal only for immediate indexes.
7138   SDValue Lane = Op.getOperand(2);
7139   if (!isa<ConstantSDNode>(Lane))
7140     return SDValue();
7141 
7142   return Op;
7143 }
7144 
7145 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7146   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7147   SDValue Lane = Op.getOperand(1);
7148   if (!isa<ConstantSDNode>(Lane))
7149     return SDValue();
7150 
7151   SDValue Vec = Op.getOperand(0);
7152   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7153     SDLoc dl(Op);
7154     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7155   }
7156 
7157   return Op;
7158 }
7159 
7160 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7161   // The only time a CONCAT_VECTORS operation can have legal types is when
7162   // two 64-bit vectors are concatenated to a 128-bit vector.
7163   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7164          "unexpected CONCAT_VECTORS");
7165   SDLoc dl(Op);
7166   SDValue Val = DAG.getUNDEF(MVT::v2f64);
7167   SDValue Op0 = Op.getOperand(0);
7168   SDValue Op1 = Op.getOperand(1);
7169   if (!Op0.isUndef())
7170     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7171                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7172                       DAG.getIntPtrConstant(0, dl));
7173   if (!Op1.isUndef())
7174     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7175                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7176                       DAG.getIntPtrConstant(1, dl));
7177   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7178 }
7179 
7180 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7181 /// element has been zero/sign-extended, depending on the isSigned parameter,
7182 /// from an integer type half its size.
7183 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7184                                    bool isSigned) {
7185   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7186   EVT VT = N->getValueType(0);
7187   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7188     SDNode *BVN = N->getOperand(0).getNode();
7189     if (BVN->getValueType(0) != MVT::v4i32 ||
7190         BVN->getOpcode() != ISD::BUILD_VECTOR)
7191       return false;
7192     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7193     unsigned HiElt = 1 - LoElt;
7194     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7195     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7196     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7197     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7198     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7199       return false;
7200     if (isSigned) {
7201       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7202           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7203         return true;
7204     } else {
7205       if (Hi0->isNullValue() && Hi1->isNullValue())
7206         return true;
7207     }
7208     return false;
7209   }
7210 
7211   if (N->getOpcode() != ISD::BUILD_VECTOR)
7212     return false;
7213 
7214   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7215     SDNode *Elt = N->getOperand(i).getNode();
7216     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
7217       unsigned EltSize = VT.getScalarSizeInBits();
7218       unsigned HalfSize = EltSize / 2;
7219       if (isSigned) {
7220         if (!isIntN(HalfSize, C->getSExtValue()))
7221           return false;
7222       } else {
7223         if (!isUIntN(HalfSize, C->getZExtValue()))
7224           return false;
7225       }
7226       continue;
7227     }
7228     return false;
7229   }
7230 
7231   return true;
7232 }
7233 
7234 /// isSignExtended - Check if a node is a vector value that is sign-extended
7235 /// or a constant BUILD_VECTOR with sign-extended elements.
7236 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
7237   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
7238     return true;
7239   if (isExtendedBUILD_VECTOR(N, DAG, true))
7240     return true;
7241   return false;
7242 }
7243 
7244 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7245 /// or a constant BUILD_VECTOR with zero-extended elements.
7246 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
7247   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
7248     return true;
7249   if (isExtendedBUILD_VECTOR(N, DAG, false))
7250     return true;
7251   return false;
7252 }
7253 
7254 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
7255   if (OrigVT.getSizeInBits() >= 64)
7256     return OrigVT;
7257 
7258   assert(OrigVT.isSimple() && "Expecting a simple value type");
7259 
7260   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
7261   switch (OrigSimpleTy) {
7262   default: llvm_unreachable("Unexpected Vector Type");
7263   case MVT::v2i8:
7264   case MVT::v2i16:
7265      return MVT::v2i32;
7266   case MVT::v4i8:
7267     return  MVT::v4i16;
7268   }
7269 }
7270 
7271 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7272 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7273 /// We insert the required extension here to get the vector to fill a D register.
7274 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
7275                                             const EVT &OrigTy,
7276                                             const EVT &ExtTy,
7277                                             unsigned ExtOpcode) {
7278   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7279   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7280   // 64-bits we need to insert a new extension so that it will be 64-bits.
7281   assert(ExtTy.is128BitVector() && "Unexpected extension size");
7282   if (OrigTy.getSizeInBits() >= 64)
7283     return N;
7284 
7285   // Must extend size to at least 64 bits to be used as an operand for VMULL.
7286   EVT NewVT = getExtensionTo64Bits(OrigTy);
7287 
7288   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
7289 }
7290 
7291 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7292 /// does not do any sign/zero extension. If the original vector is less
7293 /// than 64 bits, an appropriate extension will be added after the load to
7294 /// reach a total size of 64 bits. We have to add the extension separately
7295 /// because ARM does not have a sign/zero extending load for vectors.
7296 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
7297   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
7298 
7299   // The load already has the right type.
7300   if (ExtendedTy == LD->getMemoryVT())
7301     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
7302                        LD->getBasePtr(), LD->getPointerInfo(),
7303                        LD->getAlignment(), LD->getMemOperand()->getFlags());
7304 
7305   // We need to create a zextload/sextload. We cannot just create a load
7306   // followed by a zext/zext node because LowerMUL is also run during normal
7307   // operation legalization where we can't create illegal types.
7308   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
7309                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
7310                         LD->getMemoryVT(), LD->getAlignment(),
7311                         LD->getMemOperand()->getFlags());
7312 }
7313 
7314 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
7315 /// extending load, or BUILD_VECTOR with extended elements, return the
7316 /// unextended value. The unextended vector should be 64 bits so that it can
7317 /// be used as an operand to a VMULL instruction. If the original vector size
7318 /// before extension is less than 64 bits we add a an extension to resize
7319 /// the vector to 64 bits.
7320 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
7321   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
7322     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
7323                                         N->getOperand(0)->getValueType(0),
7324                                         N->getValueType(0),
7325                                         N->getOpcode());
7326 
7327   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7328     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
7329            "Expected extending load");
7330 
7331     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
7332     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
7333     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
7334     SDValue extLoad =
7335         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
7336     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
7337 
7338     return newLoad;
7339   }
7340 
7341   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
7342   // have been legalized as a BITCAST from v4i32.
7343   if (N->getOpcode() == ISD::BITCAST) {
7344     SDNode *BVN = N->getOperand(0).getNode();
7345     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
7346            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
7347     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7348     return DAG.getBuildVector(
7349         MVT::v2i32, SDLoc(N),
7350         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
7351   }
7352   // Construct a new BUILD_VECTOR with elements truncated to half the size.
7353   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
7354   EVT VT = N->getValueType(0);
7355   unsigned EltSize = VT.getScalarSizeInBits() / 2;
7356   unsigned NumElts = VT.getVectorNumElements();
7357   MVT TruncVT = MVT::getIntegerVT(EltSize);
7358   SmallVector<SDValue, 8> Ops;
7359   SDLoc dl(N);
7360   for (unsigned i = 0; i != NumElts; ++i) {
7361     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
7362     const APInt &CInt = C->getAPIntValue();
7363     // Element types smaller than 32 bits are not legal, so use i32 elements.
7364     // The values are implicitly truncated so sext vs. zext doesn't matter.
7365     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
7366   }
7367   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
7368 }
7369 
7370 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
7371   unsigned Opcode = N->getOpcode();
7372   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7373     SDNode *N0 = N->getOperand(0).getNode();
7374     SDNode *N1 = N->getOperand(1).getNode();
7375     return N0->hasOneUse() && N1->hasOneUse() &&
7376       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
7377   }
7378   return false;
7379 }
7380 
7381 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
7382   unsigned Opcode = N->getOpcode();
7383   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7384     SDNode *N0 = N->getOperand(0).getNode();
7385     SDNode *N1 = N->getOperand(1).getNode();
7386     return N0->hasOneUse() && N1->hasOneUse() &&
7387       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
7388   }
7389   return false;
7390 }
7391 
7392 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
7393   // Multiplications are only custom-lowered for 128-bit vectors so that
7394   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
7395   EVT VT = Op.getValueType();
7396   assert(VT.is128BitVector() && VT.isInteger() &&
7397          "unexpected type for custom-lowering ISD::MUL");
7398   SDNode *N0 = Op.getOperand(0).getNode();
7399   SDNode *N1 = Op.getOperand(1).getNode();
7400   unsigned NewOpc = 0;
7401   bool isMLA = false;
7402   bool isN0SExt = isSignExtended(N0, DAG);
7403   bool isN1SExt = isSignExtended(N1, DAG);
7404   if (isN0SExt && isN1SExt)
7405     NewOpc = ARMISD::VMULLs;
7406   else {
7407     bool isN0ZExt = isZeroExtended(N0, DAG);
7408     bool isN1ZExt = isZeroExtended(N1, DAG);
7409     if (isN0ZExt && isN1ZExt)
7410       NewOpc = ARMISD::VMULLu;
7411     else if (isN1SExt || isN1ZExt) {
7412       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
7413       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
7414       if (isN1SExt && isAddSubSExt(N0, DAG)) {
7415         NewOpc = ARMISD::VMULLs;
7416         isMLA = true;
7417       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
7418         NewOpc = ARMISD::VMULLu;
7419         isMLA = true;
7420       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
7421         std::swap(N0, N1);
7422         NewOpc = ARMISD::VMULLu;
7423         isMLA = true;
7424       }
7425     }
7426 
7427     if (!NewOpc) {
7428       if (VT == MVT::v2i64)
7429         // Fall through to expand this.  It is not legal.
7430         return SDValue();
7431       else
7432         // Other vector multiplications are legal.
7433         return Op;
7434     }
7435   }
7436 
7437   // Legalize to a VMULL instruction.
7438   SDLoc DL(Op);
7439   SDValue Op0;
7440   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
7441   if (!isMLA) {
7442     Op0 = SkipExtensionForVMULL(N0, DAG);
7443     assert(Op0.getValueType().is64BitVector() &&
7444            Op1.getValueType().is64BitVector() &&
7445            "unexpected types for extended operands to VMULL");
7446     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
7447   }
7448 
7449   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7450   // isel lowering to take advantage of no-stall back to back vmul + vmla.
7451   //   vmull q0, d4, d6
7452   //   vmlal q0, d5, d6
7453   // is faster than
7454   //   vaddl q0, d4, d5
7455   //   vmovl q1, d6
7456   //   vmul  q0, q0, q1
7457   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
7458   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
7459   EVT Op1VT = Op1.getValueType();
7460   return DAG.getNode(N0->getOpcode(), DL, VT,
7461                      DAG.getNode(NewOpc, DL, VT,
7462                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
7463                      DAG.getNode(NewOpc, DL, VT,
7464                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
7465 }
7466 
7467 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
7468                               SelectionDAG &DAG) {
7469   // TODO: Should this propagate fast-math-flags?
7470 
7471   // Convert to float
7472   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7473   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7474   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
7475   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
7476   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
7477   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
7478   // Get reciprocal estimate.
7479   // float4 recip = vrecpeq_f32(yf);
7480   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7481                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7482                    Y);
7483   // Because char has a smaller range than uchar, we can actually get away
7484   // without any newton steps.  This requires that we use a weird bias
7485   // of 0xb000, however (again, this has been exhaustively tested).
7486   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7487   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
7488   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
7489   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
7490   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
7491   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
7492   // Convert back to short.
7493   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
7494   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
7495   return X;
7496 }
7497 
7498 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
7499                                SelectionDAG &DAG) {
7500   // TODO: Should this propagate fast-math-flags?
7501 
7502   SDValue N2;
7503   // Convert to float.
7504   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7505   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7506   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
7507   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
7508   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7509   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7510 
7511   // Use reciprocal estimate and one refinement step.
7512   // float4 recip = vrecpeq_f32(yf);
7513   // recip *= vrecpsq_f32(yf, recip);
7514   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7515                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7516                    N1);
7517   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7518                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7519                    N1, N2);
7520   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7521   // Because short has a smaller range than ushort, we can actually get away
7522   // with only a single newton step.  This requires that we use a weird bias
7523   // of 89, however (again, this has been exhaustively tested).
7524   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7525   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7526   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7527   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
7528   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7529   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7530   // Convert back to integer and return.
7531   // return vmovn_s32(vcvt_s32_f32(result));
7532   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7533   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7534   return N0;
7535 }
7536 
7537 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
7538   EVT VT = Op.getValueType();
7539   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7540          "unexpected type for custom-lowering ISD::SDIV");
7541 
7542   SDLoc dl(Op);
7543   SDValue N0 = Op.getOperand(0);
7544   SDValue N1 = Op.getOperand(1);
7545   SDValue N2, N3;
7546 
7547   if (VT == MVT::v8i8) {
7548     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
7549     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
7550 
7551     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7552                      DAG.getIntPtrConstant(4, dl));
7553     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7554                      DAG.getIntPtrConstant(4, dl));
7555     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7556                      DAG.getIntPtrConstant(0, dl));
7557     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7558                      DAG.getIntPtrConstant(0, dl));
7559 
7560     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
7561     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
7562 
7563     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7564     N0 = LowerCONCAT_VECTORS(N0, DAG);
7565 
7566     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
7567     return N0;
7568   }
7569   return LowerSDIV_v4i16(N0, N1, dl, DAG);
7570 }
7571 
7572 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7573   // TODO: Should this propagate fast-math-flags?
7574   EVT VT = Op.getValueType();
7575   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7576          "unexpected type for custom-lowering ISD::UDIV");
7577 
7578   SDLoc dl(Op);
7579   SDValue N0 = Op.getOperand(0);
7580   SDValue N1 = Op.getOperand(1);
7581   SDValue N2, N3;
7582 
7583   if (VT == MVT::v8i8) {
7584     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7585     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7586 
7587     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7588                      DAG.getIntPtrConstant(4, dl));
7589     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7590                      DAG.getIntPtrConstant(4, dl));
7591     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7592                      DAG.getIntPtrConstant(0, dl));
7593     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7594                      DAG.getIntPtrConstant(0, dl));
7595 
7596     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7597     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7598 
7599     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7600     N0 = LowerCONCAT_VECTORS(N0, DAG);
7601 
7602     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7603                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7604                                      MVT::i32),
7605                      N0);
7606     return N0;
7607   }
7608 
7609   // v4i16 sdiv ... Convert to float.
7610   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7611   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7612   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7613   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7614   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7615   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7616 
7617   // Use reciprocal estimate and two refinement steps.
7618   // float4 recip = vrecpeq_f32(yf);
7619   // recip *= vrecpsq_f32(yf, recip);
7620   // recip *= vrecpsq_f32(yf, recip);
7621   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7622                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7623                    BN1);
7624   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7625                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7626                    BN1, N2);
7627   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7628   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7629                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7630                    BN1, N2);
7631   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7632   // Simply multiplying by the reciprocal estimate can leave us a few ulps
7633   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7634   // and that it will never cause us to return an answer too large).
7635   // float4 result = as_float4(as_int4(xf*recip) + 2);
7636   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7637   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7638   N1 = DAG.getConstant(2, dl, MVT::v4i32);
7639   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7640   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7641   // Convert back to integer and return.
7642   // return vmovn_u32(vcvt_s32_f32(result));
7643   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7644   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7645   return N0;
7646 }
7647 
7648 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
7649   SDNode *N = Op.getNode();
7650   EVT VT = N->getValueType(0);
7651   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7652 
7653   SDValue Carry = Op.getOperand(2);
7654 
7655   SDLoc DL(Op);
7656 
7657   SDValue Result;
7658   if (Op.getOpcode() == ISD::ADDCARRY) {
7659     // This converts the boolean value carry into the carry flag.
7660     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7661 
7662     // Do the addition proper using the carry flag we wanted.
7663     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
7664                          Op.getOperand(1), Carry);
7665 
7666     // Now convert the carry flag into a boolean value.
7667     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7668   } else {
7669     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
7670     // have to invert the carry first.
7671     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7672                         DAG.getConstant(1, DL, MVT::i32), Carry);
7673     // This converts the boolean value carry into the carry flag.
7674     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7675 
7676     // Do the subtraction proper using the carry flag we wanted.
7677     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
7678                          Op.getOperand(1), Carry);
7679 
7680     // Now convert the carry flag into a boolean value.
7681     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7682     // But the carry returned by ARMISD::SUBE is not a borrow as expected
7683     // by ISD::SUBCARRY, so compute 1 - C.
7684     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7685                         DAG.getConstant(1, DL, MVT::i32), Carry);
7686   }
7687 
7688   // Return both values.
7689   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
7690 }
7691 
7692 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7693   assert(Subtarget->isTargetDarwin());
7694 
7695   // For iOS, we want to call an alternative entry point: __sincos_stret,
7696   // return values are passed via sret.
7697   SDLoc dl(Op);
7698   SDValue Arg = Op.getOperand(0);
7699   EVT ArgVT = Arg.getValueType();
7700   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7701   auto PtrVT = getPointerTy(DAG.getDataLayout());
7702 
7703   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7704   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7705 
7706   // Pair of floats / doubles used to pass the result.
7707   Type *RetTy = StructType::get(ArgTy, ArgTy);
7708   auto &DL = DAG.getDataLayout();
7709 
7710   ArgListTy Args;
7711   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7712   SDValue SRet;
7713   if (ShouldUseSRet) {
7714     // Create stack object for sret.
7715     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7716     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7717     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7718     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7719 
7720     ArgListEntry Entry;
7721     Entry.Node = SRet;
7722     Entry.Ty = RetTy->getPointerTo();
7723     Entry.IsSExt = false;
7724     Entry.IsZExt = false;
7725     Entry.IsSRet = true;
7726     Args.push_back(Entry);
7727     RetTy = Type::getVoidTy(*DAG.getContext());
7728   }
7729 
7730   ArgListEntry Entry;
7731   Entry.Node = Arg;
7732   Entry.Ty = ArgTy;
7733   Entry.IsSExt = false;
7734   Entry.IsZExt = false;
7735   Args.push_back(Entry);
7736 
7737   RTLIB::Libcall LC =
7738       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
7739   const char *LibcallName = getLibcallName(LC);
7740   CallingConv::ID CC = getLibcallCallingConv(LC);
7741   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7742 
7743   TargetLowering::CallLoweringInfo CLI(DAG);
7744   CLI.setDebugLoc(dl)
7745       .setChain(DAG.getEntryNode())
7746       .setCallee(CC, RetTy, Callee, std::move(Args))
7747       .setDiscardResult(ShouldUseSRet);
7748   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7749 
7750   if (!ShouldUseSRet)
7751     return CallResult.first;
7752 
7753   SDValue LoadSin =
7754       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
7755 
7756   // Address of cos field.
7757   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
7758                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
7759   SDValue LoadCos =
7760       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
7761 
7762   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
7763   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
7764                      LoadSin.getValue(0), LoadCos.getValue(0));
7765 }
7766 
7767 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
7768                                                   bool Signed,
7769                                                   SDValue &Chain) const {
7770   EVT VT = Op.getValueType();
7771   assert((VT == MVT::i32 || VT == MVT::i64) &&
7772          "unexpected type for custom lowering DIV");
7773   SDLoc dl(Op);
7774 
7775   const auto &DL = DAG.getDataLayout();
7776   const auto &TLI = DAG.getTargetLoweringInfo();
7777 
7778   const char *Name = nullptr;
7779   if (Signed)
7780     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7781   else
7782     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7783 
7784   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7785 
7786   ARMTargetLowering::ArgListTy Args;
7787 
7788   for (auto AI : {1, 0}) {
7789     ArgListEntry Arg;
7790     Arg.Node = Op.getOperand(AI);
7791     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7792     Args.push_back(Arg);
7793   }
7794 
7795   CallLoweringInfo CLI(DAG);
7796   CLI.setDebugLoc(dl)
7797     .setChain(Chain)
7798     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7799                ES, std::move(Args));
7800 
7801   return LowerCallTo(CLI).first;
7802 }
7803 
7804 // This is a code size optimisation: return the original SDIV node to
7805 // DAGCombiner when we don't want to expand SDIV into a sequence of
7806 // instructions, and an empty node otherwise which will cause the
7807 // SDIV to be expanded in DAGCombine.
7808 SDValue
7809 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
7810                                  SelectionDAG &DAG,
7811                                  SmallVectorImpl<SDNode *> &Created) const {
7812   // TODO: Support SREM
7813   if (N->getOpcode() != ISD::SDIV)
7814     return SDValue();
7815 
7816   const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
7817   const bool MinSize = ST.hasMinSize();
7818   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
7819                                       : ST.hasDivideInARMMode();
7820 
7821   // Don't touch vector types; rewriting this may lead to scalarizing
7822   // the int divs.
7823   if (N->getOperand(0).getValueType().isVector())
7824     return SDValue();
7825 
7826   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
7827   // hwdiv support for this to be really profitable.
7828   if (!(MinSize && HasDivide))
7829     return SDValue();
7830 
7831   // ARM mode is a bit simpler than Thumb: we can handle large power
7832   // of 2 immediates with 1 mov instruction; no further checks required,
7833   // just return the sdiv node.
7834   if (!ST.isThumb())
7835     return SDValue(N, 0);
7836 
7837   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
7838   // and thus lose the code size benefits of a MOVS that requires only 2.
7839   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
7840   // but as it's doing exactly this, it's not worth the trouble to get TTI.
7841   if (Divisor.sgt(128))
7842     return SDValue();
7843 
7844   return SDValue(N, 0);
7845 }
7846 
7847 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7848                                             bool Signed) const {
7849   assert(Op.getValueType() == MVT::i32 &&
7850          "unexpected type for custom lowering DIV");
7851   SDLoc dl(Op);
7852 
7853   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7854                                DAG.getEntryNode(), Op.getOperand(1));
7855 
7856   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7857 }
7858 
7859 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
7860   SDLoc DL(N);
7861   SDValue Op = N->getOperand(1);
7862   if (N->getValueType(0) == MVT::i32)
7863     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
7864   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7865                            DAG.getConstant(0, DL, MVT::i32));
7866   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
7867                            DAG.getConstant(1, DL, MVT::i32));
7868   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
7869                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
7870 }
7871 
7872 void ARMTargetLowering::ExpandDIV_Windows(
7873     SDValue Op, SelectionDAG &DAG, bool Signed,
7874     SmallVectorImpl<SDValue> &Results) const {
7875   const auto &DL = DAG.getDataLayout();
7876   const auto &TLI = DAG.getTargetLoweringInfo();
7877 
7878   assert(Op.getValueType() == MVT::i64 &&
7879          "unexpected type for custom lowering DIV");
7880   SDLoc dl(Op);
7881 
7882   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
7883 
7884   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7885 
7886   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7887   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7888                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7889   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7890 
7891   Results.push_back(Lower);
7892   Results.push_back(Upper);
7893 }
7894 
7895 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7896   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7897     // Acquire/Release load/store is not legal for targets without a dmb or
7898     // equivalent available.
7899     return SDValue();
7900 
7901   // Monotonic load/store is legal for all targets.
7902   return Op;
7903 }
7904 
7905 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7906                                     SmallVectorImpl<SDValue> &Results,
7907                                     SelectionDAG &DAG,
7908                                     const ARMSubtarget *Subtarget) {
7909   SDLoc DL(N);
7910   // Under Power Management extensions, the cycle-count is:
7911   //    mrc p15, #0, <Rt>, c9, c13, #0
7912   SDValue Ops[] = { N->getOperand(0), // Chain
7913                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7914                     DAG.getConstant(15, DL, MVT::i32),
7915                     DAG.getConstant(0, DL, MVT::i32),
7916                     DAG.getConstant(9, DL, MVT::i32),
7917                     DAG.getConstant(13, DL, MVT::i32),
7918                     DAG.getConstant(0, DL, MVT::i32)
7919   };
7920 
7921   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7922                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
7923   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7924                                 DAG.getConstant(0, DL, MVT::i32)));
7925   Results.push_back(Cycles32.getValue(1));
7926 }
7927 
7928 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7929   SDLoc dl(V.getNode());
7930   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7931   SDValue VHi = DAG.getAnyExtOrTrunc(
7932       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7933       dl, MVT::i32);
7934   bool isBigEndian = DAG.getDataLayout().isBigEndian();
7935   if (isBigEndian)
7936     std::swap (VLo, VHi);
7937   SDValue RegClass =
7938       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
7939   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
7940   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
7941   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
7942   return SDValue(
7943       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
7944 }
7945 
7946 static void ReplaceCMP_SWAP_64Results(SDNode *N,
7947                                        SmallVectorImpl<SDValue> & Results,
7948                                        SelectionDAG &DAG) {
7949   assert(N->getValueType(0) == MVT::i64 &&
7950          "AtomicCmpSwap on types less than 64 should be legal");
7951   SDValue Ops[] = {N->getOperand(1),
7952                    createGPRPairNode(DAG, N->getOperand(2)),
7953                    createGPRPairNode(DAG, N->getOperand(3)),
7954                    N->getOperand(0)};
7955   SDNode *CmpSwap = DAG.getMachineNode(
7956       ARM::CMP_SWAP_64, SDLoc(N),
7957       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
7958 
7959   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
7960   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
7961 
7962   bool isBigEndian = DAG.getDataLayout().isBigEndian();
7963 
7964   Results.push_back(
7965       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
7966                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
7967   Results.push_back(
7968       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
7969                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
7970   Results.push_back(SDValue(CmpSwap, 2));
7971 }
7972 
7973 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
7974                           SelectionDAG &DAG) {
7975   const auto &TLI = DAG.getTargetLoweringInfo();
7976 
7977   assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
7978          "Custom lowering is MSVCRT specific!");
7979 
7980   SDLoc dl(Op);
7981   SDValue Val = Op.getOperand(0);
7982   MVT Ty = Val->getSimpleValueType(0);
7983   SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
7984   SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
7985                                          TLI.getPointerTy(DAG.getDataLayout()));
7986 
7987   TargetLowering::ArgListTy Args;
7988   TargetLowering::ArgListEntry Entry;
7989 
7990   Entry.Node = Val;
7991   Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
7992   Entry.IsZExt = true;
7993   Args.push_back(Entry);
7994 
7995   Entry.Node = Exponent;
7996   Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
7997   Entry.IsZExt = true;
7998   Args.push_back(Entry);
7999 
8000   Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
8001 
8002   // In the in-chain to the call is the entry node  If we are emitting a
8003   // tailcall, the chain will be mutated if the node has a non-entry input
8004   // chain.
8005   SDValue InChain = DAG.getEntryNode();
8006   SDValue TCChain = InChain;
8007 
8008   const Function &F = DAG.getMachineFunction().getFunction();
8009   bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
8010               F.getReturnType() == LCRTy;
8011   if (IsTC)
8012     InChain = TCChain;
8013 
8014   TargetLowering::CallLoweringInfo CLI(DAG);
8015   CLI.setDebugLoc(dl)
8016       .setChain(InChain)
8017       .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
8018       .setTailCall(IsTC);
8019   std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
8020 
8021   // Return the chain (the DAG root) if it is a tail call
8022   return !CI.second.getNode() ? DAG.getRoot() : CI.first;
8023 }
8024 
8025 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8026   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
8027   switch (Op.getOpcode()) {
8028   default: llvm_unreachable("Don't know how to custom lower this!");
8029   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8030   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8031   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
8032   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8033   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8034   case ISD::SELECT:        return LowerSELECT(Op, DAG);
8035   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
8036   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
8037   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
8038   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
8039   case ISD::VASTART:       return LowerVASTART(Op, DAG);
8040   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8041   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
8042   case ISD::SINT_TO_FP:
8043   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
8044   case ISD::FP_TO_SINT:
8045   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
8046   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
8047   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
8048   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
8049   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8050   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8051   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8052   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8053                                                                Subtarget);
8054   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8055   case ISD::SHL:
8056   case ISD::SRL:
8057   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
8058   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
8059   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
8060   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
8061   case ISD::SRL_PARTS:
8062   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
8063   case ISD::CTTZ:
8064   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8065   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8066   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
8067   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
8068   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
8069   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8070   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
8071   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8072   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8073   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8074   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
8075   case ISD::MUL:           return LowerMUL(Op, DAG);
8076   case ISD::SDIV:
8077     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8078       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8079     return LowerSDIV(Op, DAG);
8080   case ISD::UDIV:
8081     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8082       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8083     return LowerUDIV(Op, DAG);
8084   case ISD::ADDCARRY:
8085   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
8086   case ISD::SADDO:
8087   case ISD::SSUBO:
8088     return LowerSignedALUO(Op, DAG);
8089   case ISD::UADDO:
8090   case ISD::USUBO:
8091     return LowerUnsignedALUO(Op, DAG);
8092   case ISD::ATOMIC_LOAD:
8093   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
8094   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
8095   case ISD::SDIVREM:
8096   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
8097   case ISD::DYNAMIC_STACKALLOC:
8098     if (Subtarget->isTargetWindows())
8099       return LowerDYNAMIC_STACKALLOC(Op, DAG);
8100     llvm_unreachable("Don't know how to custom lower this!");
8101   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8102   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8103   case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8104   case ARMISD::WIN__DBZCHK: return SDValue();
8105   }
8106 }
8107 
8108 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8109                                  SelectionDAG &DAG) {
8110   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8111   unsigned Opc = 0;
8112   if (IntNo == Intrinsic::arm_smlald)
8113     Opc = ARMISD::SMLALD;
8114   else if (IntNo == Intrinsic::arm_smlaldx)
8115     Opc = ARMISD::SMLALDX;
8116   else if (IntNo == Intrinsic::arm_smlsld)
8117     Opc = ARMISD::SMLSLD;
8118   else if (IntNo == Intrinsic::arm_smlsldx)
8119     Opc = ARMISD::SMLSLDX;
8120   else
8121     return;
8122 
8123   SDLoc dl(N);
8124   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8125                            N->getOperand(3),
8126                            DAG.getConstant(0, dl, MVT::i32));
8127   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8128                            N->getOperand(3),
8129                            DAG.getConstant(1, dl, MVT::i32));
8130 
8131   SDValue LongMul = DAG.getNode(Opc, dl,
8132                                 DAG.getVTList(MVT::i32, MVT::i32),
8133                                 N->getOperand(1), N->getOperand(2),
8134                                 Lo, Hi);
8135   Results.push_back(LongMul.getValue(0));
8136   Results.push_back(LongMul.getValue(1));
8137 }
8138 
8139 /// ReplaceNodeResults - Replace the results of node with an illegal result
8140 /// type with new values built out of custom code.
8141 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8142                                            SmallVectorImpl<SDValue> &Results,
8143                                            SelectionDAG &DAG) const {
8144   SDValue Res;
8145   switch (N->getOpcode()) {
8146   default:
8147     llvm_unreachable("Don't know how to custom expand this!");
8148   case ISD::READ_REGISTER:
8149     ExpandREAD_REGISTER(N, Results, DAG);
8150     break;
8151   case ISD::BITCAST:
8152     Res = ExpandBITCAST(N, DAG, Subtarget);
8153     break;
8154   case ISD::SRL:
8155   case ISD::SRA:
8156     Res = Expand64BitShift(N, DAG, Subtarget);
8157     break;
8158   case ISD::SREM:
8159   case ISD::UREM:
8160     Res = LowerREM(N, DAG);
8161     break;
8162   case ISD::SDIVREM:
8163   case ISD::UDIVREM:
8164     Res = LowerDivRem(SDValue(N, 0), DAG);
8165     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8166     Results.push_back(Res.getValue(0));
8167     Results.push_back(Res.getValue(1));
8168     return;
8169   case ISD::READCYCLECOUNTER:
8170     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8171     return;
8172   case ISD::UDIV:
8173   case ISD::SDIV:
8174     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8175     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8176                              Results);
8177   case ISD::ATOMIC_CMP_SWAP:
8178     ReplaceCMP_SWAP_64Results(N, Results, DAG);
8179     return;
8180   case ISD::INTRINSIC_WO_CHAIN:
8181     return ReplaceLongIntrinsic(N, Results, DAG);
8182   case ISD::ABS:
8183      lowerABS(N, Results, DAG);
8184      return ;
8185 
8186   }
8187   if (Res.getNode())
8188     Results.push_back(Res);
8189 }
8190 
8191 //===----------------------------------------------------------------------===//
8192 //                           ARM Scheduler Hooks
8193 //===----------------------------------------------------------------------===//
8194 
8195 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8196 /// registers the function context.
8197 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8198                                                MachineBasicBlock *MBB,
8199                                                MachineBasicBlock *DispatchBB,
8200                                                int FI) const {
8201   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8202          "ROPI/RWPI not currently supported with SjLj");
8203   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8204   DebugLoc dl = MI.getDebugLoc();
8205   MachineFunction *MF = MBB->getParent();
8206   MachineRegisterInfo *MRI = &MF->getRegInfo();
8207   MachineConstantPool *MCP = MF->getConstantPool();
8208   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8209   const Function &F = MF->getFunction();
8210 
8211   bool isThumb = Subtarget->isThumb();
8212   bool isThumb2 = Subtarget->isThumb2();
8213 
8214   unsigned PCLabelId = AFI->createPICLabelUId();
8215   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
8216   ARMConstantPoolValue *CPV =
8217     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
8218   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
8219 
8220   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
8221                                            : &ARM::GPRRegClass;
8222 
8223   // Grab constant pool and fixed stack memory operands.
8224   MachineMemOperand *CPMMO =
8225       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
8226                                MachineMemOperand::MOLoad, 4, 4);
8227 
8228   MachineMemOperand *FIMMOSt =
8229       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
8230                                MachineMemOperand::MOStore, 4, 4);
8231 
8232   // Load the address of the dispatch MBB into the jump buffer.
8233   if (isThumb2) {
8234     // Incoming value: jbuf
8235     //   ldr.n  r5, LCPI1_1
8236     //   orr    r5, r5, #1
8237     //   add    r5, pc
8238     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
8239     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8240     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
8241         .addConstantPoolIndex(CPI)
8242         .addMemOperand(CPMMO)
8243         .add(predOps(ARMCC::AL));
8244     // Set the low bit because of thumb mode.
8245     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8246     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
8247         .addReg(NewVReg1, RegState::Kill)
8248         .addImm(0x01)
8249         .add(predOps(ARMCC::AL))
8250         .add(condCodeOp());
8251     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8252     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
8253       .addReg(NewVReg2, RegState::Kill)
8254       .addImm(PCLabelId);
8255     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
8256         .addReg(NewVReg3, RegState::Kill)
8257         .addFrameIndex(FI)
8258         .addImm(36) // &jbuf[1] :: pc
8259         .addMemOperand(FIMMOSt)
8260         .add(predOps(ARMCC::AL));
8261   } else if (isThumb) {
8262     // Incoming value: jbuf
8263     //   ldr.n  r1, LCPI1_4
8264     //   add    r1, pc
8265     //   mov    r2, #1
8266     //   orrs   r1, r2
8267     //   add    r2, $jbuf, #+4 ; &jbuf[1]
8268     //   str    r1, [r2]
8269     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8270     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
8271         .addConstantPoolIndex(CPI)
8272         .addMemOperand(CPMMO)
8273         .add(predOps(ARMCC::AL));
8274     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8275     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
8276       .addReg(NewVReg1, RegState::Kill)
8277       .addImm(PCLabelId);
8278     // Set the low bit because of thumb mode.
8279     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8280     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
8281         .addReg(ARM::CPSR, RegState::Define)
8282         .addImm(1)
8283         .add(predOps(ARMCC::AL));
8284     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8285     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
8286         .addReg(ARM::CPSR, RegState::Define)
8287         .addReg(NewVReg2, RegState::Kill)
8288         .addReg(NewVReg3, RegState::Kill)
8289         .add(predOps(ARMCC::AL));
8290     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8291     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
8292             .addFrameIndex(FI)
8293             .addImm(36); // &jbuf[1] :: pc
8294     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
8295         .addReg(NewVReg4, RegState::Kill)
8296         .addReg(NewVReg5, RegState::Kill)
8297         .addImm(0)
8298         .addMemOperand(FIMMOSt)
8299         .add(predOps(ARMCC::AL));
8300   } else {
8301     // Incoming value: jbuf
8302     //   ldr  r1, LCPI1_1
8303     //   add  r1, pc, r1
8304     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
8305     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8306     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
8307         .addConstantPoolIndex(CPI)
8308         .addImm(0)
8309         .addMemOperand(CPMMO)
8310         .add(predOps(ARMCC::AL));
8311     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8312     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
8313         .addReg(NewVReg1, RegState::Kill)
8314         .addImm(PCLabelId)
8315         .add(predOps(ARMCC::AL));
8316     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
8317         .addReg(NewVReg2, RegState::Kill)
8318         .addFrameIndex(FI)
8319         .addImm(36) // &jbuf[1] :: pc
8320         .addMemOperand(FIMMOSt)
8321         .add(predOps(ARMCC::AL));
8322   }
8323 }
8324 
8325 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
8326                                               MachineBasicBlock *MBB) const {
8327   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8328   DebugLoc dl = MI.getDebugLoc();
8329   MachineFunction *MF = MBB->getParent();
8330   MachineRegisterInfo *MRI = &MF->getRegInfo();
8331   MachineFrameInfo &MFI = MF->getFrameInfo();
8332   int FI = MFI.getFunctionContextIndex();
8333 
8334   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
8335                                                         : &ARM::GPRnopcRegClass;
8336 
8337   // Get a mapping of the call site numbers to all of the landing pads they're
8338   // associated with.
8339   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
8340   unsigned MaxCSNum = 0;
8341   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
8342        ++BB) {
8343     if (!BB->isEHPad()) continue;
8344 
8345     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
8346     // pad.
8347     for (MachineBasicBlock::iterator
8348            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
8349       if (!II->isEHLabel()) continue;
8350 
8351       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
8352       if (!MF->hasCallSiteLandingPad(Sym)) continue;
8353 
8354       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
8355       for (SmallVectorImpl<unsigned>::iterator
8356              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
8357            CSI != CSE; ++CSI) {
8358         CallSiteNumToLPad[*CSI].push_back(&*BB);
8359         MaxCSNum = std::max(MaxCSNum, *CSI);
8360       }
8361       break;
8362     }
8363   }
8364 
8365   // Get an ordered list of the machine basic blocks for the jump table.
8366   std::vector<MachineBasicBlock*> LPadList;
8367   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
8368   LPadList.reserve(CallSiteNumToLPad.size());
8369   for (unsigned I = 1; I <= MaxCSNum; ++I) {
8370     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
8371     for (SmallVectorImpl<MachineBasicBlock*>::iterator
8372            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
8373       LPadList.push_back(*II);
8374       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
8375     }
8376   }
8377 
8378   assert(!LPadList.empty() &&
8379          "No landing pad destinations for the dispatch jump table!");
8380 
8381   // Create the jump table and associated information.
8382   MachineJumpTableInfo *JTI =
8383     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
8384   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
8385 
8386   // Create the MBBs for the dispatch code.
8387 
8388   // Shove the dispatch's address into the return slot in the function context.
8389   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
8390   DispatchBB->setIsEHPad();
8391 
8392   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8393   unsigned trap_opcode;
8394   if (Subtarget->isThumb())
8395     trap_opcode = ARM::tTRAP;
8396   else
8397     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
8398 
8399   BuildMI(TrapBB, dl, TII->get(trap_opcode));
8400   DispatchBB->addSuccessor(TrapBB);
8401 
8402   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
8403   DispatchBB->addSuccessor(DispContBB);
8404 
8405   // Insert and MBBs.
8406   MF->insert(MF->end(), DispatchBB);
8407   MF->insert(MF->end(), DispContBB);
8408   MF->insert(MF->end(), TrapBB);
8409 
8410   // Insert code into the entry block that creates and registers the function
8411   // context.
8412   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
8413 
8414   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
8415       MachinePointerInfo::getFixedStack(*MF, FI),
8416       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
8417 
8418   MachineInstrBuilder MIB;
8419   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
8420 
8421   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
8422   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
8423 
8424   // Add a register mask with no preserved registers.  This results in all
8425   // registers being marked as clobbered. This can't work if the dispatch block
8426   // is in a Thumb1 function and is linked with ARM code which uses the FP
8427   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
8428   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
8429 
8430   bool IsPositionIndependent = isPositionIndependent();
8431   unsigned NumLPads = LPadList.size();
8432   if (Subtarget->isThumb2()) {
8433     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8434     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
8435         .addFrameIndex(FI)
8436         .addImm(4)
8437         .addMemOperand(FIMMOLd)
8438         .add(predOps(ARMCC::AL));
8439 
8440     if (NumLPads < 256) {
8441       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
8442           .addReg(NewVReg1)
8443           .addImm(LPadList.size())
8444           .add(predOps(ARMCC::AL));
8445     } else {
8446       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8447       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
8448           .addImm(NumLPads & 0xFFFF)
8449           .add(predOps(ARMCC::AL));
8450 
8451       unsigned VReg2 = VReg1;
8452       if ((NumLPads & 0xFFFF0000) != 0) {
8453         VReg2 = MRI->createVirtualRegister(TRC);
8454         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
8455             .addReg(VReg1)
8456             .addImm(NumLPads >> 16)
8457             .add(predOps(ARMCC::AL));
8458       }
8459 
8460       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
8461           .addReg(NewVReg1)
8462           .addReg(VReg2)
8463           .add(predOps(ARMCC::AL));
8464     }
8465 
8466     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
8467       .addMBB(TrapBB)
8468       .addImm(ARMCC::HI)
8469       .addReg(ARM::CPSR);
8470 
8471     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8472     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
8473         .addJumpTableIndex(MJTI)
8474         .add(predOps(ARMCC::AL));
8475 
8476     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8477     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
8478         .addReg(NewVReg3, RegState::Kill)
8479         .addReg(NewVReg1)
8480         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8481         .add(predOps(ARMCC::AL))
8482         .add(condCodeOp());
8483 
8484     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
8485       .addReg(NewVReg4, RegState::Kill)
8486       .addReg(NewVReg1)
8487       .addJumpTableIndex(MJTI);
8488   } else if (Subtarget->isThumb()) {
8489     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8490     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
8491         .addFrameIndex(FI)
8492         .addImm(1)
8493         .addMemOperand(FIMMOLd)
8494         .add(predOps(ARMCC::AL));
8495 
8496     if (NumLPads < 256) {
8497       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
8498           .addReg(NewVReg1)
8499           .addImm(NumLPads)
8500           .add(predOps(ARMCC::AL));
8501     } else {
8502       MachineConstantPool *ConstantPool = MF->getConstantPool();
8503       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8504       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8505 
8506       // MachineConstantPool wants an explicit alignment.
8507       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8508       if (Align == 0)
8509         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8510       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8511 
8512       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8513       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
8514           .addReg(VReg1, RegState::Define)
8515           .addConstantPoolIndex(Idx)
8516           .add(predOps(ARMCC::AL));
8517       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
8518           .addReg(NewVReg1)
8519           .addReg(VReg1)
8520           .add(predOps(ARMCC::AL));
8521     }
8522 
8523     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
8524       .addMBB(TrapBB)
8525       .addImm(ARMCC::HI)
8526       .addReg(ARM::CPSR);
8527 
8528     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8529     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
8530         .addReg(ARM::CPSR, RegState::Define)
8531         .addReg(NewVReg1)
8532         .addImm(2)
8533         .add(predOps(ARMCC::AL));
8534 
8535     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8536     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
8537         .addJumpTableIndex(MJTI)
8538         .add(predOps(ARMCC::AL));
8539 
8540     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8541     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
8542         .addReg(ARM::CPSR, RegState::Define)
8543         .addReg(NewVReg2, RegState::Kill)
8544         .addReg(NewVReg3)
8545         .add(predOps(ARMCC::AL));
8546 
8547     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8548         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8549 
8550     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8551     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
8552         .addReg(NewVReg4, RegState::Kill)
8553         .addImm(0)
8554         .addMemOperand(JTMMOLd)
8555         .add(predOps(ARMCC::AL));
8556 
8557     unsigned NewVReg6 = NewVReg5;
8558     if (IsPositionIndependent) {
8559       NewVReg6 = MRI->createVirtualRegister(TRC);
8560       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
8561           .addReg(ARM::CPSR, RegState::Define)
8562           .addReg(NewVReg5, RegState::Kill)
8563           .addReg(NewVReg3)
8564           .add(predOps(ARMCC::AL));
8565     }
8566 
8567     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
8568       .addReg(NewVReg6, RegState::Kill)
8569       .addJumpTableIndex(MJTI);
8570   } else {
8571     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8572     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
8573         .addFrameIndex(FI)
8574         .addImm(4)
8575         .addMemOperand(FIMMOLd)
8576         .add(predOps(ARMCC::AL));
8577 
8578     if (NumLPads < 256) {
8579       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
8580           .addReg(NewVReg1)
8581           .addImm(NumLPads)
8582           .add(predOps(ARMCC::AL));
8583     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
8584       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8585       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
8586           .addImm(NumLPads & 0xFFFF)
8587           .add(predOps(ARMCC::AL));
8588 
8589       unsigned VReg2 = VReg1;
8590       if ((NumLPads & 0xFFFF0000) != 0) {
8591         VReg2 = MRI->createVirtualRegister(TRC);
8592         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
8593             .addReg(VReg1)
8594             .addImm(NumLPads >> 16)
8595             .add(predOps(ARMCC::AL));
8596       }
8597 
8598       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8599           .addReg(NewVReg1)
8600           .addReg(VReg2)
8601           .add(predOps(ARMCC::AL));
8602     } else {
8603       MachineConstantPool *ConstantPool = MF->getConstantPool();
8604       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8605       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8606 
8607       // MachineConstantPool wants an explicit alignment.
8608       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8609       if (Align == 0)
8610         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8611       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8612 
8613       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8614       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
8615           .addReg(VReg1, RegState::Define)
8616           .addConstantPoolIndex(Idx)
8617           .addImm(0)
8618           .add(predOps(ARMCC::AL));
8619       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8620           .addReg(NewVReg1)
8621           .addReg(VReg1, RegState::Kill)
8622           .add(predOps(ARMCC::AL));
8623     }
8624 
8625     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
8626       .addMBB(TrapBB)
8627       .addImm(ARMCC::HI)
8628       .addReg(ARM::CPSR);
8629 
8630     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8631     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
8632         .addReg(NewVReg1)
8633         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8634         .add(predOps(ARMCC::AL))
8635         .add(condCodeOp());
8636     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8637     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
8638         .addJumpTableIndex(MJTI)
8639         .add(predOps(ARMCC::AL));
8640 
8641     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8642         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8643     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8644     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
8645         .addReg(NewVReg3, RegState::Kill)
8646         .addReg(NewVReg4)
8647         .addImm(0)
8648         .addMemOperand(JTMMOLd)
8649         .add(predOps(ARMCC::AL));
8650 
8651     if (IsPositionIndependent) {
8652       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
8653         .addReg(NewVReg5, RegState::Kill)
8654         .addReg(NewVReg4)
8655         .addJumpTableIndex(MJTI);
8656     } else {
8657       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
8658         .addReg(NewVReg5, RegState::Kill)
8659         .addJumpTableIndex(MJTI);
8660     }
8661   }
8662 
8663   // Add the jump table entries as successors to the MBB.
8664   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
8665   for (std::vector<MachineBasicBlock*>::iterator
8666          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
8667     MachineBasicBlock *CurMBB = *I;
8668     if (SeenMBBs.insert(CurMBB).second)
8669       DispContBB->addSuccessor(CurMBB);
8670   }
8671 
8672   // N.B. the order the invoke BBs are processed in doesn't matter here.
8673   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
8674   SmallVector<MachineBasicBlock*, 64> MBBLPads;
8675   for (MachineBasicBlock *BB : InvokeBBs) {
8676 
8677     // Remove the landing pad successor from the invoke block and replace it
8678     // with the new dispatch block.
8679     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
8680                                                   BB->succ_end());
8681     while (!Successors.empty()) {
8682       MachineBasicBlock *SMBB = Successors.pop_back_val();
8683       if (SMBB->isEHPad()) {
8684         BB->removeSuccessor(SMBB);
8685         MBBLPads.push_back(SMBB);
8686       }
8687     }
8688 
8689     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
8690     BB->normalizeSuccProbs();
8691 
8692     // Find the invoke call and mark all of the callee-saved registers as
8693     // 'implicit defined' so that they're spilled. This prevents code from
8694     // moving instructions to before the EH block, where they will never be
8695     // executed.
8696     for (MachineBasicBlock::reverse_iterator
8697            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
8698       if (!II->isCall()) continue;
8699 
8700       DenseMap<unsigned, bool> DefRegs;
8701       for (MachineInstr::mop_iterator
8702              OI = II->operands_begin(), OE = II->operands_end();
8703            OI != OE; ++OI) {
8704         if (!OI->isReg()) continue;
8705         DefRegs[OI->getReg()] = true;
8706       }
8707 
8708       MachineInstrBuilder MIB(*MF, &*II);
8709 
8710       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
8711         unsigned Reg = SavedRegs[i];
8712         if (Subtarget->isThumb2() &&
8713             !ARM::tGPRRegClass.contains(Reg) &&
8714             !ARM::hGPRRegClass.contains(Reg))
8715           continue;
8716         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
8717           continue;
8718         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
8719           continue;
8720         if (!DefRegs[Reg])
8721           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
8722       }
8723 
8724       break;
8725     }
8726   }
8727 
8728   // Mark all former landing pads as non-landing pads. The dispatch is the only
8729   // landing pad now.
8730   for (SmallVectorImpl<MachineBasicBlock*>::iterator
8731          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
8732     (*I)->setIsEHPad(false);
8733 
8734   // The instruction is gone now.
8735   MI.eraseFromParent();
8736 }
8737 
8738 static
8739 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
8740   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
8741        E = MBB->succ_end(); I != E; ++I)
8742     if (*I != Succ)
8743       return *I;
8744   llvm_unreachable("Expecting a BB with two successors!");
8745 }
8746 
8747 /// Return the load opcode for a given load size. If load size >= 8,
8748 /// neon opcode will be returned.
8749 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
8750   if (LdSize >= 8)
8751     return LdSize == 16 ? ARM::VLD1q32wb_fixed
8752                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
8753   if (IsThumb1)
8754     return LdSize == 4 ? ARM::tLDRi
8755                        : LdSize == 2 ? ARM::tLDRHi
8756                                      : LdSize == 1 ? ARM::tLDRBi : 0;
8757   if (IsThumb2)
8758     return LdSize == 4 ? ARM::t2LDR_POST
8759                        : LdSize == 2 ? ARM::t2LDRH_POST
8760                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
8761   return LdSize == 4 ? ARM::LDR_POST_IMM
8762                      : LdSize == 2 ? ARM::LDRH_POST
8763                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
8764 }
8765 
8766 /// Return the store opcode for a given store size. If store size >= 8,
8767 /// neon opcode will be returned.
8768 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
8769   if (StSize >= 8)
8770     return StSize == 16 ? ARM::VST1q32wb_fixed
8771                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
8772   if (IsThumb1)
8773     return StSize == 4 ? ARM::tSTRi
8774                        : StSize == 2 ? ARM::tSTRHi
8775                                      : StSize == 1 ? ARM::tSTRBi : 0;
8776   if (IsThumb2)
8777     return StSize == 4 ? ARM::t2STR_POST
8778                        : StSize == 2 ? ARM::t2STRH_POST
8779                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
8780   return StSize == 4 ? ARM::STR_POST_IMM
8781                      : StSize == 2 ? ARM::STRH_POST
8782                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
8783 }
8784 
8785 /// Emit a post-increment load operation with given size. The instructions
8786 /// will be added to BB at Pos.
8787 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8788                        const TargetInstrInfo *TII, const DebugLoc &dl,
8789                        unsigned LdSize, unsigned Data, unsigned AddrIn,
8790                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8791   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
8792   assert(LdOpc != 0 && "Should have a load opcode");
8793   if (LdSize >= 8) {
8794     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8795         .addReg(AddrOut, RegState::Define)
8796         .addReg(AddrIn)
8797         .addImm(0)
8798         .add(predOps(ARMCC::AL));
8799   } else if (IsThumb1) {
8800     // load + update AddrIn
8801     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8802         .addReg(AddrIn)
8803         .addImm(0)
8804         .add(predOps(ARMCC::AL));
8805     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8806         .add(t1CondCodeOp())
8807         .addReg(AddrIn)
8808         .addImm(LdSize)
8809         .add(predOps(ARMCC::AL));
8810   } else if (IsThumb2) {
8811     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8812         .addReg(AddrOut, RegState::Define)
8813         .addReg(AddrIn)
8814         .addImm(LdSize)
8815         .add(predOps(ARMCC::AL));
8816   } else { // arm
8817     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
8818         .addReg(AddrOut, RegState::Define)
8819         .addReg(AddrIn)
8820         .addReg(0)
8821         .addImm(LdSize)
8822         .add(predOps(ARMCC::AL));
8823   }
8824 }
8825 
8826 /// Emit a post-increment store operation with given size. The instructions
8827 /// will be added to BB at Pos.
8828 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
8829                        const TargetInstrInfo *TII, const DebugLoc &dl,
8830                        unsigned StSize, unsigned Data, unsigned AddrIn,
8831                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
8832   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
8833   assert(StOpc != 0 && "Should have a store opcode");
8834   if (StSize >= 8) {
8835     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8836         .addReg(AddrIn)
8837         .addImm(0)
8838         .addReg(Data)
8839         .add(predOps(ARMCC::AL));
8840   } else if (IsThumb1) {
8841     // store + update AddrIn
8842     BuildMI(*BB, Pos, dl, TII->get(StOpc))
8843         .addReg(Data)
8844         .addReg(AddrIn)
8845         .addImm(0)
8846         .add(predOps(ARMCC::AL));
8847     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
8848         .add(t1CondCodeOp())
8849         .addReg(AddrIn)
8850         .addImm(StSize)
8851         .add(predOps(ARMCC::AL));
8852   } else if (IsThumb2) {
8853     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8854         .addReg(Data)
8855         .addReg(AddrIn)
8856         .addImm(StSize)
8857         .add(predOps(ARMCC::AL));
8858   } else { // arm
8859     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
8860         .addReg(Data)
8861         .addReg(AddrIn)
8862         .addReg(0)
8863         .addImm(StSize)
8864         .add(predOps(ARMCC::AL));
8865   }
8866 }
8867 
8868 MachineBasicBlock *
8869 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
8870                                    MachineBasicBlock *BB) const {
8871   // This pseudo instruction has 3 operands: dst, src, size
8872   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
8873   // Otherwise, we will generate unrolled scalar copies.
8874   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8875   const BasicBlock *LLVM_BB = BB->getBasicBlock();
8876   MachineFunction::iterator It = ++BB->getIterator();
8877 
8878   unsigned dest = MI.getOperand(0).getReg();
8879   unsigned src = MI.getOperand(1).getReg();
8880   unsigned SizeVal = MI.getOperand(2).getImm();
8881   unsigned Align = MI.getOperand(3).getImm();
8882   DebugLoc dl = MI.getDebugLoc();
8883 
8884   MachineFunction *MF = BB->getParent();
8885   MachineRegisterInfo &MRI = MF->getRegInfo();
8886   unsigned UnitSize = 0;
8887   const TargetRegisterClass *TRC = nullptr;
8888   const TargetRegisterClass *VecTRC = nullptr;
8889 
8890   bool IsThumb1 = Subtarget->isThumb1Only();
8891   bool IsThumb2 = Subtarget->isThumb2();
8892   bool IsThumb = Subtarget->isThumb();
8893 
8894   if (Align & 1) {
8895     UnitSize = 1;
8896   } else if (Align & 2) {
8897     UnitSize = 2;
8898   } else {
8899     // Check whether we can use NEON instructions.
8900     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
8901         Subtarget->hasNEON()) {
8902       if ((Align % 16 == 0) && SizeVal >= 16)
8903         UnitSize = 16;
8904       else if ((Align % 8 == 0) && SizeVal >= 8)
8905         UnitSize = 8;
8906     }
8907     // Can't use NEON instructions.
8908     if (UnitSize == 0)
8909       UnitSize = 4;
8910   }
8911 
8912   // Select the correct opcode and register class for unit size load/store
8913   bool IsNeon = UnitSize >= 8;
8914   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
8915   if (IsNeon)
8916     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
8917                             : UnitSize == 8 ? &ARM::DPRRegClass
8918                                             : nullptr;
8919 
8920   unsigned BytesLeft = SizeVal % UnitSize;
8921   unsigned LoopSize = SizeVal - BytesLeft;
8922 
8923   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
8924     // Use LDR and STR to copy.
8925     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
8926     // [destOut] = STR_POST(scratch, destIn, UnitSize)
8927     unsigned srcIn = src;
8928     unsigned destIn = dest;
8929     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
8930       unsigned srcOut = MRI.createVirtualRegister(TRC);
8931       unsigned destOut = MRI.createVirtualRegister(TRC);
8932       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8933       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
8934                  IsThumb1, IsThumb2);
8935       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
8936                  IsThumb1, IsThumb2);
8937       srcIn = srcOut;
8938       destIn = destOut;
8939     }
8940 
8941     // Handle the leftover bytes with LDRB and STRB.
8942     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
8943     // [destOut] = STRB_POST(scratch, destIn, 1)
8944     for (unsigned i = 0; i < BytesLeft; i++) {
8945       unsigned srcOut = MRI.createVirtualRegister(TRC);
8946       unsigned destOut = MRI.createVirtualRegister(TRC);
8947       unsigned scratch = MRI.createVirtualRegister(TRC);
8948       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
8949                  IsThumb1, IsThumb2);
8950       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
8951                  IsThumb1, IsThumb2);
8952       srcIn = srcOut;
8953       destIn = destOut;
8954     }
8955     MI.eraseFromParent(); // The instruction is gone now.
8956     return BB;
8957   }
8958 
8959   // Expand the pseudo op to a loop.
8960   // thisMBB:
8961   //   ...
8962   //   movw varEnd, # --> with thumb2
8963   //   movt varEnd, #
8964   //   ldrcp varEnd, idx --> without thumb2
8965   //   fallthrough --> loopMBB
8966   // loopMBB:
8967   //   PHI varPhi, varEnd, varLoop
8968   //   PHI srcPhi, src, srcLoop
8969   //   PHI destPhi, dst, destLoop
8970   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
8971   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
8972   //   subs varLoop, varPhi, #UnitSize
8973   //   bne loopMBB
8974   //   fallthrough --> exitMBB
8975   // exitMBB:
8976   //   epilogue to handle left-over bytes
8977   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
8978   //   [destOut] = STRB_POST(scratch, destLoop, 1)
8979   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8980   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8981   MF->insert(It, loopMBB);
8982   MF->insert(It, exitMBB);
8983 
8984   // Transfer the remainder of BB and its successor edges to exitMBB.
8985   exitMBB->splice(exitMBB->begin(), BB,
8986                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8987   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8988 
8989   // Load an immediate to varEnd.
8990   unsigned varEnd = MRI.createVirtualRegister(TRC);
8991   if (Subtarget->useMovt()) {
8992     unsigned Vtmp = varEnd;
8993     if ((LoopSize & 0xFFFF0000) != 0)
8994       Vtmp = MRI.createVirtualRegister(TRC);
8995     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
8996         .addImm(LoopSize & 0xFFFF)
8997         .add(predOps(ARMCC::AL));
8998 
8999     if ((LoopSize & 0xFFFF0000) != 0)
9000       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
9001           .addReg(Vtmp)
9002           .addImm(LoopSize >> 16)
9003           .add(predOps(ARMCC::AL));
9004   } else {
9005     MachineConstantPool *ConstantPool = MF->getConstantPool();
9006     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9007     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
9008 
9009     // MachineConstantPool wants an explicit alignment.
9010     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9011     if (Align == 0)
9012       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9013     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9014     MachineMemOperand *CPMMO =
9015         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9016                                  MachineMemOperand::MOLoad, 4, 4);
9017 
9018     if (IsThumb)
9019       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
9020           .addReg(varEnd, RegState::Define)
9021           .addConstantPoolIndex(Idx)
9022           .add(predOps(ARMCC::AL))
9023           .addMemOperand(CPMMO);
9024     else
9025       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
9026           .addReg(varEnd, RegState::Define)
9027           .addConstantPoolIndex(Idx)
9028           .addImm(0)
9029           .add(predOps(ARMCC::AL))
9030           .addMemOperand(CPMMO);
9031   }
9032   BB->addSuccessor(loopMBB);
9033 
9034   // Generate the loop body:
9035   //   varPhi = PHI(varLoop, varEnd)
9036   //   srcPhi = PHI(srcLoop, src)
9037   //   destPhi = PHI(destLoop, dst)
9038   MachineBasicBlock *entryBB = BB;
9039   BB = loopMBB;
9040   unsigned varLoop = MRI.createVirtualRegister(TRC);
9041   unsigned varPhi = MRI.createVirtualRegister(TRC);
9042   unsigned srcLoop = MRI.createVirtualRegister(TRC);
9043   unsigned srcPhi = MRI.createVirtualRegister(TRC);
9044   unsigned destLoop = MRI.createVirtualRegister(TRC);
9045   unsigned destPhi = MRI.createVirtualRegister(TRC);
9046 
9047   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9048     .addReg(varLoop).addMBB(loopMBB)
9049     .addReg(varEnd).addMBB(entryBB);
9050   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9051     .addReg(srcLoop).addMBB(loopMBB)
9052     .addReg(src).addMBB(entryBB);
9053   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9054     .addReg(destLoop).addMBB(loopMBB)
9055     .addReg(dest).addMBB(entryBB);
9056 
9057   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9058   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9059   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9060   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9061              IsThumb1, IsThumb2);
9062   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9063              IsThumb1, IsThumb2);
9064 
9065   // Decrement loop variable by UnitSize.
9066   if (IsThumb1) {
9067     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9068         .add(t1CondCodeOp())
9069         .addReg(varPhi)
9070         .addImm(UnitSize)
9071         .add(predOps(ARMCC::AL));
9072   } else {
9073     MachineInstrBuilder MIB =
9074         BuildMI(*BB, BB->end(), dl,
9075                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9076     MIB.addReg(varPhi)
9077         .addImm(UnitSize)
9078         .add(predOps(ARMCC::AL))
9079         .add(condCodeOp());
9080     MIB->getOperand(5).setReg(ARM::CPSR);
9081     MIB->getOperand(5).setIsDef(true);
9082   }
9083   BuildMI(*BB, BB->end(), dl,
9084           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9085       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9086 
9087   // loopMBB can loop back to loopMBB or fall through to exitMBB.
9088   BB->addSuccessor(loopMBB);
9089   BB->addSuccessor(exitMBB);
9090 
9091   // Add epilogue to handle BytesLeft.
9092   BB = exitMBB;
9093   auto StartOfExit = exitMBB->begin();
9094 
9095   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9096   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9097   unsigned srcIn = srcLoop;
9098   unsigned destIn = destLoop;
9099   for (unsigned i = 0; i < BytesLeft; i++) {
9100     unsigned srcOut = MRI.createVirtualRegister(TRC);
9101     unsigned destOut = MRI.createVirtualRegister(TRC);
9102     unsigned scratch = MRI.createVirtualRegister(TRC);
9103     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9104                IsThumb1, IsThumb2);
9105     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9106                IsThumb1, IsThumb2);
9107     srcIn = srcOut;
9108     destIn = destOut;
9109   }
9110 
9111   MI.eraseFromParent(); // The instruction is gone now.
9112   return BB;
9113 }
9114 
9115 MachineBasicBlock *
9116 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9117                                        MachineBasicBlock *MBB) const {
9118   const TargetMachine &TM = getTargetMachine();
9119   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9120   DebugLoc DL = MI.getDebugLoc();
9121 
9122   assert(Subtarget->isTargetWindows() &&
9123          "__chkstk is only supported on Windows");
9124   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9125 
9126   // __chkstk takes the number of words to allocate on the stack in R4, and
9127   // returns the stack adjustment in number of bytes in R4.  This will not
9128   // clober any other registers (other than the obvious lr).
9129   //
9130   // Although, technically, IP should be considered a register which may be
9131   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
9132   // thumb-2 environment, so there is no interworking required.  As a result, we
9133   // do not expect a veneer to be emitted by the linker, clobbering IP.
9134   //
9135   // Each module receives its own copy of __chkstk, so no import thunk is
9136   // required, again, ensuring that IP is not clobbered.
9137   //
9138   // Finally, although some linkers may theoretically provide a trampoline for
9139   // out of range calls (which is quite common due to a 32M range limitation of
9140   // branches for Thumb), we can generate the long-call version via
9141   // -mcmodel=large, alleviating the need for the trampoline which may clobber
9142   // IP.
9143 
9144   switch (TM.getCodeModel()) {
9145   case CodeModel::Tiny:
9146     llvm_unreachable("Tiny code model not available on ARM.");
9147   case CodeModel::Small:
9148   case CodeModel::Medium:
9149   case CodeModel::Kernel:
9150     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9151         .add(predOps(ARMCC::AL))
9152         .addExternalSymbol("__chkstk")
9153         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9154         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9155         .addReg(ARM::R12,
9156                 RegState::Implicit | RegState::Define | RegState::Dead)
9157         .addReg(ARM::CPSR,
9158                 RegState::Implicit | RegState::Define | RegState::Dead);
9159     break;
9160   case CodeModel::Large: {
9161     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9162     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9163 
9164     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9165       .addExternalSymbol("__chkstk");
9166     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9167         .add(predOps(ARMCC::AL))
9168         .addReg(Reg, RegState::Kill)
9169         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9170         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9171         .addReg(ARM::R12,
9172                 RegState::Implicit | RegState::Define | RegState::Dead)
9173         .addReg(ARM::CPSR,
9174                 RegState::Implicit | RegState::Define | RegState::Dead);
9175     break;
9176   }
9177   }
9178 
9179   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9180       .addReg(ARM::SP, RegState::Kill)
9181       .addReg(ARM::R4, RegState::Kill)
9182       .setMIFlags(MachineInstr::FrameSetup)
9183       .add(predOps(ARMCC::AL))
9184       .add(condCodeOp());
9185 
9186   MI.eraseFromParent();
9187   return MBB;
9188 }
9189 
9190 MachineBasicBlock *
9191 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9192                                        MachineBasicBlock *MBB) const {
9193   DebugLoc DL = MI.getDebugLoc();
9194   MachineFunction *MF = MBB->getParent();
9195   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9196 
9197   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9198   MF->insert(++MBB->getIterator(), ContBB);
9199   ContBB->splice(ContBB->begin(), MBB,
9200                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9201   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9202   MBB->addSuccessor(ContBB);
9203 
9204   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9205   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9206   MF->push_back(TrapBB);
9207   MBB->addSuccessor(TrapBB);
9208 
9209   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9210       .addReg(MI.getOperand(0).getReg())
9211       .addImm(0)
9212       .add(predOps(ARMCC::AL));
9213   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
9214       .addMBB(TrapBB)
9215       .addImm(ARMCC::EQ)
9216       .addReg(ARM::CPSR);
9217 
9218   MI.eraseFromParent();
9219   return ContBB;
9220 }
9221 
9222 // The CPSR operand of SelectItr might be missing a kill marker
9223 // because there were multiple uses of CPSR, and ISel didn't know
9224 // which to mark. Figure out whether SelectItr should have had a
9225 // kill marker, and set it if it should. Returns the correct kill
9226 // marker value.
9227 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
9228                                    MachineBasicBlock* BB,
9229                                    const TargetRegisterInfo* TRI) {
9230   // Scan forward through BB for a use/def of CPSR.
9231   MachineBasicBlock::iterator miI(std::next(SelectItr));
9232   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
9233     const MachineInstr& mi = *miI;
9234     if (mi.readsRegister(ARM::CPSR))
9235       return false;
9236     if (mi.definesRegister(ARM::CPSR))
9237       break; // Should have kill-flag - update below.
9238   }
9239 
9240   // If we hit the end of the block, check whether CPSR is live into a
9241   // successor.
9242   if (miI == BB->end()) {
9243     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
9244                                           sEnd = BB->succ_end();
9245          sItr != sEnd; ++sItr) {
9246       MachineBasicBlock* succ = *sItr;
9247       if (succ->isLiveIn(ARM::CPSR))
9248         return false;
9249     }
9250   }
9251 
9252   // We found a def, or hit the end of the basic block and CPSR wasn't live
9253   // out. SelectMI should have a kill flag on CPSR.
9254   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
9255   return true;
9256 }
9257 
9258 MachineBasicBlock *
9259 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9260                                                MachineBasicBlock *BB) const {
9261   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9262   DebugLoc dl = MI.getDebugLoc();
9263   bool isThumb2 = Subtarget->isThumb2();
9264   switch (MI.getOpcode()) {
9265   default: {
9266     MI.print(errs());
9267     llvm_unreachable("Unexpected instr type to insert");
9268   }
9269 
9270   // Thumb1 post-indexed loads are really just single-register LDMs.
9271   case ARM::tLDR_postidx: {
9272     MachineOperand Def(MI.getOperand(1));
9273     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
9274         .add(Def)  // Rn_wb
9275         .add(MI.getOperand(2))  // Rn
9276         .add(MI.getOperand(3))  // PredImm
9277         .add(MI.getOperand(4))  // PredReg
9278         .add(MI.getOperand(0))  // Rt
9279         .cloneMemRefs(MI);
9280     MI.eraseFromParent();
9281     return BB;
9282   }
9283 
9284   // The Thumb2 pre-indexed stores have the same MI operands, they just
9285   // define them differently in the .td files from the isel patterns, so
9286   // they need pseudos.
9287   case ARM::t2STR_preidx:
9288     MI.setDesc(TII->get(ARM::t2STR_PRE));
9289     return BB;
9290   case ARM::t2STRB_preidx:
9291     MI.setDesc(TII->get(ARM::t2STRB_PRE));
9292     return BB;
9293   case ARM::t2STRH_preidx:
9294     MI.setDesc(TII->get(ARM::t2STRH_PRE));
9295     return BB;
9296 
9297   case ARM::STRi_preidx:
9298   case ARM::STRBi_preidx: {
9299     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
9300                                                          : ARM::STRB_PRE_IMM;
9301     // Decode the offset.
9302     unsigned Offset = MI.getOperand(4).getImm();
9303     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
9304     Offset = ARM_AM::getAM2Offset(Offset);
9305     if (isSub)
9306       Offset = -Offset;
9307 
9308     MachineMemOperand *MMO = *MI.memoperands_begin();
9309     BuildMI(*BB, MI, dl, TII->get(NewOpc))
9310         .add(MI.getOperand(0)) // Rn_wb
9311         .add(MI.getOperand(1)) // Rt
9312         .add(MI.getOperand(2)) // Rn
9313         .addImm(Offset)        // offset (skip GPR==zero_reg)
9314         .add(MI.getOperand(5)) // pred
9315         .add(MI.getOperand(6))
9316         .addMemOperand(MMO);
9317     MI.eraseFromParent();
9318     return BB;
9319   }
9320   case ARM::STRr_preidx:
9321   case ARM::STRBr_preidx:
9322   case ARM::STRH_preidx: {
9323     unsigned NewOpc;
9324     switch (MI.getOpcode()) {
9325     default: llvm_unreachable("unexpected opcode!");
9326     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
9327     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
9328     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
9329     }
9330     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
9331     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
9332       MIB.add(MI.getOperand(i));
9333     MI.eraseFromParent();
9334     return BB;
9335   }
9336 
9337   case ARM::tMOVCCr_pseudo: {
9338     // To "insert" a SELECT_CC instruction, we actually have to insert the
9339     // diamond control-flow pattern.  The incoming instruction knows the
9340     // destination vreg to set, the condition code register to branch on, the
9341     // true/false values to select between, and a branch opcode to use.
9342     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9343     MachineFunction::iterator It = ++BB->getIterator();
9344 
9345     //  thisMBB:
9346     //  ...
9347     //   TrueVal = ...
9348     //   cmpTY ccX, r1, r2
9349     //   bCC copy1MBB
9350     //   fallthrough --> copy0MBB
9351     MachineBasicBlock *thisMBB  = BB;
9352     MachineFunction *F = BB->getParent();
9353     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9354     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
9355     F->insert(It, copy0MBB);
9356     F->insert(It, sinkMBB);
9357 
9358     // Check whether CPSR is live past the tMOVCCr_pseudo.
9359     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
9360     if (!MI.killsRegister(ARM::CPSR) &&
9361         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
9362       copy0MBB->addLiveIn(ARM::CPSR);
9363       sinkMBB->addLiveIn(ARM::CPSR);
9364     }
9365 
9366     // Transfer the remainder of BB and its successor edges to sinkMBB.
9367     sinkMBB->splice(sinkMBB->begin(), BB,
9368                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9369     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9370 
9371     BB->addSuccessor(copy0MBB);
9372     BB->addSuccessor(sinkMBB);
9373 
9374     BuildMI(BB, dl, TII->get(ARM::tBcc))
9375         .addMBB(sinkMBB)
9376         .addImm(MI.getOperand(3).getImm())
9377         .addReg(MI.getOperand(4).getReg());
9378 
9379     //  copy0MBB:
9380     //   %FalseValue = ...
9381     //   # fallthrough to sinkMBB
9382     BB = copy0MBB;
9383 
9384     // Update machine-CFG edges
9385     BB->addSuccessor(sinkMBB);
9386 
9387     //  sinkMBB:
9388     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9389     //  ...
9390     BB = sinkMBB;
9391     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
9392         .addReg(MI.getOperand(1).getReg())
9393         .addMBB(copy0MBB)
9394         .addReg(MI.getOperand(2).getReg())
9395         .addMBB(thisMBB);
9396 
9397     MI.eraseFromParent(); // The pseudo instruction is gone now.
9398     return BB;
9399   }
9400 
9401   case ARM::BCCi64:
9402   case ARM::BCCZi64: {
9403     // If there is an unconditional branch to the other successor, remove it.
9404     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
9405 
9406     // Compare both parts that make up the double comparison separately for
9407     // equality.
9408     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
9409 
9410     unsigned LHS1 = MI.getOperand(1).getReg();
9411     unsigned LHS2 = MI.getOperand(2).getReg();
9412     if (RHSisZero) {
9413       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9414           .addReg(LHS1)
9415           .addImm(0)
9416           .add(predOps(ARMCC::AL));
9417       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9418         .addReg(LHS2).addImm(0)
9419         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9420     } else {
9421       unsigned RHS1 = MI.getOperand(3).getReg();
9422       unsigned RHS2 = MI.getOperand(4).getReg();
9423       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9424           .addReg(LHS1)
9425           .addReg(RHS1)
9426           .add(predOps(ARMCC::AL));
9427       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9428         .addReg(LHS2).addReg(RHS2)
9429         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9430     }
9431 
9432     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
9433     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
9434     if (MI.getOperand(0).getImm() == ARMCC::NE)
9435       std::swap(destMBB, exitMBB);
9436 
9437     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
9438       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
9439     if (isThumb2)
9440       BuildMI(BB, dl, TII->get(ARM::t2B))
9441           .addMBB(exitMBB)
9442           .add(predOps(ARMCC::AL));
9443     else
9444       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
9445 
9446     MI.eraseFromParent(); // The pseudo instruction is gone now.
9447     return BB;
9448   }
9449 
9450   case ARM::Int_eh_sjlj_setjmp:
9451   case ARM::Int_eh_sjlj_setjmp_nofp:
9452   case ARM::tInt_eh_sjlj_setjmp:
9453   case ARM::t2Int_eh_sjlj_setjmp:
9454   case ARM::t2Int_eh_sjlj_setjmp_nofp:
9455     return BB;
9456 
9457   case ARM::Int_eh_sjlj_setup_dispatch:
9458     EmitSjLjDispatchBlock(MI, BB);
9459     return BB;
9460 
9461   case ARM::ABS:
9462   case ARM::t2ABS: {
9463     // To insert an ABS instruction, we have to insert the
9464     // diamond control-flow pattern.  The incoming instruction knows the
9465     // source vreg to test against 0, the destination vreg to set,
9466     // the condition code register to branch on, the
9467     // true/false values to select between, and a branch opcode to use.
9468     // It transforms
9469     //     V1 = ABS V0
9470     // into
9471     //     V2 = MOVS V0
9472     //     BCC                      (branch to SinkBB if V0 >= 0)
9473     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
9474     //     SinkBB: V1 = PHI(V2, V3)
9475     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9476     MachineFunction::iterator BBI = ++BB->getIterator();
9477     MachineFunction *Fn = BB->getParent();
9478     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9479     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
9480     Fn->insert(BBI, RSBBB);
9481     Fn->insert(BBI, SinkBB);
9482 
9483     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
9484     unsigned int ABSDstReg = MI.getOperand(0).getReg();
9485     bool ABSSrcKIll = MI.getOperand(1).isKill();
9486     bool isThumb2 = Subtarget->isThumb2();
9487     MachineRegisterInfo &MRI = Fn->getRegInfo();
9488     // In Thumb mode S must not be specified if source register is the SP or
9489     // PC and if destination register is the SP, so restrict register class
9490     unsigned NewRsbDstReg =
9491       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
9492 
9493     // Transfer the remainder of BB and its successor edges to sinkMBB.
9494     SinkBB->splice(SinkBB->begin(), BB,
9495                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
9496     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
9497 
9498     BB->addSuccessor(RSBBB);
9499     BB->addSuccessor(SinkBB);
9500 
9501     // fall through to SinkMBB
9502     RSBBB->addSuccessor(SinkBB);
9503 
9504     // insert a cmp at the end of BB
9505     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9506         .addReg(ABSSrcReg)
9507         .addImm(0)
9508         .add(predOps(ARMCC::AL));
9509 
9510     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
9511     BuildMI(BB, dl,
9512       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
9513       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
9514 
9515     // insert rsbri in RSBBB
9516     // Note: BCC and rsbri will be converted into predicated rsbmi
9517     // by if-conversion pass
9518     BuildMI(*RSBBB, RSBBB->begin(), dl,
9519             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
9520         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
9521         .addImm(0)
9522         .add(predOps(ARMCC::AL))
9523         .add(condCodeOp());
9524 
9525     // insert PHI in SinkBB,
9526     // reuse ABSDstReg to not change uses of ABS instruction
9527     BuildMI(*SinkBB, SinkBB->begin(), dl,
9528       TII->get(ARM::PHI), ABSDstReg)
9529       .addReg(NewRsbDstReg).addMBB(RSBBB)
9530       .addReg(ABSSrcReg).addMBB(BB);
9531 
9532     // remove ABS instruction
9533     MI.eraseFromParent();
9534 
9535     // return last added BB
9536     return SinkBB;
9537   }
9538   case ARM::COPY_STRUCT_BYVAL_I32:
9539     ++NumLoopByVals;
9540     return EmitStructByval(MI, BB);
9541   case ARM::WIN__CHKSTK:
9542     return EmitLowered__chkstk(MI, BB);
9543   case ARM::WIN__DBZCHK:
9544     return EmitLowered__dbzchk(MI, BB);
9545   }
9546 }
9547 
9548 /// Attaches vregs to MEMCPY that it will use as scratch registers
9549 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
9550 /// instead of as a custom inserter because we need the use list from the SDNode.
9551 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
9552                                     MachineInstr &MI, const SDNode *Node) {
9553   bool isThumb1 = Subtarget->isThumb1Only();
9554 
9555   DebugLoc DL = MI.getDebugLoc();
9556   MachineFunction *MF = MI.getParent()->getParent();
9557   MachineRegisterInfo &MRI = MF->getRegInfo();
9558   MachineInstrBuilder MIB(*MF, MI);
9559 
9560   // If the new dst/src is unused mark it as dead.
9561   if (!Node->hasAnyUseOfValue(0)) {
9562     MI.getOperand(0).setIsDead(true);
9563   }
9564   if (!Node->hasAnyUseOfValue(1)) {
9565     MI.getOperand(1).setIsDead(true);
9566   }
9567 
9568   // The MEMCPY both defines and kills the scratch registers.
9569   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
9570     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
9571                                                          : &ARM::GPRRegClass);
9572     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
9573   }
9574 }
9575 
9576 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9577                                                       SDNode *Node) const {
9578   if (MI.getOpcode() == ARM::MEMCPY) {
9579     attachMEMCPYScratchRegs(Subtarget, MI, Node);
9580     return;
9581   }
9582 
9583   const MCInstrDesc *MCID = &MI.getDesc();
9584   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
9585   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
9586   // operand is still set to noreg. If needed, set the optional operand's
9587   // register to CPSR, and remove the redundant implicit def.
9588   //
9589   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
9590 
9591   // Rename pseudo opcodes.
9592   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
9593   unsigned ccOutIdx;
9594   if (NewOpc) {
9595     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
9596     MCID = &TII->get(NewOpc);
9597 
9598     assert(MCID->getNumOperands() ==
9599            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
9600         && "converted opcode should be the same except for cc_out"
9601            " (and, on Thumb1, pred)");
9602 
9603     MI.setDesc(*MCID);
9604 
9605     // Add the optional cc_out operand
9606     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9607 
9608     // On Thumb1, move all input operands to the end, then add the predicate
9609     if (Subtarget->isThumb1Only()) {
9610       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
9611         MI.addOperand(MI.getOperand(1));
9612         MI.RemoveOperand(1);
9613       }
9614 
9615       // Restore the ties
9616       for (unsigned i = MI.getNumOperands(); i--;) {
9617         const MachineOperand& op = MI.getOperand(i);
9618         if (op.isReg() && op.isUse()) {
9619           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
9620           if (DefIdx != -1)
9621             MI.tieOperands(DefIdx, i);
9622         }
9623       }
9624 
9625       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
9626       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
9627       ccOutIdx = 1;
9628     } else
9629       ccOutIdx = MCID->getNumOperands() - 1;
9630   } else
9631     ccOutIdx = MCID->getNumOperands() - 1;
9632 
9633   // Any ARM instruction that sets the 's' bit should specify an optional
9634   // "cc_out" operand in the last operand position.
9635   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
9636     assert(!NewOpc && "Optional cc_out operand required");
9637     return;
9638   }
9639   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9640   // since we already have an optional CPSR def.
9641   bool definesCPSR = false;
9642   bool deadCPSR = false;
9643   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
9644        ++i) {
9645     const MachineOperand &MO = MI.getOperand(i);
9646     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
9647       definesCPSR = true;
9648       if (MO.isDead())
9649         deadCPSR = true;
9650       MI.RemoveOperand(i);
9651       break;
9652     }
9653   }
9654   if (!definesCPSR) {
9655     assert(!NewOpc && "Optional cc_out operand required");
9656     return;
9657   }
9658   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
9659   if (deadCPSR) {
9660     assert(!MI.getOperand(ccOutIdx).getReg() &&
9661            "expect uninitialized optional cc_out operand");
9662     // Thumb1 instructions must have the S bit even if the CPSR is dead.
9663     if (!Subtarget->isThumb1Only())
9664       return;
9665   }
9666 
9667   // If this instruction was defined with an optional CPSR def and its dag node
9668   // had a live implicit CPSR def, then activate the optional CPSR def.
9669   MachineOperand &MO = MI.getOperand(ccOutIdx);
9670   MO.setReg(ARM::CPSR);
9671   MO.setIsDef(true);
9672 }
9673 
9674 //===----------------------------------------------------------------------===//
9675 //                           ARM Optimization Hooks
9676 //===----------------------------------------------------------------------===//
9677 
9678 // Helper function that checks if N is a null or all ones constant.
9679 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
9680   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
9681 }
9682 
9683 // Return true if N is conditionally 0 or all ones.
9684 // Detects these expressions where cc is an i1 value:
9685 //
9686 //   (select cc 0, y)   [AllOnes=0]
9687 //   (select cc y, 0)   [AllOnes=0]
9688 //   (zext cc)          [AllOnes=0]
9689 //   (sext cc)          [AllOnes=0/1]
9690 //   (select cc -1, y)  [AllOnes=1]
9691 //   (select cc y, -1)  [AllOnes=1]
9692 //
9693 // Invert is set when N is the null/all ones constant when CC is false.
9694 // OtherOp is set to the alternative value of N.
9695 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
9696                                        SDValue &CC, bool &Invert,
9697                                        SDValue &OtherOp,
9698                                        SelectionDAG &DAG) {
9699   switch (N->getOpcode()) {
9700   default: return false;
9701   case ISD::SELECT: {
9702     CC = N->getOperand(0);
9703     SDValue N1 = N->getOperand(1);
9704     SDValue N2 = N->getOperand(2);
9705     if (isZeroOrAllOnes(N1, AllOnes)) {
9706       Invert = false;
9707       OtherOp = N2;
9708       return true;
9709     }
9710     if (isZeroOrAllOnes(N2, AllOnes)) {
9711       Invert = true;
9712       OtherOp = N1;
9713       return true;
9714     }
9715     return false;
9716   }
9717   case ISD::ZERO_EXTEND:
9718     // (zext cc) can never be the all ones value.
9719     if (AllOnes)
9720       return false;
9721     LLVM_FALLTHROUGH;
9722   case ISD::SIGN_EXTEND: {
9723     SDLoc dl(N);
9724     EVT VT = N->getValueType(0);
9725     CC = N->getOperand(0);
9726     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
9727       return false;
9728     Invert = !AllOnes;
9729     if (AllOnes)
9730       // When looking for an AllOnes constant, N is an sext, and the 'other'
9731       // value is 0.
9732       OtherOp = DAG.getConstant(0, dl, VT);
9733     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9734       // When looking for a 0 constant, N can be zext or sext.
9735       OtherOp = DAG.getConstant(1, dl, VT);
9736     else
9737       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
9738                                 VT);
9739     return true;
9740   }
9741   }
9742 }
9743 
9744 // Combine a constant select operand into its use:
9745 //
9746 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
9747 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
9748 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
9749 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
9750 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
9751 //
9752 // The transform is rejected if the select doesn't have a constant operand that
9753 // is null, or all ones when AllOnes is set.
9754 //
9755 // Also recognize sext/zext from i1:
9756 //
9757 //   (add (zext cc), x) -> (select cc (add x, 1), x)
9758 //   (add (sext cc), x) -> (select cc (add x, -1), x)
9759 //
9760 // These transformations eventually create predicated instructions.
9761 //
9762 // @param N       The node to transform.
9763 // @param Slct    The N operand that is a select.
9764 // @param OtherOp The other N operand (x above).
9765 // @param DCI     Context.
9766 // @param AllOnes Require the select constant to be all ones instead of null.
9767 // @returns The new node, or SDValue() on failure.
9768 static
9769 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
9770                             TargetLowering::DAGCombinerInfo &DCI,
9771                             bool AllOnes = false) {
9772   SelectionDAG &DAG = DCI.DAG;
9773   EVT VT = N->getValueType(0);
9774   SDValue NonConstantVal;
9775   SDValue CCOp;
9776   bool SwapSelectOps;
9777   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
9778                                   NonConstantVal, DAG))
9779     return SDValue();
9780 
9781   // Slct is now know to be the desired identity constant when CC is true.
9782   SDValue TrueVal = OtherOp;
9783   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
9784                                  OtherOp, NonConstantVal);
9785   // Unless SwapSelectOps says CC should be false.
9786   if (SwapSelectOps)
9787     std::swap(TrueVal, FalseVal);
9788 
9789   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
9790                      CCOp, TrueVal, FalseVal);
9791 }
9792 
9793 // Attempt combineSelectAndUse on each operand of a commutative operator N.
9794 static
9795 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
9796                                        TargetLowering::DAGCombinerInfo &DCI) {
9797   SDValue N0 = N->getOperand(0);
9798   SDValue N1 = N->getOperand(1);
9799   if (N0.getNode()->hasOneUse())
9800     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
9801       return Result;
9802   if (N1.getNode()->hasOneUse())
9803     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
9804       return Result;
9805   return SDValue();
9806 }
9807 
9808 static bool IsVUZPShuffleNode(SDNode *N) {
9809   // VUZP shuffle node.
9810   if (N->getOpcode() == ARMISD::VUZP)
9811     return true;
9812 
9813   // "VUZP" on i32 is an alias for VTRN.
9814   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
9815     return true;
9816 
9817   return false;
9818 }
9819 
9820 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
9821                                  TargetLowering::DAGCombinerInfo &DCI,
9822                                  const ARMSubtarget *Subtarget) {
9823   // Look for ADD(VUZP.0, VUZP.1).
9824   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
9825       N0 == N1)
9826    return SDValue();
9827 
9828   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
9829   if (!N->getValueType(0).is64BitVector())
9830     return SDValue();
9831 
9832   // Generate vpadd.
9833   SelectionDAG &DAG = DCI.DAG;
9834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9835   SDLoc dl(N);
9836   SDNode *Unzip = N0.getNode();
9837   EVT VT = N->getValueType(0);
9838 
9839   SmallVector<SDValue, 8> Ops;
9840   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
9841                                 TLI.getPointerTy(DAG.getDataLayout())));
9842   Ops.push_back(Unzip->getOperand(0));
9843   Ops.push_back(Unzip->getOperand(1));
9844 
9845   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9846 }
9847 
9848 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9849                                       TargetLowering::DAGCombinerInfo &DCI,
9850                                       const ARMSubtarget *Subtarget) {
9851   // Check for two extended operands.
9852   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
9853         N1.getOpcode() == ISD::SIGN_EXTEND) &&
9854       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
9855         N1.getOpcode() == ISD::ZERO_EXTEND))
9856     return SDValue();
9857 
9858   SDValue N00 = N0.getOperand(0);
9859   SDValue N10 = N1.getOperand(0);
9860 
9861   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
9862   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
9863       N00 == N10)
9864     return SDValue();
9865 
9866   // We only recognize Q register paddl here; this can't be reached until
9867   // after type legalization.
9868   if (!N00.getValueType().is64BitVector() ||
9869       !N0.getValueType().is128BitVector())
9870     return SDValue();
9871 
9872   // Generate vpaddl.
9873   SelectionDAG &DAG = DCI.DAG;
9874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9875   SDLoc dl(N);
9876   EVT VT = N->getValueType(0);
9877 
9878   SmallVector<SDValue, 8> Ops;
9879   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
9880   unsigned Opcode;
9881   if (N0.getOpcode() == ISD::SIGN_EXTEND)
9882     Opcode = Intrinsic::arm_neon_vpaddls;
9883   else
9884     Opcode = Intrinsic::arm_neon_vpaddlu;
9885   Ops.push_back(DAG.getConstant(Opcode, dl,
9886                                 TLI.getPointerTy(DAG.getDataLayout())));
9887   EVT ElemTy = N00.getValueType().getVectorElementType();
9888   unsigned NumElts = VT.getVectorNumElements();
9889   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
9890   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
9891                                N00.getOperand(0), N00.getOperand(1));
9892   Ops.push_back(Concat);
9893 
9894   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
9895 }
9896 
9897 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
9898 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
9899 // much easier to match.
9900 static SDValue
9901 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
9902                                TargetLowering::DAGCombinerInfo &DCI,
9903                                const ARMSubtarget *Subtarget) {
9904   // Only perform optimization if after legalize, and if NEON is available. We
9905   // also expected both operands to be BUILD_VECTORs.
9906   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
9907       || N0.getOpcode() != ISD::BUILD_VECTOR
9908       || N1.getOpcode() != ISD::BUILD_VECTOR)
9909     return SDValue();
9910 
9911   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
9912   EVT VT = N->getValueType(0);
9913   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
9914     return SDValue();
9915 
9916   // Check that the vector operands are of the right form.
9917   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
9918   // operands, where N is the size of the formed vector.
9919   // Each EXTRACT_VECTOR should have the same input vector and odd or even
9920   // index such that we have a pair wise add pattern.
9921 
9922   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
9923   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9924     return SDValue();
9925   SDValue Vec = N0->getOperand(0)->getOperand(0);
9926   SDNode *V = Vec.getNode();
9927   unsigned nextIndex = 0;
9928 
9929   // For each operands to the ADD which are BUILD_VECTORs,
9930   // check to see if each of their operands are an EXTRACT_VECTOR with
9931   // the same vector and appropriate index.
9932   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
9933     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
9934         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
9935 
9936       SDValue ExtVec0 = N0->getOperand(i);
9937       SDValue ExtVec1 = N1->getOperand(i);
9938 
9939       // First operand is the vector, verify its the same.
9940       if (V != ExtVec0->getOperand(0).getNode() ||
9941           V != ExtVec1->getOperand(0).getNode())
9942         return SDValue();
9943 
9944       // Second is the constant, verify its correct.
9945       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
9946       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
9947 
9948       // For the constant, we want to see all the even or all the odd.
9949       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
9950           || C1->getZExtValue() != nextIndex+1)
9951         return SDValue();
9952 
9953       // Increment index.
9954       nextIndex+=2;
9955     } else
9956       return SDValue();
9957   }
9958 
9959   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
9960   // we're using the entire input vector, otherwise there's a size/legality
9961   // mismatch somewhere.
9962   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
9963       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
9964     return SDValue();
9965 
9966   // Create VPADDL node.
9967   SelectionDAG &DAG = DCI.DAG;
9968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9969 
9970   SDLoc dl(N);
9971 
9972   // Build operand list.
9973   SmallVector<SDValue, 8> Ops;
9974   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
9975                                 TLI.getPointerTy(DAG.getDataLayout())));
9976 
9977   // Input is the vector.
9978   Ops.push_back(Vec);
9979 
9980   // Get widened type and narrowed type.
9981   MVT widenType;
9982   unsigned numElem = VT.getVectorNumElements();
9983 
9984   EVT inputLaneType = Vec.getValueType().getVectorElementType();
9985   switch (inputLaneType.getSimpleVT().SimpleTy) {
9986     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
9987     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
9988     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
9989     default:
9990       llvm_unreachable("Invalid vector element type for padd optimization.");
9991   }
9992 
9993   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
9994   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
9995   return DAG.getNode(ExtOp, dl, VT, tmp);
9996 }
9997 
9998 static SDValue findMUL_LOHI(SDValue V) {
9999   if (V->getOpcode() == ISD::UMUL_LOHI ||
10000       V->getOpcode() == ISD::SMUL_LOHI)
10001     return V;
10002   return SDValue();
10003 }
10004 
10005 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
10006                                         TargetLowering::DAGCombinerInfo &DCI,
10007                                         const ARMSubtarget *Subtarget) {
10008   if (Subtarget->isThumb()) {
10009     if (!Subtarget->hasDSP())
10010       return SDValue();
10011   } else if (!Subtarget->hasV5TEOps())
10012     return SDValue();
10013 
10014   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10015   // accumulates the product into a 64-bit value. The 16-bit values will
10016   // be sign extended somehow or SRA'd into 32-bit values
10017   // (addc (adde (mul 16bit, 16bit), lo), hi)
10018   SDValue Mul = AddcNode->getOperand(0);
10019   SDValue Lo = AddcNode->getOperand(1);
10020   if (Mul.getOpcode() != ISD::MUL) {
10021     Lo = AddcNode->getOperand(0);
10022     Mul = AddcNode->getOperand(1);
10023     if (Mul.getOpcode() != ISD::MUL)
10024       return SDValue();
10025   }
10026 
10027   SDValue SRA = AddeNode->getOperand(0);
10028   SDValue Hi = AddeNode->getOperand(1);
10029   if (SRA.getOpcode() != ISD::SRA) {
10030     SRA = AddeNode->getOperand(1);
10031     Hi = AddeNode->getOperand(0);
10032     if (SRA.getOpcode() != ISD::SRA)
10033       return SDValue();
10034   }
10035   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10036     if (Const->getZExtValue() != 31)
10037       return SDValue();
10038   } else
10039     return SDValue();
10040 
10041   if (SRA.getOperand(0) != Mul)
10042     return SDValue();
10043 
10044   SelectionDAG &DAG = DCI.DAG;
10045   SDLoc dl(AddcNode);
10046   unsigned Opcode = 0;
10047   SDValue Op0;
10048   SDValue Op1;
10049 
10050   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10051     Opcode = ARMISD::SMLALBB;
10052     Op0 = Mul.getOperand(0);
10053     Op1 = Mul.getOperand(1);
10054   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10055     Opcode = ARMISD::SMLALBT;
10056     Op0 = Mul.getOperand(0);
10057     Op1 = Mul.getOperand(1).getOperand(0);
10058   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10059     Opcode = ARMISD::SMLALTB;
10060     Op0 = Mul.getOperand(0).getOperand(0);
10061     Op1 = Mul.getOperand(1);
10062   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10063     Opcode = ARMISD::SMLALTT;
10064     Op0 = Mul->getOperand(0).getOperand(0);
10065     Op1 = Mul->getOperand(1).getOperand(0);
10066   }
10067 
10068   if (!Op0 || !Op1)
10069     return SDValue();
10070 
10071   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10072                               Op0, Op1, Lo, Hi);
10073   // Replace the ADDs' nodes uses by the MLA node's values.
10074   SDValue HiMLALResult(SMLAL.getNode(), 1);
10075   SDValue LoMLALResult(SMLAL.getNode(), 0);
10076 
10077   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10078   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10079 
10080   // Return original node to notify the driver to stop replacing.
10081   SDValue resNode(AddcNode, 0);
10082   return resNode;
10083 }
10084 
10085 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10086                                      TargetLowering::DAGCombinerInfo &DCI,
10087                                      const ARMSubtarget *Subtarget) {
10088   // Look for multiply add opportunities.
10089   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10090   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10091   // a glue link from the first add to the second add.
10092   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10093   // a S/UMLAL instruction.
10094   //                  UMUL_LOHI
10095   //                 / :lo    \ :hi
10096   //                V          \          [no multiline comment]
10097   //    loAdd ->  ADDC         |
10098   //                 \ :carry /
10099   //                  V      V
10100   //                    ADDE   <- hiAdd
10101   //
10102   // In the special case where only the higher part of a signed result is used
10103   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10104   // a constant with the exact value of 0x80000000, we recognize we are dealing
10105   // with a "rounded multiply and add" (or subtract) and transform it into
10106   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10107 
10108   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10109           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10110          "Expect an ADDE or SUBE");
10111 
10112   assert(AddeSubeNode->getNumOperands() == 3 &&
10113          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10114          "ADDE node has the wrong inputs");
10115 
10116   // Check that we are chained to the right ADDC or SUBC node.
10117   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10118   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10119        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10120       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10121        AddcSubcNode->getOpcode() != ARMISD::SUBC))
10122     return SDValue();
10123 
10124   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10125   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10126 
10127   // Check if the two operands are from the same mul_lohi node.
10128   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10129     return SDValue();
10130 
10131   assert(AddcSubcNode->getNumValues() == 2 &&
10132          AddcSubcNode->getValueType(0) == MVT::i32 &&
10133          "Expect ADDC with two result values. First: i32");
10134 
10135   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10136   // maybe a SMLAL which multiplies two 16-bit values.
10137   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10138       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10139       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10140       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10141       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10142     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10143 
10144   // Check for the triangle shape.
10145   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10146   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10147 
10148   // Make sure that the ADDE/SUBE operands are not coming from the same node.
10149   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10150     return SDValue();
10151 
10152   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10153   bool IsLeftOperandMUL = false;
10154   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10155   if (MULOp == SDValue())
10156     MULOp = findMUL_LOHI(AddeSubeOp1);
10157   else
10158     IsLeftOperandMUL = true;
10159   if (MULOp == SDValue())
10160     return SDValue();
10161 
10162   // Figure out the right opcode.
10163   unsigned Opc = MULOp->getOpcode();
10164   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10165 
10166   // Figure out the high and low input values to the MLAL node.
10167   SDValue *HiAddSub = nullptr;
10168   SDValue *LoMul = nullptr;
10169   SDValue *LowAddSub = nullptr;
10170 
10171   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10172   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10173     return SDValue();
10174 
10175   if (IsLeftOperandMUL)
10176     HiAddSub = &AddeSubeOp1;
10177   else
10178     HiAddSub = &AddeSubeOp0;
10179 
10180   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10181   // whose low result is fed to the ADDC/SUBC we are checking.
10182 
10183   if (AddcSubcOp0 == MULOp.getValue(0)) {
10184     LoMul = &AddcSubcOp0;
10185     LowAddSub = &AddcSubcOp1;
10186   }
10187   if (AddcSubcOp1 == MULOp.getValue(0)) {
10188     LoMul = &AddcSubcOp1;
10189     LowAddSub = &AddcSubcOp0;
10190   }
10191 
10192   if (!LoMul)
10193     return SDValue();
10194 
10195   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10196   // the replacement below will create a cycle.
10197   if (AddcSubcNode == HiAddSub->getNode() ||
10198       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10199     return SDValue();
10200 
10201   // Create the merged node.
10202   SelectionDAG &DAG = DCI.DAG;
10203 
10204   // Start building operand list.
10205   SmallVector<SDValue, 8> Ops;
10206   Ops.push_back(LoMul->getOperand(0));
10207   Ops.push_back(LoMul->getOperand(1));
10208 
10209   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
10210   // the case, we must be doing signed multiplication and only use the higher
10211   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10212   // addition or subtraction with the value of 0x800000.
10213   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
10214       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
10215       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
10216       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
10217           0x80000000) {
10218     Ops.push_back(*HiAddSub);
10219     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
10220       FinalOpc = ARMISD::SMMLSR;
10221     } else {
10222       FinalOpc = ARMISD::SMMLAR;
10223     }
10224     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
10225     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
10226 
10227     return SDValue(AddeSubeNode, 0);
10228   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
10229     // SMMLS is generated during instruction selection and the rest of this
10230     // function can not handle the case where AddcSubcNode is a SUBC.
10231     return SDValue();
10232 
10233   // Finish building the operand list for {U/S}MLAL
10234   Ops.push_back(*LowAddSub);
10235   Ops.push_back(*HiAddSub);
10236 
10237   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
10238                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10239 
10240   // Replace the ADDs' nodes uses by the MLA node's values.
10241   SDValue HiMLALResult(MLALNode.getNode(), 1);
10242   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
10243 
10244   SDValue LoMLALResult(MLALNode.getNode(), 0);
10245   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
10246 
10247   // Return original node to notify the driver to stop replacing.
10248   return SDValue(AddeSubeNode, 0);
10249 }
10250 
10251 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
10252                                       TargetLowering::DAGCombinerInfo &DCI,
10253                                       const ARMSubtarget *Subtarget) {
10254   // UMAAL is similar to UMLAL except that it adds two unsigned values.
10255   // While trying to combine for the other MLAL nodes, first search for the
10256   // chance to use UMAAL. Check if Addc uses a node which has already
10257   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10258   // as the addend, and it's handled in PerformUMLALCombine.
10259 
10260   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10261     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10262 
10263   // Check that we have a glued ADDC node.
10264   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
10265   if (AddcNode->getOpcode() != ARMISD::ADDC)
10266     return SDValue();
10267 
10268   // Find the converted UMAAL or quit if it doesn't exist.
10269   SDNode *UmlalNode = nullptr;
10270   SDValue AddHi;
10271   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
10272     UmlalNode = AddcNode->getOperand(0).getNode();
10273     AddHi = AddcNode->getOperand(1);
10274   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
10275     UmlalNode = AddcNode->getOperand(1).getNode();
10276     AddHi = AddcNode->getOperand(0);
10277   } else {
10278     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10279   }
10280 
10281   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10282   // the ADDC as well as Zero.
10283   if (!isNullConstant(UmlalNode->getOperand(3)))
10284     return SDValue();
10285 
10286   if ((isNullConstant(AddeNode->getOperand(0)) &&
10287        AddeNode->getOperand(1).getNode() == UmlalNode) ||
10288       (AddeNode->getOperand(0).getNode() == UmlalNode &&
10289        isNullConstant(AddeNode->getOperand(1)))) {
10290     SelectionDAG &DAG = DCI.DAG;
10291     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
10292                       UmlalNode->getOperand(2), AddHi };
10293     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
10294                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10295 
10296     // Replace the ADDs' nodes uses by the UMAAL node's values.
10297     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
10298     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
10299 
10300     // Return original node to notify the driver to stop replacing.
10301     return SDValue(AddeNode, 0);
10302   }
10303   return SDValue();
10304 }
10305 
10306 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
10307                                    const ARMSubtarget *Subtarget) {
10308   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10309     return SDValue();
10310 
10311   // Check that we have a pair of ADDC and ADDE as operands.
10312   // Both addends of the ADDE must be zero.
10313   SDNode* AddcNode = N->getOperand(2).getNode();
10314   SDNode* AddeNode = N->getOperand(3).getNode();
10315   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
10316       (AddeNode->getOpcode() == ARMISD::ADDE) &&
10317       isNullConstant(AddeNode->getOperand(0)) &&
10318       isNullConstant(AddeNode->getOperand(1)) &&
10319       (AddeNode->getOperand(2).getNode() == AddcNode))
10320     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
10321                        DAG.getVTList(MVT::i32, MVT::i32),
10322                        {N->getOperand(0), N->getOperand(1),
10323                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
10324   else
10325     return SDValue();
10326 }
10327 
10328 static SDValue PerformAddcSubcCombine(SDNode *N,
10329                                       TargetLowering::DAGCombinerInfo &DCI,
10330                                       const ARMSubtarget *Subtarget) {
10331   SelectionDAG &DAG(DCI.DAG);
10332 
10333   if (N->getOpcode() == ARMISD::SUBC) {
10334     // (SUBC (ADDE 0, 0, C), 1) -> C
10335     SDValue LHS = N->getOperand(0);
10336     SDValue RHS = N->getOperand(1);
10337     if (LHS->getOpcode() == ARMISD::ADDE &&
10338         isNullConstant(LHS->getOperand(0)) &&
10339         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
10340       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
10341     }
10342   }
10343 
10344   if (Subtarget->isThumb1Only()) {
10345     SDValue RHS = N->getOperand(1);
10346     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10347       int32_t imm = C->getSExtValue();
10348       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
10349         SDLoc DL(N);
10350         RHS = DAG.getConstant(-imm, DL, MVT::i32);
10351         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
10352                                                            : ARMISD::ADDC;
10353         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
10354       }
10355     }
10356   }
10357 
10358   return SDValue();
10359 }
10360 
10361 static SDValue PerformAddeSubeCombine(SDNode *N,
10362                                       TargetLowering::DAGCombinerInfo &DCI,
10363                                       const ARMSubtarget *Subtarget) {
10364   if (Subtarget->isThumb1Only()) {
10365     SelectionDAG &DAG = DCI.DAG;
10366     SDValue RHS = N->getOperand(1);
10367     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10368       int64_t imm = C->getSExtValue();
10369       if (imm < 0) {
10370         SDLoc DL(N);
10371 
10372         // The with-carry-in form matches bitwise not instead of the negation.
10373         // Effectively, the inverse interpretation of the carry flag already
10374         // accounts for part of the negation.
10375         RHS = DAG.getConstant(~imm, DL, MVT::i32);
10376 
10377         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
10378                                                            : ARMISD::ADDE;
10379         return DAG.getNode(Opcode, DL, N->getVTList(),
10380                            N->getOperand(0), RHS, N->getOperand(2));
10381       }
10382     }
10383   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
10384     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
10385   }
10386   return SDValue();
10387 }
10388 
10389 static SDValue PerformABSCombine(SDNode *N,
10390                                   TargetLowering::DAGCombinerInfo &DCI,
10391                                   const ARMSubtarget *Subtarget) {
10392   SDValue res;
10393   SelectionDAG &DAG = DCI.DAG;
10394   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10395 
10396   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
10397     return SDValue();
10398 
10399   if (!TLI.expandABS(N, res, DAG))
10400       return SDValue();
10401 
10402   return res;
10403 }
10404 
10405 /// PerformADDECombine - Target-specific dag combine transform from
10406 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
10407 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
10408 static SDValue PerformADDECombine(SDNode *N,
10409                                   TargetLowering::DAGCombinerInfo &DCI,
10410                                   const ARMSubtarget *Subtarget) {
10411   // Only ARM and Thumb2 support UMLAL/SMLAL.
10412   if (Subtarget->isThumb1Only())
10413     return PerformAddeSubeCombine(N, DCI, Subtarget);
10414 
10415   // Only perform the checks after legalize when the pattern is available.
10416   if (DCI.isBeforeLegalize()) return SDValue();
10417 
10418   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
10419 }
10420 
10421 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
10422 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
10423 /// called with the default operands, and if that fails, with commuted
10424 /// operands.
10425 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
10426                                           TargetLowering::DAGCombinerInfo &DCI,
10427                                           const ARMSubtarget *Subtarget){
10428   // Attempt to create vpadd for this add.
10429   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
10430     return Result;
10431 
10432   // Attempt to create vpaddl for this add.
10433   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
10434     return Result;
10435   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
10436                                                       Subtarget))
10437     return Result;
10438 
10439   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10440   if (N0.getNode()->hasOneUse())
10441     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
10442       return Result;
10443   return SDValue();
10444 }
10445 
10446 bool
10447 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
10448                                                  CombineLevel Level) const {
10449   if (Level == BeforeLegalizeTypes)
10450     return true;
10451 
10452   if (N->getOpcode() != ISD::SHL)
10453     return true;
10454 
10455   if (Subtarget->isThumb1Only()) {
10456     // Avoid making expensive immediates by commuting shifts. (This logic
10457     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
10458     // for free.)
10459     if (N->getOpcode() != ISD::SHL)
10460       return true;
10461     SDValue N1 = N->getOperand(0);
10462     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
10463         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
10464       return true;
10465     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
10466       if (Const->getAPIntValue().ult(256))
10467         return false;
10468       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
10469           Const->getAPIntValue().sgt(-256))
10470         return false;
10471     }
10472     return true;
10473   }
10474 
10475   // Turn off commute-with-shift transform after legalization, so it doesn't
10476   // conflict with PerformSHLSimplify.  (We could try to detect when
10477   // PerformSHLSimplify would trigger more precisely, but it isn't
10478   // really necessary.)
10479   return false;
10480 }
10481 
10482 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
10483     const SDNode *N, CombineLevel Level) const {
10484   if (!Subtarget->isThumb1Only())
10485     return true;
10486 
10487   if (Level == BeforeLegalizeTypes)
10488     return true;
10489 
10490   return false;
10491 }
10492 
10493 static SDValue PerformSHLSimplify(SDNode *N,
10494                                 TargetLowering::DAGCombinerInfo &DCI,
10495                                 const ARMSubtarget *ST) {
10496   // Allow the generic combiner to identify potential bswaps.
10497   if (DCI.isBeforeLegalize())
10498     return SDValue();
10499 
10500   // DAG combiner will fold:
10501   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10502   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
10503   // Other code patterns that can be also be modified have the following form:
10504   // b + ((a << 1) | 510)
10505   // b + ((a << 1) & 510)
10506   // b + ((a << 1) ^ 510)
10507   // b + ((a << 1) + 510)
10508 
10509   // Many instructions can  perform the shift for free, but it requires both
10510   // the operands to be registers. If c1 << c2 is too large, a mov immediate
10511   // instruction will needed. So, unfold back to the original pattern if:
10512   // - if c1 and c2 are small enough that they don't require mov imms.
10513   // - the user(s) of the node can perform an shl
10514 
10515   // No shifted operands for 16-bit instructions.
10516   if (ST->isThumb() && ST->isThumb1Only())
10517     return SDValue();
10518 
10519   // Check that all the users could perform the shl themselves.
10520   for (auto U : N->uses()) {
10521     switch(U->getOpcode()) {
10522     default:
10523       return SDValue();
10524     case ISD::SUB:
10525     case ISD::ADD:
10526     case ISD::AND:
10527     case ISD::OR:
10528     case ISD::XOR:
10529     case ISD::SETCC:
10530     case ARMISD::CMP:
10531       // Check that the user isn't already using a constant because there
10532       // aren't any instructions that support an immediate operand and a
10533       // shifted operand.
10534       if (isa<ConstantSDNode>(U->getOperand(0)) ||
10535           isa<ConstantSDNode>(U->getOperand(1)))
10536         return SDValue();
10537 
10538       // Check that it's not already using a shift.
10539       if (U->getOperand(0).getOpcode() == ISD::SHL ||
10540           U->getOperand(1).getOpcode() == ISD::SHL)
10541         return SDValue();
10542       break;
10543     }
10544   }
10545 
10546   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
10547       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
10548     return SDValue();
10549 
10550   if (N->getOperand(0).getOpcode() != ISD::SHL)
10551     return SDValue();
10552 
10553   SDValue SHL = N->getOperand(0);
10554 
10555   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
10556   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
10557   if (!C1ShlC2 || !C2)
10558     return SDValue();
10559 
10560   APInt C2Int = C2->getAPIntValue();
10561   APInt C1Int = C1ShlC2->getAPIntValue();
10562 
10563   // Check that performing a lshr will not lose any information.
10564   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
10565                                      C2Int.getBitWidth() - C2->getZExtValue());
10566   if ((C1Int & Mask) != C1Int)
10567     return SDValue();
10568 
10569   // Shift the first constant.
10570   C1Int.lshrInPlace(C2Int);
10571 
10572   // The immediates are encoded as an 8-bit value that can be rotated.
10573   auto LargeImm = [](const APInt &Imm) {
10574     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
10575     return Imm.getBitWidth() - Zeros > 8;
10576   };
10577 
10578   if (LargeImm(C1Int) || LargeImm(C2Int))
10579     return SDValue();
10580 
10581   SelectionDAG &DAG = DCI.DAG;
10582   SDLoc dl(N);
10583   SDValue X = SHL.getOperand(0);
10584   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
10585                               DAG.getConstant(C1Int, dl, MVT::i32));
10586   // Shift left to compensate for the lshr of C1Int.
10587   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
10588 
10589   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
10590              SHL.dump(); N->dump());
10591   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
10592   return Res;
10593 }
10594 
10595 
10596 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
10597 ///
10598 static SDValue PerformADDCombine(SDNode *N,
10599                                  TargetLowering::DAGCombinerInfo &DCI,
10600                                  const ARMSubtarget *Subtarget) {
10601   SDValue N0 = N->getOperand(0);
10602   SDValue N1 = N->getOperand(1);
10603 
10604   // Only works one way, because it needs an immediate operand.
10605   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10606     return Result;
10607 
10608   // First try with the default operand order.
10609   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
10610     return Result;
10611 
10612   // If that didn't work, try again with the operands commuted.
10613   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
10614 }
10615 
10616 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
10617 ///
10618 static SDValue PerformSUBCombine(SDNode *N,
10619                                  TargetLowering::DAGCombinerInfo &DCI) {
10620   SDValue N0 = N->getOperand(0);
10621   SDValue N1 = N->getOperand(1);
10622 
10623   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10624   if (N1.getNode()->hasOneUse())
10625     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
10626       return Result;
10627 
10628   return SDValue();
10629 }
10630 
10631 /// PerformVMULCombine
10632 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
10633 /// special multiplier accumulator forwarding.
10634 ///   vmul d3, d0, d2
10635 ///   vmla d3, d1, d2
10636 /// is faster than
10637 ///   vadd d3, d0, d1
10638 ///   vmul d3, d3, d2
10639 //  However, for (A + B) * (A + B),
10640 //    vadd d2, d0, d1
10641 //    vmul d3, d0, d2
10642 //    vmla d3, d1, d2
10643 //  is slower than
10644 //    vadd d2, d0, d1
10645 //    vmul d3, d2, d2
10646 static SDValue PerformVMULCombine(SDNode *N,
10647                                   TargetLowering::DAGCombinerInfo &DCI,
10648                                   const ARMSubtarget *Subtarget) {
10649   if (!Subtarget->hasVMLxForwarding())
10650     return SDValue();
10651 
10652   SelectionDAG &DAG = DCI.DAG;
10653   SDValue N0 = N->getOperand(0);
10654   SDValue N1 = N->getOperand(1);
10655   unsigned Opcode = N0.getOpcode();
10656   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10657       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
10658     Opcode = N1.getOpcode();
10659     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10660         Opcode != ISD::FADD && Opcode != ISD::FSUB)
10661       return SDValue();
10662     std::swap(N0, N1);
10663   }
10664 
10665   if (N0 == N1)
10666     return SDValue();
10667 
10668   EVT VT = N->getValueType(0);
10669   SDLoc DL(N);
10670   SDValue N00 = N0->getOperand(0);
10671   SDValue N01 = N0->getOperand(1);
10672   return DAG.getNode(Opcode, DL, VT,
10673                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
10674                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
10675 }
10676 
10677 static SDValue PerformMULCombine(SDNode *N,
10678                                  TargetLowering::DAGCombinerInfo &DCI,
10679                                  const ARMSubtarget *Subtarget) {
10680   SelectionDAG &DAG = DCI.DAG;
10681 
10682   if (Subtarget->isThumb1Only())
10683     return SDValue();
10684 
10685   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10686     return SDValue();
10687 
10688   EVT VT = N->getValueType(0);
10689   if (VT.is64BitVector() || VT.is128BitVector())
10690     return PerformVMULCombine(N, DCI, Subtarget);
10691   if (VT != MVT::i32)
10692     return SDValue();
10693 
10694   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10695   if (!C)
10696     return SDValue();
10697 
10698   int64_t MulAmt = C->getSExtValue();
10699   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
10700 
10701   ShiftAmt = ShiftAmt & (32 - 1);
10702   SDValue V = N->getOperand(0);
10703   SDLoc DL(N);
10704 
10705   SDValue Res;
10706   MulAmt >>= ShiftAmt;
10707 
10708   if (MulAmt >= 0) {
10709     if (isPowerOf2_32(MulAmt - 1)) {
10710       // (mul x, 2^N + 1) => (add (shl x, N), x)
10711       Res = DAG.getNode(ISD::ADD, DL, VT,
10712                         V,
10713                         DAG.getNode(ISD::SHL, DL, VT,
10714                                     V,
10715                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
10716                                                     MVT::i32)));
10717     } else if (isPowerOf2_32(MulAmt + 1)) {
10718       // (mul x, 2^N - 1) => (sub (shl x, N), x)
10719       Res = DAG.getNode(ISD::SUB, DL, VT,
10720                         DAG.getNode(ISD::SHL, DL, VT,
10721                                     V,
10722                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
10723                                                     MVT::i32)),
10724                         V);
10725     } else
10726       return SDValue();
10727   } else {
10728     uint64_t MulAmtAbs = -MulAmt;
10729     if (isPowerOf2_32(MulAmtAbs + 1)) {
10730       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
10731       Res = DAG.getNode(ISD::SUB, DL, VT,
10732                         V,
10733                         DAG.getNode(ISD::SHL, DL, VT,
10734                                     V,
10735                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
10736                                                     MVT::i32)));
10737     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
10738       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
10739       Res = DAG.getNode(ISD::ADD, DL, VT,
10740                         V,
10741                         DAG.getNode(ISD::SHL, DL, VT,
10742                                     V,
10743                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
10744                                                     MVT::i32)));
10745       Res = DAG.getNode(ISD::SUB, DL, VT,
10746                         DAG.getConstant(0, DL, MVT::i32), Res);
10747     } else
10748       return SDValue();
10749   }
10750 
10751   if (ShiftAmt != 0)
10752     Res = DAG.getNode(ISD::SHL, DL, VT,
10753                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
10754 
10755   // Do not add new nodes to DAG combiner worklist.
10756   DCI.CombineTo(N, Res, false);
10757   return SDValue();
10758 }
10759 
10760 static SDValue CombineANDShift(SDNode *N,
10761                                TargetLowering::DAGCombinerInfo &DCI,
10762                                const ARMSubtarget *Subtarget) {
10763   // Allow DAGCombine to pattern-match before we touch the canonical form.
10764   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10765     return SDValue();
10766 
10767   if (N->getValueType(0) != MVT::i32)
10768     return SDValue();
10769 
10770   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10771   if (!N1C)
10772     return SDValue();
10773 
10774   uint32_t C1 = (uint32_t)N1C->getZExtValue();
10775   // Don't transform uxtb/uxth.
10776   if (C1 == 255 || C1 == 65535)
10777     return SDValue();
10778 
10779   SDNode *N0 = N->getOperand(0).getNode();
10780   if (!N0->hasOneUse())
10781     return SDValue();
10782 
10783   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
10784     return SDValue();
10785 
10786   bool LeftShift = N0->getOpcode() == ISD::SHL;
10787 
10788   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
10789   if (!N01C)
10790     return SDValue();
10791 
10792   uint32_t C2 = (uint32_t)N01C->getZExtValue();
10793   if (!C2 || C2 >= 32)
10794     return SDValue();
10795 
10796   // Clear irrelevant bits in the mask.
10797   if (LeftShift)
10798     C1 &= (-1U << C2);
10799   else
10800     C1 &= (-1U >> C2);
10801 
10802   SelectionDAG &DAG = DCI.DAG;
10803   SDLoc DL(N);
10804 
10805   // We have a pattern of the form "(and (shl x, c2) c1)" or
10806   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
10807   // transform to a pair of shifts, to save materializing c1.
10808 
10809   // First pattern: right shift, then mask off leading bits.
10810   // FIXME: Use demanded bits?
10811   if (!LeftShift && isMask_32(C1)) {
10812     uint32_t C3 = countLeadingZeros(C1);
10813     if (C2 < C3) {
10814       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
10815                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
10816       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
10817                          DAG.getConstant(C3, DL, MVT::i32));
10818     }
10819   }
10820 
10821   // First pattern, reversed: left shift, then mask off trailing bits.
10822   if (LeftShift && isMask_32(~C1)) {
10823     uint32_t C3 = countTrailingZeros(C1);
10824     if (C2 < C3) {
10825       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
10826                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
10827       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
10828                          DAG.getConstant(C3, DL, MVT::i32));
10829     }
10830   }
10831 
10832   // Second pattern: left shift, then mask off leading bits.
10833   // FIXME: Use demanded bits?
10834   if (LeftShift && isShiftedMask_32(C1)) {
10835     uint32_t Trailing = countTrailingZeros(C1);
10836     uint32_t C3 = countLeadingZeros(C1);
10837     if (Trailing == C2 && C2 + C3 < 32) {
10838       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
10839                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
10840       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
10841                         DAG.getConstant(C3, DL, MVT::i32));
10842     }
10843   }
10844 
10845   // Second pattern, reversed: right shift, then mask off trailing bits.
10846   // FIXME: Handle other patterns of known/demanded bits.
10847   if (!LeftShift && isShiftedMask_32(C1)) {
10848     uint32_t Leading = countLeadingZeros(C1);
10849     uint32_t C3 = countTrailingZeros(C1);
10850     if (Leading == C2 && C2 + C3 < 32) {
10851       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
10852                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
10853       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
10854                          DAG.getConstant(C3, DL, MVT::i32));
10855     }
10856   }
10857 
10858   // FIXME: Transform "(and (shl x, c2) c1)" ->
10859   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
10860   // c1.
10861   return SDValue();
10862 }
10863 
10864 static SDValue PerformANDCombine(SDNode *N,
10865                                  TargetLowering::DAGCombinerInfo &DCI,
10866                                  const ARMSubtarget *Subtarget) {
10867   // Attempt to use immediate-form VBIC
10868   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
10869   SDLoc dl(N);
10870   EVT VT = N->getValueType(0);
10871   SelectionDAG &DAG = DCI.DAG;
10872 
10873   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10874     return SDValue();
10875 
10876   APInt SplatBits, SplatUndef;
10877   unsigned SplatBitSize;
10878   bool HasAnyUndefs;
10879   if (BVN &&
10880       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
10881     if (SplatBitSize <= 64) {
10882       EVT VbicVT;
10883       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
10884                                       SplatUndef.getZExtValue(), SplatBitSize,
10885                                       DAG, dl, VbicVT, VT.is128BitVector(),
10886                                       OtherModImm);
10887       if (Val.getNode()) {
10888         SDValue Input =
10889           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
10890         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
10891         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
10892       }
10893     }
10894   }
10895 
10896   if (!Subtarget->isThumb1Only()) {
10897     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
10898     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
10899       return Result;
10900 
10901     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10902       return Result;
10903   }
10904 
10905   if (Subtarget->isThumb1Only())
10906     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
10907       return Result;
10908 
10909   return SDValue();
10910 }
10911 
10912 // Try combining OR nodes to SMULWB, SMULWT.
10913 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
10914                                          TargetLowering::DAGCombinerInfo &DCI,
10915                                          const ARMSubtarget *Subtarget) {
10916   if (!Subtarget->hasV6Ops() ||
10917       (Subtarget->isThumb() &&
10918        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
10919     return SDValue();
10920 
10921   SDValue SRL = OR->getOperand(0);
10922   SDValue SHL = OR->getOperand(1);
10923 
10924   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
10925     SRL = OR->getOperand(1);
10926     SHL = OR->getOperand(0);
10927   }
10928   if (!isSRL16(SRL) || !isSHL16(SHL))
10929     return SDValue();
10930 
10931   // The first operands to the shifts need to be the two results from the
10932   // same smul_lohi node.
10933   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
10934        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
10935     return SDValue();
10936 
10937   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
10938   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
10939       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
10940     return SDValue();
10941 
10942   // Now we have:
10943   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
10944   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
10945   // For SMUWB the 16-bit value will signed extended somehow.
10946   // For SMULWT only the SRA is required.
10947   // Check both sides of SMUL_LOHI
10948   SDValue OpS16 = SMULLOHI->getOperand(0);
10949   SDValue OpS32 = SMULLOHI->getOperand(1);
10950 
10951   SelectionDAG &DAG = DCI.DAG;
10952   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
10953     OpS16 = OpS32;
10954     OpS32 = SMULLOHI->getOperand(0);
10955   }
10956 
10957   SDLoc dl(OR);
10958   unsigned Opcode = 0;
10959   if (isS16(OpS16, DAG))
10960     Opcode = ARMISD::SMULWB;
10961   else if (isSRA16(OpS16)) {
10962     Opcode = ARMISD::SMULWT;
10963     OpS16 = OpS16->getOperand(0);
10964   }
10965   else
10966     return SDValue();
10967 
10968   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
10969   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
10970   return SDValue(OR, 0);
10971 }
10972 
10973 static SDValue PerformORCombineToBFI(SDNode *N,
10974                                      TargetLowering::DAGCombinerInfo &DCI,
10975                                      const ARMSubtarget *Subtarget) {
10976   // BFI is only available on V6T2+
10977   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
10978     return SDValue();
10979 
10980   EVT VT = N->getValueType(0);
10981   SDValue N0 = N->getOperand(0);
10982   SDValue N1 = N->getOperand(1);
10983   SelectionDAG &DAG = DCI.DAG;
10984   SDLoc DL(N);
10985   // 1) or (and A, mask), val => ARMbfi A, val, mask
10986   //      iff (val & mask) == val
10987   //
10988   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
10989   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
10990   //          && mask == ~mask2
10991   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
10992   //          && ~mask == mask2
10993   //  (i.e., copy a bitfield value into another bitfield of the same width)
10994 
10995   if (VT != MVT::i32)
10996     return SDValue();
10997 
10998   SDValue N00 = N0.getOperand(0);
10999 
11000   // The value and the mask need to be constants so we can verify this is
11001   // actually a bitfield set. If the mask is 0xffff, we can do better
11002   // via a movt instruction, so don't use BFI in that case.
11003   SDValue MaskOp = N0.getOperand(1);
11004   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
11005   if (!MaskC)
11006     return SDValue();
11007   unsigned Mask = MaskC->getZExtValue();
11008   if (Mask == 0xffff)
11009     return SDValue();
11010   SDValue Res;
11011   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11012   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11013   if (N1C) {
11014     unsigned Val = N1C->getZExtValue();
11015     if ((Val & ~Mask) != Val)
11016       return SDValue();
11017 
11018     if (ARM::isBitFieldInvertedMask(Mask)) {
11019       Val >>= countTrailingZeros(~Mask);
11020 
11021       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
11022                         DAG.getConstant(Val, DL, MVT::i32),
11023                         DAG.getConstant(Mask, DL, MVT::i32));
11024 
11025       DCI.CombineTo(N, Res, false);
11026       // Return value from the original node to inform the combiner than N is
11027       // now dead.
11028       return SDValue(N, 0);
11029     }
11030   } else if (N1.getOpcode() == ISD::AND) {
11031     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11032     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11033     if (!N11C)
11034       return SDValue();
11035     unsigned Mask2 = N11C->getZExtValue();
11036 
11037     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11038     // as is to match.
11039     if (ARM::isBitFieldInvertedMask(Mask) &&
11040         (Mask == ~Mask2)) {
11041       // The pack halfword instruction works better for masks that fit it,
11042       // so use that when it's available.
11043       if (Subtarget->hasDSP() &&
11044           (Mask == 0xffff || Mask == 0xffff0000))
11045         return SDValue();
11046       // 2a
11047       unsigned amt = countTrailingZeros(Mask2);
11048       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
11049                         DAG.getConstant(amt, DL, MVT::i32));
11050       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
11051                         DAG.getConstant(Mask, DL, MVT::i32));
11052       DCI.CombineTo(N, Res, false);
11053       // Return value from the original node to inform the combiner than N is
11054       // now dead.
11055       return SDValue(N, 0);
11056     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
11057                (~Mask == Mask2)) {
11058       // The pack halfword instruction works better for masks that fit it,
11059       // so use that when it's available.
11060       if (Subtarget->hasDSP() &&
11061           (Mask2 == 0xffff || Mask2 == 0xffff0000))
11062         return SDValue();
11063       // 2b
11064       unsigned lsb = countTrailingZeros(Mask);
11065       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
11066                         DAG.getConstant(lsb, DL, MVT::i32));
11067       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
11068                         DAG.getConstant(Mask2, DL, MVT::i32));
11069       DCI.CombineTo(N, Res, false);
11070       // Return value from the original node to inform the combiner than N is
11071       // now dead.
11072       return SDValue(N, 0);
11073     }
11074   }
11075 
11076   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
11077       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
11078       ARM::isBitFieldInvertedMask(~Mask)) {
11079     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11080     // where lsb(mask) == #shamt and masked bits of B are known zero.
11081     SDValue ShAmt = N00.getOperand(1);
11082     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
11083     unsigned LSB = countTrailingZeros(Mask);
11084     if (ShAmtC != LSB)
11085       return SDValue();
11086 
11087     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
11088                       DAG.getConstant(~Mask, DL, MVT::i32));
11089 
11090     DCI.CombineTo(N, Res, false);
11091     // Return value from the original node to inform the combiner than N is
11092     // now dead.
11093     return SDValue(N, 0);
11094   }
11095 
11096   return SDValue();
11097 }
11098 
11099 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11100 static SDValue PerformORCombine(SDNode *N,
11101                                 TargetLowering::DAGCombinerInfo &DCI,
11102                                 const ARMSubtarget *Subtarget) {
11103   // Attempt to use immediate-form VORR
11104   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
11105   SDLoc dl(N);
11106   EVT VT = N->getValueType(0);
11107   SelectionDAG &DAG = DCI.DAG;
11108 
11109   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11110     return SDValue();
11111 
11112   APInt SplatBits, SplatUndef;
11113   unsigned SplatBitSize;
11114   bool HasAnyUndefs;
11115   if (BVN && Subtarget->hasNEON() &&
11116       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11117     if (SplatBitSize <= 64) {
11118       EVT VorrVT;
11119       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
11120                                       SplatUndef.getZExtValue(), SplatBitSize,
11121                                       DAG, dl, VorrVT, VT.is128BitVector(),
11122                                       OtherModImm);
11123       if (Val.getNode()) {
11124         SDValue Input =
11125           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
11126         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
11127         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
11128       }
11129     }
11130   }
11131 
11132   if (!Subtarget->isThumb1Only()) {
11133     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11134     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11135       return Result;
11136     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
11137       return Result;
11138   }
11139 
11140   SDValue N0 = N->getOperand(0);
11141   SDValue N1 = N->getOperand(1);
11142 
11143   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11144   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
11145       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11146 
11147     // The code below optimizes (or (and X, Y), Z).
11148     // The AND operand needs to have a single user to make these optimizations
11149     // profitable.
11150     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
11151       return SDValue();
11152 
11153     APInt SplatUndef;
11154     unsigned SplatBitSize;
11155     bool HasAnyUndefs;
11156 
11157     APInt SplatBits0, SplatBits1;
11158     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
11159     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
11160     // Ensure that the second operand of both ands are constants
11161     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
11162                                       HasAnyUndefs) && !HasAnyUndefs) {
11163         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
11164                                           HasAnyUndefs) && !HasAnyUndefs) {
11165             // Ensure that the bit width of the constants are the same and that
11166             // the splat arguments are logical inverses as per the pattern we
11167             // are trying to simplify.
11168             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
11169                 SplatBits0 == ~SplatBits1) {
11170                 // Canonicalize the vector type to make instruction selection
11171                 // simpler.
11172                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
11173                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
11174                                              N0->getOperand(1),
11175                                              N0->getOperand(0),
11176                                              N1->getOperand(0));
11177                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
11178             }
11179         }
11180     }
11181   }
11182 
11183   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11184   // reasonable.
11185   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
11186     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
11187       return Res;
11188   }
11189 
11190   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11191     return Result;
11192 
11193   return SDValue();
11194 }
11195 
11196 static SDValue PerformXORCombine(SDNode *N,
11197                                  TargetLowering::DAGCombinerInfo &DCI,
11198                                  const ARMSubtarget *Subtarget) {
11199   EVT VT = N->getValueType(0);
11200   SelectionDAG &DAG = DCI.DAG;
11201 
11202   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11203     return SDValue();
11204 
11205   if (!Subtarget->isThumb1Only()) {
11206     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11207     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11208       return Result;
11209 
11210     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11211       return Result;
11212   }
11213 
11214   return SDValue();
11215 }
11216 
11217 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11218 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
11219 // their position in "to" (Rd).
11220 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
11221   assert(N->getOpcode() == ARMISD::BFI);
11222 
11223   SDValue From = N->getOperand(1);
11224   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
11225   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
11226 
11227   // If the Base came from a SHR #C, we can deduce that it is really testing bit
11228   // #C in the base of the SHR.
11229   if (From->getOpcode() == ISD::SRL &&
11230       isa<ConstantSDNode>(From->getOperand(1))) {
11231     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
11232     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
11233     FromMask <<= Shift.getLimitedValue(31);
11234     From = From->getOperand(0);
11235   }
11236 
11237   return From;
11238 }
11239 
11240 // If A and B contain one contiguous set of bits, does A | B == A . B?
11241 //
11242 // Neither A nor B must be zero.
11243 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
11244   unsigned LastActiveBitInA =  A.countTrailingZeros();
11245   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
11246   return LastActiveBitInA - 1 == FirstActiveBitInB;
11247 }
11248 
11249 static SDValue FindBFIToCombineWith(SDNode *N) {
11250   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
11251   // if one exists.
11252   APInt ToMask, FromMask;
11253   SDValue From = ParseBFI(N, ToMask, FromMask);
11254   SDValue To = N->getOperand(0);
11255 
11256   // Now check for a compatible BFI to merge with. We can pass through BFIs that
11257   // aren't compatible, but not if they set the same bit in their destination as
11258   // we do (or that of any BFI we're going to combine with).
11259   SDValue V = To;
11260   APInt CombinedToMask = ToMask;
11261   while (V.getOpcode() == ARMISD::BFI) {
11262     APInt NewToMask, NewFromMask;
11263     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
11264     if (NewFrom != From) {
11265       // This BFI has a different base. Keep going.
11266       CombinedToMask |= NewToMask;
11267       V = V.getOperand(0);
11268       continue;
11269     }
11270 
11271     // Do the written bits conflict with any we've seen so far?
11272     if ((NewToMask & CombinedToMask).getBoolValue())
11273       // Conflicting bits - bail out because going further is unsafe.
11274       return SDValue();
11275 
11276     // Are the new bits contiguous when combined with the old bits?
11277     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
11278         BitsProperlyConcatenate(FromMask, NewFromMask))
11279       return V;
11280     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
11281         BitsProperlyConcatenate(NewFromMask, FromMask))
11282       return V;
11283 
11284     // We've seen a write to some bits, so track it.
11285     CombinedToMask |= NewToMask;
11286     // Keep going...
11287     V = V.getOperand(0);
11288   }
11289 
11290   return SDValue();
11291 }
11292 
11293 static SDValue PerformBFICombine(SDNode *N,
11294                                  TargetLowering::DAGCombinerInfo &DCI) {
11295   SDValue N1 = N->getOperand(1);
11296   if (N1.getOpcode() == ISD::AND) {
11297     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
11298     // the bits being cleared by the AND are not demanded by the BFI.
11299     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11300     if (!N11C)
11301       return SDValue();
11302     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11303     unsigned LSB = countTrailingZeros(~InvMask);
11304     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
11305     assert(Width <
11306                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
11307            "undefined behavior");
11308     unsigned Mask = (1u << Width) - 1;
11309     unsigned Mask2 = N11C->getZExtValue();
11310     if ((Mask & (~Mask2)) == 0)
11311       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
11312                              N->getOperand(0), N1.getOperand(0),
11313                              N->getOperand(2));
11314   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
11315     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
11316     // Keep track of any consecutive bits set that all come from the same base
11317     // value. We can combine these together into a single BFI.
11318     SDValue CombineBFI = FindBFIToCombineWith(N);
11319     if (CombineBFI == SDValue())
11320       return SDValue();
11321 
11322     // We've found a BFI.
11323     APInt ToMask1, FromMask1;
11324     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
11325 
11326     APInt ToMask2, FromMask2;
11327     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
11328     assert(From1 == From2);
11329     (void)From2;
11330 
11331     // First, unlink CombineBFI.
11332     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
11333     // Then create a new BFI, combining the two together.
11334     APInt NewFromMask = FromMask1 | FromMask2;
11335     APInt NewToMask = ToMask1 | ToMask2;
11336 
11337     EVT VT = N->getValueType(0);
11338     SDLoc dl(N);
11339 
11340     if (NewFromMask[0] == 0)
11341       From1 = DCI.DAG.getNode(
11342         ISD::SRL, dl, VT, From1,
11343         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
11344     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
11345                            DCI.DAG.getConstant(~NewToMask, dl, VT));
11346   }
11347   return SDValue();
11348 }
11349 
11350 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
11351 /// ARMISD::VMOVRRD.
11352 static SDValue PerformVMOVRRDCombine(SDNode *N,
11353                                      TargetLowering::DAGCombinerInfo &DCI,
11354                                      const ARMSubtarget *Subtarget) {
11355   // vmovrrd(vmovdrr x, y) -> x,y
11356   SDValue InDouble = N->getOperand(0);
11357   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
11358     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
11359 
11360   // vmovrrd(load f64) -> (load i32), (load i32)
11361   SDNode *InNode = InDouble.getNode();
11362   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
11363       InNode->getValueType(0) == MVT::f64 &&
11364       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
11365       !cast<LoadSDNode>(InNode)->isVolatile()) {
11366     // TODO: Should this be done for non-FrameIndex operands?
11367     LoadSDNode *LD = cast<LoadSDNode>(InNode);
11368 
11369     SelectionDAG &DAG = DCI.DAG;
11370     SDLoc DL(LD);
11371     SDValue BasePtr = LD->getBasePtr();
11372     SDValue NewLD1 =
11373         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
11374                     LD->getAlignment(), LD->getMemOperand()->getFlags());
11375 
11376     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11377                                     DAG.getConstant(4, DL, MVT::i32));
11378     SDValue NewLD2 = DAG.getLoad(
11379         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
11380         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
11381 
11382     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
11383     if (DCI.DAG.getDataLayout().isBigEndian())
11384       std::swap (NewLD1, NewLD2);
11385     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
11386     return Result;
11387   }
11388 
11389   return SDValue();
11390 }
11391 
11392 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
11393 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
11394 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
11395   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
11396   SDValue Op0 = N->getOperand(0);
11397   SDValue Op1 = N->getOperand(1);
11398   if (Op0.getOpcode() == ISD::BITCAST)
11399     Op0 = Op0.getOperand(0);
11400   if (Op1.getOpcode() == ISD::BITCAST)
11401     Op1 = Op1.getOperand(0);
11402   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
11403       Op0.getNode() == Op1.getNode() &&
11404       Op0.getResNo() == 0 && Op1.getResNo() == 1)
11405     return DAG.getNode(ISD::BITCAST, SDLoc(N),
11406                        N->getValueType(0), Op0.getOperand(0));
11407   return SDValue();
11408 }
11409 
11410 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
11411 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
11412 /// i64 vector to have f64 elements, since the value can then be loaded
11413 /// directly into a VFP register.
11414 static bool hasNormalLoadOperand(SDNode *N) {
11415   unsigned NumElts = N->getValueType(0).getVectorNumElements();
11416   for (unsigned i = 0; i < NumElts; ++i) {
11417     SDNode *Elt = N->getOperand(i).getNode();
11418     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
11419       return true;
11420   }
11421   return false;
11422 }
11423 
11424 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
11425 /// ISD::BUILD_VECTOR.
11426 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
11427                                           TargetLowering::DAGCombinerInfo &DCI,
11428                                           const ARMSubtarget *Subtarget) {
11429   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
11430   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
11431   // into a pair of GPRs, which is fine when the value is used as a scalar,
11432   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
11433   SelectionDAG &DAG = DCI.DAG;
11434   if (N->getNumOperands() == 2)
11435     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
11436       return RV;
11437 
11438   // Load i64 elements as f64 values so that type legalization does not split
11439   // them up into i32 values.
11440   EVT VT = N->getValueType(0);
11441   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
11442     return SDValue();
11443   SDLoc dl(N);
11444   SmallVector<SDValue, 8> Ops;
11445   unsigned NumElts = VT.getVectorNumElements();
11446   for (unsigned i = 0; i < NumElts; ++i) {
11447     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
11448     Ops.push_back(V);
11449     // Make the DAGCombiner fold the bitcast.
11450     DCI.AddToWorklist(V.getNode());
11451   }
11452   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
11453   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
11454   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
11455 }
11456 
11457 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
11458 static SDValue
11459 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11460   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
11461   // At that time, we may have inserted bitcasts from integer to float.
11462   // If these bitcasts have survived DAGCombine, change the lowering of this
11463   // BUILD_VECTOR in something more vector friendly, i.e., that does not
11464   // force to use floating point types.
11465 
11466   // Make sure we can change the type of the vector.
11467   // This is possible iff:
11468   // 1. The vector is only used in a bitcast to a integer type. I.e.,
11469   //    1.1. Vector is used only once.
11470   //    1.2. Use is a bit convert to an integer type.
11471   // 2. The size of its operands are 32-bits (64-bits are not legal).
11472   EVT VT = N->getValueType(0);
11473   EVT EltVT = VT.getVectorElementType();
11474 
11475   // Check 1.1. and 2.
11476   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
11477     return SDValue();
11478 
11479   // By construction, the input type must be float.
11480   assert(EltVT == MVT::f32 && "Unexpected type!");
11481 
11482   // Check 1.2.
11483   SDNode *Use = *N->use_begin();
11484   if (Use->getOpcode() != ISD::BITCAST ||
11485       Use->getValueType(0).isFloatingPoint())
11486     return SDValue();
11487 
11488   // Check profitability.
11489   // Model is, if more than half of the relevant operands are bitcast from
11490   // i32, turn the build_vector into a sequence of insert_vector_elt.
11491   // Relevant operands are everything that is not statically
11492   // (i.e., at compile time) bitcasted.
11493   unsigned NumOfBitCastedElts = 0;
11494   unsigned NumElts = VT.getVectorNumElements();
11495   unsigned NumOfRelevantElts = NumElts;
11496   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
11497     SDValue Elt = N->getOperand(Idx);
11498     if (Elt->getOpcode() == ISD::BITCAST) {
11499       // Assume only bit cast to i32 will go away.
11500       if (Elt->getOperand(0).getValueType() == MVT::i32)
11501         ++NumOfBitCastedElts;
11502     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
11503       // Constants are statically casted, thus do not count them as
11504       // relevant operands.
11505       --NumOfRelevantElts;
11506   }
11507 
11508   // Check if more than half of the elements require a non-free bitcast.
11509   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
11510     return SDValue();
11511 
11512   SelectionDAG &DAG = DCI.DAG;
11513   // Create the new vector type.
11514   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
11515   // Check if the type is legal.
11516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11517   if (!TLI.isTypeLegal(VecVT))
11518     return SDValue();
11519 
11520   // Combine:
11521   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
11522   // => BITCAST INSERT_VECTOR_ELT
11523   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
11524   //                      (BITCAST EN), N.
11525   SDValue Vec = DAG.getUNDEF(VecVT);
11526   SDLoc dl(N);
11527   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
11528     SDValue V = N->getOperand(Idx);
11529     if (V.isUndef())
11530       continue;
11531     if (V.getOpcode() == ISD::BITCAST &&
11532         V->getOperand(0).getValueType() == MVT::i32)
11533       // Fold obvious case.
11534       V = V.getOperand(0);
11535     else {
11536       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
11537       // Make the DAGCombiner fold the bitcasts.
11538       DCI.AddToWorklist(V.getNode());
11539     }
11540     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
11541     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
11542   }
11543   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
11544   // Make the DAGCombiner fold the bitcasts.
11545   DCI.AddToWorklist(Vec.getNode());
11546   return Vec;
11547 }
11548 
11549 /// PerformInsertEltCombine - Target-specific dag combine xforms for
11550 /// ISD::INSERT_VECTOR_ELT.
11551 static SDValue PerformInsertEltCombine(SDNode *N,
11552                                        TargetLowering::DAGCombinerInfo &DCI) {
11553   // Bitcast an i64 load inserted into a vector to f64.
11554   // Otherwise, the i64 value will be legalized to a pair of i32 values.
11555   EVT VT = N->getValueType(0);
11556   SDNode *Elt = N->getOperand(1).getNode();
11557   if (VT.getVectorElementType() != MVT::i64 ||
11558       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
11559     return SDValue();
11560 
11561   SelectionDAG &DAG = DCI.DAG;
11562   SDLoc dl(N);
11563   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11564                                  VT.getVectorNumElements());
11565   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
11566   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
11567   // Make the DAGCombiner fold the bitcasts.
11568   DCI.AddToWorklist(Vec.getNode());
11569   DCI.AddToWorklist(V.getNode());
11570   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
11571                                Vec, V, N->getOperand(2));
11572   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
11573 }
11574 
11575 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
11576 /// ISD::VECTOR_SHUFFLE.
11577 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
11578   // The LLVM shufflevector instruction does not require the shuffle mask
11579   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
11580   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
11581   // operands do not match the mask length, they are extended by concatenating
11582   // them with undef vectors.  That is probably the right thing for other
11583   // targets, but for NEON it is better to concatenate two double-register
11584   // size vector operands into a single quad-register size vector.  Do that
11585   // transformation here:
11586   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
11587   //   shuffle(concat(v1, v2), undef)
11588   SDValue Op0 = N->getOperand(0);
11589   SDValue Op1 = N->getOperand(1);
11590   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
11591       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
11592       Op0.getNumOperands() != 2 ||
11593       Op1.getNumOperands() != 2)
11594     return SDValue();
11595   SDValue Concat0Op1 = Op0.getOperand(1);
11596   SDValue Concat1Op1 = Op1.getOperand(1);
11597   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
11598     return SDValue();
11599   // Skip the transformation if any of the types are illegal.
11600   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11601   EVT VT = N->getValueType(0);
11602   if (!TLI.isTypeLegal(VT) ||
11603       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
11604       !TLI.isTypeLegal(Concat1Op1.getValueType()))
11605     return SDValue();
11606 
11607   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
11608                                   Op0.getOperand(0), Op1.getOperand(0));
11609   // Translate the shuffle mask.
11610   SmallVector<int, 16> NewMask;
11611   unsigned NumElts = VT.getVectorNumElements();
11612   unsigned HalfElts = NumElts/2;
11613   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
11614   for (unsigned n = 0; n < NumElts; ++n) {
11615     int MaskElt = SVN->getMaskElt(n);
11616     int NewElt = -1;
11617     if (MaskElt < (int)HalfElts)
11618       NewElt = MaskElt;
11619     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
11620       NewElt = HalfElts + MaskElt - NumElts;
11621     NewMask.push_back(NewElt);
11622   }
11623   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
11624                               DAG.getUNDEF(VT), NewMask);
11625 }
11626 
11627 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
11628 /// NEON load/store intrinsics, and generic vector load/stores, to merge
11629 /// base address updates.
11630 /// For generic load/stores, the memory type is assumed to be a vector.
11631 /// The caller is assumed to have checked legality.
11632 static SDValue CombineBaseUpdate(SDNode *N,
11633                                  TargetLowering::DAGCombinerInfo &DCI) {
11634   SelectionDAG &DAG = DCI.DAG;
11635   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
11636                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
11637   const bool isStore = N->getOpcode() == ISD::STORE;
11638   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
11639   SDValue Addr = N->getOperand(AddrOpIdx);
11640   MemSDNode *MemN = cast<MemSDNode>(N);
11641   SDLoc dl(N);
11642 
11643   // Search for a use of the address operand that is an increment.
11644   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11645          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11646     SDNode *User = *UI;
11647     if (User->getOpcode() != ISD::ADD ||
11648         UI.getUse().getResNo() != Addr.getResNo())
11649       continue;
11650 
11651     // Check that the add is independent of the load/store.  Otherwise, folding
11652     // it would create a cycle. We can avoid searching through Addr as it's a
11653     // predecessor to both.
11654     SmallPtrSet<const SDNode *, 32> Visited;
11655     SmallVector<const SDNode *, 16> Worklist;
11656     Visited.insert(Addr.getNode());
11657     Worklist.push_back(N);
11658     Worklist.push_back(User);
11659     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
11660         SDNode::hasPredecessorHelper(User, Visited, Worklist))
11661       continue;
11662 
11663     // Find the new opcode for the updating load/store.
11664     bool isLoadOp = true;
11665     bool isLaneOp = false;
11666     unsigned NewOpc = 0;
11667     unsigned NumVecs = 0;
11668     if (isIntrinsic) {
11669       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11670       switch (IntNo) {
11671       default: llvm_unreachable("unexpected intrinsic for Neon base update");
11672       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
11673         NumVecs = 1; break;
11674       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
11675         NumVecs = 2; break;
11676       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
11677         NumVecs = 3; break;
11678       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
11679         NumVecs = 4; break;
11680       case Intrinsic::arm_neon_vld2dup:
11681       case Intrinsic::arm_neon_vld3dup:
11682       case Intrinsic::arm_neon_vld4dup:
11683         // TODO: Support updating VLDxDUP nodes. For now, we just skip
11684         // combining base updates for such intrinsics.
11685         continue;
11686       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
11687         NumVecs = 2; isLaneOp = true; break;
11688       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
11689         NumVecs = 3; isLaneOp = true; break;
11690       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
11691         NumVecs = 4; isLaneOp = true; break;
11692       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
11693         NumVecs = 1; isLoadOp = false; break;
11694       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
11695         NumVecs = 2; isLoadOp = false; break;
11696       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
11697         NumVecs = 3; isLoadOp = false; break;
11698       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
11699         NumVecs = 4; isLoadOp = false; break;
11700       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
11701         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
11702       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
11703         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
11704       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
11705         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
11706       }
11707     } else {
11708       isLaneOp = true;
11709       switch (N->getOpcode()) {
11710       default: llvm_unreachable("unexpected opcode for Neon base update");
11711       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
11712       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
11713       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
11714       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
11715       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
11716         NumVecs = 1; isLaneOp = false; break;
11717       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
11718         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
11719       }
11720     }
11721 
11722     // Find the size of memory referenced by the load/store.
11723     EVT VecTy;
11724     if (isLoadOp) {
11725       VecTy = N->getValueType(0);
11726     } else if (isIntrinsic) {
11727       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
11728     } else {
11729       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
11730       VecTy = N->getOperand(1).getValueType();
11731     }
11732 
11733     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11734     if (isLaneOp)
11735       NumBytes /= VecTy.getVectorNumElements();
11736 
11737     // If the increment is a constant, it must match the memory ref size.
11738     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11739     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
11740     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
11741       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
11742       // separate instructions that make it harder to use a non-constant update.
11743       continue;
11744     }
11745 
11746     // OK, we found an ADD we can fold into the base update.
11747     // Now, create a _UPD node, taking care of not breaking alignment.
11748 
11749     EVT AlignedVecTy = VecTy;
11750     unsigned Alignment = MemN->getAlignment();
11751 
11752     // If this is a less-than-standard-aligned load/store, change the type to
11753     // match the standard alignment.
11754     // The alignment is overlooked when selecting _UPD variants; and it's
11755     // easier to introduce bitcasts here than fix that.
11756     // There are 3 ways to get to this base-update combine:
11757     // - intrinsics: they are assumed to be properly aligned (to the standard
11758     //   alignment of the memory type), so we don't need to do anything.
11759     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
11760     //   intrinsics, so, likewise, there's nothing to do.
11761     // - generic load/store instructions: the alignment is specified as an
11762     //   explicit operand, rather than implicitly as the standard alignment
11763     //   of the memory type (like the intrisics).  We need to change the
11764     //   memory type to match the explicit alignment.  That way, we don't
11765     //   generate non-standard-aligned ARMISD::VLDx nodes.
11766     if (isa<LSBaseSDNode>(N)) {
11767       if (Alignment == 0)
11768         Alignment = 1;
11769       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
11770         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
11771         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
11772         assert(!isLaneOp && "Unexpected generic load/store lane.");
11773         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
11774         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
11775       }
11776       // Don't set an explicit alignment on regular load/stores that we want
11777       // to transform to VLD/VST 1_UPD nodes.
11778       // This matches the behavior of regular load/stores, which only get an
11779       // explicit alignment if the MMO alignment is larger than the standard
11780       // alignment of the memory type.
11781       // Intrinsics, however, always get an explicit alignment, set to the
11782       // alignment of the MMO.
11783       Alignment = 1;
11784     }
11785 
11786     // Create the new updating load/store node.
11787     // First, create an SDVTList for the new updating node's results.
11788     EVT Tys[6];
11789     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
11790     unsigned n;
11791     for (n = 0; n < NumResultVecs; ++n)
11792       Tys[n] = AlignedVecTy;
11793     Tys[n++] = MVT::i32;
11794     Tys[n] = MVT::Other;
11795     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
11796 
11797     // Then, gather the new node's operands.
11798     SmallVector<SDValue, 8> Ops;
11799     Ops.push_back(N->getOperand(0)); // incoming chain
11800     Ops.push_back(N->getOperand(AddrOpIdx));
11801     Ops.push_back(Inc);
11802 
11803     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
11804       // Try to match the intrinsic's signature
11805       Ops.push_back(StN->getValue());
11806     } else {
11807       // Loads (and of course intrinsics) match the intrinsics' signature,
11808       // so just add all but the alignment operand.
11809       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
11810         Ops.push_back(N->getOperand(i));
11811     }
11812 
11813     // For all node types, the alignment operand is always the last one.
11814     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
11815 
11816     // If this is a non-standard-aligned STORE, the penultimate operand is the
11817     // stored value.  Bitcast it to the aligned type.
11818     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
11819       SDValue &StVal = Ops[Ops.size()-2];
11820       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
11821     }
11822 
11823     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
11824     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
11825                                            MemN->getMemOperand());
11826 
11827     // Update the uses.
11828     SmallVector<SDValue, 5> NewResults;
11829     for (unsigned i = 0; i < NumResultVecs; ++i)
11830       NewResults.push_back(SDValue(UpdN.getNode(), i));
11831 
11832     // If this is an non-standard-aligned LOAD, the first result is the loaded
11833     // value.  Bitcast it to the expected result type.
11834     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
11835       SDValue &LdVal = NewResults[0];
11836       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
11837     }
11838 
11839     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
11840     DCI.CombineTo(N, NewResults);
11841     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
11842 
11843     break;
11844   }
11845   return SDValue();
11846 }
11847 
11848 static SDValue PerformVLDCombine(SDNode *N,
11849                                  TargetLowering::DAGCombinerInfo &DCI) {
11850   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11851     return SDValue();
11852 
11853   return CombineBaseUpdate(N, DCI);
11854 }
11855 
11856 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
11857 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
11858 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
11859 /// return true.
11860 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11861   SelectionDAG &DAG = DCI.DAG;
11862   EVT VT = N->getValueType(0);
11863   // vldN-dup instructions only support 64-bit vectors for N > 1.
11864   if (!VT.is64BitVector())
11865     return false;
11866 
11867   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
11868   SDNode *VLD = N->getOperand(0).getNode();
11869   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
11870     return false;
11871   unsigned NumVecs = 0;
11872   unsigned NewOpc = 0;
11873   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
11874   if (IntNo == Intrinsic::arm_neon_vld2lane) {
11875     NumVecs = 2;
11876     NewOpc = ARMISD::VLD2DUP;
11877   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
11878     NumVecs = 3;
11879     NewOpc = ARMISD::VLD3DUP;
11880   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
11881     NumVecs = 4;
11882     NewOpc = ARMISD::VLD4DUP;
11883   } else {
11884     return false;
11885   }
11886 
11887   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
11888   // numbers match the load.
11889   unsigned VLDLaneNo =
11890     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
11891   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11892        UI != UE; ++UI) {
11893     // Ignore uses of the chain result.
11894     if (UI.getUse().getResNo() == NumVecs)
11895       continue;
11896     SDNode *User = *UI;
11897     if (User->getOpcode() != ARMISD::VDUPLANE ||
11898         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
11899       return false;
11900   }
11901 
11902   // Create the vldN-dup node.
11903   EVT Tys[5];
11904   unsigned n;
11905   for (n = 0; n < NumVecs; ++n)
11906     Tys[n] = VT;
11907   Tys[n] = MVT::Other;
11908   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
11909   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
11910   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
11911   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
11912                                            Ops, VLDMemInt->getMemoryVT(),
11913                                            VLDMemInt->getMemOperand());
11914 
11915   // Update the uses.
11916   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
11917        UI != UE; ++UI) {
11918     unsigned ResNo = UI.getUse().getResNo();
11919     // Ignore uses of the chain result.
11920     if (ResNo == NumVecs)
11921       continue;
11922     SDNode *User = *UI;
11923     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
11924   }
11925 
11926   // Now the vldN-lane intrinsic is dead except for its chain result.
11927   // Update uses of the chain.
11928   std::vector<SDValue> VLDDupResults;
11929   for (unsigned n = 0; n < NumVecs; ++n)
11930     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
11931   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
11932   DCI.CombineTo(VLD, VLDDupResults);
11933 
11934   return true;
11935 }
11936 
11937 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
11938 /// ARMISD::VDUPLANE.
11939 static SDValue PerformVDUPLANECombine(SDNode *N,
11940                                       TargetLowering::DAGCombinerInfo &DCI) {
11941   SDValue Op = N->getOperand(0);
11942 
11943   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
11944   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
11945   if (CombineVLDDUP(N, DCI))
11946     return SDValue(N, 0);
11947 
11948   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
11949   // redundant.  Ignore bit_converts for now; element sizes are checked below.
11950   while (Op.getOpcode() == ISD::BITCAST)
11951     Op = Op.getOperand(0);
11952   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
11953     return SDValue();
11954 
11955   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
11956   unsigned EltSize = Op.getScalarValueSizeInBits();
11957   // The canonical VMOV for a zero vector uses a 32-bit element size.
11958   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11959   unsigned EltBits;
11960   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
11961     EltSize = 8;
11962   EVT VT = N->getValueType(0);
11963   if (EltSize > VT.getScalarSizeInBits())
11964     return SDValue();
11965 
11966   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
11967 }
11968 
11969 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
11970 static SDValue PerformVDUPCombine(SDNode *N,
11971                                   TargetLowering::DAGCombinerInfo &DCI) {
11972   SelectionDAG &DAG = DCI.DAG;
11973   SDValue Op = N->getOperand(0);
11974 
11975   // Match VDUP(LOAD) -> VLD1DUP.
11976   // We match this pattern here rather than waiting for isel because the
11977   // transform is only legal for unindexed loads.
11978   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
11979   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
11980       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
11981     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
11982                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
11983     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
11984     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
11985                                              Ops, LD->getMemoryVT(),
11986                                              LD->getMemOperand());
11987     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
11988     return VLDDup;
11989   }
11990 
11991   return SDValue();
11992 }
11993 
11994 static SDValue PerformLOADCombine(SDNode *N,
11995                                   TargetLowering::DAGCombinerInfo &DCI) {
11996   EVT VT = N->getValueType(0);
11997 
11998   // If this is a legal vector load, try to combine it into a VLD1_UPD.
11999   if (ISD::isNormalLoad(N) && VT.isVector() &&
12000       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12001     return CombineBaseUpdate(N, DCI);
12002 
12003   return SDValue();
12004 }
12005 
12006 /// PerformSTORECombine - Target-specific dag combine xforms for
12007 /// ISD::STORE.
12008 static SDValue PerformSTORECombine(SDNode *N,
12009                                    TargetLowering::DAGCombinerInfo &DCI) {
12010   StoreSDNode *St = cast<StoreSDNode>(N);
12011   if (St->isVolatile())
12012     return SDValue();
12013 
12014   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
12015   // pack all of the elements in one place.  Next, store to memory in fewer
12016   // chunks.
12017   SDValue StVal = St->getValue();
12018   EVT VT = StVal.getValueType();
12019   if (St->isTruncatingStore() && VT.isVector()) {
12020     SelectionDAG &DAG = DCI.DAG;
12021     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12022     EVT StVT = St->getMemoryVT();
12023     unsigned NumElems = VT.getVectorNumElements();
12024     assert(StVT != VT && "Cannot truncate to the same type");
12025     unsigned FromEltSz = VT.getScalarSizeInBits();
12026     unsigned ToEltSz = StVT.getScalarSizeInBits();
12027 
12028     // From, To sizes and ElemCount must be pow of two
12029     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
12030 
12031     // We are going to use the original vector elt for storing.
12032     // Accumulated smaller vector elements must be a multiple of the store size.
12033     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
12034 
12035     unsigned SizeRatio  = FromEltSz / ToEltSz;
12036     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
12037 
12038     // Create a type on which we perform the shuffle.
12039     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
12040                                      NumElems*SizeRatio);
12041     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
12042 
12043     SDLoc DL(St);
12044     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
12045     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
12046     for (unsigned i = 0; i < NumElems; ++i)
12047       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
12048                           ? (i + 1) * SizeRatio - 1
12049                           : i * SizeRatio;
12050 
12051     // Can't shuffle using an illegal type.
12052     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
12053 
12054     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
12055                                 DAG.getUNDEF(WideVec.getValueType()),
12056                                 ShuffleVec);
12057     // At this point all of the data is stored at the bottom of the
12058     // register. We now need to save it to mem.
12059 
12060     // Find the largest store unit
12061     MVT StoreType = MVT::i8;
12062     for (MVT Tp : MVT::integer_valuetypes()) {
12063       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
12064         StoreType = Tp;
12065     }
12066     // Didn't find a legal store type.
12067     if (!TLI.isTypeLegal(StoreType))
12068       return SDValue();
12069 
12070     // Bitcast the original vector into a vector of store-size units
12071     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
12072             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
12073     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
12074     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
12075     SmallVector<SDValue, 8> Chains;
12076     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
12077                                         TLI.getPointerTy(DAG.getDataLayout()));
12078     SDValue BasePtr = St->getBasePtr();
12079 
12080     // Perform one or more big stores into memory.
12081     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
12082     for (unsigned I = 0; I < E; I++) {
12083       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
12084                                    StoreType, ShuffWide,
12085                                    DAG.getIntPtrConstant(I, DL));
12086       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
12087                                 St->getPointerInfo(), St->getAlignment(),
12088                                 St->getMemOperand()->getFlags());
12089       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
12090                             Increment);
12091       Chains.push_back(Ch);
12092     }
12093     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
12094   }
12095 
12096   if (!ISD::isNormalStore(St))
12097     return SDValue();
12098 
12099   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12100   // ARM stores of arguments in the same cache line.
12101   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
12102       StVal.getNode()->hasOneUse()) {
12103     SelectionDAG  &DAG = DCI.DAG;
12104     bool isBigEndian = DAG.getDataLayout().isBigEndian();
12105     SDLoc DL(St);
12106     SDValue BasePtr = St->getBasePtr();
12107     SDValue NewST1 = DAG.getStore(
12108         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
12109         BasePtr, St->getPointerInfo(), St->getAlignment(),
12110         St->getMemOperand()->getFlags());
12111 
12112     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12113                                     DAG.getConstant(4, DL, MVT::i32));
12114     return DAG.getStore(NewST1.getValue(0), DL,
12115                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
12116                         OffsetPtr, St->getPointerInfo(),
12117                         std::min(4U, St->getAlignment() / 2),
12118                         St->getMemOperand()->getFlags());
12119   }
12120 
12121   if (StVal.getValueType() == MVT::i64 &&
12122       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12123 
12124     // Bitcast an i64 store extracted from a vector to f64.
12125     // Otherwise, the i64 value will be legalized to a pair of i32 values.
12126     SelectionDAG &DAG = DCI.DAG;
12127     SDLoc dl(StVal);
12128     SDValue IntVec = StVal.getOperand(0);
12129     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12130                                    IntVec.getValueType().getVectorNumElements());
12131     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
12132     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12133                                  Vec, StVal.getOperand(1));
12134     dl = SDLoc(N);
12135     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
12136     // Make the DAGCombiner fold the bitcasts.
12137     DCI.AddToWorklist(Vec.getNode());
12138     DCI.AddToWorklist(ExtElt.getNode());
12139     DCI.AddToWorklist(V.getNode());
12140     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
12141                         St->getPointerInfo(), St->getAlignment(),
12142                         St->getMemOperand()->getFlags(), St->getAAInfo());
12143   }
12144 
12145   // If this is a legal vector store, try to combine it into a VST1_UPD.
12146   if (ISD::isNormalStore(N) && VT.isVector() &&
12147       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12148     return CombineBaseUpdate(N, DCI);
12149 
12150   return SDValue();
12151 }
12152 
12153 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
12154 /// can replace combinations of VMUL and VCVT (floating-point to integer)
12155 /// when the VMUL has a constant operand that is a power of 2.
12156 ///
12157 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12158 ///  vmul.f32        d16, d17, d16
12159 ///  vcvt.s32.f32    d16, d16
12160 /// becomes:
12161 ///  vcvt.s32.f32    d16, d16, #3
12162 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
12163                                   const ARMSubtarget *Subtarget) {
12164   if (!Subtarget->hasNEON())
12165     return SDValue();
12166 
12167   SDValue Op = N->getOperand(0);
12168   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
12169       Op.getOpcode() != ISD::FMUL)
12170     return SDValue();
12171 
12172   SDValue ConstVec = Op->getOperand(1);
12173   if (!isa<BuildVectorSDNode>(ConstVec))
12174     return SDValue();
12175 
12176   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
12177   uint32_t FloatBits = FloatTy.getSizeInBits();
12178   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
12179   uint32_t IntBits = IntTy.getSizeInBits();
12180   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12181   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
12182     // These instructions only exist converting from f32 to i32. We can handle
12183     // smaller integers by generating an extra truncate, but larger ones would
12184     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
12185     // these intructions only support v2i32/v4i32 types.
12186     return SDValue();
12187   }
12188 
12189   BitVector UndefElements;
12190   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12191   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12192   if (C == -1 || C == 0 || C > 32)
12193     return SDValue();
12194 
12195   SDLoc dl(N);
12196   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
12197   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
12198     Intrinsic::arm_neon_vcvtfp2fxu;
12199   SDValue FixConv = DAG.getNode(
12200       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12201       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
12202       DAG.getConstant(C, dl, MVT::i32));
12203 
12204   if (IntBits < FloatBits)
12205     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
12206 
12207   return FixConv;
12208 }
12209 
12210 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12211 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12212 /// when the VDIV has a constant operand that is a power of 2.
12213 ///
12214 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12215 ///  vcvt.f32.s32    d16, d16
12216 ///  vdiv.f32        d16, d17, d16
12217 /// becomes:
12218 ///  vcvt.f32.s32    d16, d16, #3
12219 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
12220                                   const ARMSubtarget *Subtarget) {
12221   if (!Subtarget->hasNEON())
12222     return SDValue();
12223 
12224   SDValue Op = N->getOperand(0);
12225   unsigned OpOpcode = Op.getNode()->getOpcode();
12226   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
12227       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
12228     return SDValue();
12229 
12230   SDValue ConstVec = N->getOperand(1);
12231   if (!isa<BuildVectorSDNode>(ConstVec))
12232     return SDValue();
12233 
12234   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
12235   uint32_t FloatBits = FloatTy.getSizeInBits();
12236   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
12237   uint32_t IntBits = IntTy.getSizeInBits();
12238   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12239   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
12240     // These instructions only exist converting from i32 to f32. We can handle
12241     // smaller integers by generating an extra extend, but larger ones would
12242     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
12243     // these intructions only support v2i32/v4i32 types.
12244     return SDValue();
12245   }
12246 
12247   BitVector UndefElements;
12248   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12249   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12250   if (C == -1 || C == 0 || C > 32)
12251     return SDValue();
12252 
12253   SDLoc dl(N);
12254   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
12255   SDValue ConvInput = Op.getOperand(0);
12256   if (IntBits < FloatBits)
12257     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
12258                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12259                             ConvInput);
12260 
12261   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
12262     Intrinsic::arm_neon_vcvtfxu2fp;
12263   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
12264                      Op.getValueType(),
12265                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
12266                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
12267 }
12268 
12269 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
12270 /// operand of a vector shift operation, where all the elements of the
12271 /// build_vector must have the same constant integer value.
12272 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
12273   // Ignore bit_converts.
12274   while (Op.getOpcode() == ISD::BITCAST)
12275     Op = Op.getOperand(0);
12276   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
12277   APInt SplatBits, SplatUndef;
12278   unsigned SplatBitSize;
12279   bool HasAnyUndefs;
12280   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
12281                                       HasAnyUndefs, ElementBits) ||
12282       SplatBitSize > ElementBits)
12283     return false;
12284   Cnt = SplatBits.getSExtValue();
12285   return true;
12286 }
12287 
12288 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
12289 /// operand of a vector shift left operation.  That value must be in the range:
12290 ///   0 <= Value < ElementBits for a left shift; or
12291 ///   0 <= Value <= ElementBits for a long left shift.
12292 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
12293   assert(VT.isVector() && "vector shift count is not a vector type");
12294   int64_t ElementBits = VT.getScalarSizeInBits();
12295   if (! getVShiftImm(Op, ElementBits, Cnt))
12296     return false;
12297   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
12298 }
12299 
12300 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
12301 /// operand of a vector shift right operation.  For a shift opcode, the value
12302 /// is positive, but for an intrinsic the value count must be negative. The
12303 /// absolute value must be in the range:
12304 ///   1 <= |Value| <= ElementBits for a right shift; or
12305 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
12306 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
12307                          int64_t &Cnt) {
12308   assert(VT.isVector() && "vector shift count is not a vector type");
12309   int64_t ElementBits = VT.getScalarSizeInBits();
12310   if (! getVShiftImm(Op, ElementBits, Cnt))
12311     return false;
12312   if (!isIntrinsic)
12313     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
12314   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
12315     Cnt = -Cnt;
12316     return true;
12317   }
12318   return false;
12319 }
12320 
12321 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
12322 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
12323   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12324   switch (IntNo) {
12325   default:
12326     // Don't do anything for most intrinsics.
12327     break;
12328 
12329   // Vector shifts: check for immediate versions and lower them.
12330   // Note: This is done during DAG combining instead of DAG legalizing because
12331   // the build_vectors for 64-bit vector element shift counts are generally
12332   // not legal, and it is hard to see their values after they get legalized to
12333   // loads from a constant pool.
12334   case Intrinsic::arm_neon_vshifts:
12335   case Intrinsic::arm_neon_vshiftu:
12336   case Intrinsic::arm_neon_vrshifts:
12337   case Intrinsic::arm_neon_vrshiftu:
12338   case Intrinsic::arm_neon_vrshiftn:
12339   case Intrinsic::arm_neon_vqshifts:
12340   case Intrinsic::arm_neon_vqshiftu:
12341   case Intrinsic::arm_neon_vqshiftsu:
12342   case Intrinsic::arm_neon_vqshiftns:
12343   case Intrinsic::arm_neon_vqshiftnu:
12344   case Intrinsic::arm_neon_vqshiftnsu:
12345   case Intrinsic::arm_neon_vqrshiftns:
12346   case Intrinsic::arm_neon_vqrshiftnu:
12347   case Intrinsic::arm_neon_vqrshiftnsu: {
12348     EVT VT = N->getOperand(1).getValueType();
12349     int64_t Cnt;
12350     unsigned VShiftOpc = 0;
12351 
12352     switch (IntNo) {
12353     case Intrinsic::arm_neon_vshifts:
12354     case Intrinsic::arm_neon_vshiftu:
12355       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
12356         VShiftOpc = ARMISD::VSHL;
12357         break;
12358       }
12359       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
12360         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
12361                      ARMISD::VSHRs : ARMISD::VSHRu);
12362         break;
12363       }
12364       return SDValue();
12365 
12366     case Intrinsic::arm_neon_vrshifts:
12367     case Intrinsic::arm_neon_vrshiftu:
12368       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
12369         break;
12370       return SDValue();
12371 
12372     case Intrinsic::arm_neon_vqshifts:
12373     case Intrinsic::arm_neon_vqshiftu:
12374       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12375         break;
12376       return SDValue();
12377 
12378     case Intrinsic::arm_neon_vqshiftsu:
12379       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12380         break;
12381       llvm_unreachable("invalid shift count for vqshlu intrinsic");
12382 
12383     case Intrinsic::arm_neon_vrshiftn:
12384     case Intrinsic::arm_neon_vqshiftns:
12385     case Intrinsic::arm_neon_vqshiftnu:
12386     case Intrinsic::arm_neon_vqshiftnsu:
12387     case Intrinsic::arm_neon_vqrshiftns:
12388     case Intrinsic::arm_neon_vqrshiftnu:
12389     case Intrinsic::arm_neon_vqrshiftnsu:
12390       // Narrowing shifts require an immediate right shift.
12391       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
12392         break;
12393       llvm_unreachable("invalid shift count for narrowing vector shift "
12394                        "intrinsic");
12395 
12396     default:
12397       llvm_unreachable("unhandled vector shift");
12398     }
12399 
12400     switch (IntNo) {
12401     case Intrinsic::arm_neon_vshifts:
12402     case Intrinsic::arm_neon_vshiftu:
12403       // Opcode already set above.
12404       break;
12405     case Intrinsic::arm_neon_vrshifts:
12406       VShiftOpc = ARMISD::VRSHRs; break;
12407     case Intrinsic::arm_neon_vrshiftu:
12408       VShiftOpc = ARMISD::VRSHRu; break;
12409     case Intrinsic::arm_neon_vrshiftn:
12410       VShiftOpc = ARMISD::VRSHRN; break;
12411     case Intrinsic::arm_neon_vqshifts:
12412       VShiftOpc = ARMISD::VQSHLs; break;
12413     case Intrinsic::arm_neon_vqshiftu:
12414       VShiftOpc = ARMISD::VQSHLu; break;
12415     case Intrinsic::arm_neon_vqshiftsu:
12416       VShiftOpc = ARMISD::VQSHLsu; break;
12417     case Intrinsic::arm_neon_vqshiftns:
12418       VShiftOpc = ARMISD::VQSHRNs; break;
12419     case Intrinsic::arm_neon_vqshiftnu:
12420       VShiftOpc = ARMISD::VQSHRNu; break;
12421     case Intrinsic::arm_neon_vqshiftnsu:
12422       VShiftOpc = ARMISD::VQSHRNsu; break;
12423     case Intrinsic::arm_neon_vqrshiftns:
12424       VShiftOpc = ARMISD::VQRSHRNs; break;
12425     case Intrinsic::arm_neon_vqrshiftnu:
12426       VShiftOpc = ARMISD::VQRSHRNu; break;
12427     case Intrinsic::arm_neon_vqrshiftnsu:
12428       VShiftOpc = ARMISD::VQRSHRNsu; break;
12429     }
12430 
12431     SDLoc dl(N);
12432     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12433                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
12434   }
12435 
12436   case Intrinsic::arm_neon_vshiftins: {
12437     EVT VT = N->getOperand(1).getValueType();
12438     int64_t Cnt;
12439     unsigned VShiftOpc = 0;
12440 
12441     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
12442       VShiftOpc = ARMISD::VSLI;
12443     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
12444       VShiftOpc = ARMISD::VSRI;
12445     else {
12446       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
12447     }
12448 
12449     SDLoc dl(N);
12450     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12451                        N->getOperand(1), N->getOperand(2),
12452                        DAG.getConstant(Cnt, dl, MVT::i32));
12453   }
12454 
12455   case Intrinsic::arm_neon_vqrshifts:
12456   case Intrinsic::arm_neon_vqrshiftu:
12457     // No immediate versions of these to check for.
12458     break;
12459   }
12460 
12461   return SDValue();
12462 }
12463 
12464 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
12465 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
12466 /// combining instead of DAG legalizing because the build_vectors for 64-bit
12467 /// vector element shift counts are generally not legal, and it is hard to see
12468 /// their values after they get legalized to loads from a constant pool.
12469 static SDValue PerformShiftCombine(SDNode *N,
12470                                    TargetLowering::DAGCombinerInfo &DCI,
12471                                    const ARMSubtarget *ST) {
12472   SelectionDAG &DAG = DCI.DAG;
12473   EVT VT = N->getValueType(0);
12474   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
12475     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
12476     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
12477     SDValue N1 = N->getOperand(1);
12478     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
12479       SDValue N0 = N->getOperand(0);
12480       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
12481           DAG.MaskedValueIsZero(N0.getOperand(0),
12482                                 APInt::getHighBitsSet(32, 16)))
12483         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
12484     }
12485   }
12486 
12487   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
12488       N->getOperand(0)->getOpcode() == ISD::AND &&
12489       N->getOperand(0)->hasOneUse()) {
12490     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12491       return SDValue();
12492     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
12493     // usually show up because instcombine prefers to canonicalize it to
12494     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
12495     // out of GEP lowering in some cases.
12496     SDValue N0 = N->getOperand(0);
12497     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
12498     if (!ShiftAmtNode)
12499       return SDValue();
12500     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
12501     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
12502     if (!AndMaskNode)
12503       return SDValue();
12504     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
12505     // Don't transform uxtb/uxth.
12506     if (AndMask == 255 || AndMask == 65535)
12507       return SDValue();
12508     if (isMask_32(AndMask)) {
12509       uint32_t MaskedBits = countLeadingZeros(AndMask);
12510       if (MaskedBits > ShiftAmt) {
12511         SDLoc DL(N);
12512         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12513                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
12514         return DAG.getNode(
12515             ISD::SRL, DL, MVT::i32, SHL,
12516             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
12517       }
12518     }
12519   }
12520 
12521   // Nothing to be done for scalar shifts.
12522   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12523   if (!VT.isVector() || !TLI.isTypeLegal(VT))
12524     return SDValue();
12525 
12526   assert(ST->hasNEON() && "unexpected vector shift");
12527   int64_t Cnt;
12528 
12529   switch (N->getOpcode()) {
12530   default: llvm_unreachable("unexpected shift opcode");
12531 
12532   case ISD::SHL:
12533     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
12534       SDLoc dl(N);
12535       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
12536                          DAG.getConstant(Cnt, dl, MVT::i32));
12537     }
12538     break;
12539 
12540   case ISD::SRA:
12541   case ISD::SRL:
12542     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
12543       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
12544                             ARMISD::VSHRs : ARMISD::VSHRu);
12545       SDLoc dl(N);
12546       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
12547                          DAG.getConstant(Cnt, dl, MVT::i32));
12548     }
12549   }
12550   return SDValue();
12551 }
12552 
12553 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
12554 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
12555 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
12556                                     const ARMSubtarget *ST) {
12557   SDValue N0 = N->getOperand(0);
12558 
12559   // Check for sign- and zero-extensions of vector extract operations of 8-
12560   // and 16-bit vector elements.  NEON supports these directly.  They are
12561   // handled during DAG combining because type legalization will promote them
12562   // to 32-bit types and it is messy to recognize the operations after that.
12563   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12564     SDValue Vec = N0.getOperand(0);
12565     SDValue Lane = N0.getOperand(1);
12566     EVT VT = N->getValueType(0);
12567     EVT EltVT = N0.getValueType();
12568     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12569 
12570     if (VT == MVT::i32 &&
12571         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
12572         TLI.isTypeLegal(Vec.getValueType()) &&
12573         isa<ConstantSDNode>(Lane)) {
12574 
12575       unsigned Opc = 0;
12576       switch (N->getOpcode()) {
12577       default: llvm_unreachable("unexpected opcode");
12578       case ISD::SIGN_EXTEND:
12579         Opc = ARMISD::VGETLANEs;
12580         break;
12581       case ISD::ZERO_EXTEND:
12582       case ISD::ANY_EXTEND:
12583         Opc = ARMISD::VGETLANEu;
12584         break;
12585       }
12586       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
12587     }
12588   }
12589 
12590   return SDValue();
12591 }
12592 
12593 static const APInt *isPowerOf2Constant(SDValue V) {
12594   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12595   if (!C)
12596     return nullptr;
12597   const APInt *CV = &C->getAPIntValue();
12598   return CV->isPowerOf2() ? CV : nullptr;
12599 }
12600 
12601 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
12602   // If we have a CMOV, OR and AND combination such as:
12603   //   if (x & CN)
12604   //     y |= CM;
12605   //
12606   // And:
12607   //   * CN is a single bit;
12608   //   * All bits covered by CM are known zero in y
12609   //
12610   // Then we can convert this into a sequence of BFI instructions. This will
12611   // always be a win if CM is a single bit, will always be no worse than the
12612   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
12613   // three bits (due to the extra IT instruction).
12614 
12615   SDValue Op0 = CMOV->getOperand(0);
12616   SDValue Op1 = CMOV->getOperand(1);
12617   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
12618   auto CC = CCNode->getAPIntValue().getLimitedValue();
12619   SDValue CmpZ = CMOV->getOperand(4);
12620 
12621   // The compare must be against zero.
12622   if (!isNullConstant(CmpZ->getOperand(1)))
12623     return SDValue();
12624 
12625   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
12626   SDValue And = CmpZ->getOperand(0);
12627   if (And->getOpcode() != ISD::AND)
12628     return SDValue();
12629   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
12630   if (!AndC)
12631     return SDValue();
12632   SDValue X = And->getOperand(0);
12633 
12634   if (CC == ARMCC::EQ) {
12635     // We're performing an "equal to zero" compare. Swap the operands so we
12636     // canonicalize on a "not equal to zero" compare.
12637     std::swap(Op0, Op1);
12638   } else {
12639     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
12640   }
12641 
12642   if (Op1->getOpcode() != ISD::OR)
12643     return SDValue();
12644 
12645   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
12646   if (!OrC)
12647     return SDValue();
12648   SDValue Y = Op1->getOperand(0);
12649 
12650   if (Op0 != Y)
12651     return SDValue();
12652 
12653   // Now, is it profitable to continue?
12654   APInt OrCI = OrC->getAPIntValue();
12655   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
12656   if (OrCI.countPopulation() > Heuristic)
12657     return SDValue();
12658 
12659   // Lastly, can we determine that the bits defined by OrCI
12660   // are zero in Y?
12661   KnownBits Known = DAG.computeKnownBits(Y);
12662   if ((OrCI & Known.Zero) != OrCI)
12663     return SDValue();
12664 
12665   // OK, we can do the combine.
12666   SDValue V = Y;
12667   SDLoc dl(X);
12668   EVT VT = X.getValueType();
12669   unsigned BitInX = AndC->logBase2();
12670 
12671   if (BitInX != 0) {
12672     // We must shift X first.
12673     X = DAG.getNode(ISD::SRL, dl, VT, X,
12674                     DAG.getConstant(BitInX, dl, VT));
12675   }
12676 
12677   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
12678        BitInY < NumActiveBits; ++BitInY) {
12679     if (OrCI[BitInY] == 0)
12680       continue;
12681     APInt Mask(VT.getSizeInBits(), 0);
12682     Mask.setBit(BitInY);
12683     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
12684                     // Confusingly, the operand is an *inverted* mask.
12685                     DAG.getConstant(~Mask, dl, VT));
12686   }
12687 
12688   return V;
12689 }
12690 
12691 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
12692 SDValue
12693 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
12694   SDValue Cmp = N->getOperand(4);
12695   if (Cmp.getOpcode() != ARMISD::CMPZ)
12696     // Only looking at NE cases.
12697     return SDValue();
12698 
12699   EVT VT = N->getValueType(0);
12700   SDLoc dl(N);
12701   SDValue LHS = Cmp.getOperand(0);
12702   SDValue RHS = Cmp.getOperand(1);
12703   SDValue Chain = N->getOperand(0);
12704   SDValue BB = N->getOperand(1);
12705   SDValue ARMcc = N->getOperand(2);
12706   ARMCC::CondCodes CC =
12707     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12708 
12709   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
12710   // -> (brcond Chain BB CC CPSR Cmp)
12711   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
12712       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
12713       LHS->getOperand(0)->hasOneUse()) {
12714     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
12715     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
12716     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12717     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12718     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
12719         (LHS01C && LHS01C->getZExtValue() == 1) &&
12720         (LHS1C && LHS1C->getZExtValue() == 1) &&
12721         (RHSC && RHSC->getZExtValue() == 0)) {
12722       return DAG.getNode(
12723           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
12724           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
12725     }
12726   }
12727 
12728   return SDValue();
12729 }
12730 
12731 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
12732 SDValue
12733 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
12734   SDValue Cmp = N->getOperand(4);
12735   if (Cmp.getOpcode() != ARMISD::CMPZ)
12736     // Only looking at EQ and NE cases.
12737     return SDValue();
12738 
12739   EVT VT = N->getValueType(0);
12740   SDLoc dl(N);
12741   SDValue LHS = Cmp.getOperand(0);
12742   SDValue RHS = Cmp.getOperand(1);
12743   SDValue FalseVal = N->getOperand(0);
12744   SDValue TrueVal = N->getOperand(1);
12745   SDValue ARMcc = N->getOperand(2);
12746   ARMCC::CondCodes CC =
12747     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
12748 
12749   // BFI is only available on V6T2+.
12750   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
12751     SDValue R = PerformCMOVToBFICombine(N, DAG);
12752     if (R)
12753       return R;
12754   }
12755 
12756   // Simplify
12757   //   mov     r1, r0
12758   //   cmp     r1, x
12759   //   mov     r0, y
12760   //   moveq   r0, x
12761   // to
12762   //   cmp     r0, x
12763   //   movne   r0, y
12764   //
12765   //   mov     r1, r0
12766   //   cmp     r1, x
12767   //   mov     r0, x
12768   //   movne   r0, y
12769   // to
12770   //   cmp     r0, x
12771   //   movne   r0, y
12772   /// FIXME: Turn this into a target neutral optimization?
12773   SDValue Res;
12774   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
12775     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
12776                       N->getOperand(3), Cmp);
12777   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
12778     SDValue ARMcc;
12779     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
12780     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
12781                       N->getOperand(3), NewCmp);
12782   }
12783 
12784   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
12785   // -> (cmov F T CC CPSR Cmp)
12786   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
12787     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
12788     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
12789     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
12790     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
12791         (LHS1C && LHS1C->getZExtValue() == 1) &&
12792         (RHSC && RHSC->getZExtValue() == 0)) {
12793       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
12794                          LHS->getOperand(2), LHS->getOperand(3),
12795                          LHS->getOperand(4));
12796     }
12797   }
12798 
12799   if (!VT.isInteger())
12800       return SDValue();
12801 
12802   // Materialize a boolean comparison for integers so we can avoid branching.
12803   if (isNullConstant(FalseVal)) {
12804     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
12805       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
12806         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
12807         // right 5 bits will make that 32 be 1, otherwise it will be 0.
12808         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
12809         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12810         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
12811                           DAG.getConstant(5, dl, MVT::i32));
12812       } else {
12813         // CMOV 0, 1, ==, (CMPZ x, y) ->
12814         //     (ADDCARRY (SUB x, y), t:0, t:1)
12815         // where t = (SUBCARRY 0, (SUB x, y), 0)
12816         //
12817         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
12818         // x != y. In other words, a carry C == 1 when x == y, C == 0
12819         // otherwise.
12820         // The final ADDCARRY computes
12821         //     x - y + (0 - (x - y)) + C == C
12822         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
12823         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12824         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
12825         // ISD::SUBCARRY returns a borrow but we want the carry here
12826         // actually.
12827         SDValue Carry =
12828             DAG.getNode(ISD::SUB, dl, MVT::i32,
12829                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
12830         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
12831       }
12832     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
12833                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
12834       // This seems pointless but will allow us to combine it further below.
12835       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
12836       SDValue Sub =
12837           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
12838       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
12839                                           Sub.getValue(1), SDValue());
12840       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
12841                         N->getOperand(3), CPSRGlue.getValue(1));
12842       FalseVal = Sub;
12843     }
12844   } else if (isNullConstant(TrueVal)) {
12845     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
12846         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
12847       // This seems pointless but will allow us to combine it further below
12848       // Note that we change == for != as this is the dual for the case above.
12849       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
12850       SDValue Sub =
12851           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
12852       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
12853                                           Sub.getValue(1), SDValue());
12854       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
12855                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
12856                         N->getOperand(3), CPSRGlue.getValue(1));
12857       FalseVal = Sub;
12858     }
12859   }
12860 
12861   // On Thumb1, the DAG above may be further combined if z is a power of 2
12862   // (z == 2 ^ K).
12863   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
12864   // t1 = (USUBO (SUB x, y), 1)
12865   // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
12866   // Result = if K != 0 then (SHL t2:0, K) else t2:0
12867   //
12868   // This also handles the special case of comparing against zero; it's
12869   // essentially, the same pattern, except there's no SUBS:
12870   // CMOV x, z, !=, (CMPZ x, 0) ->
12871   // t1 = (USUBO x, 1)
12872   // t2 = (SUBCARRY x, t1:0, t1:1)
12873   // Result = if K != 0 then (SHL t2:0, K) else t2:0
12874   const APInt *TrueConst;
12875   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
12876       ((FalseVal.getOpcode() == ARMISD::SUBS &&
12877         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
12878        (FalseVal == LHS && isNullConstant(RHS))) &&
12879       (TrueConst = isPowerOf2Constant(TrueVal))) {
12880     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12881     unsigned ShiftAmount = TrueConst->logBase2();
12882     if (ShiftAmount)
12883       TrueVal = DAG.getConstant(1, dl, VT);
12884     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
12885     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
12886 
12887     if (ShiftAmount)
12888       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
12889                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
12890   }
12891 
12892   if (Res.getNode()) {
12893     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
12894     // Capture demanded bits information that would be otherwise lost.
12895     if (Known.Zero == 0xfffffffe)
12896       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12897                         DAG.getValueType(MVT::i1));
12898     else if (Known.Zero == 0xffffff00)
12899       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12900                         DAG.getValueType(MVT::i8));
12901     else if (Known.Zero == 0xffff0000)
12902       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
12903                         DAG.getValueType(MVT::i16));
12904   }
12905 
12906   return Res;
12907 }
12908 
12909 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
12910                                              DAGCombinerInfo &DCI) const {
12911   switch (N->getOpcode()) {
12912   default: break;
12913   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
12914   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
12915   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
12916   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
12917   case ISD::SUB:        return PerformSUBCombine(N, DCI);
12918   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
12919   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
12920   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
12921   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
12922   case ARMISD::ADDC:
12923   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
12924   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
12925   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
12926   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
12927   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
12928   case ISD::STORE:      return PerformSTORECombine(N, DCI);
12929   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
12930   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
12931   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
12932   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
12933   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI);
12934   case ISD::FP_TO_SINT:
12935   case ISD::FP_TO_UINT:
12936     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
12937   case ISD::FDIV:
12938     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
12939   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
12940   case ISD::SHL:
12941   case ISD::SRA:
12942   case ISD::SRL:
12943     return PerformShiftCombine(N, DCI, Subtarget);
12944   case ISD::SIGN_EXTEND:
12945   case ISD::ZERO_EXTEND:
12946   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
12947   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
12948   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
12949   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
12950   case ARMISD::VLD1DUP:
12951   case ARMISD::VLD2DUP:
12952   case ARMISD::VLD3DUP:
12953   case ARMISD::VLD4DUP:
12954     return PerformVLDCombine(N, DCI);
12955   case ARMISD::BUILD_VECTOR:
12956     return PerformARMBUILD_VECTORCombine(N, DCI);
12957   case ARMISD::SMULWB: {
12958     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12959     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12960     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12961       return SDValue();
12962     break;
12963   }
12964   case ARMISD::SMULWT: {
12965     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12966     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
12967     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
12968       return SDValue();
12969     break;
12970   }
12971   case ARMISD::SMLALBB: {
12972     unsigned BitWidth = N->getValueType(0).getSizeInBits();
12973     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
12974     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
12975         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
12976       return SDValue();
12977     break;
12978   }
12979   case ARMISD::SMLALBT: {
12980     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
12981     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12982     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
12983     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12984     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
12985         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
12986       return SDValue();
12987     break;
12988   }
12989   case ARMISD::SMLALTB: {
12990     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
12991     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
12992     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
12993     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
12994     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
12995         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
12996       return SDValue();
12997     break;
12998   }
12999   case ARMISD::SMLALTT: {
13000     unsigned BitWidth = N->getValueType(0).getSizeInBits();
13001     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
13002     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
13003         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
13004       return SDValue();
13005     break;
13006   }
13007   case ISD::INTRINSIC_VOID:
13008   case ISD::INTRINSIC_W_CHAIN:
13009     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13010     case Intrinsic::arm_neon_vld1:
13011     case Intrinsic::arm_neon_vld1x2:
13012     case Intrinsic::arm_neon_vld1x3:
13013     case Intrinsic::arm_neon_vld1x4:
13014     case Intrinsic::arm_neon_vld2:
13015     case Intrinsic::arm_neon_vld3:
13016     case Intrinsic::arm_neon_vld4:
13017     case Intrinsic::arm_neon_vld2lane:
13018     case Intrinsic::arm_neon_vld3lane:
13019     case Intrinsic::arm_neon_vld4lane:
13020     case Intrinsic::arm_neon_vld2dup:
13021     case Intrinsic::arm_neon_vld3dup:
13022     case Intrinsic::arm_neon_vld4dup:
13023     case Intrinsic::arm_neon_vst1:
13024     case Intrinsic::arm_neon_vst1x2:
13025     case Intrinsic::arm_neon_vst1x3:
13026     case Intrinsic::arm_neon_vst1x4:
13027     case Intrinsic::arm_neon_vst2:
13028     case Intrinsic::arm_neon_vst3:
13029     case Intrinsic::arm_neon_vst4:
13030     case Intrinsic::arm_neon_vst2lane:
13031     case Intrinsic::arm_neon_vst3lane:
13032     case Intrinsic::arm_neon_vst4lane:
13033       return PerformVLDCombine(N, DCI);
13034     default: break;
13035     }
13036     break;
13037   }
13038   return SDValue();
13039 }
13040 
13041 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
13042                                                           EVT VT) const {
13043   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
13044 }
13045 
13046 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
13047                                                        unsigned,
13048                                                        MachineMemOperand::Flags,
13049                                                        bool *Fast) const {
13050   // Depends what it gets converted into if the type is weird.
13051   if (!VT.isSimple())
13052     return false;
13053 
13054   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
13055   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
13056 
13057   switch (VT.getSimpleVT().SimpleTy) {
13058   default:
13059     return false;
13060   case MVT::i8:
13061   case MVT::i16:
13062   case MVT::i32: {
13063     // Unaligned access can use (for example) LRDB, LRDH, LDR
13064     if (AllowsUnaligned) {
13065       if (Fast)
13066         *Fast = Subtarget->hasV7Ops();
13067       return true;
13068     }
13069     return false;
13070   }
13071   case MVT::f64:
13072   case MVT::v2f64: {
13073     // For any little-endian targets with neon, we can support unaligned ld/st
13074     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
13075     // A big-endian target may also explicitly support unaligned accesses
13076     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
13077       if (Fast)
13078         *Fast = true;
13079       return true;
13080     }
13081     return false;
13082   }
13083   }
13084 }
13085 
13086 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
13087                        unsigned AlignCheck) {
13088   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
13089           (DstAlign == 0 || DstAlign % AlignCheck == 0));
13090 }
13091 
13092 EVT ARMTargetLowering::getOptimalMemOpType(
13093     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
13094     bool ZeroMemset, bool MemcpyStrSrc,
13095     const AttributeList &FuncAttributes) const {
13096   // See if we can use NEON instructions for this...
13097   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
13098       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
13099     bool Fast;
13100     if (Size >= 16 &&
13101         (memOpAlign(SrcAlign, DstAlign, 16) ||
13102          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
13103                                          MachineMemOperand::MONone, &Fast) &&
13104           Fast))) {
13105       return MVT::v2f64;
13106     } else if (Size >= 8 &&
13107                (memOpAlign(SrcAlign, DstAlign, 8) ||
13108                 (allowsMisalignedMemoryAccesses(
13109                      MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
13110                  Fast))) {
13111       return MVT::f64;
13112     }
13113   }
13114 
13115   // Let the target-independent logic figure it out.
13116   return MVT::Other;
13117 }
13118 
13119 // 64-bit integers are split into their high and low parts and held in two
13120 // different registers, so the trunc is free since the low register can just
13121 // be used.
13122 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
13123   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
13124     return false;
13125   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
13126   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
13127   return (SrcBits == 64 && DestBits == 32);
13128 }
13129 
13130 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
13131   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
13132       !DstVT.isInteger())
13133     return false;
13134   unsigned SrcBits = SrcVT.getSizeInBits();
13135   unsigned DestBits = DstVT.getSizeInBits();
13136   return (SrcBits == 64 && DestBits == 32);
13137 }
13138 
13139 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13140   if (Val.getOpcode() != ISD::LOAD)
13141     return false;
13142 
13143   EVT VT1 = Val.getValueType();
13144   if (!VT1.isSimple() || !VT1.isInteger() ||
13145       !VT2.isSimple() || !VT2.isInteger())
13146     return false;
13147 
13148   switch (VT1.getSimpleVT().SimpleTy) {
13149   default: break;
13150   case MVT::i1:
13151   case MVT::i8:
13152   case MVT::i16:
13153     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
13154     return true;
13155   }
13156 
13157   return false;
13158 }
13159 
13160 bool ARMTargetLowering::isFNegFree(EVT VT) const {
13161   if (!VT.isSimple())
13162     return false;
13163 
13164   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
13165   // negate values directly (fneg is free). So, we don't want to let the DAG
13166   // combiner rewrite fneg into xors and some other instructions.  For f16 and
13167   // FullFP16 argument passing, some bitcast nodes may be introduced,
13168   // triggering this DAG combine rewrite, so we are avoiding that with this.
13169   switch (VT.getSimpleVT().SimpleTy) {
13170   default: break;
13171   case MVT::f16:
13172     return Subtarget->hasFullFP16();
13173   }
13174 
13175   return false;
13176 }
13177 
13178 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
13179 /// of the vector elements.
13180 static bool areExtractExts(Value *Ext1, Value *Ext2) {
13181   auto areExtDoubled = [](Instruction *Ext) {
13182     return Ext->getType()->getScalarSizeInBits() ==
13183            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
13184   };
13185 
13186   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
13187       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
13188       !areExtDoubled(cast<Instruction>(Ext1)) ||
13189       !areExtDoubled(cast<Instruction>(Ext2)))
13190     return false;
13191 
13192   return true;
13193 }
13194 
13195 /// Check if sinking \p I's operands to I's basic block is profitable, because
13196 /// the operands can be folded into a target instruction, e.g.
13197 /// sext/zext can be folded into vsubl.
13198 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
13199                                            SmallVectorImpl<Use *> &Ops) const {
13200   if (!Subtarget->hasNEON() || !I->getType()->isVectorTy())
13201     return false;
13202 
13203   switch (I->getOpcode()) {
13204   case Instruction::Sub:
13205   case Instruction::Add: {
13206     if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
13207       return false;
13208     Ops.push_back(&I->getOperandUse(0));
13209     Ops.push_back(&I->getOperandUse(1));
13210     return true;
13211   }
13212   default:
13213     return false;
13214   }
13215   return false;
13216 }
13217 
13218 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
13219   EVT VT = ExtVal.getValueType();
13220 
13221   if (!isTypeLegal(VT))
13222     return false;
13223 
13224   // Don't create a loadext if we can fold the extension into a wide/long
13225   // instruction.
13226   // If there's more than one user instruction, the loadext is desirable no
13227   // matter what.  There can be two uses by the same instruction.
13228   if (ExtVal->use_empty() ||
13229       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
13230     return true;
13231 
13232   SDNode *U = *ExtVal->use_begin();
13233   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
13234        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
13235     return false;
13236 
13237   return true;
13238 }
13239 
13240 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13241   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13242     return false;
13243 
13244   if (!isTypeLegal(EVT::getEVT(Ty1)))
13245     return false;
13246 
13247   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13248 
13249   // Assuming the caller doesn't have a zeroext or signext return parameter,
13250   // truncation all the way down to i1 is valid.
13251   return true;
13252 }
13253 
13254 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
13255                                                 const AddrMode &AM, Type *Ty,
13256                                                 unsigned AS) const {
13257   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
13258     if (Subtarget->hasFPAO())
13259       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
13260     return 0;
13261   }
13262   return -1;
13263 }
13264 
13265 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
13266   if (V < 0)
13267     return false;
13268 
13269   unsigned Scale = 1;
13270   switch (VT.getSimpleVT().SimpleTy) {
13271   case MVT::i1:
13272   case MVT::i8:
13273     // Scale == 1;
13274     break;
13275   case MVT::i16:
13276     // Scale == 2;
13277     Scale = 2;
13278     break;
13279   default:
13280     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
13281     // Scale == 4;
13282     Scale = 4;
13283     break;
13284   }
13285 
13286   if ((V & (Scale - 1)) != 0)
13287     return false;
13288   return isUInt<5>(V / Scale);
13289 }
13290 
13291 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
13292                                       const ARMSubtarget *Subtarget) {
13293   if (!VT.isInteger() && !VT.isFloatingPoint())
13294     return false;
13295   if (VT.isVector() && Subtarget->hasNEON())
13296     return false;
13297   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
13298       !Subtarget->hasMVEFloatOps())
13299     return false;
13300 
13301   bool IsNeg = false;
13302   if (V < 0) {
13303     IsNeg = true;
13304     V = -V;
13305   }
13306 
13307   unsigned NumBytes = std::max(VT.getSizeInBits() / 8, 1U);
13308 
13309   // MVE: size * imm7
13310   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
13311     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
13312     case MVT::i32:
13313     case MVT::f32:
13314       return isShiftedUInt<7,2>(V);
13315     case MVT::i16:
13316     case MVT::f16:
13317       return isShiftedUInt<7,1>(V);
13318     case MVT::i8:
13319       return isUInt<7>(V);
13320     default:
13321       return false;
13322     }
13323   }
13324 
13325   // half VLDR: 2 * imm8
13326   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
13327     return isShiftedUInt<8, 1>(V);
13328   // VLDR and LDRD: 4 * imm8
13329   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
13330     return isShiftedUInt<8, 2>(V);
13331 
13332   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
13333     // + imm12 or - imm8
13334     if (IsNeg)
13335       return isUInt<8>(V);
13336     return isUInt<12>(V);
13337   }
13338 
13339   return false;
13340 }
13341 
13342 /// isLegalAddressImmediate - Return true if the integer value can be used
13343 /// as the offset of the target addressing mode for load / store of the
13344 /// given type.
13345 static bool isLegalAddressImmediate(int64_t V, EVT VT,
13346                                     const ARMSubtarget *Subtarget) {
13347   if (V == 0)
13348     return true;
13349 
13350   if (!VT.isSimple())
13351     return false;
13352 
13353   if (Subtarget->isThumb1Only())
13354     return isLegalT1AddressImmediate(V, VT);
13355   else if (Subtarget->isThumb2())
13356     return isLegalT2AddressImmediate(V, VT, Subtarget);
13357 
13358   // ARM mode.
13359   if (V < 0)
13360     V = - V;
13361   switch (VT.getSimpleVT().SimpleTy) {
13362   default: return false;
13363   case MVT::i1:
13364   case MVT::i8:
13365   case MVT::i32:
13366     // +- imm12
13367     return isUInt<12>(V);
13368   case MVT::i16:
13369     // +- imm8
13370     return isUInt<8>(V);
13371   case MVT::f32:
13372   case MVT::f64:
13373     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
13374       return false;
13375     return isShiftedUInt<8, 2>(V);
13376   }
13377 }
13378 
13379 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
13380                                                       EVT VT) const {
13381   int Scale = AM.Scale;
13382   if (Scale < 0)
13383     return false;
13384 
13385   switch (VT.getSimpleVT().SimpleTy) {
13386   default: return false;
13387   case MVT::i1:
13388   case MVT::i8:
13389   case MVT::i16:
13390   case MVT::i32:
13391     if (Scale == 1)
13392       return true;
13393     // r + r << imm
13394     Scale = Scale & ~1;
13395     return Scale == 2 || Scale == 4 || Scale == 8;
13396   case MVT::i64:
13397     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
13398     // version in Thumb mode.
13399     // r + r
13400     if (Scale == 1)
13401       return true;
13402     // r * 2 (this can be lowered to r + r).
13403     if (!AM.HasBaseReg && Scale == 2)
13404       return true;
13405     return false;
13406   case MVT::isVoid:
13407     // Note, we allow "void" uses (basically, uses that aren't loads or
13408     // stores), because arm allows folding a scale into many arithmetic
13409     // operations.  This should be made more precise and revisited later.
13410 
13411     // Allow r << imm, but the imm has to be a multiple of two.
13412     if (Scale & 1) return false;
13413     return isPowerOf2_32(Scale);
13414   }
13415 }
13416 
13417 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
13418                                                       EVT VT) const {
13419   const int Scale = AM.Scale;
13420 
13421   // Negative scales are not supported in Thumb1.
13422   if (Scale < 0)
13423     return false;
13424 
13425   // Thumb1 addressing modes do not support register scaling excepting the
13426   // following cases:
13427   // 1. Scale == 1 means no scaling.
13428   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
13429   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
13430 }
13431 
13432 /// isLegalAddressingMode - Return true if the addressing mode represented
13433 /// by AM is legal for this target, for a load/store of the specified type.
13434 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13435                                               const AddrMode &AM, Type *Ty,
13436                                               unsigned AS, Instruction *I) const {
13437   EVT VT = getValueType(DL, Ty, true);
13438   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
13439     return false;
13440 
13441   // Can never fold addr of global into load/store.
13442   if (AM.BaseGV)
13443     return false;
13444 
13445   switch (AM.Scale) {
13446   case 0:  // no scale reg, must be "r+i" or "r", or "i".
13447     break;
13448   default:
13449     // ARM doesn't support any R+R*scale+imm addr modes.
13450     if (AM.BaseOffs)
13451       return false;
13452 
13453     if (!VT.isSimple())
13454       return false;
13455 
13456     if (Subtarget->isThumb1Only())
13457       return isLegalT1ScaledAddressingMode(AM, VT);
13458 
13459     if (Subtarget->isThumb2())
13460       return isLegalT2ScaledAddressingMode(AM, VT);
13461 
13462     int Scale = AM.Scale;
13463     switch (VT.getSimpleVT().SimpleTy) {
13464     default: return false;
13465     case MVT::i1:
13466     case MVT::i8:
13467     case MVT::i32:
13468       if (Scale < 0) Scale = -Scale;
13469       if (Scale == 1)
13470         return true;
13471       // r + r << imm
13472       return isPowerOf2_32(Scale & ~1);
13473     case MVT::i16:
13474     case MVT::i64:
13475       // r +/- r
13476       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
13477         return true;
13478       // r * 2 (this can be lowered to r + r).
13479       if (!AM.HasBaseReg && Scale == 2)
13480         return true;
13481       return false;
13482 
13483     case MVT::isVoid:
13484       // Note, we allow "void" uses (basically, uses that aren't loads or
13485       // stores), because arm allows folding a scale into many arithmetic
13486       // operations.  This should be made more precise and revisited later.
13487 
13488       // Allow r << imm, but the imm has to be a multiple of two.
13489       if (Scale & 1) return false;
13490       return isPowerOf2_32(Scale);
13491     }
13492   }
13493   return true;
13494 }
13495 
13496 /// isLegalICmpImmediate - Return true if the specified immediate is legal
13497 /// icmp immediate, that is the target has icmp instructions which can compare
13498 /// a register against the immediate without having to materialize the
13499 /// immediate into a register.
13500 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13501   // Thumb2 and ARM modes can use cmn for negative immediates.
13502   if (!Subtarget->isThumb())
13503     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
13504            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
13505   if (Subtarget->isThumb2())
13506     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
13507            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
13508   // Thumb1 doesn't have cmn, and only 8-bit immediates.
13509   return Imm >= 0 && Imm <= 255;
13510 }
13511 
13512 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
13513 /// *or sub* immediate, that is the target has add or sub instructions which can
13514 /// add a register with the immediate without having to materialize the
13515 /// immediate into a register.
13516 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13517   // Same encoding for add/sub, just flip the sign.
13518   int64_t AbsImm = std::abs(Imm);
13519   if (!Subtarget->isThumb())
13520     return ARM_AM::getSOImmVal(AbsImm) != -1;
13521   if (Subtarget->isThumb2())
13522     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
13523   // Thumb1 only has 8-bit unsigned immediate.
13524   return AbsImm >= 0 && AbsImm <= 255;
13525 }
13526 
13527 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
13528                                       bool isSEXTLoad, SDValue &Base,
13529                                       SDValue &Offset, bool &isInc,
13530                                       SelectionDAG &DAG) {
13531   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13532     return false;
13533 
13534   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
13535     // AddressingMode 3
13536     Base = Ptr->getOperand(0);
13537     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13538       int RHSC = (int)RHS->getZExtValue();
13539       if (RHSC < 0 && RHSC > -256) {
13540         assert(Ptr->getOpcode() == ISD::ADD);
13541         isInc = false;
13542         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13543         return true;
13544       }
13545     }
13546     isInc = (Ptr->getOpcode() == ISD::ADD);
13547     Offset = Ptr->getOperand(1);
13548     return true;
13549   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
13550     // AddressingMode 2
13551     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13552       int RHSC = (int)RHS->getZExtValue();
13553       if (RHSC < 0 && RHSC > -0x1000) {
13554         assert(Ptr->getOpcode() == ISD::ADD);
13555         isInc = false;
13556         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13557         Base = Ptr->getOperand(0);
13558         return true;
13559       }
13560     }
13561 
13562     if (Ptr->getOpcode() == ISD::ADD) {
13563       isInc = true;
13564       ARM_AM::ShiftOpc ShOpcVal=
13565         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
13566       if (ShOpcVal != ARM_AM::no_shift) {
13567         Base = Ptr->getOperand(1);
13568         Offset = Ptr->getOperand(0);
13569       } else {
13570         Base = Ptr->getOperand(0);
13571         Offset = Ptr->getOperand(1);
13572       }
13573       return true;
13574     }
13575 
13576     isInc = (Ptr->getOpcode() == ISD::ADD);
13577     Base = Ptr->getOperand(0);
13578     Offset = Ptr->getOperand(1);
13579     return true;
13580   }
13581 
13582   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
13583   return false;
13584 }
13585 
13586 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
13587                                      bool isSEXTLoad, SDValue &Base,
13588                                      SDValue &Offset, bool &isInc,
13589                                      SelectionDAG &DAG) {
13590   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13591     return false;
13592 
13593   Base = Ptr->getOperand(0);
13594   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13595     int RHSC = (int)RHS->getZExtValue();
13596     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
13597       assert(Ptr->getOpcode() == ISD::ADD);
13598       isInc = false;
13599       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13600       return true;
13601     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
13602       isInc = Ptr->getOpcode() == ISD::ADD;
13603       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
13604       return true;
13605     }
13606   }
13607 
13608   return false;
13609 }
13610 
13611 /// getPreIndexedAddressParts - returns true by value, base pointer and
13612 /// offset pointer and addressing mode by reference if the node's address
13613 /// can be legally represented as pre-indexed load / store address.
13614 bool
13615 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
13616                                              SDValue &Offset,
13617                                              ISD::MemIndexedMode &AM,
13618                                              SelectionDAG &DAG) const {
13619   if (Subtarget->isThumb1Only())
13620     return false;
13621 
13622   EVT VT;
13623   SDValue Ptr;
13624   bool isSEXTLoad = false;
13625   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13626     Ptr = LD->getBasePtr();
13627     VT  = LD->getMemoryVT();
13628     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13629   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13630     Ptr = ST->getBasePtr();
13631     VT  = ST->getMemoryVT();
13632   } else
13633     return false;
13634 
13635   bool isInc;
13636   bool isLegal = false;
13637   if (Subtarget->isThumb2())
13638     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13639                                        Offset, isInc, DAG);
13640   else
13641     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13642                                         Offset, isInc, DAG);
13643   if (!isLegal)
13644     return false;
13645 
13646   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
13647   return true;
13648 }
13649 
13650 /// getPostIndexedAddressParts - returns true by value, base pointer and
13651 /// offset pointer and addressing mode by reference if this node can be
13652 /// combined with a load / store to form a post-indexed load / store.
13653 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
13654                                                    SDValue &Base,
13655                                                    SDValue &Offset,
13656                                                    ISD::MemIndexedMode &AM,
13657                                                    SelectionDAG &DAG) const {
13658   EVT VT;
13659   SDValue Ptr;
13660   bool isSEXTLoad = false, isNonExt;
13661   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13662     VT  = LD->getMemoryVT();
13663     Ptr = LD->getBasePtr();
13664     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13665     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
13666   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13667     VT  = ST->getMemoryVT();
13668     Ptr = ST->getBasePtr();
13669     isNonExt = !ST->isTruncatingStore();
13670   } else
13671     return false;
13672 
13673   if (Subtarget->isThumb1Only()) {
13674     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
13675     // must be non-extending/truncating, i32, with an offset of 4.
13676     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
13677     if (Op->getOpcode() != ISD::ADD || !isNonExt)
13678       return false;
13679     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
13680     if (!RHS || RHS->getZExtValue() != 4)
13681       return false;
13682 
13683     Offset = Op->getOperand(1);
13684     Base = Op->getOperand(0);
13685     AM = ISD::POST_INC;
13686     return true;
13687   }
13688 
13689   bool isInc;
13690   bool isLegal = false;
13691   if (Subtarget->isThumb2())
13692     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13693                                        isInc, DAG);
13694   else
13695     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
13696                                         isInc, DAG);
13697   if (!isLegal)
13698     return false;
13699 
13700   if (Ptr != Base) {
13701     // Swap base ptr and offset to catch more post-index load / store when
13702     // it's legal. In Thumb2 mode, offset must be an immediate.
13703     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
13704         !Subtarget->isThumb2())
13705       std::swap(Base, Offset);
13706 
13707     // Post-indexed load / store update the base pointer.
13708     if (Ptr != Base)
13709       return false;
13710   }
13711 
13712   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
13713   return true;
13714 }
13715 
13716 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13717                                                       KnownBits &Known,
13718                                                       const APInt &DemandedElts,
13719                                                       const SelectionDAG &DAG,
13720                                                       unsigned Depth) const {
13721   unsigned BitWidth = Known.getBitWidth();
13722   Known.resetAll();
13723   switch (Op.getOpcode()) {
13724   default: break;
13725   case ARMISD::ADDC:
13726   case ARMISD::ADDE:
13727   case ARMISD::SUBC:
13728   case ARMISD::SUBE:
13729     // Special cases when we convert a carry to a boolean.
13730     if (Op.getResNo() == 0) {
13731       SDValue LHS = Op.getOperand(0);
13732       SDValue RHS = Op.getOperand(1);
13733       // (ADDE 0, 0, C) will give us a single bit.
13734       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
13735           isNullConstant(RHS)) {
13736         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13737         return;
13738       }
13739     }
13740     break;
13741   case ARMISD::CMOV: {
13742     // Bits are known zero/one if known on the LHS and RHS.
13743     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
13744     if (Known.isUnknown())
13745       return;
13746 
13747     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
13748     Known.Zero &= KnownRHS.Zero;
13749     Known.One  &= KnownRHS.One;
13750     return;
13751   }
13752   case ISD::INTRINSIC_W_CHAIN: {
13753     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
13754     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
13755     switch (IntID) {
13756     default: return;
13757     case Intrinsic::arm_ldaex:
13758     case Intrinsic::arm_ldrex: {
13759       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
13760       unsigned MemBits = VT.getScalarSizeInBits();
13761       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
13762       return;
13763     }
13764     }
13765   }
13766   case ARMISD::BFI: {
13767     // Conservatively, we can recurse down the first operand
13768     // and just mask out all affected bits.
13769     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
13770 
13771     // The operand to BFI is already a mask suitable for removing the bits it
13772     // sets.
13773     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
13774     const APInt &Mask = CI->getAPIntValue();
13775     Known.Zero &= Mask;
13776     Known.One &= Mask;
13777     return;
13778   }
13779   case ARMISD::VGETLANEs:
13780   case ARMISD::VGETLANEu: {
13781     const SDValue &SrcSV = Op.getOperand(0);
13782     EVT VecVT = SrcSV.getValueType();
13783     assert(VecVT.isVector() && "VGETLANE expected a vector type");
13784     const unsigned NumSrcElts = VecVT.getVectorNumElements();
13785     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
13786     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
13787            "VGETLANE index out of bounds");
13788     unsigned Idx = Pos->getZExtValue();
13789     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
13790     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
13791 
13792     EVT VT = Op.getValueType();
13793     const unsigned DstSz = VT.getScalarSizeInBits();
13794     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
13795     (void)SrcSz;
13796     assert(SrcSz == Known.getBitWidth());
13797     assert(DstSz > SrcSz);
13798     if (Op.getOpcode() == ARMISD::VGETLANEs)
13799       Known = Known.sext(DstSz);
13800     else {
13801       Known = Known.zext(DstSz, true /* extended bits are known zero */);
13802     }
13803     assert(DstSz == Known.getBitWidth());
13804     break;
13805   }
13806   }
13807 }
13808 
13809 bool
13810 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
13811                                                 const APInt &DemandedAPInt,
13812                                                 TargetLoweringOpt &TLO) const {
13813   // Delay optimization, so we don't have to deal with illegal types, or block
13814   // optimizations.
13815   if (!TLO.LegalOps)
13816     return false;
13817 
13818   // Only optimize AND for now.
13819   if (Op.getOpcode() != ISD::AND)
13820     return false;
13821 
13822   EVT VT = Op.getValueType();
13823 
13824   // Ignore vectors.
13825   if (VT.isVector())
13826     return false;
13827 
13828   assert(VT == MVT::i32 && "Unexpected integer type");
13829 
13830   // Make sure the RHS really is a constant.
13831   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
13832   if (!C)
13833     return false;
13834 
13835   unsigned Mask = C->getZExtValue();
13836 
13837   unsigned Demanded = DemandedAPInt.getZExtValue();
13838   unsigned ShrunkMask = Mask & Demanded;
13839   unsigned ExpandedMask = Mask | ~Demanded;
13840 
13841   // If the mask is all zeros, let the target-independent code replace the
13842   // result with zero.
13843   if (ShrunkMask == 0)
13844     return false;
13845 
13846   // If the mask is all ones, erase the AND. (Currently, the target-independent
13847   // code won't do this, so we have to do it explicitly to avoid an infinite
13848   // loop in obscure cases.)
13849   if (ExpandedMask == ~0U)
13850     return TLO.CombineTo(Op, Op.getOperand(0));
13851 
13852   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
13853     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
13854   };
13855   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
13856     if (NewMask == Mask)
13857       return true;
13858     SDLoc DL(Op);
13859     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
13860     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
13861     return TLO.CombineTo(Op, NewOp);
13862   };
13863 
13864   // Prefer uxtb mask.
13865   if (IsLegalMask(0xFF))
13866     return UseMask(0xFF);
13867 
13868   // Prefer uxth mask.
13869   if (IsLegalMask(0xFFFF))
13870     return UseMask(0xFFFF);
13871 
13872   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
13873   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
13874   if (ShrunkMask < 256)
13875     return UseMask(ShrunkMask);
13876 
13877   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
13878   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
13879   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
13880     return UseMask(ExpandedMask);
13881 
13882   // Potential improvements:
13883   //
13884   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
13885   // We could try to prefer Thumb1 immediates which can be lowered to a
13886   // two-instruction sequence.
13887   // We could try to recognize more legal ARM/Thumb2 immediates here.
13888 
13889   return false;
13890 }
13891 
13892 
13893 //===----------------------------------------------------------------------===//
13894 //                           ARM Inline Assembly Support
13895 //===----------------------------------------------------------------------===//
13896 
13897 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
13898   // Looking for "rev" which is V6+.
13899   if (!Subtarget->hasV6Ops())
13900     return false;
13901 
13902   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
13903   std::string AsmStr = IA->getAsmString();
13904   SmallVector<StringRef, 4> AsmPieces;
13905   SplitString(AsmStr, AsmPieces, ";\n");
13906 
13907   switch (AsmPieces.size()) {
13908   default: return false;
13909   case 1:
13910     AsmStr = AsmPieces[0];
13911     AsmPieces.clear();
13912     SplitString(AsmStr, AsmPieces, " \t,");
13913 
13914     // rev $0, $1
13915     if (AsmPieces.size() == 3 &&
13916         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
13917         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
13918       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
13919       if (Ty && Ty->getBitWidth() == 32)
13920         return IntrinsicLowering::LowerToByteSwap(CI);
13921     }
13922     break;
13923   }
13924 
13925   return false;
13926 }
13927 
13928 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
13929   // At this point, we have to lower this constraint to something else, so we
13930   // lower it to an "r" or "w". However, by doing this we will force the result
13931   // to be in register, while the X constraint is much more permissive.
13932   //
13933   // Although we are correct (we are free to emit anything, without
13934   // constraints), we might break use cases that would expect us to be more
13935   // efficient and emit something else.
13936   if (!Subtarget->hasVFP2Base())
13937     return "r";
13938   if (ConstraintVT.isFloatingPoint())
13939     return "w";
13940   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
13941      (ConstraintVT.getSizeInBits() == 64 ||
13942       ConstraintVT.getSizeInBits() == 128))
13943     return "w";
13944 
13945   return "r";
13946 }
13947 
13948 /// getConstraintType - Given a constraint letter, return the type of
13949 /// constraint it is for this target.
13950 ARMTargetLowering::ConstraintType
13951 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
13952   if (Constraint.size() == 1) {
13953     switch (Constraint[0]) {
13954     default:  break;
13955     case 'l': return C_RegisterClass;
13956     case 'w': return C_RegisterClass;
13957     case 'h': return C_RegisterClass;
13958     case 'x': return C_RegisterClass;
13959     case 't': return C_RegisterClass;
13960     case 'j': return C_Other; // Constant for movw.
13961       // An address with a single base register. Due to the way we
13962       // currently handle addresses it is the same as an 'r' memory constraint.
13963     case 'Q': return C_Memory;
13964     }
13965   } else if (Constraint.size() == 2) {
13966     switch (Constraint[0]) {
13967     default: break;
13968     // All 'U+' constraints are addresses.
13969     case 'U': return C_Memory;
13970     }
13971   }
13972   return TargetLowering::getConstraintType(Constraint);
13973 }
13974 
13975 /// Examine constraint type and operand type and determine a weight value.
13976 /// This object must already have been set up with the operand type
13977 /// and the current alternative constraint selected.
13978 TargetLowering::ConstraintWeight
13979 ARMTargetLowering::getSingleConstraintMatchWeight(
13980     AsmOperandInfo &info, const char *constraint) const {
13981   ConstraintWeight weight = CW_Invalid;
13982   Value *CallOperandVal = info.CallOperandVal;
13983     // If we don't have a value, we can't do a match,
13984     // but allow it at the lowest weight.
13985   if (!CallOperandVal)
13986     return CW_Default;
13987   Type *type = CallOperandVal->getType();
13988   // Look at the constraint type.
13989   switch (*constraint) {
13990   default:
13991     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13992     break;
13993   case 'l':
13994     if (type->isIntegerTy()) {
13995       if (Subtarget->isThumb())
13996         weight = CW_SpecificReg;
13997       else
13998         weight = CW_Register;
13999     }
14000     break;
14001   case 'w':
14002     if (type->isFloatingPointTy())
14003       weight = CW_Register;
14004     break;
14005   }
14006   return weight;
14007 }
14008 
14009 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
14010 
14011 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
14012     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
14013   if (Constraint.size() == 1) {
14014     // GCC ARM Constraint Letters
14015     switch (Constraint[0]) {
14016     case 'l': // Low regs or general regs.
14017       if (Subtarget->isThumb())
14018         return RCPair(0U, &ARM::tGPRRegClass);
14019       return RCPair(0U, &ARM::GPRRegClass);
14020     case 'h': // High regs or no regs.
14021       if (Subtarget->isThumb())
14022         return RCPair(0U, &ARM::hGPRRegClass);
14023       break;
14024     case 'r':
14025       if (Subtarget->isThumb1Only())
14026         return RCPair(0U, &ARM::tGPRRegClass);
14027       return RCPair(0U, &ARM::GPRRegClass);
14028     case 'w':
14029       if (VT == MVT::Other)
14030         break;
14031       if (VT == MVT::f32)
14032         return RCPair(0U, &ARM::SPRRegClass);
14033       if (VT.getSizeInBits() == 64)
14034         return RCPair(0U, &ARM::DPRRegClass);
14035       if (VT.getSizeInBits() == 128)
14036         return RCPair(0U, &ARM::QPRRegClass);
14037       break;
14038     case 'x':
14039       if (VT == MVT::Other)
14040         break;
14041       if (VT == MVT::f32)
14042         return RCPair(0U, &ARM::SPR_8RegClass);
14043       if (VT.getSizeInBits() == 64)
14044         return RCPair(0U, &ARM::DPR_8RegClass);
14045       if (VT.getSizeInBits() == 128)
14046         return RCPair(0U, &ARM::QPR_8RegClass);
14047       break;
14048     case 't':
14049       if (VT == MVT::Other)
14050         break;
14051       if (VT == MVT::f32 || VT == MVT::i32)
14052         return RCPair(0U, &ARM::SPRRegClass);
14053       if (VT.getSizeInBits() == 64)
14054         return RCPair(0U, &ARM::DPR_VFP2RegClass);
14055       if (VT.getSizeInBits() == 128)
14056         return RCPair(0U, &ARM::QPR_VFP2RegClass);
14057       break;
14058     }
14059   }
14060   if (StringRef("{cc}").equals_lower(Constraint))
14061     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
14062 
14063   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14064 }
14065 
14066 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14067 /// vector.  If it is invalid, don't add anything to Ops.
14068 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14069                                                      std::string &Constraint,
14070                                                      std::vector<SDValue>&Ops,
14071                                                      SelectionDAG &DAG) const {
14072   SDValue Result;
14073 
14074   // Currently only support length 1 constraints.
14075   if (Constraint.length() != 1) return;
14076 
14077   char ConstraintLetter = Constraint[0];
14078   switch (ConstraintLetter) {
14079   default: break;
14080   case 'j':
14081   case 'I': case 'J': case 'K': case 'L':
14082   case 'M': case 'N': case 'O':
14083     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
14084     if (!C)
14085       return;
14086 
14087     int64_t CVal64 = C->getSExtValue();
14088     int CVal = (int) CVal64;
14089     // None of these constraints allow values larger than 32 bits.  Check
14090     // that the value fits in an int.
14091     if (CVal != CVal64)
14092       return;
14093 
14094     switch (ConstraintLetter) {
14095       case 'j':
14096         // Constant suitable for movw, must be between 0 and
14097         // 65535.
14098         if (Subtarget->hasV6T2Ops())
14099           if (CVal >= 0 && CVal <= 65535)
14100             break;
14101         return;
14102       case 'I':
14103         if (Subtarget->isThumb1Only()) {
14104           // This must be a constant between 0 and 255, for ADD
14105           // immediates.
14106           if (CVal >= 0 && CVal <= 255)
14107             break;
14108         } else if (Subtarget->isThumb2()) {
14109           // A constant that can be used as an immediate value in a
14110           // data-processing instruction.
14111           if (ARM_AM::getT2SOImmVal(CVal) != -1)
14112             break;
14113         } else {
14114           // A constant that can be used as an immediate value in a
14115           // data-processing instruction.
14116           if (ARM_AM::getSOImmVal(CVal) != -1)
14117             break;
14118         }
14119         return;
14120 
14121       case 'J':
14122         if (Subtarget->isThumb1Only()) {
14123           // This must be a constant between -255 and -1, for negated ADD
14124           // immediates. This can be used in GCC with an "n" modifier that
14125           // prints the negated value, for use with SUB instructions. It is
14126           // not useful otherwise but is implemented for compatibility.
14127           if (CVal >= -255 && CVal <= -1)
14128             break;
14129         } else {
14130           // This must be a constant between -4095 and 4095. It is not clear
14131           // what this constraint is intended for. Implemented for
14132           // compatibility with GCC.
14133           if (CVal >= -4095 && CVal <= 4095)
14134             break;
14135         }
14136         return;
14137 
14138       case 'K':
14139         if (Subtarget->isThumb1Only()) {
14140           // A 32-bit value where only one byte has a nonzero value. Exclude
14141           // zero to match GCC. This constraint is used by GCC internally for
14142           // constants that can be loaded with a move/shift combination.
14143           // It is not useful otherwise but is implemented for compatibility.
14144           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
14145             break;
14146         } else if (Subtarget->isThumb2()) {
14147           // A constant whose bitwise inverse can be used as an immediate
14148           // value in a data-processing instruction. This can be used in GCC
14149           // with a "B" modifier that prints the inverted value, for use with
14150           // BIC and MVN instructions. It is not useful otherwise but is
14151           // implemented for compatibility.
14152           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
14153             break;
14154         } else {
14155           // A constant whose bitwise inverse can be used as an immediate
14156           // value in a data-processing instruction. This can be used in GCC
14157           // with a "B" modifier that prints the inverted value, for use with
14158           // BIC and MVN instructions. It is not useful otherwise but is
14159           // implemented for compatibility.
14160           if (ARM_AM::getSOImmVal(~CVal) != -1)
14161             break;
14162         }
14163         return;
14164 
14165       case 'L':
14166         if (Subtarget->isThumb1Only()) {
14167           // This must be a constant between -7 and 7,
14168           // for 3-operand ADD/SUB immediate instructions.
14169           if (CVal >= -7 && CVal < 7)
14170             break;
14171         } else if (Subtarget->isThumb2()) {
14172           // A constant whose negation can be used as an immediate value in a
14173           // data-processing instruction. This can be used in GCC with an "n"
14174           // modifier that prints the negated value, for use with SUB
14175           // instructions. It is not useful otherwise but is implemented for
14176           // compatibility.
14177           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
14178             break;
14179         } else {
14180           // A constant whose negation can be used as an immediate value in a
14181           // data-processing instruction. This can be used in GCC with an "n"
14182           // modifier that prints the negated value, for use with SUB
14183           // instructions. It is not useful otherwise but is implemented for
14184           // compatibility.
14185           if (ARM_AM::getSOImmVal(-CVal) != -1)
14186             break;
14187         }
14188         return;
14189 
14190       case 'M':
14191         if (Subtarget->isThumb1Only()) {
14192           // This must be a multiple of 4 between 0 and 1020, for
14193           // ADD sp + immediate.
14194           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
14195             break;
14196         } else {
14197           // A power of two or a constant between 0 and 32.  This is used in
14198           // GCC for the shift amount on shifted register operands, but it is
14199           // useful in general for any shift amounts.
14200           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
14201             break;
14202         }
14203         return;
14204 
14205       case 'N':
14206         if (Subtarget->isThumb()) {  // FIXME thumb2
14207           // This must be a constant between 0 and 31, for shift amounts.
14208           if (CVal >= 0 && CVal <= 31)
14209             break;
14210         }
14211         return;
14212 
14213       case 'O':
14214         if (Subtarget->isThumb()) {  // FIXME thumb2
14215           // This must be a multiple of 4 between -508 and 508, for
14216           // ADD/SUB sp = sp + immediate.
14217           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
14218             break;
14219         }
14220         return;
14221     }
14222     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
14223     break;
14224   }
14225 
14226   if (Result.getNode()) {
14227     Ops.push_back(Result);
14228     return;
14229   }
14230   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14231 }
14232 
14233 static RTLIB::Libcall getDivRemLibcall(
14234     const SDNode *N, MVT::SimpleValueType SVT) {
14235   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
14236           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
14237          "Unhandled Opcode in getDivRemLibcall");
14238   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
14239                   N->getOpcode() == ISD::SREM;
14240   RTLIB::Libcall LC;
14241   switch (SVT) {
14242   default: llvm_unreachable("Unexpected request for libcall!");
14243   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
14244   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
14245   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
14246   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
14247   }
14248   return LC;
14249 }
14250 
14251 static TargetLowering::ArgListTy getDivRemArgList(
14252     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
14253   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
14254           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
14255          "Unhandled Opcode in getDivRemArgList");
14256   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
14257                   N->getOpcode() == ISD::SREM;
14258   TargetLowering::ArgListTy Args;
14259   TargetLowering::ArgListEntry Entry;
14260   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
14261     EVT ArgVT = N->getOperand(i).getValueType();
14262     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
14263     Entry.Node = N->getOperand(i);
14264     Entry.Ty = ArgTy;
14265     Entry.IsSExt = isSigned;
14266     Entry.IsZExt = !isSigned;
14267     Args.push_back(Entry);
14268   }
14269   if (Subtarget->isTargetWindows() && Args.size() >= 2)
14270     std::swap(Args[0], Args[1]);
14271   return Args;
14272 }
14273 
14274 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
14275   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
14276           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
14277           Subtarget->isTargetWindows()) &&
14278          "Register-based DivRem lowering only");
14279   unsigned Opcode = Op->getOpcode();
14280   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
14281          "Invalid opcode for Div/Rem lowering");
14282   bool isSigned = (Opcode == ISD::SDIVREM);
14283   EVT VT = Op->getValueType(0);
14284   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
14285   SDLoc dl(Op);
14286 
14287   // If the target has hardware divide, use divide + multiply + subtract:
14288   //     div = a / b
14289   //     rem = a - b * div
14290   //     return {div, rem}
14291   // This should be lowered into UDIV/SDIV + MLS later on.
14292   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
14293                                         : Subtarget->hasDivideInARMMode();
14294   if (hasDivide && Op->getValueType(0).isSimple() &&
14295       Op->getSimpleValueType(0) == MVT::i32) {
14296     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
14297     const SDValue Dividend = Op->getOperand(0);
14298     const SDValue Divisor = Op->getOperand(1);
14299     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
14300     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
14301     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
14302 
14303     SDValue Values[2] = {Div, Rem};
14304     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
14305   }
14306 
14307   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
14308                                        VT.getSimpleVT().SimpleTy);
14309   SDValue InChain = DAG.getEntryNode();
14310 
14311   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
14312                                                     DAG.getContext(),
14313                                                     Subtarget);
14314 
14315   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
14316                                          getPointerTy(DAG.getDataLayout()));
14317 
14318   Type *RetTy = StructType::get(Ty, Ty);
14319 
14320   if (Subtarget->isTargetWindows())
14321     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
14322 
14323   TargetLowering::CallLoweringInfo CLI(DAG);
14324   CLI.setDebugLoc(dl).setChain(InChain)
14325     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
14326     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
14327 
14328   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
14329   return CallInfo.first;
14330 }
14331 
14332 // Lowers REM using divmod helpers
14333 // see RTABI section 4.2/4.3
14334 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
14335   // Build return types (div and rem)
14336   std::vector<Type*> RetTyParams;
14337   Type *RetTyElement;
14338 
14339   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
14340   default: llvm_unreachable("Unexpected request for libcall!");
14341   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
14342   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
14343   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
14344   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
14345   }
14346 
14347   RetTyParams.push_back(RetTyElement);
14348   RetTyParams.push_back(RetTyElement);
14349   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
14350   Type *RetTy = StructType::get(*DAG.getContext(), ret);
14351 
14352   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
14353                                                              SimpleTy);
14354   SDValue InChain = DAG.getEntryNode();
14355   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
14356                                                     Subtarget);
14357   bool isSigned = N->getOpcode() == ISD::SREM;
14358   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
14359                                          getPointerTy(DAG.getDataLayout()));
14360 
14361   if (Subtarget->isTargetWindows())
14362     InChain = WinDBZCheckDenominator(DAG, N, InChain);
14363 
14364   // Lower call
14365   CallLoweringInfo CLI(DAG);
14366   CLI.setChain(InChain)
14367      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
14368      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
14369   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
14370 
14371   // Return second (rem) result operand (first contains div)
14372   SDNode *ResNode = CallResult.first.getNode();
14373   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
14374   return ResNode->getOperand(1);
14375 }
14376 
14377 SDValue
14378 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
14379   assert(Subtarget->isTargetWindows() && "unsupported target platform");
14380   SDLoc DL(Op);
14381 
14382   // Get the inputs.
14383   SDValue Chain = Op.getOperand(0);
14384   SDValue Size  = Op.getOperand(1);
14385 
14386   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
14387           "no-stack-arg-probe")) {
14388     unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
14389     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14390     Chain = SP.getValue(1);
14391     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
14392     if (Align)
14393       SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
14394                        DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
14395     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
14396     SDValue Ops[2] = { SP, Chain };
14397     return DAG.getMergeValues(Ops, DL);
14398   }
14399 
14400   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
14401                               DAG.getConstant(2, DL, MVT::i32));
14402 
14403   SDValue Flag;
14404   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
14405   Flag = Chain.getValue(1);
14406 
14407   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14408   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
14409 
14410   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14411   Chain = NewSP.getValue(1);
14412 
14413   SDValue Ops[2] = { NewSP, Chain };
14414   return DAG.getMergeValues(Ops, DL);
14415 }
14416 
14417 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
14418   assert(Op.getValueType() == MVT::f64 && !Subtarget->hasFP64() &&
14419          "Unexpected type for custom-lowering FP_EXTEND");
14420 
14421   RTLIB::Libcall LC;
14422   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
14423 
14424   SDValue SrcVal = Op.getOperand(0);
14425   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14426                      SDLoc(Op)).first;
14427 }
14428 
14429 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
14430   assert(Op.getOperand(0).getValueType() == MVT::f64 && !Subtarget->hasFP64() &&
14431          "Unexpected type for custom-lowering FP_ROUND");
14432 
14433   RTLIB::Libcall LC;
14434   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
14435 
14436   SDValue SrcVal = Op.getOperand(0);
14437   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
14438                      SDLoc(Op)).first;
14439 }
14440 
14441 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
14442                                  SelectionDAG &DAG) const {
14443   assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
14444   MVT HalfT = MVT::i32;
14445   SDLoc dl(N);
14446   SDValue Hi, Lo, Tmp;
14447 
14448   if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
14449       !isOperationLegalOrCustom(ISD::UADDO, HalfT))
14450     return ;
14451 
14452   unsigned OpTypeBits = HalfT.getScalarSizeInBits();
14453   SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
14454 
14455   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
14456                    DAG.getConstant(0, dl, HalfT));
14457   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
14458                    DAG.getConstant(1, dl, HalfT));
14459 
14460   Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
14461                     DAG.getConstant(OpTypeBits - 1, dl,
14462                     getShiftAmountTy(HalfT, DAG.getDataLayout())));
14463   Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
14464   Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
14465                    SDValue(Lo.getNode(), 1));
14466   Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
14467   Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
14468 
14469   Results.push_back(Lo);
14470   Results.push_back(Hi);
14471 }
14472 
14473 bool
14474 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14475   // The ARM target isn't yet aware of offsets.
14476   return false;
14477 }
14478 
14479 bool ARM::isBitFieldInvertedMask(unsigned v) {
14480   if (v == 0xffffffff)
14481     return false;
14482 
14483   // there can be 1's on either or both "outsides", all the "inside"
14484   // bits must be 0's
14485   return isShiftedMask_32(~v);
14486 }
14487 
14488 /// isFPImmLegal - Returns true if the target can instruction select the
14489 /// specified FP immediate natively. If false, the legalizer will
14490 /// materialize the FP immediate as a load from a constant pool.
14491 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
14492                                      bool ForCodeSize) const {
14493   if (!Subtarget->hasVFP3Base())
14494     return false;
14495   if (VT == MVT::f16 && Subtarget->hasFullFP16())
14496     return ARM_AM::getFP16Imm(Imm) != -1;
14497   if (VT == MVT::f32)
14498     return ARM_AM::getFP32Imm(Imm) != -1;
14499   if (VT == MVT::f64 && Subtarget->hasFP64())
14500     return ARM_AM::getFP64Imm(Imm) != -1;
14501   return false;
14502 }
14503 
14504 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
14505 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
14506 /// specified in the intrinsic calls.
14507 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14508                                            const CallInst &I,
14509                                            MachineFunction &MF,
14510                                            unsigned Intrinsic) const {
14511   switch (Intrinsic) {
14512   case Intrinsic::arm_neon_vld1:
14513   case Intrinsic::arm_neon_vld2:
14514   case Intrinsic::arm_neon_vld3:
14515   case Intrinsic::arm_neon_vld4:
14516   case Intrinsic::arm_neon_vld2lane:
14517   case Intrinsic::arm_neon_vld3lane:
14518   case Intrinsic::arm_neon_vld4lane:
14519   case Intrinsic::arm_neon_vld2dup:
14520   case Intrinsic::arm_neon_vld3dup:
14521   case Intrinsic::arm_neon_vld4dup: {
14522     Info.opc = ISD::INTRINSIC_W_CHAIN;
14523     // Conservatively set memVT to the entire set of vectors loaded.
14524     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14525     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14526     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14527     Info.ptrVal = I.getArgOperand(0);
14528     Info.offset = 0;
14529     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14530     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14531     // volatile loads with NEON intrinsics not supported
14532     Info.flags = MachineMemOperand::MOLoad;
14533     return true;
14534   }
14535   case Intrinsic::arm_neon_vld1x2:
14536   case Intrinsic::arm_neon_vld1x3:
14537   case Intrinsic::arm_neon_vld1x4: {
14538     Info.opc = ISD::INTRINSIC_W_CHAIN;
14539     // Conservatively set memVT to the entire set of vectors loaded.
14540     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14541     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14542     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14543     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
14544     Info.offset = 0;
14545     Info.align = 0;
14546     // volatile loads with NEON intrinsics not supported
14547     Info.flags = MachineMemOperand::MOLoad;
14548     return true;
14549   }
14550   case Intrinsic::arm_neon_vst1:
14551   case Intrinsic::arm_neon_vst2:
14552   case Intrinsic::arm_neon_vst3:
14553   case Intrinsic::arm_neon_vst4:
14554   case Intrinsic::arm_neon_vst2lane:
14555   case Intrinsic::arm_neon_vst3lane:
14556   case Intrinsic::arm_neon_vst4lane: {
14557     Info.opc = ISD::INTRINSIC_VOID;
14558     // Conservatively set memVT to the entire set of vectors stored.
14559     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14560     unsigned NumElts = 0;
14561     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14562       Type *ArgTy = I.getArgOperand(ArgI)->getType();
14563       if (!ArgTy->isVectorTy())
14564         break;
14565       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14566     }
14567     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14568     Info.ptrVal = I.getArgOperand(0);
14569     Info.offset = 0;
14570     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14571     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14572     // volatile stores with NEON intrinsics not supported
14573     Info.flags = MachineMemOperand::MOStore;
14574     return true;
14575   }
14576   case Intrinsic::arm_neon_vst1x2:
14577   case Intrinsic::arm_neon_vst1x3:
14578   case Intrinsic::arm_neon_vst1x4: {
14579     Info.opc = ISD::INTRINSIC_VOID;
14580     // Conservatively set memVT to the entire set of vectors stored.
14581     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14582     unsigned NumElts = 0;
14583     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14584       Type *ArgTy = I.getArgOperand(ArgI)->getType();
14585       if (!ArgTy->isVectorTy())
14586         break;
14587       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14588     }
14589     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14590     Info.ptrVal = I.getArgOperand(0);
14591     Info.offset = 0;
14592     Info.align = 0;
14593     // volatile stores with NEON intrinsics not supported
14594     Info.flags = MachineMemOperand::MOStore;
14595     return true;
14596   }
14597   case Intrinsic::arm_ldaex:
14598   case Intrinsic::arm_ldrex: {
14599     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14600     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
14601     Info.opc = ISD::INTRINSIC_W_CHAIN;
14602     Info.memVT = MVT::getVT(PtrTy->getElementType());
14603     Info.ptrVal = I.getArgOperand(0);
14604     Info.offset = 0;
14605     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14606     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14607     return true;
14608   }
14609   case Intrinsic::arm_stlex:
14610   case Intrinsic::arm_strex: {
14611     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14612     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
14613     Info.opc = ISD::INTRINSIC_W_CHAIN;
14614     Info.memVT = MVT::getVT(PtrTy->getElementType());
14615     Info.ptrVal = I.getArgOperand(1);
14616     Info.offset = 0;
14617     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
14618     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14619     return true;
14620   }
14621   case Intrinsic::arm_stlexd:
14622   case Intrinsic::arm_strexd:
14623     Info.opc = ISD::INTRINSIC_W_CHAIN;
14624     Info.memVT = MVT::i64;
14625     Info.ptrVal = I.getArgOperand(2);
14626     Info.offset = 0;
14627     Info.align = 8;
14628     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
14629     return true;
14630 
14631   case Intrinsic::arm_ldaexd:
14632   case Intrinsic::arm_ldrexd:
14633     Info.opc = ISD::INTRINSIC_W_CHAIN;
14634     Info.memVT = MVT::i64;
14635     Info.ptrVal = I.getArgOperand(0);
14636     Info.offset = 0;
14637     Info.align = 8;
14638     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
14639     return true;
14640 
14641   default:
14642     break;
14643   }
14644 
14645   return false;
14646 }
14647 
14648 /// Returns true if it is beneficial to convert a load of a constant
14649 /// to just the constant itself.
14650 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
14651                                                           Type *Ty) const {
14652   assert(Ty->isIntegerTy());
14653 
14654   unsigned Bits = Ty->getPrimitiveSizeInBits();
14655   if (Bits == 0 || Bits > 32)
14656     return false;
14657   return true;
14658 }
14659 
14660 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
14661                                                 unsigned Index) const {
14662   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
14663     return false;
14664 
14665   return (Index == 0 || Index == ResVT.getVectorNumElements());
14666 }
14667 
14668 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
14669                                         ARM_MB::MemBOpt Domain) const {
14670   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14671 
14672   // First, if the target has no DMB, see what fallback we can use.
14673   if (!Subtarget->hasDataBarrier()) {
14674     // Some ARMv6 cpus can support data barriers with an mcr instruction.
14675     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
14676     // here.
14677     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
14678       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
14679       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
14680                         Builder.getInt32(0), Builder.getInt32(7),
14681                         Builder.getInt32(10), Builder.getInt32(5)};
14682       return Builder.CreateCall(MCR, args);
14683     } else {
14684       // Instead of using barriers, atomic accesses on these subtargets use
14685       // libcalls.
14686       llvm_unreachable("makeDMB on a target so old that it has no barriers");
14687     }
14688   } else {
14689     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
14690     // Only a full system barrier exists in the M-class architectures.
14691     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
14692     Constant *CDomain = Builder.getInt32(Domain);
14693     return Builder.CreateCall(DMB, CDomain);
14694   }
14695 }
14696 
14697 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
14698 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
14699                                                  Instruction *Inst,
14700                                                  AtomicOrdering Ord) const {
14701   switch (Ord) {
14702   case AtomicOrdering::NotAtomic:
14703   case AtomicOrdering::Unordered:
14704     llvm_unreachable("Invalid fence: unordered/non-atomic");
14705   case AtomicOrdering::Monotonic:
14706   case AtomicOrdering::Acquire:
14707     return nullptr; // Nothing to do
14708   case AtomicOrdering::SequentiallyConsistent:
14709     if (!Inst->hasAtomicStore())
14710       return nullptr; // Nothing to do
14711     LLVM_FALLTHROUGH;
14712   case AtomicOrdering::Release:
14713   case AtomicOrdering::AcquireRelease:
14714     if (Subtarget->preferISHSTBarriers())
14715       return makeDMB(Builder, ARM_MB::ISHST);
14716     // FIXME: add a comment with a link to documentation justifying this.
14717     else
14718       return makeDMB(Builder, ARM_MB::ISH);
14719   }
14720   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
14721 }
14722 
14723 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
14724                                                   Instruction *Inst,
14725                                                   AtomicOrdering Ord) const {
14726   switch (Ord) {
14727   case AtomicOrdering::NotAtomic:
14728   case AtomicOrdering::Unordered:
14729     llvm_unreachable("Invalid fence: unordered/not-atomic");
14730   case AtomicOrdering::Monotonic:
14731   case AtomicOrdering::Release:
14732     return nullptr; // Nothing to do
14733   case AtomicOrdering::Acquire:
14734   case AtomicOrdering::AcquireRelease:
14735   case AtomicOrdering::SequentiallyConsistent:
14736     return makeDMB(Builder, ARM_MB::ISH);
14737   }
14738   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
14739 }
14740 
14741 // Loads and stores less than 64-bits are already atomic; ones above that
14742 // are doomed anyway, so defer to the default libcall and blame the OS when
14743 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14744 // anything for those.
14745 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
14746   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
14747   return (Size == 64) && !Subtarget->isMClass();
14748 }
14749 
14750 // Loads and stores less than 64-bits are already atomic; ones above that
14751 // are doomed anyway, so defer to the default libcall and blame the OS when
14752 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
14753 // anything for those.
14754 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
14755 // guarantee, see DDI0406C ARM architecture reference manual,
14756 // sections A8.8.72-74 LDRD)
14757 TargetLowering::AtomicExpansionKind
14758 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
14759   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
14760   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
14761                                                   : AtomicExpansionKind::None;
14762 }
14763 
14764 // For the real atomic operations, we have ldrex/strex up to 32 bits,
14765 // and up to 64 bits on the non-M profiles
14766 TargetLowering::AtomicExpansionKind
14767 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
14768   if (AI->isFloatingPointOperation())
14769     return AtomicExpansionKind::CmpXChg;
14770 
14771   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
14772   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14773   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
14774              ? AtomicExpansionKind::LLSC
14775              : AtomicExpansionKind::None;
14776 }
14777 
14778 TargetLowering::AtomicExpansionKind
14779 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
14780   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
14781   // implement cmpxchg without spilling. If the address being exchanged is also
14782   // on the stack and close enough to the spill slot, this can lead to a
14783   // situation where the monitor always gets cleared and the atomic operation
14784   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
14785   bool HasAtomicCmpXchg =
14786       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
14787   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
14788     return AtomicExpansionKind::LLSC;
14789   return AtomicExpansionKind::None;
14790 }
14791 
14792 bool ARMTargetLowering::shouldInsertFencesForAtomic(
14793     const Instruction *I) const {
14794   return InsertFencesForAtomic;
14795 }
14796 
14797 // This has so far only been implemented for MachO.
14798 bool ARMTargetLowering::useLoadStackGuardNode() const {
14799   return Subtarget->isTargetMachO();
14800 }
14801 
14802 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
14803                                                   unsigned &Cost) const {
14804   // If we do not have NEON, vector types are not natively supported.
14805   if (!Subtarget->hasNEON())
14806     return false;
14807 
14808   // Floating point values and vector values map to the same register file.
14809   // Therefore, although we could do a store extract of a vector type, this is
14810   // better to leave at float as we have more freedom in the addressing mode for
14811   // those.
14812   if (VectorTy->isFPOrFPVectorTy())
14813     return false;
14814 
14815   // If the index is unknown at compile time, this is very expensive to lower
14816   // and it is not possible to combine the store with the extract.
14817   if (!isa<ConstantInt>(Idx))
14818     return false;
14819 
14820   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
14821   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
14822   // We can do a store + vector extract on any vector that fits perfectly in a D
14823   // or Q register.
14824   if (BitWidth == 64 || BitWidth == 128) {
14825     Cost = 0;
14826     return true;
14827   }
14828   return false;
14829 }
14830 
14831 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
14832   return Subtarget->hasV6T2Ops();
14833 }
14834 
14835 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
14836   return Subtarget->hasV6T2Ops();
14837 }
14838 
14839 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
14840   return !Subtarget->hasMinSize();
14841 }
14842 
14843 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
14844                                          AtomicOrdering Ord) const {
14845   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14846   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
14847   bool IsAcquire = isAcquireOrStronger(Ord);
14848 
14849   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
14850   // intrinsic must return {i32, i32} and we have to recombine them into a
14851   // single i64 here.
14852   if (ValTy->getPrimitiveSizeInBits() == 64) {
14853     Intrinsic::ID Int =
14854         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
14855     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
14856 
14857     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14858     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
14859 
14860     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
14861     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
14862     if (!Subtarget->isLittle())
14863       std::swap (Lo, Hi);
14864     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
14865     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
14866     return Builder.CreateOr(
14867         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
14868   }
14869 
14870   Type *Tys[] = { Addr->getType() };
14871   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
14872   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
14873 
14874   return Builder.CreateTruncOrBitCast(
14875       Builder.CreateCall(Ldrex, Addr),
14876       cast<PointerType>(Addr->getType())->getElementType());
14877 }
14878 
14879 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
14880     IRBuilder<> &Builder) const {
14881   if (!Subtarget->hasV7Ops())
14882     return;
14883   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14884   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
14885 }
14886 
14887 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
14888                                                Value *Addr,
14889                                                AtomicOrdering Ord) const {
14890   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
14891   bool IsRelease = isReleaseOrStronger(Ord);
14892 
14893   // Since the intrinsics must have legal type, the i64 intrinsics take two
14894   // parameters: "i32, i32". We must marshal Val into the appropriate form
14895   // before the call.
14896   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
14897     Intrinsic::ID Int =
14898         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
14899     Function *Strex = Intrinsic::getDeclaration(M, Int);
14900     Type *Int32Ty = Type::getInt32Ty(M->getContext());
14901 
14902     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
14903     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
14904     if (!Subtarget->isLittle())
14905       std::swap(Lo, Hi);
14906     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
14907     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
14908   }
14909 
14910   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
14911   Type *Tys[] = { Addr->getType() };
14912   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
14913 
14914   return Builder.CreateCall(
14915       Strex, {Builder.CreateZExtOrBitCast(
14916                   Val, Strex->getFunctionType()->getParamType(0)),
14917               Addr});
14918 }
14919 
14920 
14921 bool ARMTargetLowering::alignLoopsWithOptSize() const {
14922   return Subtarget->isMClass();
14923 }
14924 
14925 /// A helper function for determining the number of interleaved accesses we
14926 /// will generate when lowering accesses of the given type.
14927 unsigned
14928 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
14929                                              const DataLayout &DL) const {
14930   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
14931 }
14932 
14933 bool ARMTargetLowering::isLegalInterleavedAccessType(
14934     VectorType *VecTy, const DataLayout &DL) const {
14935 
14936   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
14937   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
14938 
14939   // Ensure the vector doesn't have f16 elements. Even though we could do an
14940   // i16 vldN, we can't hold the f16 vectors and will end up converting via
14941   // f32.
14942   if (VecTy->getElementType()->isHalfTy())
14943     return false;
14944 
14945   // Ensure the number of vector elements is greater than 1.
14946   if (VecTy->getNumElements() < 2)
14947     return false;
14948 
14949   // Ensure the element type is legal.
14950   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
14951     return false;
14952 
14953   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
14954   // 128 will be split into multiple interleaved accesses.
14955   return VecSize == 64 || VecSize % 128 == 0;
14956 }
14957 
14958 /// Lower an interleaved load into a vldN intrinsic.
14959 ///
14960 /// E.g. Lower an interleaved load (Factor = 2):
14961 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
14962 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
14963 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
14964 ///
14965 ///      Into:
14966 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
14967 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
14968 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
14969 bool ARMTargetLowering::lowerInterleavedLoad(
14970     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
14971     ArrayRef<unsigned> Indices, unsigned Factor) const {
14972   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
14973          "Invalid interleave factor");
14974   assert(!Shuffles.empty() && "Empty shufflevector input");
14975   assert(Shuffles.size() == Indices.size() &&
14976          "Unmatched number of shufflevectors and indices");
14977 
14978   VectorType *VecTy = Shuffles[0]->getType();
14979   Type *EltTy = VecTy->getVectorElementType();
14980 
14981   const DataLayout &DL = LI->getModule()->getDataLayout();
14982 
14983   // Skip if we do not have NEON and skip illegal vector types. We can
14984   // "legalize" wide vector types into multiple interleaved accesses as long as
14985   // the vector types are divisible by 128.
14986   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
14987     return false;
14988 
14989   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
14990 
14991   // A pointer vector can not be the return type of the ldN intrinsics. Need to
14992   // load integer vectors first and then convert to pointer vectors.
14993   if (EltTy->isPointerTy())
14994     VecTy =
14995         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
14996 
14997   IRBuilder<> Builder(LI);
14998 
14999   // The base address of the load.
15000   Value *BaseAddr = LI->getPointerOperand();
15001 
15002   if (NumLoads > 1) {
15003     // If we're going to generate more than one load, reset the sub-vector type
15004     // to something legal.
15005     VecTy = VectorType::get(VecTy->getVectorElementType(),
15006                             VecTy->getVectorNumElements() / NumLoads);
15007 
15008     // We will compute the pointer operand of each load from the original base
15009     // address using GEPs. Cast the base address to a pointer to the scalar
15010     // element type.
15011     BaseAddr = Builder.CreateBitCast(
15012         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
15013                       LI->getPointerAddressSpace()));
15014   }
15015 
15016   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
15017 
15018   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
15019   Type *Tys[] = {VecTy, Int8Ptr};
15020   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
15021                                             Intrinsic::arm_neon_vld3,
15022                                             Intrinsic::arm_neon_vld4};
15023   Function *VldnFunc =
15024       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
15025 
15026   // Holds sub-vectors extracted from the load intrinsic return values. The
15027   // sub-vectors are associated with the shufflevector instructions they will
15028   // replace.
15029   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
15030 
15031   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
15032     // If we're generating more than one load, compute the base address of
15033     // subsequent loads as an offset from the previous.
15034     if (LoadCount > 0)
15035       BaseAddr =
15036           Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
15037                                      VecTy->getVectorNumElements() * Factor);
15038 
15039     SmallVector<Value *, 2> Ops;
15040     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
15041     Ops.push_back(Builder.getInt32(LI->getAlignment()));
15042 
15043     CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
15044 
15045     // Replace uses of each shufflevector with the corresponding vector loaded
15046     // by ldN.
15047     for (unsigned i = 0; i < Shuffles.size(); i++) {
15048       ShuffleVectorInst *SV = Shuffles[i];
15049       unsigned Index = Indices[i];
15050 
15051       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
15052 
15053       // Convert the integer vector to pointer vector if the element is pointer.
15054       if (EltTy->isPointerTy())
15055         SubVec = Builder.CreateIntToPtr(
15056             SubVec, VectorType::get(SV->getType()->getVectorElementType(),
15057                                     VecTy->getVectorNumElements()));
15058 
15059       SubVecs[SV].push_back(SubVec);
15060     }
15061   }
15062 
15063   // Replace uses of the shufflevector instructions with the sub-vectors
15064   // returned by the load intrinsic. If a shufflevector instruction is
15065   // associated with more than one sub-vector, those sub-vectors will be
15066   // concatenated into a single wide vector.
15067   for (ShuffleVectorInst *SVI : Shuffles) {
15068     auto &SubVec = SubVecs[SVI];
15069     auto *WideVec =
15070         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
15071     SVI->replaceAllUsesWith(WideVec);
15072   }
15073 
15074   return true;
15075 }
15076 
15077 /// Lower an interleaved store into a vstN intrinsic.
15078 ///
15079 /// E.g. Lower an interleaved store (Factor = 3):
15080 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
15081 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
15082 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
15083 ///
15084 ///      Into:
15085 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
15086 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
15087 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
15088 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
15089 ///
15090 /// Note that the new shufflevectors will be removed and we'll only generate one
15091 /// vst3 instruction in CodeGen.
15092 ///
15093 /// Example for a more general valid mask (Factor 3). Lower:
15094 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
15095 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
15096 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
15097 ///
15098 ///      Into:
15099 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
15100 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
15101 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
15102 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
15103 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
15104                                               ShuffleVectorInst *SVI,
15105                                               unsigned Factor) const {
15106   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
15107          "Invalid interleave factor");
15108 
15109   VectorType *VecTy = SVI->getType();
15110   assert(VecTy->getVectorNumElements() % Factor == 0 &&
15111          "Invalid interleaved store");
15112 
15113   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
15114   Type *EltTy = VecTy->getVectorElementType();
15115   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
15116 
15117   const DataLayout &DL = SI->getModule()->getDataLayout();
15118 
15119   // Skip if we do not have NEON and skip illegal vector types. We can
15120   // "legalize" wide vector types into multiple interleaved accesses as long as
15121   // the vector types are divisible by 128.
15122   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
15123     return false;
15124 
15125   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
15126 
15127   Value *Op0 = SVI->getOperand(0);
15128   Value *Op1 = SVI->getOperand(1);
15129   IRBuilder<> Builder(SI);
15130 
15131   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
15132   // vectors to integer vectors.
15133   if (EltTy->isPointerTy()) {
15134     Type *IntTy = DL.getIntPtrType(EltTy);
15135 
15136     // Convert to the corresponding integer vector.
15137     Type *IntVecTy =
15138         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
15139     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
15140     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
15141 
15142     SubVecTy = VectorType::get(IntTy, LaneLen);
15143   }
15144 
15145   // The base address of the store.
15146   Value *BaseAddr = SI->getPointerOperand();
15147 
15148   if (NumStores > 1) {
15149     // If we're going to generate more than one store, reset the lane length
15150     // and sub-vector type to something legal.
15151     LaneLen /= NumStores;
15152     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
15153 
15154     // We will compute the pointer operand of each store from the original base
15155     // address using GEPs. Cast the base address to a pointer to the scalar
15156     // element type.
15157     BaseAddr = Builder.CreateBitCast(
15158         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
15159                       SI->getPointerAddressSpace()));
15160   }
15161 
15162   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
15163 
15164   auto Mask = SVI->getShuffleMask();
15165 
15166   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
15167   Type *Tys[] = {Int8Ptr, SubVecTy};
15168   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
15169                                              Intrinsic::arm_neon_vst3,
15170                                              Intrinsic::arm_neon_vst4};
15171 
15172   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
15173     // If we generating more than one store, we compute the base address of
15174     // subsequent stores as an offset from the previous.
15175     if (StoreCount > 0)
15176       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
15177                                             BaseAddr, LaneLen * Factor);
15178 
15179     SmallVector<Value *, 6> Ops;
15180     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
15181 
15182     Function *VstNFunc =
15183         Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
15184 
15185     // Split the shufflevector operands into sub vectors for the new vstN call.
15186     for (unsigned i = 0; i < Factor; i++) {
15187       unsigned IdxI = StoreCount * LaneLen * Factor + i;
15188       if (Mask[IdxI] >= 0) {
15189         Ops.push_back(Builder.CreateShuffleVector(
15190             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
15191       } else {
15192         unsigned StartMask = 0;
15193         for (unsigned j = 1; j < LaneLen; j++) {
15194           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
15195           if (Mask[IdxJ * Factor + IdxI] >= 0) {
15196             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
15197             break;
15198           }
15199         }
15200         // Note: If all elements in a chunk are undefs, StartMask=0!
15201         // Note: Filling undef gaps with random elements is ok, since
15202         // those elements were being written anyway (with undefs).
15203         // In the case of all undefs we're defaulting to using elems from 0
15204         // Note: StartMask cannot be negative, it's checked in
15205         // isReInterleaveMask
15206         Ops.push_back(Builder.CreateShuffleVector(
15207             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
15208       }
15209     }
15210 
15211     Ops.push_back(Builder.getInt32(SI->getAlignment()));
15212     Builder.CreateCall(VstNFunc, Ops);
15213   }
15214   return true;
15215 }
15216 
15217 enum HABaseType {
15218   HA_UNKNOWN = 0,
15219   HA_FLOAT,
15220   HA_DOUBLE,
15221   HA_VECT64,
15222   HA_VECT128
15223 };
15224 
15225 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
15226                                    uint64_t &Members) {
15227   if (auto *ST = dyn_cast<StructType>(Ty)) {
15228     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
15229       uint64_t SubMembers = 0;
15230       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
15231         return false;
15232       Members += SubMembers;
15233     }
15234   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
15235     uint64_t SubMembers = 0;
15236     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
15237       return false;
15238     Members += SubMembers * AT->getNumElements();
15239   } else if (Ty->isFloatTy()) {
15240     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
15241       return false;
15242     Members = 1;
15243     Base = HA_FLOAT;
15244   } else if (Ty->isDoubleTy()) {
15245     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
15246       return false;
15247     Members = 1;
15248     Base = HA_DOUBLE;
15249   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
15250     Members = 1;
15251     switch (Base) {
15252     case HA_FLOAT:
15253     case HA_DOUBLE:
15254       return false;
15255     case HA_VECT64:
15256       return VT->getBitWidth() == 64;
15257     case HA_VECT128:
15258       return VT->getBitWidth() == 128;
15259     case HA_UNKNOWN:
15260       switch (VT->getBitWidth()) {
15261       case 64:
15262         Base = HA_VECT64;
15263         return true;
15264       case 128:
15265         Base = HA_VECT128;
15266         return true;
15267       default:
15268         return false;
15269       }
15270     }
15271   }
15272 
15273   return (Members > 0 && Members <= 4);
15274 }
15275 
15276 /// Return the correct alignment for the current calling convention.
15277 unsigned
15278 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
15279                                                  DataLayout DL) const {
15280   if (!ArgTy->isVectorTy())
15281     return DL.getABITypeAlignment(ArgTy);
15282 
15283   // Avoid over-aligning vector parameters. It would require realigning the
15284   // stack and waste space for no real benefit.
15285   return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
15286 }
15287 
15288 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
15289 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
15290 /// passing according to AAPCS rules.
15291 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
15292     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
15293   if (getEffectiveCallingConv(CallConv, isVarArg) !=
15294       CallingConv::ARM_AAPCS_VFP)
15295     return false;
15296 
15297   HABaseType Base = HA_UNKNOWN;
15298   uint64_t Members = 0;
15299   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
15300   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
15301 
15302   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
15303   return IsHA || IsIntArray;
15304 }
15305 
15306 unsigned ARMTargetLowering::getExceptionPointerRegister(
15307     const Constant *PersonalityFn) const {
15308   // Platforms which do not use SjLj EH may return values in these registers
15309   // via the personality function.
15310   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
15311 }
15312 
15313 unsigned ARMTargetLowering::getExceptionSelectorRegister(
15314     const Constant *PersonalityFn) const {
15315   // Platforms which do not use SjLj EH may return values in these registers
15316   // via the personality function.
15317   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
15318 }
15319 
15320 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15321   // Update IsSplitCSR in ARMFunctionInfo.
15322   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
15323   AFI->setIsSplitCSR(true);
15324 }
15325 
15326 void ARMTargetLowering::insertCopiesSplitCSR(
15327     MachineBasicBlock *Entry,
15328     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15329   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
15330   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15331   if (!IStart)
15332     return;
15333 
15334   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
15335   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15336   MachineBasicBlock::iterator MBBI = Entry->begin();
15337   for (const MCPhysReg *I = IStart; *I; ++I) {
15338     const TargetRegisterClass *RC = nullptr;
15339     if (ARM::GPRRegClass.contains(*I))
15340       RC = &ARM::GPRRegClass;
15341     else if (ARM::DPRRegClass.contains(*I))
15342       RC = &ARM::DPRRegClass;
15343     else
15344       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15345 
15346     unsigned NewVR = MRI->createVirtualRegister(RC);
15347     // Create copy from CSR to a virtual register.
15348     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15349     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15350     // nounwind. If we want to generalize this later, we may need to emit
15351     // CFI pseudo-instructions.
15352     assert(Entry->getParent()->getFunction().hasFnAttribute(
15353                Attribute::NoUnwind) &&
15354            "Function should be nounwind in insertCopiesSplitCSR!");
15355     Entry->addLiveIn(*I);
15356     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15357         .addReg(*I);
15358 
15359     // Insert the copy-back instructions right before the terminator.
15360     for (auto *Exit : Exits)
15361       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15362               TII->get(TargetOpcode::COPY), *I)
15363           .addReg(NewVR);
15364   }
15365 }
15366 
15367 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
15368   MF.getFrameInfo().computeMaxCallFrameSize(MF);
15369   TargetLoweringBase::finalizeLowering(MF);
15370 }
15371