1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCInstrDesc.h"
87 #include "llvm/MC/MCInstrItineraries.h"
88 #include "llvm/MC/MCRegisterInfo.h"
89 #include "llvm/MC/MCSchedule.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/BranchProbability.h"
92 #include "llvm/Support/Casting.h"
93 #include "llvm/Support/CodeGen.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/KnownBits.h"
99 #include "llvm/Support/MachineValueType.h"
100 #include "llvm/Support/MathExtras.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Target/TargetOptions.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstdint>
107 #include <cstdlib>
108 #include <iterator>
109 #include <limits>
110 #include <string>
111 #include <tuple>
112 #include <utility>
113 #include <vector>
114 
115 using namespace llvm;
116 using namespace llvm::PatternMatch;
117 
118 #define DEBUG_TYPE "arm-isel"
119 
120 STATISTIC(NumTailCalls, "Number of tail calls");
121 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
122 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
123 STATISTIC(NumConstpoolPromoted,
124   "Number of constants with their storage promoted into constant pools");
125 
126 static cl::opt<bool>
127 ARMInterworking("arm-interworking", cl::Hidden,
128   cl::desc("Enable / disable ARM interworking (for debugging only)"),
129   cl::init(true));
130 
131 static cl::opt<bool> EnableConstpoolPromotion(
132     "arm-promote-constant", cl::Hidden,
133     cl::desc("Enable / disable promotion of unnamed_addr constants into "
134              "constant pools"),
135     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
136 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
137     "arm-promote-constant-max-size", cl::Hidden,
138     cl::desc("Maximum size of constant to promote into a constant pool"),
139     cl::init(64));
140 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
141     "arm-promote-constant-max-total", cl::Hidden,
142     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
143     cl::init(128));
144 
145 // The APCS parameter registers.
146 static const MCPhysReg GPRArgRegs[] = {
147   ARM::R0, ARM::R1, ARM::R2, ARM::R3
148 };
149 
150 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
151                                        MVT PromotedBitwiseVT) {
152   if (VT != PromotedLdStVT) {
153     setOperationAction(ISD::LOAD, VT, Promote);
154     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
155 
156     setOperationAction(ISD::STORE, VT, Promote);
157     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
158   }
159 
160   MVT ElemTy = VT.getVectorElementType();
161   if (ElemTy != MVT::f64)
162     setOperationAction(ISD::SETCC, VT, Custom);
163   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
164   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
165   if (ElemTy == MVT::i32) {
166     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
167     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
168     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
169     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
170   } else {
171     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
172     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
173     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
174     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
175   }
176   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
177   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
178   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
179   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
180   setOperationAction(ISD::SELECT,            VT, Expand);
181   setOperationAction(ISD::SELECT_CC,         VT, Expand);
182   setOperationAction(ISD::VSELECT,           VT, Expand);
183   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
184   if (VT.isInteger()) {
185     setOperationAction(ISD::SHL, VT, Custom);
186     setOperationAction(ISD::SRA, VT, Custom);
187     setOperationAction(ISD::SRL, VT, Custom);
188   }
189 
190   // Promote all bit-wise operations.
191   if (VT.isInteger() && VT != PromotedBitwiseVT) {
192     setOperationAction(ISD::AND, VT, Promote);
193     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
194     setOperationAction(ISD::OR,  VT, Promote);
195     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
196     setOperationAction(ISD::XOR, VT, Promote);
197     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
198   }
199 
200   // Neon does not support vector divide/remainder operations.
201   setOperationAction(ISD::SDIV, VT, Expand);
202   setOperationAction(ISD::UDIV, VT, Expand);
203   setOperationAction(ISD::FDIV, VT, Expand);
204   setOperationAction(ISD::SREM, VT, Expand);
205   setOperationAction(ISD::UREM, VT, Expand);
206   setOperationAction(ISD::FREM, VT, Expand);
207 
208   if (!VT.isFloatingPoint() &&
209       VT != MVT::v2i64 && VT != MVT::v1i64)
210     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
211       setOperationAction(Opcode, VT, Legal);
212 }
213 
214 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
215   addRegisterClass(VT, &ARM::DPRRegClass);
216   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
217 }
218 
219 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
220   addRegisterClass(VT, &ARM::DPairRegClass);
221   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
222 }
223 
224 void ARMTargetLowering::setAllExpand(MVT VT) {
225   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
226     setOperationAction(Opc, VT, Expand);
227 
228   // We support these really simple operations even on types where all
229   // the actual arithmetic has to be broken down into simpler
230   // operations or turned into library calls.
231   setOperationAction(ISD::BITCAST, VT, Legal);
232   setOperationAction(ISD::LOAD, VT, Legal);
233   setOperationAction(ISD::STORE, VT, Legal);
234   setOperationAction(ISD::UNDEF, VT, Legal);
235 }
236 
237 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
238                                        LegalizeAction Action) {
239   setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
240   setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
241   setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
242 }
243 
244 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
245   const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
246 
247   for (auto VT : IntTypes) {
248     addRegisterClass(VT, &ARM::QPRRegClass);
249     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
250     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
251     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
252     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
253 
254     // No native support for these.
255     setOperationAction(ISD::UDIV, VT, Expand);
256     setOperationAction(ISD::SDIV, VT, Expand);
257     setOperationAction(ISD::UREM, VT, Expand);
258     setOperationAction(ISD::SREM, VT, Expand);
259   }
260 
261   const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
262   for (auto VT : FloatTypes) {
263     addRegisterClass(VT, &ARM::QPRRegClass);
264     if (!HasMVEFP)
265       setAllExpand(VT);
266 
267     // These are legal or custom whether we have MVE.fp or not
268     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
269     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
270     setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
271     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
272     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
273     setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
274     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
275 
276     if (HasMVEFP) {
277       // No native support for these.
278       setOperationAction(ISD::FDIV, VT, Expand);
279       setOperationAction(ISD::FREM, VT, Expand);
280       setOperationAction(ISD::FSQRT, VT, Expand);
281       setOperationAction(ISD::FSIN, VT, Expand);
282       setOperationAction(ISD::FCOS, VT, Expand);
283       setOperationAction(ISD::FPOW, VT, Expand);
284       setOperationAction(ISD::FLOG, VT, Expand);
285       setOperationAction(ISD::FLOG2, VT, Expand);
286       setOperationAction(ISD::FLOG10, VT, Expand);
287       setOperationAction(ISD::FEXP, VT, Expand);
288       setOperationAction(ISD::FEXP2, VT, Expand);
289     }
290   }
291 
292   // We 'support' these types up to bitcast/load/store level, regardless of
293   // MVE integer-only / float support. Only doing FP data processing on the FP
294   // vector types is inhibited at integer-only level.
295   const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
296   for (auto VT : LongTypes) {
297     addRegisterClass(VT, &ARM::QPRRegClass);
298     setAllExpand(VT);
299     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
300     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
301     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
302   }
303 
304   // It is legal to extload from v4i8 to v4i16 or v4i32.
305   addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
306   addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
307   addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
308 
309   // Some truncating stores are legal too.
310   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
311   setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
312   setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);
313 }
314 
315 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
316                                      const ARMSubtarget &STI)
317     : TargetLowering(TM), Subtarget(&STI) {
318   RegInfo = Subtarget->getRegisterInfo();
319   Itins = Subtarget->getInstrItineraryData();
320 
321   setBooleanContents(ZeroOrOneBooleanContent);
322   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
323 
324   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
325       !Subtarget->isTargetWatchOS()) {
326     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
327     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
328       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
329                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
330                                        : CallingConv::ARM_AAPCS);
331   }
332 
333   if (Subtarget->isTargetMachO()) {
334     // Uses VFP for Thumb libfuncs if available.
335     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
336         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
337       static const struct {
338         const RTLIB::Libcall Op;
339         const char * const Name;
340         const ISD::CondCode Cond;
341       } LibraryCalls[] = {
342         // Single-precision floating-point arithmetic.
343         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
344         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
345         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
346         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
347 
348         // Double-precision floating-point arithmetic.
349         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
350         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
351         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
352         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
353 
354         // Single-precision comparisons.
355         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
356         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
357         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
358         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
359         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
360         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
361         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
362         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
363 
364         // Double-precision comparisons.
365         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
366         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
367         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
368         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
369         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
370         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
371         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
372         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
373 
374         // Floating-point to integer conversions.
375         // i64 conversions are done via library routines even when generating VFP
376         // instructions, so use the same ones.
377         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
378         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
379         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
380         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
381 
382         // Conversions between floating types.
383         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
384         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
385 
386         // Integer to floating-point conversions.
387         // i64 conversions are done via library routines even when generating VFP
388         // instructions, so use the same ones.
389         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
390         // e.g., __floatunsidf vs. __floatunssidfvfp.
391         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
392         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
393         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
394         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
395       };
396 
397       for (const auto &LC : LibraryCalls) {
398         setLibcallName(LC.Op, LC.Name);
399         if (LC.Cond != ISD::SETCC_INVALID)
400           setCmpLibcallCC(LC.Op, LC.Cond);
401       }
402     }
403   }
404 
405   // These libcalls are not available in 32-bit.
406   setLibcallName(RTLIB::SHL_I128, nullptr);
407   setLibcallName(RTLIB::SRL_I128, nullptr);
408   setLibcallName(RTLIB::SRA_I128, nullptr);
409 
410   // RTLIB
411   if (Subtarget->isAAPCS_ABI() &&
412       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
413        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
414     static const struct {
415       const RTLIB::Libcall Op;
416       const char * const Name;
417       const CallingConv::ID CC;
418       const ISD::CondCode Cond;
419     } LibraryCalls[] = {
420       // Double-precision floating-point arithmetic helper functions
421       // RTABI chapter 4.1.2, Table 2
422       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
423       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
424       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
425       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
426 
427       // Double-precision floating-point comparison helper functions
428       // RTABI chapter 4.1.2, Table 3
429       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
430       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
431       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
432       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
433       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
434       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
435       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
436       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
437 
438       // Single-precision floating-point arithmetic helper functions
439       // RTABI chapter 4.1.2, Table 4
440       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
441       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
442       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
443       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
444 
445       // Single-precision floating-point comparison helper functions
446       // RTABI chapter 4.1.2, Table 5
447       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
448       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
449       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
450       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
451       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
452       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
453       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
454       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
455 
456       // Floating-point to integer conversions.
457       // RTABI chapter 4.1.2, Table 6
458       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
459       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
460       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
461       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
462       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
463       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
464       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
465       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
466 
467       // Conversions between floating types.
468       // RTABI chapter 4.1.2, Table 7
469       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
470       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
471       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
472 
473       // Integer to floating-point conversions.
474       // RTABI chapter 4.1.2, Table 8
475       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
476       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
477       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
478       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
479       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
480       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
481       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
482       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
483 
484       // Long long helper functions
485       // RTABI chapter 4.2, Table 9
486       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
487       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
488       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
489       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
490 
491       // Integer division functions
492       // RTABI chapter 4.3.1
493       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
494       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
495       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
496       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
497       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
498       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
499       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
500       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
501     };
502 
503     for (const auto &LC : LibraryCalls) {
504       setLibcallName(LC.Op, LC.Name);
505       setLibcallCallingConv(LC.Op, LC.CC);
506       if (LC.Cond != ISD::SETCC_INVALID)
507         setCmpLibcallCC(LC.Op, LC.Cond);
508     }
509 
510     // EABI dependent RTLIB
511     if (TM.Options.EABIVersion == EABI::EABI4 ||
512         TM.Options.EABIVersion == EABI::EABI5) {
513       static const struct {
514         const RTLIB::Libcall Op;
515         const char *const Name;
516         const CallingConv::ID CC;
517         const ISD::CondCode Cond;
518       } MemOpsLibraryCalls[] = {
519         // Memory operations
520         // RTABI chapter 4.3.4
521         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
522         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
523         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
524       };
525 
526       for (const auto &LC : MemOpsLibraryCalls) {
527         setLibcallName(LC.Op, LC.Name);
528         setLibcallCallingConv(LC.Op, LC.CC);
529         if (LC.Cond != ISD::SETCC_INVALID)
530           setCmpLibcallCC(LC.Op, LC.Cond);
531       }
532     }
533   }
534 
535   if (Subtarget->isTargetWindows()) {
536     static const struct {
537       const RTLIB::Libcall Op;
538       const char * const Name;
539       const CallingConv::ID CC;
540     } LibraryCalls[] = {
541       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
542       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
543       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
544       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
545       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
546       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
547       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
548       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
549     };
550 
551     for (const auto &LC : LibraryCalls) {
552       setLibcallName(LC.Op, LC.Name);
553       setLibcallCallingConv(LC.Op, LC.CC);
554     }
555   }
556 
557   // Use divmod compiler-rt calls for iOS 5.0 and later.
558   if (Subtarget->isTargetMachO() &&
559       !(Subtarget->isTargetIOS() &&
560         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
561     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
562     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
563   }
564 
565   // The half <-> float conversion functions are always soft-float on
566   // non-watchos platforms, but are needed for some targets which use a
567   // hard-float calling convention by default.
568   if (!Subtarget->isTargetWatchABI()) {
569     if (Subtarget->isAAPCS_ABI()) {
570       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
571       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
572       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
573     } else {
574       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
575       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
576       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
577     }
578   }
579 
580   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
581   // a __gnu_ prefix (which is the default).
582   if (Subtarget->isTargetAEABI()) {
583     static const struct {
584       const RTLIB::Libcall Op;
585       const char * const Name;
586       const CallingConv::ID CC;
587     } LibraryCalls[] = {
588       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
589       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
590       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
591     };
592 
593     for (const auto &LC : LibraryCalls) {
594       setLibcallName(LC.Op, LC.Name);
595       setLibcallCallingConv(LC.Op, LC.CC);
596     }
597   }
598 
599   if (Subtarget->isThumb1Only())
600     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
601   else
602     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
603 
604   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
605       Subtarget->hasFPRegs()) {
606     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
607     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
608     if (!Subtarget->hasVFP2Base())
609       setAllExpand(MVT::f32);
610     if (!Subtarget->hasFP64())
611       setAllExpand(MVT::f64);
612   }
613 
614   if (Subtarget->hasFullFP16()) {
615     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
616     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
617     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
618     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
619 
620     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
621     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
622   }
623 
624   for (MVT VT : MVT::vector_valuetypes()) {
625     for (MVT InnerVT : MVT::vector_valuetypes()) {
626       setTruncStoreAction(VT, InnerVT, Expand);
627       addAllExtLoads(VT, InnerVT, Expand);
628     }
629 
630     setOperationAction(ISD::MULHS, VT, Expand);
631     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
632     setOperationAction(ISD::MULHU, VT, Expand);
633     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
634 
635     setOperationAction(ISD::BSWAP, VT, Expand);
636   }
637 
638   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
639   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
640 
641   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
642   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
643 
644   if (Subtarget->hasMVEIntegerOps())
645     addMVEVectorTypes(Subtarget->hasMVEFloatOps());
646 
647   // Combine low-overhead loop intrinsics so that we can lower i1 types.
648   if (Subtarget->hasLOB())
649     setTargetDAGCombine(ISD::BRCOND);
650 
651   if (Subtarget->hasNEON()) {
652     addDRTypeForNEON(MVT::v2f32);
653     addDRTypeForNEON(MVT::v8i8);
654     addDRTypeForNEON(MVT::v4i16);
655     addDRTypeForNEON(MVT::v2i32);
656     addDRTypeForNEON(MVT::v1i64);
657 
658     addQRTypeForNEON(MVT::v4f32);
659     addQRTypeForNEON(MVT::v2f64);
660     addQRTypeForNEON(MVT::v16i8);
661     addQRTypeForNEON(MVT::v8i16);
662     addQRTypeForNEON(MVT::v4i32);
663     addQRTypeForNEON(MVT::v2i64);
664 
665     if (Subtarget->hasFullFP16()) {
666       addQRTypeForNEON(MVT::v8f16);
667       addDRTypeForNEON(MVT::v4f16);
668     }
669   }
670 
671   if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
672     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
673     // none of Neon, MVE or VFP supports any arithmetic operations on it.
674     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
675     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
676     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
677     // FIXME: Code duplication: FDIV and FREM are expanded always, see
678     // ARMTargetLowering::addTypeForNEON method for details.
679     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
680     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
681     // FIXME: Create unittest.
682     // In another words, find a way when "copysign" appears in DAG with vector
683     // operands.
684     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
685     // FIXME: Code duplication: SETCC has custom operation action, see
686     // ARMTargetLowering::addTypeForNEON method for details.
687     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
688     // FIXME: Create unittest for FNEG and for FABS.
689     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
690     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
691     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
692     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
693     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
694     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
695     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
696     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
697     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
698     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
699     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
700     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
701     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
702     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
703     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
704     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
705     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
706     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
707   }
708 
709   if (Subtarget->hasNEON()) {
710     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
711     // supported for v4f32.
712     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
713     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
714     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
715     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
716     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
717     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
718     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
719     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
720     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
721     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
722     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
723     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
724     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
725     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
726 
727     // Mark v2f32 intrinsics.
728     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
729     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
730     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
731     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
732     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
733     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
734     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
735     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
736     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
737     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
738     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
739     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
740     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
741     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
742 
743     // Neon does not support some operations on v1i64 and v2i64 types.
744     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
745     // Custom handling for some quad-vector types to detect VMULL.
746     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
747     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
748     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
749     // Custom handling for some vector types to avoid expensive expansions
750     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
751     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
752     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
753     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
754     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
755     // a destination type that is wider than the source, and nor does
756     // it have a FP_TO_[SU]INT instruction with a narrower destination than
757     // source.
758     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
759     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
760     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
761     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
762     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
763     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
764     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
765     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
766 
767     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
768     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
769 
770     // NEON does not have single instruction CTPOP for vectors with element
771     // types wider than 8-bits.  However, custom lowering can leverage the
772     // v8i8/v16i8 vcnt instruction.
773     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
774     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
775     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
776     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
777     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
778     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
779 
780     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
781     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
782 
783     // NEON does not have single instruction CTTZ for vectors.
784     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
785     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
786     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
787     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
788 
789     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
790     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
791     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
792     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
793 
794     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
795     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
796     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
797     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
798 
799     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
800     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
801     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
802     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
803 
804     // NEON only has FMA instructions as of VFP4.
805     if (!Subtarget->hasVFP4Base()) {
806       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
807       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
808     }
809 
810     setTargetDAGCombine(ISD::INTRINSIC_VOID);
811     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
812     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
813     setTargetDAGCombine(ISD::SHL);
814     setTargetDAGCombine(ISD::SRL);
815     setTargetDAGCombine(ISD::SRA);
816     setTargetDAGCombine(ISD::SIGN_EXTEND);
817     setTargetDAGCombine(ISD::ZERO_EXTEND);
818     setTargetDAGCombine(ISD::ANY_EXTEND);
819     setTargetDAGCombine(ISD::BUILD_VECTOR);
820     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
821     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
822     setTargetDAGCombine(ISD::STORE);
823     setTargetDAGCombine(ISD::FP_TO_SINT);
824     setTargetDAGCombine(ISD::FP_TO_UINT);
825     setTargetDAGCombine(ISD::FDIV);
826     setTargetDAGCombine(ISD::LOAD);
827 
828     // It is legal to extload from v4i8 to v4i16 or v4i32.
829     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
830                    MVT::v2i32}) {
831       for (MVT VT : MVT::integer_vector_valuetypes()) {
832         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
833         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
834         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
835       }
836     }
837   }
838 
839   if (!Subtarget->hasFP64()) {
840     // When targeting a floating-point unit with only single-precision
841     // operations, f64 is legal for the few double-precision instructions which
842     // are present However, no double-precision operations other than moves,
843     // loads and stores are provided by the hardware.
844     setOperationAction(ISD::FADD,       MVT::f64, Expand);
845     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
846     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
847     setOperationAction(ISD::FMA,        MVT::f64, Expand);
848     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
849     setOperationAction(ISD::FREM,       MVT::f64, Expand);
850     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
851     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
852     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
853     setOperationAction(ISD::FABS,       MVT::f64, Expand);
854     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
855     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
856     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
857     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
858     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
859     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
860     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
861     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
862     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
863     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
864     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
865     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
866     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
867     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
868     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
869     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
870     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
871     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
872     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
873     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
874     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
875   }
876 
877   if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()){
878     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
879     setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
880   }
881 
882   if (!Subtarget->hasFP16())
883     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);
884 
885   if (!Subtarget->hasFP64())
886     setOperationAction(ISD::FP_ROUND,  MVT::f32, Custom);
887 
888   computeRegisterProperties(Subtarget->getRegisterInfo());
889 
890   // ARM does not have floating-point extending loads.
891   for (MVT VT : MVT::fp_valuetypes()) {
892     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
893     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
894   }
895 
896   // ... or truncating stores
897   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
898   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
899   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
900 
901   // ARM does not have i1 sign extending load.
902   for (MVT VT : MVT::integer_valuetypes())
903     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
904 
905   // ARM supports all 4 flavors of integer indexed load / store.
906   if (!Subtarget->isThumb1Only()) {
907     for (unsigned im = (unsigned)ISD::PRE_INC;
908          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
909       setIndexedLoadAction(im,  MVT::i1,  Legal);
910       setIndexedLoadAction(im,  MVT::i8,  Legal);
911       setIndexedLoadAction(im,  MVT::i16, Legal);
912       setIndexedLoadAction(im,  MVT::i32, Legal);
913       setIndexedStoreAction(im, MVT::i1,  Legal);
914       setIndexedStoreAction(im, MVT::i8,  Legal);
915       setIndexedStoreAction(im, MVT::i16, Legal);
916       setIndexedStoreAction(im, MVT::i32, Legal);
917     }
918   } else {
919     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
920     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
921     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
922   }
923 
924   setOperationAction(ISD::SADDO, MVT::i32, Custom);
925   setOperationAction(ISD::UADDO, MVT::i32, Custom);
926   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
927   setOperationAction(ISD::USUBO, MVT::i32, Custom);
928 
929   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
930   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
931 
932   // i64 operation support.
933   setOperationAction(ISD::MUL,     MVT::i64, Expand);
934   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
935   if (Subtarget->isThumb1Only()) {
936     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
937     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
938   }
939   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
940       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
941     setOperationAction(ISD::MULHS, MVT::i32, Expand);
942 
943   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
944   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
945   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
946   setOperationAction(ISD::SRL,       MVT::i64, Custom);
947   setOperationAction(ISD::SRA,       MVT::i64, Custom);
948   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
949 
950   // MVE lowers 64 bit shifts to lsll and lsrl
951   // assuming that ISD::SRL and SRA of i64 are already marked custom
952   if (Subtarget->hasMVEIntegerOps())
953     setOperationAction(ISD::SHL, MVT::i64, Custom);
954 
955   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
956   if (Subtarget->isThumb1Only()) {
957     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
958     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
959     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
960   }
961 
962   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
963     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
964 
965   // ARM does not have ROTL.
966   setOperationAction(ISD::ROTL, MVT::i32, Expand);
967   for (MVT VT : MVT::vector_valuetypes()) {
968     setOperationAction(ISD::ROTL, VT, Expand);
969     setOperationAction(ISD::ROTR, VT, Expand);
970   }
971   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
972   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
973   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
974     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
975     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
976   }
977 
978   // @llvm.readcyclecounter requires the Performance Monitors extension.
979   // Default to the 0 expansion on unsupported platforms.
980   // FIXME: Technically there are older ARM CPUs that have
981   // implementation-specific ways of obtaining this information.
982   if (Subtarget->hasPerfMon())
983     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
984 
985   // Only ARMv6 has BSWAP.
986   if (!Subtarget->hasV6Ops())
987     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
988 
989   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
990                                         : Subtarget->hasDivideInARMMode();
991   if (!hasDivide) {
992     // These are expanded into libcalls if the cpu doesn't have HW divider.
993     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
994     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
995   }
996 
997   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
998     setOperationAction(ISD::SDIV, MVT::i32, Custom);
999     setOperationAction(ISD::UDIV, MVT::i32, Custom);
1000 
1001     setOperationAction(ISD::SDIV, MVT::i64, Custom);
1002     setOperationAction(ISD::UDIV, MVT::i64, Custom);
1003   }
1004 
1005   setOperationAction(ISD::SREM,  MVT::i32, Expand);
1006   setOperationAction(ISD::UREM,  MVT::i32, Expand);
1007 
1008   // Register based DivRem for AEABI (RTABI 4.2)
1009   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1010       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1011       Subtarget->isTargetWindows()) {
1012     setOperationAction(ISD::SREM, MVT::i64, Custom);
1013     setOperationAction(ISD::UREM, MVT::i64, Custom);
1014     HasStandaloneRem = false;
1015 
1016     if (Subtarget->isTargetWindows()) {
1017       const struct {
1018         const RTLIB::Libcall Op;
1019         const char * const Name;
1020         const CallingConv::ID CC;
1021       } LibraryCalls[] = {
1022         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1023         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1024         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1025         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1026 
1027         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1028         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1029         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1030         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1031       };
1032 
1033       for (const auto &LC : LibraryCalls) {
1034         setLibcallName(LC.Op, LC.Name);
1035         setLibcallCallingConv(LC.Op, LC.CC);
1036       }
1037     } else {
1038       const struct {
1039         const RTLIB::Libcall Op;
1040         const char * const Name;
1041         const CallingConv::ID CC;
1042       } LibraryCalls[] = {
1043         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1044         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1045         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1046         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1047 
1048         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1049         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1050         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1051         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1052       };
1053 
1054       for (const auto &LC : LibraryCalls) {
1055         setLibcallName(LC.Op, LC.Name);
1056         setLibcallCallingConv(LC.Op, LC.CC);
1057       }
1058     }
1059 
1060     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1061     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1062     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1063     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1064   } else {
1065     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1066     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1067   }
1068 
1069   if (Subtarget->isTargetWindows() && Subtarget->getTargetTriple().isOSMSVCRT())
1070     for (auto &VT : {MVT::f32, MVT::f64})
1071       setOperationAction(ISD::FPOWI, VT, Custom);
1072 
1073   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1074   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1075   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1076   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1077 
1078   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1079   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1080 
1081   // Use the default implementation.
1082   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1083   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1084   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1085   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1086   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1087   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1088 
1089   if (Subtarget->isTargetWindows())
1090     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1091   else
1092     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1093 
1094   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1095   // the default expansion.
1096   InsertFencesForAtomic = false;
1097   if (Subtarget->hasAnyDataBarrier() &&
1098       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1099     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1100     // to ldrex/strex loops already.
1101     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1102     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1103       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1104 
1105     // On v8, we have particularly efficient implementations of atomic fences
1106     // if they can be combined with nearby atomic loads and stores.
1107     if (!Subtarget->hasAcquireRelease() ||
1108         getTargetMachine().getOptLevel() == 0) {
1109       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1110       InsertFencesForAtomic = true;
1111     }
1112   } else {
1113     // If there's anything we can use as a barrier, go through custom lowering
1114     // for ATOMIC_FENCE.
1115     // If target has DMB in thumb, Fences can be inserted.
1116     if (Subtarget->hasDataBarrier())
1117       InsertFencesForAtomic = true;
1118 
1119     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1120                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1121 
1122     // Set them all for expansion, which will force libcalls.
1123     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1124     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1125     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1126     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1127     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1128     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1129     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1130     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1131     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1132     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1133     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1134     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1135     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1136     // Unordered/Monotonic case.
1137     if (!InsertFencesForAtomic) {
1138       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1139       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1140     }
1141   }
1142 
1143   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1144 
1145   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1146   if (!Subtarget->hasV6Ops()) {
1147     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1148     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1149   }
1150   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1151 
1152   if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1153       !Subtarget->isThumb1Only()) {
1154     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1155     // iff target supports vfp2.
1156     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1157     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1158   }
1159 
1160   // We want to custom lower some of our intrinsics.
1161   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1162   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1163   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1164   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1165   if (Subtarget->useSjLjEH())
1166     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1167 
1168   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1169   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1170   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1171   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1172   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1173   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1174   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1175   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1176   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1177   if (Subtarget->hasFullFP16()) {
1178     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1179     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1180     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1181   }
1182 
1183   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1184 
1185   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1186   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1187   if (Subtarget->hasFullFP16())
1188       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1189   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1190   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1191   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1192 
1193   // We don't support sin/cos/fmod/copysign/pow
1194   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1195   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1196   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1197   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1198   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1199   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1200   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1201   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1202   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1203       !Subtarget->isThumb1Only()) {
1204     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1205     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1206   }
1207   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1208   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1209 
1210   if (!Subtarget->hasVFP4Base()) {
1211     setOperationAction(ISD::FMA, MVT::f64, Expand);
1212     setOperationAction(ISD::FMA, MVT::f32, Expand);
1213   }
1214 
1215   // Various VFP goodness
1216   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1217     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1218     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1219       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1220       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1221     }
1222 
1223     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1224     if (!Subtarget->hasFP16()) {
1225       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1226       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1227     }
1228   }
1229 
1230   // Use __sincos_stret if available.
1231   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1232       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1233     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1234     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1235   }
1236 
1237   // FP-ARMv8 implements a lot of rounding-like FP operations.
1238   if (Subtarget->hasFPARMv8Base()) {
1239     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1240     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1241     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1242     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1243     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1244     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1245     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1246     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1247     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1248     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1249     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1250     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1251 
1252     if (Subtarget->hasFP64()) {
1253       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1254       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1255       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1256       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1257       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1258       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1259       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1260       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1261     }
1262   }
1263 
1264   // FP16 often need to be promoted to call lib functions
1265   if (Subtarget->hasFullFP16()) {
1266     setOperationAction(ISD::FREM, MVT::f16, Promote);
1267     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1268     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1269     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1270     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1271     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1272     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1273     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1274     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1275     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1276     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1277     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1278 
1279     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1280   }
1281 
1282   if (Subtarget->hasNEON()) {
1283     // vmin and vmax aren't available in a scalar form, so we use
1284     // a NEON instruction with an undef lane instead.
1285     setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1286     setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1287     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1288     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1289     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1290     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1291     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1292     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1293 
1294     if (Subtarget->hasFullFP16()) {
1295       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1296       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1297       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1298       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1299 
1300       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1301       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1302       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1303       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1304     }
1305   }
1306 
1307   // We have target-specific dag combine patterns for the following nodes:
1308   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1309   setTargetDAGCombine(ISD::ADD);
1310   setTargetDAGCombine(ISD::SUB);
1311   setTargetDAGCombine(ISD::MUL);
1312   setTargetDAGCombine(ISD::AND);
1313   setTargetDAGCombine(ISD::OR);
1314   setTargetDAGCombine(ISD::XOR);
1315 
1316   if (Subtarget->hasV6Ops())
1317     setTargetDAGCombine(ISD::SRL);
1318   if (Subtarget->isThumb1Only())
1319     setTargetDAGCombine(ISD::SHL);
1320 
1321   setStackPointerRegisterToSaveRestore(ARM::SP);
1322 
1323   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1324       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1325     setSchedulingPreference(Sched::RegPressure);
1326   else
1327     setSchedulingPreference(Sched::Hybrid);
1328 
1329   //// temporary - rewrite interface to use type
1330   MaxStoresPerMemset = 8;
1331   MaxStoresPerMemsetOptSize = 4;
1332   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1333   MaxStoresPerMemcpyOptSize = 2;
1334   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1335   MaxStoresPerMemmoveOptSize = 2;
1336 
1337   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1338   // are at least 4 bytes aligned.
1339   setMinStackArgumentAlignment(4);
1340 
1341   // Prefer likely predicted branches to selects on out-of-order cores.
1342   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1343 
1344   setPrefLoopAlignment(Subtarget->getPrefLoopAlignment());
1345 
1346   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1347 
1348   if (Subtarget->isThumb() || Subtarget->isThumb2())
1349     setTargetDAGCombine(ISD::ABS);
1350 }
1351 
1352 bool ARMTargetLowering::useSoftFloat() const {
1353   return Subtarget->useSoftFloat();
1354 }
1355 
1356 // FIXME: It might make sense to define the representative register class as the
1357 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1358 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1359 // SPR's representative would be DPR_VFP2. This should work well if register
1360 // pressure tracking were modified such that a register use would increment the
1361 // pressure of the register class's representative and all of it's super
1362 // classes' representatives transitively. We have not implemented this because
1363 // of the difficulty prior to coalescing of modeling operand register classes
1364 // due to the common occurrence of cross class copies and subregister insertions
1365 // and extractions.
1366 std::pair<const TargetRegisterClass *, uint8_t>
1367 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1368                                            MVT VT) const {
1369   const TargetRegisterClass *RRC = nullptr;
1370   uint8_t Cost = 1;
1371   switch (VT.SimpleTy) {
1372   default:
1373     return TargetLowering::findRepresentativeClass(TRI, VT);
1374   // Use DPR as representative register class for all floating point
1375   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1376   // the cost is 1 for both f32 and f64.
1377   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1378   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1379     RRC = &ARM::DPRRegClass;
1380     // When NEON is used for SP, only half of the register file is available
1381     // because operations that define both SP and DP results will be constrained
1382     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1383     // coalescing by double-counting the SP regs. See the FIXME above.
1384     if (Subtarget->useNEONForSinglePrecisionFP())
1385       Cost = 2;
1386     break;
1387   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1388   case MVT::v4f32: case MVT::v2f64:
1389     RRC = &ARM::DPRRegClass;
1390     Cost = 2;
1391     break;
1392   case MVT::v4i64:
1393     RRC = &ARM::DPRRegClass;
1394     Cost = 4;
1395     break;
1396   case MVT::v8i64:
1397     RRC = &ARM::DPRRegClass;
1398     Cost = 8;
1399     break;
1400   }
1401   return std::make_pair(RRC, Cost);
1402 }
1403 
1404 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1405   switch ((ARMISD::NodeType)Opcode) {
1406   case ARMISD::FIRST_NUMBER:  break;
1407   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1408   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1409   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1410   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1411   case ARMISD::CALL:          return "ARMISD::CALL";
1412   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1413   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1414   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1415   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1416   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1417   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1418   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1419   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1420   case ARMISD::CMP:           return "ARMISD::CMP";
1421   case ARMISD::CMN:           return "ARMISD::CMN";
1422   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1423   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1424   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1425   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1426   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1427 
1428   case ARMISD::CMOV:          return "ARMISD::CMOV";
1429   case ARMISD::SUBS:          return "ARMISD::SUBS";
1430 
1431   case ARMISD::SSAT:          return "ARMISD::SSAT";
1432   case ARMISD::USAT:          return "ARMISD::USAT";
1433 
1434   case ARMISD::ASRL:          return "ARMISD::ASRL";
1435   case ARMISD::LSRL:          return "ARMISD::LSRL";
1436   case ARMISD::LSLL:          return "ARMISD::LSLL";
1437 
1438   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1439   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1440   case ARMISD::RRX:           return "ARMISD::RRX";
1441 
1442   case ARMISD::ADDC:          return "ARMISD::ADDC";
1443   case ARMISD::ADDE:          return "ARMISD::ADDE";
1444   case ARMISD::SUBC:          return "ARMISD::SUBC";
1445   case ARMISD::SUBE:          return "ARMISD::SUBE";
1446 
1447   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1448   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1449   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
1450   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
1451   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
1452 
1453   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1454   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1455   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1456 
1457   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1458 
1459   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1460 
1461   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1462 
1463   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1464 
1465   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1466 
1467   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1468   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1469 
1470   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1471   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1472   case ARMISD::VCGE:          return "ARMISD::VCGE";
1473   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1474   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1475   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1476   case ARMISD::VCGT:          return "ARMISD::VCGT";
1477   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1478   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1479   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1480   case ARMISD::VTST:          return "ARMISD::VTST";
1481 
1482   case ARMISD::VSHL:          return "ARMISD::VSHL";
1483   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1484   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1485   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1486   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1487   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1488   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1489   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1490   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1491   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1492   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1493   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1494   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1495   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1496   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1497   case ARMISD::VSLI:          return "ARMISD::VSLI";
1498   case ARMISD::VSRI:          return "ARMISD::VSRI";
1499   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1500   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1501   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1502   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1503   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1504   case ARMISD::VDUP:          return "ARMISD::VDUP";
1505   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1506   case ARMISD::VEXT:          return "ARMISD::VEXT";
1507   case ARMISD::VREV64:        return "ARMISD::VREV64";
1508   case ARMISD::VREV32:        return "ARMISD::VREV32";
1509   case ARMISD::VREV16:        return "ARMISD::VREV16";
1510   case ARMISD::VZIP:          return "ARMISD::VZIP";
1511   case ARMISD::VUZP:          return "ARMISD::VUZP";
1512   case ARMISD::VTRN:          return "ARMISD::VTRN";
1513   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1514   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1515   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1516   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1517   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1518   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1519   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1520   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
1521   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
1522   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
1523   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
1524   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
1525   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
1526   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
1527   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
1528   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
1529   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
1530   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
1531   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
1532   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1533   case ARMISD::BFI:           return "ARMISD::BFI";
1534   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1535   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1536   case ARMISD::VBSL:          return "ARMISD::VBSL";
1537   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1538   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1539   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1540   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1541   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1542   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1543   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1544   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1545   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1546   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1547   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1548   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1549   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1550   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1551   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1552   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1553   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1554   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1555   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1556   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1557   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1558   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1559   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1560   case ARMISD::WLS:           return "ARMISD::WLS";
1561   }
1562   return nullptr;
1563 }
1564 
1565 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1566                                           EVT VT) const {
1567   if (!VT.isVector())
1568     return getPointerTy(DL);
1569   return VT.changeVectorElementTypeToInteger();
1570 }
1571 
1572 /// getRegClassFor - Return the register class that should be used for the
1573 /// specified value type.
1574 const TargetRegisterClass *
1575 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1576   (void)isDivergent;
1577   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1578   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1579   // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1580   // MVE Q registers.
1581   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1582     if (VT == MVT::v4i64)
1583       return &ARM::QQPRRegClass;
1584     if (VT == MVT::v8i64)
1585       return &ARM::QQQQPRRegClass;
1586   }
1587   return TargetLowering::getRegClassFor(VT);
1588 }
1589 
1590 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1591 // source/dest is aligned and the copy size is large enough. We therefore want
1592 // to align such objects passed to memory intrinsics.
1593 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1594                                                unsigned &PrefAlign) const {
1595   if (!isa<MemIntrinsic>(CI))
1596     return false;
1597   MinSize = 8;
1598   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1599   // cycle faster than 4-byte aligned LDM.
1600   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1601   return true;
1602 }
1603 
1604 // Create a fast isel object.
1605 FastISel *
1606 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1607                                   const TargetLibraryInfo *libInfo) const {
1608   return ARM::createFastISel(funcInfo, libInfo);
1609 }
1610 
1611 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1612   unsigned NumVals = N->getNumValues();
1613   if (!NumVals)
1614     return Sched::RegPressure;
1615 
1616   for (unsigned i = 0; i != NumVals; ++i) {
1617     EVT VT = N->getValueType(i);
1618     if (VT == MVT::Glue || VT == MVT::Other)
1619       continue;
1620     if (VT.isFloatingPoint() || VT.isVector())
1621       return Sched::ILP;
1622   }
1623 
1624   if (!N->isMachineOpcode())
1625     return Sched::RegPressure;
1626 
1627   // Load are scheduled for latency even if there instruction itinerary
1628   // is not available.
1629   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1630   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1631 
1632   if (MCID.getNumDefs() == 0)
1633     return Sched::RegPressure;
1634   if (!Itins->isEmpty() &&
1635       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1636     return Sched::ILP;
1637 
1638   return Sched::RegPressure;
1639 }
1640 
1641 //===----------------------------------------------------------------------===//
1642 // Lowering Code
1643 //===----------------------------------------------------------------------===//
1644 
1645 static bool isSRL16(const SDValue &Op) {
1646   if (Op.getOpcode() != ISD::SRL)
1647     return false;
1648   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1649     return Const->getZExtValue() == 16;
1650   return false;
1651 }
1652 
1653 static bool isSRA16(const SDValue &Op) {
1654   if (Op.getOpcode() != ISD::SRA)
1655     return false;
1656   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1657     return Const->getZExtValue() == 16;
1658   return false;
1659 }
1660 
1661 static bool isSHL16(const SDValue &Op) {
1662   if (Op.getOpcode() != ISD::SHL)
1663     return false;
1664   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1665     return Const->getZExtValue() == 16;
1666   return false;
1667 }
1668 
1669 // Check for a signed 16-bit value. We special case SRA because it makes it
1670 // more simple when also looking for SRAs that aren't sign extending a
1671 // smaller value. Without the check, we'd need to take extra care with
1672 // checking order for some operations.
1673 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1674   if (isSRA16(Op))
1675     return isSHL16(Op.getOperand(0));
1676   return DAG.ComputeNumSignBits(Op) == 17;
1677 }
1678 
1679 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1680 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1681   switch (CC) {
1682   default: llvm_unreachable("Unknown condition code!");
1683   case ISD::SETNE:  return ARMCC::NE;
1684   case ISD::SETEQ:  return ARMCC::EQ;
1685   case ISD::SETGT:  return ARMCC::GT;
1686   case ISD::SETGE:  return ARMCC::GE;
1687   case ISD::SETLT:  return ARMCC::LT;
1688   case ISD::SETLE:  return ARMCC::LE;
1689   case ISD::SETUGT: return ARMCC::HI;
1690   case ISD::SETUGE: return ARMCC::HS;
1691   case ISD::SETULT: return ARMCC::LO;
1692   case ISD::SETULE: return ARMCC::LS;
1693   }
1694 }
1695 
1696 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1697 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1698                         ARMCC::CondCodes &CondCode2, bool &InvalidOnQNaN) {
1699   CondCode2 = ARMCC::AL;
1700   InvalidOnQNaN = true;
1701   switch (CC) {
1702   default: llvm_unreachable("Unknown FP condition!");
1703   case ISD::SETEQ:
1704   case ISD::SETOEQ:
1705     CondCode = ARMCC::EQ;
1706     InvalidOnQNaN = false;
1707     break;
1708   case ISD::SETGT:
1709   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1710   case ISD::SETGE:
1711   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1712   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1713   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1714   case ISD::SETONE:
1715     CondCode = ARMCC::MI;
1716     CondCode2 = ARMCC::GT;
1717     InvalidOnQNaN = false;
1718     break;
1719   case ISD::SETO:   CondCode = ARMCC::VC; break;
1720   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1721   case ISD::SETUEQ:
1722     CondCode = ARMCC::EQ;
1723     CondCode2 = ARMCC::VS;
1724     InvalidOnQNaN = false;
1725     break;
1726   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1727   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1728   case ISD::SETLT:
1729   case ISD::SETULT: CondCode = ARMCC::LT; break;
1730   case ISD::SETLE:
1731   case ISD::SETULE: CondCode = ARMCC::LE; break;
1732   case ISD::SETNE:
1733   case ISD::SETUNE:
1734     CondCode = ARMCC::NE;
1735     InvalidOnQNaN = false;
1736     break;
1737   }
1738 }
1739 
1740 //===----------------------------------------------------------------------===//
1741 //                      Calling Convention Implementation
1742 //===----------------------------------------------------------------------===//
1743 
1744 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1745 /// account presence of floating point hardware and calling convention
1746 /// limitations, such as support for variadic functions.
1747 CallingConv::ID
1748 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1749                                            bool isVarArg) const {
1750   switch (CC) {
1751   default:
1752     report_fatal_error("Unsupported calling convention");
1753   case CallingConv::ARM_AAPCS:
1754   case CallingConv::ARM_APCS:
1755   case CallingConv::GHC:
1756     return CC;
1757   case CallingConv::PreserveMost:
1758     return CallingConv::PreserveMost;
1759   case CallingConv::ARM_AAPCS_VFP:
1760   case CallingConv::Swift:
1761     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1762   case CallingConv::C:
1763     if (!Subtarget->isAAPCS_ABI())
1764       return CallingConv::ARM_APCS;
1765     else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
1766              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1767              !isVarArg)
1768       return CallingConv::ARM_AAPCS_VFP;
1769     else
1770       return CallingConv::ARM_AAPCS;
1771   case CallingConv::Fast:
1772   case CallingConv::CXX_FAST_TLS:
1773     if (!Subtarget->isAAPCS_ABI()) {
1774       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
1775         return CallingConv::Fast;
1776       return CallingConv::ARM_APCS;
1777     } else if (Subtarget->hasVFP2Base() &&
1778                !Subtarget->isThumb1Only() && !isVarArg)
1779       return CallingConv::ARM_AAPCS_VFP;
1780     else
1781       return CallingConv::ARM_AAPCS;
1782   }
1783 }
1784 
1785 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1786                                                  bool isVarArg) const {
1787   return CCAssignFnForNode(CC, false, isVarArg);
1788 }
1789 
1790 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1791                                                    bool isVarArg) const {
1792   return CCAssignFnForNode(CC, true, isVarArg);
1793 }
1794 
1795 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1796 /// CallingConvention.
1797 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1798                                                  bool Return,
1799                                                  bool isVarArg) const {
1800   switch (getEffectiveCallingConv(CC, isVarArg)) {
1801   default:
1802     report_fatal_error("Unsupported calling convention");
1803   case CallingConv::ARM_APCS:
1804     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1805   case CallingConv::ARM_AAPCS:
1806     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1807   case CallingConv::ARM_AAPCS_VFP:
1808     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1809   case CallingConv::Fast:
1810     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1811   case CallingConv::GHC:
1812     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1813   case CallingConv::PreserveMost:
1814     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1815   }
1816 }
1817 
1818 /// LowerCallResult - Lower the result values of a call into the
1819 /// appropriate copies out of appropriate physical registers.
1820 SDValue ARMTargetLowering::LowerCallResult(
1821     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1822     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1823     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1824     SDValue ThisVal) const {
1825   // Assign locations to each value returned by this call.
1826   SmallVector<CCValAssign, 16> RVLocs;
1827   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1828                  *DAG.getContext());
1829   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1830 
1831   // Copy all of the result registers out of their specified physreg.
1832   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1833     CCValAssign VA = RVLocs[i];
1834 
1835     // Pass 'this' value directly from the argument to return value, to avoid
1836     // reg unit interference
1837     if (i == 0 && isThisReturn) {
1838       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1839              "unexpected return calling convention register assignment");
1840       InVals.push_back(ThisVal);
1841       continue;
1842     }
1843 
1844     SDValue Val;
1845     if (VA.needsCustom()) {
1846       // Handle f64 or half of a v2f64.
1847       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1848                                       InFlag);
1849       Chain = Lo.getValue(1);
1850       InFlag = Lo.getValue(2);
1851       VA = RVLocs[++i]; // skip ahead to next loc
1852       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1853                                       InFlag);
1854       Chain = Hi.getValue(1);
1855       InFlag = Hi.getValue(2);
1856       if (!Subtarget->isLittle())
1857         std::swap (Lo, Hi);
1858       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1859 
1860       if (VA.getLocVT() == MVT::v2f64) {
1861         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1862         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1863                           DAG.getConstant(0, dl, MVT::i32));
1864 
1865         VA = RVLocs[++i]; // skip ahead to next loc
1866         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1867         Chain = Lo.getValue(1);
1868         InFlag = Lo.getValue(2);
1869         VA = RVLocs[++i]; // skip ahead to next loc
1870         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1871         Chain = Hi.getValue(1);
1872         InFlag = Hi.getValue(2);
1873         if (!Subtarget->isLittle())
1874           std::swap (Lo, Hi);
1875         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1876         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1877                           DAG.getConstant(1, dl, MVT::i32));
1878       }
1879     } else {
1880       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1881                                InFlag);
1882       Chain = Val.getValue(1);
1883       InFlag = Val.getValue(2);
1884     }
1885 
1886     switch (VA.getLocInfo()) {
1887     default: llvm_unreachable("Unknown loc info!");
1888     case CCValAssign::Full: break;
1889     case CCValAssign::BCvt:
1890       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1891       break;
1892     }
1893 
1894     InVals.push_back(Val);
1895   }
1896 
1897   return Chain;
1898 }
1899 
1900 /// LowerMemOpCallTo - Store the argument to the stack.
1901 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1902                                             SDValue Arg, const SDLoc &dl,
1903                                             SelectionDAG &DAG,
1904                                             const CCValAssign &VA,
1905                                             ISD::ArgFlagsTy Flags) const {
1906   unsigned LocMemOffset = VA.getLocMemOffset();
1907   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1908   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1909                        StackPtr, PtrOff);
1910   return DAG.getStore(
1911       Chain, dl, Arg, PtrOff,
1912       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
1913 }
1914 
1915 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1916                                          SDValue Chain, SDValue &Arg,
1917                                          RegsToPassVector &RegsToPass,
1918                                          CCValAssign &VA, CCValAssign &NextVA,
1919                                          SDValue &StackPtr,
1920                                          SmallVectorImpl<SDValue> &MemOpChains,
1921                                          ISD::ArgFlagsTy Flags) const {
1922   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1923                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1924   unsigned id = Subtarget->isLittle() ? 0 : 1;
1925   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1926 
1927   if (NextVA.isRegLoc())
1928     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1929   else {
1930     assert(NextVA.isMemLoc());
1931     if (!StackPtr.getNode())
1932       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1933                                     getPointerTy(DAG.getDataLayout()));
1934 
1935     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1936                                            dl, DAG, NextVA,
1937                                            Flags));
1938   }
1939 }
1940 
1941 /// LowerCall - Lowering a call into a callseq_start <-
1942 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1943 /// nodes.
1944 SDValue
1945 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1946                              SmallVectorImpl<SDValue> &InVals) const {
1947   SelectionDAG &DAG                     = CLI.DAG;
1948   SDLoc &dl                             = CLI.DL;
1949   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1950   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1951   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1952   SDValue Chain                         = CLI.Chain;
1953   SDValue Callee                        = CLI.Callee;
1954   bool &isTailCall                      = CLI.IsTailCall;
1955   CallingConv::ID CallConv              = CLI.CallConv;
1956   bool doesNotRet                       = CLI.DoesNotReturn;
1957   bool isVarArg                         = CLI.IsVarArg;
1958 
1959   MachineFunction &MF = DAG.getMachineFunction();
1960   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1961   bool isThisReturn = false;
1962   auto Attr = MF.getFunction().getFnAttribute("disable-tail-calls");
1963   bool PreferIndirect = false;
1964 
1965   // Disable tail calls if they're not supported.
1966   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1967     isTailCall = false;
1968 
1969   if (isa<GlobalAddressSDNode>(Callee)) {
1970     // If we're optimizing for minimum size and the function is called three or
1971     // more times in this block, we can improve codesize by calling indirectly
1972     // as BLXr has a 16-bit encoding.
1973     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
1974     auto *BB = CLI.CS.getParent();
1975     PreferIndirect =
1976         Subtarget->isThumb() && Subtarget->hasMinSize() &&
1977         count_if(GV->users(), [&BB](const User *U) {
1978           return isa<Instruction>(U) && cast<Instruction>(U)->getParent() == BB;
1979         }) > 2;
1980   }
1981   if (isTailCall) {
1982     // Check if it's really possible to do a tail call.
1983     isTailCall = IsEligibleForTailCallOptimization(
1984         Callee, CallConv, isVarArg, isStructRet,
1985         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
1986         PreferIndirect);
1987     if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
1988       report_fatal_error("failed to perform tail call elimination on a call "
1989                          "site marked musttail");
1990     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1991     // detected sibcalls.
1992     if (isTailCall)
1993       ++NumTailCalls;
1994   }
1995 
1996   // Analyze operands of the call, assigning locations to each operand.
1997   SmallVector<CCValAssign, 16> ArgLocs;
1998   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1999                  *DAG.getContext());
2000   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2001 
2002   // Get a count of how many bytes are to be pushed on the stack.
2003   unsigned NumBytes = CCInfo.getNextStackOffset();
2004 
2005   if (isTailCall) {
2006     // For tail calls, memory operands are available in our caller's stack.
2007     NumBytes = 0;
2008   } else {
2009     // Adjust the stack pointer for the new arguments...
2010     // These operations are automatically eliminated by the prolog/epilog pass
2011     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2012   }
2013 
2014   SDValue StackPtr =
2015       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2016 
2017   RegsToPassVector RegsToPass;
2018   SmallVector<SDValue, 8> MemOpChains;
2019 
2020   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2021   // of tail call optimization, arguments are handled later.
2022   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2023        i != e;
2024        ++i, ++realArgIdx) {
2025     CCValAssign &VA = ArgLocs[i];
2026     SDValue Arg = OutVals[realArgIdx];
2027     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2028     bool isByVal = Flags.isByVal();
2029 
2030     // Promote the value if needed.
2031     switch (VA.getLocInfo()) {
2032     default: llvm_unreachable("Unknown loc info!");
2033     case CCValAssign::Full: break;
2034     case CCValAssign::SExt:
2035       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2036       break;
2037     case CCValAssign::ZExt:
2038       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2039       break;
2040     case CCValAssign::AExt:
2041       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2042       break;
2043     case CCValAssign::BCvt:
2044       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2045       break;
2046     }
2047 
2048     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2049     if (VA.needsCustom()) {
2050       if (VA.getLocVT() == MVT::v2f64) {
2051         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2052                                   DAG.getConstant(0, dl, MVT::i32));
2053         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2054                                   DAG.getConstant(1, dl, MVT::i32));
2055 
2056         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
2057                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2058 
2059         VA = ArgLocs[++i]; // skip ahead to next loc
2060         if (VA.isRegLoc()) {
2061           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
2062                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2063         } else {
2064           assert(VA.isMemLoc());
2065 
2066           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
2067                                                  dl, DAG, VA, Flags));
2068         }
2069       } else {
2070         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2071                          StackPtr, MemOpChains, Flags);
2072       }
2073     } else if (VA.isRegLoc()) {
2074       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2075           Outs[0].VT == MVT::i32) {
2076         assert(VA.getLocVT() == MVT::i32 &&
2077                "unexpected calling convention register assignment");
2078         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2079                "unexpected use of 'returned'");
2080         isThisReturn = true;
2081       }
2082       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2083     } else if (isByVal) {
2084       assert(VA.isMemLoc());
2085       unsigned offset = 0;
2086 
2087       // True if this byval aggregate will be split between registers
2088       // and memory.
2089       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2090       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2091 
2092       if (CurByValIdx < ByValArgsCount) {
2093 
2094         unsigned RegBegin, RegEnd;
2095         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2096 
2097         EVT PtrVT =
2098             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2099         unsigned int i, j;
2100         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2101           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2102           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2103           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
2104                                      MachinePointerInfo(),
2105                                      DAG.InferPtrAlignment(AddArg));
2106           MemOpChains.push_back(Load.getValue(1));
2107           RegsToPass.push_back(std::make_pair(j, Load));
2108         }
2109 
2110         // If parameter size outsides register area, "offset" value
2111         // helps us to calculate stack slot for remained part properly.
2112         offset = RegEnd - RegBegin;
2113 
2114         CCInfo.nextInRegsParam();
2115       }
2116 
2117       if (Flags.getByValSize() > 4*offset) {
2118         auto PtrVT = getPointerTy(DAG.getDataLayout());
2119         unsigned LocMemOffset = VA.getLocMemOffset();
2120         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2121         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
2122         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2123         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2124         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2125                                            MVT::i32);
2126         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
2127                                             MVT::i32);
2128 
2129         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2130         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2131         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2132                                           Ops));
2133       }
2134     } else if (!isTailCall) {
2135       assert(VA.isMemLoc());
2136 
2137       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2138                                              dl, DAG, VA, Flags));
2139     }
2140   }
2141 
2142   if (!MemOpChains.empty())
2143     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2144 
2145   // Build a sequence of copy-to-reg nodes chained together with token chain
2146   // and flag operands which copy the outgoing args into the appropriate regs.
2147   SDValue InFlag;
2148   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2149     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2150                              RegsToPass[i].second, InFlag);
2151     InFlag = Chain.getValue(1);
2152   }
2153 
2154   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2155   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2156   // node so that legalize doesn't hack it.
2157   bool isDirect = false;
2158 
2159   const TargetMachine &TM = getTargetMachine();
2160   const Module *Mod = MF.getFunction().getParent();
2161   const GlobalValue *GV = nullptr;
2162   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2163     GV = G->getGlobal();
2164   bool isStub =
2165       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2166 
2167   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2168   bool isLocalARMFunc = false;
2169   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2170   auto PtrVt = getPointerTy(DAG.getDataLayout());
2171 
2172   if (Subtarget->genLongCalls()) {
2173     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2174            "long-calls codegen is not position independent!");
2175     // Handle a global address or an external symbol. If it's not one of
2176     // those, the target's already in a register, so we don't need to do
2177     // anything extra.
2178     if (isa<GlobalAddressSDNode>(Callee)) {
2179       // Create a constant pool entry for the callee address
2180       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2181       ARMConstantPoolValue *CPV =
2182         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2183 
2184       // Get the address of the callee into a register
2185       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2186       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2187       Callee = DAG.getLoad(
2188           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2189           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2190     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2191       const char *Sym = S->getSymbol();
2192 
2193       // Create a constant pool entry for the callee address
2194       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2195       ARMConstantPoolValue *CPV =
2196         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2197                                       ARMPCLabelIndex, 0);
2198       // Get the address of the callee into a register
2199       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2200       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2201       Callee = DAG.getLoad(
2202           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2203           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2204     }
2205   } else if (isa<GlobalAddressSDNode>(Callee)) {
2206     if (!PreferIndirect) {
2207       isDirect = true;
2208       bool isDef = GV->isStrongDefinitionForLinker();
2209 
2210       // ARM call to a local ARM function is predicable.
2211       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2212       // tBX takes a register source operand.
2213       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2214         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2215         Callee = DAG.getNode(
2216             ARMISD::WrapperPIC, dl, PtrVt,
2217             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2218         Callee = DAG.getLoad(
2219             PtrVt, dl, DAG.getEntryNode(), Callee,
2220             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2221             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2222                                      MachineMemOperand::MOInvariant);
2223       } else if (Subtarget->isTargetCOFF()) {
2224         assert(Subtarget->isTargetWindows() &&
2225                "Windows is the only supported COFF target");
2226         unsigned TargetFlags = GV->hasDLLImportStorageClass()
2227                                    ? ARMII::MO_DLLIMPORT
2228                                    : ARMII::MO_NO_FLAG;
2229         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0,
2230                                             TargetFlags);
2231         if (GV->hasDLLImportStorageClass())
2232           Callee =
2233               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2234                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2235                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2236       } else {
2237         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2238       }
2239     }
2240   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2241     isDirect = true;
2242     // tBX takes a register source operand.
2243     const char *Sym = S->getSymbol();
2244     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2245       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2246       ARMConstantPoolValue *CPV =
2247         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2248                                       ARMPCLabelIndex, 4);
2249       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2250       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2251       Callee = DAG.getLoad(
2252           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2253           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2254       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2255       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2256     } else {
2257       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2258     }
2259   }
2260 
2261   // FIXME: handle tail calls differently.
2262   unsigned CallOpc;
2263   if (Subtarget->isThumb()) {
2264     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2265       CallOpc = ARMISD::CALL_NOLINK;
2266     else
2267       CallOpc = ARMISD::CALL;
2268   } else {
2269     if (!isDirect && !Subtarget->hasV5TOps())
2270       CallOpc = ARMISD::CALL_NOLINK;
2271     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2272              // Emit regular call when code size is the priority
2273              !Subtarget->hasMinSize())
2274       // "mov lr, pc; b _foo" to avoid confusing the RSP
2275       CallOpc = ARMISD::CALL_NOLINK;
2276     else
2277       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2278   }
2279 
2280   std::vector<SDValue> Ops;
2281   Ops.push_back(Chain);
2282   Ops.push_back(Callee);
2283 
2284   // Add argument registers to the end of the list so that they are known live
2285   // into the call.
2286   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2287     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2288                                   RegsToPass[i].second.getValueType()));
2289 
2290   // Add a register mask operand representing the call-preserved registers.
2291   if (!isTailCall) {
2292     const uint32_t *Mask;
2293     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2294     if (isThisReturn) {
2295       // For 'this' returns, use the R0-preserving mask if applicable
2296       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2297       if (!Mask) {
2298         // Set isThisReturn to false if the calling convention is not one that
2299         // allows 'returned' to be modeled in this way, so LowerCallResult does
2300         // not try to pass 'this' straight through
2301         isThisReturn = false;
2302         Mask = ARI->getCallPreservedMask(MF, CallConv);
2303       }
2304     } else
2305       Mask = ARI->getCallPreservedMask(MF, CallConv);
2306 
2307     assert(Mask && "Missing call preserved mask for calling convention");
2308     Ops.push_back(DAG.getRegisterMask(Mask));
2309   }
2310 
2311   if (InFlag.getNode())
2312     Ops.push_back(InFlag);
2313 
2314   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2315   if (isTailCall) {
2316     MF.getFrameInfo().setHasTailCall();
2317     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2318   }
2319 
2320   // Returns a chain and a flag for retval copy to use.
2321   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2322   InFlag = Chain.getValue(1);
2323 
2324   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2325                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2326   if (!Ins.empty())
2327     InFlag = Chain.getValue(1);
2328 
2329   // Handle result values, copying them out of physregs into vregs that we
2330   // return.
2331   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2332                          InVals, isThisReturn,
2333                          isThisReturn ? OutVals[0] : SDValue());
2334 }
2335 
2336 /// HandleByVal - Every parameter *after* a byval parameter is passed
2337 /// on the stack.  Remember the next parameter register to allocate,
2338 /// and then confiscate the rest of the parameter registers to insure
2339 /// this.
2340 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2341                                     unsigned Align) const {
2342   // Byval (as with any stack) slots are always at least 4 byte aligned.
2343   Align = std::max(Align, 4U);
2344 
2345   unsigned Reg = State->AllocateReg(GPRArgRegs);
2346   if (!Reg)
2347     return;
2348 
2349   unsigned AlignInRegs = Align / 4;
2350   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2351   for (unsigned i = 0; i < Waste; ++i)
2352     Reg = State->AllocateReg(GPRArgRegs);
2353 
2354   if (!Reg)
2355     return;
2356 
2357   unsigned Excess = 4 * (ARM::R4 - Reg);
2358 
2359   // Special case when NSAA != SP and parameter size greater than size of
2360   // all remained GPR regs. In that case we can't split parameter, we must
2361   // send it to stack. We also must set NCRN to R4, so waste all
2362   // remained registers.
2363   const unsigned NSAAOffset = State->getNextStackOffset();
2364   if (NSAAOffset != 0 && Size > Excess) {
2365     while (State->AllocateReg(GPRArgRegs))
2366       ;
2367     return;
2368   }
2369 
2370   // First register for byval parameter is the first register that wasn't
2371   // allocated before this method call, so it would be "reg".
2372   // If parameter is small enough to be saved in range [reg, r4), then
2373   // the end (first after last) register would be reg + param-size-in-regs,
2374   // else parameter would be splitted between registers and stack,
2375   // end register would be r4 in this case.
2376   unsigned ByValRegBegin = Reg;
2377   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2378   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2379   // Note, first register is allocated in the beginning of function already,
2380   // allocate remained amount of registers we need.
2381   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2382     State->AllocateReg(GPRArgRegs);
2383   // A byval parameter that is split between registers and memory needs its
2384   // size truncated here.
2385   // In the case where the entire structure fits in registers, we set the
2386   // size in memory to zero.
2387   Size = std::max<int>(Size - Excess, 0);
2388 }
2389 
2390 /// MatchingStackOffset - Return true if the given stack call argument is
2391 /// already available in the same position (relatively) of the caller's
2392 /// incoming argument stack.
2393 static
2394 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2395                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2396                          const TargetInstrInfo *TII) {
2397   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2398   int FI = std::numeric_limits<int>::max();
2399   if (Arg.getOpcode() == ISD::CopyFromReg) {
2400     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2401     if (!TargetRegisterInfo::isVirtualRegister(VR))
2402       return false;
2403     MachineInstr *Def = MRI->getVRegDef(VR);
2404     if (!Def)
2405       return false;
2406     if (!Flags.isByVal()) {
2407       if (!TII->isLoadFromStackSlot(*Def, FI))
2408         return false;
2409     } else {
2410       return false;
2411     }
2412   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2413     if (Flags.isByVal())
2414       // ByVal argument is passed in as a pointer but it's now being
2415       // dereferenced. e.g.
2416       // define @foo(%struct.X* %A) {
2417       //   tail call @bar(%struct.X* byval %A)
2418       // }
2419       return false;
2420     SDValue Ptr = Ld->getBasePtr();
2421     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2422     if (!FINode)
2423       return false;
2424     FI = FINode->getIndex();
2425   } else
2426     return false;
2427 
2428   assert(FI != std::numeric_limits<int>::max());
2429   if (!MFI.isFixedObjectIndex(FI))
2430     return false;
2431   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2432 }
2433 
2434 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2435 /// for tail call optimization. Targets which want to do tail call
2436 /// optimization should implement this function.
2437 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2438     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2439     bool isCalleeStructRet, bool isCallerStructRet,
2440     const SmallVectorImpl<ISD::OutputArg> &Outs,
2441     const SmallVectorImpl<SDValue> &OutVals,
2442     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2443     const bool isIndirect) const {
2444   MachineFunction &MF = DAG.getMachineFunction();
2445   const Function &CallerF = MF.getFunction();
2446   CallingConv::ID CallerCC = CallerF.getCallingConv();
2447 
2448   assert(Subtarget->supportsTailCall());
2449 
2450   // Indirect tail calls cannot be optimized for Thumb1 if the args
2451   // to the call take up r0-r3. The reason is that there are no legal registers
2452   // left to hold the pointer to the function to be called.
2453   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2454       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2455     return false;
2456 
2457   // Look for obvious safe cases to perform tail call optimization that do not
2458   // require ABI changes. This is what gcc calls sibcall.
2459 
2460   // Exception-handling functions need a special set of instructions to indicate
2461   // a return to the hardware. Tail-calling another function would probably
2462   // break this.
2463   if (CallerF.hasFnAttribute("interrupt"))
2464     return false;
2465 
2466   // Also avoid sibcall optimization if either caller or callee uses struct
2467   // return semantics.
2468   if (isCalleeStructRet || isCallerStructRet)
2469     return false;
2470 
2471   // Externally-defined functions with weak linkage should not be
2472   // tail-called on ARM when the OS does not support dynamic
2473   // pre-emption of symbols, as the AAELF spec requires normal calls
2474   // to undefined weak functions to be replaced with a NOP or jump to the
2475   // next instruction. The behaviour of branch instructions in this
2476   // situation (as used for tail calls) is implementation-defined, so we
2477   // cannot rely on the linker replacing the tail call with a return.
2478   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2479     const GlobalValue *GV = G->getGlobal();
2480     const Triple &TT = getTargetMachine().getTargetTriple();
2481     if (GV->hasExternalWeakLinkage() &&
2482         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2483       return false;
2484   }
2485 
2486   // Check that the call results are passed in the same way.
2487   LLVMContext &C = *DAG.getContext();
2488   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2489                                   CCAssignFnForReturn(CalleeCC, isVarArg),
2490                                   CCAssignFnForReturn(CallerCC, isVarArg)))
2491     return false;
2492   // The callee has to preserve all registers the caller needs to preserve.
2493   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2494   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2495   if (CalleeCC != CallerCC) {
2496     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2497     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2498       return false;
2499   }
2500 
2501   // If Caller's vararg or byval argument has been split between registers and
2502   // stack, do not perform tail call, since part of the argument is in caller's
2503   // local frame.
2504   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2505   if (AFI_Caller->getArgRegsSaveSize())
2506     return false;
2507 
2508   // If the callee takes no arguments then go on to check the results of the
2509   // call.
2510   if (!Outs.empty()) {
2511     // Check if stack adjustment is needed. For now, do not do this if any
2512     // argument is passed on the stack.
2513     SmallVector<CCValAssign, 16> ArgLocs;
2514     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2515     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2516     if (CCInfo.getNextStackOffset()) {
2517       // Check if the arguments are already laid out in the right way as
2518       // the caller's fixed stack objects.
2519       MachineFrameInfo &MFI = MF.getFrameInfo();
2520       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2521       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2522       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2523            i != e;
2524            ++i, ++realArgIdx) {
2525         CCValAssign &VA = ArgLocs[i];
2526         EVT RegVT = VA.getLocVT();
2527         SDValue Arg = OutVals[realArgIdx];
2528         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2529         if (VA.getLocInfo() == CCValAssign::Indirect)
2530           return false;
2531         if (VA.needsCustom()) {
2532           // f64 and vector types are split into multiple registers or
2533           // register/stack-slot combinations.  The types will not match
2534           // the registers; give up on memory f64 refs until we figure
2535           // out what to do about this.
2536           if (!VA.isRegLoc())
2537             return false;
2538           if (!ArgLocs[++i].isRegLoc())
2539             return false;
2540           if (RegVT == MVT::v2f64) {
2541             if (!ArgLocs[++i].isRegLoc())
2542               return false;
2543             if (!ArgLocs[++i].isRegLoc())
2544               return false;
2545           }
2546         } else if (!VA.isRegLoc()) {
2547           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2548                                    MFI, MRI, TII))
2549             return false;
2550         }
2551       }
2552     }
2553 
2554     const MachineRegisterInfo &MRI = MF.getRegInfo();
2555     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2556       return false;
2557   }
2558 
2559   return true;
2560 }
2561 
2562 bool
2563 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2564                                   MachineFunction &MF, bool isVarArg,
2565                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2566                                   LLVMContext &Context) const {
2567   SmallVector<CCValAssign, 16> RVLocs;
2568   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2569   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2570 }
2571 
2572 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2573                                     const SDLoc &DL, SelectionDAG &DAG) {
2574   const MachineFunction &MF = DAG.getMachineFunction();
2575   const Function &F = MF.getFunction();
2576 
2577   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2578 
2579   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2580   // version of the "preferred return address". These offsets affect the return
2581   // instruction if this is a return from PL1 without hypervisor extensions.
2582   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2583   //    SWI:     0      "subs pc, lr, #0"
2584   //    ABORT:   +4     "subs pc, lr, #4"
2585   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2586   // UNDEF varies depending on where the exception came from ARM or Thumb
2587   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2588 
2589   int64_t LROffset;
2590   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2591       IntKind == "ABORT")
2592     LROffset = 4;
2593   else if (IntKind == "SWI" || IntKind == "UNDEF")
2594     LROffset = 0;
2595   else
2596     report_fatal_error("Unsupported interrupt attribute. If present, value "
2597                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2598 
2599   RetOps.insert(RetOps.begin() + 1,
2600                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2601 
2602   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2603 }
2604 
2605 SDValue
2606 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2607                                bool isVarArg,
2608                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2609                                const SmallVectorImpl<SDValue> &OutVals,
2610                                const SDLoc &dl, SelectionDAG &DAG) const {
2611   // CCValAssign - represent the assignment of the return value to a location.
2612   SmallVector<CCValAssign, 16> RVLocs;
2613 
2614   // CCState - Info about the registers and stack slots.
2615   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2616                  *DAG.getContext());
2617 
2618   // Analyze outgoing return values.
2619   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2620 
2621   SDValue Flag;
2622   SmallVector<SDValue, 4> RetOps;
2623   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2624   bool isLittleEndian = Subtarget->isLittle();
2625 
2626   MachineFunction &MF = DAG.getMachineFunction();
2627   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2628   AFI->setReturnRegsCount(RVLocs.size());
2629 
2630   // Copy the result values into the output registers.
2631   for (unsigned i = 0, realRVLocIdx = 0;
2632        i != RVLocs.size();
2633        ++i, ++realRVLocIdx) {
2634     CCValAssign &VA = RVLocs[i];
2635     assert(VA.isRegLoc() && "Can only return in registers!");
2636 
2637     SDValue Arg = OutVals[realRVLocIdx];
2638     bool ReturnF16 = false;
2639 
2640     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2641       // Half-precision return values can be returned like this:
2642       //
2643       // t11 f16 = fadd ...
2644       // t12: i16 = bitcast t11
2645       //   t13: i32 = zero_extend t12
2646       // t14: f32 = bitcast t13  <~~~~~~~ Arg
2647       //
2648       // to avoid code generation for bitcasts, we simply set Arg to the node
2649       // that produces the f16 value, t11 in this case.
2650       //
2651       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2652         SDValue ZE = Arg.getOperand(0);
2653         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2654           SDValue BC = ZE.getOperand(0);
2655           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2656             Arg = BC.getOperand(0);
2657             ReturnF16 = true;
2658           }
2659         }
2660       }
2661     }
2662 
2663     switch (VA.getLocInfo()) {
2664     default: llvm_unreachable("Unknown loc info!");
2665     case CCValAssign::Full: break;
2666     case CCValAssign::BCvt:
2667       if (!ReturnF16)
2668         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2669       break;
2670     }
2671 
2672     if (VA.needsCustom()) {
2673       if (VA.getLocVT() == MVT::v2f64) {
2674         // Extract the first half and return it in two registers.
2675         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2676                                    DAG.getConstant(0, dl, MVT::i32));
2677         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2678                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2679 
2680         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2681                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2682                                  Flag);
2683         Flag = Chain.getValue(1);
2684         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2685         VA = RVLocs[++i]; // skip ahead to next loc
2686         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2687                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2688                                  Flag);
2689         Flag = Chain.getValue(1);
2690         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2691         VA = RVLocs[++i]; // skip ahead to next loc
2692 
2693         // Extract the 2nd half and fall through to handle it as an f64 value.
2694         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2695                           DAG.getConstant(1, dl, MVT::i32));
2696       }
2697       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2698       // available.
2699       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2700                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2701       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2702                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2703                                Flag);
2704       Flag = Chain.getValue(1);
2705       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2706       VA = RVLocs[++i]; // skip ahead to next loc
2707       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2708                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2709                                Flag);
2710     } else
2711       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2712 
2713     // Guarantee that all emitted copies are
2714     // stuck together, avoiding something bad.
2715     Flag = Chain.getValue(1);
2716     RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2717                                      ReturnF16 ? MVT::f16 : VA.getLocVT()));
2718   }
2719   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2720   const MCPhysReg *I =
2721       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2722   if (I) {
2723     for (; *I; ++I) {
2724       if (ARM::GPRRegClass.contains(*I))
2725         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2726       else if (ARM::DPRRegClass.contains(*I))
2727         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2728       else
2729         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2730     }
2731   }
2732 
2733   // Update chain and glue.
2734   RetOps[0] = Chain;
2735   if (Flag.getNode())
2736     RetOps.push_back(Flag);
2737 
2738   // CPUs which aren't M-class use a special sequence to return from
2739   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2740   // though we use "subs pc, lr, #N").
2741   //
2742   // M-class CPUs actually use a normal return sequence with a special
2743   // (hardware-provided) value in LR, so the normal code path works.
2744   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2745       !Subtarget->isMClass()) {
2746     if (Subtarget->isThumb1Only())
2747       report_fatal_error("interrupt attribute is not supported in Thumb1");
2748     return LowerInterruptReturn(RetOps, dl, DAG);
2749   }
2750 
2751   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2752 }
2753 
2754 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2755   if (N->getNumValues() != 1)
2756     return false;
2757   if (!N->hasNUsesOfValue(1, 0))
2758     return false;
2759 
2760   SDValue TCChain = Chain;
2761   SDNode *Copy = *N->use_begin();
2762   if (Copy->getOpcode() == ISD::CopyToReg) {
2763     // If the copy has a glue operand, we conservatively assume it isn't safe to
2764     // perform a tail call.
2765     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2766       return false;
2767     TCChain = Copy->getOperand(0);
2768   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2769     SDNode *VMov = Copy;
2770     // f64 returned in a pair of GPRs.
2771     SmallPtrSet<SDNode*, 2> Copies;
2772     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2773          UI != UE; ++UI) {
2774       if (UI->getOpcode() != ISD::CopyToReg)
2775         return false;
2776       Copies.insert(*UI);
2777     }
2778     if (Copies.size() > 2)
2779       return false;
2780 
2781     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2782          UI != UE; ++UI) {
2783       SDValue UseChain = UI->getOperand(0);
2784       if (Copies.count(UseChain.getNode()))
2785         // Second CopyToReg
2786         Copy = *UI;
2787       else {
2788         // We are at the top of this chain.
2789         // If the copy has a glue operand, we conservatively assume it
2790         // isn't safe to perform a tail call.
2791         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2792           return false;
2793         // First CopyToReg
2794         TCChain = UseChain;
2795       }
2796     }
2797   } else if (Copy->getOpcode() == ISD::BITCAST) {
2798     // f32 returned in a single GPR.
2799     if (!Copy->hasOneUse())
2800       return false;
2801     Copy = *Copy->use_begin();
2802     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2803       return false;
2804     // If the copy has a glue operand, we conservatively assume it isn't safe to
2805     // perform a tail call.
2806     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2807       return false;
2808     TCChain = Copy->getOperand(0);
2809   } else {
2810     return false;
2811   }
2812 
2813   bool HasRet = false;
2814   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2815        UI != UE; ++UI) {
2816     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2817         UI->getOpcode() != ARMISD::INTRET_FLAG)
2818       return false;
2819     HasRet = true;
2820   }
2821 
2822   if (!HasRet)
2823     return false;
2824 
2825   Chain = TCChain;
2826   return true;
2827 }
2828 
2829 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2830   if (!Subtarget->supportsTailCall())
2831     return false;
2832 
2833   auto Attr =
2834       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2835   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2836     return false;
2837 
2838   return true;
2839 }
2840 
2841 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2842 // and pass the lower and high parts through.
2843 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2844   SDLoc DL(Op);
2845   SDValue WriteValue = Op->getOperand(2);
2846 
2847   // This function is only supposed to be called for i64 type argument.
2848   assert(WriteValue.getValueType() == MVT::i64
2849           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2850 
2851   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2852                            DAG.getConstant(0, DL, MVT::i32));
2853   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2854                            DAG.getConstant(1, DL, MVT::i32));
2855   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2856   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2857 }
2858 
2859 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2860 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2861 // one of the above mentioned nodes. It has to be wrapped because otherwise
2862 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2863 // be used to form addressing mode. These wrapped nodes will be selected
2864 // into MOVi.
2865 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
2866                                              SelectionDAG &DAG) const {
2867   EVT PtrVT = Op.getValueType();
2868   // FIXME there is no actual debug info here
2869   SDLoc dl(Op);
2870   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2871   SDValue Res;
2872 
2873   // When generating execute-only code Constant Pools must be promoted to the
2874   // global data section. It's a bit ugly that we can't share them across basic
2875   // blocks, but this way we guarantee that execute-only behaves correct with
2876   // position-independent addressing modes.
2877   if (Subtarget->genExecuteOnly()) {
2878     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2879     auto T = const_cast<Type*>(CP->getType());
2880     auto C = const_cast<Constant*>(CP->getConstVal());
2881     auto M = const_cast<Module*>(DAG.getMachineFunction().
2882                                  getFunction().getParent());
2883     auto GV = new GlobalVariable(
2884                     *M, T, /*isConst=*/true, GlobalVariable::InternalLinkage, C,
2885                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
2886                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
2887                     Twine(AFI->createPICLabelUId())
2888                   );
2889     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
2890                                             dl, PtrVT);
2891     return LowerGlobalAddress(GA, DAG);
2892   }
2893 
2894   if (CP->isMachineConstantPoolEntry())
2895     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2896                                     CP->getAlignment());
2897   else
2898     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2899                                     CP->getAlignment());
2900   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2901 }
2902 
2903 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2904   return MachineJumpTableInfo::EK_Inline;
2905 }
2906 
2907 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2908                                              SelectionDAG &DAG) const {
2909   MachineFunction &MF = DAG.getMachineFunction();
2910   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2911   unsigned ARMPCLabelIndex = 0;
2912   SDLoc DL(Op);
2913   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2914   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2915   SDValue CPAddr;
2916   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
2917   if (!IsPositionIndependent) {
2918     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2919   } else {
2920     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2921     ARMPCLabelIndex = AFI->createPICLabelUId();
2922     ARMConstantPoolValue *CPV =
2923       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2924                                       ARMCP::CPBlockAddress, PCAdj);
2925     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2926   }
2927   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2928   SDValue Result = DAG.getLoad(
2929       PtrVT, DL, DAG.getEntryNode(), CPAddr,
2930       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2931   if (!IsPositionIndependent)
2932     return Result;
2933   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2934   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2935 }
2936 
2937 /// Convert a TLS address reference into the correct sequence of loads
2938 /// and calls to compute the variable's address for Darwin, and return an
2939 /// SDValue containing the final node.
2940 
2941 /// Darwin only has one TLS scheme which must be capable of dealing with the
2942 /// fully general situation, in the worst case. This means:
2943 ///     + "extern __thread" declaration.
2944 ///     + Defined in a possibly unknown dynamic library.
2945 ///
2946 /// The general system is that each __thread variable has a [3 x i32] descriptor
2947 /// which contains information used by the runtime to calculate the address. The
2948 /// only part of this the compiler needs to know about is the first word, which
2949 /// contains a function pointer that must be called with the address of the
2950 /// entire descriptor in "r0".
2951 ///
2952 /// Since this descriptor may be in a different unit, in general access must
2953 /// proceed along the usual ARM rules. A common sequence to produce is:
2954 ///
2955 ///     movw rT1, :lower16:_var$non_lazy_ptr
2956 ///     movt rT1, :upper16:_var$non_lazy_ptr
2957 ///     ldr r0, [rT1]
2958 ///     ldr rT2, [r0]
2959 ///     blx rT2
2960 ///     [...address now in r0...]
2961 SDValue
2962 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2963                                                SelectionDAG &DAG) const {
2964   assert(Subtarget->isTargetDarwin() &&
2965          "This function expects a Darwin target");
2966   SDLoc DL(Op);
2967 
2968   // First step is to get the address of the actua global symbol. This is where
2969   // the TLS descriptor lives.
2970   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2971 
2972   // The first entry in the descriptor is a function pointer that we must call
2973   // to obtain the address of the variable.
2974   SDValue Chain = DAG.getEntryNode();
2975   SDValue FuncTLVGet = DAG.getLoad(
2976       MVT::i32, DL, Chain, DescAddr,
2977       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2978       /* Alignment = */ 4,
2979       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
2980           MachineMemOperand::MOInvariant);
2981   Chain = FuncTLVGet.getValue(1);
2982 
2983   MachineFunction &F = DAG.getMachineFunction();
2984   MachineFrameInfo &MFI = F.getFrameInfo();
2985   MFI.setAdjustsStack(true);
2986 
2987   // TLS calls preserve all registers except those that absolutely must be
2988   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2989   // silly).
2990   auto TRI =
2991       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
2992   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2993   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2994 
2995   // Finally, we can make the call. This is just a degenerate version of a
2996   // normal AArch64 call node: r0 takes the address of the descriptor, and
2997   // returns the address of the variable in this thread.
2998   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2999   Chain =
3000       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3001                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3002                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3003   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3004 }
3005 
3006 SDValue
3007 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3008                                                 SelectionDAG &DAG) const {
3009   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3010 
3011   SDValue Chain = DAG.getEntryNode();
3012   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3013   SDLoc DL(Op);
3014 
3015   // Load the current TEB (thread environment block)
3016   SDValue Ops[] = {Chain,
3017                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3018                    DAG.getConstant(15, DL, MVT::i32),
3019                    DAG.getConstant(0, DL, MVT::i32),
3020                    DAG.getConstant(13, DL, MVT::i32),
3021                    DAG.getConstant(0, DL, MVT::i32),
3022                    DAG.getConstant(2, DL, MVT::i32)};
3023   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3024                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
3025 
3026   SDValue TEB = CurrentTEB.getValue(0);
3027   Chain = CurrentTEB.getValue(1);
3028 
3029   // Load the ThreadLocalStoragePointer from the TEB
3030   // A pointer to the TLS array is located at offset 0x2c from the TEB.
3031   SDValue TLSArray =
3032       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3033   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3034 
3035   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3036   // offset into the TLSArray.
3037 
3038   // Load the TLS index from the C runtime
3039   SDValue TLSIndex =
3040       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3041   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3042   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3043 
3044   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3045                               DAG.getConstant(2, DL, MVT::i32));
3046   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3047                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3048                             MachinePointerInfo());
3049 
3050   // Get the offset of the start of the .tls section (section base)
3051   const auto *GA = cast<GlobalAddressSDNode>(Op);
3052   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3053   SDValue Offset = DAG.getLoad(
3054       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3055                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
3056       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3057 
3058   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3059 }
3060 
3061 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3062 SDValue
3063 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3064                                                  SelectionDAG &DAG) const {
3065   SDLoc dl(GA);
3066   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3067   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3068   MachineFunction &MF = DAG.getMachineFunction();
3069   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3070   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3071   ARMConstantPoolValue *CPV =
3072     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3073                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3074   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3075   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3076   Argument = DAG.getLoad(
3077       PtrVT, dl, DAG.getEntryNode(), Argument,
3078       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3079   SDValue Chain = Argument.getValue(1);
3080 
3081   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3082   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3083 
3084   // call __tls_get_addr.
3085   ArgListTy Args;
3086   ArgListEntry Entry;
3087   Entry.Node = Argument;
3088   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3089   Args.push_back(Entry);
3090 
3091   // FIXME: is there useful debug info available here?
3092   TargetLowering::CallLoweringInfo CLI(DAG);
3093   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3094       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3095       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3096 
3097   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3098   return CallResult.first;
3099 }
3100 
3101 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3102 // "local exec" model.
3103 SDValue
3104 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3105                                         SelectionDAG &DAG,
3106                                         TLSModel::Model model) const {
3107   const GlobalValue *GV = GA->getGlobal();
3108   SDLoc dl(GA);
3109   SDValue Offset;
3110   SDValue Chain = DAG.getEntryNode();
3111   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3112   // Get the Thread Pointer
3113   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3114 
3115   if (model == TLSModel::InitialExec) {
3116     MachineFunction &MF = DAG.getMachineFunction();
3117     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3118     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3119     // Initial exec model.
3120     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3121     ARMConstantPoolValue *CPV =
3122       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3123                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3124                                       true);
3125     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3126     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3127     Offset = DAG.getLoad(
3128         PtrVT, dl, Chain, Offset,
3129         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3130     Chain = Offset.getValue(1);
3131 
3132     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3133     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3134 
3135     Offset = DAG.getLoad(
3136         PtrVT, dl, Chain, Offset,
3137         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3138   } else {
3139     // local exec model
3140     assert(model == TLSModel::LocalExec);
3141     ARMConstantPoolValue *CPV =
3142       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3143     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3144     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3145     Offset = DAG.getLoad(
3146         PtrVT, dl, Chain, Offset,
3147         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3148   }
3149 
3150   // The address of the thread local variable is the add of the thread
3151   // pointer with the offset of the variable.
3152   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3153 }
3154 
3155 SDValue
3156 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3157   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3158   if (DAG.getTarget().useEmulatedTLS())
3159     return LowerToTLSEmulatedModel(GA, DAG);
3160 
3161   if (Subtarget->isTargetDarwin())
3162     return LowerGlobalTLSAddressDarwin(Op, DAG);
3163 
3164   if (Subtarget->isTargetWindows())
3165     return LowerGlobalTLSAddressWindows(Op, DAG);
3166 
3167   // TODO: implement the "local dynamic" model
3168   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3169   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3170 
3171   switch (model) {
3172     case TLSModel::GeneralDynamic:
3173     case TLSModel::LocalDynamic:
3174       return LowerToTLSGeneralDynamicModel(GA, DAG);
3175     case TLSModel::InitialExec:
3176     case TLSModel::LocalExec:
3177       return LowerToTLSExecModels(GA, DAG, model);
3178   }
3179   llvm_unreachable("bogus TLS model");
3180 }
3181 
3182 /// Return true if all users of V are within function F, looking through
3183 /// ConstantExprs.
3184 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3185   SmallVector<const User*,4> Worklist;
3186   for (auto *U : V->users())
3187     Worklist.push_back(U);
3188   while (!Worklist.empty()) {
3189     auto *U = Worklist.pop_back_val();
3190     if (isa<ConstantExpr>(U)) {
3191       for (auto *UU : U->users())
3192         Worklist.push_back(UU);
3193       continue;
3194     }
3195 
3196     auto *I = dyn_cast<Instruction>(U);
3197     if (!I || I->getParent()->getParent() != F)
3198       return false;
3199   }
3200   return true;
3201 }
3202 
3203 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3204                                      const GlobalValue *GV, SelectionDAG &DAG,
3205                                      EVT PtrVT, const SDLoc &dl) {
3206   // If we're creating a pool entry for a constant global with unnamed address,
3207   // and the global is small enough, we can emit it inline into the constant pool
3208   // to save ourselves an indirection.
3209   //
3210   // This is a win if the constant is only used in one function (so it doesn't
3211   // need to be duplicated) or duplicating the constant wouldn't increase code
3212   // size (implying the constant is no larger than 4 bytes).
3213   const Function &F = DAG.getMachineFunction().getFunction();
3214 
3215   // We rely on this decision to inline being idemopotent and unrelated to the
3216   // use-site. We know that if we inline a variable at one use site, we'll
3217   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3218   // doesn't know about this optimization, so bail out if it's enabled else
3219   // we could decide to inline here (and thus never emit the GV) but require
3220   // the GV from fast-isel generated code.
3221   if (!EnableConstpoolPromotion ||
3222       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3223       return SDValue();
3224 
3225   auto *GVar = dyn_cast<GlobalVariable>(GV);
3226   if (!GVar || !GVar->hasInitializer() ||
3227       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3228       !GVar->hasLocalLinkage())
3229     return SDValue();
3230 
3231   // If we inline a value that contains relocations, we move the relocations
3232   // from .data to .text. This is not allowed in position-independent code.
3233   auto *Init = GVar->getInitializer();
3234   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3235       Init->needsRelocation())
3236     return SDValue();
3237 
3238   // The constant islands pass can only really deal with alignment requests
3239   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3240   // any type wanting greater alignment requirements than 4 bytes. We also
3241   // can only promote constants that are multiples of 4 bytes in size or
3242   // are paddable to a multiple of 4. Currently we only try and pad constants
3243   // that are strings for simplicity.
3244   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3245   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3246   unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
3247   unsigned RequiredPadding = 4 - (Size % 4);
3248   bool PaddingPossible =
3249     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3250   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3251       Size == 0)
3252     return SDValue();
3253 
3254   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3255   MachineFunction &MF = DAG.getMachineFunction();
3256   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3257 
3258   // We can't bloat the constant pool too much, else the ConstantIslands pass
3259   // may fail to converge. If we haven't promoted this global yet (it may have
3260   // multiple uses), and promoting it would increase the constant pool size (Sz
3261   // > 4), ensure we have space to do so up to MaxTotal.
3262   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3263     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3264         ConstpoolPromotionMaxTotal)
3265       return SDValue();
3266 
3267   // This is only valid if all users are in a single function; we can't clone
3268   // the constant in general. The LLVM IR unnamed_addr allows merging
3269   // constants, but not cloning them.
3270   //
3271   // We could potentially allow cloning if we could prove all uses of the
3272   // constant in the current function don't care about the address, like
3273   // printf format strings. But that isn't implemented for now.
3274   if (!allUsersAreInFunction(GVar, &F))
3275     return SDValue();
3276 
3277   // We're going to inline this global. Pad it out if needed.
3278   if (RequiredPadding != 4) {
3279     StringRef S = CDAInit->getAsString();
3280 
3281     SmallVector<uint8_t,16> V(S.size());
3282     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3283     while (RequiredPadding--)
3284       V.push_back(0);
3285     Init = ConstantDataArray::get(*DAG.getContext(), V);
3286   }
3287 
3288   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3289   SDValue CPAddr =
3290     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3291   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3292     AFI->markGlobalAsPromotedToConstantPool(GVar);
3293     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3294                                       PaddedSize - 4);
3295   }
3296   ++NumConstpoolPromoted;
3297   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3298 }
3299 
3300 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3301   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3302     if (!(GV = GA->getBaseObject()))
3303       return false;
3304   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3305     return V->isConstant();
3306   return isa<Function>(GV);
3307 }
3308 
3309 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3310                                               SelectionDAG &DAG) const {
3311   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3312   default: llvm_unreachable("unknown object format");
3313   case Triple::COFF:
3314     return LowerGlobalAddressWindows(Op, DAG);
3315   case Triple::ELF:
3316     return LowerGlobalAddressELF(Op, DAG);
3317   case Triple::MachO:
3318     return LowerGlobalAddressDarwin(Op, DAG);
3319   }
3320 }
3321 
3322 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3323                                                  SelectionDAG &DAG) const {
3324   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3325   SDLoc dl(Op);
3326   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3327   const TargetMachine &TM = getTargetMachine();
3328   bool IsRO = isReadOnly(GV);
3329 
3330   // promoteToConstantPool only if not generating XO text section
3331   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3332     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3333       return V;
3334 
3335   if (isPositionIndependent()) {
3336     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3337     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3338                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3339     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3340     if (UseGOT_PREL)
3341       Result =
3342           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3343                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3344     return Result;
3345   } else if (Subtarget->isROPI() && IsRO) {
3346     // PC-relative.
3347     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3348     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3349     return Result;
3350   } else if (Subtarget->isRWPI() && !IsRO) {
3351     // SB-relative.
3352     SDValue RelAddr;
3353     if (Subtarget->useMovt()) {
3354       ++NumMovwMovt;
3355       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3356       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3357     } else { // use literal pool for address constant
3358       ARMConstantPoolValue *CPV =
3359         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3360       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3361       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3362       RelAddr = DAG.getLoad(
3363           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3364           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3365     }
3366     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3367     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3368     return Result;
3369   }
3370 
3371   // If we have T2 ops, we can materialize the address directly via movt/movw
3372   // pair. This is always cheaper.
3373   if (Subtarget->useMovt()) {
3374     ++NumMovwMovt;
3375     // FIXME: Once remat is capable of dealing with instructions with register
3376     // operands, expand this into two nodes.
3377     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3378                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3379   } else {
3380     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3381     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3382     return DAG.getLoad(
3383         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3384         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3385   }
3386 }
3387 
3388 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3389                                                     SelectionDAG &DAG) const {
3390   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3391          "ROPI/RWPI not currently supported for Darwin");
3392   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3393   SDLoc dl(Op);
3394   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3395 
3396   if (Subtarget->useMovt())
3397     ++NumMovwMovt;
3398 
3399   // FIXME: Once remat is capable of dealing with instructions with register
3400   // operands, expand this into multiple nodes
3401   unsigned Wrapper =
3402       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3403 
3404   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3405   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3406 
3407   if (Subtarget->isGVIndirectSymbol(GV))
3408     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3409                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3410   return Result;
3411 }
3412 
3413 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3414                                                      SelectionDAG &DAG) const {
3415   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3416   assert(Subtarget->useMovt() &&
3417          "Windows on ARM expects to use movw/movt");
3418   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3419          "ROPI/RWPI not currently supported for Windows");
3420 
3421   const TargetMachine &TM = getTargetMachine();
3422   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3423   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3424   if (GV->hasDLLImportStorageClass())
3425     TargetFlags = ARMII::MO_DLLIMPORT;
3426   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3427     TargetFlags = ARMII::MO_COFFSTUB;
3428   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3429   SDValue Result;
3430   SDLoc DL(Op);
3431 
3432   ++NumMovwMovt;
3433 
3434   // FIXME: Once remat is capable of dealing with instructions with register
3435   // operands, expand this into two nodes.
3436   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3437                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
3438                                                   TargetFlags));
3439   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3440     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3441                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3442   return Result;
3443 }
3444 
3445 SDValue
3446 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3447   SDLoc dl(Op);
3448   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3449   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3450                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3451                      Op.getOperand(1), Val);
3452 }
3453 
3454 SDValue
3455 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3456   SDLoc dl(Op);
3457   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3458                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3459 }
3460 
3461 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3462                                                       SelectionDAG &DAG) const {
3463   SDLoc dl(Op);
3464   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3465                      Op.getOperand(0));
3466 }
3467 
3468 SDValue
3469 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3470                                           const ARMSubtarget *Subtarget) const {
3471   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3472   SDLoc dl(Op);
3473   switch (IntNo) {
3474   default: return SDValue();    // Don't custom lower most intrinsics.
3475   case Intrinsic::thread_pointer: {
3476     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3477     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3478   }
3479   case Intrinsic::eh_sjlj_lsda: {
3480     MachineFunction &MF = DAG.getMachineFunction();
3481     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3482     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3483     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3484     SDValue CPAddr;
3485     bool IsPositionIndependent = isPositionIndependent();
3486     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3487     ARMConstantPoolValue *CPV =
3488       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3489                                       ARMCP::CPLSDA, PCAdj);
3490     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3491     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3492     SDValue Result = DAG.getLoad(
3493         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3494         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3495 
3496     if (IsPositionIndependent) {
3497       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3498       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3499     }
3500     return Result;
3501   }
3502   case Intrinsic::arm_neon_vabs:
3503     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3504                         Op.getOperand(1));
3505   case Intrinsic::arm_neon_vmulls:
3506   case Intrinsic::arm_neon_vmullu: {
3507     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3508       ? ARMISD::VMULLs : ARMISD::VMULLu;
3509     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3510                        Op.getOperand(1), Op.getOperand(2));
3511   }
3512   case Intrinsic::arm_neon_vminnm:
3513   case Intrinsic::arm_neon_vmaxnm: {
3514     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3515       ? ISD::FMINNUM : ISD::FMAXNUM;
3516     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3517                        Op.getOperand(1), Op.getOperand(2));
3518   }
3519   case Intrinsic::arm_neon_vminu:
3520   case Intrinsic::arm_neon_vmaxu: {
3521     if (Op.getValueType().isFloatingPoint())
3522       return SDValue();
3523     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3524       ? ISD::UMIN : ISD::UMAX;
3525     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3526                          Op.getOperand(1), Op.getOperand(2));
3527   }
3528   case Intrinsic::arm_neon_vmins:
3529   case Intrinsic::arm_neon_vmaxs: {
3530     // v{min,max}s is overloaded between signed integers and floats.
3531     if (!Op.getValueType().isFloatingPoint()) {
3532       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3533         ? ISD::SMIN : ISD::SMAX;
3534       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3535                          Op.getOperand(1), Op.getOperand(2));
3536     }
3537     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3538       ? ISD::FMINIMUM : ISD::FMAXIMUM;
3539     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3540                        Op.getOperand(1), Op.getOperand(2));
3541   }
3542   case Intrinsic::arm_neon_vtbl1:
3543     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3544                        Op.getOperand(1), Op.getOperand(2));
3545   case Intrinsic::arm_neon_vtbl2:
3546     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3547                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3548   }
3549 }
3550 
3551 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3552                                  const ARMSubtarget *Subtarget) {
3553   SDLoc dl(Op);
3554   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3555   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3556   if (SSID == SyncScope::SingleThread)
3557     return Op;
3558 
3559   if (!Subtarget->hasDataBarrier()) {
3560     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3561     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3562     // here.
3563     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3564            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3565     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3566                        DAG.getConstant(0, dl, MVT::i32));
3567   }
3568 
3569   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3570   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3571   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3572   if (Subtarget->isMClass()) {
3573     // Only a full system barrier exists in the M-class architectures.
3574     Domain = ARM_MB::SY;
3575   } else if (Subtarget->preferISHSTBarriers() &&
3576              Ord == AtomicOrdering::Release) {
3577     // Swift happens to implement ISHST barriers in a way that's compatible with
3578     // Release semantics but weaker than ISH so we'd be fools not to use
3579     // it. Beware: other processors probably don't!
3580     Domain = ARM_MB::ISHST;
3581   }
3582 
3583   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3584                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3585                      DAG.getConstant(Domain, dl, MVT::i32));
3586 }
3587 
3588 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3589                              const ARMSubtarget *Subtarget) {
3590   // ARM pre v5TE and Thumb1 does not have preload instructions.
3591   if (!(Subtarget->isThumb2() ||
3592         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3593     // Just preserve the chain.
3594     return Op.getOperand(0);
3595 
3596   SDLoc dl(Op);
3597   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3598   if (!isRead &&
3599       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3600     // ARMv7 with MP extension has PLDW.
3601     return Op.getOperand(0);
3602 
3603   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3604   if (Subtarget->isThumb()) {
3605     // Invert the bits.
3606     isRead = ~isRead & 1;
3607     isData = ~isData & 1;
3608   }
3609 
3610   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3611                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3612                      DAG.getConstant(isData, dl, MVT::i32));
3613 }
3614 
3615 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3616   MachineFunction &MF = DAG.getMachineFunction();
3617   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3618 
3619   // vastart just stores the address of the VarArgsFrameIndex slot into the
3620   // memory location argument.
3621   SDLoc dl(Op);
3622   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3623   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3624   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3625   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3626                       MachinePointerInfo(SV));
3627 }
3628 
3629 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3630                                                 CCValAssign &NextVA,
3631                                                 SDValue &Root,
3632                                                 SelectionDAG &DAG,
3633                                                 const SDLoc &dl) const {
3634   MachineFunction &MF = DAG.getMachineFunction();
3635   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3636 
3637   const TargetRegisterClass *RC;
3638   if (AFI->isThumb1OnlyFunction())
3639     RC = &ARM::tGPRRegClass;
3640   else
3641     RC = &ARM::GPRRegClass;
3642 
3643   // Transform the arguments stored in physical registers into virtual ones.
3644   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3645   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3646 
3647   SDValue ArgValue2;
3648   if (NextVA.isMemLoc()) {
3649     MachineFrameInfo &MFI = MF.getFrameInfo();
3650     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3651 
3652     // Create load node to retrieve arguments from the stack.
3653     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3654     ArgValue2 = DAG.getLoad(
3655         MVT::i32, dl, Root, FIN,
3656         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3657   } else {
3658     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3659     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3660   }
3661   if (!Subtarget->isLittle())
3662     std::swap (ArgValue, ArgValue2);
3663   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3664 }
3665 
3666 // The remaining GPRs hold either the beginning of variable-argument
3667 // data, or the beginning of an aggregate passed by value (usually
3668 // byval).  Either way, we allocate stack slots adjacent to the data
3669 // provided by our caller, and store the unallocated registers there.
3670 // If this is a variadic function, the va_list pointer will begin with
3671 // these values; otherwise, this reassembles a (byval) structure that
3672 // was split between registers and memory.
3673 // Return: The frame index registers were stored into.
3674 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3675                                       const SDLoc &dl, SDValue &Chain,
3676                                       const Value *OrigArg,
3677                                       unsigned InRegsParamRecordIdx,
3678                                       int ArgOffset, unsigned ArgSize) const {
3679   // Currently, two use-cases possible:
3680   // Case #1. Non-var-args function, and we meet first byval parameter.
3681   //          Setup first unallocated register as first byval register;
3682   //          eat all remained registers
3683   //          (these two actions are performed by HandleByVal method).
3684   //          Then, here, we initialize stack frame with
3685   //          "store-reg" instructions.
3686   // Case #2. Var-args function, that doesn't contain byval parameters.
3687   //          The same: eat all remained unallocated registers,
3688   //          initialize stack frame.
3689 
3690   MachineFunction &MF = DAG.getMachineFunction();
3691   MachineFrameInfo &MFI = MF.getFrameInfo();
3692   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3693   unsigned RBegin, REnd;
3694   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3695     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3696   } else {
3697     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3698     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3699     REnd = ARM::R4;
3700   }
3701 
3702   if (REnd != RBegin)
3703     ArgOffset = -4 * (ARM::R4 - RBegin);
3704 
3705   auto PtrVT = getPointerTy(DAG.getDataLayout());
3706   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3707   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3708 
3709   SmallVector<SDValue, 4> MemOps;
3710   const TargetRegisterClass *RC =
3711       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3712 
3713   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3714     unsigned VReg = MF.addLiveIn(Reg, RC);
3715     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3716     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3717                                  MachinePointerInfo(OrigArg, 4 * i));
3718     MemOps.push_back(Store);
3719     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3720   }
3721 
3722   if (!MemOps.empty())
3723     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3724   return FrameIndex;
3725 }
3726 
3727 // Setup stack frame, the va_list pointer will start from.
3728 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3729                                              const SDLoc &dl, SDValue &Chain,
3730                                              unsigned ArgOffset,
3731                                              unsigned TotalArgRegsSaveSize,
3732                                              bool ForceMutable) const {
3733   MachineFunction &MF = DAG.getMachineFunction();
3734   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3735 
3736   // Try to store any remaining integer argument regs
3737   // to their spots on the stack so that they may be loaded by dereferencing
3738   // the result of va_next.
3739   // If there is no regs to be stored, just point address after last
3740   // argument passed via stack.
3741   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3742                                   CCInfo.getInRegsParamsCount(),
3743                                   CCInfo.getNextStackOffset(),
3744                                   std::max(4U, TotalArgRegsSaveSize));
3745   AFI->setVarArgsFrameIndex(FrameIndex);
3746 }
3747 
3748 SDValue ARMTargetLowering::LowerFormalArguments(
3749     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3750     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3751     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3752   MachineFunction &MF = DAG.getMachineFunction();
3753   MachineFrameInfo &MFI = MF.getFrameInfo();
3754 
3755   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3756 
3757   // Assign locations to all of the incoming arguments.
3758   SmallVector<CCValAssign, 16> ArgLocs;
3759   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3760                  *DAG.getContext());
3761   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3762 
3763   SmallVector<SDValue, 16> ArgValues;
3764   SDValue ArgValue;
3765   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3766   unsigned CurArgIdx = 0;
3767 
3768   // Initially ArgRegsSaveSize is zero.
3769   // Then we increase this value each time we meet byval parameter.
3770   // We also increase this value in case of varargs function.
3771   AFI->setArgRegsSaveSize(0);
3772 
3773   // Calculate the amount of stack space that we need to allocate to store
3774   // byval and variadic arguments that are passed in registers.
3775   // We need to know this before we allocate the first byval or variadic
3776   // argument, as they will be allocated a stack slot below the CFA (Canonical
3777   // Frame Address, the stack pointer at entry to the function).
3778   unsigned ArgRegBegin = ARM::R4;
3779   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3780     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3781       break;
3782 
3783     CCValAssign &VA = ArgLocs[i];
3784     unsigned Index = VA.getValNo();
3785     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3786     if (!Flags.isByVal())
3787       continue;
3788 
3789     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3790     unsigned RBegin, REnd;
3791     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3792     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3793 
3794     CCInfo.nextInRegsParam();
3795   }
3796   CCInfo.rewindByValRegsInfo();
3797 
3798   int lastInsIndex = -1;
3799   if (isVarArg && MFI.hasVAStart()) {
3800     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3801     if (RegIdx != array_lengthof(GPRArgRegs))
3802       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3803   }
3804 
3805   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3806   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3807   auto PtrVT = getPointerTy(DAG.getDataLayout());
3808 
3809   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3810     CCValAssign &VA = ArgLocs[i];
3811     if (Ins[VA.getValNo()].isOrigArg()) {
3812       std::advance(CurOrigArg,
3813                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3814       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3815     }
3816     // Arguments stored in registers.
3817     if (VA.isRegLoc()) {
3818       EVT RegVT = VA.getLocVT();
3819 
3820       if (VA.needsCustom()) {
3821         // f64 and vector types are split up into multiple registers or
3822         // combinations of registers and stack slots.
3823         if (VA.getLocVT() == MVT::v2f64) {
3824           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3825                                                    Chain, DAG, dl);
3826           VA = ArgLocs[++i]; // skip ahead to next loc
3827           SDValue ArgValue2;
3828           if (VA.isMemLoc()) {
3829             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
3830             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3831             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
3832                                     MachinePointerInfo::getFixedStack(
3833                                         DAG.getMachineFunction(), FI));
3834           } else {
3835             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3836                                              Chain, DAG, dl);
3837           }
3838           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3839           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3840                                  ArgValue, ArgValue1,
3841                                  DAG.getIntPtrConstant(0, dl));
3842           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3843                                  ArgValue, ArgValue2,
3844                                  DAG.getIntPtrConstant(1, dl));
3845         } else
3846           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3847       } else {
3848         const TargetRegisterClass *RC;
3849 
3850 
3851         if (RegVT == MVT::f16)
3852           RC = &ARM::HPRRegClass;
3853         else if (RegVT == MVT::f32)
3854           RC = &ARM::SPRRegClass;
3855         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
3856           RC = &ARM::DPRRegClass;
3857         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
3858           RC = &ARM::QPRRegClass;
3859         else if (RegVT == MVT::i32)
3860           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3861                                            : &ARM::GPRRegClass;
3862         else
3863           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3864 
3865         // Transform the arguments in physical registers into virtual ones.
3866         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3867         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3868       }
3869 
3870       // If this is an 8 or 16-bit value, it is really passed promoted
3871       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3872       // truncate to the right size.
3873       switch (VA.getLocInfo()) {
3874       default: llvm_unreachable("Unknown loc info!");
3875       case CCValAssign::Full: break;
3876       case CCValAssign::BCvt:
3877         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3878         break;
3879       case CCValAssign::SExt:
3880         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3881                                DAG.getValueType(VA.getValVT()));
3882         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3883         break;
3884       case CCValAssign::ZExt:
3885         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3886                                DAG.getValueType(VA.getValVT()));
3887         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3888         break;
3889       }
3890 
3891       InVals.push_back(ArgValue);
3892     } else { // VA.isRegLoc()
3893       // sanity check
3894       assert(VA.isMemLoc());
3895       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3896 
3897       int index = VA.getValNo();
3898 
3899       // Some Ins[] entries become multiple ArgLoc[] entries.
3900       // Process them only once.
3901       if (index != lastInsIndex)
3902         {
3903           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3904           // FIXME: For now, all byval parameter objects are marked mutable.
3905           // This can be changed with more analysis.
3906           // In case of tail call optimization mark all arguments mutable.
3907           // Since they could be overwritten by lowering of arguments in case of
3908           // a tail call.
3909           if (Flags.isByVal()) {
3910             assert(Ins[index].isOrigArg() &&
3911                    "Byval arguments cannot be implicit");
3912             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3913 
3914             int FrameIndex = StoreByValRegs(
3915                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3916                 VA.getLocMemOffset(), Flags.getByValSize());
3917             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3918             CCInfo.nextInRegsParam();
3919           } else {
3920             unsigned FIOffset = VA.getLocMemOffset();
3921             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3922                                            FIOffset, true);
3923 
3924             // Create load nodes to retrieve arguments from the stack.
3925             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3926             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
3927                                          MachinePointerInfo::getFixedStack(
3928                                              DAG.getMachineFunction(), FI)));
3929           }
3930           lastInsIndex = index;
3931         }
3932     }
3933   }
3934 
3935   // varargs
3936   if (isVarArg && MFI.hasVAStart())
3937     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3938                          CCInfo.getNextStackOffset(),
3939                          TotalArgRegsSaveSize);
3940 
3941   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3942 
3943   return Chain;
3944 }
3945 
3946 /// isFloatingPointZero - Return true if this is +0.0.
3947 static bool isFloatingPointZero(SDValue Op) {
3948   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3949     return CFP->getValueAPF().isPosZero();
3950   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3951     // Maybe this has already been legalized into the constant pool?
3952     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3953       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3954       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3955         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3956           return CFP->getValueAPF().isPosZero();
3957     }
3958   } else if (Op->getOpcode() == ISD::BITCAST &&
3959              Op->getValueType(0) == MVT::f64) {
3960     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3961     // created by LowerConstantFP().
3962     SDValue BitcastOp = Op->getOperand(0);
3963     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3964         isNullConstant(BitcastOp->getOperand(0)))
3965       return true;
3966   }
3967   return false;
3968 }
3969 
3970 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3971 /// the given operands.
3972 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3973                                      SDValue &ARMcc, SelectionDAG &DAG,
3974                                      const SDLoc &dl) const {
3975   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3976     unsigned C = RHSC->getZExtValue();
3977     if (!isLegalICmpImmediate((int32_t)C)) {
3978       // Constant does not fit, try adjusting it by one.
3979       switch (CC) {
3980       default: break;
3981       case ISD::SETLT:
3982       case ISD::SETGE:
3983         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3984           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3985           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3986         }
3987         break;
3988       case ISD::SETULT:
3989       case ISD::SETUGE:
3990         if (C != 0 && isLegalICmpImmediate(C-1)) {
3991           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3992           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3993         }
3994         break;
3995       case ISD::SETLE:
3996       case ISD::SETGT:
3997         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3998           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3999           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4000         }
4001         break;
4002       case ISD::SETULE:
4003       case ISD::SETUGT:
4004         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4005           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4006           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4007         }
4008         break;
4009       }
4010     }
4011   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4012              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4013     // In ARM and Thumb-2, the compare instructions can shift their second
4014     // operand.
4015     CC = ISD::getSetCCSwappedOperands(CC);
4016     std::swap(LHS, RHS);
4017   }
4018 
4019   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4020   ARMISD::NodeType CompareType;
4021   switch (CondCode) {
4022   default:
4023     CompareType = ARMISD::CMP;
4024     break;
4025   case ARMCC::EQ:
4026   case ARMCC::NE:
4027     // Uses only Z Flag
4028     CompareType = ARMISD::CMPZ;
4029     break;
4030   }
4031   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4032   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4033 }
4034 
4035 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4036 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4037                                      SelectionDAG &DAG, const SDLoc &dl,
4038                                      bool InvalidOnQNaN) const {
4039   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4040   SDValue Cmp;
4041   SDValue C = DAG.getConstant(InvalidOnQNaN, dl, MVT::i32);
4042   if (!isFloatingPointZero(RHS))
4043     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS, C);
4044   else
4045     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS, C);
4046   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4047 }
4048 
4049 /// duplicateCmp - Glue values can have only one use, so this function
4050 /// duplicates a comparison node.
4051 SDValue
4052 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4053   unsigned Opc = Cmp.getOpcode();
4054   SDLoc DL(Cmp);
4055   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4056     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4057 
4058   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4059   Cmp = Cmp.getOperand(0);
4060   Opc = Cmp.getOpcode();
4061   if (Opc == ARMISD::CMPFP)
4062     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
4063                       Cmp.getOperand(1), Cmp.getOperand(2));
4064   else {
4065     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4066     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),
4067                       Cmp.getOperand(1));
4068   }
4069   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4070 }
4071 
4072 // This function returns three things: the arithmetic computation itself
4073 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
4074 // comparison and the condition code define the case in which the arithmetic
4075 // computation *does not* overflow.
4076 std::pair<SDValue, SDValue>
4077 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4078                                  SDValue &ARMcc) const {
4079   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
4080 
4081   SDValue Value, OverflowCmp;
4082   SDValue LHS = Op.getOperand(0);
4083   SDValue RHS = Op.getOperand(1);
4084   SDLoc dl(Op);
4085 
4086   // FIXME: We are currently always generating CMPs because we don't support
4087   // generating CMN through the backend. This is not as good as the natural
4088   // CMP case because it causes a register dependency and cannot be folded
4089   // later.
4090 
4091   switch (Op.getOpcode()) {
4092   default:
4093     llvm_unreachable("Unknown overflow instruction!");
4094   case ISD::SADDO:
4095     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4096     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4097     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4098     break;
4099   case ISD::UADDO:
4100     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4101     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4102     // We do not use it in the USUBO case as Value may not be used.
4103     Value = DAG.getNode(ARMISD::ADDC, dl,
4104                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4105                 .getValue(0);
4106     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4107     break;
4108   case ISD::SSUBO:
4109     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4110     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4111     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4112     break;
4113   case ISD::USUBO:
4114     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4115     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4116     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4117     break;
4118   case ISD::UMULO:
4119     // We generate a UMUL_LOHI and then check if the high word is 0.
4120     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4121     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4122                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4123                         LHS, RHS);
4124     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4125                               DAG.getConstant(0, dl, MVT::i32));
4126     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4127     break;
4128   case ISD::SMULO:
4129     // We generate a SMUL_LOHI and then check if all the bits of the high word
4130     // are the same as the sign bit of the low word.
4131     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4132     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4133                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4134                         LHS, RHS);
4135     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4136                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4137                                           Value.getValue(0),
4138                                           DAG.getConstant(31, dl, MVT::i32)));
4139     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4140     break;
4141   } // switch (...)
4142 
4143   return std::make_pair(Value, OverflowCmp);
4144 }
4145 
4146 SDValue
4147 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4148   // Let legalize expand this if it isn't a legal type yet.
4149   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4150     return SDValue();
4151 
4152   SDValue Value, OverflowCmp;
4153   SDValue ARMcc;
4154   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4155   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4156   SDLoc dl(Op);
4157   // We use 0 and 1 as false and true values.
4158   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4159   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4160   EVT VT = Op.getValueType();
4161 
4162   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4163                                  ARMcc, CCR, OverflowCmp);
4164 
4165   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4166   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4167 }
4168 
4169 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4170                                               SelectionDAG &DAG) {
4171   SDLoc DL(BoolCarry);
4172   EVT CarryVT = BoolCarry.getValueType();
4173 
4174   // This converts the boolean value carry into the carry flag by doing
4175   // ARMISD::SUBC Carry, 1
4176   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4177                               DAG.getVTList(CarryVT, MVT::i32),
4178                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4179   return Carry.getValue(1);
4180 }
4181 
4182 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4183                                               SelectionDAG &DAG) {
4184   SDLoc DL(Flags);
4185 
4186   // Now convert the carry flag into a boolean carry. We do this
4187   // using ARMISD:ADDE 0, 0, Carry
4188   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4189                      DAG.getConstant(0, DL, MVT::i32),
4190                      DAG.getConstant(0, DL, MVT::i32), Flags);
4191 }
4192 
4193 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4194                                              SelectionDAG &DAG) const {
4195   // Let legalize expand this if it isn't a legal type yet.
4196   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4197     return SDValue();
4198 
4199   SDValue LHS = Op.getOperand(0);
4200   SDValue RHS = Op.getOperand(1);
4201   SDLoc dl(Op);
4202 
4203   EVT VT = Op.getValueType();
4204   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4205   SDValue Value;
4206   SDValue Overflow;
4207   switch (Op.getOpcode()) {
4208   default:
4209     llvm_unreachable("Unknown overflow instruction!");
4210   case ISD::UADDO:
4211     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4212     // Convert the carry flag into a boolean value.
4213     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4214     break;
4215   case ISD::USUBO: {
4216     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4217     // Convert the carry flag into a boolean value.
4218     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4219     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4220     // value. So compute 1 - C.
4221     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4222                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4223     break;
4224   }
4225   }
4226 
4227   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4228 }
4229 
4230 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4231   SDValue Cond = Op.getOperand(0);
4232   SDValue SelectTrue = Op.getOperand(1);
4233   SDValue SelectFalse = Op.getOperand(2);
4234   SDLoc dl(Op);
4235   unsigned Opc = Cond.getOpcode();
4236 
4237   if (Cond.getResNo() == 1 &&
4238       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4239        Opc == ISD::USUBO)) {
4240     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4241       return SDValue();
4242 
4243     SDValue Value, OverflowCmp;
4244     SDValue ARMcc;
4245     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4246     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4247     EVT VT = Op.getValueType();
4248 
4249     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4250                    OverflowCmp, DAG);
4251   }
4252 
4253   // Convert:
4254   //
4255   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4256   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4257   //
4258   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4259     const ConstantSDNode *CMOVTrue =
4260       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4261     const ConstantSDNode *CMOVFalse =
4262       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4263 
4264     if (CMOVTrue && CMOVFalse) {
4265       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4266       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4267 
4268       SDValue True;
4269       SDValue False;
4270       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4271         True = SelectTrue;
4272         False = SelectFalse;
4273       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4274         True = SelectFalse;
4275         False = SelectTrue;
4276       }
4277 
4278       if (True.getNode() && False.getNode()) {
4279         EVT VT = Op.getValueType();
4280         SDValue ARMcc = Cond.getOperand(2);
4281         SDValue CCR = Cond.getOperand(3);
4282         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4283         assert(True.getValueType() == VT);
4284         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4285       }
4286     }
4287   }
4288 
4289   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4290   // undefined bits before doing a full-word comparison with zero.
4291   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4292                      DAG.getConstant(1, dl, Cond.getValueType()));
4293 
4294   return DAG.getSelectCC(dl, Cond,
4295                          DAG.getConstant(0, dl, Cond.getValueType()),
4296                          SelectTrue, SelectFalse, ISD::SETNE);
4297 }
4298 
4299 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4300                                  bool &swpCmpOps, bool &swpVselOps) {
4301   // Start by selecting the GE condition code for opcodes that return true for
4302   // 'equality'
4303   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4304       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
4305     CondCode = ARMCC::GE;
4306 
4307   // and GT for opcodes that return false for 'equality'.
4308   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4309            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
4310     CondCode = ARMCC::GT;
4311 
4312   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4313   // to swap the compare operands.
4314   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4315       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
4316     swpCmpOps = true;
4317 
4318   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4319   // If we have an unordered opcode, we need to swap the operands to the VSEL
4320   // instruction (effectively negating the condition).
4321   //
4322   // This also has the effect of swapping which one of 'less' or 'greater'
4323   // returns true, so we also swap the compare operands. It also switches
4324   // whether we return true for 'equality', so we compensate by picking the
4325   // opposite condition code to our original choice.
4326   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4327       CC == ISD::SETUGT) {
4328     swpCmpOps = !swpCmpOps;
4329     swpVselOps = !swpVselOps;
4330     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4331   }
4332 
4333   // 'ordered' is 'anything but unordered', so use the VS condition code and
4334   // swap the VSEL operands.
4335   if (CC == ISD::SETO) {
4336     CondCode = ARMCC::VS;
4337     swpVselOps = true;
4338   }
4339 
4340   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4341   // code and swap the VSEL operands. Also do this if we don't care about the
4342   // unordered case.
4343   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4344     CondCode = ARMCC::EQ;
4345     swpVselOps = true;
4346   }
4347 }
4348 
4349 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4350                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4351                                    SDValue Cmp, SelectionDAG &DAG) const {
4352   if (!Subtarget->hasFP64() && VT == MVT::f64) {
4353     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4354                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4355     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4356                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4357 
4358     SDValue TrueLow = TrueVal.getValue(0);
4359     SDValue TrueHigh = TrueVal.getValue(1);
4360     SDValue FalseLow = FalseVal.getValue(0);
4361     SDValue FalseHigh = FalseVal.getValue(1);
4362 
4363     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4364                               ARMcc, CCR, Cmp);
4365     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4366                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4367 
4368     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4369   } else {
4370     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4371                        Cmp);
4372   }
4373 }
4374 
4375 static bool isGTorGE(ISD::CondCode CC) {
4376   return CC == ISD::SETGT || CC == ISD::SETGE;
4377 }
4378 
4379 static bool isLTorLE(ISD::CondCode CC) {
4380   return CC == ISD::SETLT || CC == ISD::SETLE;
4381 }
4382 
4383 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4384 // All of these conditions (and their <= and >= counterparts) will do:
4385 //          x < k ? k : x
4386 //          x > k ? x : k
4387 //          k < x ? x : k
4388 //          k > x ? k : x
4389 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4390                             const SDValue TrueVal, const SDValue FalseVal,
4391                             const ISD::CondCode CC, const SDValue K) {
4392   return (isGTorGE(CC) &&
4393           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4394          (isLTorLE(CC) &&
4395           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4396 }
4397 
4398 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4399 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4400                             const SDValue TrueVal, const SDValue FalseVal,
4401                             const ISD::CondCode CC, const SDValue K) {
4402   return (isGTorGE(CC) &&
4403           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4404          (isLTorLE(CC) &&
4405           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4406 }
4407 
4408 // Check if two chained conditionals could be converted into SSAT or USAT.
4409 //
4410 // SSAT can replace a set of two conditional selectors that bound a number to an
4411 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4412 //
4413 //     x < -k ? -k : (x > k ? k : x)
4414 //     x < -k ? -k : (x < k ? x : k)
4415 //     x > -k ? (x > k ? k : x) : -k
4416 //     x < k ? (x < -k ? -k : x) : k
4417 //     etc.
4418 //
4419 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4420 // a power of 2.
4421 //
4422 // It returns true if the conversion can be done, false otherwise.
4423 // Additionally, the variable is returned in parameter V, the constant in K and
4424 // usat is set to true if the conditional represents an unsigned saturation
4425 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4426                                     uint64_t &K, bool &usat) {
4427   SDValue LHS1 = Op.getOperand(0);
4428   SDValue RHS1 = Op.getOperand(1);
4429   SDValue TrueVal1 = Op.getOperand(2);
4430   SDValue FalseVal1 = Op.getOperand(3);
4431   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4432 
4433   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4434   if (Op2.getOpcode() != ISD::SELECT_CC)
4435     return false;
4436 
4437   SDValue LHS2 = Op2.getOperand(0);
4438   SDValue RHS2 = Op2.getOperand(1);
4439   SDValue TrueVal2 = Op2.getOperand(2);
4440   SDValue FalseVal2 = Op2.getOperand(3);
4441   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4442 
4443   // Find out which are the constants and which are the variables
4444   // in each conditional
4445   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4446                                                         ? &RHS1
4447                                                         : nullptr;
4448   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4449                                                         ? &RHS2
4450                                                         : nullptr;
4451   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4452   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4453   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4454   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4455 
4456   // We must detect cases where the original operations worked with 16- or
4457   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4458   // must work with sign-extended values but the select operations return
4459   // the original non-extended value.
4460   SDValue V2TmpReg = V2Tmp;
4461   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4462     V2TmpReg = V2Tmp->getOperand(0);
4463 
4464   // Check that the registers and the constants have the correct values
4465   // in both conditionals
4466   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4467       V2TmpReg != V2)
4468     return false;
4469 
4470   // Figure out which conditional is saturating the lower/upper bound.
4471   const SDValue *LowerCheckOp =
4472       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4473           ? &Op
4474           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4475                 ? &Op2
4476                 : nullptr;
4477   const SDValue *UpperCheckOp =
4478       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4479           ? &Op
4480           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4481                 ? &Op2
4482                 : nullptr;
4483 
4484   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4485     return false;
4486 
4487   // Check that the constant in the lower-bound check is
4488   // the opposite of the constant in the upper-bound check
4489   // in 1's complement.
4490   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4491   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4492   int64_t PosVal = std::max(Val1, Val2);
4493   int64_t NegVal = std::min(Val1, Val2);
4494 
4495   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4496        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4497       isPowerOf2_64(PosVal + 1)) {
4498 
4499     // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4500     if (Val1 == ~Val2)
4501       usat = false;
4502     else if (NegVal == 0)
4503       usat = true;
4504     else
4505       return false;
4506 
4507     V = V2;
4508     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4509 
4510     return true;
4511   }
4512 
4513   return false;
4514 }
4515 
4516 // Check if a condition of the type x < k ? k : x can be converted into a
4517 // bit operation instead of conditional moves.
4518 // Currently this is allowed given:
4519 // - The conditions and values match up
4520 // - k is 0 or -1 (all ones)
4521 // This function will not check the last condition, thats up to the caller
4522 // It returns true if the transformation can be made, and in such case
4523 // returns x in V, and k in SatK.
4524 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4525                                          SDValue &SatK)
4526 {
4527   SDValue LHS = Op.getOperand(0);
4528   SDValue RHS = Op.getOperand(1);
4529   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4530   SDValue TrueVal = Op.getOperand(2);
4531   SDValue FalseVal = Op.getOperand(3);
4532 
4533   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4534                                                ? &RHS
4535                                                : nullptr;
4536 
4537   // No constant operation in comparison, early out
4538   if (!K)
4539     return false;
4540 
4541   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4542   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4543   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4544 
4545   // If the constant on left and right side, or variable on left and right,
4546   // does not match, early out
4547   if (*K != KTmp || V != VTmp)
4548     return false;
4549 
4550   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4551     SatK = *K;
4552     return true;
4553   }
4554 
4555   return false;
4556 }
4557 
4558 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
4559   if (VT == MVT::f32)
4560     return !Subtarget->hasVFP2Base();
4561   if (VT == MVT::f64)
4562     return !Subtarget->hasFP64();
4563   if (VT == MVT::f16)
4564     return !Subtarget->hasFullFP16();
4565   return false;
4566 }
4567 
4568 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4569   EVT VT = Op.getValueType();
4570   SDLoc dl(Op);
4571 
4572   // Try to convert two saturating conditional selects into a single SSAT
4573   SDValue SatValue;
4574   uint64_t SatConstant;
4575   bool SatUSat;
4576   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4577       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4578     if (SatUSat)
4579       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4580                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4581     else
4582       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4583                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4584   }
4585 
4586   // Try to convert expressions of the form x < k ? k : x (and similar forms)
4587   // into more efficient bit operations, which is possible when k is 0 or -1
4588   // On ARM and Thumb-2 which have flexible operand 2 this will result in
4589   // single instructions. On Thumb the shift and the bit operation will be two
4590   // instructions.
4591   // Only allow this transformation on full-width (32-bit) operations
4592   SDValue LowerSatConstant;
4593   if (VT == MVT::i32 &&
4594       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4595     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4596                                  DAG.getConstant(31, dl, VT));
4597     if (isNullConstant(LowerSatConstant)) {
4598       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4599                                       DAG.getAllOnesConstant(dl, VT));
4600       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4601     } else if (isAllOnesConstant(LowerSatConstant))
4602       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4603   }
4604 
4605   SDValue LHS = Op.getOperand(0);
4606   SDValue RHS = Op.getOperand(1);
4607   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4608   SDValue TrueVal = Op.getOperand(2);
4609   SDValue FalseVal = Op.getOperand(3);
4610 
4611   if (isUnsupportedFloatingType(LHS.getValueType())) {
4612     DAG.getTargetLoweringInfo().softenSetCCOperands(
4613         DAG, LHS.getValueType(), LHS, RHS, CC, dl);
4614 
4615     // If softenSetCCOperands only returned one value, we should compare it to
4616     // zero.
4617     if (!RHS.getNode()) {
4618       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4619       CC = ISD::SETNE;
4620     }
4621   }
4622 
4623   if (LHS.getValueType() == MVT::i32) {
4624     // Try to generate VSEL on ARMv8.
4625     // The VSEL instruction can't use all the usual ARM condition
4626     // codes: it only has two bits to select the condition code, so it's
4627     // constrained to use only GE, GT, VS and EQ.
4628     //
4629     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
4630     // swap the operands of the previous compare instruction (effectively
4631     // inverting the compare condition, swapping 'less' and 'greater') and
4632     // sometimes need to swap the operands to the VSEL (which inverts the
4633     // condition in the sense of firing whenever the previous condition didn't)
4634     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
4635                                         TrueVal.getValueType() == MVT::f32 ||
4636                                         TrueVal.getValueType() == MVT::f64)) {
4637       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4638       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
4639           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
4640         CC = ISD::getSetCCInverse(CC, true);
4641         std::swap(TrueVal, FalseVal);
4642       }
4643     }
4644 
4645     SDValue ARMcc;
4646     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4647     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4648     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4649   }
4650 
4651   ARMCC::CondCodes CondCode, CondCode2;
4652   bool InvalidOnQNaN;
4653   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4654 
4655   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
4656   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
4657   // must use VSEL (limited condition codes), due to not having conditional f16
4658   // moves.
4659   if (Subtarget->hasFPARMv8Base() &&
4660       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
4661       (TrueVal.getValueType() == MVT::f16 ||
4662        TrueVal.getValueType() == MVT::f32 ||
4663        TrueVal.getValueType() == MVT::f64)) {
4664     bool swpCmpOps = false;
4665     bool swpVselOps = false;
4666     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
4667 
4668     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
4669         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
4670       if (swpCmpOps)
4671         std::swap(LHS, RHS);
4672       if (swpVselOps)
4673         std::swap(TrueVal, FalseVal);
4674     }
4675   }
4676 
4677   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4678   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4679   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4680   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
4681   if (CondCode2 != ARMCC::AL) {
4682     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
4683     // FIXME: Needs another CMP because flag can have but one use.
4684     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4685     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
4686   }
4687   return Result;
4688 }
4689 
4690 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
4691 /// to morph to an integer compare sequence.
4692 static bool canChangeToInt(SDValue Op, bool &SeenZero,
4693                            const ARMSubtarget *Subtarget) {
4694   SDNode *N = Op.getNode();
4695   if (!N->hasOneUse())
4696     // Otherwise it requires moving the value from fp to integer registers.
4697     return false;
4698   if (!N->getNumValues())
4699     return false;
4700   EVT VT = Op.getValueType();
4701   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
4702     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
4703     // vmrs are very slow, e.g. cortex-a8.
4704     return false;
4705 
4706   if (isFloatingPointZero(Op)) {
4707     SeenZero = true;
4708     return true;
4709   }
4710   return ISD::isNormalLoad(N);
4711 }
4712 
4713 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
4714   if (isFloatingPointZero(Op))
4715     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
4716 
4717   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
4718     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
4719                        Ld->getPointerInfo(), Ld->getAlignment(),
4720                        Ld->getMemOperand()->getFlags());
4721 
4722   llvm_unreachable("Unknown VFP cmp argument!");
4723 }
4724 
4725 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
4726                            SDValue &RetVal1, SDValue &RetVal2) {
4727   SDLoc dl(Op);
4728 
4729   if (isFloatingPointZero(Op)) {
4730     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
4731     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
4732     return;
4733   }
4734 
4735   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
4736     SDValue Ptr = Ld->getBasePtr();
4737     RetVal1 =
4738         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
4739                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
4740 
4741     EVT PtrType = Ptr.getValueType();
4742     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
4743     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
4744                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
4745     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
4746                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
4747                           Ld->getMemOperand()->getFlags());
4748     return;
4749   }
4750 
4751   llvm_unreachable("Unknown VFP cmp argument!");
4752 }
4753 
4754 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4755 /// f32 and even f64 comparisons to integer ones.
4756 SDValue
4757 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4758   SDValue Chain = Op.getOperand(0);
4759   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4760   SDValue LHS = Op.getOperand(2);
4761   SDValue RHS = Op.getOperand(3);
4762   SDValue Dest = Op.getOperand(4);
4763   SDLoc dl(Op);
4764 
4765   bool LHSSeenZero = false;
4766   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4767   bool RHSSeenZero = false;
4768   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4769   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4770     // If unsafe fp math optimization is enabled and there are no other uses of
4771     // the CMP operands, and the condition code is EQ or NE, we can optimize it
4772     // to an integer comparison.
4773     if (CC == ISD::SETOEQ)
4774       CC = ISD::SETEQ;
4775     else if (CC == ISD::SETUNE)
4776       CC = ISD::SETNE;
4777 
4778     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4779     SDValue ARMcc;
4780     if (LHS.getValueType() == MVT::f32) {
4781       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4782                         bitcastf32Toi32(LHS, DAG), Mask);
4783       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4784                         bitcastf32Toi32(RHS, DAG), Mask);
4785       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4786       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4787       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4788                          Chain, Dest, ARMcc, CCR, Cmp);
4789     }
4790 
4791     SDValue LHS1, LHS2;
4792     SDValue RHS1, RHS2;
4793     expandf64Toi32(LHS, DAG, LHS1, LHS2);
4794     expandf64Toi32(RHS, DAG, RHS1, RHS2);
4795     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4796     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4797     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4798     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4799     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4800     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4801     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4802   }
4803 
4804   return SDValue();
4805 }
4806 
4807 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
4808   SDValue Chain = Op.getOperand(0);
4809   SDValue Cond = Op.getOperand(1);
4810   SDValue Dest = Op.getOperand(2);
4811   SDLoc dl(Op);
4812 
4813   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4814   // instruction.
4815   unsigned Opc = Cond.getOpcode();
4816   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4817                       !Subtarget->isThumb1Only();
4818   if (Cond.getResNo() == 1 &&
4819       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4820        Opc == ISD::USUBO || OptimizeMul)) {
4821     // Only lower legal XALUO ops.
4822     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4823       return SDValue();
4824 
4825     // The actual operation with overflow check.
4826     SDValue Value, OverflowCmp;
4827     SDValue ARMcc;
4828     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4829 
4830     // Reverse the condition code.
4831     ARMCC::CondCodes CondCode =
4832         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4833     CondCode = ARMCC::getOppositeCondition(CondCode);
4834     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4835     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4836 
4837     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4838                        OverflowCmp);
4839   }
4840 
4841   return SDValue();
4842 }
4843 
4844 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4845   SDValue Chain = Op.getOperand(0);
4846   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4847   SDValue LHS = Op.getOperand(2);
4848   SDValue RHS = Op.getOperand(3);
4849   SDValue Dest = Op.getOperand(4);
4850   SDLoc dl(Op);
4851 
4852   if (isUnsupportedFloatingType(LHS.getValueType())) {
4853     DAG.getTargetLoweringInfo().softenSetCCOperands(
4854         DAG, LHS.getValueType(), LHS, RHS, CC, dl);
4855 
4856     // If softenSetCCOperands only returned one value, we should compare it to
4857     // zero.
4858     if (!RHS.getNode()) {
4859       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4860       CC = ISD::SETNE;
4861     }
4862   }
4863 
4864   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4865   // instruction.
4866   unsigned Opc = LHS.getOpcode();
4867   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
4868                       !Subtarget->isThumb1Only();
4869   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
4870       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4871        Opc == ISD::USUBO || OptimizeMul) &&
4872       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
4873     // Only lower legal XALUO ops.
4874     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
4875       return SDValue();
4876 
4877     // The actual operation with overflow check.
4878     SDValue Value, OverflowCmp;
4879     SDValue ARMcc;
4880     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
4881 
4882     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
4883       // Reverse the condition code.
4884       ARMCC::CondCodes CondCode =
4885           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
4886       CondCode = ARMCC::getOppositeCondition(CondCode);
4887       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
4888     }
4889     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4890 
4891     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
4892                        OverflowCmp);
4893   }
4894 
4895   if (LHS.getValueType() == MVT::i32) {
4896     SDValue ARMcc;
4897     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4898     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4899     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4900                        Chain, Dest, ARMcc, CCR, Cmp);
4901   }
4902 
4903   if (getTargetMachine().Options.UnsafeFPMath &&
4904       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4905        CC == ISD::SETNE || CC == ISD::SETUNE)) {
4906     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4907       return Result;
4908   }
4909 
4910   ARMCC::CondCodes CondCode, CondCode2;
4911   bool InvalidOnQNaN;
4912   FPCCToARMCC(CC, CondCode, CondCode2, InvalidOnQNaN);
4913 
4914   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4915   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, InvalidOnQNaN);
4916   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4917   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4918   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4919   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4920   if (CondCode2 != ARMCC::AL) {
4921     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4922     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4923     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4924   }
4925   return Res;
4926 }
4927 
4928 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4929   SDValue Chain = Op.getOperand(0);
4930   SDValue Table = Op.getOperand(1);
4931   SDValue Index = Op.getOperand(2);
4932   SDLoc dl(Op);
4933 
4934   EVT PTy = getPointerTy(DAG.getDataLayout());
4935   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4936   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4937   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4938   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4939   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
4940   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
4941     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
4942     // which does another jump to the destination. This also makes it easier
4943     // to translate it to TBB / TBH later (Thumb2 only).
4944     // FIXME: This might not work if the function is extremely large.
4945     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4946                        Addr, Op.getOperand(2), JTI);
4947   }
4948   if (isPositionIndependent() || Subtarget->isROPI()) {
4949     Addr =
4950         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4951                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4952     Chain = Addr.getValue(1);
4953     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
4954     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4955   } else {
4956     Addr =
4957         DAG.getLoad(PTy, dl, Chain, Addr,
4958                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
4959     Chain = Addr.getValue(1);
4960     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4961   }
4962 }
4963 
4964 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4965   EVT VT = Op.getValueType();
4966   SDLoc dl(Op);
4967 
4968   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4969     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4970       return Op;
4971     return DAG.UnrollVectorOp(Op.getNode());
4972   }
4973 
4974   const bool HasFullFP16 =
4975     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
4976 
4977   EVT NewTy;
4978   const EVT OpTy = Op.getOperand(0).getValueType();
4979   if (OpTy == MVT::v4f32)
4980     NewTy = MVT::v4i32;
4981   else if (OpTy == MVT::v4f16 && HasFullFP16)
4982     NewTy = MVT::v4i16;
4983   else if (OpTy == MVT::v8f16 && HasFullFP16)
4984     NewTy = MVT::v8i16;
4985   else
4986     llvm_unreachable("Invalid type for custom lowering!");
4987 
4988   if (VT != MVT::v4i16 && VT != MVT::v8i16)
4989     return DAG.UnrollVectorOp(Op.getNode());
4990 
4991   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
4992   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4993 }
4994 
4995 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4996   EVT VT = Op.getValueType();
4997   if (VT.isVector())
4998     return LowerVectorFP_TO_INT(Op, DAG);
4999   if (isUnsupportedFloatingType(Op.getOperand(0).getValueType())) {
5000     RTLIB::Libcall LC;
5001     if (Op.getOpcode() == ISD::FP_TO_SINT)
5002       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
5003                               Op.getValueType());
5004     else
5005       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
5006                               Op.getValueType());
5007     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5008                        /*isSigned*/ false, SDLoc(Op)).first;
5009   }
5010 
5011   return Op;
5012 }
5013 
5014 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5015   EVT VT = Op.getValueType();
5016   SDLoc dl(Op);
5017 
5018   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5019     if (VT.getVectorElementType() == MVT::f32)
5020       return Op;
5021     return DAG.UnrollVectorOp(Op.getNode());
5022   }
5023 
5024   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5025           Op.getOperand(0).getValueType() == MVT::v8i16) &&
5026          "Invalid type for custom lowering!");
5027 
5028   const bool HasFullFP16 =
5029     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5030 
5031   EVT DestVecType;
5032   if (VT == MVT::v4f32)
5033     DestVecType = MVT::v4i32;
5034   else if (VT == MVT::v4f16 && HasFullFP16)
5035     DestVecType = MVT::v4i16;
5036   else if (VT == MVT::v8f16 && HasFullFP16)
5037     DestVecType = MVT::v8i16;
5038   else
5039     return DAG.UnrollVectorOp(Op.getNode());
5040 
5041   unsigned CastOpc;
5042   unsigned Opc;
5043   switch (Op.getOpcode()) {
5044   default: llvm_unreachable("Invalid opcode!");
5045   case ISD::SINT_TO_FP:
5046     CastOpc = ISD::SIGN_EXTEND;
5047     Opc = ISD::SINT_TO_FP;
5048     break;
5049   case ISD::UINT_TO_FP:
5050     CastOpc = ISD::ZERO_EXTEND;
5051     Opc = ISD::UINT_TO_FP;
5052     break;
5053   }
5054 
5055   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5056   return DAG.getNode(Opc, dl, VT, Op);
5057 }
5058 
5059 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5060   EVT VT = Op.getValueType();
5061   if (VT.isVector())
5062     return LowerVectorINT_TO_FP(Op, DAG);
5063   if (isUnsupportedFloatingType(VT)) {
5064     RTLIB::Libcall LC;
5065     if (Op.getOpcode() == ISD::SINT_TO_FP)
5066       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5067                               Op.getValueType());
5068     else
5069       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5070                               Op.getValueType());
5071     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5072                        /*isSigned*/ false, SDLoc(Op)).first;
5073   }
5074 
5075   return Op;
5076 }
5077 
5078 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5079   // Implement fcopysign with a fabs and a conditional fneg.
5080   SDValue Tmp0 = Op.getOperand(0);
5081   SDValue Tmp1 = Op.getOperand(1);
5082   SDLoc dl(Op);
5083   EVT VT = Op.getValueType();
5084   EVT SrcVT = Tmp1.getValueType();
5085   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5086     Tmp0.getOpcode() == ARMISD::VMOVDRR;
5087   bool UseNEON = !InGPR && Subtarget->hasNEON();
5088 
5089   if (UseNEON) {
5090     // Use VBSL to copy the sign bit.
5091     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
5092     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5093                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5094     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5095     if (VT == MVT::f64)
5096       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
5097                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5098                          DAG.getConstant(32, dl, MVT::i32));
5099     else /*if (VT == MVT::f32)*/
5100       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5101     if (SrcVT == MVT::f32) {
5102       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5103       if (VT == MVT::f64)
5104         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
5105                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5106                            DAG.getConstant(32, dl, MVT::i32));
5107     } else if (VT == MVT::f32)
5108       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
5109                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5110                          DAG.getConstant(32, dl, MVT::i32));
5111     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
5112     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
5113 
5114     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
5115                                             dl, MVT::i32);
5116     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
5117     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
5118                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
5119 
5120     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
5121                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
5122                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
5123     if (VT == MVT::f32) {
5124       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
5125       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
5126                         DAG.getConstant(0, dl, MVT::i32));
5127     } else {
5128       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
5129     }
5130 
5131     return Res;
5132   }
5133 
5134   // Bitcast operand 1 to i32.
5135   if (SrcVT == MVT::f64)
5136     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5137                        Tmp1).getValue(1);
5138   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5139 
5140   // Or in the signbit with integer operations.
5141   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5142   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5143   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5144   if (VT == MVT::f32) {
5145     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5146                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5147     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5148                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5149   }
5150 
5151   // f64: Or the high part with signbit and then combine two parts.
5152   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5153                      Tmp0);
5154   SDValue Lo = Tmp0.getValue(0);
5155   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5156   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5157   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5158 }
5159 
5160 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5161   MachineFunction &MF = DAG.getMachineFunction();
5162   MachineFrameInfo &MFI = MF.getFrameInfo();
5163   MFI.setReturnAddressIsTaken(true);
5164 
5165   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5166     return SDValue();
5167 
5168   EVT VT = Op.getValueType();
5169   SDLoc dl(Op);
5170   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5171   if (Depth) {
5172     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5173     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5174     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5175                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5176                        MachinePointerInfo());
5177   }
5178 
5179   // Return LR, which contains the return address. Mark it an implicit live-in.
5180   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5181   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5182 }
5183 
5184 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5185   const ARMBaseRegisterInfo &ARI =
5186     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5187   MachineFunction &MF = DAG.getMachineFunction();
5188   MachineFrameInfo &MFI = MF.getFrameInfo();
5189   MFI.setFrameAddressIsTaken(true);
5190 
5191   EVT VT = Op.getValueType();
5192   SDLoc dl(Op);  // FIXME probably not meaningful
5193   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5194   unsigned FrameReg = ARI.getFrameRegister(MF);
5195   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5196   while (Depth--)
5197     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5198                             MachinePointerInfo());
5199   return FrameAddr;
5200 }
5201 
5202 // FIXME? Maybe this could be a TableGen attribute on some registers and
5203 // this table could be generated automatically from RegInfo.
5204 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
5205                                               SelectionDAG &DAG) const {
5206   unsigned Reg = StringSwitch<unsigned>(RegName)
5207                        .Case("sp", ARM::SP)
5208                        .Default(0);
5209   if (Reg)
5210     return Reg;
5211   report_fatal_error(Twine("Invalid register name \""
5212                               + StringRef(RegName)  + "\"."));
5213 }
5214 
5215 // Result is 64 bit value so split into two 32 bit values and return as a
5216 // pair of values.
5217 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5218                                 SelectionDAG &DAG) {
5219   SDLoc DL(N);
5220 
5221   // This function is only supposed to be called for i64 type destination.
5222   assert(N->getValueType(0) == MVT::i64
5223           && "ExpandREAD_REGISTER called for non-i64 type result.");
5224 
5225   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5226                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5227                              N->getOperand(0),
5228                              N->getOperand(1));
5229 
5230   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5231                     Read.getValue(1)));
5232   Results.push_back(Read.getOperand(0));
5233 }
5234 
5235 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5236 /// When \p DstVT, the destination type of \p BC, is on the vector
5237 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5238 /// it might be possible to combine them, such that everything stays on the
5239 /// vector register bank.
5240 /// \p return The node that would replace \p BT, if the combine
5241 /// is possible.
5242 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5243                                                 SelectionDAG &DAG) {
5244   SDValue Op = BC->getOperand(0);
5245   EVT DstVT = BC->getValueType(0);
5246 
5247   // The only vector instruction that can produce a scalar (remember,
5248   // since the bitcast was about to be turned into VMOVDRR, the source
5249   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5250   // Moreover, we can do this combine only if there is one use.
5251   // Finally, if the destination type is not a vector, there is not
5252   // much point on forcing everything on the vector bank.
5253   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5254       !Op.hasOneUse())
5255     return SDValue();
5256 
5257   // If the index is not constant, we will introduce an additional
5258   // multiply that will stick.
5259   // Give up in that case.
5260   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5261   if (!Index)
5262     return SDValue();
5263   unsigned DstNumElt = DstVT.getVectorNumElements();
5264 
5265   // Compute the new index.
5266   const APInt &APIntIndex = Index->getAPIntValue();
5267   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5268   NewIndex *= APIntIndex;
5269   // Check if the new constant index fits into i32.
5270   if (NewIndex.getBitWidth() > 32)
5271     return SDValue();
5272 
5273   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5274   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5275   SDLoc dl(Op);
5276   SDValue ExtractSrc = Op.getOperand(0);
5277   EVT VecVT = EVT::getVectorVT(
5278       *DAG.getContext(), DstVT.getScalarType(),
5279       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5280   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5281   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5282                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5283 }
5284 
5285 /// ExpandBITCAST - If the target supports VFP, this function is called to
5286 /// expand a bit convert where either the source or destination type is i64 to
5287 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5288 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5289 /// vectors), since the legalizer won't know what to do with that.
5290 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5291                              const ARMSubtarget *Subtarget) {
5292   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5293   SDLoc dl(N);
5294   SDValue Op = N->getOperand(0);
5295 
5296   // This function is only supposed to be called for i64 types, either as the
5297   // source or destination of the bit convert.
5298   EVT SrcVT = Op.getValueType();
5299   EVT DstVT = N->getValueType(0);
5300   const bool HasFullFP16 = Subtarget->hasFullFP16();
5301 
5302   if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5303      // FullFP16: half values are passed in S-registers, and we don't
5304      // need any of the bitcast and moves:
5305      //
5306      // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5307      //   t5: i32 = bitcast t2
5308      // t18: f16 = ARMISD::VMOVhr t5
5309      if (Op.getOpcode() != ISD::CopyFromReg ||
5310          Op.getValueType() != MVT::f32)
5311        return SDValue();
5312 
5313      auto Move = N->use_begin();
5314      if (Move->getOpcode() != ARMISD::VMOVhr)
5315        return SDValue();
5316 
5317      SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5318      SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5319      DAG.ReplaceAllUsesWith(*Move, &Copy);
5320      return Copy;
5321   }
5322 
5323   if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5324     if (!HasFullFP16)
5325       return SDValue();
5326     // SoftFP: read half-precision arguments:
5327     //
5328     // t2: i32,ch = ...
5329     //        t7: i16 = truncate t2 <~~~~ Op
5330     //      t8: f16 = bitcast t7    <~~~~ N
5331     //
5332     if (Op.getOperand(0).getValueType() == MVT::i32)
5333       return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5334                          MVT::f16, Op.getOperand(0));
5335 
5336     return SDValue();
5337   }
5338 
5339   // Half-precision return values
5340   if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5341     if (!HasFullFP16)
5342       return SDValue();
5343     //
5344     //          t11: f16 = fadd t8, t10
5345     //        t12: i16 = bitcast t11       <~~~ SDNode N
5346     //      t13: i32 = zero_extend t12
5347     //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5348     //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5349     //
5350     // transform this into:
5351     //
5352     //    t20: i32 = ARMISD::VMOVrh t11
5353     //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5354     //
5355     auto ZeroExtend = N->use_begin();
5356     if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5357         ZeroExtend->getValueType(0) != MVT::i32)
5358       return SDValue();
5359 
5360     auto Copy = ZeroExtend->use_begin();
5361     if (Copy->getOpcode() == ISD::CopyToReg &&
5362         Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5363       SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5364       DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5365       return Cvt;
5366     }
5367     return SDValue();
5368   }
5369 
5370   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5371     return SDValue();
5372 
5373   // Turn i64->f64 into VMOVDRR.
5374   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5375     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5376     // if we can combine the bitcast with its source.
5377     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5378       return Val;
5379 
5380     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5381                              DAG.getConstant(0, dl, MVT::i32));
5382     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5383                              DAG.getConstant(1, dl, MVT::i32));
5384     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5385                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5386   }
5387 
5388   // Turn f64->i64 into VMOVRRD.
5389   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5390     SDValue Cvt;
5391     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5392         SrcVT.getVectorNumElements() > 1)
5393       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5394                         DAG.getVTList(MVT::i32, MVT::i32),
5395                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5396     else
5397       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5398                         DAG.getVTList(MVT::i32, MVT::i32), Op);
5399     // Merge the pieces into a single i64 value.
5400     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5401   }
5402 
5403   return SDValue();
5404 }
5405 
5406 /// getZeroVector - Returns a vector of specified type with all zero elements.
5407 /// Zero vectors are used to represent vector negation and in those cases
5408 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
5409 /// not support i64 elements, so sometimes the zero vectors will need to be
5410 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
5411 /// zero vector.
5412 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5413   assert(VT.isVector() && "Expected a vector type");
5414   // The canonical modified immediate encoding of a zero vector is....0!
5415   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5416   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5417   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5418   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5419 }
5420 
5421 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5422 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5423 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5424                                                 SelectionDAG &DAG) const {
5425   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5426   EVT VT = Op.getValueType();
5427   unsigned VTBits = VT.getSizeInBits();
5428   SDLoc dl(Op);
5429   SDValue ShOpLo = Op.getOperand(0);
5430   SDValue ShOpHi = Op.getOperand(1);
5431   SDValue ShAmt  = Op.getOperand(2);
5432   SDValue ARMcc;
5433   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5434   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5435 
5436   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5437 
5438   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5439                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5440   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5441   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5442                                    DAG.getConstant(VTBits, dl, MVT::i32));
5443   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5444   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5445   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5446   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5447                             ISD::SETGE, ARMcc, DAG, dl);
5448   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5449                            ARMcc, CCR, CmpLo);
5450 
5451   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5452   SDValue HiBigShift = Opc == ISD::SRA
5453                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
5454                                          DAG.getConstant(VTBits - 1, dl, VT))
5455                            : DAG.getConstant(0, dl, VT);
5456   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5457                             ISD::SETGE, ARMcc, DAG, dl);
5458   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5459                            ARMcc, CCR, CmpHi);
5460 
5461   SDValue Ops[2] = { Lo, Hi };
5462   return DAG.getMergeValues(Ops, dl);
5463 }
5464 
5465 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5466 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5467 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5468                                                SelectionDAG &DAG) const {
5469   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5470   EVT VT = Op.getValueType();
5471   unsigned VTBits = VT.getSizeInBits();
5472   SDLoc dl(Op);
5473   SDValue ShOpLo = Op.getOperand(0);
5474   SDValue ShOpHi = Op.getOperand(1);
5475   SDValue ShAmt  = Op.getOperand(2);
5476   SDValue ARMcc;
5477   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5478 
5479   assert(Op.getOpcode() == ISD::SHL_PARTS);
5480   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5481                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5482   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5483   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5484   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5485 
5486   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5487                                    DAG.getConstant(VTBits, dl, MVT::i32));
5488   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5489   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5490                             ISD::SETGE, ARMcc, DAG, dl);
5491   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5492                            ARMcc, CCR, CmpHi);
5493 
5494   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5495                           ISD::SETGE, ARMcc, DAG, dl);
5496   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5497   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5498                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5499 
5500   SDValue Ops[2] = { Lo, Hi };
5501   return DAG.getMergeValues(Ops, dl);
5502 }
5503 
5504 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5505                                             SelectionDAG &DAG) const {
5506   // The rounding mode is in bits 23:22 of the FPSCR.
5507   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5508   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5509   // so that the shift + and get folded into a bitfield extract.
5510   SDLoc dl(Op);
5511   SDValue Ops[] = { DAG.getEntryNode(),
5512                     DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5513 
5514   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5515   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5516                                   DAG.getConstant(1U << 22, dl, MVT::i32));
5517   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5518                               DAG.getConstant(22, dl, MVT::i32));
5519   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5520                      DAG.getConstant(3, dl, MVT::i32));
5521 }
5522 
5523 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5524                          const ARMSubtarget *ST) {
5525   SDLoc dl(N);
5526   EVT VT = N->getValueType(0);
5527   if (VT.isVector()) {
5528     assert(ST->hasNEON());
5529 
5530     // Compute the least significant set bit: LSB = X & -X
5531     SDValue X = N->getOperand(0);
5532     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5533     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5534 
5535     EVT ElemTy = VT.getVectorElementType();
5536 
5537     if (ElemTy == MVT::i8) {
5538       // Compute with: cttz(x) = ctpop(lsb - 1)
5539       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5540                                 DAG.getTargetConstant(1, dl, ElemTy));
5541       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5542       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5543     }
5544 
5545     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5546         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5547       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5548       unsigned NumBits = ElemTy.getSizeInBits();
5549       SDValue WidthMinus1 =
5550           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5551                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5552       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5553       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5554     }
5555 
5556     // Compute with: cttz(x) = ctpop(lsb - 1)
5557 
5558     // Compute LSB - 1.
5559     SDValue Bits;
5560     if (ElemTy == MVT::i64) {
5561       // Load constant 0xffff'ffff'ffff'ffff to register.
5562       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5563                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5564       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5565     } else {
5566       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5567                                 DAG.getTargetConstant(1, dl, ElemTy));
5568       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5569     }
5570     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5571   }
5572 
5573   if (!ST->hasV6T2Ops())
5574     return SDValue();
5575 
5576   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5577   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5578 }
5579 
5580 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5581                           const ARMSubtarget *ST) {
5582   EVT VT = N->getValueType(0);
5583   SDLoc DL(N);
5584 
5585   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5586   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
5587           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
5588          "Unexpected type for custom ctpop lowering");
5589 
5590   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5591   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
5592   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
5593   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
5594 
5595   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
5596   unsigned EltSize = 8;
5597   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
5598   while (EltSize != VT.getScalarSizeInBits()) {
5599     SmallVector<SDValue, 8> Ops;
5600     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
5601                                   TLI.getPointerTy(DAG.getDataLayout())));
5602     Ops.push_back(Res);
5603 
5604     EltSize *= 2;
5605     NumElts /= 2;
5606     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
5607     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
5608   }
5609 
5610   return Res;
5611 }
5612 
5613 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
5614                           const ARMSubtarget *ST) {
5615   EVT VT = N->getValueType(0);
5616   SDLoc dl(N);
5617 
5618   if (!VT.isVector())
5619     return SDValue();
5620 
5621   // Lower vector shifts on NEON to use VSHL.
5622   assert(ST->hasNEON() && "unexpected vector shift");
5623 
5624   // Left shifts translate directly to the vshiftu intrinsic.
5625   if (N->getOpcode() == ISD::SHL)
5626     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5627                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
5628                                        MVT::i32),
5629                        N->getOperand(0), N->getOperand(1));
5630 
5631   assert((N->getOpcode() == ISD::SRA ||
5632           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
5633 
5634   // NEON uses the same intrinsics for both left and right shifts.  For
5635   // right shifts, the shift amounts are negative, so negate the vector of
5636   // shift amounts.
5637   EVT ShiftVT = N->getOperand(1).getValueType();
5638   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
5639                                      getZeroVector(ShiftVT, DAG, dl),
5640                                      N->getOperand(1));
5641   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
5642                              Intrinsic::arm_neon_vshifts :
5643                              Intrinsic::arm_neon_vshiftu);
5644   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
5645                      DAG.getConstant(vshiftInt, dl, MVT::i32),
5646                      N->getOperand(0), NegatedCount);
5647 }
5648 
5649 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
5650                                 const ARMSubtarget *ST) {
5651   EVT VT = N->getValueType(0);
5652   SDLoc dl(N);
5653 
5654   // We can get here for a node like i32 = ISD::SHL i32, i64
5655   if (VT != MVT::i64)
5656     return SDValue();
5657 
5658   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
5659           N->getOpcode() == ISD::SHL) &&
5660          "Unknown shift to lower!");
5661 
5662   unsigned ShOpc = N->getOpcode();
5663   if (ST->hasMVEIntegerOps()) {
5664     SDValue ShAmt = N->getOperand(1);
5665     unsigned ShPartsOpc = ARMISD::LSLL;
5666     ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
5667 
5668     // If the shift amount is greater than 32 then do the default optimisation
5669     if (Con && Con->getZExtValue() > 32)
5670       return SDValue();
5671 
5672     // Extract the lower 32 bits of the shift amount if it's an i64
5673     if (ShAmt->getValueType(0) == MVT::i64)
5674       ShAmt = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, ShAmt,
5675                           DAG.getConstant(0, dl, MVT::i32));
5676 
5677     if (ShOpc == ISD::SRL) {
5678       if (!Con)
5679         // There is no t2LSRLr instruction so negate and perform an lsll if the
5680         // shift amount is in a register, emulating a right shift.
5681         ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5682                             DAG.getConstant(0, dl, MVT::i32), ShAmt);
5683       else
5684         // Else generate an lsrl on the immediate shift amount
5685         ShPartsOpc = ARMISD::LSRL;
5686     } else if (ShOpc == ISD::SRA)
5687       ShPartsOpc = ARMISD::ASRL;
5688 
5689     // Lower 32 bits of the destination/source
5690     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5691                              DAG.getConstant(0, dl, MVT::i32));
5692     // Upper 32 bits of the destination/source
5693     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5694                              DAG.getConstant(1, dl, MVT::i32));
5695 
5696     // Generate the shift operation as computed above
5697     Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
5698                      ShAmt);
5699     // The upper 32 bits come from the second return value of lsll
5700     Hi = SDValue(Lo.getNode(), 1);
5701     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5702   }
5703 
5704   // We only lower SRA, SRL of 1 here, all others use generic lowering.
5705   if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
5706     return SDValue();
5707 
5708   // If we are in thumb mode, we don't have RRX.
5709   if (ST->isThumb1Only())
5710     return SDValue();
5711 
5712   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
5713   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5714                            DAG.getConstant(0, dl, MVT::i32));
5715   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
5716                            DAG.getConstant(1, dl, MVT::i32));
5717 
5718   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
5719   // captures the result into a carry flag.
5720   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
5721   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
5722 
5723   // The low part is an ARMISD::RRX operand, which shifts the carry in.
5724   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
5725 
5726   // Merge the pieces into a single i64 value.
5727  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5728 }
5729 
5730 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5731   SDValue TmpOp0, TmpOp1;
5732   bool Invert = false;
5733   bool Swap = false;
5734   unsigned Opc = 0;
5735 
5736   SDValue Op0 = Op.getOperand(0);
5737   SDValue Op1 = Op.getOperand(1);
5738   SDValue CC = Op.getOperand(2);
5739   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
5740   EVT VT = Op.getValueType();
5741   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5742   SDLoc dl(Op);
5743 
5744   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
5745       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
5746     // Special-case integer 64-bit equality comparisons. They aren't legal,
5747     // but they can be lowered with a few vector instructions.
5748     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
5749     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
5750     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
5751     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
5752     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
5753                               DAG.getCondCode(ISD::SETEQ));
5754     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
5755     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
5756     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
5757     if (SetCCOpcode == ISD::SETNE)
5758       Merged = DAG.getNOT(dl, Merged, CmpVT);
5759     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
5760     return Merged;
5761   }
5762 
5763   if (CmpVT.getVectorElementType() == MVT::i64)
5764     // 64-bit comparisons are not legal in general.
5765     return SDValue();
5766 
5767   if (Op1.getValueType().isFloatingPoint()) {
5768     switch (SetCCOpcode) {
5769     default: llvm_unreachable("Illegal FP comparison");
5770     case ISD::SETUNE:
5771     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5772     case ISD::SETOEQ:
5773     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5774     case ISD::SETOLT:
5775     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
5776     case ISD::SETOGT:
5777     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5778     case ISD::SETOLE:
5779     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5780     case ISD::SETOGE:
5781     case ISD::SETGE: Opc = ARMISD::VCGE; break;
5782     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
5783     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
5784     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
5785     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
5786     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
5787     case ISD::SETONE:
5788       // Expand this to (OLT | OGT).
5789       TmpOp0 = Op0;
5790       TmpOp1 = Op1;
5791       Opc = ISD::OR;
5792       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5793       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
5794       break;
5795     case ISD::SETUO:
5796       Invert = true;
5797       LLVM_FALLTHROUGH;
5798     case ISD::SETO:
5799       // Expand this to (OLT | OGE).
5800       TmpOp0 = Op0;
5801       TmpOp1 = Op1;
5802       Opc = ISD::OR;
5803       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
5804       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
5805       break;
5806     }
5807   } else {
5808     // Integer comparisons.
5809     switch (SetCCOpcode) {
5810     default: llvm_unreachable("Illegal integer comparison");
5811     case ISD::SETNE:  Invert = true; LLVM_FALLTHROUGH;
5812     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
5813     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
5814     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
5815     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
5816     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
5817     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
5818     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
5819     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
5820     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
5821     }
5822 
5823     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
5824     if (Opc == ARMISD::VCEQ) {
5825       SDValue AndOp;
5826       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5827         AndOp = Op0;
5828       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
5829         AndOp = Op1;
5830 
5831       // Ignore bitconvert.
5832       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
5833         AndOp = AndOp.getOperand(0);
5834 
5835       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
5836         Opc = ARMISD::VTST;
5837         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
5838         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
5839         Invert = !Invert;
5840       }
5841     }
5842   }
5843 
5844   if (Swap)
5845     std::swap(Op0, Op1);
5846 
5847   // If one of the operands is a constant vector zero, attempt to fold the
5848   // comparison to a specialized compare-against-zero form.
5849   SDValue SingleOp;
5850   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
5851     SingleOp = Op0;
5852   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5853     if (Opc == ARMISD::VCGE)
5854       Opc = ARMISD::VCLEZ;
5855     else if (Opc == ARMISD::VCGT)
5856       Opc = ARMISD::VCLTZ;
5857     SingleOp = Op1;
5858   }
5859 
5860   SDValue Result;
5861   if (SingleOp.getNode()) {
5862     switch (Opc) {
5863     case ARMISD::VCEQ:
5864       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
5865     case ARMISD::VCGE:
5866       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
5867     case ARMISD::VCLEZ:
5868       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
5869     case ARMISD::VCGT:
5870       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
5871     case ARMISD::VCLTZ:
5872       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
5873     default:
5874       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5875     }
5876   } else {
5877      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5878   }
5879 
5880   Result = DAG.getSExtOrTrunc(Result, dl, VT);
5881 
5882   if (Invert)
5883     Result = DAG.getNOT(dl, Result, VT);
5884 
5885   return Result;
5886 }
5887 
5888 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
5889   SDValue LHS = Op.getOperand(0);
5890   SDValue RHS = Op.getOperand(1);
5891   SDValue Carry = Op.getOperand(2);
5892   SDValue Cond = Op.getOperand(3);
5893   SDLoc DL(Op);
5894 
5895   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
5896 
5897   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
5898   // have to invert the carry first.
5899   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
5900                       DAG.getConstant(1, DL, MVT::i32), Carry);
5901   // This converts the boolean value carry into the carry flag.
5902   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
5903 
5904   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5905   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5906 
5907   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5908   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5909   SDValue ARMcc = DAG.getConstant(
5910       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5911   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5912   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5913                                    Cmp.getValue(1), SDValue());
5914   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5915                      CCR, Chain.getValue(1));
5916 }
5917 
5918 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5919 /// valid vector constant for a NEON instruction with a "modified immediate"
5920 /// operand (e.g., VMOV).  If so, return the encoded value.
5921 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5922                                  unsigned SplatBitSize, SelectionDAG &DAG,
5923                                  const SDLoc &dl, EVT &VT, bool is128Bits,
5924                                  NEONModImmType type) {
5925   unsigned OpCmode, Imm;
5926 
5927   // SplatBitSize is set to the smallest size that splats the vector, so a
5928   // zero vector will always have SplatBitSize == 8.  However, NEON modified
5929   // immediate instructions others than VMOV do not support the 8-bit encoding
5930   // of a zero vector, and the default encoding of zero is supposed to be the
5931   // 32-bit version.
5932   if (SplatBits == 0)
5933     SplatBitSize = 32;
5934 
5935   switch (SplatBitSize) {
5936   case 8:
5937     if (type != VMOVModImm)
5938       return SDValue();
5939     // Any 1-byte value is OK.  Op=0, Cmode=1110.
5940     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5941     OpCmode = 0xe;
5942     Imm = SplatBits;
5943     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5944     break;
5945 
5946   case 16:
5947     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5948     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5949     if ((SplatBits & ~0xff) == 0) {
5950       // Value = 0x00nn: Op=x, Cmode=100x.
5951       OpCmode = 0x8;
5952       Imm = SplatBits;
5953       break;
5954     }
5955     if ((SplatBits & ~0xff00) == 0) {
5956       // Value = 0xnn00: Op=x, Cmode=101x.
5957       OpCmode = 0xa;
5958       Imm = SplatBits >> 8;
5959       break;
5960     }
5961     return SDValue();
5962 
5963   case 32:
5964     // NEON's 32-bit VMOV supports splat values where:
5965     // * only one byte is nonzero, or
5966     // * the least significant byte is 0xff and the second byte is nonzero, or
5967     // * the least significant 2 bytes are 0xff and the third is nonzero.
5968     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5969     if ((SplatBits & ~0xff) == 0) {
5970       // Value = 0x000000nn: Op=x, Cmode=000x.
5971       OpCmode = 0;
5972       Imm = SplatBits;
5973       break;
5974     }
5975     if ((SplatBits & ~0xff00) == 0) {
5976       // Value = 0x0000nn00: Op=x, Cmode=001x.
5977       OpCmode = 0x2;
5978       Imm = SplatBits >> 8;
5979       break;
5980     }
5981     if ((SplatBits & ~0xff0000) == 0) {
5982       // Value = 0x00nn0000: Op=x, Cmode=010x.
5983       OpCmode = 0x4;
5984       Imm = SplatBits >> 16;
5985       break;
5986     }
5987     if ((SplatBits & ~0xff000000) == 0) {
5988       // Value = 0xnn000000: Op=x, Cmode=011x.
5989       OpCmode = 0x6;
5990       Imm = SplatBits >> 24;
5991       break;
5992     }
5993 
5994     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5995     if (type == OtherModImm) return SDValue();
5996 
5997     if ((SplatBits & ~0xffff) == 0 &&
5998         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5999       // Value = 0x0000nnff: Op=x, Cmode=1100.
6000       OpCmode = 0xc;
6001       Imm = SplatBits >> 8;
6002       break;
6003     }
6004 
6005     if ((SplatBits & ~0xffffff) == 0 &&
6006         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6007       // Value = 0x00nnffff: Op=x, Cmode=1101.
6008       OpCmode = 0xd;
6009       Imm = SplatBits >> 16;
6010       break;
6011     }
6012 
6013     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6014     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6015     // VMOV.I32.  A (very) minor optimization would be to replicate the value
6016     // and fall through here to test for a valid 64-bit splat.  But, then the
6017     // caller would also need to check and handle the change in size.
6018     return SDValue();
6019 
6020   case 64: {
6021     if (type != VMOVModImm)
6022       return SDValue();
6023     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6024     uint64_t BitMask = 0xff;
6025     uint64_t Val = 0;
6026     unsigned ImmMask = 1;
6027     Imm = 0;
6028     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6029       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6030         Val |= BitMask;
6031         Imm |= ImmMask;
6032       } else if ((SplatBits & BitMask) != 0) {
6033         return SDValue();
6034       }
6035       BitMask <<= 8;
6036       ImmMask <<= 1;
6037     }
6038 
6039     if (DAG.getDataLayout().isBigEndian())
6040       // swap higher and lower 32 bit word
6041       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
6042 
6043     // Op=1, Cmode=1110.
6044     OpCmode = 0x1e;
6045     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
6046     break;
6047   }
6048 
6049   default:
6050     llvm_unreachable("unexpected size for isNEONModifiedImm");
6051   }
6052 
6053   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
6054   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
6055 }
6056 
6057 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
6058                                            const ARMSubtarget *ST) const {
6059   EVT VT = Op.getValueType();
6060   bool IsDouble = (VT == MVT::f64);
6061   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
6062   const APFloat &FPVal = CFP->getValueAPF();
6063 
6064   // Prevent floating-point constants from using literal loads
6065   // when execute-only is enabled.
6066   if (ST->genExecuteOnly()) {
6067     // If we can represent the constant as an immediate, don't lower it
6068     if (isFPImmLegal(FPVal, VT))
6069       return Op;
6070     // Otherwise, construct as integer, and move to float register
6071     APInt INTVal = FPVal.bitcastToAPInt();
6072     SDLoc DL(CFP);
6073     switch (VT.getSimpleVT().SimpleTy) {
6074       default:
6075         llvm_unreachable("Unknown floating point type!");
6076         break;
6077       case MVT::f64: {
6078         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
6079         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
6080         if (!ST->isLittle())
6081           std::swap(Lo, Hi);
6082         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
6083       }
6084       case MVT::f32:
6085           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
6086               DAG.getConstant(INTVal, DL, MVT::i32));
6087     }
6088   }
6089 
6090   if (!ST->hasVFP3Base())
6091     return SDValue();
6092 
6093   // Use the default (constant pool) lowering for double constants when we have
6094   // an SP-only FPU
6095   if (IsDouble && !Subtarget->hasFP64())
6096     return SDValue();
6097 
6098   // Try splatting with a VMOV.f32...
6099   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6100 
6101   if (ImmVal != -1) {
6102     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6103       // We have code in place to select a valid ConstantFP already, no need to
6104       // do any mangling.
6105       return Op;
6106     }
6107 
6108     // It's a float and we are trying to use NEON operations where
6109     // possible. Lower it to a splat followed by an extract.
6110     SDLoc DL(Op);
6111     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6112     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6113                                       NewVal);
6114     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6115                        DAG.getConstant(0, DL, MVT::i32));
6116   }
6117 
6118   // The rest of our options are NEON only, make sure that's allowed before
6119   // proceeding..
6120   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6121     return SDValue();
6122 
6123   EVT VMovVT;
6124   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6125 
6126   // It wouldn't really be worth bothering for doubles except for one very
6127   // important value, which does happen to match: 0.0. So make sure we don't do
6128   // anything stupid.
6129   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6130     return SDValue();
6131 
6132   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6133   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6134                                      VMovVT, false, VMOVModImm);
6135   if (NewVal != SDValue()) {
6136     SDLoc DL(Op);
6137     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6138                                       NewVal);
6139     if (IsDouble)
6140       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6141 
6142     // It's a float: cast and extract a vector element.
6143     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6144                                        VecConstant);
6145     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6146                        DAG.getConstant(0, DL, MVT::i32));
6147   }
6148 
6149   // Finally, try a VMVN.i32
6150   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6151                              false, VMVNModImm);
6152   if (NewVal != SDValue()) {
6153     SDLoc DL(Op);
6154     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6155 
6156     if (IsDouble)
6157       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6158 
6159     // It's a float: cast and extract a vector element.
6160     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6161                                        VecConstant);
6162     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6163                        DAG.getConstant(0, DL, MVT::i32));
6164   }
6165 
6166   return SDValue();
6167 }
6168 
6169 // check if an VEXT instruction can handle the shuffle mask when the
6170 // vector sources of the shuffle are the same.
6171 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6172   unsigned NumElts = VT.getVectorNumElements();
6173 
6174   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6175   if (M[0] < 0)
6176     return false;
6177 
6178   Imm = M[0];
6179 
6180   // If this is a VEXT shuffle, the immediate value is the index of the first
6181   // element.  The other shuffle indices must be the successive elements after
6182   // the first one.
6183   unsigned ExpectedElt = Imm;
6184   for (unsigned i = 1; i < NumElts; ++i) {
6185     // Increment the expected index.  If it wraps around, just follow it
6186     // back to index zero and keep going.
6187     ++ExpectedElt;
6188     if (ExpectedElt == NumElts)
6189       ExpectedElt = 0;
6190 
6191     if (M[i] < 0) continue; // ignore UNDEF indices
6192     if (ExpectedElt != static_cast<unsigned>(M[i]))
6193       return false;
6194   }
6195 
6196   return true;
6197 }
6198 
6199 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6200                        bool &ReverseVEXT, unsigned &Imm) {
6201   unsigned NumElts = VT.getVectorNumElements();
6202   ReverseVEXT = false;
6203 
6204   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6205   if (M[0] < 0)
6206     return false;
6207 
6208   Imm = M[0];
6209 
6210   // If this is a VEXT shuffle, the immediate value is the index of the first
6211   // element.  The other shuffle indices must be the successive elements after
6212   // the first one.
6213   unsigned ExpectedElt = Imm;
6214   for (unsigned i = 1; i < NumElts; ++i) {
6215     // Increment the expected index.  If it wraps around, it may still be
6216     // a VEXT but the source vectors must be swapped.
6217     ExpectedElt += 1;
6218     if (ExpectedElt == NumElts * 2) {
6219       ExpectedElt = 0;
6220       ReverseVEXT = true;
6221     }
6222 
6223     if (M[i] < 0) continue; // ignore UNDEF indices
6224     if (ExpectedElt != static_cast<unsigned>(M[i]))
6225       return false;
6226   }
6227 
6228   // Adjust the index value if the source operands will be swapped.
6229   if (ReverseVEXT)
6230     Imm -= NumElts;
6231 
6232   return true;
6233 }
6234 
6235 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6236 /// instruction with the specified blocksize.  (The order of the elements
6237 /// within each block of the vector is reversed.)
6238 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6239   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6240          "Only possible block sizes for VREV are: 16, 32, 64");
6241 
6242   unsigned EltSz = VT.getScalarSizeInBits();
6243   if (EltSz == 64)
6244     return false;
6245 
6246   unsigned NumElts = VT.getVectorNumElements();
6247   unsigned BlockElts = M[0] + 1;
6248   // If the first shuffle index is UNDEF, be optimistic.
6249   if (M[0] < 0)
6250     BlockElts = BlockSize / EltSz;
6251 
6252   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6253     return false;
6254 
6255   for (unsigned i = 0; i < NumElts; ++i) {
6256     if (M[i] < 0) continue; // ignore UNDEF indices
6257     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6258       return false;
6259   }
6260 
6261   return true;
6262 }
6263 
6264 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6265   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6266   // range, then 0 is placed into the resulting vector. So pretty much any mask
6267   // of 8 elements can work here.
6268   return VT == MVT::v8i8 && M.size() == 8;
6269 }
6270 
6271 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6272                                unsigned Index) {
6273   if (Mask.size() == Elements * 2)
6274     return Index / Elements;
6275   return Mask[Index] == 0 ? 0 : 1;
6276 }
6277 
6278 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6279 // checking that pairs of elements in the shuffle mask represent the same index
6280 // in each vector, incrementing the expected index by 2 at each step.
6281 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6282 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6283 //  v2={e,f,g,h}
6284 // WhichResult gives the offset for each element in the mask based on which
6285 // of the two results it belongs to.
6286 //
6287 // The transpose can be represented either as:
6288 // result1 = shufflevector v1, v2, result1_shuffle_mask
6289 // result2 = shufflevector v1, v2, result2_shuffle_mask
6290 // where v1/v2 and the shuffle masks have the same number of elements
6291 // (here WhichResult (see below) indicates which result is being checked)
6292 //
6293 // or as:
6294 // results = shufflevector v1, v2, shuffle_mask
6295 // where both results are returned in one vector and the shuffle mask has twice
6296 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6297 // want to check the low half and high half of the shuffle mask as if it were
6298 // the other case
6299 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6300   unsigned EltSz = VT.getScalarSizeInBits();
6301   if (EltSz == 64)
6302     return false;
6303 
6304   unsigned NumElts = VT.getVectorNumElements();
6305   if (M.size() != NumElts && M.size() != NumElts*2)
6306     return false;
6307 
6308   // If the mask is twice as long as the input vector then we need to check the
6309   // upper and lower parts of the mask with a matching value for WhichResult
6310   // FIXME: A mask with only even values will be rejected in case the first
6311   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6312   // M[0] is used to determine WhichResult
6313   for (unsigned i = 0; i < M.size(); i += NumElts) {
6314     WhichResult = SelectPairHalf(NumElts, M, i);
6315     for (unsigned j = 0; j < NumElts; j += 2) {
6316       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6317           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6318         return false;
6319     }
6320   }
6321 
6322   if (M.size() == NumElts*2)
6323     WhichResult = 0;
6324 
6325   return true;
6326 }
6327 
6328 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6329 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6330 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6331 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6332   unsigned EltSz = VT.getScalarSizeInBits();
6333   if (EltSz == 64)
6334     return false;
6335 
6336   unsigned NumElts = VT.getVectorNumElements();
6337   if (M.size() != NumElts && M.size() != NumElts*2)
6338     return false;
6339 
6340   for (unsigned i = 0; i < M.size(); i += NumElts) {
6341     WhichResult = SelectPairHalf(NumElts, M, i);
6342     for (unsigned j = 0; j < NumElts; j += 2) {
6343       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6344           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6345         return false;
6346     }
6347   }
6348 
6349   if (M.size() == NumElts*2)
6350     WhichResult = 0;
6351 
6352   return true;
6353 }
6354 
6355 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6356 // that the mask elements are either all even and in steps of size 2 or all odd
6357 // and in steps of size 2.
6358 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6359 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6360 //  v2={e,f,g,h}
6361 // Requires similar checks to that of isVTRNMask with
6362 // respect the how results are returned.
6363 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6364   unsigned EltSz = VT.getScalarSizeInBits();
6365   if (EltSz == 64)
6366     return false;
6367 
6368   unsigned NumElts = VT.getVectorNumElements();
6369   if (M.size() != NumElts && M.size() != NumElts*2)
6370     return false;
6371 
6372   for (unsigned i = 0; i < M.size(); i += NumElts) {
6373     WhichResult = SelectPairHalf(NumElts, M, i);
6374     for (unsigned j = 0; j < NumElts; ++j) {
6375       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6376         return false;
6377     }
6378   }
6379 
6380   if (M.size() == NumElts*2)
6381     WhichResult = 0;
6382 
6383   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6384   if (VT.is64BitVector() && EltSz == 32)
6385     return false;
6386 
6387   return true;
6388 }
6389 
6390 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6391 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6392 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6393 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6394   unsigned EltSz = VT.getScalarSizeInBits();
6395   if (EltSz == 64)
6396     return false;
6397 
6398   unsigned NumElts = VT.getVectorNumElements();
6399   if (M.size() != NumElts && M.size() != NumElts*2)
6400     return false;
6401 
6402   unsigned Half = NumElts / 2;
6403   for (unsigned i = 0; i < M.size(); i += NumElts) {
6404     WhichResult = SelectPairHalf(NumElts, M, i);
6405     for (unsigned j = 0; j < NumElts; j += Half) {
6406       unsigned Idx = WhichResult;
6407       for (unsigned k = 0; k < Half; ++k) {
6408         int MIdx = M[i + j + k];
6409         if (MIdx >= 0 && (unsigned) MIdx != Idx)
6410           return false;
6411         Idx += 2;
6412       }
6413     }
6414   }
6415 
6416   if (M.size() == NumElts*2)
6417     WhichResult = 0;
6418 
6419   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6420   if (VT.is64BitVector() && EltSz == 32)
6421     return false;
6422 
6423   return true;
6424 }
6425 
6426 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6427 // that pairs of elements of the shufflemask represent the same index in each
6428 // vector incrementing sequentially through the vectors.
6429 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6430 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6431 //  v2={e,f,g,h}
6432 // Requires similar checks to that of isVTRNMask with respect the how results
6433 // are returned.
6434 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6435   unsigned EltSz = VT.getScalarSizeInBits();
6436   if (EltSz == 64)
6437     return false;
6438 
6439   unsigned NumElts = VT.getVectorNumElements();
6440   if (M.size() != NumElts && M.size() != NumElts*2)
6441     return false;
6442 
6443   for (unsigned i = 0; i < M.size(); i += NumElts) {
6444     WhichResult = SelectPairHalf(NumElts, M, i);
6445     unsigned Idx = WhichResult * NumElts / 2;
6446     for (unsigned j = 0; j < NumElts; j += 2) {
6447       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6448           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6449         return false;
6450       Idx += 1;
6451     }
6452   }
6453 
6454   if (M.size() == NumElts*2)
6455     WhichResult = 0;
6456 
6457   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6458   if (VT.is64BitVector() && EltSz == 32)
6459     return false;
6460 
6461   return true;
6462 }
6463 
6464 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6465 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6466 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6467 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6468   unsigned EltSz = VT.getScalarSizeInBits();
6469   if (EltSz == 64)
6470     return false;
6471 
6472   unsigned NumElts = VT.getVectorNumElements();
6473   if (M.size() != NumElts && M.size() != NumElts*2)
6474     return false;
6475 
6476   for (unsigned i = 0; i < M.size(); i += NumElts) {
6477     WhichResult = SelectPairHalf(NumElts, M, i);
6478     unsigned Idx = WhichResult * NumElts / 2;
6479     for (unsigned j = 0; j < NumElts; j += 2) {
6480       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6481           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6482         return false;
6483       Idx += 1;
6484     }
6485   }
6486 
6487   if (M.size() == NumElts*2)
6488     WhichResult = 0;
6489 
6490   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6491   if (VT.is64BitVector() && EltSz == 32)
6492     return false;
6493 
6494   return true;
6495 }
6496 
6497 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6498 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6499 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6500                                            unsigned &WhichResult,
6501                                            bool &isV_UNDEF) {
6502   isV_UNDEF = false;
6503   if (isVTRNMask(ShuffleMask, VT, WhichResult))
6504     return ARMISD::VTRN;
6505   if (isVUZPMask(ShuffleMask, VT, WhichResult))
6506     return ARMISD::VUZP;
6507   if (isVZIPMask(ShuffleMask, VT, WhichResult))
6508     return ARMISD::VZIP;
6509 
6510   isV_UNDEF = true;
6511   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
6512     return ARMISD::VTRN;
6513   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6514     return ARMISD::VUZP;
6515   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
6516     return ARMISD::VZIP;
6517 
6518   return 0;
6519 }
6520 
6521 /// \return true if this is a reverse operation on an vector.
6522 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
6523   unsigned NumElts = VT.getVectorNumElements();
6524   // Make sure the mask has the right size.
6525   if (NumElts != M.size())
6526       return false;
6527 
6528   // Look for <15, ..., 3, -1, 1, 0>.
6529   for (unsigned i = 0; i != NumElts; ++i)
6530     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
6531       return false;
6532 
6533   return true;
6534 }
6535 
6536 // If N is an integer constant that can be moved into a register in one
6537 // instruction, return an SDValue of such a constant (will become a MOV
6538 // instruction).  Otherwise return null.
6539 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
6540                                      const ARMSubtarget *ST, const SDLoc &dl) {
6541   uint64_t Val;
6542   if (!isa<ConstantSDNode>(N))
6543     return SDValue();
6544   Val = cast<ConstantSDNode>(N)->getZExtValue();
6545 
6546   if (ST->isThumb1Only()) {
6547     if (Val <= 255 || ~Val <= 255)
6548       return DAG.getConstant(Val, dl, MVT::i32);
6549   } else {
6550     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
6551       return DAG.getConstant(Val, dl, MVT::i32);
6552   }
6553   return SDValue();
6554 }
6555 
6556 // If this is a case we can't handle, return null and let the default
6557 // expansion code take care of it.
6558 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
6559                                              const ARMSubtarget *ST) const {
6560   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
6561   SDLoc dl(Op);
6562   EVT VT = Op.getValueType();
6563 
6564   APInt SplatBits, SplatUndef;
6565   unsigned SplatBitSize;
6566   bool HasAnyUndefs;
6567   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
6568     if (SplatUndef.isAllOnesValue())
6569       return DAG.getUNDEF(VT);
6570 
6571     if (ST->hasNEON() && SplatBitSize <= 64) {
6572       // Check if an immediate VMOV works.
6573       EVT VmovVT;
6574       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
6575                                       SplatUndef.getZExtValue(), SplatBitSize,
6576                                       DAG, dl, VmovVT, VT.is128BitVector(),
6577                                       VMOVModImm);
6578       if (Val.getNode()) {
6579         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
6580         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6581       }
6582 
6583       // Try an immediate VMVN.
6584       uint64_t NegatedImm = (~SplatBits).getZExtValue();
6585       Val = isNEONModifiedImm(NegatedImm,
6586                                       SplatUndef.getZExtValue(), SplatBitSize,
6587                                       DAG, dl, VmovVT, VT.is128BitVector(),
6588                                       VMVNModImm);
6589       if (Val.getNode()) {
6590         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
6591         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6592       }
6593 
6594       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
6595       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
6596         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
6597         if (ImmVal != -1) {
6598           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
6599           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
6600         }
6601       }
6602     }
6603   }
6604 
6605   // Scan through the operands to see if only one value is used.
6606   //
6607   // As an optimisation, even if more than one value is used it may be more
6608   // profitable to splat with one value then change some lanes.
6609   //
6610   // Heuristically we decide to do this if the vector has a "dominant" value,
6611   // defined as splatted to more than half of the lanes.
6612   unsigned NumElts = VT.getVectorNumElements();
6613   bool isOnlyLowElement = true;
6614   bool usesOnlyOneValue = true;
6615   bool hasDominantValue = false;
6616   bool isConstant = true;
6617 
6618   // Map of the number of times a particular SDValue appears in the
6619   // element list.
6620   DenseMap<SDValue, unsigned> ValueCounts;
6621   SDValue Value;
6622   for (unsigned i = 0; i < NumElts; ++i) {
6623     SDValue V = Op.getOperand(i);
6624     if (V.isUndef())
6625       continue;
6626     if (i > 0)
6627       isOnlyLowElement = false;
6628     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
6629       isConstant = false;
6630 
6631     ValueCounts.insert(std::make_pair(V, 0));
6632     unsigned &Count = ValueCounts[V];
6633 
6634     // Is this value dominant? (takes up more than half of the lanes)
6635     if (++Count > (NumElts / 2)) {
6636       hasDominantValue = true;
6637       Value = V;
6638     }
6639   }
6640   if (ValueCounts.size() != 1)
6641     usesOnlyOneValue = false;
6642   if (!Value.getNode() && !ValueCounts.empty())
6643     Value = ValueCounts.begin()->first;
6644 
6645   if (ValueCounts.empty())
6646     return DAG.getUNDEF(VT);
6647 
6648   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
6649   // Keep going if we are hitting this case.
6650   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
6651     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
6652 
6653   unsigned EltSize = VT.getScalarSizeInBits();
6654 
6655   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
6656   // i32 and try again.
6657   if (hasDominantValue && EltSize <= 32) {
6658     if (!isConstant) {
6659       SDValue N;
6660 
6661       // If we are VDUPing a value that comes directly from a vector, that will
6662       // cause an unnecessary move to and from a GPR, where instead we could
6663       // just use VDUPLANE. We can only do this if the lane being extracted
6664       // is at a constant index, as the VDUP from lane instructions only have
6665       // constant-index forms.
6666       ConstantSDNode *constIndex;
6667       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6668           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
6669         // We need to create a new undef vector to use for the VDUPLANE if the
6670         // size of the vector from which we get the value is different than the
6671         // size of the vector that we need to create. We will insert the element
6672         // such that the register coalescer will remove unnecessary copies.
6673         if (VT != Value->getOperand(0).getValueType()) {
6674           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
6675                              VT.getVectorNumElements();
6676           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6677                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
6678                         Value, DAG.getConstant(index, dl, MVT::i32)),
6679                            DAG.getConstant(index, dl, MVT::i32));
6680         } else
6681           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6682                         Value->getOperand(0), Value->getOperand(1));
6683       } else
6684         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
6685 
6686       if (!usesOnlyOneValue) {
6687         // The dominant value was splatted as 'N', but we now have to insert
6688         // all differing elements.
6689         for (unsigned I = 0; I < NumElts; ++I) {
6690           if (Op.getOperand(I) == Value)
6691             continue;
6692           SmallVector<SDValue, 3> Ops;
6693           Ops.push_back(N);
6694           Ops.push_back(Op.getOperand(I));
6695           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
6696           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
6697         }
6698       }
6699       return N;
6700     }
6701     if (VT.getVectorElementType().isFloatingPoint()) {
6702       SmallVector<SDValue, 8> Ops;
6703       MVT FVT = VT.getVectorElementType().getSimpleVT();
6704       assert(FVT == MVT::f32 || FVT == MVT::f16);
6705       MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
6706       for (unsigned i = 0; i < NumElts; ++i)
6707         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
6708                                   Op.getOperand(i)));
6709       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
6710       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
6711       Val = LowerBUILD_VECTOR(Val, DAG, ST);
6712       if (Val.getNode())
6713         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6714     }
6715     if (usesOnlyOneValue) {
6716       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
6717       if (isConstant && Val.getNode())
6718         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
6719     }
6720   }
6721 
6722   // If all elements are constants and the case above didn't get hit, fall back
6723   // to the default expansion, which will generate a load from the constant
6724   // pool.
6725   if (isConstant)
6726     return SDValue();
6727 
6728   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
6729   if (NumElts >= 4) {
6730     SDValue shuffle = ReconstructShuffle(Op, DAG);
6731     if (shuffle != SDValue())
6732       return shuffle;
6733   }
6734 
6735   if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
6736     // If we haven't found an efficient lowering, try splitting a 128-bit vector
6737     // into two 64-bit vectors; we might discover a better way to lower it.
6738     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
6739     EVT ExtVT = VT.getVectorElementType();
6740     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
6741     SDValue Lower =
6742         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
6743     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
6744       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
6745     SDValue Upper = DAG.getBuildVector(
6746         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
6747     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
6748       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
6749     if (Lower && Upper)
6750       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
6751   }
6752 
6753   // Vectors with 32- or 64-bit elements can be built by directly assigning
6754   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
6755   // will be legalized.
6756   if (EltSize >= 32) {
6757     // Do the expansion with floating-point types, since that is what the VFP
6758     // registers are defined to use, and since i64 is not legal.
6759     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6760     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6761     SmallVector<SDValue, 8> Ops;
6762     for (unsigned i = 0; i < NumElts; ++i)
6763       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
6764     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6765     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6766   }
6767 
6768   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
6769   // know the default expansion would otherwise fall back on something even
6770   // worse. For a vector with one or two non-undef values, that's
6771   // scalar_to_vector for the elements followed by a shuffle (provided the
6772   // shuffle is valid for the target) and materialization element by element
6773   // on the stack followed by a load for everything else.
6774   if (!isConstant && !usesOnlyOneValue) {
6775     SDValue Vec = DAG.getUNDEF(VT);
6776     for (unsigned i = 0 ; i < NumElts; ++i) {
6777       SDValue V = Op.getOperand(i);
6778       if (V.isUndef())
6779         continue;
6780       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
6781       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
6782     }
6783     return Vec;
6784   }
6785 
6786   return SDValue();
6787 }
6788 
6789 // Gather data to see if the operation can be modelled as a
6790 // shuffle in combination with VEXTs.
6791 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
6792                                               SelectionDAG &DAG) const {
6793   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
6794   SDLoc dl(Op);
6795   EVT VT = Op.getValueType();
6796   unsigned NumElts = VT.getVectorNumElements();
6797 
6798   struct ShuffleSourceInfo {
6799     SDValue Vec;
6800     unsigned MinElt = std::numeric_limits<unsigned>::max();
6801     unsigned MaxElt = 0;
6802 
6803     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6804     // be compatible with the shuffle we intend to construct. As a result
6805     // ShuffleVec will be some sliding window into the original Vec.
6806     SDValue ShuffleVec;
6807 
6808     // Code should guarantee that element i in Vec starts at element "WindowBase
6809     // + i * WindowScale in ShuffleVec".
6810     int WindowBase = 0;
6811     int WindowScale = 1;
6812 
6813     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
6814 
6815     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
6816   };
6817 
6818   // First gather all vectors used as an immediate source for this BUILD_VECTOR
6819   // node.
6820   SmallVector<ShuffleSourceInfo, 2> Sources;
6821   for (unsigned i = 0; i < NumElts; ++i) {
6822     SDValue V = Op.getOperand(i);
6823     if (V.isUndef())
6824       continue;
6825     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
6826       // A shuffle can only come from building a vector from various
6827       // elements of other vectors.
6828       return SDValue();
6829     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
6830       // Furthermore, shuffles require a constant mask, whereas extractelts
6831       // accept variable indices.
6832       return SDValue();
6833     }
6834 
6835     // Add this element source to the list if it's not already there.
6836     SDValue SourceVec = V.getOperand(0);
6837     auto Source = llvm::find(Sources, SourceVec);
6838     if (Source == Sources.end())
6839       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
6840 
6841     // Update the minimum and maximum lane number seen.
6842     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
6843     Source->MinElt = std::min(Source->MinElt, EltNo);
6844     Source->MaxElt = std::max(Source->MaxElt, EltNo);
6845   }
6846 
6847   // Currently only do something sane when at most two source vectors
6848   // are involved.
6849   if (Sources.size() > 2)
6850     return SDValue();
6851 
6852   // Find out the smallest element size among result and two sources, and use
6853   // it as element size to build the shuffle_vector.
6854   EVT SmallestEltTy = VT.getVectorElementType();
6855   for (auto &Source : Sources) {
6856     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
6857     if (SrcEltTy.bitsLT(SmallestEltTy))
6858       SmallestEltTy = SrcEltTy;
6859   }
6860   unsigned ResMultiplier =
6861       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
6862   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
6863   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
6864 
6865   // If the source vector is too wide or too narrow, we may nevertheless be able
6866   // to construct a compatible shuffle either by concatenating it with UNDEF or
6867   // extracting a suitable range of elements.
6868   for (auto &Src : Sources) {
6869     EVT SrcVT = Src.ShuffleVec.getValueType();
6870 
6871     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
6872       continue;
6873 
6874     // This stage of the search produces a source with the same element type as
6875     // the original, but with a total width matching the BUILD_VECTOR output.
6876     EVT EltVT = SrcVT.getVectorElementType();
6877     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
6878     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
6879 
6880     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
6881       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
6882         return SDValue();
6883       // We can pad out the smaller vector for free, so if it's part of a
6884       // shuffle...
6885       Src.ShuffleVec =
6886           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
6887                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
6888       continue;
6889     }
6890 
6891     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
6892       return SDValue();
6893 
6894     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
6895       // Span too large for a VEXT to cope
6896       return SDValue();
6897     }
6898 
6899     if (Src.MinElt >= NumSrcElts) {
6900       // The extraction can just take the second half
6901       Src.ShuffleVec =
6902           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6903                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6904       Src.WindowBase = -NumSrcElts;
6905     } else if (Src.MaxElt < NumSrcElts) {
6906       // The extraction can just take the first half
6907       Src.ShuffleVec =
6908           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6909                       DAG.getConstant(0, dl, MVT::i32));
6910     } else {
6911       // An actual VEXT is needed
6912       SDValue VEXTSrc1 =
6913           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6914                       DAG.getConstant(0, dl, MVT::i32));
6915       SDValue VEXTSrc2 =
6916           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
6917                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
6918 
6919       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
6920                                    VEXTSrc2,
6921                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
6922       Src.WindowBase = -Src.MinElt;
6923     }
6924   }
6925 
6926   // Another possible incompatibility occurs from the vector element types. We
6927   // can fix this by bitcasting the source vectors to the same type we intend
6928   // for the shuffle.
6929   for (auto &Src : Sources) {
6930     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
6931     if (SrcEltTy == SmallestEltTy)
6932       continue;
6933     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6934     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6935     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6936     Src.WindowBase *= Src.WindowScale;
6937   }
6938 
6939   // Final sanity check before we try to actually produce a shuffle.
6940   LLVM_DEBUG(for (auto Src
6941                   : Sources)
6942                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
6943 
6944   // The stars all align, our next step is to produce the mask for the shuffle.
6945   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6946   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
6947   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6948     SDValue Entry = Op.getOperand(i);
6949     if (Entry.isUndef())
6950       continue;
6951 
6952     auto Src = llvm::find(Sources, Entry.getOperand(0));
6953     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6954 
6955     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6956     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6957     // segment.
6958     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6959     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6960                                VT.getScalarSizeInBits());
6961     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6962 
6963     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6964     // starting at the appropriate offset.
6965     int *LaneMask = &Mask[i * ResMultiplier];
6966 
6967     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6968     ExtractBase += NumElts * (Src - Sources.begin());
6969     for (int j = 0; j < LanesDefined; ++j)
6970       LaneMask[j] = ExtractBase + j;
6971   }
6972 
6973   // Final check before we try to produce nonsense...
6974   if (!isShuffleMaskLegal(Mask, ShuffleVT))
6975     return SDValue();
6976 
6977   // We can't handle more than two sources. This should have already
6978   // been checked before this point.
6979   assert(Sources.size() <= 2 && "Too many sources!");
6980 
6981   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6982   for (unsigned i = 0; i < Sources.size(); ++i)
6983     ShuffleOps[i] = Sources[i].ShuffleVec;
6984 
6985   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6986                                          ShuffleOps[1], Mask);
6987   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6988 }
6989 
6990 enum ShuffleOpCodes {
6991   OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6992   OP_VREV,
6993   OP_VDUP0,
6994   OP_VDUP1,
6995   OP_VDUP2,
6996   OP_VDUP3,
6997   OP_VEXT1,
6998   OP_VEXT2,
6999   OP_VEXT3,
7000   OP_VUZPL, // VUZP, left result
7001   OP_VUZPR, // VUZP, right result
7002   OP_VZIPL, // VZIP, left result
7003   OP_VZIPR, // VZIP, right result
7004   OP_VTRNL, // VTRN, left result
7005   OP_VTRNR  // VTRN, right result
7006 };
7007 
7008 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
7009   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7010   switch (OpNum) {
7011   case OP_COPY:
7012   case OP_VREV:
7013   case OP_VDUP0:
7014   case OP_VDUP1:
7015   case OP_VDUP2:
7016   case OP_VDUP3:
7017     return true;
7018   }
7019   return false;
7020 }
7021 
7022 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7023 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7024 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7025 /// are assumed to be legal.
7026 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7027   if (VT.getVectorNumElements() == 4 &&
7028       (VT.is128BitVector() || VT.is64BitVector())) {
7029     unsigned PFIndexes[4];
7030     for (unsigned i = 0; i != 4; ++i) {
7031       if (M[i] < 0)
7032         PFIndexes[i] = 8;
7033       else
7034         PFIndexes[i] = M[i];
7035     }
7036 
7037     // Compute the index in the perfect shuffle table.
7038     unsigned PFTableIndex =
7039       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7040     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7041     unsigned Cost = (PFEntry >> 30);
7042 
7043     if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
7044       return true;
7045   }
7046 
7047   bool ReverseVEXT, isV_UNDEF;
7048   unsigned Imm, WhichResult;
7049 
7050   unsigned EltSize = VT.getScalarSizeInBits();
7051   if (EltSize >= 32 ||
7052       ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7053       isVREVMask(M, VT, 64) ||
7054       isVREVMask(M, VT, 32) ||
7055       isVREVMask(M, VT, 16))
7056     return true;
7057   else if (Subtarget->hasNEON() &&
7058            (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
7059             isVTBLMask(M, VT) ||
7060             isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
7061     return true;
7062   else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
7063            isReverseMask(M, VT))
7064     return true;
7065   else
7066     return false;
7067 }
7068 
7069 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7070 /// the specified operations to build the shuffle.
7071 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7072                                       SDValue RHS, SelectionDAG &DAG,
7073                                       const SDLoc &dl) {
7074   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7075   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7076   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7077 
7078   if (OpNum == OP_COPY) {
7079     if (LHSID == (1*9+2)*9+3) return LHS;
7080     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7081     return RHS;
7082   }
7083 
7084   SDValue OpLHS, OpRHS;
7085   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7086   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7087   EVT VT = OpLHS.getValueType();
7088 
7089   switch (OpNum) {
7090   default: llvm_unreachable("Unknown shuffle opcode!");
7091   case OP_VREV:
7092     // VREV divides the vector in half and swaps within the half.
7093     if (VT.getVectorElementType() == MVT::i32 ||
7094         VT.getVectorElementType() == MVT::f32)
7095       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
7096     // vrev <4 x i16> -> VREV32
7097     if (VT.getVectorElementType() == MVT::i16)
7098       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
7099     // vrev <4 x i8> -> VREV16
7100     assert(VT.getVectorElementType() == MVT::i8);
7101     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
7102   case OP_VDUP0:
7103   case OP_VDUP1:
7104   case OP_VDUP2:
7105   case OP_VDUP3:
7106     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7107                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
7108   case OP_VEXT1:
7109   case OP_VEXT2:
7110   case OP_VEXT3:
7111     return DAG.getNode(ARMISD::VEXT, dl, VT,
7112                        OpLHS, OpRHS,
7113                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
7114   case OP_VUZPL:
7115   case OP_VUZPR:
7116     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
7117                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
7118   case OP_VZIPL:
7119   case OP_VZIPR:
7120     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
7121                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
7122   case OP_VTRNL:
7123   case OP_VTRNR:
7124     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
7125                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
7126   }
7127 }
7128 
7129 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7130                                        ArrayRef<int> ShuffleMask,
7131                                        SelectionDAG &DAG) {
7132   // Check to see if we can use the VTBL instruction.
7133   SDValue V1 = Op.getOperand(0);
7134   SDValue V2 = Op.getOperand(1);
7135   SDLoc DL(Op);
7136 
7137   SmallVector<SDValue, 8> VTBLMask;
7138   for (ArrayRef<int>::iterator
7139          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7140     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7141 
7142   if (V2.getNode()->isUndef())
7143     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7144                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7145 
7146   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7147                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7148 }
7149 
7150 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7151                                                       SelectionDAG &DAG) {
7152   SDLoc DL(Op);
7153   SDValue OpLHS = Op.getOperand(0);
7154   EVT VT = OpLHS.getValueType();
7155 
7156   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7157          "Expect an v8i16/v16i8 type");
7158   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7159   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7160   // extract the first 8 bytes into the top double word and the last 8 bytes
7161   // into the bottom double word. The v8i16 case is similar.
7162   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7163   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7164                      DAG.getConstant(ExtractNum, DL, MVT::i32));
7165 }
7166 
7167 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
7168                                    const ARMSubtarget *ST) {
7169   SDValue V1 = Op.getOperand(0);
7170   SDValue V2 = Op.getOperand(1);
7171   SDLoc dl(Op);
7172   EVT VT = Op.getValueType();
7173   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7174 
7175   // Convert shuffles that are directly supported on NEON to target-specific
7176   // DAG nodes, instead of keeping them as shuffles and matching them again
7177   // during code selection.  This is more efficient and avoids the possibility
7178   // of inconsistencies between legalization and selection.
7179   // FIXME: floating-point vectors should be canonicalized to integer vectors
7180   // of the same time so that they get CSEd properly.
7181   ArrayRef<int> ShuffleMask = SVN->getMask();
7182 
7183   unsigned EltSize = VT.getScalarSizeInBits();
7184   if (EltSize <= 32) {
7185     if (SVN->isSplat()) {
7186       int Lane = SVN->getSplatIndex();
7187       // If this is undef splat, generate it via "just" vdup, if possible.
7188       if (Lane == -1) Lane = 0;
7189 
7190       // Test if V1 is a SCALAR_TO_VECTOR.
7191       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7192         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7193       }
7194       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7195       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7196       // reaches it).
7197       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7198           !isa<ConstantSDNode>(V1.getOperand(0))) {
7199         bool IsScalarToVector = true;
7200         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7201           if (!V1.getOperand(i).isUndef()) {
7202             IsScalarToVector = false;
7203             break;
7204           }
7205         if (IsScalarToVector)
7206           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7207       }
7208       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7209                          DAG.getConstant(Lane, dl, MVT::i32));
7210     }
7211 
7212     bool ReverseVEXT = false;
7213     unsigned Imm = 0;
7214     if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7215       if (ReverseVEXT)
7216         std::swap(V1, V2);
7217       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7218                          DAG.getConstant(Imm, dl, MVT::i32));
7219     }
7220 
7221     if (isVREVMask(ShuffleMask, VT, 64))
7222       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7223     if (isVREVMask(ShuffleMask, VT, 32))
7224       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7225     if (isVREVMask(ShuffleMask, VT, 16))
7226       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7227 
7228     if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7229       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7230                          DAG.getConstant(Imm, dl, MVT::i32));
7231     }
7232 
7233     // Check for Neon shuffles that modify both input vectors in place.
7234     // If both results are used, i.e., if there are two shuffles with the same
7235     // source operands and with masks corresponding to both results of one of
7236     // these operations, DAG memoization will ensure that a single node is
7237     // used for both shuffles.
7238     unsigned WhichResult = 0;
7239     bool isV_UNDEF = false;
7240     if (ST->hasNEON()) {
7241       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7242               ShuffleMask, VT, WhichResult, isV_UNDEF)) {
7243         if (isV_UNDEF)
7244           V2 = V1;
7245         return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
7246             .getValue(WhichResult);
7247       }
7248     }
7249 
7250     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
7251     // shuffles that produce a result larger than their operands with:
7252     //   shuffle(concat(v1, undef), concat(v2, undef))
7253     // ->
7254     //   shuffle(concat(v1, v2), undef)
7255     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
7256     //
7257     // This is useful in the general case, but there are special cases where
7258     // native shuffles produce larger results: the two-result ops.
7259     //
7260     // Look through the concat when lowering them:
7261     //   shuffle(concat(v1, v2), undef)
7262     // ->
7263     //   concat(VZIP(v1, v2):0, :1)
7264     //
7265     if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
7266       SDValue SubV1 = V1->getOperand(0);
7267       SDValue SubV2 = V1->getOperand(1);
7268       EVT SubVT = SubV1.getValueType();
7269 
7270       // We expect these to have been canonicalized to -1.
7271       assert(llvm::all_of(ShuffleMask, [&](int i) {
7272         return i < (int)VT.getVectorNumElements();
7273       }) && "Unexpected shuffle index into UNDEF operand!");
7274 
7275       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
7276               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
7277         if (isV_UNDEF)
7278           SubV2 = SubV1;
7279         assert((WhichResult == 0) &&
7280                "In-place shuffle of concat can only have one result!");
7281         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
7282                                   SubV1, SubV2);
7283         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
7284                            Res.getValue(1));
7285       }
7286     }
7287   }
7288 
7289   // If the shuffle is not directly supported and it has 4 elements, use
7290   // the PerfectShuffle-generated table to synthesize it from other shuffles.
7291   unsigned NumElts = VT.getVectorNumElements();
7292   if (NumElts == 4) {
7293     unsigned PFIndexes[4];
7294     for (unsigned i = 0; i != 4; ++i) {
7295       if (ShuffleMask[i] < 0)
7296         PFIndexes[i] = 8;
7297       else
7298         PFIndexes[i] = ShuffleMask[i];
7299     }
7300 
7301     // Compute the index in the perfect shuffle table.
7302     unsigned PFTableIndex =
7303       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7304     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7305     unsigned Cost = (PFEntry >> 30);
7306 
7307     if (Cost <= 4) {
7308       if (ST->hasNEON())
7309         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7310       else if (isLegalMVEShuffleOp(PFEntry)) {
7311         unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7312         unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7313         unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
7314         unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
7315         if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
7316           return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
7317       }
7318     }
7319   }
7320 
7321   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
7322   if (EltSize >= 32) {
7323     // Do the expansion with floating-point types, since that is what the VFP
7324     // registers are defined to use, and since i64 is not legal.
7325     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7326     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7327     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
7328     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
7329     SmallVector<SDValue, 8> Ops;
7330     for (unsigned i = 0; i < NumElts; ++i) {
7331       if (ShuffleMask[i] < 0)
7332         Ops.push_back(DAG.getUNDEF(EltVT));
7333       else
7334         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
7335                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
7336                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
7337                                                   dl, MVT::i32)));
7338     }
7339     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7340     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7341   }
7342 
7343   if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
7344     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
7345 
7346   if (ST->hasNEON() && VT == MVT::v8i8)
7347     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
7348       return NewOp;
7349 
7350   return SDValue();
7351 }
7352 
7353 SDValue ARMTargetLowering::
7354 LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7355   // INSERT_VECTOR_ELT is legal only for immediate indexes.
7356   SDValue Lane = Op.getOperand(2);
7357   if (!isa<ConstantSDNode>(Lane))
7358     return SDValue();
7359 
7360   SDValue Elt = Op.getOperand(1);
7361   EVT EltVT = Elt.getValueType();
7362   if (getTypeAction(*DAG.getContext(), EltVT) ==
7363       TargetLowering::TypePromoteFloat) {
7364     // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
7365     // but the type system will try to do that if we don't intervene.
7366     // Reinterpret any such vector-element insertion as one with the
7367     // corresponding integer types.
7368 
7369     SDLoc dl(Op);
7370 
7371     EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
7372     assert(getTypeAction(*DAG.getContext(), IEltVT) !=
7373            TargetLowering::TypePromoteFloat);
7374 
7375     SDValue VecIn = Op.getOperand(0);
7376     EVT VecVT = VecIn.getValueType();
7377     EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
7378                                   VecVT.getVectorNumElements());
7379 
7380     SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
7381     SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
7382     SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
7383                                   IVecIn, IElt, Lane);
7384     return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
7385   }
7386 
7387   return Op;
7388 }
7389 
7390 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
7391   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
7392   SDValue Lane = Op.getOperand(1);
7393   if (!isa<ConstantSDNode>(Lane))
7394     return SDValue();
7395 
7396   SDValue Vec = Op.getOperand(0);
7397   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
7398     SDLoc dl(Op);
7399     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
7400   }
7401 
7402   return Op;
7403 }
7404 
7405 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
7406   // The only time a CONCAT_VECTORS operation can have legal types is when
7407   // two 64-bit vectors are concatenated to a 128-bit vector.
7408   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
7409          "unexpected CONCAT_VECTORS");
7410   SDLoc dl(Op);
7411   SDValue Val = DAG.getUNDEF(MVT::v2f64);
7412   SDValue Op0 = Op.getOperand(0);
7413   SDValue Op1 = Op.getOperand(1);
7414   if (!Op0.isUndef())
7415     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7416                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
7417                       DAG.getIntPtrConstant(0, dl));
7418   if (!Op1.isUndef())
7419     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
7420                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
7421                       DAG.getIntPtrConstant(1, dl));
7422   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
7423 }
7424 
7425 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
7426 /// element has been zero/sign-extended, depending on the isSigned parameter,
7427 /// from an integer type half its size.
7428 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
7429                                    bool isSigned) {
7430   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
7431   EVT VT = N->getValueType(0);
7432   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
7433     SDNode *BVN = N->getOperand(0).getNode();
7434     if (BVN->getValueType(0) != MVT::v4i32 ||
7435         BVN->getOpcode() != ISD::BUILD_VECTOR)
7436       return false;
7437     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7438     unsigned HiElt = 1 - LoElt;
7439     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
7440     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
7441     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
7442     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
7443     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
7444       return false;
7445     if (isSigned) {
7446       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
7447           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
7448         return true;
7449     } else {
7450       if (Hi0->isNullValue() && Hi1->isNullValue())
7451         return true;
7452     }
7453     return false;
7454   }
7455 
7456   if (N->getOpcode() != ISD::BUILD_VECTOR)
7457     return false;
7458 
7459   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
7460     SDNode *Elt = N->getOperand(i).getNode();
7461     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
7462       unsigned EltSize = VT.getScalarSizeInBits();
7463       unsigned HalfSize = EltSize / 2;
7464       if (isSigned) {
7465         if (!isIntN(HalfSize, C->getSExtValue()))
7466           return false;
7467       } else {
7468         if (!isUIntN(HalfSize, C->getZExtValue()))
7469           return false;
7470       }
7471       continue;
7472     }
7473     return false;
7474   }
7475 
7476   return true;
7477 }
7478 
7479 /// isSignExtended - Check if a node is a vector value that is sign-extended
7480 /// or a constant BUILD_VECTOR with sign-extended elements.
7481 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
7482   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
7483     return true;
7484   if (isExtendedBUILD_VECTOR(N, DAG, true))
7485     return true;
7486   return false;
7487 }
7488 
7489 /// isZeroExtended - Check if a node is a vector value that is zero-extended
7490 /// or a constant BUILD_VECTOR with zero-extended elements.
7491 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
7492   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
7493     return true;
7494   if (isExtendedBUILD_VECTOR(N, DAG, false))
7495     return true;
7496   return false;
7497 }
7498 
7499 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
7500   if (OrigVT.getSizeInBits() >= 64)
7501     return OrigVT;
7502 
7503   assert(OrigVT.isSimple() && "Expecting a simple value type");
7504 
7505   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
7506   switch (OrigSimpleTy) {
7507   default: llvm_unreachable("Unexpected Vector Type");
7508   case MVT::v2i8:
7509   case MVT::v2i16:
7510      return MVT::v2i32;
7511   case MVT::v4i8:
7512     return  MVT::v4i16;
7513   }
7514 }
7515 
7516 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
7517 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
7518 /// We insert the required extension here to get the vector to fill a D register.
7519 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
7520                                             const EVT &OrigTy,
7521                                             const EVT &ExtTy,
7522                                             unsigned ExtOpcode) {
7523   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
7524   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
7525   // 64-bits we need to insert a new extension so that it will be 64-bits.
7526   assert(ExtTy.is128BitVector() && "Unexpected extension size");
7527   if (OrigTy.getSizeInBits() >= 64)
7528     return N;
7529 
7530   // Must extend size to at least 64 bits to be used as an operand for VMULL.
7531   EVT NewVT = getExtensionTo64Bits(OrigTy);
7532 
7533   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
7534 }
7535 
7536 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
7537 /// does not do any sign/zero extension. If the original vector is less
7538 /// than 64 bits, an appropriate extension will be added after the load to
7539 /// reach a total size of 64 bits. We have to add the extension separately
7540 /// because ARM does not have a sign/zero extending load for vectors.
7541 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
7542   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
7543 
7544   // The load already has the right type.
7545   if (ExtendedTy == LD->getMemoryVT())
7546     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
7547                        LD->getBasePtr(), LD->getPointerInfo(),
7548                        LD->getAlignment(), LD->getMemOperand()->getFlags());
7549 
7550   // We need to create a zextload/sextload. We cannot just create a load
7551   // followed by a zext/zext node because LowerMUL is also run during normal
7552   // operation legalization where we can't create illegal types.
7553   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
7554                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
7555                         LD->getMemoryVT(), LD->getAlignment(),
7556                         LD->getMemOperand()->getFlags());
7557 }
7558 
7559 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
7560 /// extending load, or BUILD_VECTOR with extended elements, return the
7561 /// unextended value. The unextended vector should be 64 bits so that it can
7562 /// be used as an operand to a VMULL instruction. If the original vector size
7563 /// before extension is less than 64 bits we add a an extension to resize
7564 /// the vector to 64 bits.
7565 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
7566   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
7567     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
7568                                         N->getOperand(0)->getValueType(0),
7569                                         N->getValueType(0),
7570                                         N->getOpcode());
7571 
7572   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
7573     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
7574            "Expected extending load");
7575 
7576     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
7577     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
7578     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
7579     SDValue extLoad =
7580         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
7581     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
7582 
7583     return newLoad;
7584   }
7585 
7586   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
7587   // have been legalized as a BITCAST from v4i32.
7588   if (N->getOpcode() == ISD::BITCAST) {
7589     SDNode *BVN = N->getOperand(0).getNode();
7590     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
7591            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
7592     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
7593     return DAG.getBuildVector(
7594         MVT::v2i32, SDLoc(N),
7595         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
7596   }
7597   // Construct a new BUILD_VECTOR with elements truncated to half the size.
7598   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
7599   EVT VT = N->getValueType(0);
7600   unsigned EltSize = VT.getScalarSizeInBits() / 2;
7601   unsigned NumElts = VT.getVectorNumElements();
7602   MVT TruncVT = MVT::getIntegerVT(EltSize);
7603   SmallVector<SDValue, 8> Ops;
7604   SDLoc dl(N);
7605   for (unsigned i = 0; i != NumElts; ++i) {
7606     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
7607     const APInt &CInt = C->getAPIntValue();
7608     // Element types smaller than 32 bits are not legal, so use i32 elements.
7609     // The values are implicitly truncated so sext vs. zext doesn't matter.
7610     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
7611   }
7612   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
7613 }
7614 
7615 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
7616   unsigned Opcode = N->getOpcode();
7617   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7618     SDNode *N0 = N->getOperand(0).getNode();
7619     SDNode *N1 = N->getOperand(1).getNode();
7620     return N0->hasOneUse() && N1->hasOneUse() &&
7621       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
7622   }
7623   return false;
7624 }
7625 
7626 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
7627   unsigned Opcode = N->getOpcode();
7628   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
7629     SDNode *N0 = N->getOperand(0).getNode();
7630     SDNode *N1 = N->getOperand(1).getNode();
7631     return N0->hasOneUse() && N1->hasOneUse() &&
7632       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
7633   }
7634   return false;
7635 }
7636 
7637 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
7638   // Multiplications are only custom-lowered for 128-bit vectors so that
7639   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
7640   EVT VT = Op.getValueType();
7641   assert(VT.is128BitVector() && VT.isInteger() &&
7642          "unexpected type for custom-lowering ISD::MUL");
7643   SDNode *N0 = Op.getOperand(0).getNode();
7644   SDNode *N1 = Op.getOperand(1).getNode();
7645   unsigned NewOpc = 0;
7646   bool isMLA = false;
7647   bool isN0SExt = isSignExtended(N0, DAG);
7648   bool isN1SExt = isSignExtended(N1, DAG);
7649   if (isN0SExt && isN1SExt)
7650     NewOpc = ARMISD::VMULLs;
7651   else {
7652     bool isN0ZExt = isZeroExtended(N0, DAG);
7653     bool isN1ZExt = isZeroExtended(N1, DAG);
7654     if (isN0ZExt && isN1ZExt)
7655       NewOpc = ARMISD::VMULLu;
7656     else if (isN1SExt || isN1ZExt) {
7657       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
7658       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
7659       if (isN1SExt && isAddSubSExt(N0, DAG)) {
7660         NewOpc = ARMISD::VMULLs;
7661         isMLA = true;
7662       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
7663         NewOpc = ARMISD::VMULLu;
7664         isMLA = true;
7665       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
7666         std::swap(N0, N1);
7667         NewOpc = ARMISD::VMULLu;
7668         isMLA = true;
7669       }
7670     }
7671 
7672     if (!NewOpc) {
7673       if (VT == MVT::v2i64)
7674         // Fall through to expand this.  It is not legal.
7675         return SDValue();
7676       else
7677         // Other vector multiplications are legal.
7678         return Op;
7679     }
7680   }
7681 
7682   // Legalize to a VMULL instruction.
7683   SDLoc DL(Op);
7684   SDValue Op0;
7685   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
7686   if (!isMLA) {
7687     Op0 = SkipExtensionForVMULL(N0, DAG);
7688     assert(Op0.getValueType().is64BitVector() &&
7689            Op1.getValueType().is64BitVector() &&
7690            "unexpected types for extended operands to VMULL");
7691     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
7692   }
7693 
7694   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
7695   // isel lowering to take advantage of no-stall back to back vmul + vmla.
7696   //   vmull q0, d4, d6
7697   //   vmlal q0, d5, d6
7698   // is faster than
7699   //   vaddl q0, d4, d5
7700   //   vmovl q1, d6
7701   //   vmul  q0, q0, q1
7702   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
7703   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
7704   EVT Op1VT = Op1.getValueType();
7705   return DAG.getNode(N0->getOpcode(), DL, VT,
7706                      DAG.getNode(NewOpc, DL, VT,
7707                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
7708                      DAG.getNode(NewOpc, DL, VT,
7709                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
7710 }
7711 
7712 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
7713                               SelectionDAG &DAG) {
7714   // TODO: Should this propagate fast-math-flags?
7715 
7716   // Convert to float
7717   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
7718   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
7719   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
7720   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
7721   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
7722   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
7723   // Get reciprocal estimate.
7724   // float4 recip = vrecpeq_f32(yf);
7725   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7726                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7727                    Y);
7728   // Because char has a smaller range than uchar, we can actually get away
7729   // without any newton steps.  This requires that we use a weird bias
7730   // of 0xb000, however (again, this has been exhaustively tested).
7731   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
7732   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
7733   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
7734   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
7735   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
7736   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
7737   // Convert back to short.
7738   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
7739   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
7740   return X;
7741 }
7742 
7743 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
7744                                SelectionDAG &DAG) {
7745   // TODO: Should this propagate fast-math-flags?
7746 
7747   SDValue N2;
7748   // Convert to float.
7749   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
7750   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
7751   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
7752   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
7753   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7754   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7755 
7756   // Use reciprocal estimate and one refinement step.
7757   // float4 recip = vrecpeq_f32(yf);
7758   // recip *= vrecpsq_f32(yf, recip);
7759   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7760                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7761                    N1);
7762   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7763                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7764                    N1, N2);
7765   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7766   // Because short has a smaller range than ushort, we can actually get away
7767   // with only a single newton step.  This requires that we use a weird bias
7768   // of 89, however (again, this has been exhaustively tested).
7769   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
7770   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7771   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7772   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
7773   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7774   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7775   // Convert back to integer and return.
7776   // return vmovn_s32(vcvt_s32_f32(result));
7777   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7778   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7779   return N0;
7780 }
7781 
7782 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
7783   EVT VT = Op.getValueType();
7784   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7785          "unexpected type for custom-lowering ISD::SDIV");
7786 
7787   SDLoc dl(Op);
7788   SDValue N0 = Op.getOperand(0);
7789   SDValue N1 = Op.getOperand(1);
7790   SDValue N2, N3;
7791 
7792   if (VT == MVT::v8i8) {
7793     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
7794     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
7795 
7796     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7797                      DAG.getIntPtrConstant(4, dl));
7798     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7799                      DAG.getIntPtrConstant(4, dl));
7800     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7801                      DAG.getIntPtrConstant(0, dl));
7802     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7803                      DAG.getIntPtrConstant(0, dl));
7804 
7805     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
7806     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
7807 
7808     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7809     N0 = LowerCONCAT_VECTORS(N0, DAG);
7810 
7811     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
7812     return N0;
7813   }
7814   return LowerSDIV_v4i16(N0, N1, dl, DAG);
7815 }
7816 
7817 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
7818   // TODO: Should this propagate fast-math-flags?
7819   EVT VT = Op.getValueType();
7820   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
7821          "unexpected type for custom-lowering ISD::UDIV");
7822 
7823   SDLoc dl(Op);
7824   SDValue N0 = Op.getOperand(0);
7825   SDValue N1 = Op.getOperand(1);
7826   SDValue N2, N3;
7827 
7828   if (VT == MVT::v8i8) {
7829     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
7830     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
7831 
7832     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7833                      DAG.getIntPtrConstant(4, dl));
7834     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7835                      DAG.getIntPtrConstant(4, dl));
7836     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
7837                      DAG.getIntPtrConstant(0, dl));
7838     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
7839                      DAG.getIntPtrConstant(0, dl));
7840 
7841     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
7842     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
7843 
7844     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
7845     N0 = LowerCONCAT_VECTORS(N0, DAG);
7846 
7847     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
7848                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
7849                                      MVT::i32),
7850                      N0);
7851     return N0;
7852   }
7853 
7854   // v4i16 sdiv ... Convert to float.
7855   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
7856   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
7857   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
7858   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
7859   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
7860   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
7861 
7862   // Use reciprocal estimate and two refinement steps.
7863   // float4 recip = vrecpeq_f32(yf);
7864   // recip *= vrecpsq_f32(yf, recip);
7865   // recip *= vrecpsq_f32(yf, recip);
7866   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7867                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
7868                    BN1);
7869   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7870                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7871                    BN1, N2);
7872   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7873   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
7874                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
7875                    BN1, N2);
7876   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
7877   // Simply multiplying by the reciprocal estimate can leave us a few ulps
7878   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
7879   // and that it will never cause us to return an answer too large).
7880   // float4 result = as_float4(as_int4(xf*recip) + 2);
7881   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
7882   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
7883   N1 = DAG.getConstant(2, dl, MVT::v4i32);
7884   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
7885   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
7886   // Convert back to integer and return.
7887   // return vmovn_u32(vcvt_s32_f32(result));
7888   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
7889   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
7890   return N0;
7891 }
7892 
7893 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
7894   SDNode *N = Op.getNode();
7895   EVT VT = N->getValueType(0);
7896   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
7897 
7898   SDValue Carry = Op.getOperand(2);
7899 
7900   SDLoc DL(Op);
7901 
7902   SDValue Result;
7903   if (Op.getOpcode() == ISD::ADDCARRY) {
7904     // This converts the boolean value carry into the carry flag.
7905     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7906 
7907     // Do the addition proper using the carry flag we wanted.
7908     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
7909                          Op.getOperand(1), Carry);
7910 
7911     // Now convert the carry flag into a boolean value.
7912     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7913   } else {
7914     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
7915     // have to invert the carry first.
7916     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7917                         DAG.getConstant(1, DL, MVT::i32), Carry);
7918     // This converts the boolean value carry into the carry flag.
7919     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7920 
7921     // Do the subtraction proper using the carry flag we wanted.
7922     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
7923                          Op.getOperand(1), Carry);
7924 
7925     // Now convert the carry flag into a boolean value.
7926     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
7927     // But the carry returned by ARMISD::SUBE is not a borrow as expected
7928     // by ISD::SUBCARRY, so compute 1 - C.
7929     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7930                         DAG.getConstant(1, DL, MVT::i32), Carry);
7931   }
7932 
7933   // Return both values.
7934   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
7935 }
7936 
7937 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
7938   assert(Subtarget->isTargetDarwin());
7939 
7940   // For iOS, we want to call an alternative entry point: __sincos_stret,
7941   // return values are passed via sret.
7942   SDLoc dl(Op);
7943   SDValue Arg = Op.getOperand(0);
7944   EVT ArgVT = Arg.getValueType();
7945   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7946   auto PtrVT = getPointerTy(DAG.getDataLayout());
7947 
7948   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7949   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7950 
7951   // Pair of floats / doubles used to pass the result.
7952   Type *RetTy = StructType::get(ArgTy, ArgTy);
7953   auto &DL = DAG.getDataLayout();
7954 
7955   ArgListTy Args;
7956   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
7957   SDValue SRet;
7958   if (ShouldUseSRet) {
7959     // Create stack object for sret.
7960     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
7961     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
7962     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
7963     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
7964 
7965     ArgListEntry Entry;
7966     Entry.Node = SRet;
7967     Entry.Ty = RetTy->getPointerTo();
7968     Entry.IsSExt = false;
7969     Entry.IsZExt = false;
7970     Entry.IsSRet = true;
7971     Args.push_back(Entry);
7972     RetTy = Type::getVoidTy(*DAG.getContext());
7973   }
7974 
7975   ArgListEntry Entry;
7976   Entry.Node = Arg;
7977   Entry.Ty = ArgTy;
7978   Entry.IsSExt = false;
7979   Entry.IsZExt = false;
7980   Args.push_back(Entry);
7981 
7982   RTLIB::Libcall LC =
7983       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
7984   const char *LibcallName = getLibcallName(LC);
7985   CallingConv::ID CC = getLibcallCallingConv(LC);
7986   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
7987 
7988   TargetLowering::CallLoweringInfo CLI(DAG);
7989   CLI.setDebugLoc(dl)
7990       .setChain(DAG.getEntryNode())
7991       .setCallee(CC, RetTy, Callee, std::move(Args))
7992       .setDiscardResult(ShouldUseSRet);
7993   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7994 
7995   if (!ShouldUseSRet)
7996     return CallResult.first;
7997 
7998   SDValue LoadSin =
7999       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
8000 
8001   // Address of cos field.
8002   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
8003                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
8004   SDValue LoadCos =
8005       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
8006 
8007   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
8008   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
8009                      LoadSin.getValue(0), LoadCos.getValue(0));
8010 }
8011 
8012 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
8013                                                   bool Signed,
8014                                                   SDValue &Chain) const {
8015   EVT VT = Op.getValueType();
8016   assert((VT == MVT::i32 || VT == MVT::i64) &&
8017          "unexpected type for custom lowering DIV");
8018   SDLoc dl(Op);
8019 
8020   const auto &DL = DAG.getDataLayout();
8021   const auto &TLI = DAG.getTargetLoweringInfo();
8022 
8023   const char *Name = nullptr;
8024   if (Signed)
8025     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
8026   else
8027     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
8028 
8029   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
8030 
8031   ARMTargetLowering::ArgListTy Args;
8032 
8033   for (auto AI : {1, 0}) {
8034     ArgListEntry Arg;
8035     Arg.Node = Op.getOperand(AI);
8036     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
8037     Args.push_back(Arg);
8038   }
8039 
8040   CallLoweringInfo CLI(DAG);
8041   CLI.setDebugLoc(dl)
8042     .setChain(Chain)
8043     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
8044                ES, std::move(Args));
8045 
8046   return LowerCallTo(CLI).first;
8047 }
8048 
8049 // This is a code size optimisation: return the original SDIV node to
8050 // DAGCombiner when we don't want to expand SDIV into a sequence of
8051 // instructions, and an empty node otherwise which will cause the
8052 // SDIV to be expanded in DAGCombine.
8053 SDValue
8054 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8055                                  SelectionDAG &DAG,
8056                                  SmallVectorImpl<SDNode *> &Created) const {
8057   // TODO: Support SREM
8058   if (N->getOpcode() != ISD::SDIV)
8059     return SDValue();
8060 
8061   const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
8062   const bool MinSize = ST.hasMinSize();
8063   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
8064                                       : ST.hasDivideInARMMode();
8065 
8066   // Don't touch vector types; rewriting this may lead to scalarizing
8067   // the int divs.
8068   if (N->getOperand(0).getValueType().isVector())
8069     return SDValue();
8070 
8071   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8072   // hwdiv support for this to be really profitable.
8073   if (!(MinSize && HasDivide))
8074     return SDValue();
8075 
8076   // ARM mode is a bit simpler than Thumb: we can handle large power
8077   // of 2 immediates with 1 mov instruction; no further checks required,
8078   // just return the sdiv node.
8079   if (!ST.isThumb())
8080     return SDValue(N, 0);
8081 
8082   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
8083   // and thus lose the code size benefits of a MOVS that requires only 2.
8084   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
8085   // but as it's doing exactly this, it's not worth the trouble to get TTI.
8086   if (Divisor.sgt(128))
8087     return SDValue();
8088 
8089   return SDValue(N, 0);
8090 }
8091 
8092 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
8093                                             bool Signed) const {
8094   assert(Op.getValueType() == MVT::i32 &&
8095          "unexpected type for custom lowering DIV");
8096   SDLoc dl(Op);
8097 
8098   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
8099                                DAG.getEntryNode(), Op.getOperand(1));
8100 
8101   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
8102 }
8103 
8104 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
8105   SDLoc DL(N);
8106   SDValue Op = N->getOperand(1);
8107   if (N->getValueType(0) == MVT::i32)
8108     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
8109   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
8110                            DAG.getConstant(0, DL, MVT::i32));
8111   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
8112                            DAG.getConstant(1, DL, MVT::i32));
8113   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
8114                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
8115 }
8116 
8117 void ARMTargetLowering::ExpandDIV_Windows(
8118     SDValue Op, SelectionDAG &DAG, bool Signed,
8119     SmallVectorImpl<SDValue> &Results) const {
8120   const auto &DL = DAG.getDataLayout();
8121   const auto &TLI = DAG.getTargetLoweringInfo();
8122 
8123   assert(Op.getValueType() == MVT::i64 &&
8124          "unexpected type for custom lowering DIV");
8125   SDLoc dl(Op);
8126 
8127   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
8128 
8129   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
8130 
8131   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
8132   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
8133                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
8134   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
8135 
8136   Results.push_back(Lower);
8137   Results.push_back(Upper);
8138 }
8139 
8140 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
8141   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
8142     // Acquire/Release load/store is not legal for targets without a dmb or
8143     // equivalent available.
8144     return SDValue();
8145 
8146   // Monotonic load/store is legal for all targets.
8147   return Op;
8148 }
8149 
8150 static void ReplaceREADCYCLECOUNTER(SDNode *N,
8151                                     SmallVectorImpl<SDValue> &Results,
8152                                     SelectionDAG &DAG,
8153                                     const ARMSubtarget *Subtarget) {
8154   SDLoc DL(N);
8155   // Under Power Management extensions, the cycle-count is:
8156   //    mrc p15, #0, <Rt>, c9, c13, #0
8157   SDValue Ops[] = { N->getOperand(0), // Chain
8158                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
8159                     DAG.getConstant(15, DL, MVT::i32),
8160                     DAG.getConstant(0, DL, MVT::i32),
8161                     DAG.getConstant(9, DL, MVT::i32),
8162                     DAG.getConstant(13, DL, MVT::i32),
8163                     DAG.getConstant(0, DL, MVT::i32)
8164   };
8165 
8166   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
8167                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
8168   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
8169                                 DAG.getConstant(0, DL, MVT::i32)));
8170   Results.push_back(Cycles32.getValue(1));
8171 }
8172 
8173 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
8174   SDLoc dl(V.getNode());
8175   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
8176   SDValue VHi = DAG.getAnyExtOrTrunc(
8177       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
8178       dl, MVT::i32);
8179   bool isBigEndian = DAG.getDataLayout().isBigEndian();
8180   if (isBigEndian)
8181     std::swap (VLo, VHi);
8182   SDValue RegClass =
8183       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
8184   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
8185   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
8186   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
8187   return SDValue(
8188       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
8189 }
8190 
8191 static void ReplaceCMP_SWAP_64Results(SDNode *N,
8192                                        SmallVectorImpl<SDValue> & Results,
8193                                        SelectionDAG &DAG) {
8194   assert(N->getValueType(0) == MVT::i64 &&
8195          "AtomicCmpSwap on types less than 64 should be legal");
8196   SDValue Ops[] = {N->getOperand(1),
8197                    createGPRPairNode(DAG, N->getOperand(2)),
8198                    createGPRPairNode(DAG, N->getOperand(3)),
8199                    N->getOperand(0)};
8200   SDNode *CmpSwap = DAG.getMachineNode(
8201       ARM::CMP_SWAP_64, SDLoc(N),
8202       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
8203 
8204   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
8205   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
8206 
8207   bool isBigEndian = DAG.getDataLayout().isBigEndian();
8208 
8209   Results.push_back(
8210       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
8211                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8212   Results.push_back(
8213       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
8214                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
8215   Results.push_back(SDValue(CmpSwap, 2));
8216 }
8217 
8218 static SDValue LowerFPOWI(SDValue Op, const ARMSubtarget &Subtarget,
8219                           SelectionDAG &DAG) {
8220   const auto &TLI = DAG.getTargetLoweringInfo();
8221 
8222   assert(Subtarget.getTargetTriple().isOSMSVCRT() &&
8223          "Custom lowering is MSVCRT specific!");
8224 
8225   SDLoc dl(Op);
8226   SDValue Val = Op.getOperand(0);
8227   MVT Ty = Val->getSimpleValueType(0);
8228   SDValue Exponent = DAG.getNode(ISD::SINT_TO_FP, dl, Ty, Op.getOperand(1));
8229   SDValue Callee = DAG.getExternalSymbol(Ty == MVT::f32 ? "powf" : "pow",
8230                                          TLI.getPointerTy(DAG.getDataLayout()));
8231 
8232   TargetLowering::ArgListTy Args;
8233   TargetLowering::ArgListEntry Entry;
8234 
8235   Entry.Node = Val;
8236   Entry.Ty = Val.getValueType().getTypeForEVT(*DAG.getContext());
8237   Entry.IsZExt = true;
8238   Args.push_back(Entry);
8239 
8240   Entry.Node = Exponent;
8241   Entry.Ty = Exponent.getValueType().getTypeForEVT(*DAG.getContext());
8242   Entry.IsZExt = true;
8243   Args.push_back(Entry);
8244 
8245   Type *LCRTy = Val.getValueType().getTypeForEVT(*DAG.getContext());
8246 
8247   // In the in-chain to the call is the entry node  If we are emitting a
8248   // tailcall, the chain will be mutated if the node has a non-entry input
8249   // chain.
8250   SDValue InChain = DAG.getEntryNode();
8251   SDValue TCChain = InChain;
8252 
8253   const Function &F = DAG.getMachineFunction().getFunction();
8254   bool IsTC = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
8255               F.getReturnType() == LCRTy;
8256   if (IsTC)
8257     InChain = TCChain;
8258 
8259   TargetLowering::CallLoweringInfo CLI(DAG);
8260   CLI.setDebugLoc(dl)
8261       .setChain(InChain)
8262       .setCallee(CallingConv::ARM_AAPCS_VFP, LCRTy, Callee, std::move(Args))
8263       .setTailCall(IsTC);
8264   std::pair<SDValue, SDValue> CI = TLI.LowerCallTo(CLI);
8265 
8266   // Return the chain (the DAG root) if it is a tail call
8267   return !CI.second.getNode() ? DAG.getRoot() : CI.first;
8268 }
8269 
8270 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8271   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
8272   switch (Op.getOpcode()) {
8273   default: llvm_unreachable("Don't know how to custom lower this!");
8274   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
8275   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
8276   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
8277   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
8278   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
8279   case ISD::SELECT:        return LowerSELECT(Op, DAG);
8280   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
8281   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
8282   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
8283   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
8284   case ISD::VASTART:       return LowerVASTART(Op, DAG);
8285   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
8286   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
8287   case ISD::SINT_TO_FP:
8288   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
8289   case ISD::FP_TO_SINT:
8290   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
8291   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
8292   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
8293   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
8294   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
8295   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
8296   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
8297   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
8298                                                                Subtarget);
8299   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
8300   case ISD::SHL:
8301   case ISD::SRL:
8302   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
8303   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
8304   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
8305   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
8306   case ISD::SRL_PARTS:
8307   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
8308   case ISD::CTTZ:
8309   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
8310   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
8311   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
8312   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
8313   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
8314   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
8315   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
8316   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
8317   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8318   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
8319   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
8320   case ISD::MUL:           return LowerMUL(Op, DAG);
8321   case ISD::SDIV:
8322     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8323       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
8324     return LowerSDIV(Op, DAG);
8325   case ISD::UDIV:
8326     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
8327       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
8328     return LowerUDIV(Op, DAG);
8329   case ISD::ADDCARRY:
8330   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
8331   case ISD::SADDO:
8332   case ISD::SSUBO:
8333     return LowerSignedALUO(Op, DAG);
8334   case ISD::UADDO:
8335   case ISD::USUBO:
8336     return LowerUnsignedALUO(Op, DAG);
8337   case ISD::ATOMIC_LOAD:
8338   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
8339   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
8340   case ISD::SDIVREM:
8341   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
8342   case ISD::DYNAMIC_STACKALLOC:
8343     if (Subtarget->isTargetWindows())
8344       return LowerDYNAMIC_STACKALLOC(Op, DAG);
8345     llvm_unreachable("Don't know how to custom lower this!");
8346   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
8347   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
8348   case ISD::FPOWI: return LowerFPOWI(Op, *Subtarget, DAG);
8349   case ARMISD::WIN__DBZCHK: return SDValue();
8350   }
8351 }
8352 
8353 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
8354                                  SelectionDAG &DAG) {
8355   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
8356   unsigned Opc = 0;
8357   if (IntNo == Intrinsic::arm_smlald)
8358     Opc = ARMISD::SMLALD;
8359   else if (IntNo == Intrinsic::arm_smlaldx)
8360     Opc = ARMISD::SMLALDX;
8361   else if (IntNo == Intrinsic::arm_smlsld)
8362     Opc = ARMISD::SMLSLD;
8363   else if (IntNo == Intrinsic::arm_smlsldx)
8364     Opc = ARMISD::SMLSLDX;
8365   else
8366     return;
8367 
8368   SDLoc dl(N);
8369   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8370                            N->getOperand(3),
8371                            DAG.getConstant(0, dl, MVT::i32));
8372   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8373                            N->getOperand(3),
8374                            DAG.getConstant(1, dl, MVT::i32));
8375 
8376   SDValue LongMul = DAG.getNode(Opc, dl,
8377                                 DAG.getVTList(MVT::i32, MVT::i32),
8378                                 N->getOperand(1), N->getOperand(2),
8379                                 Lo, Hi);
8380   Results.push_back(LongMul.getValue(0));
8381   Results.push_back(LongMul.getValue(1));
8382 }
8383 
8384 /// ReplaceNodeResults - Replace the results of node with an illegal result
8385 /// type with new values built out of custom code.
8386 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
8387                                            SmallVectorImpl<SDValue> &Results,
8388                                            SelectionDAG &DAG) const {
8389   SDValue Res;
8390   switch (N->getOpcode()) {
8391   default:
8392     llvm_unreachable("Don't know how to custom expand this!");
8393   case ISD::READ_REGISTER:
8394     ExpandREAD_REGISTER(N, Results, DAG);
8395     break;
8396   case ISD::BITCAST:
8397     Res = ExpandBITCAST(N, DAG, Subtarget);
8398     break;
8399   case ISD::SRL:
8400   case ISD::SRA:
8401   case ISD::SHL:
8402     Res = Expand64BitShift(N, DAG, Subtarget);
8403     break;
8404   case ISD::SREM:
8405   case ISD::UREM:
8406     Res = LowerREM(N, DAG);
8407     break;
8408   case ISD::SDIVREM:
8409   case ISD::UDIVREM:
8410     Res = LowerDivRem(SDValue(N, 0), DAG);
8411     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
8412     Results.push_back(Res.getValue(0));
8413     Results.push_back(Res.getValue(1));
8414     return;
8415   case ISD::READCYCLECOUNTER:
8416     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
8417     return;
8418   case ISD::UDIV:
8419   case ISD::SDIV:
8420     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
8421     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
8422                              Results);
8423   case ISD::ATOMIC_CMP_SWAP:
8424     ReplaceCMP_SWAP_64Results(N, Results, DAG);
8425     return;
8426   case ISD::INTRINSIC_WO_CHAIN:
8427     return ReplaceLongIntrinsic(N, Results, DAG);
8428   case ISD::ABS:
8429      lowerABS(N, Results, DAG);
8430      return ;
8431 
8432   }
8433   if (Res.getNode())
8434     Results.push_back(Res);
8435 }
8436 
8437 //===----------------------------------------------------------------------===//
8438 //                           ARM Scheduler Hooks
8439 //===----------------------------------------------------------------------===//
8440 
8441 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
8442 /// registers the function context.
8443 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
8444                                                MachineBasicBlock *MBB,
8445                                                MachineBasicBlock *DispatchBB,
8446                                                int FI) const {
8447   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
8448          "ROPI/RWPI not currently supported with SjLj");
8449   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8450   DebugLoc dl = MI.getDebugLoc();
8451   MachineFunction *MF = MBB->getParent();
8452   MachineRegisterInfo *MRI = &MF->getRegInfo();
8453   MachineConstantPool *MCP = MF->getConstantPool();
8454   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
8455   const Function &F = MF->getFunction();
8456 
8457   bool isThumb = Subtarget->isThumb();
8458   bool isThumb2 = Subtarget->isThumb2();
8459 
8460   unsigned PCLabelId = AFI->createPICLabelUId();
8461   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
8462   ARMConstantPoolValue *CPV =
8463     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
8464   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
8465 
8466   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
8467                                            : &ARM::GPRRegClass;
8468 
8469   // Grab constant pool and fixed stack memory operands.
8470   MachineMemOperand *CPMMO =
8471       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
8472                                MachineMemOperand::MOLoad, 4, 4);
8473 
8474   MachineMemOperand *FIMMOSt =
8475       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
8476                                MachineMemOperand::MOStore, 4, 4);
8477 
8478   // Load the address of the dispatch MBB into the jump buffer.
8479   if (isThumb2) {
8480     // Incoming value: jbuf
8481     //   ldr.n  r5, LCPI1_1
8482     //   orr    r5, r5, #1
8483     //   add    r5, pc
8484     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
8485     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8486     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
8487         .addConstantPoolIndex(CPI)
8488         .addMemOperand(CPMMO)
8489         .add(predOps(ARMCC::AL));
8490     // Set the low bit because of thumb mode.
8491     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8492     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
8493         .addReg(NewVReg1, RegState::Kill)
8494         .addImm(0x01)
8495         .add(predOps(ARMCC::AL))
8496         .add(condCodeOp());
8497     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8498     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
8499       .addReg(NewVReg2, RegState::Kill)
8500       .addImm(PCLabelId);
8501     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
8502         .addReg(NewVReg3, RegState::Kill)
8503         .addFrameIndex(FI)
8504         .addImm(36) // &jbuf[1] :: pc
8505         .addMemOperand(FIMMOSt)
8506         .add(predOps(ARMCC::AL));
8507   } else if (isThumb) {
8508     // Incoming value: jbuf
8509     //   ldr.n  r1, LCPI1_4
8510     //   add    r1, pc
8511     //   mov    r2, #1
8512     //   orrs   r1, r2
8513     //   add    r2, $jbuf, #+4 ; &jbuf[1]
8514     //   str    r1, [r2]
8515     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8516     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
8517         .addConstantPoolIndex(CPI)
8518         .addMemOperand(CPMMO)
8519         .add(predOps(ARMCC::AL));
8520     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8521     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
8522       .addReg(NewVReg1, RegState::Kill)
8523       .addImm(PCLabelId);
8524     // Set the low bit because of thumb mode.
8525     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8526     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
8527         .addReg(ARM::CPSR, RegState::Define)
8528         .addImm(1)
8529         .add(predOps(ARMCC::AL));
8530     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8531     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
8532         .addReg(ARM::CPSR, RegState::Define)
8533         .addReg(NewVReg2, RegState::Kill)
8534         .addReg(NewVReg3, RegState::Kill)
8535         .add(predOps(ARMCC::AL));
8536     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8537     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
8538             .addFrameIndex(FI)
8539             .addImm(36); // &jbuf[1] :: pc
8540     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
8541         .addReg(NewVReg4, RegState::Kill)
8542         .addReg(NewVReg5, RegState::Kill)
8543         .addImm(0)
8544         .addMemOperand(FIMMOSt)
8545         .add(predOps(ARMCC::AL));
8546   } else {
8547     // Incoming value: jbuf
8548     //   ldr  r1, LCPI1_1
8549     //   add  r1, pc, r1
8550     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
8551     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8552     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
8553         .addConstantPoolIndex(CPI)
8554         .addImm(0)
8555         .addMemOperand(CPMMO)
8556         .add(predOps(ARMCC::AL));
8557     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8558     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
8559         .addReg(NewVReg1, RegState::Kill)
8560         .addImm(PCLabelId)
8561         .add(predOps(ARMCC::AL));
8562     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
8563         .addReg(NewVReg2, RegState::Kill)
8564         .addFrameIndex(FI)
8565         .addImm(36) // &jbuf[1] :: pc
8566         .addMemOperand(FIMMOSt)
8567         .add(predOps(ARMCC::AL));
8568   }
8569 }
8570 
8571 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
8572                                               MachineBasicBlock *MBB) const {
8573   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8574   DebugLoc dl = MI.getDebugLoc();
8575   MachineFunction *MF = MBB->getParent();
8576   MachineRegisterInfo *MRI = &MF->getRegInfo();
8577   MachineFrameInfo &MFI = MF->getFrameInfo();
8578   int FI = MFI.getFunctionContextIndex();
8579 
8580   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
8581                                                         : &ARM::GPRnopcRegClass;
8582 
8583   // Get a mapping of the call site numbers to all of the landing pads they're
8584   // associated with.
8585   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
8586   unsigned MaxCSNum = 0;
8587   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
8588        ++BB) {
8589     if (!BB->isEHPad()) continue;
8590 
8591     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
8592     // pad.
8593     for (MachineBasicBlock::iterator
8594            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
8595       if (!II->isEHLabel()) continue;
8596 
8597       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
8598       if (!MF->hasCallSiteLandingPad(Sym)) continue;
8599 
8600       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
8601       for (SmallVectorImpl<unsigned>::iterator
8602              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
8603            CSI != CSE; ++CSI) {
8604         CallSiteNumToLPad[*CSI].push_back(&*BB);
8605         MaxCSNum = std::max(MaxCSNum, *CSI);
8606       }
8607       break;
8608     }
8609   }
8610 
8611   // Get an ordered list of the machine basic blocks for the jump table.
8612   std::vector<MachineBasicBlock*> LPadList;
8613   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
8614   LPadList.reserve(CallSiteNumToLPad.size());
8615   for (unsigned I = 1; I <= MaxCSNum; ++I) {
8616     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
8617     for (SmallVectorImpl<MachineBasicBlock*>::iterator
8618            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
8619       LPadList.push_back(*II);
8620       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
8621     }
8622   }
8623 
8624   assert(!LPadList.empty() &&
8625          "No landing pad destinations for the dispatch jump table!");
8626 
8627   // Create the jump table and associated information.
8628   MachineJumpTableInfo *JTI =
8629     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
8630   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
8631 
8632   // Create the MBBs for the dispatch code.
8633 
8634   // Shove the dispatch's address into the return slot in the function context.
8635   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
8636   DispatchBB->setIsEHPad();
8637 
8638   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8639   unsigned trap_opcode;
8640   if (Subtarget->isThumb())
8641     trap_opcode = ARM::tTRAP;
8642   else
8643     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
8644 
8645   BuildMI(TrapBB, dl, TII->get(trap_opcode));
8646   DispatchBB->addSuccessor(TrapBB);
8647 
8648   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
8649   DispatchBB->addSuccessor(DispContBB);
8650 
8651   // Insert and MBBs.
8652   MF->insert(MF->end(), DispatchBB);
8653   MF->insert(MF->end(), DispContBB);
8654   MF->insert(MF->end(), TrapBB);
8655 
8656   // Insert code into the entry block that creates and registers the function
8657   // context.
8658   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
8659 
8660   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
8661       MachinePointerInfo::getFixedStack(*MF, FI),
8662       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
8663 
8664   MachineInstrBuilder MIB;
8665   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
8666 
8667   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
8668   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
8669 
8670   // Add a register mask with no preserved registers.  This results in all
8671   // registers being marked as clobbered. This can't work if the dispatch block
8672   // is in a Thumb1 function and is linked with ARM code which uses the FP
8673   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
8674   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
8675 
8676   bool IsPositionIndependent = isPositionIndependent();
8677   unsigned NumLPads = LPadList.size();
8678   if (Subtarget->isThumb2()) {
8679     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8680     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
8681         .addFrameIndex(FI)
8682         .addImm(4)
8683         .addMemOperand(FIMMOLd)
8684         .add(predOps(ARMCC::AL));
8685 
8686     if (NumLPads < 256) {
8687       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
8688           .addReg(NewVReg1)
8689           .addImm(LPadList.size())
8690           .add(predOps(ARMCC::AL));
8691     } else {
8692       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8693       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
8694           .addImm(NumLPads & 0xFFFF)
8695           .add(predOps(ARMCC::AL));
8696 
8697       unsigned VReg2 = VReg1;
8698       if ((NumLPads & 0xFFFF0000) != 0) {
8699         VReg2 = MRI->createVirtualRegister(TRC);
8700         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
8701             .addReg(VReg1)
8702             .addImm(NumLPads >> 16)
8703             .add(predOps(ARMCC::AL));
8704       }
8705 
8706       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
8707           .addReg(NewVReg1)
8708           .addReg(VReg2)
8709           .add(predOps(ARMCC::AL));
8710     }
8711 
8712     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
8713       .addMBB(TrapBB)
8714       .addImm(ARMCC::HI)
8715       .addReg(ARM::CPSR);
8716 
8717     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8718     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
8719         .addJumpTableIndex(MJTI)
8720         .add(predOps(ARMCC::AL));
8721 
8722     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8723     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
8724         .addReg(NewVReg3, RegState::Kill)
8725         .addReg(NewVReg1)
8726         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8727         .add(predOps(ARMCC::AL))
8728         .add(condCodeOp());
8729 
8730     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
8731       .addReg(NewVReg4, RegState::Kill)
8732       .addReg(NewVReg1)
8733       .addJumpTableIndex(MJTI);
8734   } else if (Subtarget->isThumb()) {
8735     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8736     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
8737         .addFrameIndex(FI)
8738         .addImm(1)
8739         .addMemOperand(FIMMOLd)
8740         .add(predOps(ARMCC::AL));
8741 
8742     if (NumLPads < 256) {
8743       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
8744           .addReg(NewVReg1)
8745           .addImm(NumLPads)
8746           .add(predOps(ARMCC::AL));
8747     } else {
8748       MachineConstantPool *ConstantPool = MF->getConstantPool();
8749       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8750       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8751 
8752       // MachineConstantPool wants an explicit alignment.
8753       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8754       if (Align == 0)
8755         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8756       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8757 
8758       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8759       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
8760           .addReg(VReg1, RegState::Define)
8761           .addConstantPoolIndex(Idx)
8762           .add(predOps(ARMCC::AL));
8763       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
8764           .addReg(NewVReg1)
8765           .addReg(VReg1)
8766           .add(predOps(ARMCC::AL));
8767     }
8768 
8769     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
8770       .addMBB(TrapBB)
8771       .addImm(ARMCC::HI)
8772       .addReg(ARM::CPSR);
8773 
8774     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
8775     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
8776         .addReg(ARM::CPSR, RegState::Define)
8777         .addReg(NewVReg1)
8778         .addImm(2)
8779         .add(predOps(ARMCC::AL));
8780 
8781     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8782     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
8783         .addJumpTableIndex(MJTI)
8784         .add(predOps(ARMCC::AL));
8785 
8786     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8787     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
8788         .addReg(ARM::CPSR, RegState::Define)
8789         .addReg(NewVReg2, RegState::Kill)
8790         .addReg(NewVReg3)
8791         .add(predOps(ARMCC::AL));
8792 
8793     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8794         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8795 
8796     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8797     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
8798         .addReg(NewVReg4, RegState::Kill)
8799         .addImm(0)
8800         .addMemOperand(JTMMOLd)
8801         .add(predOps(ARMCC::AL));
8802 
8803     unsigned NewVReg6 = NewVReg5;
8804     if (IsPositionIndependent) {
8805       NewVReg6 = MRI->createVirtualRegister(TRC);
8806       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
8807           .addReg(ARM::CPSR, RegState::Define)
8808           .addReg(NewVReg5, RegState::Kill)
8809           .addReg(NewVReg3)
8810           .add(predOps(ARMCC::AL));
8811     }
8812 
8813     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
8814       .addReg(NewVReg6, RegState::Kill)
8815       .addJumpTableIndex(MJTI);
8816   } else {
8817     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
8818     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
8819         .addFrameIndex(FI)
8820         .addImm(4)
8821         .addMemOperand(FIMMOLd)
8822         .add(predOps(ARMCC::AL));
8823 
8824     if (NumLPads < 256) {
8825       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
8826           .addReg(NewVReg1)
8827           .addImm(NumLPads)
8828           .add(predOps(ARMCC::AL));
8829     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
8830       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8831       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
8832           .addImm(NumLPads & 0xFFFF)
8833           .add(predOps(ARMCC::AL));
8834 
8835       unsigned VReg2 = VReg1;
8836       if ((NumLPads & 0xFFFF0000) != 0) {
8837         VReg2 = MRI->createVirtualRegister(TRC);
8838         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
8839             .addReg(VReg1)
8840             .addImm(NumLPads >> 16)
8841             .add(predOps(ARMCC::AL));
8842       }
8843 
8844       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8845           .addReg(NewVReg1)
8846           .addReg(VReg2)
8847           .add(predOps(ARMCC::AL));
8848     } else {
8849       MachineConstantPool *ConstantPool = MF->getConstantPool();
8850       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
8851       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
8852 
8853       // MachineConstantPool wants an explicit alignment.
8854       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8855       if (Align == 0)
8856         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8857       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8858 
8859       unsigned VReg1 = MRI->createVirtualRegister(TRC);
8860       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
8861           .addReg(VReg1, RegState::Define)
8862           .addConstantPoolIndex(Idx)
8863           .addImm(0)
8864           .add(predOps(ARMCC::AL));
8865       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
8866           .addReg(NewVReg1)
8867           .addReg(VReg1, RegState::Kill)
8868           .add(predOps(ARMCC::AL));
8869     }
8870 
8871     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
8872       .addMBB(TrapBB)
8873       .addImm(ARMCC::HI)
8874       .addReg(ARM::CPSR);
8875 
8876     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
8877     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
8878         .addReg(NewVReg1)
8879         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
8880         .add(predOps(ARMCC::AL))
8881         .add(condCodeOp());
8882     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
8883     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
8884         .addJumpTableIndex(MJTI)
8885         .add(predOps(ARMCC::AL));
8886 
8887     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
8888         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
8889     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
8890     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
8891         .addReg(NewVReg3, RegState::Kill)
8892         .addReg(NewVReg4)
8893         .addImm(0)
8894         .addMemOperand(JTMMOLd)
8895         .add(predOps(ARMCC::AL));
8896 
8897     if (IsPositionIndependent) {
8898       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
8899         .addReg(NewVReg5, RegState::Kill)
8900         .addReg(NewVReg4)
8901         .addJumpTableIndex(MJTI);
8902     } else {
8903       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
8904         .addReg(NewVReg5, RegState::Kill)
8905         .addJumpTableIndex(MJTI);
8906     }
8907   }
8908 
8909   // Add the jump table entries as successors to the MBB.
8910   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
8911   for (std::vector<MachineBasicBlock*>::iterator
8912          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
8913     MachineBasicBlock *CurMBB = *I;
8914     if (SeenMBBs.insert(CurMBB).second)
8915       DispContBB->addSuccessor(CurMBB);
8916   }
8917 
8918   // N.B. the order the invoke BBs are processed in doesn't matter here.
8919   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
8920   SmallVector<MachineBasicBlock*, 64> MBBLPads;
8921   for (MachineBasicBlock *BB : InvokeBBs) {
8922 
8923     // Remove the landing pad successor from the invoke block and replace it
8924     // with the new dispatch block.
8925     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
8926                                                   BB->succ_end());
8927     while (!Successors.empty()) {
8928       MachineBasicBlock *SMBB = Successors.pop_back_val();
8929       if (SMBB->isEHPad()) {
8930         BB->removeSuccessor(SMBB);
8931         MBBLPads.push_back(SMBB);
8932       }
8933     }
8934 
8935     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
8936     BB->normalizeSuccProbs();
8937 
8938     // Find the invoke call and mark all of the callee-saved registers as
8939     // 'implicit defined' so that they're spilled. This prevents code from
8940     // moving instructions to before the EH block, where they will never be
8941     // executed.
8942     for (MachineBasicBlock::reverse_iterator
8943            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
8944       if (!II->isCall()) continue;
8945 
8946       DenseMap<unsigned, bool> DefRegs;
8947       for (MachineInstr::mop_iterator
8948              OI = II->operands_begin(), OE = II->operands_end();
8949            OI != OE; ++OI) {
8950         if (!OI->isReg()) continue;
8951         DefRegs[OI->getReg()] = true;
8952       }
8953 
8954       MachineInstrBuilder MIB(*MF, &*II);
8955 
8956       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
8957         unsigned Reg = SavedRegs[i];
8958         if (Subtarget->isThumb2() &&
8959             !ARM::tGPRRegClass.contains(Reg) &&
8960             !ARM::hGPRRegClass.contains(Reg))
8961           continue;
8962         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
8963           continue;
8964         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
8965           continue;
8966         if (!DefRegs[Reg])
8967           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
8968       }
8969 
8970       break;
8971     }
8972   }
8973 
8974   // Mark all former landing pads as non-landing pads. The dispatch is the only
8975   // landing pad now.
8976   for (SmallVectorImpl<MachineBasicBlock*>::iterator
8977          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
8978     (*I)->setIsEHPad(false);
8979 
8980   // The instruction is gone now.
8981   MI.eraseFromParent();
8982 }
8983 
8984 static
8985 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
8986   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
8987        E = MBB->succ_end(); I != E; ++I)
8988     if (*I != Succ)
8989       return *I;
8990   llvm_unreachable("Expecting a BB with two successors!");
8991 }
8992 
8993 /// Return the load opcode for a given load size. If load size >= 8,
8994 /// neon opcode will be returned.
8995 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
8996   if (LdSize >= 8)
8997     return LdSize == 16 ? ARM::VLD1q32wb_fixed
8998                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
8999   if (IsThumb1)
9000     return LdSize == 4 ? ARM::tLDRi
9001                        : LdSize == 2 ? ARM::tLDRHi
9002                                      : LdSize == 1 ? ARM::tLDRBi : 0;
9003   if (IsThumb2)
9004     return LdSize == 4 ? ARM::t2LDR_POST
9005                        : LdSize == 2 ? ARM::t2LDRH_POST
9006                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
9007   return LdSize == 4 ? ARM::LDR_POST_IMM
9008                      : LdSize == 2 ? ARM::LDRH_POST
9009                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
9010 }
9011 
9012 /// Return the store opcode for a given store size. If store size >= 8,
9013 /// neon opcode will be returned.
9014 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
9015   if (StSize >= 8)
9016     return StSize == 16 ? ARM::VST1q32wb_fixed
9017                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
9018   if (IsThumb1)
9019     return StSize == 4 ? ARM::tSTRi
9020                        : StSize == 2 ? ARM::tSTRHi
9021                                      : StSize == 1 ? ARM::tSTRBi : 0;
9022   if (IsThumb2)
9023     return StSize == 4 ? ARM::t2STR_POST
9024                        : StSize == 2 ? ARM::t2STRH_POST
9025                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
9026   return StSize == 4 ? ARM::STR_POST_IMM
9027                      : StSize == 2 ? ARM::STRH_POST
9028                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
9029 }
9030 
9031 /// Emit a post-increment load operation with given size. The instructions
9032 /// will be added to BB at Pos.
9033 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
9034                        const TargetInstrInfo *TII, const DebugLoc &dl,
9035                        unsigned LdSize, unsigned Data, unsigned AddrIn,
9036                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
9037   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
9038   assert(LdOpc != 0 && "Should have a load opcode");
9039   if (LdSize >= 8) {
9040     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9041         .addReg(AddrOut, RegState::Define)
9042         .addReg(AddrIn)
9043         .addImm(0)
9044         .add(predOps(ARMCC::AL));
9045   } else if (IsThumb1) {
9046     // load + update AddrIn
9047     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9048         .addReg(AddrIn)
9049         .addImm(0)
9050         .add(predOps(ARMCC::AL));
9051     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
9052         .add(t1CondCodeOp())
9053         .addReg(AddrIn)
9054         .addImm(LdSize)
9055         .add(predOps(ARMCC::AL));
9056   } else if (IsThumb2) {
9057     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9058         .addReg(AddrOut, RegState::Define)
9059         .addReg(AddrIn)
9060         .addImm(LdSize)
9061         .add(predOps(ARMCC::AL));
9062   } else { // arm
9063     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
9064         .addReg(AddrOut, RegState::Define)
9065         .addReg(AddrIn)
9066         .addReg(0)
9067         .addImm(LdSize)
9068         .add(predOps(ARMCC::AL));
9069   }
9070 }
9071 
9072 /// Emit a post-increment store operation with given size. The instructions
9073 /// will be added to BB at Pos.
9074 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
9075                        const TargetInstrInfo *TII, const DebugLoc &dl,
9076                        unsigned StSize, unsigned Data, unsigned AddrIn,
9077                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
9078   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
9079   assert(StOpc != 0 && "Should have a store opcode");
9080   if (StSize >= 8) {
9081     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9082         .addReg(AddrIn)
9083         .addImm(0)
9084         .addReg(Data)
9085         .add(predOps(ARMCC::AL));
9086   } else if (IsThumb1) {
9087     // store + update AddrIn
9088     BuildMI(*BB, Pos, dl, TII->get(StOpc))
9089         .addReg(Data)
9090         .addReg(AddrIn)
9091         .addImm(0)
9092         .add(predOps(ARMCC::AL));
9093     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
9094         .add(t1CondCodeOp())
9095         .addReg(AddrIn)
9096         .addImm(StSize)
9097         .add(predOps(ARMCC::AL));
9098   } else if (IsThumb2) {
9099     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9100         .addReg(Data)
9101         .addReg(AddrIn)
9102         .addImm(StSize)
9103         .add(predOps(ARMCC::AL));
9104   } else { // arm
9105     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
9106         .addReg(Data)
9107         .addReg(AddrIn)
9108         .addReg(0)
9109         .addImm(StSize)
9110         .add(predOps(ARMCC::AL));
9111   }
9112 }
9113 
9114 MachineBasicBlock *
9115 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
9116                                    MachineBasicBlock *BB) const {
9117   // This pseudo instruction has 3 operands: dst, src, size
9118   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
9119   // Otherwise, we will generate unrolled scalar copies.
9120   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9121   const BasicBlock *LLVM_BB = BB->getBasicBlock();
9122   MachineFunction::iterator It = ++BB->getIterator();
9123 
9124   unsigned dest = MI.getOperand(0).getReg();
9125   unsigned src = MI.getOperand(1).getReg();
9126   unsigned SizeVal = MI.getOperand(2).getImm();
9127   unsigned Align = MI.getOperand(3).getImm();
9128   DebugLoc dl = MI.getDebugLoc();
9129 
9130   MachineFunction *MF = BB->getParent();
9131   MachineRegisterInfo &MRI = MF->getRegInfo();
9132   unsigned UnitSize = 0;
9133   const TargetRegisterClass *TRC = nullptr;
9134   const TargetRegisterClass *VecTRC = nullptr;
9135 
9136   bool IsThumb1 = Subtarget->isThumb1Only();
9137   bool IsThumb2 = Subtarget->isThumb2();
9138   bool IsThumb = Subtarget->isThumb();
9139 
9140   if (Align & 1) {
9141     UnitSize = 1;
9142   } else if (Align & 2) {
9143     UnitSize = 2;
9144   } else {
9145     // Check whether we can use NEON instructions.
9146     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
9147         Subtarget->hasNEON()) {
9148       if ((Align % 16 == 0) && SizeVal >= 16)
9149         UnitSize = 16;
9150       else if ((Align % 8 == 0) && SizeVal >= 8)
9151         UnitSize = 8;
9152     }
9153     // Can't use NEON instructions.
9154     if (UnitSize == 0)
9155       UnitSize = 4;
9156   }
9157 
9158   // Select the correct opcode and register class for unit size load/store
9159   bool IsNeon = UnitSize >= 8;
9160   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
9161   if (IsNeon)
9162     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
9163                             : UnitSize == 8 ? &ARM::DPRRegClass
9164                                             : nullptr;
9165 
9166   unsigned BytesLeft = SizeVal % UnitSize;
9167   unsigned LoopSize = SizeVal - BytesLeft;
9168 
9169   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
9170     // Use LDR and STR to copy.
9171     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
9172     // [destOut] = STR_POST(scratch, destIn, UnitSize)
9173     unsigned srcIn = src;
9174     unsigned destIn = dest;
9175     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
9176       unsigned srcOut = MRI.createVirtualRegister(TRC);
9177       unsigned destOut = MRI.createVirtualRegister(TRC);
9178       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9179       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
9180                  IsThumb1, IsThumb2);
9181       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
9182                  IsThumb1, IsThumb2);
9183       srcIn = srcOut;
9184       destIn = destOut;
9185     }
9186 
9187     // Handle the leftover bytes with LDRB and STRB.
9188     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
9189     // [destOut] = STRB_POST(scratch, destIn, 1)
9190     for (unsigned i = 0; i < BytesLeft; i++) {
9191       unsigned srcOut = MRI.createVirtualRegister(TRC);
9192       unsigned destOut = MRI.createVirtualRegister(TRC);
9193       unsigned scratch = MRI.createVirtualRegister(TRC);
9194       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
9195                  IsThumb1, IsThumb2);
9196       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
9197                  IsThumb1, IsThumb2);
9198       srcIn = srcOut;
9199       destIn = destOut;
9200     }
9201     MI.eraseFromParent(); // The instruction is gone now.
9202     return BB;
9203   }
9204 
9205   // Expand the pseudo op to a loop.
9206   // thisMBB:
9207   //   ...
9208   //   movw varEnd, # --> with thumb2
9209   //   movt varEnd, #
9210   //   ldrcp varEnd, idx --> without thumb2
9211   //   fallthrough --> loopMBB
9212   // loopMBB:
9213   //   PHI varPhi, varEnd, varLoop
9214   //   PHI srcPhi, src, srcLoop
9215   //   PHI destPhi, dst, destLoop
9216   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9217   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
9218   //   subs varLoop, varPhi, #UnitSize
9219   //   bne loopMBB
9220   //   fallthrough --> exitMBB
9221   // exitMBB:
9222   //   epilogue to handle left-over bytes
9223   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9224   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9225   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9226   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9227   MF->insert(It, loopMBB);
9228   MF->insert(It, exitMBB);
9229 
9230   // Transfer the remainder of BB and its successor edges to exitMBB.
9231   exitMBB->splice(exitMBB->begin(), BB,
9232                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
9233   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9234 
9235   // Load an immediate to varEnd.
9236   unsigned varEnd = MRI.createVirtualRegister(TRC);
9237   if (Subtarget->useMovt()) {
9238     unsigned Vtmp = varEnd;
9239     if ((LoopSize & 0xFFFF0000) != 0)
9240       Vtmp = MRI.createVirtualRegister(TRC);
9241     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
9242         .addImm(LoopSize & 0xFFFF)
9243         .add(predOps(ARMCC::AL));
9244 
9245     if ((LoopSize & 0xFFFF0000) != 0)
9246       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
9247           .addReg(Vtmp)
9248           .addImm(LoopSize >> 16)
9249           .add(predOps(ARMCC::AL));
9250   } else {
9251     MachineConstantPool *ConstantPool = MF->getConstantPool();
9252     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9253     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
9254 
9255     // MachineConstantPool wants an explicit alignment.
9256     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9257     if (Align == 0)
9258       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9259     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9260     MachineMemOperand *CPMMO =
9261         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9262                                  MachineMemOperand::MOLoad, 4, 4);
9263 
9264     if (IsThumb)
9265       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
9266           .addReg(varEnd, RegState::Define)
9267           .addConstantPoolIndex(Idx)
9268           .add(predOps(ARMCC::AL))
9269           .addMemOperand(CPMMO);
9270     else
9271       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
9272           .addReg(varEnd, RegState::Define)
9273           .addConstantPoolIndex(Idx)
9274           .addImm(0)
9275           .add(predOps(ARMCC::AL))
9276           .addMemOperand(CPMMO);
9277   }
9278   BB->addSuccessor(loopMBB);
9279 
9280   // Generate the loop body:
9281   //   varPhi = PHI(varLoop, varEnd)
9282   //   srcPhi = PHI(srcLoop, src)
9283   //   destPhi = PHI(destLoop, dst)
9284   MachineBasicBlock *entryBB = BB;
9285   BB = loopMBB;
9286   unsigned varLoop = MRI.createVirtualRegister(TRC);
9287   unsigned varPhi = MRI.createVirtualRegister(TRC);
9288   unsigned srcLoop = MRI.createVirtualRegister(TRC);
9289   unsigned srcPhi = MRI.createVirtualRegister(TRC);
9290   unsigned destLoop = MRI.createVirtualRegister(TRC);
9291   unsigned destPhi = MRI.createVirtualRegister(TRC);
9292 
9293   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
9294     .addReg(varLoop).addMBB(loopMBB)
9295     .addReg(varEnd).addMBB(entryBB);
9296   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
9297     .addReg(srcLoop).addMBB(loopMBB)
9298     .addReg(src).addMBB(entryBB);
9299   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
9300     .addReg(destLoop).addMBB(loopMBB)
9301     .addReg(dest).addMBB(entryBB);
9302 
9303   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
9304   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
9305   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
9306   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
9307              IsThumb1, IsThumb2);
9308   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
9309              IsThumb1, IsThumb2);
9310 
9311   // Decrement loop variable by UnitSize.
9312   if (IsThumb1) {
9313     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
9314         .add(t1CondCodeOp())
9315         .addReg(varPhi)
9316         .addImm(UnitSize)
9317         .add(predOps(ARMCC::AL));
9318   } else {
9319     MachineInstrBuilder MIB =
9320         BuildMI(*BB, BB->end(), dl,
9321                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
9322     MIB.addReg(varPhi)
9323         .addImm(UnitSize)
9324         .add(predOps(ARMCC::AL))
9325         .add(condCodeOp());
9326     MIB->getOperand(5).setReg(ARM::CPSR);
9327     MIB->getOperand(5).setIsDef(true);
9328   }
9329   BuildMI(*BB, BB->end(), dl,
9330           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
9331       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
9332 
9333   // loopMBB can loop back to loopMBB or fall through to exitMBB.
9334   BB->addSuccessor(loopMBB);
9335   BB->addSuccessor(exitMBB);
9336 
9337   // Add epilogue to handle BytesLeft.
9338   BB = exitMBB;
9339   auto StartOfExit = exitMBB->begin();
9340 
9341   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
9342   //   [destOut] = STRB_POST(scratch, destLoop, 1)
9343   unsigned srcIn = srcLoop;
9344   unsigned destIn = destLoop;
9345   for (unsigned i = 0; i < BytesLeft; i++) {
9346     unsigned srcOut = MRI.createVirtualRegister(TRC);
9347     unsigned destOut = MRI.createVirtualRegister(TRC);
9348     unsigned scratch = MRI.createVirtualRegister(TRC);
9349     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
9350                IsThumb1, IsThumb2);
9351     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
9352                IsThumb1, IsThumb2);
9353     srcIn = srcOut;
9354     destIn = destOut;
9355   }
9356 
9357   MI.eraseFromParent(); // The instruction is gone now.
9358   return BB;
9359 }
9360 
9361 MachineBasicBlock *
9362 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
9363                                        MachineBasicBlock *MBB) const {
9364   const TargetMachine &TM = getTargetMachine();
9365   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
9366   DebugLoc DL = MI.getDebugLoc();
9367 
9368   assert(Subtarget->isTargetWindows() &&
9369          "__chkstk is only supported on Windows");
9370   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
9371 
9372   // __chkstk takes the number of words to allocate on the stack in R4, and
9373   // returns the stack adjustment in number of bytes in R4.  This will not
9374   // clober any other registers (other than the obvious lr).
9375   //
9376   // Although, technically, IP should be considered a register which may be
9377   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
9378   // thumb-2 environment, so there is no interworking required.  As a result, we
9379   // do not expect a veneer to be emitted by the linker, clobbering IP.
9380   //
9381   // Each module receives its own copy of __chkstk, so no import thunk is
9382   // required, again, ensuring that IP is not clobbered.
9383   //
9384   // Finally, although some linkers may theoretically provide a trampoline for
9385   // out of range calls (which is quite common due to a 32M range limitation of
9386   // branches for Thumb), we can generate the long-call version via
9387   // -mcmodel=large, alleviating the need for the trampoline which may clobber
9388   // IP.
9389 
9390   switch (TM.getCodeModel()) {
9391   case CodeModel::Tiny:
9392     llvm_unreachable("Tiny code model not available on ARM.");
9393   case CodeModel::Small:
9394   case CodeModel::Medium:
9395   case CodeModel::Kernel:
9396     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
9397         .add(predOps(ARMCC::AL))
9398         .addExternalSymbol("__chkstk")
9399         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9400         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9401         .addReg(ARM::R12,
9402                 RegState::Implicit | RegState::Define | RegState::Dead)
9403         .addReg(ARM::CPSR,
9404                 RegState::Implicit | RegState::Define | RegState::Dead);
9405     break;
9406   case CodeModel::Large: {
9407     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9408     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
9409 
9410     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
9411       .addExternalSymbol("__chkstk");
9412     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
9413         .add(predOps(ARMCC::AL))
9414         .addReg(Reg, RegState::Kill)
9415         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
9416         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
9417         .addReg(ARM::R12,
9418                 RegState::Implicit | RegState::Define | RegState::Dead)
9419         .addReg(ARM::CPSR,
9420                 RegState::Implicit | RegState::Define | RegState::Dead);
9421     break;
9422   }
9423   }
9424 
9425   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
9426       .addReg(ARM::SP, RegState::Kill)
9427       .addReg(ARM::R4, RegState::Kill)
9428       .setMIFlags(MachineInstr::FrameSetup)
9429       .add(predOps(ARMCC::AL))
9430       .add(condCodeOp());
9431 
9432   MI.eraseFromParent();
9433   return MBB;
9434 }
9435 
9436 MachineBasicBlock *
9437 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
9438                                        MachineBasicBlock *MBB) const {
9439   DebugLoc DL = MI.getDebugLoc();
9440   MachineFunction *MF = MBB->getParent();
9441   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9442 
9443   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
9444   MF->insert(++MBB->getIterator(), ContBB);
9445   ContBB->splice(ContBB->begin(), MBB,
9446                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
9447   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
9448   MBB->addSuccessor(ContBB);
9449 
9450   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9451   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
9452   MF->push_back(TrapBB);
9453   MBB->addSuccessor(TrapBB);
9454 
9455   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
9456       .addReg(MI.getOperand(0).getReg())
9457       .addImm(0)
9458       .add(predOps(ARMCC::AL));
9459   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
9460       .addMBB(TrapBB)
9461       .addImm(ARMCC::EQ)
9462       .addReg(ARM::CPSR);
9463 
9464   MI.eraseFromParent();
9465   return ContBB;
9466 }
9467 
9468 // The CPSR operand of SelectItr might be missing a kill marker
9469 // because there were multiple uses of CPSR, and ISel didn't know
9470 // which to mark. Figure out whether SelectItr should have had a
9471 // kill marker, and set it if it should. Returns the correct kill
9472 // marker value.
9473 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
9474                                    MachineBasicBlock* BB,
9475                                    const TargetRegisterInfo* TRI) {
9476   // Scan forward through BB for a use/def of CPSR.
9477   MachineBasicBlock::iterator miI(std::next(SelectItr));
9478   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
9479     const MachineInstr& mi = *miI;
9480     if (mi.readsRegister(ARM::CPSR))
9481       return false;
9482     if (mi.definesRegister(ARM::CPSR))
9483       break; // Should have kill-flag - update below.
9484   }
9485 
9486   // If we hit the end of the block, check whether CPSR is live into a
9487   // successor.
9488   if (miI == BB->end()) {
9489     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
9490                                           sEnd = BB->succ_end();
9491          sItr != sEnd; ++sItr) {
9492       MachineBasicBlock* succ = *sItr;
9493       if (succ->isLiveIn(ARM::CPSR))
9494         return false;
9495     }
9496   }
9497 
9498   // We found a def, or hit the end of the basic block and CPSR wasn't live
9499   // out. SelectMI should have a kill flag on CPSR.
9500   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
9501   return true;
9502 }
9503 
9504 MachineBasicBlock *
9505 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
9506                                                MachineBasicBlock *BB) const {
9507   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9508   DebugLoc dl = MI.getDebugLoc();
9509   bool isThumb2 = Subtarget->isThumb2();
9510   switch (MI.getOpcode()) {
9511   default: {
9512     MI.print(errs());
9513     llvm_unreachable("Unexpected instr type to insert");
9514   }
9515 
9516   // Thumb1 post-indexed loads are really just single-register LDMs.
9517   case ARM::tLDR_postidx: {
9518     MachineOperand Def(MI.getOperand(1));
9519     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
9520         .add(Def)  // Rn_wb
9521         .add(MI.getOperand(2))  // Rn
9522         .add(MI.getOperand(3))  // PredImm
9523         .add(MI.getOperand(4))  // PredReg
9524         .add(MI.getOperand(0))  // Rt
9525         .cloneMemRefs(MI);
9526     MI.eraseFromParent();
9527     return BB;
9528   }
9529 
9530   // The Thumb2 pre-indexed stores have the same MI operands, they just
9531   // define them differently in the .td files from the isel patterns, so
9532   // they need pseudos.
9533   case ARM::t2STR_preidx:
9534     MI.setDesc(TII->get(ARM::t2STR_PRE));
9535     return BB;
9536   case ARM::t2STRB_preidx:
9537     MI.setDesc(TII->get(ARM::t2STRB_PRE));
9538     return BB;
9539   case ARM::t2STRH_preidx:
9540     MI.setDesc(TII->get(ARM::t2STRH_PRE));
9541     return BB;
9542 
9543   case ARM::STRi_preidx:
9544   case ARM::STRBi_preidx: {
9545     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
9546                                                          : ARM::STRB_PRE_IMM;
9547     // Decode the offset.
9548     unsigned Offset = MI.getOperand(4).getImm();
9549     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
9550     Offset = ARM_AM::getAM2Offset(Offset);
9551     if (isSub)
9552       Offset = -Offset;
9553 
9554     MachineMemOperand *MMO = *MI.memoperands_begin();
9555     BuildMI(*BB, MI, dl, TII->get(NewOpc))
9556         .add(MI.getOperand(0)) // Rn_wb
9557         .add(MI.getOperand(1)) // Rt
9558         .add(MI.getOperand(2)) // Rn
9559         .addImm(Offset)        // offset (skip GPR==zero_reg)
9560         .add(MI.getOperand(5)) // pred
9561         .add(MI.getOperand(6))
9562         .addMemOperand(MMO);
9563     MI.eraseFromParent();
9564     return BB;
9565   }
9566   case ARM::STRr_preidx:
9567   case ARM::STRBr_preidx:
9568   case ARM::STRH_preidx: {
9569     unsigned NewOpc;
9570     switch (MI.getOpcode()) {
9571     default: llvm_unreachable("unexpected opcode!");
9572     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
9573     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
9574     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
9575     }
9576     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
9577     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
9578       MIB.add(MI.getOperand(i));
9579     MI.eraseFromParent();
9580     return BB;
9581   }
9582 
9583   case ARM::tMOVCCr_pseudo: {
9584     // To "insert" a SELECT_CC instruction, we actually have to insert the
9585     // diamond control-flow pattern.  The incoming instruction knows the
9586     // destination vreg to set, the condition code register to branch on, the
9587     // true/false values to select between, and a branch opcode to use.
9588     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9589     MachineFunction::iterator It = ++BB->getIterator();
9590 
9591     //  thisMBB:
9592     //  ...
9593     //   TrueVal = ...
9594     //   cmpTY ccX, r1, r2
9595     //   bCC copy1MBB
9596     //   fallthrough --> copy0MBB
9597     MachineBasicBlock *thisMBB  = BB;
9598     MachineFunction *F = BB->getParent();
9599     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9600     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
9601     F->insert(It, copy0MBB);
9602     F->insert(It, sinkMBB);
9603 
9604     // Check whether CPSR is live past the tMOVCCr_pseudo.
9605     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
9606     if (!MI.killsRegister(ARM::CPSR) &&
9607         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
9608       copy0MBB->addLiveIn(ARM::CPSR);
9609       sinkMBB->addLiveIn(ARM::CPSR);
9610     }
9611 
9612     // Transfer the remainder of BB and its successor edges to sinkMBB.
9613     sinkMBB->splice(sinkMBB->begin(), BB,
9614                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
9615     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9616 
9617     BB->addSuccessor(copy0MBB);
9618     BB->addSuccessor(sinkMBB);
9619 
9620     BuildMI(BB, dl, TII->get(ARM::tBcc))
9621         .addMBB(sinkMBB)
9622         .addImm(MI.getOperand(3).getImm())
9623         .addReg(MI.getOperand(4).getReg());
9624 
9625     //  copy0MBB:
9626     //   %FalseValue = ...
9627     //   # fallthrough to sinkMBB
9628     BB = copy0MBB;
9629 
9630     // Update machine-CFG edges
9631     BB->addSuccessor(sinkMBB);
9632 
9633     //  sinkMBB:
9634     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9635     //  ...
9636     BB = sinkMBB;
9637     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
9638         .addReg(MI.getOperand(1).getReg())
9639         .addMBB(copy0MBB)
9640         .addReg(MI.getOperand(2).getReg())
9641         .addMBB(thisMBB);
9642 
9643     MI.eraseFromParent(); // The pseudo instruction is gone now.
9644     return BB;
9645   }
9646 
9647   case ARM::BCCi64:
9648   case ARM::BCCZi64: {
9649     // If there is an unconditional branch to the other successor, remove it.
9650     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
9651 
9652     // Compare both parts that make up the double comparison separately for
9653     // equality.
9654     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
9655 
9656     unsigned LHS1 = MI.getOperand(1).getReg();
9657     unsigned LHS2 = MI.getOperand(2).getReg();
9658     if (RHSisZero) {
9659       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9660           .addReg(LHS1)
9661           .addImm(0)
9662           .add(predOps(ARMCC::AL));
9663       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9664         .addReg(LHS2).addImm(0)
9665         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9666     } else {
9667       unsigned RHS1 = MI.getOperand(3).getReg();
9668       unsigned RHS2 = MI.getOperand(4).getReg();
9669       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9670           .addReg(LHS1)
9671           .addReg(RHS1)
9672           .add(predOps(ARMCC::AL));
9673       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
9674         .addReg(LHS2).addReg(RHS2)
9675         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
9676     }
9677 
9678     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
9679     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
9680     if (MI.getOperand(0).getImm() == ARMCC::NE)
9681       std::swap(destMBB, exitMBB);
9682 
9683     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
9684       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
9685     if (isThumb2)
9686       BuildMI(BB, dl, TII->get(ARM::t2B))
9687           .addMBB(exitMBB)
9688           .add(predOps(ARMCC::AL));
9689     else
9690       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
9691 
9692     MI.eraseFromParent(); // The pseudo instruction is gone now.
9693     return BB;
9694   }
9695 
9696   case ARM::Int_eh_sjlj_setjmp:
9697   case ARM::Int_eh_sjlj_setjmp_nofp:
9698   case ARM::tInt_eh_sjlj_setjmp:
9699   case ARM::t2Int_eh_sjlj_setjmp:
9700   case ARM::t2Int_eh_sjlj_setjmp_nofp:
9701     return BB;
9702 
9703   case ARM::Int_eh_sjlj_setup_dispatch:
9704     EmitSjLjDispatchBlock(MI, BB);
9705     return BB;
9706 
9707   case ARM::ABS:
9708   case ARM::t2ABS: {
9709     // To insert an ABS instruction, we have to insert the
9710     // diamond control-flow pattern.  The incoming instruction knows the
9711     // source vreg to test against 0, the destination vreg to set,
9712     // the condition code register to branch on, the
9713     // true/false values to select between, and a branch opcode to use.
9714     // It transforms
9715     //     V1 = ABS V0
9716     // into
9717     //     V2 = MOVS V0
9718     //     BCC                      (branch to SinkBB if V0 >= 0)
9719     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
9720     //     SinkBB: V1 = PHI(V2, V3)
9721     const BasicBlock *LLVM_BB = BB->getBasicBlock();
9722     MachineFunction::iterator BBI = ++BB->getIterator();
9723     MachineFunction *Fn = BB->getParent();
9724     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
9725     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
9726     Fn->insert(BBI, RSBBB);
9727     Fn->insert(BBI, SinkBB);
9728 
9729     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
9730     unsigned int ABSDstReg = MI.getOperand(0).getReg();
9731     bool ABSSrcKIll = MI.getOperand(1).isKill();
9732     bool isThumb2 = Subtarget->isThumb2();
9733     MachineRegisterInfo &MRI = Fn->getRegInfo();
9734     // In Thumb mode S must not be specified if source register is the SP or
9735     // PC and if destination register is the SP, so restrict register class
9736     unsigned NewRsbDstReg =
9737       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
9738 
9739     // Transfer the remainder of BB and its successor edges to sinkMBB.
9740     SinkBB->splice(SinkBB->begin(), BB,
9741                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
9742     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
9743 
9744     BB->addSuccessor(RSBBB);
9745     BB->addSuccessor(SinkBB);
9746 
9747     // fall through to SinkMBB
9748     RSBBB->addSuccessor(SinkBB);
9749 
9750     // insert a cmp at the end of BB
9751     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
9752         .addReg(ABSSrcReg)
9753         .addImm(0)
9754         .add(predOps(ARMCC::AL));
9755 
9756     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
9757     BuildMI(BB, dl,
9758       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
9759       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
9760 
9761     // insert rsbri in RSBBB
9762     // Note: BCC and rsbri will be converted into predicated rsbmi
9763     // by if-conversion pass
9764     BuildMI(*RSBBB, RSBBB->begin(), dl,
9765             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
9766         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
9767         .addImm(0)
9768         .add(predOps(ARMCC::AL))
9769         .add(condCodeOp());
9770 
9771     // insert PHI in SinkBB,
9772     // reuse ABSDstReg to not change uses of ABS instruction
9773     BuildMI(*SinkBB, SinkBB->begin(), dl,
9774       TII->get(ARM::PHI), ABSDstReg)
9775       .addReg(NewRsbDstReg).addMBB(RSBBB)
9776       .addReg(ABSSrcReg).addMBB(BB);
9777 
9778     // remove ABS instruction
9779     MI.eraseFromParent();
9780 
9781     // return last added BB
9782     return SinkBB;
9783   }
9784   case ARM::COPY_STRUCT_BYVAL_I32:
9785     ++NumLoopByVals;
9786     return EmitStructByval(MI, BB);
9787   case ARM::WIN__CHKSTK:
9788     return EmitLowered__chkstk(MI, BB);
9789   case ARM::WIN__DBZCHK:
9790     return EmitLowered__dbzchk(MI, BB);
9791   }
9792 }
9793 
9794 /// Attaches vregs to MEMCPY that it will use as scratch registers
9795 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
9796 /// instead of as a custom inserter because we need the use list from the SDNode.
9797 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
9798                                     MachineInstr &MI, const SDNode *Node) {
9799   bool isThumb1 = Subtarget->isThumb1Only();
9800 
9801   DebugLoc DL = MI.getDebugLoc();
9802   MachineFunction *MF = MI.getParent()->getParent();
9803   MachineRegisterInfo &MRI = MF->getRegInfo();
9804   MachineInstrBuilder MIB(*MF, MI);
9805 
9806   // If the new dst/src is unused mark it as dead.
9807   if (!Node->hasAnyUseOfValue(0)) {
9808     MI.getOperand(0).setIsDead(true);
9809   }
9810   if (!Node->hasAnyUseOfValue(1)) {
9811     MI.getOperand(1).setIsDead(true);
9812   }
9813 
9814   // The MEMCPY both defines and kills the scratch registers.
9815   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
9816     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
9817                                                          : &ARM::GPRRegClass);
9818     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
9819   }
9820 }
9821 
9822 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
9823                                                       SDNode *Node) const {
9824   if (MI.getOpcode() == ARM::MEMCPY) {
9825     attachMEMCPYScratchRegs(Subtarget, MI, Node);
9826     return;
9827   }
9828 
9829   const MCInstrDesc *MCID = &MI.getDesc();
9830   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
9831   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
9832   // operand is still set to noreg. If needed, set the optional operand's
9833   // register to CPSR, and remove the redundant implicit def.
9834   //
9835   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
9836 
9837   // Rename pseudo opcodes.
9838   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
9839   unsigned ccOutIdx;
9840   if (NewOpc) {
9841     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
9842     MCID = &TII->get(NewOpc);
9843 
9844     assert(MCID->getNumOperands() ==
9845            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
9846         && "converted opcode should be the same except for cc_out"
9847            " (and, on Thumb1, pred)");
9848 
9849     MI.setDesc(*MCID);
9850 
9851     // Add the optional cc_out operand
9852     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
9853 
9854     // On Thumb1, move all input operands to the end, then add the predicate
9855     if (Subtarget->isThumb1Only()) {
9856       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
9857         MI.addOperand(MI.getOperand(1));
9858         MI.RemoveOperand(1);
9859       }
9860 
9861       // Restore the ties
9862       for (unsigned i = MI.getNumOperands(); i--;) {
9863         const MachineOperand& op = MI.getOperand(i);
9864         if (op.isReg() && op.isUse()) {
9865           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
9866           if (DefIdx != -1)
9867             MI.tieOperands(DefIdx, i);
9868         }
9869       }
9870 
9871       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
9872       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
9873       ccOutIdx = 1;
9874     } else
9875       ccOutIdx = MCID->getNumOperands() - 1;
9876   } else
9877     ccOutIdx = MCID->getNumOperands() - 1;
9878 
9879   // Any ARM instruction that sets the 's' bit should specify an optional
9880   // "cc_out" operand in the last operand position.
9881   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
9882     assert(!NewOpc && "Optional cc_out operand required");
9883     return;
9884   }
9885   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
9886   // since we already have an optional CPSR def.
9887   bool definesCPSR = false;
9888   bool deadCPSR = false;
9889   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
9890        ++i) {
9891     const MachineOperand &MO = MI.getOperand(i);
9892     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
9893       definesCPSR = true;
9894       if (MO.isDead())
9895         deadCPSR = true;
9896       MI.RemoveOperand(i);
9897       break;
9898     }
9899   }
9900   if (!definesCPSR) {
9901     assert(!NewOpc && "Optional cc_out operand required");
9902     return;
9903   }
9904   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
9905   if (deadCPSR) {
9906     assert(!MI.getOperand(ccOutIdx).getReg() &&
9907            "expect uninitialized optional cc_out operand");
9908     // Thumb1 instructions must have the S bit even if the CPSR is dead.
9909     if (!Subtarget->isThumb1Only())
9910       return;
9911   }
9912 
9913   // If this instruction was defined with an optional CPSR def and its dag node
9914   // had a live implicit CPSR def, then activate the optional CPSR def.
9915   MachineOperand &MO = MI.getOperand(ccOutIdx);
9916   MO.setReg(ARM::CPSR);
9917   MO.setIsDef(true);
9918 }
9919 
9920 //===----------------------------------------------------------------------===//
9921 //                           ARM Optimization Hooks
9922 //===----------------------------------------------------------------------===//
9923 
9924 // Helper function that checks if N is a null or all ones constant.
9925 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
9926   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
9927 }
9928 
9929 // Return true if N is conditionally 0 or all ones.
9930 // Detects these expressions where cc is an i1 value:
9931 //
9932 //   (select cc 0, y)   [AllOnes=0]
9933 //   (select cc y, 0)   [AllOnes=0]
9934 //   (zext cc)          [AllOnes=0]
9935 //   (sext cc)          [AllOnes=0/1]
9936 //   (select cc -1, y)  [AllOnes=1]
9937 //   (select cc y, -1)  [AllOnes=1]
9938 //
9939 // Invert is set when N is the null/all ones constant when CC is false.
9940 // OtherOp is set to the alternative value of N.
9941 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
9942                                        SDValue &CC, bool &Invert,
9943                                        SDValue &OtherOp,
9944                                        SelectionDAG &DAG) {
9945   switch (N->getOpcode()) {
9946   default: return false;
9947   case ISD::SELECT: {
9948     CC = N->getOperand(0);
9949     SDValue N1 = N->getOperand(1);
9950     SDValue N2 = N->getOperand(2);
9951     if (isZeroOrAllOnes(N1, AllOnes)) {
9952       Invert = false;
9953       OtherOp = N2;
9954       return true;
9955     }
9956     if (isZeroOrAllOnes(N2, AllOnes)) {
9957       Invert = true;
9958       OtherOp = N1;
9959       return true;
9960     }
9961     return false;
9962   }
9963   case ISD::ZERO_EXTEND:
9964     // (zext cc) can never be the all ones value.
9965     if (AllOnes)
9966       return false;
9967     LLVM_FALLTHROUGH;
9968   case ISD::SIGN_EXTEND: {
9969     SDLoc dl(N);
9970     EVT VT = N->getValueType(0);
9971     CC = N->getOperand(0);
9972     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
9973       return false;
9974     Invert = !AllOnes;
9975     if (AllOnes)
9976       // When looking for an AllOnes constant, N is an sext, and the 'other'
9977       // value is 0.
9978       OtherOp = DAG.getConstant(0, dl, VT);
9979     else if (N->getOpcode() == ISD::ZERO_EXTEND)
9980       // When looking for a 0 constant, N can be zext or sext.
9981       OtherOp = DAG.getConstant(1, dl, VT);
9982     else
9983       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
9984                                 VT);
9985     return true;
9986   }
9987   }
9988 }
9989 
9990 // Combine a constant select operand into its use:
9991 //
9992 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
9993 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
9994 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
9995 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
9996 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
9997 //
9998 // The transform is rejected if the select doesn't have a constant operand that
9999 // is null, or all ones when AllOnes is set.
10000 //
10001 // Also recognize sext/zext from i1:
10002 //
10003 //   (add (zext cc), x) -> (select cc (add x, 1), x)
10004 //   (add (sext cc), x) -> (select cc (add x, -1), x)
10005 //
10006 // These transformations eventually create predicated instructions.
10007 //
10008 // @param N       The node to transform.
10009 // @param Slct    The N operand that is a select.
10010 // @param OtherOp The other N operand (x above).
10011 // @param DCI     Context.
10012 // @param AllOnes Require the select constant to be all ones instead of null.
10013 // @returns The new node, or SDValue() on failure.
10014 static
10015 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
10016                             TargetLowering::DAGCombinerInfo &DCI,
10017                             bool AllOnes = false) {
10018   SelectionDAG &DAG = DCI.DAG;
10019   EVT VT = N->getValueType(0);
10020   SDValue NonConstantVal;
10021   SDValue CCOp;
10022   bool SwapSelectOps;
10023   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
10024                                   NonConstantVal, DAG))
10025     return SDValue();
10026 
10027   // Slct is now know to be the desired identity constant when CC is true.
10028   SDValue TrueVal = OtherOp;
10029   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
10030                                  OtherOp, NonConstantVal);
10031   // Unless SwapSelectOps says CC should be false.
10032   if (SwapSelectOps)
10033     std::swap(TrueVal, FalseVal);
10034 
10035   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
10036                      CCOp, TrueVal, FalseVal);
10037 }
10038 
10039 // Attempt combineSelectAndUse on each operand of a commutative operator N.
10040 static
10041 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
10042                                        TargetLowering::DAGCombinerInfo &DCI) {
10043   SDValue N0 = N->getOperand(0);
10044   SDValue N1 = N->getOperand(1);
10045   if (N0.getNode()->hasOneUse())
10046     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
10047       return Result;
10048   if (N1.getNode()->hasOneUse())
10049     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
10050       return Result;
10051   return SDValue();
10052 }
10053 
10054 static bool IsVUZPShuffleNode(SDNode *N) {
10055   // VUZP shuffle node.
10056   if (N->getOpcode() == ARMISD::VUZP)
10057     return true;
10058 
10059   // "VUZP" on i32 is an alias for VTRN.
10060   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
10061     return true;
10062 
10063   return false;
10064 }
10065 
10066 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
10067                                  TargetLowering::DAGCombinerInfo &DCI,
10068                                  const ARMSubtarget *Subtarget) {
10069   // Look for ADD(VUZP.0, VUZP.1).
10070   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
10071       N0 == N1)
10072    return SDValue();
10073 
10074   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
10075   if (!N->getValueType(0).is64BitVector())
10076     return SDValue();
10077 
10078   // Generate vpadd.
10079   SelectionDAG &DAG = DCI.DAG;
10080   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10081   SDLoc dl(N);
10082   SDNode *Unzip = N0.getNode();
10083   EVT VT = N->getValueType(0);
10084 
10085   SmallVector<SDValue, 8> Ops;
10086   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
10087                                 TLI.getPointerTy(DAG.getDataLayout())));
10088   Ops.push_back(Unzip->getOperand(0));
10089   Ops.push_back(Unzip->getOperand(1));
10090 
10091   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
10092 }
10093 
10094 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
10095                                       TargetLowering::DAGCombinerInfo &DCI,
10096                                       const ARMSubtarget *Subtarget) {
10097   // Check for two extended operands.
10098   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
10099         N1.getOpcode() == ISD::SIGN_EXTEND) &&
10100       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
10101         N1.getOpcode() == ISD::ZERO_EXTEND))
10102     return SDValue();
10103 
10104   SDValue N00 = N0.getOperand(0);
10105   SDValue N10 = N1.getOperand(0);
10106 
10107   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
10108   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
10109       N00 == N10)
10110     return SDValue();
10111 
10112   // We only recognize Q register paddl here; this can't be reached until
10113   // after type legalization.
10114   if (!N00.getValueType().is64BitVector() ||
10115       !N0.getValueType().is128BitVector())
10116     return SDValue();
10117 
10118   // Generate vpaddl.
10119   SelectionDAG &DAG = DCI.DAG;
10120   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10121   SDLoc dl(N);
10122   EVT VT = N->getValueType(0);
10123 
10124   SmallVector<SDValue, 8> Ops;
10125   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
10126   unsigned Opcode;
10127   if (N0.getOpcode() == ISD::SIGN_EXTEND)
10128     Opcode = Intrinsic::arm_neon_vpaddls;
10129   else
10130     Opcode = Intrinsic::arm_neon_vpaddlu;
10131   Ops.push_back(DAG.getConstant(Opcode, dl,
10132                                 TLI.getPointerTy(DAG.getDataLayout())));
10133   EVT ElemTy = N00.getValueType().getVectorElementType();
10134   unsigned NumElts = VT.getVectorNumElements();
10135   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
10136   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
10137                                N00.getOperand(0), N00.getOperand(1));
10138   Ops.push_back(Concat);
10139 
10140   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
10141 }
10142 
10143 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
10144 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
10145 // much easier to match.
10146 static SDValue
10147 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
10148                                TargetLowering::DAGCombinerInfo &DCI,
10149                                const ARMSubtarget *Subtarget) {
10150   // Only perform optimization if after legalize, and if NEON is available. We
10151   // also expected both operands to be BUILD_VECTORs.
10152   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
10153       || N0.getOpcode() != ISD::BUILD_VECTOR
10154       || N1.getOpcode() != ISD::BUILD_VECTOR)
10155     return SDValue();
10156 
10157   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
10158   EVT VT = N->getValueType(0);
10159   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
10160     return SDValue();
10161 
10162   // Check that the vector operands are of the right form.
10163   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
10164   // operands, where N is the size of the formed vector.
10165   // Each EXTRACT_VECTOR should have the same input vector and odd or even
10166   // index such that we have a pair wise add pattern.
10167 
10168   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
10169   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10170     return SDValue();
10171   SDValue Vec = N0->getOperand(0)->getOperand(0);
10172   SDNode *V = Vec.getNode();
10173   unsigned nextIndex = 0;
10174 
10175   // For each operands to the ADD which are BUILD_VECTORs,
10176   // check to see if each of their operands are an EXTRACT_VECTOR with
10177   // the same vector and appropriate index.
10178   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
10179     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
10180         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10181 
10182       SDValue ExtVec0 = N0->getOperand(i);
10183       SDValue ExtVec1 = N1->getOperand(i);
10184 
10185       // First operand is the vector, verify its the same.
10186       if (V != ExtVec0->getOperand(0).getNode() ||
10187           V != ExtVec1->getOperand(0).getNode())
10188         return SDValue();
10189 
10190       // Second is the constant, verify its correct.
10191       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
10192       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
10193 
10194       // For the constant, we want to see all the even or all the odd.
10195       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
10196           || C1->getZExtValue() != nextIndex+1)
10197         return SDValue();
10198 
10199       // Increment index.
10200       nextIndex+=2;
10201     } else
10202       return SDValue();
10203   }
10204 
10205   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
10206   // we're using the entire input vector, otherwise there's a size/legality
10207   // mismatch somewhere.
10208   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
10209       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
10210     return SDValue();
10211 
10212   // Create VPADDL node.
10213   SelectionDAG &DAG = DCI.DAG;
10214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10215 
10216   SDLoc dl(N);
10217 
10218   // Build operand list.
10219   SmallVector<SDValue, 8> Ops;
10220   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
10221                                 TLI.getPointerTy(DAG.getDataLayout())));
10222 
10223   // Input is the vector.
10224   Ops.push_back(Vec);
10225 
10226   // Get widened type and narrowed type.
10227   MVT widenType;
10228   unsigned numElem = VT.getVectorNumElements();
10229 
10230   EVT inputLaneType = Vec.getValueType().getVectorElementType();
10231   switch (inputLaneType.getSimpleVT().SimpleTy) {
10232     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
10233     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
10234     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
10235     default:
10236       llvm_unreachable("Invalid vector element type for padd optimization.");
10237   }
10238 
10239   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
10240   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
10241   return DAG.getNode(ExtOp, dl, VT, tmp);
10242 }
10243 
10244 static SDValue findMUL_LOHI(SDValue V) {
10245   if (V->getOpcode() == ISD::UMUL_LOHI ||
10246       V->getOpcode() == ISD::SMUL_LOHI)
10247     return V;
10248   return SDValue();
10249 }
10250 
10251 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
10252                                         TargetLowering::DAGCombinerInfo &DCI,
10253                                         const ARMSubtarget *Subtarget) {
10254   if (Subtarget->isThumb()) {
10255     if (!Subtarget->hasDSP())
10256       return SDValue();
10257   } else if (!Subtarget->hasV5TEOps())
10258     return SDValue();
10259 
10260   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
10261   // accumulates the product into a 64-bit value. The 16-bit values will
10262   // be sign extended somehow or SRA'd into 32-bit values
10263   // (addc (adde (mul 16bit, 16bit), lo), hi)
10264   SDValue Mul = AddcNode->getOperand(0);
10265   SDValue Lo = AddcNode->getOperand(1);
10266   if (Mul.getOpcode() != ISD::MUL) {
10267     Lo = AddcNode->getOperand(0);
10268     Mul = AddcNode->getOperand(1);
10269     if (Mul.getOpcode() != ISD::MUL)
10270       return SDValue();
10271   }
10272 
10273   SDValue SRA = AddeNode->getOperand(0);
10274   SDValue Hi = AddeNode->getOperand(1);
10275   if (SRA.getOpcode() != ISD::SRA) {
10276     SRA = AddeNode->getOperand(1);
10277     Hi = AddeNode->getOperand(0);
10278     if (SRA.getOpcode() != ISD::SRA)
10279       return SDValue();
10280   }
10281   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
10282     if (Const->getZExtValue() != 31)
10283       return SDValue();
10284   } else
10285     return SDValue();
10286 
10287   if (SRA.getOperand(0) != Mul)
10288     return SDValue();
10289 
10290   SelectionDAG &DAG = DCI.DAG;
10291   SDLoc dl(AddcNode);
10292   unsigned Opcode = 0;
10293   SDValue Op0;
10294   SDValue Op1;
10295 
10296   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
10297     Opcode = ARMISD::SMLALBB;
10298     Op0 = Mul.getOperand(0);
10299     Op1 = Mul.getOperand(1);
10300   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
10301     Opcode = ARMISD::SMLALBT;
10302     Op0 = Mul.getOperand(0);
10303     Op1 = Mul.getOperand(1).getOperand(0);
10304   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
10305     Opcode = ARMISD::SMLALTB;
10306     Op0 = Mul.getOperand(0).getOperand(0);
10307     Op1 = Mul.getOperand(1);
10308   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
10309     Opcode = ARMISD::SMLALTT;
10310     Op0 = Mul->getOperand(0).getOperand(0);
10311     Op1 = Mul->getOperand(1).getOperand(0);
10312   }
10313 
10314   if (!Op0 || !Op1)
10315     return SDValue();
10316 
10317   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
10318                               Op0, Op1, Lo, Hi);
10319   // Replace the ADDs' nodes uses by the MLA node's values.
10320   SDValue HiMLALResult(SMLAL.getNode(), 1);
10321   SDValue LoMLALResult(SMLAL.getNode(), 0);
10322 
10323   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
10324   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
10325 
10326   // Return original node to notify the driver to stop replacing.
10327   SDValue resNode(AddcNode, 0);
10328   return resNode;
10329 }
10330 
10331 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
10332                                      TargetLowering::DAGCombinerInfo &DCI,
10333                                      const ARMSubtarget *Subtarget) {
10334   // Look for multiply add opportunities.
10335   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
10336   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
10337   // a glue link from the first add to the second add.
10338   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
10339   // a S/UMLAL instruction.
10340   //                  UMUL_LOHI
10341   //                 / :lo    \ :hi
10342   //                V          \          [no multiline comment]
10343   //    loAdd ->  ADDC         |
10344   //                 \ :carry /
10345   //                  V      V
10346   //                    ADDE   <- hiAdd
10347   //
10348   // In the special case where only the higher part of a signed result is used
10349   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
10350   // a constant with the exact value of 0x80000000, we recognize we are dealing
10351   // with a "rounded multiply and add" (or subtract) and transform it into
10352   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
10353 
10354   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
10355           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
10356          "Expect an ADDE or SUBE");
10357 
10358   assert(AddeSubeNode->getNumOperands() == 3 &&
10359          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
10360          "ADDE node has the wrong inputs");
10361 
10362   // Check that we are chained to the right ADDC or SUBC node.
10363   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
10364   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10365        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
10366       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
10367        AddcSubcNode->getOpcode() != ARMISD::SUBC))
10368     return SDValue();
10369 
10370   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
10371   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
10372 
10373   // Check if the two operands are from the same mul_lohi node.
10374   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
10375     return SDValue();
10376 
10377   assert(AddcSubcNode->getNumValues() == 2 &&
10378          AddcSubcNode->getValueType(0) == MVT::i32 &&
10379          "Expect ADDC with two result values. First: i32");
10380 
10381   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
10382   // maybe a SMLAL which multiplies two 16-bit values.
10383   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
10384       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
10385       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
10386       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
10387       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
10388     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
10389 
10390   // Check for the triangle shape.
10391   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
10392   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
10393 
10394   // Make sure that the ADDE/SUBE operands are not coming from the same node.
10395   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
10396     return SDValue();
10397 
10398   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
10399   bool IsLeftOperandMUL = false;
10400   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
10401   if (MULOp == SDValue())
10402     MULOp = findMUL_LOHI(AddeSubeOp1);
10403   else
10404     IsLeftOperandMUL = true;
10405   if (MULOp == SDValue())
10406     return SDValue();
10407 
10408   // Figure out the right opcode.
10409   unsigned Opc = MULOp->getOpcode();
10410   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
10411 
10412   // Figure out the high and low input values to the MLAL node.
10413   SDValue *HiAddSub = nullptr;
10414   SDValue *LoMul = nullptr;
10415   SDValue *LowAddSub = nullptr;
10416 
10417   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
10418   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
10419     return SDValue();
10420 
10421   if (IsLeftOperandMUL)
10422     HiAddSub = &AddeSubeOp1;
10423   else
10424     HiAddSub = &AddeSubeOp0;
10425 
10426   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
10427   // whose low result is fed to the ADDC/SUBC we are checking.
10428 
10429   if (AddcSubcOp0 == MULOp.getValue(0)) {
10430     LoMul = &AddcSubcOp0;
10431     LowAddSub = &AddcSubcOp1;
10432   }
10433   if (AddcSubcOp1 == MULOp.getValue(0)) {
10434     LoMul = &AddcSubcOp1;
10435     LowAddSub = &AddcSubcOp0;
10436   }
10437 
10438   if (!LoMul)
10439     return SDValue();
10440 
10441   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
10442   // the replacement below will create a cycle.
10443   if (AddcSubcNode == HiAddSub->getNode() ||
10444       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
10445     return SDValue();
10446 
10447   // Create the merged node.
10448   SelectionDAG &DAG = DCI.DAG;
10449 
10450   // Start building operand list.
10451   SmallVector<SDValue, 8> Ops;
10452   Ops.push_back(LoMul->getOperand(0));
10453   Ops.push_back(LoMul->getOperand(1));
10454 
10455   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
10456   // the case, we must be doing signed multiplication and only use the higher
10457   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
10458   // addition or subtraction with the value of 0x800000.
10459   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
10460       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
10461       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
10462       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
10463           0x80000000) {
10464     Ops.push_back(*HiAddSub);
10465     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
10466       FinalOpc = ARMISD::SMMLSR;
10467     } else {
10468       FinalOpc = ARMISD::SMMLAR;
10469     }
10470     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
10471     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
10472 
10473     return SDValue(AddeSubeNode, 0);
10474   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
10475     // SMMLS is generated during instruction selection and the rest of this
10476     // function can not handle the case where AddcSubcNode is a SUBC.
10477     return SDValue();
10478 
10479   // Finish building the operand list for {U/S}MLAL
10480   Ops.push_back(*LowAddSub);
10481   Ops.push_back(*HiAddSub);
10482 
10483   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
10484                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10485 
10486   // Replace the ADDs' nodes uses by the MLA node's values.
10487   SDValue HiMLALResult(MLALNode.getNode(), 1);
10488   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
10489 
10490   SDValue LoMLALResult(MLALNode.getNode(), 0);
10491   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
10492 
10493   // Return original node to notify the driver to stop replacing.
10494   return SDValue(AddeSubeNode, 0);
10495 }
10496 
10497 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
10498                                       TargetLowering::DAGCombinerInfo &DCI,
10499                                       const ARMSubtarget *Subtarget) {
10500   // UMAAL is similar to UMLAL except that it adds two unsigned values.
10501   // While trying to combine for the other MLAL nodes, first search for the
10502   // chance to use UMAAL. Check if Addc uses a node which has already
10503   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
10504   // as the addend, and it's handled in PerformUMLALCombine.
10505 
10506   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10507     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10508 
10509   // Check that we have a glued ADDC node.
10510   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
10511   if (AddcNode->getOpcode() != ARMISD::ADDC)
10512     return SDValue();
10513 
10514   // Find the converted UMAAL or quit if it doesn't exist.
10515   SDNode *UmlalNode = nullptr;
10516   SDValue AddHi;
10517   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
10518     UmlalNode = AddcNode->getOperand(0).getNode();
10519     AddHi = AddcNode->getOperand(1);
10520   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
10521     UmlalNode = AddcNode->getOperand(1).getNode();
10522     AddHi = AddcNode->getOperand(0);
10523   } else {
10524     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
10525   }
10526 
10527   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
10528   // the ADDC as well as Zero.
10529   if (!isNullConstant(UmlalNode->getOperand(3)))
10530     return SDValue();
10531 
10532   if ((isNullConstant(AddeNode->getOperand(0)) &&
10533        AddeNode->getOperand(1).getNode() == UmlalNode) ||
10534       (AddeNode->getOperand(0).getNode() == UmlalNode &&
10535        isNullConstant(AddeNode->getOperand(1)))) {
10536     SelectionDAG &DAG = DCI.DAG;
10537     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
10538                       UmlalNode->getOperand(2), AddHi };
10539     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
10540                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
10541 
10542     // Replace the ADDs' nodes uses by the UMAAL node's values.
10543     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
10544     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
10545 
10546     // Return original node to notify the driver to stop replacing.
10547     return SDValue(AddeNode, 0);
10548   }
10549   return SDValue();
10550 }
10551 
10552 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
10553                                    const ARMSubtarget *Subtarget) {
10554   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
10555     return SDValue();
10556 
10557   // Check that we have a pair of ADDC and ADDE as operands.
10558   // Both addends of the ADDE must be zero.
10559   SDNode* AddcNode = N->getOperand(2).getNode();
10560   SDNode* AddeNode = N->getOperand(3).getNode();
10561   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
10562       (AddeNode->getOpcode() == ARMISD::ADDE) &&
10563       isNullConstant(AddeNode->getOperand(0)) &&
10564       isNullConstant(AddeNode->getOperand(1)) &&
10565       (AddeNode->getOperand(2).getNode() == AddcNode))
10566     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
10567                        DAG.getVTList(MVT::i32, MVT::i32),
10568                        {N->getOperand(0), N->getOperand(1),
10569                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
10570   else
10571     return SDValue();
10572 }
10573 
10574 static SDValue PerformAddcSubcCombine(SDNode *N,
10575                                       TargetLowering::DAGCombinerInfo &DCI,
10576                                       const ARMSubtarget *Subtarget) {
10577   SelectionDAG &DAG(DCI.DAG);
10578 
10579   if (N->getOpcode() == ARMISD::SUBC) {
10580     // (SUBC (ADDE 0, 0, C), 1) -> C
10581     SDValue LHS = N->getOperand(0);
10582     SDValue RHS = N->getOperand(1);
10583     if (LHS->getOpcode() == ARMISD::ADDE &&
10584         isNullConstant(LHS->getOperand(0)) &&
10585         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
10586       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
10587     }
10588   }
10589 
10590   if (Subtarget->isThumb1Only()) {
10591     SDValue RHS = N->getOperand(1);
10592     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10593       int32_t imm = C->getSExtValue();
10594       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
10595         SDLoc DL(N);
10596         RHS = DAG.getConstant(-imm, DL, MVT::i32);
10597         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
10598                                                            : ARMISD::ADDC;
10599         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
10600       }
10601     }
10602   }
10603 
10604   return SDValue();
10605 }
10606 
10607 static SDValue PerformAddeSubeCombine(SDNode *N,
10608                                       TargetLowering::DAGCombinerInfo &DCI,
10609                                       const ARMSubtarget *Subtarget) {
10610   if (Subtarget->isThumb1Only()) {
10611     SelectionDAG &DAG = DCI.DAG;
10612     SDValue RHS = N->getOperand(1);
10613     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
10614       int64_t imm = C->getSExtValue();
10615       if (imm < 0) {
10616         SDLoc DL(N);
10617 
10618         // The with-carry-in form matches bitwise not instead of the negation.
10619         // Effectively, the inverse interpretation of the carry flag already
10620         // accounts for part of the negation.
10621         RHS = DAG.getConstant(~imm, DL, MVT::i32);
10622 
10623         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
10624                                                            : ARMISD::ADDE;
10625         return DAG.getNode(Opcode, DL, N->getVTList(),
10626                            N->getOperand(0), RHS, N->getOperand(2));
10627       }
10628     }
10629   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
10630     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
10631   }
10632   return SDValue();
10633 }
10634 
10635 static SDValue PerformABSCombine(SDNode *N,
10636                                   TargetLowering::DAGCombinerInfo &DCI,
10637                                   const ARMSubtarget *Subtarget) {
10638   SDValue res;
10639   SelectionDAG &DAG = DCI.DAG;
10640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10641 
10642   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
10643     return SDValue();
10644 
10645   if (!TLI.expandABS(N, res, DAG))
10646       return SDValue();
10647 
10648   return res;
10649 }
10650 
10651 /// PerformADDECombine - Target-specific dag combine transform from
10652 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
10653 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
10654 static SDValue PerformADDECombine(SDNode *N,
10655                                   TargetLowering::DAGCombinerInfo &DCI,
10656                                   const ARMSubtarget *Subtarget) {
10657   // Only ARM and Thumb2 support UMLAL/SMLAL.
10658   if (Subtarget->isThumb1Only())
10659     return PerformAddeSubeCombine(N, DCI, Subtarget);
10660 
10661   // Only perform the checks after legalize when the pattern is available.
10662   if (DCI.isBeforeLegalize()) return SDValue();
10663 
10664   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
10665 }
10666 
10667 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
10668 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
10669 /// called with the default operands, and if that fails, with commuted
10670 /// operands.
10671 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
10672                                           TargetLowering::DAGCombinerInfo &DCI,
10673                                           const ARMSubtarget *Subtarget){
10674   // Attempt to create vpadd for this add.
10675   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
10676     return Result;
10677 
10678   // Attempt to create vpaddl for this add.
10679   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
10680     return Result;
10681   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
10682                                                       Subtarget))
10683     return Result;
10684 
10685   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
10686   if (N0.getNode()->hasOneUse())
10687     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
10688       return Result;
10689   return SDValue();
10690 }
10691 
10692 bool
10693 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
10694                                                  CombineLevel Level) const {
10695   if (Level == BeforeLegalizeTypes)
10696     return true;
10697 
10698   if (N->getOpcode() != ISD::SHL)
10699     return true;
10700 
10701   if (Subtarget->isThumb1Only()) {
10702     // Avoid making expensive immediates by commuting shifts. (This logic
10703     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
10704     // for free.)
10705     if (N->getOpcode() != ISD::SHL)
10706       return true;
10707     SDValue N1 = N->getOperand(0);
10708     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
10709         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
10710       return true;
10711     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
10712       if (Const->getAPIntValue().ult(256))
10713         return false;
10714       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
10715           Const->getAPIntValue().sgt(-256))
10716         return false;
10717     }
10718     return true;
10719   }
10720 
10721   // Turn off commute-with-shift transform after legalization, so it doesn't
10722   // conflict with PerformSHLSimplify.  (We could try to detect when
10723   // PerformSHLSimplify would trigger more precisely, but it isn't
10724   // really necessary.)
10725   return false;
10726 }
10727 
10728 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
10729     const SDNode *N, CombineLevel Level) const {
10730   if (!Subtarget->isThumb1Only())
10731     return true;
10732 
10733   if (Level == BeforeLegalizeTypes)
10734     return true;
10735 
10736   return false;
10737 }
10738 
10739 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
10740   if (!Subtarget->hasNEON()) {
10741     if (Subtarget->isThumb1Only())
10742       return VT.getScalarSizeInBits() <= 32;
10743     return true;
10744   }
10745   return VT.isScalarInteger();
10746 }
10747 
10748 static SDValue PerformSHLSimplify(SDNode *N,
10749                                 TargetLowering::DAGCombinerInfo &DCI,
10750                                 const ARMSubtarget *ST) {
10751   // Allow the generic combiner to identify potential bswaps.
10752   if (DCI.isBeforeLegalize())
10753     return SDValue();
10754 
10755   // DAG combiner will fold:
10756   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
10757   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
10758   // Other code patterns that can be also be modified have the following form:
10759   // b + ((a << 1) | 510)
10760   // b + ((a << 1) & 510)
10761   // b + ((a << 1) ^ 510)
10762   // b + ((a << 1) + 510)
10763 
10764   // Many instructions can  perform the shift for free, but it requires both
10765   // the operands to be registers. If c1 << c2 is too large, a mov immediate
10766   // instruction will needed. So, unfold back to the original pattern if:
10767   // - if c1 and c2 are small enough that they don't require mov imms.
10768   // - the user(s) of the node can perform an shl
10769 
10770   // No shifted operands for 16-bit instructions.
10771   if (ST->isThumb() && ST->isThumb1Only())
10772     return SDValue();
10773 
10774   // Check that all the users could perform the shl themselves.
10775   for (auto U : N->uses()) {
10776     switch(U->getOpcode()) {
10777     default:
10778       return SDValue();
10779     case ISD::SUB:
10780     case ISD::ADD:
10781     case ISD::AND:
10782     case ISD::OR:
10783     case ISD::XOR:
10784     case ISD::SETCC:
10785     case ARMISD::CMP:
10786       // Check that the user isn't already using a constant because there
10787       // aren't any instructions that support an immediate operand and a
10788       // shifted operand.
10789       if (isa<ConstantSDNode>(U->getOperand(0)) ||
10790           isa<ConstantSDNode>(U->getOperand(1)))
10791         return SDValue();
10792 
10793       // Check that it's not already using a shift.
10794       if (U->getOperand(0).getOpcode() == ISD::SHL ||
10795           U->getOperand(1).getOpcode() == ISD::SHL)
10796         return SDValue();
10797       break;
10798     }
10799   }
10800 
10801   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
10802       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
10803     return SDValue();
10804 
10805   if (N->getOperand(0).getOpcode() != ISD::SHL)
10806     return SDValue();
10807 
10808   SDValue SHL = N->getOperand(0);
10809 
10810   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
10811   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
10812   if (!C1ShlC2 || !C2)
10813     return SDValue();
10814 
10815   APInt C2Int = C2->getAPIntValue();
10816   APInt C1Int = C1ShlC2->getAPIntValue();
10817 
10818   // Check that performing a lshr will not lose any information.
10819   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
10820                                      C2Int.getBitWidth() - C2->getZExtValue());
10821   if ((C1Int & Mask) != C1Int)
10822     return SDValue();
10823 
10824   // Shift the first constant.
10825   C1Int.lshrInPlace(C2Int);
10826 
10827   // The immediates are encoded as an 8-bit value that can be rotated.
10828   auto LargeImm = [](const APInt &Imm) {
10829     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
10830     return Imm.getBitWidth() - Zeros > 8;
10831   };
10832 
10833   if (LargeImm(C1Int) || LargeImm(C2Int))
10834     return SDValue();
10835 
10836   SelectionDAG &DAG = DCI.DAG;
10837   SDLoc dl(N);
10838   SDValue X = SHL.getOperand(0);
10839   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
10840                               DAG.getConstant(C1Int, dl, MVT::i32));
10841   // Shift left to compensate for the lshr of C1Int.
10842   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
10843 
10844   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
10845              SHL.dump(); N->dump());
10846   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
10847   return Res;
10848 }
10849 
10850 
10851 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
10852 ///
10853 static SDValue PerformADDCombine(SDNode *N,
10854                                  TargetLowering::DAGCombinerInfo &DCI,
10855                                  const ARMSubtarget *Subtarget) {
10856   SDValue N0 = N->getOperand(0);
10857   SDValue N1 = N->getOperand(1);
10858 
10859   // Only works one way, because it needs an immediate operand.
10860   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
10861     return Result;
10862 
10863   // First try with the default operand order.
10864   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
10865     return Result;
10866 
10867   // If that didn't work, try again with the operands commuted.
10868   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
10869 }
10870 
10871 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
10872 ///
10873 static SDValue PerformSUBCombine(SDNode *N,
10874                                  TargetLowering::DAGCombinerInfo &DCI) {
10875   SDValue N0 = N->getOperand(0);
10876   SDValue N1 = N->getOperand(1);
10877 
10878   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
10879   if (N1.getNode()->hasOneUse())
10880     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
10881       return Result;
10882 
10883   return SDValue();
10884 }
10885 
10886 /// PerformVMULCombine
10887 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
10888 /// special multiplier accumulator forwarding.
10889 ///   vmul d3, d0, d2
10890 ///   vmla d3, d1, d2
10891 /// is faster than
10892 ///   vadd d3, d0, d1
10893 ///   vmul d3, d3, d2
10894 //  However, for (A + B) * (A + B),
10895 //    vadd d2, d0, d1
10896 //    vmul d3, d0, d2
10897 //    vmla d3, d1, d2
10898 //  is slower than
10899 //    vadd d2, d0, d1
10900 //    vmul d3, d2, d2
10901 static SDValue PerformVMULCombine(SDNode *N,
10902                                   TargetLowering::DAGCombinerInfo &DCI,
10903                                   const ARMSubtarget *Subtarget) {
10904   if (!Subtarget->hasVMLxForwarding())
10905     return SDValue();
10906 
10907   SelectionDAG &DAG = DCI.DAG;
10908   SDValue N0 = N->getOperand(0);
10909   SDValue N1 = N->getOperand(1);
10910   unsigned Opcode = N0.getOpcode();
10911   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10912       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
10913     Opcode = N1.getOpcode();
10914     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
10915         Opcode != ISD::FADD && Opcode != ISD::FSUB)
10916       return SDValue();
10917     std::swap(N0, N1);
10918   }
10919 
10920   if (N0 == N1)
10921     return SDValue();
10922 
10923   EVT VT = N->getValueType(0);
10924   SDLoc DL(N);
10925   SDValue N00 = N0->getOperand(0);
10926   SDValue N01 = N0->getOperand(1);
10927   return DAG.getNode(Opcode, DL, VT,
10928                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
10929                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
10930 }
10931 
10932 static SDValue PerformMULCombine(SDNode *N,
10933                                  TargetLowering::DAGCombinerInfo &DCI,
10934                                  const ARMSubtarget *Subtarget) {
10935   SelectionDAG &DAG = DCI.DAG;
10936 
10937   if (Subtarget->isThumb1Only())
10938     return SDValue();
10939 
10940   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10941     return SDValue();
10942 
10943   EVT VT = N->getValueType(0);
10944   if (VT.is64BitVector() || VT.is128BitVector())
10945     return PerformVMULCombine(N, DCI, Subtarget);
10946   if (VT != MVT::i32)
10947     return SDValue();
10948 
10949   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10950   if (!C)
10951     return SDValue();
10952 
10953   int64_t MulAmt = C->getSExtValue();
10954   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
10955 
10956   ShiftAmt = ShiftAmt & (32 - 1);
10957   SDValue V = N->getOperand(0);
10958   SDLoc DL(N);
10959 
10960   SDValue Res;
10961   MulAmt >>= ShiftAmt;
10962 
10963   if (MulAmt >= 0) {
10964     if (isPowerOf2_32(MulAmt - 1)) {
10965       // (mul x, 2^N + 1) => (add (shl x, N), x)
10966       Res = DAG.getNode(ISD::ADD, DL, VT,
10967                         V,
10968                         DAG.getNode(ISD::SHL, DL, VT,
10969                                     V,
10970                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
10971                                                     MVT::i32)));
10972     } else if (isPowerOf2_32(MulAmt + 1)) {
10973       // (mul x, 2^N - 1) => (sub (shl x, N), x)
10974       Res = DAG.getNode(ISD::SUB, DL, VT,
10975                         DAG.getNode(ISD::SHL, DL, VT,
10976                                     V,
10977                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
10978                                                     MVT::i32)),
10979                         V);
10980     } else
10981       return SDValue();
10982   } else {
10983     uint64_t MulAmtAbs = -MulAmt;
10984     if (isPowerOf2_32(MulAmtAbs + 1)) {
10985       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
10986       Res = DAG.getNode(ISD::SUB, DL, VT,
10987                         V,
10988                         DAG.getNode(ISD::SHL, DL, VT,
10989                                     V,
10990                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
10991                                                     MVT::i32)));
10992     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
10993       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
10994       Res = DAG.getNode(ISD::ADD, DL, VT,
10995                         V,
10996                         DAG.getNode(ISD::SHL, DL, VT,
10997                                     V,
10998                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
10999                                                     MVT::i32)));
11000       Res = DAG.getNode(ISD::SUB, DL, VT,
11001                         DAG.getConstant(0, DL, MVT::i32), Res);
11002     } else
11003       return SDValue();
11004   }
11005 
11006   if (ShiftAmt != 0)
11007     Res = DAG.getNode(ISD::SHL, DL, VT,
11008                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
11009 
11010   // Do not add new nodes to DAG combiner worklist.
11011   DCI.CombineTo(N, Res, false);
11012   return SDValue();
11013 }
11014 
11015 static SDValue CombineANDShift(SDNode *N,
11016                                TargetLowering::DAGCombinerInfo &DCI,
11017                                const ARMSubtarget *Subtarget) {
11018   // Allow DAGCombine to pattern-match before we touch the canonical form.
11019   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11020     return SDValue();
11021 
11022   if (N->getValueType(0) != MVT::i32)
11023     return SDValue();
11024 
11025   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11026   if (!N1C)
11027     return SDValue();
11028 
11029   uint32_t C1 = (uint32_t)N1C->getZExtValue();
11030   // Don't transform uxtb/uxth.
11031   if (C1 == 255 || C1 == 65535)
11032     return SDValue();
11033 
11034   SDNode *N0 = N->getOperand(0).getNode();
11035   if (!N0->hasOneUse())
11036     return SDValue();
11037 
11038   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
11039     return SDValue();
11040 
11041   bool LeftShift = N0->getOpcode() == ISD::SHL;
11042 
11043   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
11044   if (!N01C)
11045     return SDValue();
11046 
11047   uint32_t C2 = (uint32_t)N01C->getZExtValue();
11048   if (!C2 || C2 >= 32)
11049     return SDValue();
11050 
11051   // Clear irrelevant bits in the mask.
11052   if (LeftShift)
11053     C1 &= (-1U << C2);
11054   else
11055     C1 &= (-1U >> C2);
11056 
11057   SelectionDAG &DAG = DCI.DAG;
11058   SDLoc DL(N);
11059 
11060   // We have a pattern of the form "(and (shl x, c2) c1)" or
11061   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
11062   // transform to a pair of shifts, to save materializing c1.
11063 
11064   // First pattern: right shift, then mask off leading bits.
11065   // FIXME: Use demanded bits?
11066   if (!LeftShift && isMask_32(C1)) {
11067     uint32_t C3 = countLeadingZeros(C1);
11068     if (C2 < C3) {
11069       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
11070                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
11071       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
11072                          DAG.getConstant(C3, DL, MVT::i32));
11073     }
11074   }
11075 
11076   // First pattern, reversed: left shift, then mask off trailing bits.
11077   if (LeftShift && isMask_32(~C1)) {
11078     uint32_t C3 = countTrailingZeros(C1);
11079     if (C2 < C3) {
11080       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
11081                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
11082       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
11083                          DAG.getConstant(C3, DL, MVT::i32));
11084     }
11085   }
11086 
11087   // Second pattern: left shift, then mask off leading bits.
11088   // FIXME: Use demanded bits?
11089   if (LeftShift && isShiftedMask_32(C1)) {
11090     uint32_t Trailing = countTrailingZeros(C1);
11091     uint32_t C3 = countLeadingZeros(C1);
11092     if (Trailing == C2 && C2 + C3 < 32) {
11093       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
11094                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
11095       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
11096                         DAG.getConstant(C3, DL, MVT::i32));
11097     }
11098   }
11099 
11100   // Second pattern, reversed: right shift, then mask off trailing bits.
11101   // FIXME: Handle other patterns of known/demanded bits.
11102   if (!LeftShift && isShiftedMask_32(C1)) {
11103     uint32_t Leading = countLeadingZeros(C1);
11104     uint32_t C3 = countTrailingZeros(C1);
11105     if (Leading == C2 && C2 + C3 < 32) {
11106       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
11107                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
11108       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
11109                          DAG.getConstant(C3, DL, MVT::i32));
11110     }
11111   }
11112 
11113   // FIXME: Transform "(and (shl x, c2) c1)" ->
11114   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
11115   // c1.
11116   return SDValue();
11117 }
11118 
11119 static SDValue PerformANDCombine(SDNode *N,
11120                                  TargetLowering::DAGCombinerInfo &DCI,
11121                                  const ARMSubtarget *Subtarget) {
11122   // Attempt to use immediate-form VBIC
11123   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
11124   SDLoc dl(N);
11125   EVT VT = N->getValueType(0);
11126   SelectionDAG &DAG = DCI.DAG;
11127 
11128   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11129     return SDValue();
11130 
11131   APInt SplatBits, SplatUndef;
11132   unsigned SplatBitSize;
11133   bool HasAnyUndefs;
11134   if (BVN &&
11135       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11136     if (SplatBitSize <= 64) {
11137       EVT VbicVT;
11138       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
11139                                       SplatUndef.getZExtValue(), SplatBitSize,
11140                                       DAG, dl, VbicVT, VT.is128BitVector(),
11141                                       OtherModImm);
11142       if (Val.getNode()) {
11143         SDValue Input =
11144           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
11145         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
11146         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
11147       }
11148     }
11149   }
11150 
11151   if (!Subtarget->isThumb1Only()) {
11152     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
11153     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
11154       return Result;
11155 
11156     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11157       return Result;
11158   }
11159 
11160   if (Subtarget->isThumb1Only())
11161     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
11162       return Result;
11163 
11164   return SDValue();
11165 }
11166 
11167 // Try combining OR nodes to SMULWB, SMULWT.
11168 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
11169                                          TargetLowering::DAGCombinerInfo &DCI,
11170                                          const ARMSubtarget *Subtarget) {
11171   if (!Subtarget->hasV6Ops() ||
11172       (Subtarget->isThumb() &&
11173        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
11174     return SDValue();
11175 
11176   SDValue SRL = OR->getOperand(0);
11177   SDValue SHL = OR->getOperand(1);
11178 
11179   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
11180     SRL = OR->getOperand(1);
11181     SHL = OR->getOperand(0);
11182   }
11183   if (!isSRL16(SRL) || !isSHL16(SHL))
11184     return SDValue();
11185 
11186   // The first operands to the shifts need to be the two results from the
11187   // same smul_lohi node.
11188   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
11189        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
11190     return SDValue();
11191 
11192   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
11193   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
11194       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
11195     return SDValue();
11196 
11197   // Now we have:
11198   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
11199   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
11200   // For SMUWB the 16-bit value will signed extended somehow.
11201   // For SMULWT only the SRA is required.
11202   // Check both sides of SMUL_LOHI
11203   SDValue OpS16 = SMULLOHI->getOperand(0);
11204   SDValue OpS32 = SMULLOHI->getOperand(1);
11205 
11206   SelectionDAG &DAG = DCI.DAG;
11207   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
11208     OpS16 = OpS32;
11209     OpS32 = SMULLOHI->getOperand(0);
11210   }
11211 
11212   SDLoc dl(OR);
11213   unsigned Opcode = 0;
11214   if (isS16(OpS16, DAG))
11215     Opcode = ARMISD::SMULWB;
11216   else if (isSRA16(OpS16)) {
11217     Opcode = ARMISD::SMULWT;
11218     OpS16 = OpS16->getOperand(0);
11219   }
11220   else
11221     return SDValue();
11222 
11223   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
11224   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
11225   return SDValue(OR, 0);
11226 }
11227 
11228 static SDValue PerformORCombineToBFI(SDNode *N,
11229                                      TargetLowering::DAGCombinerInfo &DCI,
11230                                      const ARMSubtarget *Subtarget) {
11231   // BFI is only available on V6T2+
11232   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
11233     return SDValue();
11234 
11235   EVT VT = N->getValueType(0);
11236   SDValue N0 = N->getOperand(0);
11237   SDValue N1 = N->getOperand(1);
11238   SelectionDAG &DAG = DCI.DAG;
11239   SDLoc DL(N);
11240   // 1) or (and A, mask), val => ARMbfi A, val, mask
11241   //      iff (val & mask) == val
11242   //
11243   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11244   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
11245   //          && mask == ~mask2
11246   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
11247   //          && ~mask == mask2
11248   //  (i.e., copy a bitfield value into another bitfield of the same width)
11249 
11250   if (VT != MVT::i32)
11251     return SDValue();
11252 
11253   SDValue N00 = N0.getOperand(0);
11254 
11255   // The value and the mask need to be constants so we can verify this is
11256   // actually a bitfield set. If the mask is 0xffff, we can do better
11257   // via a movt instruction, so don't use BFI in that case.
11258   SDValue MaskOp = N0.getOperand(1);
11259   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
11260   if (!MaskC)
11261     return SDValue();
11262   unsigned Mask = MaskC->getZExtValue();
11263   if (Mask == 0xffff)
11264     return SDValue();
11265   SDValue Res;
11266   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
11267   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11268   if (N1C) {
11269     unsigned Val = N1C->getZExtValue();
11270     if ((Val & ~Mask) != Val)
11271       return SDValue();
11272 
11273     if (ARM::isBitFieldInvertedMask(Mask)) {
11274       Val >>= countTrailingZeros(~Mask);
11275 
11276       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
11277                         DAG.getConstant(Val, DL, MVT::i32),
11278                         DAG.getConstant(Mask, DL, MVT::i32));
11279 
11280       DCI.CombineTo(N, Res, false);
11281       // Return value from the original node to inform the combiner than N is
11282       // now dead.
11283       return SDValue(N, 0);
11284     }
11285   } else if (N1.getOpcode() == ISD::AND) {
11286     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
11287     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11288     if (!N11C)
11289       return SDValue();
11290     unsigned Mask2 = N11C->getZExtValue();
11291 
11292     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
11293     // as is to match.
11294     if (ARM::isBitFieldInvertedMask(Mask) &&
11295         (Mask == ~Mask2)) {
11296       // The pack halfword instruction works better for masks that fit it,
11297       // so use that when it's available.
11298       if (Subtarget->hasDSP() &&
11299           (Mask == 0xffff || Mask == 0xffff0000))
11300         return SDValue();
11301       // 2a
11302       unsigned amt = countTrailingZeros(Mask2);
11303       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
11304                         DAG.getConstant(amt, DL, MVT::i32));
11305       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
11306                         DAG.getConstant(Mask, DL, MVT::i32));
11307       DCI.CombineTo(N, Res, false);
11308       // Return value from the original node to inform the combiner than N is
11309       // now dead.
11310       return SDValue(N, 0);
11311     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
11312                (~Mask == Mask2)) {
11313       // The pack halfword instruction works better for masks that fit it,
11314       // so use that when it's available.
11315       if (Subtarget->hasDSP() &&
11316           (Mask2 == 0xffff || Mask2 == 0xffff0000))
11317         return SDValue();
11318       // 2b
11319       unsigned lsb = countTrailingZeros(Mask);
11320       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
11321                         DAG.getConstant(lsb, DL, MVT::i32));
11322       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
11323                         DAG.getConstant(Mask2, DL, MVT::i32));
11324       DCI.CombineTo(N, Res, false);
11325       // Return value from the original node to inform the combiner than N is
11326       // now dead.
11327       return SDValue(N, 0);
11328     }
11329   }
11330 
11331   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
11332       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
11333       ARM::isBitFieldInvertedMask(~Mask)) {
11334     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
11335     // where lsb(mask) == #shamt and masked bits of B are known zero.
11336     SDValue ShAmt = N00.getOperand(1);
11337     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
11338     unsigned LSB = countTrailingZeros(Mask);
11339     if (ShAmtC != LSB)
11340       return SDValue();
11341 
11342     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
11343                       DAG.getConstant(~Mask, DL, MVT::i32));
11344 
11345     DCI.CombineTo(N, Res, false);
11346     // Return value from the original node to inform the combiner than N is
11347     // now dead.
11348     return SDValue(N, 0);
11349   }
11350 
11351   return SDValue();
11352 }
11353 
11354 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
11355 static SDValue PerformORCombine(SDNode *N,
11356                                 TargetLowering::DAGCombinerInfo &DCI,
11357                                 const ARMSubtarget *Subtarget) {
11358   // Attempt to use immediate-form VORR
11359   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
11360   SDLoc dl(N);
11361   EVT VT = N->getValueType(0);
11362   SelectionDAG &DAG = DCI.DAG;
11363 
11364   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11365     return SDValue();
11366 
11367   APInt SplatBits, SplatUndef;
11368   unsigned SplatBitSize;
11369   bool HasAnyUndefs;
11370   if (BVN && Subtarget->hasNEON() &&
11371       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
11372     if (SplatBitSize <= 64) {
11373       EVT VorrVT;
11374       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
11375                                       SplatUndef.getZExtValue(), SplatBitSize,
11376                                       DAG, dl, VorrVT, VT.is128BitVector(),
11377                                       OtherModImm);
11378       if (Val.getNode()) {
11379         SDValue Input =
11380           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
11381         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
11382         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
11383       }
11384     }
11385   }
11386 
11387   if (!Subtarget->isThumb1Only()) {
11388     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11389     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11390       return Result;
11391     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
11392       return Result;
11393   }
11394 
11395   SDValue N0 = N->getOperand(0);
11396   SDValue N1 = N->getOperand(1);
11397 
11398   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
11399   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
11400       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11401 
11402     // The code below optimizes (or (and X, Y), Z).
11403     // The AND operand needs to have a single user to make these optimizations
11404     // profitable.
11405     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
11406       return SDValue();
11407 
11408     APInt SplatUndef;
11409     unsigned SplatBitSize;
11410     bool HasAnyUndefs;
11411 
11412     APInt SplatBits0, SplatBits1;
11413     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
11414     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
11415     // Ensure that the second operand of both ands are constants
11416     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
11417                                       HasAnyUndefs) && !HasAnyUndefs) {
11418         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
11419                                           HasAnyUndefs) && !HasAnyUndefs) {
11420             // Ensure that the bit width of the constants are the same and that
11421             // the splat arguments are logical inverses as per the pattern we
11422             // are trying to simplify.
11423             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
11424                 SplatBits0 == ~SplatBits1) {
11425                 // Canonicalize the vector type to make instruction selection
11426                 // simpler.
11427                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
11428                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
11429                                              N0->getOperand(1),
11430                                              N0->getOperand(0),
11431                                              N1->getOperand(0));
11432                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
11433             }
11434         }
11435     }
11436   }
11437 
11438   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
11439   // reasonable.
11440   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
11441     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
11442       return Res;
11443   }
11444 
11445   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11446     return Result;
11447 
11448   return SDValue();
11449 }
11450 
11451 static SDValue PerformXORCombine(SDNode *N,
11452                                  TargetLowering::DAGCombinerInfo &DCI,
11453                                  const ARMSubtarget *Subtarget) {
11454   EVT VT = N->getValueType(0);
11455   SelectionDAG &DAG = DCI.DAG;
11456 
11457   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11458     return SDValue();
11459 
11460   if (!Subtarget->isThumb1Only()) {
11461     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11462     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
11463       return Result;
11464 
11465     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11466       return Result;
11467   }
11468 
11469   return SDValue();
11470 }
11471 
11472 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
11473 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
11474 // their position in "to" (Rd).
11475 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
11476   assert(N->getOpcode() == ARMISD::BFI);
11477 
11478   SDValue From = N->getOperand(1);
11479   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
11480   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
11481 
11482   // If the Base came from a SHR #C, we can deduce that it is really testing bit
11483   // #C in the base of the SHR.
11484   if (From->getOpcode() == ISD::SRL &&
11485       isa<ConstantSDNode>(From->getOperand(1))) {
11486     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
11487     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
11488     FromMask <<= Shift.getLimitedValue(31);
11489     From = From->getOperand(0);
11490   }
11491 
11492   return From;
11493 }
11494 
11495 // If A and B contain one contiguous set of bits, does A | B == A . B?
11496 //
11497 // Neither A nor B must be zero.
11498 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
11499   unsigned LastActiveBitInA =  A.countTrailingZeros();
11500   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
11501   return LastActiveBitInA - 1 == FirstActiveBitInB;
11502 }
11503 
11504 static SDValue FindBFIToCombineWith(SDNode *N) {
11505   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
11506   // if one exists.
11507   APInt ToMask, FromMask;
11508   SDValue From = ParseBFI(N, ToMask, FromMask);
11509   SDValue To = N->getOperand(0);
11510 
11511   // Now check for a compatible BFI to merge with. We can pass through BFIs that
11512   // aren't compatible, but not if they set the same bit in their destination as
11513   // we do (or that of any BFI we're going to combine with).
11514   SDValue V = To;
11515   APInt CombinedToMask = ToMask;
11516   while (V.getOpcode() == ARMISD::BFI) {
11517     APInt NewToMask, NewFromMask;
11518     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
11519     if (NewFrom != From) {
11520       // This BFI has a different base. Keep going.
11521       CombinedToMask |= NewToMask;
11522       V = V.getOperand(0);
11523       continue;
11524     }
11525 
11526     // Do the written bits conflict with any we've seen so far?
11527     if ((NewToMask & CombinedToMask).getBoolValue())
11528       // Conflicting bits - bail out because going further is unsafe.
11529       return SDValue();
11530 
11531     // Are the new bits contiguous when combined with the old bits?
11532     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
11533         BitsProperlyConcatenate(FromMask, NewFromMask))
11534       return V;
11535     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
11536         BitsProperlyConcatenate(NewFromMask, FromMask))
11537       return V;
11538 
11539     // We've seen a write to some bits, so track it.
11540     CombinedToMask |= NewToMask;
11541     // Keep going...
11542     V = V.getOperand(0);
11543   }
11544 
11545   return SDValue();
11546 }
11547 
11548 static SDValue PerformBFICombine(SDNode *N,
11549                                  TargetLowering::DAGCombinerInfo &DCI) {
11550   SDValue N1 = N->getOperand(1);
11551   if (N1.getOpcode() == ISD::AND) {
11552     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
11553     // the bits being cleared by the AND are not demanded by the BFI.
11554     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
11555     if (!N11C)
11556       return SDValue();
11557     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
11558     unsigned LSB = countTrailingZeros(~InvMask);
11559     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
11560     assert(Width <
11561                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
11562            "undefined behavior");
11563     unsigned Mask = (1u << Width) - 1;
11564     unsigned Mask2 = N11C->getZExtValue();
11565     if ((Mask & (~Mask2)) == 0)
11566       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
11567                              N->getOperand(0), N1.getOperand(0),
11568                              N->getOperand(2));
11569   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
11570     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
11571     // Keep track of any consecutive bits set that all come from the same base
11572     // value. We can combine these together into a single BFI.
11573     SDValue CombineBFI = FindBFIToCombineWith(N);
11574     if (CombineBFI == SDValue())
11575       return SDValue();
11576 
11577     // We've found a BFI.
11578     APInt ToMask1, FromMask1;
11579     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
11580 
11581     APInt ToMask2, FromMask2;
11582     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
11583     assert(From1 == From2);
11584     (void)From2;
11585 
11586     // First, unlink CombineBFI.
11587     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
11588     // Then create a new BFI, combining the two together.
11589     APInt NewFromMask = FromMask1 | FromMask2;
11590     APInt NewToMask = ToMask1 | ToMask2;
11591 
11592     EVT VT = N->getValueType(0);
11593     SDLoc dl(N);
11594 
11595     if (NewFromMask[0] == 0)
11596       From1 = DCI.DAG.getNode(
11597         ISD::SRL, dl, VT, From1,
11598         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
11599     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
11600                            DCI.DAG.getConstant(~NewToMask, dl, VT));
11601   }
11602   return SDValue();
11603 }
11604 
11605 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
11606 /// ARMISD::VMOVRRD.
11607 static SDValue PerformVMOVRRDCombine(SDNode *N,
11608                                      TargetLowering::DAGCombinerInfo &DCI,
11609                                      const ARMSubtarget *Subtarget) {
11610   // vmovrrd(vmovdrr x, y) -> x,y
11611   SDValue InDouble = N->getOperand(0);
11612   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
11613     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
11614 
11615   // vmovrrd(load f64) -> (load i32), (load i32)
11616   SDNode *InNode = InDouble.getNode();
11617   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
11618       InNode->getValueType(0) == MVT::f64 &&
11619       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
11620       !cast<LoadSDNode>(InNode)->isVolatile()) {
11621     // TODO: Should this be done for non-FrameIndex operands?
11622     LoadSDNode *LD = cast<LoadSDNode>(InNode);
11623 
11624     SelectionDAG &DAG = DCI.DAG;
11625     SDLoc DL(LD);
11626     SDValue BasePtr = LD->getBasePtr();
11627     SDValue NewLD1 =
11628         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
11629                     LD->getAlignment(), LD->getMemOperand()->getFlags());
11630 
11631     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
11632                                     DAG.getConstant(4, DL, MVT::i32));
11633     SDValue NewLD2 = DAG.getLoad(
11634         MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, LD->getPointerInfo(),
11635         std::min(4U, LD->getAlignment() / 2), LD->getMemOperand()->getFlags());
11636 
11637     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
11638     if (DCI.DAG.getDataLayout().isBigEndian())
11639       std::swap (NewLD1, NewLD2);
11640     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
11641     return Result;
11642   }
11643 
11644   return SDValue();
11645 }
11646 
11647 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
11648 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
11649 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
11650   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
11651   SDValue Op0 = N->getOperand(0);
11652   SDValue Op1 = N->getOperand(1);
11653   if (Op0.getOpcode() == ISD::BITCAST)
11654     Op0 = Op0.getOperand(0);
11655   if (Op1.getOpcode() == ISD::BITCAST)
11656     Op1 = Op1.getOperand(0);
11657   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
11658       Op0.getNode() == Op1.getNode() &&
11659       Op0.getResNo() == 0 && Op1.getResNo() == 1)
11660     return DAG.getNode(ISD::BITCAST, SDLoc(N),
11661                        N->getValueType(0), Op0.getOperand(0));
11662   return SDValue();
11663 }
11664 
11665 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
11666 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
11667 /// i64 vector to have f64 elements, since the value can then be loaded
11668 /// directly into a VFP register.
11669 static bool hasNormalLoadOperand(SDNode *N) {
11670   unsigned NumElts = N->getValueType(0).getVectorNumElements();
11671   for (unsigned i = 0; i < NumElts; ++i) {
11672     SDNode *Elt = N->getOperand(i).getNode();
11673     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
11674       return true;
11675   }
11676   return false;
11677 }
11678 
11679 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
11680 /// ISD::BUILD_VECTOR.
11681 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
11682                                           TargetLowering::DAGCombinerInfo &DCI,
11683                                           const ARMSubtarget *Subtarget) {
11684   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
11685   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
11686   // into a pair of GPRs, which is fine when the value is used as a scalar,
11687   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
11688   SelectionDAG &DAG = DCI.DAG;
11689   if (N->getNumOperands() == 2)
11690     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
11691       return RV;
11692 
11693   // Load i64 elements as f64 values so that type legalization does not split
11694   // them up into i32 values.
11695   EVT VT = N->getValueType(0);
11696   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
11697     return SDValue();
11698   SDLoc dl(N);
11699   SmallVector<SDValue, 8> Ops;
11700   unsigned NumElts = VT.getVectorNumElements();
11701   for (unsigned i = 0; i < NumElts; ++i) {
11702     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
11703     Ops.push_back(V);
11704     // Make the DAGCombiner fold the bitcast.
11705     DCI.AddToWorklist(V.getNode());
11706   }
11707   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
11708   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
11709   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
11710 }
11711 
11712 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
11713 static SDValue
11714 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
11715   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
11716   // At that time, we may have inserted bitcasts from integer to float.
11717   // If these bitcasts have survived DAGCombine, change the lowering of this
11718   // BUILD_VECTOR in something more vector friendly, i.e., that does not
11719   // force to use floating point types.
11720 
11721   // Make sure we can change the type of the vector.
11722   // This is possible iff:
11723   // 1. The vector is only used in a bitcast to a integer type. I.e.,
11724   //    1.1. Vector is used only once.
11725   //    1.2. Use is a bit convert to an integer type.
11726   // 2. The size of its operands are 32-bits (64-bits are not legal).
11727   EVT VT = N->getValueType(0);
11728   EVT EltVT = VT.getVectorElementType();
11729 
11730   // Check 1.1. and 2.
11731   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
11732     return SDValue();
11733 
11734   // By construction, the input type must be float.
11735   assert(EltVT == MVT::f32 && "Unexpected type!");
11736 
11737   // Check 1.2.
11738   SDNode *Use = *N->use_begin();
11739   if (Use->getOpcode() != ISD::BITCAST ||
11740       Use->getValueType(0).isFloatingPoint())
11741     return SDValue();
11742 
11743   // Check profitability.
11744   // Model is, if more than half of the relevant operands are bitcast from
11745   // i32, turn the build_vector into a sequence of insert_vector_elt.
11746   // Relevant operands are everything that is not statically
11747   // (i.e., at compile time) bitcasted.
11748   unsigned NumOfBitCastedElts = 0;
11749   unsigned NumElts = VT.getVectorNumElements();
11750   unsigned NumOfRelevantElts = NumElts;
11751   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
11752     SDValue Elt = N->getOperand(Idx);
11753     if (Elt->getOpcode() == ISD::BITCAST) {
11754       // Assume only bit cast to i32 will go away.
11755       if (Elt->getOperand(0).getValueType() == MVT::i32)
11756         ++NumOfBitCastedElts;
11757     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
11758       // Constants are statically casted, thus do not count them as
11759       // relevant operands.
11760       --NumOfRelevantElts;
11761   }
11762 
11763   // Check if more than half of the elements require a non-free bitcast.
11764   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
11765     return SDValue();
11766 
11767   SelectionDAG &DAG = DCI.DAG;
11768   // Create the new vector type.
11769   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
11770   // Check if the type is legal.
11771   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11772   if (!TLI.isTypeLegal(VecVT))
11773     return SDValue();
11774 
11775   // Combine:
11776   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
11777   // => BITCAST INSERT_VECTOR_ELT
11778   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
11779   //                      (BITCAST EN), N.
11780   SDValue Vec = DAG.getUNDEF(VecVT);
11781   SDLoc dl(N);
11782   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
11783     SDValue V = N->getOperand(Idx);
11784     if (V.isUndef())
11785       continue;
11786     if (V.getOpcode() == ISD::BITCAST &&
11787         V->getOperand(0).getValueType() == MVT::i32)
11788       // Fold obvious case.
11789       V = V.getOperand(0);
11790     else {
11791       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
11792       // Make the DAGCombiner fold the bitcasts.
11793       DCI.AddToWorklist(V.getNode());
11794     }
11795     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
11796     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
11797   }
11798   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
11799   // Make the DAGCombiner fold the bitcasts.
11800   DCI.AddToWorklist(Vec.getNode());
11801   return Vec;
11802 }
11803 
11804 /// PerformInsertEltCombine - Target-specific dag combine xforms for
11805 /// ISD::INSERT_VECTOR_ELT.
11806 static SDValue PerformInsertEltCombine(SDNode *N,
11807                                        TargetLowering::DAGCombinerInfo &DCI) {
11808   // Bitcast an i64 load inserted into a vector to f64.
11809   // Otherwise, the i64 value will be legalized to a pair of i32 values.
11810   EVT VT = N->getValueType(0);
11811   SDNode *Elt = N->getOperand(1).getNode();
11812   if (VT.getVectorElementType() != MVT::i64 ||
11813       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
11814     return SDValue();
11815 
11816   SelectionDAG &DAG = DCI.DAG;
11817   SDLoc dl(N);
11818   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
11819                                  VT.getVectorNumElements());
11820   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
11821   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
11822   // Make the DAGCombiner fold the bitcasts.
11823   DCI.AddToWorklist(Vec.getNode());
11824   DCI.AddToWorklist(V.getNode());
11825   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
11826                                Vec, V, N->getOperand(2));
11827   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
11828 }
11829 
11830 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
11831 /// ISD::VECTOR_SHUFFLE.
11832 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
11833   // The LLVM shufflevector instruction does not require the shuffle mask
11834   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
11835   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
11836   // operands do not match the mask length, they are extended by concatenating
11837   // them with undef vectors.  That is probably the right thing for other
11838   // targets, but for NEON it is better to concatenate two double-register
11839   // size vector operands into a single quad-register size vector.  Do that
11840   // transformation here:
11841   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
11842   //   shuffle(concat(v1, v2), undef)
11843   SDValue Op0 = N->getOperand(0);
11844   SDValue Op1 = N->getOperand(1);
11845   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
11846       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
11847       Op0.getNumOperands() != 2 ||
11848       Op1.getNumOperands() != 2)
11849     return SDValue();
11850   SDValue Concat0Op1 = Op0.getOperand(1);
11851   SDValue Concat1Op1 = Op1.getOperand(1);
11852   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
11853     return SDValue();
11854   // Skip the transformation if any of the types are illegal.
11855   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11856   EVT VT = N->getValueType(0);
11857   if (!TLI.isTypeLegal(VT) ||
11858       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
11859       !TLI.isTypeLegal(Concat1Op1.getValueType()))
11860     return SDValue();
11861 
11862   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
11863                                   Op0.getOperand(0), Op1.getOperand(0));
11864   // Translate the shuffle mask.
11865   SmallVector<int, 16> NewMask;
11866   unsigned NumElts = VT.getVectorNumElements();
11867   unsigned HalfElts = NumElts/2;
11868   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
11869   for (unsigned n = 0; n < NumElts; ++n) {
11870     int MaskElt = SVN->getMaskElt(n);
11871     int NewElt = -1;
11872     if (MaskElt < (int)HalfElts)
11873       NewElt = MaskElt;
11874     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
11875       NewElt = HalfElts + MaskElt - NumElts;
11876     NewMask.push_back(NewElt);
11877   }
11878   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
11879                               DAG.getUNDEF(VT), NewMask);
11880 }
11881 
11882 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
11883 /// NEON load/store intrinsics, and generic vector load/stores, to merge
11884 /// base address updates.
11885 /// For generic load/stores, the memory type is assumed to be a vector.
11886 /// The caller is assumed to have checked legality.
11887 static SDValue CombineBaseUpdate(SDNode *N,
11888                                  TargetLowering::DAGCombinerInfo &DCI) {
11889   SelectionDAG &DAG = DCI.DAG;
11890   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
11891                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
11892   const bool isStore = N->getOpcode() == ISD::STORE;
11893   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
11894   SDValue Addr = N->getOperand(AddrOpIdx);
11895   MemSDNode *MemN = cast<MemSDNode>(N);
11896   SDLoc dl(N);
11897 
11898   // Search for a use of the address operand that is an increment.
11899   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
11900          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
11901     SDNode *User = *UI;
11902     if (User->getOpcode() != ISD::ADD ||
11903         UI.getUse().getResNo() != Addr.getResNo())
11904       continue;
11905 
11906     // Check that the add is independent of the load/store.  Otherwise, folding
11907     // it would create a cycle. We can avoid searching through Addr as it's a
11908     // predecessor to both.
11909     SmallPtrSet<const SDNode *, 32> Visited;
11910     SmallVector<const SDNode *, 16> Worklist;
11911     Visited.insert(Addr.getNode());
11912     Worklist.push_back(N);
11913     Worklist.push_back(User);
11914     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
11915         SDNode::hasPredecessorHelper(User, Visited, Worklist))
11916       continue;
11917 
11918     // Find the new opcode for the updating load/store.
11919     bool isLoadOp = true;
11920     bool isLaneOp = false;
11921     unsigned NewOpc = 0;
11922     unsigned NumVecs = 0;
11923     if (isIntrinsic) {
11924       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
11925       switch (IntNo) {
11926       default: llvm_unreachable("unexpected intrinsic for Neon base update");
11927       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
11928         NumVecs = 1; break;
11929       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
11930         NumVecs = 2; break;
11931       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
11932         NumVecs = 3; break;
11933       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
11934         NumVecs = 4; break;
11935       case Intrinsic::arm_neon_vld2dup:
11936       case Intrinsic::arm_neon_vld3dup:
11937       case Intrinsic::arm_neon_vld4dup:
11938         // TODO: Support updating VLDxDUP nodes. For now, we just skip
11939         // combining base updates for such intrinsics.
11940         continue;
11941       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
11942         NumVecs = 2; isLaneOp = true; break;
11943       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
11944         NumVecs = 3; isLaneOp = true; break;
11945       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
11946         NumVecs = 4; isLaneOp = true; break;
11947       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
11948         NumVecs = 1; isLoadOp = false; break;
11949       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
11950         NumVecs = 2; isLoadOp = false; break;
11951       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
11952         NumVecs = 3; isLoadOp = false; break;
11953       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
11954         NumVecs = 4; isLoadOp = false; break;
11955       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
11956         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
11957       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
11958         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
11959       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
11960         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
11961       }
11962     } else {
11963       isLaneOp = true;
11964       switch (N->getOpcode()) {
11965       default: llvm_unreachable("unexpected opcode for Neon base update");
11966       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
11967       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
11968       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
11969       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
11970       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
11971         NumVecs = 1; isLaneOp = false; break;
11972       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
11973         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
11974       }
11975     }
11976 
11977     // Find the size of memory referenced by the load/store.
11978     EVT VecTy;
11979     if (isLoadOp) {
11980       VecTy = N->getValueType(0);
11981     } else if (isIntrinsic) {
11982       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
11983     } else {
11984       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
11985       VecTy = N->getOperand(1).getValueType();
11986     }
11987 
11988     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
11989     if (isLaneOp)
11990       NumBytes /= VecTy.getVectorNumElements();
11991 
11992     // If the increment is a constant, it must match the memory ref size.
11993     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
11994     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
11995     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
11996       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
11997       // separate instructions that make it harder to use a non-constant update.
11998       continue;
11999     }
12000 
12001     // OK, we found an ADD we can fold into the base update.
12002     // Now, create a _UPD node, taking care of not breaking alignment.
12003 
12004     EVT AlignedVecTy = VecTy;
12005     unsigned Alignment = MemN->getAlignment();
12006 
12007     // If this is a less-than-standard-aligned load/store, change the type to
12008     // match the standard alignment.
12009     // The alignment is overlooked when selecting _UPD variants; and it's
12010     // easier to introduce bitcasts here than fix that.
12011     // There are 3 ways to get to this base-update combine:
12012     // - intrinsics: they are assumed to be properly aligned (to the standard
12013     //   alignment of the memory type), so we don't need to do anything.
12014     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
12015     //   intrinsics, so, likewise, there's nothing to do.
12016     // - generic load/store instructions: the alignment is specified as an
12017     //   explicit operand, rather than implicitly as the standard alignment
12018     //   of the memory type (like the intrisics).  We need to change the
12019     //   memory type to match the explicit alignment.  That way, we don't
12020     //   generate non-standard-aligned ARMISD::VLDx nodes.
12021     if (isa<LSBaseSDNode>(N)) {
12022       if (Alignment == 0)
12023         Alignment = 1;
12024       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
12025         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
12026         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
12027         assert(!isLaneOp && "Unexpected generic load/store lane.");
12028         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
12029         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
12030       }
12031       // Don't set an explicit alignment on regular load/stores that we want
12032       // to transform to VLD/VST 1_UPD nodes.
12033       // This matches the behavior of regular load/stores, which only get an
12034       // explicit alignment if the MMO alignment is larger than the standard
12035       // alignment of the memory type.
12036       // Intrinsics, however, always get an explicit alignment, set to the
12037       // alignment of the MMO.
12038       Alignment = 1;
12039     }
12040 
12041     // Create the new updating load/store node.
12042     // First, create an SDVTList for the new updating node's results.
12043     EVT Tys[6];
12044     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
12045     unsigned n;
12046     for (n = 0; n < NumResultVecs; ++n)
12047       Tys[n] = AlignedVecTy;
12048     Tys[n++] = MVT::i32;
12049     Tys[n] = MVT::Other;
12050     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
12051 
12052     // Then, gather the new node's operands.
12053     SmallVector<SDValue, 8> Ops;
12054     Ops.push_back(N->getOperand(0)); // incoming chain
12055     Ops.push_back(N->getOperand(AddrOpIdx));
12056     Ops.push_back(Inc);
12057 
12058     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
12059       // Try to match the intrinsic's signature
12060       Ops.push_back(StN->getValue());
12061     } else {
12062       // Loads (and of course intrinsics) match the intrinsics' signature,
12063       // so just add all but the alignment operand.
12064       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
12065         Ops.push_back(N->getOperand(i));
12066     }
12067 
12068     // For all node types, the alignment operand is always the last one.
12069     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
12070 
12071     // If this is a non-standard-aligned STORE, the penultimate operand is the
12072     // stored value.  Bitcast it to the aligned type.
12073     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
12074       SDValue &StVal = Ops[Ops.size()-2];
12075       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
12076     }
12077 
12078     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
12079     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
12080                                            MemN->getMemOperand());
12081 
12082     // Update the uses.
12083     SmallVector<SDValue, 5> NewResults;
12084     for (unsigned i = 0; i < NumResultVecs; ++i)
12085       NewResults.push_back(SDValue(UpdN.getNode(), i));
12086 
12087     // If this is an non-standard-aligned LOAD, the first result is the loaded
12088     // value.  Bitcast it to the expected result type.
12089     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
12090       SDValue &LdVal = NewResults[0];
12091       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
12092     }
12093 
12094     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
12095     DCI.CombineTo(N, NewResults);
12096     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
12097 
12098     break;
12099   }
12100   return SDValue();
12101 }
12102 
12103 static SDValue PerformVLDCombine(SDNode *N,
12104                                  TargetLowering::DAGCombinerInfo &DCI) {
12105   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12106     return SDValue();
12107 
12108   return CombineBaseUpdate(N, DCI);
12109 }
12110 
12111 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
12112 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
12113 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
12114 /// return true.
12115 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12116   SelectionDAG &DAG = DCI.DAG;
12117   EVT VT = N->getValueType(0);
12118   // vldN-dup instructions only support 64-bit vectors for N > 1.
12119   if (!VT.is64BitVector())
12120     return false;
12121 
12122   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
12123   SDNode *VLD = N->getOperand(0).getNode();
12124   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
12125     return false;
12126   unsigned NumVecs = 0;
12127   unsigned NewOpc = 0;
12128   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
12129   if (IntNo == Intrinsic::arm_neon_vld2lane) {
12130     NumVecs = 2;
12131     NewOpc = ARMISD::VLD2DUP;
12132   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
12133     NumVecs = 3;
12134     NewOpc = ARMISD::VLD3DUP;
12135   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
12136     NumVecs = 4;
12137     NewOpc = ARMISD::VLD4DUP;
12138   } else {
12139     return false;
12140   }
12141 
12142   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
12143   // numbers match the load.
12144   unsigned VLDLaneNo =
12145     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
12146   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
12147        UI != UE; ++UI) {
12148     // Ignore uses of the chain result.
12149     if (UI.getUse().getResNo() == NumVecs)
12150       continue;
12151     SDNode *User = *UI;
12152     if (User->getOpcode() != ARMISD::VDUPLANE ||
12153         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
12154       return false;
12155   }
12156 
12157   // Create the vldN-dup node.
12158   EVT Tys[5];
12159   unsigned n;
12160   for (n = 0; n < NumVecs; ++n)
12161     Tys[n] = VT;
12162   Tys[n] = MVT::Other;
12163   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
12164   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
12165   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
12166   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
12167                                            Ops, VLDMemInt->getMemoryVT(),
12168                                            VLDMemInt->getMemOperand());
12169 
12170   // Update the uses.
12171   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
12172        UI != UE; ++UI) {
12173     unsigned ResNo = UI.getUse().getResNo();
12174     // Ignore uses of the chain result.
12175     if (ResNo == NumVecs)
12176       continue;
12177     SDNode *User = *UI;
12178     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
12179   }
12180 
12181   // Now the vldN-lane intrinsic is dead except for its chain result.
12182   // Update uses of the chain.
12183   std::vector<SDValue> VLDDupResults;
12184   for (unsigned n = 0; n < NumVecs; ++n)
12185     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
12186   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
12187   DCI.CombineTo(VLD, VLDDupResults);
12188 
12189   return true;
12190 }
12191 
12192 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
12193 /// ARMISD::VDUPLANE.
12194 static SDValue PerformVDUPLANECombine(SDNode *N,
12195                                       TargetLowering::DAGCombinerInfo &DCI) {
12196   SDValue Op = N->getOperand(0);
12197 
12198   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
12199   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
12200   if (CombineVLDDUP(N, DCI))
12201     return SDValue(N, 0);
12202 
12203   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
12204   // redundant.  Ignore bit_converts for now; element sizes are checked below.
12205   while (Op.getOpcode() == ISD::BITCAST)
12206     Op = Op.getOperand(0);
12207   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
12208     return SDValue();
12209 
12210   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
12211   unsigned EltSize = Op.getScalarValueSizeInBits();
12212   // The canonical VMOV for a zero vector uses a 32-bit element size.
12213   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12214   unsigned EltBits;
12215   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
12216     EltSize = 8;
12217   EVT VT = N->getValueType(0);
12218   if (EltSize > VT.getScalarSizeInBits())
12219     return SDValue();
12220 
12221   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
12222 }
12223 
12224 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
12225 static SDValue PerformVDUPCombine(SDNode *N,
12226                                   TargetLowering::DAGCombinerInfo &DCI,
12227                                   const ARMSubtarget *Subtarget) {
12228   SelectionDAG &DAG = DCI.DAG;
12229   SDValue Op = N->getOperand(0);
12230 
12231   if (!Subtarget->hasNEON())
12232     return SDValue();
12233 
12234   // Match VDUP(LOAD) -> VLD1DUP.
12235   // We match this pattern here rather than waiting for isel because the
12236   // transform is only legal for unindexed loads.
12237   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
12238   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
12239       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
12240     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
12241                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
12242     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
12243     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
12244                                              Ops, LD->getMemoryVT(),
12245                                              LD->getMemOperand());
12246     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
12247     return VLDDup;
12248   }
12249 
12250   return SDValue();
12251 }
12252 
12253 static SDValue PerformLOADCombine(SDNode *N,
12254                                   TargetLowering::DAGCombinerInfo &DCI) {
12255   EVT VT = N->getValueType(0);
12256 
12257   // If this is a legal vector load, try to combine it into a VLD1_UPD.
12258   if (ISD::isNormalLoad(N) && VT.isVector() &&
12259       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12260     return CombineBaseUpdate(N, DCI);
12261 
12262   return SDValue();
12263 }
12264 
12265 /// PerformSTORECombine - Target-specific dag combine xforms for
12266 /// ISD::STORE.
12267 static SDValue PerformSTORECombine(SDNode *N,
12268                                    TargetLowering::DAGCombinerInfo &DCI) {
12269   StoreSDNode *St = cast<StoreSDNode>(N);
12270   if (St->isVolatile())
12271     return SDValue();
12272 
12273   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
12274   // pack all of the elements in one place.  Next, store to memory in fewer
12275   // chunks.
12276   SDValue StVal = St->getValue();
12277   EVT VT = StVal.getValueType();
12278   if (St->isTruncatingStore() && VT.isVector()) {
12279     SelectionDAG &DAG = DCI.DAG;
12280     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12281     EVT StVT = St->getMemoryVT();
12282     unsigned NumElems = VT.getVectorNumElements();
12283     assert(StVT != VT && "Cannot truncate to the same type");
12284     unsigned FromEltSz = VT.getScalarSizeInBits();
12285     unsigned ToEltSz = StVT.getScalarSizeInBits();
12286 
12287     // From, To sizes and ElemCount must be pow of two
12288     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
12289 
12290     // We are going to use the original vector elt for storing.
12291     // Accumulated smaller vector elements must be a multiple of the store size.
12292     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
12293 
12294     unsigned SizeRatio  = FromEltSz / ToEltSz;
12295     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
12296 
12297     // Create a type on which we perform the shuffle.
12298     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
12299                                      NumElems*SizeRatio);
12300     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
12301 
12302     SDLoc DL(St);
12303     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
12304     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
12305     for (unsigned i = 0; i < NumElems; ++i)
12306       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
12307                           ? (i + 1) * SizeRatio - 1
12308                           : i * SizeRatio;
12309 
12310     // Can't shuffle using an illegal type.
12311     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
12312 
12313     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
12314                                 DAG.getUNDEF(WideVec.getValueType()),
12315                                 ShuffleVec);
12316     // At this point all of the data is stored at the bottom of the
12317     // register. We now need to save it to mem.
12318 
12319     // Find the largest store unit
12320     MVT StoreType = MVT::i8;
12321     for (MVT Tp : MVT::integer_valuetypes()) {
12322       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
12323         StoreType = Tp;
12324     }
12325     // Didn't find a legal store type.
12326     if (!TLI.isTypeLegal(StoreType))
12327       return SDValue();
12328 
12329     // Bitcast the original vector into a vector of store-size units
12330     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
12331             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
12332     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
12333     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
12334     SmallVector<SDValue, 8> Chains;
12335     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
12336                                         TLI.getPointerTy(DAG.getDataLayout()));
12337     SDValue BasePtr = St->getBasePtr();
12338 
12339     // Perform one or more big stores into memory.
12340     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
12341     for (unsigned I = 0; I < E; I++) {
12342       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
12343                                    StoreType, ShuffWide,
12344                                    DAG.getIntPtrConstant(I, DL));
12345       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
12346                                 St->getPointerInfo(), St->getAlignment(),
12347                                 St->getMemOperand()->getFlags());
12348       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
12349                             Increment);
12350       Chains.push_back(Ch);
12351     }
12352     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
12353   }
12354 
12355   if (!ISD::isNormalStore(St))
12356     return SDValue();
12357 
12358   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
12359   // ARM stores of arguments in the same cache line.
12360   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
12361       StVal.getNode()->hasOneUse()) {
12362     SelectionDAG  &DAG = DCI.DAG;
12363     bool isBigEndian = DAG.getDataLayout().isBigEndian();
12364     SDLoc DL(St);
12365     SDValue BasePtr = St->getBasePtr();
12366     SDValue NewST1 = DAG.getStore(
12367         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
12368         BasePtr, St->getPointerInfo(), St->getAlignment(),
12369         St->getMemOperand()->getFlags());
12370 
12371     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12372                                     DAG.getConstant(4, DL, MVT::i32));
12373     return DAG.getStore(NewST1.getValue(0), DL,
12374                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
12375                         OffsetPtr, St->getPointerInfo(),
12376                         std::min(4U, St->getAlignment() / 2),
12377                         St->getMemOperand()->getFlags());
12378   }
12379 
12380   if (StVal.getValueType() == MVT::i64 &&
12381       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12382 
12383     // Bitcast an i64 store extracted from a vector to f64.
12384     // Otherwise, the i64 value will be legalized to a pair of i32 values.
12385     SelectionDAG &DAG = DCI.DAG;
12386     SDLoc dl(StVal);
12387     SDValue IntVec = StVal.getOperand(0);
12388     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12389                                    IntVec.getValueType().getVectorNumElements());
12390     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
12391     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
12392                                  Vec, StVal.getOperand(1));
12393     dl = SDLoc(N);
12394     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
12395     // Make the DAGCombiner fold the bitcasts.
12396     DCI.AddToWorklist(Vec.getNode());
12397     DCI.AddToWorklist(ExtElt.getNode());
12398     DCI.AddToWorklist(V.getNode());
12399     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
12400                         St->getPointerInfo(), St->getAlignment(),
12401                         St->getMemOperand()->getFlags(), St->getAAInfo());
12402   }
12403 
12404   // If this is a legal vector store, try to combine it into a VST1_UPD.
12405   if (ISD::isNormalStore(N) && VT.isVector() &&
12406       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
12407     return CombineBaseUpdate(N, DCI);
12408 
12409   return SDValue();
12410 }
12411 
12412 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
12413 /// can replace combinations of VMUL and VCVT (floating-point to integer)
12414 /// when the VMUL has a constant operand that is a power of 2.
12415 ///
12416 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12417 ///  vmul.f32        d16, d17, d16
12418 ///  vcvt.s32.f32    d16, d16
12419 /// becomes:
12420 ///  vcvt.s32.f32    d16, d16, #3
12421 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
12422                                   const ARMSubtarget *Subtarget) {
12423   if (!Subtarget->hasNEON())
12424     return SDValue();
12425 
12426   SDValue Op = N->getOperand(0);
12427   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
12428       Op.getOpcode() != ISD::FMUL)
12429     return SDValue();
12430 
12431   SDValue ConstVec = Op->getOperand(1);
12432   if (!isa<BuildVectorSDNode>(ConstVec))
12433     return SDValue();
12434 
12435   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
12436   uint32_t FloatBits = FloatTy.getSizeInBits();
12437   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
12438   uint32_t IntBits = IntTy.getSizeInBits();
12439   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12440   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
12441     // These instructions only exist converting from f32 to i32. We can handle
12442     // smaller integers by generating an extra truncate, but larger ones would
12443     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
12444     // these intructions only support v2i32/v4i32 types.
12445     return SDValue();
12446   }
12447 
12448   BitVector UndefElements;
12449   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12450   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12451   if (C == -1 || C == 0 || C > 32)
12452     return SDValue();
12453 
12454   SDLoc dl(N);
12455   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
12456   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
12457     Intrinsic::arm_neon_vcvtfp2fxu;
12458   SDValue FixConv = DAG.getNode(
12459       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12460       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
12461       DAG.getConstant(C, dl, MVT::i32));
12462 
12463   if (IntBits < FloatBits)
12464     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
12465 
12466   return FixConv;
12467 }
12468 
12469 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
12470 /// can replace combinations of VCVT (integer to floating-point) and VDIV
12471 /// when the VDIV has a constant operand that is a power of 2.
12472 ///
12473 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
12474 ///  vcvt.f32.s32    d16, d16
12475 ///  vdiv.f32        d16, d17, d16
12476 /// becomes:
12477 ///  vcvt.f32.s32    d16, d16, #3
12478 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
12479                                   const ARMSubtarget *Subtarget) {
12480   if (!Subtarget->hasNEON())
12481     return SDValue();
12482 
12483   SDValue Op = N->getOperand(0);
12484   unsigned OpOpcode = Op.getNode()->getOpcode();
12485   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
12486       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
12487     return SDValue();
12488 
12489   SDValue ConstVec = N->getOperand(1);
12490   if (!isa<BuildVectorSDNode>(ConstVec))
12491     return SDValue();
12492 
12493   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
12494   uint32_t FloatBits = FloatTy.getSizeInBits();
12495   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
12496   uint32_t IntBits = IntTy.getSizeInBits();
12497   unsigned NumLanes = Op.getValueType().getVectorNumElements();
12498   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
12499     // These instructions only exist converting from i32 to f32. We can handle
12500     // smaller integers by generating an extra extend, but larger ones would
12501     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
12502     // these intructions only support v2i32/v4i32 types.
12503     return SDValue();
12504   }
12505 
12506   BitVector UndefElements;
12507   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
12508   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
12509   if (C == -1 || C == 0 || C > 32)
12510     return SDValue();
12511 
12512   SDLoc dl(N);
12513   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
12514   SDValue ConvInput = Op.getOperand(0);
12515   if (IntBits < FloatBits)
12516     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
12517                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
12518                             ConvInput);
12519 
12520   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
12521     Intrinsic::arm_neon_vcvtfxu2fp;
12522   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
12523                      Op.getValueType(),
12524                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
12525                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
12526 }
12527 
12528 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
12529 /// operand of a vector shift operation, where all the elements of the
12530 /// build_vector must have the same constant integer value.
12531 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
12532   // Ignore bit_converts.
12533   while (Op.getOpcode() == ISD::BITCAST)
12534     Op = Op.getOperand(0);
12535   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
12536   APInt SplatBits, SplatUndef;
12537   unsigned SplatBitSize;
12538   bool HasAnyUndefs;
12539   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
12540                                       HasAnyUndefs, ElementBits) ||
12541       SplatBitSize > ElementBits)
12542     return false;
12543   Cnt = SplatBits.getSExtValue();
12544   return true;
12545 }
12546 
12547 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
12548 /// operand of a vector shift left operation.  That value must be in the range:
12549 ///   0 <= Value < ElementBits for a left shift; or
12550 ///   0 <= Value <= ElementBits for a long left shift.
12551 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
12552   assert(VT.isVector() && "vector shift count is not a vector type");
12553   int64_t ElementBits = VT.getScalarSizeInBits();
12554   if (! getVShiftImm(Op, ElementBits, Cnt))
12555     return false;
12556   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
12557 }
12558 
12559 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
12560 /// operand of a vector shift right operation.  For a shift opcode, the value
12561 /// is positive, but for an intrinsic the value count must be negative. The
12562 /// absolute value must be in the range:
12563 ///   1 <= |Value| <= ElementBits for a right shift; or
12564 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
12565 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
12566                          int64_t &Cnt) {
12567   assert(VT.isVector() && "vector shift count is not a vector type");
12568   int64_t ElementBits = VT.getScalarSizeInBits();
12569   if (! getVShiftImm(Op, ElementBits, Cnt))
12570     return false;
12571   if (!isIntrinsic)
12572     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
12573   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
12574     Cnt = -Cnt;
12575     return true;
12576   }
12577   return false;
12578 }
12579 
12580 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
12581 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
12582   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12583   switch (IntNo) {
12584   default:
12585     // Don't do anything for most intrinsics.
12586     break;
12587 
12588   // Vector shifts: check for immediate versions and lower them.
12589   // Note: This is done during DAG combining instead of DAG legalizing because
12590   // the build_vectors for 64-bit vector element shift counts are generally
12591   // not legal, and it is hard to see their values after they get legalized to
12592   // loads from a constant pool.
12593   case Intrinsic::arm_neon_vshifts:
12594   case Intrinsic::arm_neon_vshiftu:
12595   case Intrinsic::arm_neon_vrshifts:
12596   case Intrinsic::arm_neon_vrshiftu:
12597   case Intrinsic::arm_neon_vrshiftn:
12598   case Intrinsic::arm_neon_vqshifts:
12599   case Intrinsic::arm_neon_vqshiftu:
12600   case Intrinsic::arm_neon_vqshiftsu:
12601   case Intrinsic::arm_neon_vqshiftns:
12602   case Intrinsic::arm_neon_vqshiftnu:
12603   case Intrinsic::arm_neon_vqshiftnsu:
12604   case Intrinsic::arm_neon_vqrshiftns:
12605   case Intrinsic::arm_neon_vqrshiftnu:
12606   case Intrinsic::arm_neon_vqrshiftnsu: {
12607     EVT VT = N->getOperand(1).getValueType();
12608     int64_t Cnt;
12609     unsigned VShiftOpc = 0;
12610 
12611     switch (IntNo) {
12612     case Intrinsic::arm_neon_vshifts:
12613     case Intrinsic::arm_neon_vshiftu:
12614       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
12615         VShiftOpc = ARMISD::VSHL;
12616         break;
12617       }
12618       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
12619         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
12620                      ARMISD::VSHRs : ARMISD::VSHRu);
12621         break;
12622       }
12623       return SDValue();
12624 
12625     case Intrinsic::arm_neon_vrshifts:
12626     case Intrinsic::arm_neon_vrshiftu:
12627       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
12628         break;
12629       return SDValue();
12630 
12631     case Intrinsic::arm_neon_vqshifts:
12632     case Intrinsic::arm_neon_vqshiftu:
12633       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12634         break;
12635       return SDValue();
12636 
12637     case Intrinsic::arm_neon_vqshiftsu:
12638       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
12639         break;
12640       llvm_unreachable("invalid shift count for vqshlu intrinsic");
12641 
12642     case Intrinsic::arm_neon_vrshiftn:
12643     case Intrinsic::arm_neon_vqshiftns:
12644     case Intrinsic::arm_neon_vqshiftnu:
12645     case Intrinsic::arm_neon_vqshiftnsu:
12646     case Intrinsic::arm_neon_vqrshiftns:
12647     case Intrinsic::arm_neon_vqrshiftnu:
12648     case Intrinsic::arm_neon_vqrshiftnsu:
12649       // Narrowing shifts require an immediate right shift.
12650       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
12651         break;
12652       llvm_unreachable("invalid shift count for narrowing vector shift "
12653                        "intrinsic");
12654 
12655     default:
12656       llvm_unreachable("unhandled vector shift");
12657     }
12658 
12659     switch (IntNo) {
12660     case Intrinsic::arm_neon_vshifts:
12661     case Intrinsic::arm_neon_vshiftu:
12662       // Opcode already set above.
12663       break;
12664     case Intrinsic::arm_neon_vrshifts:
12665       VShiftOpc = ARMISD::VRSHRs; break;
12666     case Intrinsic::arm_neon_vrshiftu:
12667       VShiftOpc = ARMISD::VRSHRu; break;
12668     case Intrinsic::arm_neon_vrshiftn:
12669       VShiftOpc = ARMISD::VRSHRN; break;
12670     case Intrinsic::arm_neon_vqshifts:
12671       VShiftOpc = ARMISD::VQSHLs; break;
12672     case Intrinsic::arm_neon_vqshiftu:
12673       VShiftOpc = ARMISD::VQSHLu; break;
12674     case Intrinsic::arm_neon_vqshiftsu:
12675       VShiftOpc = ARMISD::VQSHLsu; break;
12676     case Intrinsic::arm_neon_vqshiftns:
12677       VShiftOpc = ARMISD::VQSHRNs; break;
12678     case Intrinsic::arm_neon_vqshiftnu:
12679       VShiftOpc = ARMISD::VQSHRNu; break;
12680     case Intrinsic::arm_neon_vqshiftnsu:
12681       VShiftOpc = ARMISD::VQSHRNsu; break;
12682     case Intrinsic::arm_neon_vqrshiftns:
12683       VShiftOpc = ARMISD::VQRSHRNs; break;
12684     case Intrinsic::arm_neon_vqrshiftnu:
12685       VShiftOpc = ARMISD::VQRSHRNu; break;
12686     case Intrinsic::arm_neon_vqrshiftnsu:
12687       VShiftOpc = ARMISD::VQRSHRNsu; break;
12688     }
12689 
12690     SDLoc dl(N);
12691     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12692                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
12693   }
12694 
12695   case Intrinsic::arm_neon_vshiftins: {
12696     EVT VT = N->getOperand(1).getValueType();
12697     int64_t Cnt;
12698     unsigned VShiftOpc = 0;
12699 
12700     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
12701       VShiftOpc = ARMISD::VSLI;
12702     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
12703       VShiftOpc = ARMISD::VSRI;
12704     else {
12705       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
12706     }
12707 
12708     SDLoc dl(N);
12709     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
12710                        N->getOperand(1), N->getOperand(2),
12711                        DAG.getConstant(Cnt, dl, MVT::i32));
12712   }
12713 
12714   case Intrinsic::arm_neon_vqrshifts:
12715   case Intrinsic::arm_neon_vqrshiftu:
12716     // No immediate versions of these to check for.
12717     break;
12718   }
12719 
12720   return SDValue();
12721 }
12722 
12723 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
12724 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
12725 /// combining instead of DAG legalizing because the build_vectors for 64-bit
12726 /// vector element shift counts are generally not legal, and it is hard to see
12727 /// their values after they get legalized to loads from a constant pool.
12728 static SDValue PerformShiftCombine(SDNode *N,
12729                                    TargetLowering::DAGCombinerInfo &DCI,
12730                                    const ARMSubtarget *ST) {
12731   SelectionDAG &DAG = DCI.DAG;
12732   EVT VT = N->getValueType(0);
12733   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
12734     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
12735     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
12736     SDValue N1 = N->getOperand(1);
12737     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
12738       SDValue N0 = N->getOperand(0);
12739       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
12740           DAG.MaskedValueIsZero(N0.getOperand(0),
12741                                 APInt::getHighBitsSet(32, 16)))
12742         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
12743     }
12744   }
12745 
12746   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
12747       N->getOperand(0)->getOpcode() == ISD::AND &&
12748       N->getOperand(0)->hasOneUse()) {
12749     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12750       return SDValue();
12751     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
12752     // usually show up because instcombine prefers to canonicalize it to
12753     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
12754     // out of GEP lowering in some cases.
12755     SDValue N0 = N->getOperand(0);
12756     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
12757     if (!ShiftAmtNode)
12758       return SDValue();
12759     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
12760     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
12761     if (!AndMaskNode)
12762       return SDValue();
12763     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
12764     // Don't transform uxtb/uxth.
12765     if (AndMask == 255 || AndMask == 65535)
12766       return SDValue();
12767     if (isMask_32(AndMask)) {
12768       uint32_t MaskedBits = countLeadingZeros(AndMask);
12769       if (MaskedBits > ShiftAmt) {
12770         SDLoc DL(N);
12771         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12772                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
12773         return DAG.getNode(
12774             ISD::SRL, DL, MVT::i32, SHL,
12775             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
12776       }
12777     }
12778   }
12779 
12780   // Nothing to be done for scalar shifts.
12781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12782   if (!VT.isVector() || !TLI.isTypeLegal(VT))
12783     return SDValue();
12784 
12785   assert(ST->hasNEON() && "unexpected vector shift");
12786   int64_t Cnt;
12787 
12788   switch (N->getOpcode()) {
12789   default: llvm_unreachable("unexpected shift opcode");
12790 
12791   case ISD::SHL:
12792     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
12793       SDLoc dl(N);
12794       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
12795                          DAG.getConstant(Cnt, dl, MVT::i32));
12796     }
12797     break;
12798 
12799   case ISD::SRA:
12800   case ISD::SRL:
12801     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
12802       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
12803                             ARMISD::VSHRs : ARMISD::VSHRu);
12804       SDLoc dl(N);
12805       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
12806                          DAG.getConstant(Cnt, dl, MVT::i32));
12807     }
12808   }
12809   return SDValue();
12810 }
12811 
12812 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
12813 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
12814 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
12815                                     const ARMSubtarget *ST) {
12816   SDValue N0 = N->getOperand(0);
12817 
12818   // Check for sign- and zero-extensions of vector extract operations of 8-
12819   // and 16-bit vector elements.  NEON supports these directly.  They are
12820   // handled during DAG combining because type legalization will promote them
12821   // to 32-bit types and it is messy to recognize the operations after that.
12822   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12823     SDValue Vec = N0.getOperand(0);
12824     SDValue Lane = N0.getOperand(1);
12825     EVT VT = N->getValueType(0);
12826     EVT EltVT = N0.getValueType();
12827     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12828 
12829     if (VT == MVT::i32 &&
12830         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
12831         TLI.isTypeLegal(Vec.getValueType()) &&
12832         isa<ConstantSDNode>(Lane)) {
12833 
12834       unsigned Opc = 0;
12835       switch (N->getOpcode()) {
12836       default: llvm_unreachable("unexpected opcode");
12837       case ISD::SIGN_EXTEND:
12838         Opc = ARMISD::VGETLANEs;
12839         break;
12840       case ISD::ZERO_EXTEND:
12841       case ISD::ANY_EXTEND:
12842         Opc = ARMISD::VGETLANEu;
12843         break;
12844       }
12845       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
12846     }
12847   }
12848 
12849   return SDValue();
12850 }
12851 
12852 static const APInt *isPowerOf2Constant(SDValue V) {
12853   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
12854   if (!C)
12855     return nullptr;
12856   const APInt *CV = &C->getAPIntValue();
12857   return CV->isPowerOf2() ? CV : nullptr;
12858 }
12859 
12860 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
12861   // If we have a CMOV, OR and AND combination such as:
12862   //   if (x & CN)
12863   //     y |= CM;
12864   //
12865   // And:
12866   //   * CN is a single bit;
12867   //   * All bits covered by CM are known zero in y
12868   //
12869   // Then we can convert this into a sequence of BFI instructions. This will
12870   // always be a win if CM is a single bit, will always be no worse than the
12871   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
12872   // three bits (due to the extra IT instruction).
12873 
12874   SDValue Op0 = CMOV->getOperand(0);
12875   SDValue Op1 = CMOV->getOperand(1);
12876   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
12877   auto CC = CCNode->getAPIntValue().getLimitedValue();
12878   SDValue CmpZ = CMOV->getOperand(4);
12879 
12880   // The compare must be against zero.
12881   if (!isNullConstant(CmpZ->getOperand(1)))
12882     return SDValue();
12883 
12884   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
12885   SDValue And = CmpZ->getOperand(0);
12886   if (And->getOpcode() != ISD::AND)
12887     return SDValue();
12888   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
12889   if (!AndC)
12890     return SDValue();
12891   SDValue X = And->getOperand(0);
12892 
12893   if (CC == ARMCC::EQ) {
12894     // We're performing an "equal to zero" compare. Swap the operands so we
12895     // canonicalize on a "not equal to zero" compare.
12896     std::swap(Op0, Op1);
12897   } else {
12898     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
12899   }
12900 
12901   if (Op1->getOpcode() != ISD::OR)
12902     return SDValue();
12903 
12904   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
12905   if (!OrC)
12906     return SDValue();
12907   SDValue Y = Op1->getOperand(0);
12908 
12909   if (Op0 != Y)
12910     return SDValue();
12911 
12912   // Now, is it profitable to continue?
12913   APInt OrCI = OrC->getAPIntValue();
12914   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
12915   if (OrCI.countPopulation() > Heuristic)
12916     return SDValue();
12917 
12918   // Lastly, can we determine that the bits defined by OrCI
12919   // are zero in Y?
12920   KnownBits Known = DAG.computeKnownBits(Y);
12921   if ((OrCI & Known.Zero) != OrCI)
12922     return SDValue();
12923 
12924   // OK, we can do the combine.
12925   SDValue V = Y;
12926   SDLoc dl(X);
12927   EVT VT = X.getValueType();
12928   unsigned BitInX = AndC->logBase2();
12929 
12930   if (BitInX != 0) {
12931     // We must shift X first.
12932     X = DAG.getNode(ISD::SRL, dl, VT, X,
12933                     DAG.getConstant(BitInX, dl, VT));
12934   }
12935 
12936   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
12937        BitInY < NumActiveBits; ++BitInY) {
12938     if (OrCI[BitInY] == 0)
12939       continue;
12940     APInt Mask(VT.getSizeInBits(), 0);
12941     Mask.setBit(BitInY);
12942     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
12943                     // Confusingly, the operand is an *inverted* mask.
12944                     DAG.getConstant(~Mask, dl, VT));
12945   }
12946 
12947   return V;
12948 }
12949 
12950 static SDValue PerformHWLoopCombine(SDNode *N,
12951                                     TargetLowering::DAGCombinerInfo &DCI,
12952                                     const ARMSubtarget *ST) {
12953   // Look for (brcond (xor test.set.loop.iterations, -1)
12954   SDValue CC = N->getOperand(1);
12955 
12956   if (CC->getOpcode() != ISD::XOR && CC->getOpcode() != ISD::SETCC)
12957     return SDValue();
12958 
12959   if (CC->getOperand(0)->getOpcode() != ISD::INTRINSIC_W_CHAIN)
12960     return SDValue();
12961 
12962   SDValue Int = CC->getOperand(0);
12963   unsigned IntOp = cast<ConstantSDNode>(Int.getOperand(1))->getZExtValue();
12964   if (IntOp != Intrinsic::test_set_loop_iterations)
12965     return SDValue();
12966 
12967   assert((isa<ConstantSDNode>(CC->getOperand(1)) &&
12968           cast<ConstantSDNode>(CC->getOperand(1))->isOne()) &&
12969           "Expected to compare against 1");
12970 
12971   SDLoc dl(Int);
12972   SDValue Chain = N->getOperand(0);
12973   SDValue Elements = Int.getOperand(2);
12974   SDValue ExitBlock = N->getOperand(2);
12975 
12976   // TODO: Once we start supporting tail predication, we can add another
12977   // operand to WLS for the number of elements processed in a vector loop.
12978 
12979   SDValue Ops[] = { Chain, Elements, ExitBlock };
12980   SDValue Res = DCI.DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
12981   DCI.DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
12982   return Res;
12983 }
12984 
12985 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
12986 SDValue
12987 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
12988   SDValue Cmp = N->getOperand(4);
12989   if (Cmp.getOpcode() != ARMISD::CMPZ)
12990     // Only looking at NE cases.
12991     return SDValue();
12992 
12993   EVT VT = N->getValueType(0);
12994   SDLoc dl(N);
12995   SDValue LHS = Cmp.getOperand(0);
12996   SDValue RHS = Cmp.getOperand(1);
12997   SDValue Chain = N->getOperand(0);
12998   SDValue BB = N->getOperand(1);
12999   SDValue ARMcc = N->getOperand(2);
13000   ARMCC::CondCodes CC =
13001     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
13002 
13003   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
13004   // -> (brcond Chain BB CC CPSR Cmp)
13005   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
13006       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
13007       LHS->getOperand(0)->hasOneUse()) {
13008     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
13009     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
13010     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
13011     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
13012     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
13013         (LHS01C && LHS01C->getZExtValue() == 1) &&
13014         (LHS1C && LHS1C->getZExtValue() == 1) &&
13015         (RHSC && RHSC->getZExtValue() == 0)) {
13016       return DAG.getNode(
13017           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
13018           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
13019     }
13020   }
13021 
13022   return SDValue();
13023 }
13024 
13025 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
13026 SDValue
13027 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
13028   SDValue Cmp = N->getOperand(4);
13029   if (Cmp.getOpcode() != ARMISD::CMPZ)
13030     // Only looking at EQ and NE cases.
13031     return SDValue();
13032 
13033   EVT VT = N->getValueType(0);
13034   SDLoc dl(N);
13035   SDValue LHS = Cmp.getOperand(0);
13036   SDValue RHS = Cmp.getOperand(1);
13037   SDValue FalseVal = N->getOperand(0);
13038   SDValue TrueVal = N->getOperand(1);
13039   SDValue ARMcc = N->getOperand(2);
13040   ARMCC::CondCodes CC =
13041     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
13042 
13043   // BFI is only available on V6T2+.
13044   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
13045     SDValue R = PerformCMOVToBFICombine(N, DAG);
13046     if (R)
13047       return R;
13048   }
13049 
13050   // Simplify
13051   //   mov     r1, r0
13052   //   cmp     r1, x
13053   //   mov     r0, y
13054   //   moveq   r0, x
13055   // to
13056   //   cmp     r0, x
13057   //   movne   r0, y
13058   //
13059   //   mov     r1, r0
13060   //   cmp     r1, x
13061   //   mov     r0, x
13062   //   movne   r0, y
13063   // to
13064   //   cmp     r0, x
13065   //   movne   r0, y
13066   /// FIXME: Turn this into a target neutral optimization?
13067   SDValue Res;
13068   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
13069     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
13070                       N->getOperand(3), Cmp);
13071   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
13072     SDValue ARMcc;
13073     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
13074     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
13075                       N->getOperand(3), NewCmp);
13076   }
13077 
13078   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
13079   // -> (cmov F T CC CPSR Cmp)
13080   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
13081     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
13082     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
13083     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
13084     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
13085         (LHS1C && LHS1C->getZExtValue() == 1) &&
13086         (RHSC && RHSC->getZExtValue() == 0)) {
13087       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
13088                          LHS->getOperand(2), LHS->getOperand(3),
13089                          LHS->getOperand(4));
13090     }
13091   }
13092 
13093   if (!VT.isInteger())
13094       return SDValue();
13095 
13096   // Materialize a boolean comparison for integers so we can avoid branching.
13097   if (isNullConstant(FalseVal)) {
13098     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
13099       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
13100         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
13101         // right 5 bits will make that 32 be 1, otherwise it will be 0.
13102         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
13103         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
13104         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
13105                           DAG.getConstant(5, dl, MVT::i32));
13106       } else {
13107         // CMOV 0, 1, ==, (CMPZ x, y) ->
13108         //     (ADDCARRY (SUB x, y), t:0, t:1)
13109         // where t = (SUBCARRY 0, (SUB x, y), 0)
13110         //
13111         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
13112         // x != y. In other words, a carry C == 1 when x == y, C == 0
13113         // otherwise.
13114         // The final ADDCARRY computes
13115         //     x - y + (0 - (x - y)) + C == C
13116         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
13117         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13118         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
13119         // ISD::SUBCARRY returns a borrow but we want the carry here
13120         // actually.
13121         SDValue Carry =
13122             DAG.getNode(ISD::SUB, dl, MVT::i32,
13123                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
13124         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
13125       }
13126     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
13127                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
13128       // This seems pointless but will allow us to combine it further below.
13129       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13130       SDValue Sub =
13131           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
13132       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
13133                                           Sub.getValue(1), SDValue());
13134       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
13135                         N->getOperand(3), CPSRGlue.getValue(1));
13136       FalseVal = Sub;
13137     }
13138   } else if (isNullConstant(TrueVal)) {
13139     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
13140         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
13141       // This seems pointless but will allow us to combine it further below
13142       // Note that we change == for != as this is the dual for the case above.
13143       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
13144       SDValue Sub =
13145           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
13146       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
13147                                           Sub.getValue(1), SDValue());
13148       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
13149                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
13150                         N->getOperand(3), CPSRGlue.getValue(1));
13151       FalseVal = Sub;
13152     }
13153   }
13154 
13155   // On Thumb1, the DAG above may be further combined if z is a power of 2
13156   // (z == 2 ^ K).
13157   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
13158   // t1 = (USUBO (SUB x, y), 1)
13159   // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
13160   // Result = if K != 0 then (SHL t2:0, K) else t2:0
13161   //
13162   // This also handles the special case of comparing against zero; it's
13163   // essentially, the same pattern, except there's no SUBS:
13164   // CMOV x, z, !=, (CMPZ x, 0) ->
13165   // t1 = (USUBO x, 1)
13166   // t2 = (SUBCARRY x, t1:0, t1:1)
13167   // Result = if K != 0 then (SHL t2:0, K) else t2:0
13168   const APInt *TrueConst;
13169   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
13170       ((FalseVal.getOpcode() == ARMISD::SUBS &&
13171         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
13172        (FalseVal == LHS && isNullConstant(RHS))) &&
13173       (TrueConst = isPowerOf2Constant(TrueVal))) {
13174     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13175     unsigned ShiftAmount = TrueConst->logBase2();
13176     if (ShiftAmount)
13177       TrueVal = DAG.getConstant(1, dl, VT);
13178     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
13179     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
13180 
13181     if (ShiftAmount)
13182       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
13183                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
13184   }
13185 
13186   if (Res.getNode()) {
13187     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
13188     // Capture demanded bits information that would be otherwise lost.
13189     if (Known.Zero == 0xfffffffe)
13190       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13191                         DAG.getValueType(MVT::i1));
13192     else if (Known.Zero == 0xffffff00)
13193       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13194                         DAG.getValueType(MVT::i8));
13195     else if (Known.Zero == 0xffff0000)
13196       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
13197                         DAG.getValueType(MVT::i16));
13198   }
13199 
13200   return Res;
13201 }
13202 
13203 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
13204                                              DAGCombinerInfo &DCI) const {
13205   switch (N->getOpcode()) {
13206   default: break;
13207   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
13208   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
13209   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
13210   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
13211   case ISD::SUB:        return PerformSUBCombine(N, DCI);
13212   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
13213   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
13214   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
13215   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
13216   case ISD::BRCOND:     return PerformHWLoopCombine(N, DCI, Subtarget);
13217   case ARMISD::ADDC:
13218   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
13219   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
13220   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
13221   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
13222   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
13223   case ISD::STORE:      return PerformSTORECombine(N, DCI);
13224   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
13225   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
13226   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
13227   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
13228   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
13229   case ISD::FP_TO_SINT:
13230   case ISD::FP_TO_UINT:
13231     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
13232   case ISD::FDIV:
13233     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
13234   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
13235   case ISD::SHL:
13236   case ISD::SRA:
13237   case ISD::SRL:
13238     return PerformShiftCombine(N, DCI, Subtarget);
13239   case ISD::SIGN_EXTEND:
13240   case ISD::ZERO_EXTEND:
13241   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
13242   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
13243   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
13244   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
13245   case ARMISD::VLD1DUP:
13246   case ARMISD::VLD2DUP:
13247   case ARMISD::VLD3DUP:
13248   case ARMISD::VLD4DUP:
13249     return PerformVLDCombine(N, DCI);
13250   case ARMISD::BUILD_VECTOR:
13251     return PerformARMBUILD_VECTORCombine(N, DCI);
13252   case ARMISD::SMULWB: {
13253     unsigned BitWidth = N->getValueType(0).getSizeInBits();
13254     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
13255     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
13256       return SDValue();
13257     break;
13258   }
13259   case ARMISD::SMULWT: {
13260     unsigned BitWidth = N->getValueType(0).getSizeInBits();
13261     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
13262     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
13263       return SDValue();
13264     break;
13265   }
13266   case ARMISD::SMLALBB: {
13267     unsigned BitWidth = N->getValueType(0).getSizeInBits();
13268     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
13269     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
13270         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
13271       return SDValue();
13272     break;
13273   }
13274   case ARMISD::SMLALBT: {
13275     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
13276     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
13277     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
13278     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
13279     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
13280         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
13281       return SDValue();
13282     break;
13283   }
13284   case ARMISD::SMLALTB: {
13285     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
13286     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
13287     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
13288     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
13289     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
13290         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
13291       return SDValue();
13292     break;
13293   }
13294   case ARMISD::SMLALTT: {
13295     unsigned BitWidth = N->getValueType(0).getSizeInBits();
13296     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
13297     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
13298         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
13299       return SDValue();
13300     break;
13301   }
13302   case ISD::INTRINSIC_VOID:
13303   case ISD::INTRINSIC_W_CHAIN:
13304     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
13305     case Intrinsic::arm_neon_vld1:
13306     case Intrinsic::arm_neon_vld1x2:
13307     case Intrinsic::arm_neon_vld1x3:
13308     case Intrinsic::arm_neon_vld1x4:
13309     case Intrinsic::arm_neon_vld2:
13310     case Intrinsic::arm_neon_vld3:
13311     case Intrinsic::arm_neon_vld4:
13312     case Intrinsic::arm_neon_vld2lane:
13313     case Intrinsic::arm_neon_vld3lane:
13314     case Intrinsic::arm_neon_vld4lane:
13315     case Intrinsic::arm_neon_vld2dup:
13316     case Intrinsic::arm_neon_vld3dup:
13317     case Intrinsic::arm_neon_vld4dup:
13318     case Intrinsic::arm_neon_vst1:
13319     case Intrinsic::arm_neon_vst1x2:
13320     case Intrinsic::arm_neon_vst1x3:
13321     case Intrinsic::arm_neon_vst1x4:
13322     case Intrinsic::arm_neon_vst2:
13323     case Intrinsic::arm_neon_vst3:
13324     case Intrinsic::arm_neon_vst4:
13325     case Intrinsic::arm_neon_vst2lane:
13326     case Intrinsic::arm_neon_vst3lane:
13327     case Intrinsic::arm_neon_vst4lane:
13328       return PerformVLDCombine(N, DCI);
13329     default: break;
13330     }
13331     break;
13332   }
13333   return SDValue();
13334 }
13335 
13336 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
13337                                                           EVT VT) const {
13338   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
13339 }
13340 
13341 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
13342                                                        unsigned Alignment,
13343                                                        MachineMemOperand::Flags,
13344                                                        bool *Fast) const {
13345   // Depends what it gets converted into if the type is weird.
13346   if (!VT.isSimple())
13347     return false;
13348 
13349   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
13350   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
13351   auto Ty = VT.getSimpleVT().SimpleTy;
13352 
13353   if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
13354     // Unaligned access can use (for example) LRDB, LRDH, LDR
13355     if (AllowsUnaligned) {
13356       if (Fast)
13357         *Fast = Subtarget->hasV7Ops();
13358       return true;
13359     }
13360   }
13361 
13362   if (Ty == MVT::f64 || Ty == MVT::v2f64) {
13363     // For any little-endian targets with neon, we can support unaligned ld/st
13364     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
13365     // A big-endian target may also explicitly support unaligned accesses
13366     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
13367       if (Fast)
13368         *Fast = true;
13369       return true;
13370     }
13371   }
13372 
13373   if (!Subtarget->hasMVEIntegerOps())
13374     return false;
13375   if (Ty != MVT::v16i8 && Ty != MVT::v8i16 && Ty != MVT::v8f16 &&
13376       Ty != MVT::v4i32 && Ty != MVT::v4f32 && Ty != MVT::v2i64 &&
13377       Ty != MVT::v2f64 &&
13378       // These are for truncated stores
13379       Ty != MVT::v4i8 && Ty != MVT::v8i8 && Ty != MVT::v4i16)
13380     return false;
13381 
13382   if (Subtarget->isLittle()) {
13383     // In little-endian MVE, the store instructions VSTRB.U8,
13384     // VSTRH.U16 and VSTRW.U32 all store the vector register in
13385     // exactly the same format, and differ only in the range of
13386     // their immediate offset field and the required alignment.
13387     //
13388     // In particular, VSTRB.U8 can store a vector at byte alignment.
13389     // So at this stage we can simply say that loads/stores of all
13390     // 128-bit wide vector types are permitted at any alignment,
13391     // because we know at least _one_ instruction can manage that.
13392     //
13393     // Later on we might find that some of those loads are better
13394     // generated as VLDRW.U32 if alignment permits, to take
13395     // advantage of the larger immediate range. But for the moment,
13396     // all that matters is that if we don't lower the load then
13397     // _some_ instruction can handle it.
13398     if (Fast)
13399       *Fast = true;
13400     return true;
13401   } else {
13402     // In big-endian MVE, those instructions aren't so similar
13403     // after all, because they reorder the bytes of the vector
13404     // differently. So this time we can only store a particular
13405     // kind of vector if its alignment is at least the element
13406     // type. And we can't store vectors of i64 or f64 at all
13407     // without having to do some postprocessing, because there's
13408     // no VSTRD.U64.
13409     if (Ty == MVT::v16i8 ||
13410         ((Ty == MVT::v8i16 || Ty == MVT::v8f16) && Alignment >= 2) ||
13411         ((Ty == MVT::v4i32 || Ty == MVT::v4f32) && Alignment >= 4)) {
13412       if (Fast)
13413         *Fast = true;
13414       return true;
13415     }
13416   }
13417 
13418   return false;
13419 }
13420 
13421 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
13422                        unsigned AlignCheck) {
13423   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
13424           (DstAlign == 0 || DstAlign % AlignCheck == 0));
13425 }
13426 
13427 EVT ARMTargetLowering::getOptimalMemOpType(
13428     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
13429     bool ZeroMemset, bool MemcpyStrSrc,
13430     const AttributeList &FuncAttributes) const {
13431   // See if we can use NEON instructions for this...
13432   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
13433       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
13434     bool Fast;
13435     if (Size >= 16 &&
13436         (memOpAlign(SrcAlign, DstAlign, 16) ||
13437          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
13438                                          MachineMemOperand::MONone, &Fast) &&
13439           Fast))) {
13440       return MVT::v2f64;
13441     } else if (Size >= 8 &&
13442                (memOpAlign(SrcAlign, DstAlign, 8) ||
13443                 (allowsMisalignedMemoryAccesses(
13444                      MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
13445                  Fast))) {
13446       return MVT::f64;
13447     }
13448   }
13449 
13450   // Let the target-independent logic figure it out.
13451   return MVT::Other;
13452 }
13453 
13454 // 64-bit integers are split into their high and low parts and held in two
13455 // different registers, so the trunc is free since the low register can just
13456 // be used.
13457 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
13458   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
13459     return false;
13460   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
13461   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
13462   return (SrcBits == 64 && DestBits == 32);
13463 }
13464 
13465 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
13466   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
13467       !DstVT.isInteger())
13468     return false;
13469   unsigned SrcBits = SrcVT.getSizeInBits();
13470   unsigned DestBits = DstVT.getSizeInBits();
13471   return (SrcBits == 64 && DestBits == 32);
13472 }
13473 
13474 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13475   if (Val.getOpcode() != ISD::LOAD)
13476     return false;
13477 
13478   EVT VT1 = Val.getValueType();
13479   if (!VT1.isSimple() || !VT1.isInteger() ||
13480       !VT2.isSimple() || !VT2.isInteger())
13481     return false;
13482 
13483   switch (VT1.getSimpleVT().SimpleTy) {
13484   default: break;
13485   case MVT::i1:
13486   case MVT::i8:
13487   case MVT::i16:
13488     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
13489     return true;
13490   }
13491 
13492   return false;
13493 }
13494 
13495 bool ARMTargetLowering::isFNegFree(EVT VT) const {
13496   if (!VT.isSimple())
13497     return false;
13498 
13499   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
13500   // negate values directly (fneg is free). So, we don't want to let the DAG
13501   // combiner rewrite fneg into xors and some other instructions.  For f16 and
13502   // FullFP16 argument passing, some bitcast nodes may be introduced,
13503   // triggering this DAG combine rewrite, so we are avoiding that with this.
13504   switch (VT.getSimpleVT().SimpleTy) {
13505   default: break;
13506   case MVT::f16:
13507     return Subtarget->hasFullFP16();
13508   }
13509 
13510   return false;
13511 }
13512 
13513 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
13514 /// of the vector elements.
13515 static bool areExtractExts(Value *Ext1, Value *Ext2) {
13516   auto areExtDoubled = [](Instruction *Ext) {
13517     return Ext->getType()->getScalarSizeInBits() ==
13518            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
13519   };
13520 
13521   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
13522       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
13523       !areExtDoubled(cast<Instruction>(Ext1)) ||
13524       !areExtDoubled(cast<Instruction>(Ext2)))
13525     return false;
13526 
13527   return true;
13528 }
13529 
13530 /// Check if sinking \p I's operands to I's basic block is profitable, because
13531 /// the operands can be folded into a target instruction, e.g.
13532 /// sext/zext can be folded into vsubl.
13533 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
13534                                            SmallVectorImpl<Use *> &Ops) const {
13535   if (!Subtarget->hasNEON() || !I->getType()->isVectorTy())
13536     return false;
13537 
13538   switch (I->getOpcode()) {
13539   case Instruction::Sub:
13540   case Instruction::Add: {
13541     if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
13542       return false;
13543     Ops.push_back(&I->getOperandUse(0));
13544     Ops.push_back(&I->getOperandUse(1));
13545     return true;
13546   }
13547   default:
13548     return false;
13549   }
13550   return false;
13551 }
13552 
13553 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
13554   EVT VT = ExtVal.getValueType();
13555 
13556   if (!isTypeLegal(VT))
13557     return false;
13558 
13559   // Don't create a loadext if we can fold the extension into a wide/long
13560   // instruction.
13561   // If there's more than one user instruction, the loadext is desirable no
13562   // matter what.  There can be two uses by the same instruction.
13563   if (ExtVal->use_empty() ||
13564       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
13565     return true;
13566 
13567   SDNode *U = *ExtVal->use_begin();
13568   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
13569        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
13570     return false;
13571 
13572   return true;
13573 }
13574 
13575 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13576   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13577     return false;
13578 
13579   if (!isTypeLegal(EVT::getEVT(Ty1)))
13580     return false;
13581 
13582   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13583 
13584   // Assuming the caller doesn't have a zeroext or signext return parameter,
13585   // truncation all the way down to i1 is valid.
13586   return true;
13587 }
13588 
13589 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
13590                                                 const AddrMode &AM, Type *Ty,
13591                                                 unsigned AS) const {
13592   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
13593     if (Subtarget->hasFPAO())
13594       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
13595     return 0;
13596   }
13597   return -1;
13598 }
13599 
13600 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
13601   if (V < 0)
13602     return false;
13603 
13604   unsigned Scale = 1;
13605   switch (VT.getSimpleVT().SimpleTy) {
13606   case MVT::i1:
13607   case MVT::i8:
13608     // Scale == 1;
13609     break;
13610   case MVT::i16:
13611     // Scale == 2;
13612     Scale = 2;
13613     break;
13614   default:
13615     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
13616     // Scale == 4;
13617     Scale = 4;
13618     break;
13619   }
13620 
13621   if ((V & (Scale - 1)) != 0)
13622     return false;
13623   return isUInt<5>(V / Scale);
13624 }
13625 
13626 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
13627                                       const ARMSubtarget *Subtarget) {
13628   if (!VT.isInteger() && !VT.isFloatingPoint())
13629     return false;
13630   if (VT.isVector() && Subtarget->hasNEON())
13631     return false;
13632   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
13633       !Subtarget->hasMVEFloatOps())
13634     return false;
13635 
13636   bool IsNeg = false;
13637   if (V < 0) {
13638     IsNeg = true;
13639     V = -V;
13640   }
13641 
13642   unsigned NumBytes = std::max(VT.getSizeInBits() / 8, 1U);
13643 
13644   // MVE: size * imm7
13645   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
13646     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
13647     case MVT::i32:
13648     case MVT::f32:
13649       return isShiftedUInt<7,2>(V);
13650     case MVT::i16:
13651     case MVT::f16:
13652       return isShiftedUInt<7,1>(V);
13653     case MVT::i8:
13654       return isUInt<7>(V);
13655     default:
13656       return false;
13657     }
13658   }
13659 
13660   // half VLDR: 2 * imm8
13661   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
13662     return isShiftedUInt<8, 1>(V);
13663   // VLDR and LDRD: 4 * imm8
13664   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
13665     return isShiftedUInt<8, 2>(V);
13666 
13667   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
13668     // + imm12 or - imm8
13669     if (IsNeg)
13670       return isUInt<8>(V);
13671     return isUInt<12>(V);
13672   }
13673 
13674   return false;
13675 }
13676 
13677 /// isLegalAddressImmediate - Return true if the integer value can be used
13678 /// as the offset of the target addressing mode for load / store of the
13679 /// given type.
13680 static bool isLegalAddressImmediate(int64_t V, EVT VT,
13681                                     const ARMSubtarget *Subtarget) {
13682   if (V == 0)
13683     return true;
13684 
13685   if (!VT.isSimple())
13686     return false;
13687 
13688   if (Subtarget->isThumb1Only())
13689     return isLegalT1AddressImmediate(V, VT);
13690   else if (Subtarget->isThumb2())
13691     return isLegalT2AddressImmediate(V, VT, Subtarget);
13692 
13693   // ARM mode.
13694   if (V < 0)
13695     V = - V;
13696   switch (VT.getSimpleVT().SimpleTy) {
13697   default: return false;
13698   case MVT::i1:
13699   case MVT::i8:
13700   case MVT::i32:
13701     // +- imm12
13702     return isUInt<12>(V);
13703   case MVT::i16:
13704     // +- imm8
13705     return isUInt<8>(V);
13706   case MVT::f32:
13707   case MVT::f64:
13708     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
13709       return false;
13710     return isShiftedUInt<8, 2>(V);
13711   }
13712 }
13713 
13714 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
13715                                                       EVT VT) const {
13716   int Scale = AM.Scale;
13717   if (Scale < 0)
13718     return false;
13719 
13720   switch (VT.getSimpleVT().SimpleTy) {
13721   default: return false;
13722   case MVT::i1:
13723   case MVT::i8:
13724   case MVT::i16:
13725   case MVT::i32:
13726     if (Scale == 1)
13727       return true;
13728     // r + r << imm
13729     Scale = Scale & ~1;
13730     return Scale == 2 || Scale == 4 || Scale == 8;
13731   case MVT::i64:
13732     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
13733     // version in Thumb mode.
13734     // r + r
13735     if (Scale == 1)
13736       return true;
13737     // r * 2 (this can be lowered to r + r).
13738     if (!AM.HasBaseReg && Scale == 2)
13739       return true;
13740     return false;
13741   case MVT::isVoid:
13742     // Note, we allow "void" uses (basically, uses that aren't loads or
13743     // stores), because arm allows folding a scale into many arithmetic
13744     // operations.  This should be made more precise and revisited later.
13745 
13746     // Allow r << imm, but the imm has to be a multiple of two.
13747     if (Scale & 1) return false;
13748     return isPowerOf2_32(Scale);
13749   }
13750 }
13751 
13752 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
13753                                                       EVT VT) const {
13754   const int Scale = AM.Scale;
13755 
13756   // Negative scales are not supported in Thumb1.
13757   if (Scale < 0)
13758     return false;
13759 
13760   // Thumb1 addressing modes do not support register scaling excepting the
13761   // following cases:
13762   // 1. Scale == 1 means no scaling.
13763   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
13764   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
13765 }
13766 
13767 /// isLegalAddressingMode - Return true if the addressing mode represented
13768 /// by AM is legal for this target, for a load/store of the specified type.
13769 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13770                                               const AddrMode &AM, Type *Ty,
13771                                               unsigned AS, Instruction *I) const {
13772   EVT VT = getValueType(DL, Ty, true);
13773   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
13774     return false;
13775 
13776   // Can never fold addr of global into load/store.
13777   if (AM.BaseGV)
13778     return false;
13779 
13780   switch (AM.Scale) {
13781   case 0:  // no scale reg, must be "r+i" or "r", or "i".
13782     break;
13783   default:
13784     // ARM doesn't support any R+R*scale+imm addr modes.
13785     if (AM.BaseOffs)
13786       return false;
13787 
13788     if (!VT.isSimple())
13789       return false;
13790 
13791     if (Subtarget->isThumb1Only())
13792       return isLegalT1ScaledAddressingMode(AM, VT);
13793 
13794     if (Subtarget->isThumb2())
13795       return isLegalT2ScaledAddressingMode(AM, VT);
13796 
13797     int Scale = AM.Scale;
13798     switch (VT.getSimpleVT().SimpleTy) {
13799     default: return false;
13800     case MVT::i1:
13801     case MVT::i8:
13802     case MVT::i32:
13803       if (Scale < 0) Scale = -Scale;
13804       if (Scale == 1)
13805         return true;
13806       // r + r << imm
13807       return isPowerOf2_32(Scale & ~1);
13808     case MVT::i16:
13809     case MVT::i64:
13810       // r +/- r
13811       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
13812         return true;
13813       // r * 2 (this can be lowered to r + r).
13814       if (!AM.HasBaseReg && Scale == 2)
13815         return true;
13816       return false;
13817 
13818     case MVT::isVoid:
13819       // Note, we allow "void" uses (basically, uses that aren't loads or
13820       // stores), because arm allows folding a scale into many arithmetic
13821       // operations.  This should be made more precise and revisited later.
13822 
13823       // Allow r << imm, but the imm has to be a multiple of two.
13824       if (Scale & 1) return false;
13825       return isPowerOf2_32(Scale);
13826     }
13827   }
13828   return true;
13829 }
13830 
13831 /// isLegalICmpImmediate - Return true if the specified immediate is legal
13832 /// icmp immediate, that is the target has icmp instructions which can compare
13833 /// a register against the immediate without having to materialize the
13834 /// immediate into a register.
13835 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13836   // Thumb2 and ARM modes can use cmn for negative immediates.
13837   if (!Subtarget->isThumb())
13838     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
13839            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
13840   if (Subtarget->isThumb2())
13841     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
13842            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
13843   // Thumb1 doesn't have cmn, and only 8-bit immediates.
13844   return Imm >= 0 && Imm <= 255;
13845 }
13846 
13847 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
13848 /// *or sub* immediate, that is the target has add or sub instructions which can
13849 /// add a register with the immediate without having to materialize the
13850 /// immediate into a register.
13851 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13852   // Same encoding for add/sub, just flip the sign.
13853   int64_t AbsImm = std::abs(Imm);
13854   if (!Subtarget->isThumb())
13855     return ARM_AM::getSOImmVal(AbsImm) != -1;
13856   if (Subtarget->isThumb2())
13857     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
13858   // Thumb1 only has 8-bit unsigned immediate.
13859   return AbsImm >= 0 && AbsImm <= 255;
13860 }
13861 
13862 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
13863                                       bool isSEXTLoad, SDValue &Base,
13864                                       SDValue &Offset, bool &isInc,
13865                                       SelectionDAG &DAG) {
13866   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13867     return false;
13868 
13869   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
13870     // AddressingMode 3
13871     Base = Ptr->getOperand(0);
13872     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13873       int RHSC = (int)RHS->getZExtValue();
13874       if (RHSC < 0 && RHSC > -256) {
13875         assert(Ptr->getOpcode() == ISD::ADD);
13876         isInc = false;
13877         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13878         return true;
13879       }
13880     }
13881     isInc = (Ptr->getOpcode() == ISD::ADD);
13882     Offset = Ptr->getOperand(1);
13883     return true;
13884   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
13885     // AddressingMode 2
13886     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13887       int RHSC = (int)RHS->getZExtValue();
13888       if (RHSC < 0 && RHSC > -0x1000) {
13889         assert(Ptr->getOpcode() == ISD::ADD);
13890         isInc = false;
13891         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13892         Base = Ptr->getOperand(0);
13893         return true;
13894       }
13895     }
13896 
13897     if (Ptr->getOpcode() == ISD::ADD) {
13898       isInc = true;
13899       ARM_AM::ShiftOpc ShOpcVal=
13900         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
13901       if (ShOpcVal != ARM_AM::no_shift) {
13902         Base = Ptr->getOperand(1);
13903         Offset = Ptr->getOperand(0);
13904       } else {
13905         Base = Ptr->getOperand(0);
13906         Offset = Ptr->getOperand(1);
13907       }
13908       return true;
13909     }
13910 
13911     isInc = (Ptr->getOpcode() == ISD::ADD);
13912     Base = Ptr->getOperand(0);
13913     Offset = Ptr->getOperand(1);
13914     return true;
13915   }
13916 
13917   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
13918   return false;
13919 }
13920 
13921 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
13922                                      bool isSEXTLoad, SDValue &Base,
13923                                      SDValue &Offset, bool &isInc,
13924                                      SelectionDAG &DAG) {
13925   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
13926     return false;
13927 
13928   Base = Ptr->getOperand(0);
13929   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
13930     int RHSC = (int)RHS->getZExtValue();
13931     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
13932       assert(Ptr->getOpcode() == ISD::ADD);
13933       isInc = false;
13934       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
13935       return true;
13936     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
13937       isInc = Ptr->getOpcode() == ISD::ADD;
13938       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
13939       return true;
13940     }
13941   }
13942 
13943   return false;
13944 }
13945 
13946 /// getPreIndexedAddressParts - returns true by value, base pointer and
13947 /// offset pointer and addressing mode by reference if the node's address
13948 /// can be legally represented as pre-indexed load / store address.
13949 bool
13950 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
13951                                              SDValue &Offset,
13952                                              ISD::MemIndexedMode &AM,
13953                                              SelectionDAG &DAG) const {
13954   if (Subtarget->isThumb1Only())
13955     return false;
13956 
13957   EVT VT;
13958   SDValue Ptr;
13959   bool isSEXTLoad = false;
13960   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13961     Ptr = LD->getBasePtr();
13962     VT  = LD->getMemoryVT();
13963     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
13964   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
13965     Ptr = ST->getBasePtr();
13966     VT  = ST->getMemoryVT();
13967   } else
13968     return false;
13969 
13970   bool isInc;
13971   bool isLegal = false;
13972   if (Subtarget->isThumb2())
13973     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13974                                        Offset, isInc, DAG);
13975   else
13976     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
13977                                         Offset, isInc, DAG);
13978   if (!isLegal)
13979     return false;
13980 
13981   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
13982   return true;
13983 }
13984 
13985 /// getPostIndexedAddressParts - returns true by value, base pointer and
13986 /// offset pointer and addressing mode by reference if this node can be
13987 /// combined with a load / store to form a post-indexed load / store.
13988 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
13989                                                    SDValue &Base,
13990                                                    SDValue &Offset,
13991                                                    ISD::MemIndexedMode &AM,
13992                                                    SelectionDAG &DAG) const {
13993   EVT VT;
13994   SDValue Ptr;
13995   bool isSEXTLoad = false, isNonExt;
13996   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
13997     VT  = LD->getMemoryVT();
13998     Ptr = LD->getBasePtr();
13999     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
14000     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
14001   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
14002     VT  = ST->getMemoryVT();
14003     Ptr = ST->getBasePtr();
14004     isNonExt = !ST->isTruncatingStore();
14005   } else
14006     return false;
14007 
14008   if (Subtarget->isThumb1Only()) {
14009     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
14010     // must be non-extending/truncating, i32, with an offset of 4.
14011     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
14012     if (Op->getOpcode() != ISD::ADD || !isNonExt)
14013       return false;
14014     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
14015     if (!RHS || RHS->getZExtValue() != 4)
14016       return false;
14017 
14018     Offset = Op->getOperand(1);
14019     Base = Op->getOperand(0);
14020     AM = ISD::POST_INC;
14021     return true;
14022   }
14023 
14024   bool isInc;
14025   bool isLegal = false;
14026   if (Subtarget->isThumb2())
14027     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
14028                                        isInc, DAG);
14029   else
14030     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
14031                                         isInc, DAG);
14032   if (!isLegal)
14033     return false;
14034 
14035   if (Ptr != Base) {
14036     // Swap base ptr and offset to catch more post-index load / store when
14037     // it's legal. In Thumb2 mode, offset must be an immediate.
14038     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
14039         !Subtarget->isThumb2())
14040       std::swap(Base, Offset);
14041 
14042     // Post-indexed load / store update the base pointer.
14043     if (Ptr != Base)
14044       return false;
14045   }
14046 
14047   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
14048   return true;
14049 }
14050 
14051 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14052                                                       KnownBits &Known,
14053                                                       const APInt &DemandedElts,
14054                                                       const SelectionDAG &DAG,
14055                                                       unsigned Depth) const {
14056   unsigned BitWidth = Known.getBitWidth();
14057   Known.resetAll();
14058   switch (Op.getOpcode()) {
14059   default: break;
14060   case ARMISD::ADDC:
14061   case ARMISD::ADDE:
14062   case ARMISD::SUBC:
14063   case ARMISD::SUBE:
14064     // Special cases when we convert a carry to a boolean.
14065     if (Op.getResNo() == 0) {
14066       SDValue LHS = Op.getOperand(0);
14067       SDValue RHS = Op.getOperand(1);
14068       // (ADDE 0, 0, C) will give us a single bit.
14069       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
14070           isNullConstant(RHS)) {
14071         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
14072         return;
14073       }
14074     }
14075     break;
14076   case ARMISD::CMOV: {
14077     // Bits are known zero/one if known on the LHS and RHS.
14078     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
14079     if (Known.isUnknown())
14080       return;
14081 
14082     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
14083     Known.Zero &= KnownRHS.Zero;
14084     Known.One  &= KnownRHS.One;
14085     return;
14086   }
14087   case ISD::INTRINSIC_W_CHAIN: {
14088     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
14089     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
14090     switch (IntID) {
14091     default: return;
14092     case Intrinsic::arm_ldaex:
14093     case Intrinsic::arm_ldrex: {
14094       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
14095       unsigned MemBits = VT.getScalarSizeInBits();
14096       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
14097       return;
14098     }
14099     }
14100   }
14101   case ARMISD::BFI: {
14102     // Conservatively, we can recurse down the first operand
14103     // and just mask out all affected bits.
14104     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
14105 
14106     // The operand to BFI is already a mask suitable for removing the bits it
14107     // sets.
14108     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
14109     const APInt &Mask = CI->getAPIntValue();
14110     Known.Zero &= Mask;
14111     Known.One &= Mask;
14112     return;
14113   }
14114   case ARMISD::VGETLANEs:
14115   case ARMISD::VGETLANEu: {
14116     const SDValue &SrcSV = Op.getOperand(0);
14117     EVT VecVT = SrcSV.getValueType();
14118     assert(VecVT.isVector() && "VGETLANE expected a vector type");
14119     const unsigned NumSrcElts = VecVT.getVectorNumElements();
14120     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
14121     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
14122            "VGETLANE index out of bounds");
14123     unsigned Idx = Pos->getZExtValue();
14124     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
14125     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
14126 
14127     EVT VT = Op.getValueType();
14128     const unsigned DstSz = VT.getScalarSizeInBits();
14129     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
14130     (void)SrcSz;
14131     assert(SrcSz == Known.getBitWidth());
14132     assert(DstSz > SrcSz);
14133     if (Op.getOpcode() == ARMISD::VGETLANEs)
14134       Known = Known.sext(DstSz);
14135     else {
14136       Known = Known.zext(DstSz, true /* extended bits are known zero */);
14137     }
14138     assert(DstSz == Known.getBitWidth());
14139     break;
14140   }
14141   }
14142 }
14143 
14144 bool
14145 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
14146                                                 const APInt &DemandedAPInt,
14147                                                 TargetLoweringOpt &TLO) const {
14148   // Delay optimization, so we don't have to deal with illegal types, or block
14149   // optimizations.
14150   if (!TLO.LegalOps)
14151     return false;
14152 
14153   // Only optimize AND for now.
14154   if (Op.getOpcode() != ISD::AND)
14155     return false;
14156 
14157   EVT VT = Op.getValueType();
14158 
14159   // Ignore vectors.
14160   if (VT.isVector())
14161     return false;
14162 
14163   assert(VT == MVT::i32 && "Unexpected integer type");
14164 
14165   // Make sure the RHS really is a constant.
14166   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
14167   if (!C)
14168     return false;
14169 
14170   unsigned Mask = C->getZExtValue();
14171 
14172   unsigned Demanded = DemandedAPInt.getZExtValue();
14173   unsigned ShrunkMask = Mask & Demanded;
14174   unsigned ExpandedMask = Mask | ~Demanded;
14175 
14176   // If the mask is all zeros, let the target-independent code replace the
14177   // result with zero.
14178   if (ShrunkMask == 0)
14179     return false;
14180 
14181   // If the mask is all ones, erase the AND. (Currently, the target-independent
14182   // code won't do this, so we have to do it explicitly to avoid an infinite
14183   // loop in obscure cases.)
14184   if (ExpandedMask == ~0U)
14185     return TLO.CombineTo(Op, Op.getOperand(0));
14186 
14187   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
14188     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
14189   };
14190   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
14191     if (NewMask == Mask)
14192       return true;
14193     SDLoc DL(Op);
14194     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
14195     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
14196     return TLO.CombineTo(Op, NewOp);
14197   };
14198 
14199   // Prefer uxtb mask.
14200   if (IsLegalMask(0xFF))
14201     return UseMask(0xFF);
14202 
14203   // Prefer uxth mask.
14204   if (IsLegalMask(0xFFFF))
14205     return UseMask(0xFFFF);
14206 
14207   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
14208   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14209   if (ShrunkMask < 256)
14210     return UseMask(ShrunkMask);
14211 
14212   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
14213   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
14214   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
14215     return UseMask(ExpandedMask);
14216 
14217   // Potential improvements:
14218   //
14219   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
14220   // We could try to prefer Thumb1 immediates which can be lowered to a
14221   // two-instruction sequence.
14222   // We could try to recognize more legal ARM/Thumb2 immediates here.
14223 
14224   return false;
14225 }
14226 
14227 
14228 //===----------------------------------------------------------------------===//
14229 //                           ARM Inline Assembly Support
14230 //===----------------------------------------------------------------------===//
14231 
14232 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
14233   // Looking for "rev" which is V6+.
14234   if (!Subtarget->hasV6Ops())
14235     return false;
14236 
14237   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14238   std::string AsmStr = IA->getAsmString();
14239   SmallVector<StringRef, 4> AsmPieces;
14240   SplitString(AsmStr, AsmPieces, ";\n");
14241 
14242   switch (AsmPieces.size()) {
14243   default: return false;
14244   case 1:
14245     AsmStr = AsmPieces[0];
14246     AsmPieces.clear();
14247     SplitString(AsmStr, AsmPieces, " \t,");
14248 
14249     // rev $0, $1
14250     if (AsmPieces.size() == 3 &&
14251         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
14252         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
14253       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14254       if (Ty && Ty->getBitWidth() == 32)
14255         return IntrinsicLowering::LowerToByteSwap(CI);
14256     }
14257     break;
14258   }
14259 
14260   return false;
14261 }
14262 
14263 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
14264   // At this point, we have to lower this constraint to something else, so we
14265   // lower it to an "r" or "w". However, by doing this we will force the result
14266   // to be in register, while the X constraint is much more permissive.
14267   //
14268   // Although we are correct (we are free to emit anything, without
14269   // constraints), we might break use cases that would expect us to be more
14270   // efficient and emit something else.
14271   if (!Subtarget->hasVFP2Base())
14272     return "r";
14273   if (ConstraintVT.isFloatingPoint())
14274     return "w";
14275   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
14276      (ConstraintVT.getSizeInBits() == 64 ||
14277       ConstraintVT.getSizeInBits() == 128))
14278     return "w";
14279 
14280   return "r";
14281 }
14282 
14283 /// getConstraintType - Given a constraint letter, return the type of
14284 /// constraint it is for this target.
14285 ARMTargetLowering::ConstraintType
14286 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
14287   if (Constraint.size() == 1) {
14288     switch (Constraint[0]) {
14289     default:  break;
14290     case 'l': return C_RegisterClass;
14291     case 'w': return C_RegisterClass;
14292     case 'h': return C_RegisterClass;
14293     case 'x': return C_RegisterClass;
14294     case 't': return C_RegisterClass;
14295     case 'j': return C_Other; // Constant for movw.
14296       // An address with a single base register. Due to the way we
14297       // currently handle addresses it is the same as an 'r' memory constraint.
14298     case 'Q': return C_Memory;
14299     }
14300   } else if (Constraint.size() == 2) {
14301     switch (Constraint[0]) {
14302     default: break;
14303     case 'T': return C_RegisterClass;
14304     // All 'U+' constraints are addresses.
14305     case 'U': return C_Memory;
14306     }
14307   }
14308   return TargetLowering::getConstraintType(Constraint);
14309 }
14310 
14311 /// Examine constraint type and operand type and determine a weight value.
14312 /// This object must already have been set up with the operand type
14313 /// and the current alternative constraint selected.
14314 TargetLowering::ConstraintWeight
14315 ARMTargetLowering::getSingleConstraintMatchWeight(
14316     AsmOperandInfo &info, const char *constraint) const {
14317   ConstraintWeight weight = CW_Invalid;
14318   Value *CallOperandVal = info.CallOperandVal;
14319     // If we don't have a value, we can't do a match,
14320     // but allow it at the lowest weight.
14321   if (!CallOperandVal)
14322     return CW_Default;
14323   Type *type = CallOperandVal->getType();
14324   // Look at the constraint type.
14325   switch (*constraint) {
14326   default:
14327     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14328     break;
14329   case 'l':
14330     if (type->isIntegerTy()) {
14331       if (Subtarget->isThumb())
14332         weight = CW_SpecificReg;
14333       else
14334         weight = CW_Register;
14335     }
14336     break;
14337   case 'w':
14338     if (type->isFloatingPointTy())
14339       weight = CW_Register;
14340     break;
14341   }
14342   return weight;
14343 }
14344 
14345 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
14346 
14347 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
14348     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
14349   switch (Constraint.size()) {
14350   case 1:
14351     // GCC ARM Constraint Letters
14352     switch (Constraint[0]) {
14353     case 'l': // Low regs or general regs.
14354       if (Subtarget->isThumb())
14355         return RCPair(0U, &ARM::tGPRRegClass);
14356       return RCPair(0U, &ARM::GPRRegClass);
14357     case 'h': // High regs or no regs.
14358       if (Subtarget->isThumb())
14359         return RCPair(0U, &ARM::hGPRRegClass);
14360       break;
14361     case 'r':
14362       if (Subtarget->isThumb1Only())
14363         return RCPair(0U, &ARM::tGPRRegClass);
14364       return RCPair(0U, &ARM::GPRRegClass);
14365     case 'w':
14366       if (VT == MVT::Other)
14367         break;
14368       if (VT == MVT::f32)
14369         return RCPair(0U, &ARM::SPRRegClass);
14370       if (VT.getSizeInBits() == 64)
14371         return RCPair(0U, &ARM::DPRRegClass);
14372       if (VT.getSizeInBits() == 128)
14373         return RCPair(0U, &ARM::QPRRegClass);
14374       break;
14375     case 'x':
14376       if (VT == MVT::Other)
14377         break;
14378       if (VT == MVT::f32)
14379         return RCPair(0U, &ARM::SPR_8RegClass);
14380       if (VT.getSizeInBits() == 64)
14381         return RCPair(0U, &ARM::DPR_8RegClass);
14382       if (VT.getSizeInBits() == 128)
14383         return RCPair(0U, &ARM::QPR_8RegClass);
14384       break;
14385     case 't':
14386       if (VT == MVT::Other)
14387         break;
14388       if (VT == MVT::f32 || VT == MVT::i32)
14389         return RCPair(0U, &ARM::SPRRegClass);
14390       if (VT.getSizeInBits() == 64)
14391         return RCPair(0U, &ARM::DPR_VFP2RegClass);
14392       if (VT.getSizeInBits() == 128)
14393         return RCPair(0U, &ARM::QPR_VFP2RegClass);
14394       break;
14395     }
14396     break;
14397 
14398   case 2:
14399     if (Constraint[0] == 'T') {
14400       switch (Constraint[1]) {
14401       default:
14402         break;
14403       case 'e':
14404         return RCPair(0U, &ARM::tGPREvenRegClass);
14405       case 'o':
14406         return RCPair(0U, &ARM::tGPROddRegClass);
14407       }
14408     }
14409     break;
14410 
14411   default:
14412     break;
14413   }
14414 
14415   if (StringRef("{cc}").equals_lower(Constraint))
14416     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
14417 
14418   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14419 }
14420 
14421 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14422 /// vector.  If it is invalid, don't add anything to Ops.
14423 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14424                                                      std::string &Constraint,
14425                                                      std::vector<SDValue>&Ops,
14426                                                      SelectionDAG &DAG) const {
14427   SDValue Result;
14428 
14429   // Currently only support length 1 constraints.
14430   if (Constraint.length() != 1) return;
14431 
14432   char ConstraintLetter = Constraint[0];
14433   switch (ConstraintLetter) {
14434   default: break;
14435   case 'j':
14436   case 'I': case 'J': case 'K': case 'L':
14437   case 'M': case 'N': case 'O':
14438     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
14439     if (!C)
14440       return;
14441 
14442     int64_t CVal64 = C->getSExtValue();
14443     int CVal = (int) CVal64;
14444     // None of these constraints allow values larger than 32 bits.  Check
14445     // that the value fits in an int.
14446     if (CVal != CVal64)
14447       return;
14448 
14449     switch (ConstraintLetter) {
14450       case 'j':
14451         // Constant suitable for movw, must be between 0 and
14452         // 65535.
14453         if (Subtarget->hasV6T2Ops())
14454           if (CVal >= 0 && CVal <= 65535)
14455             break;
14456         return;
14457       case 'I':
14458         if (Subtarget->isThumb1Only()) {
14459           // This must be a constant between 0 and 255, for ADD
14460           // immediates.
14461           if (CVal >= 0 && CVal <= 255)
14462             break;
14463         } else if (Subtarget->isThumb2()) {
14464           // A constant that can be used as an immediate value in a
14465           // data-processing instruction.
14466           if (ARM_AM::getT2SOImmVal(CVal) != -1)
14467             break;
14468         } else {
14469           // A constant that can be used as an immediate value in a
14470           // data-processing instruction.
14471           if (ARM_AM::getSOImmVal(CVal) != -1)
14472             break;
14473         }
14474         return;
14475 
14476       case 'J':
14477         if (Subtarget->isThumb1Only()) {
14478           // This must be a constant between -255 and -1, for negated ADD
14479           // immediates. This can be used in GCC with an "n" modifier that
14480           // prints the negated value, for use with SUB instructions. It is
14481           // not useful otherwise but is implemented for compatibility.
14482           if (CVal >= -255 && CVal <= -1)
14483             break;
14484         } else {
14485           // This must be a constant between -4095 and 4095. It is not clear
14486           // what this constraint is intended for. Implemented for
14487           // compatibility with GCC.
14488           if (CVal >= -4095 && CVal <= 4095)
14489             break;
14490         }
14491         return;
14492 
14493       case 'K':
14494         if (Subtarget->isThumb1Only()) {
14495           // A 32-bit value where only one byte has a nonzero value. Exclude
14496           // zero to match GCC. This constraint is used by GCC internally for
14497           // constants that can be loaded with a move/shift combination.
14498           // It is not useful otherwise but is implemented for compatibility.
14499           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
14500             break;
14501         } else if (Subtarget->isThumb2()) {
14502           // A constant whose bitwise inverse can be used as an immediate
14503           // value in a data-processing instruction. This can be used in GCC
14504           // with a "B" modifier that prints the inverted value, for use with
14505           // BIC and MVN instructions. It is not useful otherwise but is
14506           // implemented for compatibility.
14507           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
14508             break;
14509         } else {
14510           // A constant whose bitwise inverse can be used as an immediate
14511           // value in a data-processing instruction. This can be used in GCC
14512           // with a "B" modifier that prints the inverted value, for use with
14513           // BIC and MVN instructions. It is not useful otherwise but is
14514           // implemented for compatibility.
14515           if (ARM_AM::getSOImmVal(~CVal) != -1)
14516             break;
14517         }
14518         return;
14519 
14520       case 'L':
14521         if (Subtarget->isThumb1Only()) {
14522           // This must be a constant between -7 and 7,
14523           // for 3-operand ADD/SUB immediate instructions.
14524           if (CVal >= -7 && CVal < 7)
14525             break;
14526         } else if (Subtarget->isThumb2()) {
14527           // A constant whose negation can be used as an immediate value in a
14528           // data-processing instruction. This can be used in GCC with an "n"
14529           // modifier that prints the negated value, for use with SUB
14530           // instructions. It is not useful otherwise but is implemented for
14531           // compatibility.
14532           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
14533             break;
14534         } else {
14535           // A constant whose negation can be used as an immediate value in a
14536           // data-processing instruction. This can be used in GCC with an "n"
14537           // modifier that prints the negated value, for use with SUB
14538           // instructions. It is not useful otherwise but is implemented for
14539           // compatibility.
14540           if (ARM_AM::getSOImmVal(-CVal) != -1)
14541             break;
14542         }
14543         return;
14544 
14545       case 'M':
14546         if (Subtarget->isThumb1Only()) {
14547           // This must be a multiple of 4 between 0 and 1020, for
14548           // ADD sp + immediate.
14549           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
14550             break;
14551         } else {
14552           // A power of two or a constant between 0 and 32.  This is used in
14553           // GCC for the shift amount on shifted register operands, but it is
14554           // useful in general for any shift amounts.
14555           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
14556             break;
14557         }
14558         return;
14559 
14560       case 'N':
14561         if (Subtarget->isThumb()) {  // FIXME thumb2
14562           // This must be a constant between 0 and 31, for shift amounts.
14563           if (CVal >= 0 && CVal <= 31)
14564             break;
14565         }
14566         return;
14567 
14568       case 'O':
14569         if (Subtarget->isThumb()) {  // FIXME thumb2
14570           // This must be a multiple of 4 between -508 and 508, for
14571           // ADD/SUB sp = sp + immediate.
14572           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
14573             break;
14574         }
14575         return;
14576     }
14577     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
14578     break;
14579   }
14580 
14581   if (Result.getNode()) {
14582     Ops.push_back(Result);
14583     return;
14584   }
14585   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14586 }
14587 
14588 static RTLIB::Libcall getDivRemLibcall(
14589     const SDNode *N, MVT::SimpleValueType SVT) {
14590   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
14591           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
14592          "Unhandled Opcode in getDivRemLibcall");
14593   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
14594                   N->getOpcode() == ISD::SREM;
14595   RTLIB::Libcall LC;
14596   switch (SVT) {
14597   default: llvm_unreachable("Unexpected request for libcall!");
14598   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
14599   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
14600   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
14601   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
14602   }
14603   return LC;
14604 }
14605 
14606 static TargetLowering::ArgListTy getDivRemArgList(
14607     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
14608   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
14609           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
14610          "Unhandled Opcode in getDivRemArgList");
14611   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
14612                   N->getOpcode() == ISD::SREM;
14613   TargetLowering::ArgListTy Args;
14614   TargetLowering::ArgListEntry Entry;
14615   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
14616     EVT ArgVT = N->getOperand(i).getValueType();
14617     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
14618     Entry.Node = N->getOperand(i);
14619     Entry.Ty = ArgTy;
14620     Entry.IsSExt = isSigned;
14621     Entry.IsZExt = !isSigned;
14622     Args.push_back(Entry);
14623   }
14624   if (Subtarget->isTargetWindows() && Args.size() >= 2)
14625     std::swap(Args[0], Args[1]);
14626   return Args;
14627 }
14628 
14629 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
14630   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
14631           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
14632           Subtarget->isTargetWindows()) &&
14633          "Register-based DivRem lowering only");
14634   unsigned Opcode = Op->getOpcode();
14635   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
14636          "Invalid opcode for Div/Rem lowering");
14637   bool isSigned = (Opcode == ISD::SDIVREM);
14638   EVT VT = Op->getValueType(0);
14639   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
14640   SDLoc dl(Op);
14641 
14642   // If the target has hardware divide, use divide + multiply + subtract:
14643   //     div = a / b
14644   //     rem = a - b * div
14645   //     return {div, rem}
14646   // This should be lowered into UDIV/SDIV + MLS later on.
14647   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
14648                                         : Subtarget->hasDivideInARMMode();
14649   if (hasDivide && Op->getValueType(0).isSimple() &&
14650       Op->getSimpleValueType(0) == MVT::i32) {
14651     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
14652     const SDValue Dividend = Op->getOperand(0);
14653     const SDValue Divisor = Op->getOperand(1);
14654     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
14655     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
14656     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
14657 
14658     SDValue Values[2] = {Div, Rem};
14659     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
14660   }
14661 
14662   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
14663                                        VT.getSimpleVT().SimpleTy);
14664   SDValue InChain = DAG.getEntryNode();
14665 
14666   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
14667                                                     DAG.getContext(),
14668                                                     Subtarget);
14669 
14670   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
14671                                          getPointerTy(DAG.getDataLayout()));
14672 
14673   Type *RetTy = StructType::get(Ty, Ty);
14674 
14675   if (Subtarget->isTargetWindows())
14676     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
14677 
14678   TargetLowering::CallLoweringInfo CLI(DAG);
14679   CLI.setDebugLoc(dl).setChain(InChain)
14680     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
14681     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
14682 
14683   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
14684   return CallInfo.first;
14685 }
14686 
14687 // Lowers REM using divmod helpers
14688 // see RTABI section 4.2/4.3
14689 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
14690   // Build return types (div and rem)
14691   std::vector<Type*> RetTyParams;
14692   Type *RetTyElement;
14693 
14694   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
14695   default: llvm_unreachable("Unexpected request for libcall!");
14696   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
14697   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
14698   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
14699   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
14700   }
14701 
14702   RetTyParams.push_back(RetTyElement);
14703   RetTyParams.push_back(RetTyElement);
14704   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
14705   Type *RetTy = StructType::get(*DAG.getContext(), ret);
14706 
14707   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
14708                                                              SimpleTy);
14709   SDValue InChain = DAG.getEntryNode();
14710   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
14711                                                     Subtarget);
14712   bool isSigned = N->getOpcode() == ISD::SREM;
14713   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
14714                                          getPointerTy(DAG.getDataLayout()));
14715 
14716   if (Subtarget->isTargetWindows())
14717     InChain = WinDBZCheckDenominator(DAG, N, InChain);
14718 
14719   // Lower call
14720   CallLoweringInfo CLI(DAG);
14721   CLI.setChain(InChain)
14722      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
14723      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
14724   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
14725 
14726   // Return second (rem) result operand (first contains div)
14727   SDNode *ResNode = CallResult.first.getNode();
14728   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
14729   return ResNode->getOperand(1);
14730 }
14731 
14732 SDValue
14733 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
14734   assert(Subtarget->isTargetWindows() && "unsupported target platform");
14735   SDLoc DL(Op);
14736 
14737   // Get the inputs.
14738   SDValue Chain = Op.getOperand(0);
14739   SDValue Size  = Op.getOperand(1);
14740 
14741   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
14742           "no-stack-arg-probe")) {
14743     unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
14744     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14745     Chain = SP.getValue(1);
14746     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
14747     if (Align)
14748       SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
14749                        DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
14750     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
14751     SDValue Ops[2] = { SP, Chain };
14752     return DAG.getMergeValues(Ops, DL);
14753   }
14754 
14755   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
14756                               DAG.getConstant(2, DL, MVT::i32));
14757 
14758   SDValue Flag;
14759   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
14760   Flag = Chain.getValue(1);
14761 
14762   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
14763   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
14764 
14765   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
14766   Chain = NewSP.getValue(1);
14767 
14768   SDValue Ops[2] = { NewSP, Chain };
14769   return DAG.getMergeValues(Ops, DL);
14770 }
14771 
14772 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
14773   SDValue SrcVal = Op.getOperand(0);
14774   const unsigned DstSz = Op.getValueType().getSizeInBits();
14775   const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
14776   assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
14777          "Unexpected type for custom-lowering FP_EXTEND");
14778 
14779   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
14780          "With both FP DP and 16, any FP conversion is legal!");
14781 
14782   assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
14783          "With FP16, 16 to 32 conversion is legal!");
14784 
14785   // Either we are converting from 16 -> 64, without FP16 and/or
14786   // FP.double-precision or without Armv8-fp. So we must do it in two
14787   // steps.
14788   // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
14789   // without FP16. So we must do a function call.
14790   SDLoc Loc(Op);
14791   RTLIB::Libcall LC;
14792   if (SrcSz == 16) {
14793     // Instruction from 16 -> 32
14794     if (Subtarget->hasFP16())
14795       SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f32, SrcVal);
14796     // Lib call from 16 -> 32
14797     else {
14798       LC = RTLIB::getFPEXT(MVT::f16, MVT::f32);
14799       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
14800              "Unexpected type for custom-lowering FP_EXTEND");
14801       SrcVal =
14802         makeLibCall(DAG, LC, MVT::f32, SrcVal, /*isSigned*/ false, Loc).first;
14803     }
14804   }
14805 
14806   if (DstSz != 64)
14807     return SrcVal;
14808   // For sure now SrcVal is 32 bits
14809   if (Subtarget->hasFP64()) // Instruction from 32 -> 64
14810     return DAG.getNode(ISD::FP_EXTEND, Loc, MVT::f64, SrcVal);
14811 
14812   LC = RTLIB::getFPEXT(MVT::f32, MVT::f64);
14813   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
14814          "Unexpected type for custom-lowering FP_EXTEND");
14815   return makeLibCall(DAG, LC, MVT::f64, SrcVal, /*isSigned*/ false, Loc).first;
14816 }
14817 
14818 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
14819   SDValue SrcVal = Op.getOperand(0);
14820   EVT SrcVT = SrcVal.getValueType();
14821   EVT DstVT = Op.getValueType();
14822   const unsigned DstSz = Op.getValueType().getSizeInBits();
14823   const unsigned SrcSz = SrcVT.getSizeInBits();
14824   (void)DstSz;
14825   assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
14826          "Unexpected type for custom-lowering FP_ROUND");
14827 
14828   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
14829          "With both FP DP and 16, any FP conversion is legal!");
14830 
14831   SDLoc Loc(Op);
14832 
14833   // Instruction from 32 -> 16 if hasFP16 is valid
14834   if (SrcSz == 32 && Subtarget->hasFP16())
14835     return Op;
14836 
14837   // Lib call from 32 -> 16 / 64 -> [32, 16]
14838   RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
14839   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
14840          "Unexpected type for custom-lowering FP_ROUND");
14841   return makeLibCall(DAG, LC, DstVT, SrcVal, /*isSigned*/ false, Loc).first;
14842 }
14843 
14844 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
14845                                  SelectionDAG &DAG) const {
14846   assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
14847   MVT HalfT = MVT::i32;
14848   SDLoc dl(N);
14849   SDValue Hi, Lo, Tmp;
14850 
14851   if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
14852       !isOperationLegalOrCustom(ISD::UADDO, HalfT))
14853     return ;
14854 
14855   unsigned OpTypeBits = HalfT.getScalarSizeInBits();
14856   SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
14857 
14858   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
14859                    DAG.getConstant(0, dl, HalfT));
14860   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
14861                    DAG.getConstant(1, dl, HalfT));
14862 
14863   Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
14864                     DAG.getConstant(OpTypeBits - 1, dl,
14865                     getShiftAmountTy(HalfT, DAG.getDataLayout())));
14866   Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
14867   Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
14868                    SDValue(Lo.getNode(), 1));
14869   Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
14870   Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
14871 
14872   Results.push_back(Lo);
14873   Results.push_back(Hi);
14874 }
14875 
14876 bool
14877 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14878   // The ARM target isn't yet aware of offsets.
14879   return false;
14880 }
14881 
14882 bool ARM::isBitFieldInvertedMask(unsigned v) {
14883   if (v == 0xffffffff)
14884     return false;
14885 
14886   // there can be 1's on either or both "outsides", all the "inside"
14887   // bits must be 0's
14888   return isShiftedMask_32(~v);
14889 }
14890 
14891 /// isFPImmLegal - Returns true if the target can instruction select the
14892 /// specified FP immediate natively. If false, the legalizer will
14893 /// materialize the FP immediate as a load from a constant pool.
14894 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
14895                                      bool ForCodeSize) const {
14896   if (!Subtarget->hasVFP3Base())
14897     return false;
14898   if (VT == MVT::f16 && Subtarget->hasFullFP16())
14899     return ARM_AM::getFP16Imm(Imm) != -1;
14900   if (VT == MVT::f32)
14901     return ARM_AM::getFP32Imm(Imm) != -1;
14902   if (VT == MVT::f64 && Subtarget->hasFP64())
14903     return ARM_AM::getFP64Imm(Imm) != -1;
14904   return false;
14905 }
14906 
14907 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
14908 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
14909 /// specified in the intrinsic calls.
14910 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14911                                            const CallInst &I,
14912                                            MachineFunction &MF,
14913                                            unsigned Intrinsic) const {
14914   switch (Intrinsic) {
14915   case Intrinsic::arm_neon_vld1:
14916   case Intrinsic::arm_neon_vld2:
14917   case Intrinsic::arm_neon_vld3:
14918   case Intrinsic::arm_neon_vld4:
14919   case Intrinsic::arm_neon_vld2lane:
14920   case Intrinsic::arm_neon_vld3lane:
14921   case Intrinsic::arm_neon_vld4lane:
14922   case Intrinsic::arm_neon_vld2dup:
14923   case Intrinsic::arm_neon_vld3dup:
14924   case Intrinsic::arm_neon_vld4dup: {
14925     Info.opc = ISD::INTRINSIC_W_CHAIN;
14926     // Conservatively set memVT to the entire set of vectors loaded.
14927     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14928     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14929     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14930     Info.ptrVal = I.getArgOperand(0);
14931     Info.offset = 0;
14932     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14933     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14934     // volatile loads with NEON intrinsics not supported
14935     Info.flags = MachineMemOperand::MOLoad;
14936     return true;
14937   }
14938   case Intrinsic::arm_neon_vld1x2:
14939   case Intrinsic::arm_neon_vld1x3:
14940   case Intrinsic::arm_neon_vld1x4: {
14941     Info.opc = ISD::INTRINSIC_W_CHAIN;
14942     // Conservatively set memVT to the entire set of vectors loaded.
14943     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14944     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
14945     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14946     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
14947     Info.offset = 0;
14948     Info.align = 0;
14949     // volatile loads with NEON intrinsics not supported
14950     Info.flags = MachineMemOperand::MOLoad;
14951     return true;
14952   }
14953   case Intrinsic::arm_neon_vst1:
14954   case Intrinsic::arm_neon_vst2:
14955   case Intrinsic::arm_neon_vst3:
14956   case Intrinsic::arm_neon_vst4:
14957   case Intrinsic::arm_neon_vst2lane:
14958   case Intrinsic::arm_neon_vst3lane:
14959   case Intrinsic::arm_neon_vst4lane: {
14960     Info.opc = ISD::INTRINSIC_VOID;
14961     // Conservatively set memVT to the entire set of vectors stored.
14962     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14963     unsigned NumElts = 0;
14964     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14965       Type *ArgTy = I.getArgOperand(ArgI)->getType();
14966       if (!ArgTy->isVectorTy())
14967         break;
14968       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14969     }
14970     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14971     Info.ptrVal = I.getArgOperand(0);
14972     Info.offset = 0;
14973     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
14974     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
14975     // volatile stores with NEON intrinsics not supported
14976     Info.flags = MachineMemOperand::MOStore;
14977     return true;
14978   }
14979   case Intrinsic::arm_neon_vst1x2:
14980   case Intrinsic::arm_neon_vst1x3:
14981   case Intrinsic::arm_neon_vst1x4: {
14982     Info.opc = ISD::INTRINSIC_VOID;
14983     // Conservatively set memVT to the entire set of vectors stored.
14984     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
14985     unsigned NumElts = 0;
14986     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
14987       Type *ArgTy = I.getArgOperand(ArgI)->getType();
14988       if (!ArgTy->isVectorTy())
14989         break;
14990       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
14991     }
14992     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
14993     Info.ptrVal = I.getArgOperand(0);
14994     Info.offset = 0;
14995     Info.align = 0;
14996     // volatile stores with NEON intrinsics not supported
14997     Info.flags = MachineMemOperand::MOStore;
14998     return true;
14999   }
15000   case Intrinsic::arm_ldaex:
15001   case Intrinsic::arm_ldrex: {
15002     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15003     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
15004     Info.opc = ISD::INTRINSIC_W_CHAIN;
15005     Info.memVT = MVT::getVT(PtrTy->getElementType());
15006     Info.ptrVal = I.getArgOperand(0);
15007     Info.offset = 0;
15008     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
15009     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
15010     return true;
15011   }
15012   case Intrinsic::arm_stlex:
15013   case Intrinsic::arm_strex: {
15014     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
15015     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
15016     Info.opc = ISD::INTRINSIC_W_CHAIN;
15017     Info.memVT = MVT::getVT(PtrTy->getElementType());
15018     Info.ptrVal = I.getArgOperand(1);
15019     Info.offset = 0;
15020     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
15021     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
15022     return true;
15023   }
15024   case Intrinsic::arm_stlexd:
15025   case Intrinsic::arm_strexd:
15026     Info.opc = ISD::INTRINSIC_W_CHAIN;
15027     Info.memVT = MVT::i64;
15028     Info.ptrVal = I.getArgOperand(2);
15029     Info.offset = 0;
15030     Info.align = 8;
15031     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
15032     return true;
15033 
15034   case Intrinsic::arm_ldaexd:
15035   case Intrinsic::arm_ldrexd:
15036     Info.opc = ISD::INTRINSIC_W_CHAIN;
15037     Info.memVT = MVT::i64;
15038     Info.ptrVal = I.getArgOperand(0);
15039     Info.offset = 0;
15040     Info.align = 8;
15041     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
15042     return true;
15043 
15044   default:
15045     break;
15046   }
15047 
15048   return false;
15049 }
15050 
15051 /// Returns true if it is beneficial to convert a load of a constant
15052 /// to just the constant itself.
15053 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15054                                                           Type *Ty) const {
15055   assert(Ty->isIntegerTy());
15056 
15057   unsigned Bits = Ty->getPrimitiveSizeInBits();
15058   if (Bits == 0 || Bits > 32)
15059     return false;
15060   return true;
15061 }
15062 
15063 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
15064                                                 unsigned Index) const {
15065   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
15066     return false;
15067 
15068   return (Index == 0 || Index == ResVT.getVectorNumElements());
15069 }
15070 
15071 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
15072                                         ARM_MB::MemBOpt Domain) const {
15073   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
15074 
15075   // First, if the target has no DMB, see what fallback we can use.
15076   if (!Subtarget->hasDataBarrier()) {
15077     // Some ARMv6 cpus can support data barriers with an mcr instruction.
15078     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
15079     // here.
15080     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
15081       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
15082       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
15083                         Builder.getInt32(0), Builder.getInt32(7),
15084                         Builder.getInt32(10), Builder.getInt32(5)};
15085       return Builder.CreateCall(MCR, args);
15086     } else {
15087       // Instead of using barriers, atomic accesses on these subtargets use
15088       // libcalls.
15089       llvm_unreachable("makeDMB on a target so old that it has no barriers");
15090     }
15091   } else {
15092     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
15093     // Only a full system barrier exists in the M-class architectures.
15094     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
15095     Constant *CDomain = Builder.getInt32(Domain);
15096     return Builder.CreateCall(DMB, CDomain);
15097   }
15098 }
15099 
15100 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
15101 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
15102                                                  Instruction *Inst,
15103                                                  AtomicOrdering Ord) const {
15104   switch (Ord) {
15105   case AtomicOrdering::NotAtomic:
15106   case AtomicOrdering::Unordered:
15107     llvm_unreachable("Invalid fence: unordered/non-atomic");
15108   case AtomicOrdering::Monotonic:
15109   case AtomicOrdering::Acquire:
15110     return nullptr; // Nothing to do
15111   case AtomicOrdering::SequentiallyConsistent:
15112     if (!Inst->hasAtomicStore())
15113       return nullptr; // Nothing to do
15114     LLVM_FALLTHROUGH;
15115   case AtomicOrdering::Release:
15116   case AtomicOrdering::AcquireRelease:
15117     if (Subtarget->preferISHSTBarriers())
15118       return makeDMB(Builder, ARM_MB::ISHST);
15119     // FIXME: add a comment with a link to documentation justifying this.
15120     else
15121       return makeDMB(Builder, ARM_MB::ISH);
15122   }
15123   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
15124 }
15125 
15126 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
15127                                                   Instruction *Inst,
15128                                                   AtomicOrdering Ord) const {
15129   switch (Ord) {
15130   case AtomicOrdering::NotAtomic:
15131   case AtomicOrdering::Unordered:
15132     llvm_unreachable("Invalid fence: unordered/not-atomic");
15133   case AtomicOrdering::Monotonic:
15134   case AtomicOrdering::Release:
15135     return nullptr; // Nothing to do
15136   case AtomicOrdering::Acquire:
15137   case AtomicOrdering::AcquireRelease:
15138   case AtomicOrdering::SequentiallyConsistent:
15139     return makeDMB(Builder, ARM_MB::ISH);
15140   }
15141   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
15142 }
15143 
15144 // Loads and stores less than 64-bits are already atomic; ones above that
15145 // are doomed anyway, so defer to the default libcall and blame the OS when
15146 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15147 // anything for those.
15148 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
15149   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
15150   return (Size == 64) && !Subtarget->isMClass();
15151 }
15152 
15153 // Loads and stores less than 64-bits are already atomic; ones above that
15154 // are doomed anyway, so defer to the default libcall and blame the OS when
15155 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
15156 // anything for those.
15157 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
15158 // guarantee, see DDI0406C ARM architecture reference manual,
15159 // sections A8.8.72-74 LDRD)
15160 TargetLowering::AtomicExpansionKind
15161 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
15162   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
15163   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
15164                                                   : AtomicExpansionKind::None;
15165 }
15166 
15167 // For the real atomic operations, we have ldrex/strex up to 32 bits,
15168 // and up to 64 bits on the non-M profiles
15169 TargetLowering::AtomicExpansionKind
15170 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
15171   if (AI->isFloatingPointOperation())
15172     return AtomicExpansionKind::CmpXChg;
15173 
15174   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
15175   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
15176   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
15177              ? AtomicExpansionKind::LLSC
15178              : AtomicExpansionKind::None;
15179 }
15180 
15181 TargetLowering::AtomicExpansionKind
15182 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
15183   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
15184   // implement cmpxchg without spilling. If the address being exchanged is also
15185   // on the stack and close enough to the spill slot, this can lead to a
15186   // situation where the monitor always gets cleared and the atomic operation
15187   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
15188   bool HasAtomicCmpXchg =
15189       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
15190   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
15191     return AtomicExpansionKind::LLSC;
15192   return AtomicExpansionKind::None;
15193 }
15194 
15195 bool ARMTargetLowering::shouldInsertFencesForAtomic(
15196     const Instruction *I) const {
15197   return InsertFencesForAtomic;
15198 }
15199 
15200 // This has so far only been implemented for MachO.
15201 bool ARMTargetLowering::useLoadStackGuardNode() const {
15202   return Subtarget->isTargetMachO();
15203 }
15204 
15205 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
15206                                                   unsigned &Cost) const {
15207   // If we do not have NEON, vector types are not natively supported.
15208   if (!Subtarget->hasNEON())
15209     return false;
15210 
15211   // Floating point values and vector values map to the same register file.
15212   // Therefore, although we could do a store extract of a vector type, this is
15213   // better to leave at float as we have more freedom in the addressing mode for
15214   // those.
15215   if (VectorTy->isFPOrFPVectorTy())
15216     return false;
15217 
15218   // If the index is unknown at compile time, this is very expensive to lower
15219   // and it is not possible to combine the store with the extract.
15220   if (!isa<ConstantInt>(Idx))
15221     return false;
15222 
15223   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
15224   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
15225   // We can do a store + vector extract on any vector that fits perfectly in a D
15226   // or Q register.
15227   if (BitWidth == 64 || BitWidth == 128) {
15228     Cost = 0;
15229     return true;
15230   }
15231   return false;
15232 }
15233 
15234 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
15235   return Subtarget->hasV6T2Ops();
15236 }
15237 
15238 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
15239   return Subtarget->hasV6T2Ops();
15240 }
15241 
15242 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
15243   return !Subtarget->hasMinSize();
15244 }
15245 
15246 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
15247                                          AtomicOrdering Ord) const {
15248   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
15249   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
15250   bool IsAcquire = isAcquireOrStronger(Ord);
15251 
15252   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
15253   // intrinsic must return {i32, i32} and we have to recombine them into a
15254   // single i64 here.
15255   if (ValTy->getPrimitiveSizeInBits() == 64) {
15256     Intrinsic::ID Int =
15257         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
15258     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
15259 
15260     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
15261     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
15262 
15263     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
15264     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
15265     if (!Subtarget->isLittle())
15266       std::swap (Lo, Hi);
15267     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
15268     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
15269     return Builder.CreateOr(
15270         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
15271   }
15272 
15273   Type *Tys[] = { Addr->getType() };
15274   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
15275   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
15276 
15277   return Builder.CreateTruncOrBitCast(
15278       Builder.CreateCall(Ldrex, Addr),
15279       cast<PointerType>(Addr->getType())->getElementType());
15280 }
15281 
15282 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
15283     IRBuilder<> &Builder) const {
15284   if (!Subtarget->hasV7Ops())
15285     return;
15286   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
15287   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
15288 }
15289 
15290 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
15291                                                Value *Addr,
15292                                                AtomicOrdering Ord) const {
15293   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
15294   bool IsRelease = isReleaseOrStronger(Ord);
15295 
15296   // Since the intrinsics must have legal type, the i64 intrinsics take two
15297   // parameters: "i32, i32". We must marshal Val into the appropriate form
15298   // before the call.
15299   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
15300     Intrinsic::ID Int =
15301         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
15302     Function *Strex = Intrinsic::getDeclaration(M, Int);
15303     Type *Int32Ty = Type::getInt32Ty(M->getContext());
15304 
15305     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
15306     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
15307     if (!Subtarget->isLittle())
15308       std::swap(Lo, Hi);
15309     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
15310     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
15311   }
15312 
15313   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
15314   Type *Tys[] = { Addr->getType() };
15315   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
15316 
15317   return Builder.CreateCall(
15318       Strex, {Builder.CreateZExtOrBitCast(
15319                   Val, Strex->getFunctionType()->getParamType(0)),
15320               Addr});
15321 }
15322 
15323 
15324 bool ARMTargetLowering::alignLoopsWithOptSize() const {
15325   return Subtarget->isMClass();
15326 }
15327 
15328 /// A helper function for determining the number of interleaved accesses we
15329 /// will generate when lowering accesses of the given type.
15330 unsigned
15331 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
15332                                              const DataLayout &DL) const {
15333   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
15334 }
15335 
15336 bool ARMTargetLowering::isLegalInterleavedAccessType(
15337     VectorType *VecTy, const DataLayout &DL) const {
15338 
15339   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
15340   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
15341 
15342   // Ensure the vector doesn't have f16 elements. Even though we could do an
15343   // i16 vldN, we can't hold the f16 vectors and will end up converting via
15344   // f32.
15345   if (VecTy->getElementType()->isHalfTy())
15346     return false;
15347 
15348   // Ensure the number of vector elements is greater than 1.
15349   if (VecTy->getNumElements() < 2)
15350     return false;
15351 
15352   // Ensure the element type is legal.
15353   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
15354     return false;
15355 
15356   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
15357   // 128 will be split into multiple interleaved accesses.
15358   return VecSize == 64 || VecSize % 128 == 0;
15359 }
15360 
15361 /// Lower an interleaved load into a vldN intrinsic.
15362 ///
15363 /// E.g. Lower an interleaved load (Factor = 2):
15364 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
15365 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
15366 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
15367 ///
15368 ///      Into:
15369 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
15370 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
15371 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
15372 bool ARMTargetLowering::lowerInterleavedLoad(
15373     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
15374     ArrayRef<unsigned> Indices, unsigned Factor) const {
15375   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
15376          "Invalid interleave factor");
15377   assert(!Shuffles.empty() && "Empty shufflevector input");
15378   assert(Shuffles.size() == Indices.size() &&
15379          "Unmatched number of shufflevectors and indices");
15380 
15381   VectorType *VecTy = Shuffles[0]->getType();
15382   Type *EltTy = VecTy->getVectorElementType();
15383 
15384   const DataLayout &DL = LI->getModule()->getDataLayout();
15385 
15386   // Skip if we do not have NEON and skip illegal vector types. We can
15387   // "legalize" wide vector types into multiple interleaved accesses as long as
15388   // the vector types are divisible by 128.
15389   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(VecTy, DL))
15390     return false;
15391 
15392   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
15393 
15394   // A pointer vector can not be the return type of the ldN intrinsics. Need to
15395   // load integer vectors first and then convert to pointer vectors.
15396   if (EltTy->isPointerTy())
15397     VecTy =
15398         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
15399 
15400   IRBuilder<> Builder(LI);
15401 
15402   // The base address of the load.
15403   Value *BaseAddr = LI->getPointerOperand();
15404 
15405   if (NumLoads > 1) {
15406     // If we're going to generate more than one load, reset the sub-vector type
15407     // to something legal.
15408     VecTy = VectorType::get(VecTy->getVectorElementType(),
15409                             VecTy->getVectorNumElements() / NumLoads);
15410 
15411     // We will compute the pointer operand of each load from the original base
15412     // address using GEPs. Cast the base address to a pointer to the scalar
15413     // element type.
15414     BaseAddr = Builder.CreateBitCast(
15415         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
15416                       LI->getPointerAddressSpace()));
15417   }
15418 
15419   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
15420 
15421   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
15422   Type *Tys[] = {VecTy, Int8Ptr};
15423   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
15424                                             Intrinsic::arm_neon_vld3,
15425                                             Intrinsic::arm_neon_vld4};
15426   Function *VldnFunc =
15427       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
15428 
15429   // Holds sub-vectors extracted from the load intrinsic return values. The
15430   // sub-vectors are associated with the shufflevector instructions they will
15431   // replace.
15432   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
15433 
15434   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
15435     // If we're generating more than one load, compute the base address of
15436     // subsequent loads as an offset from the previous.
15437     if (LoadCount > 0)
15438       BaseAddr =
15439           Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
15440                                      VecTy->getVectorNumElements() * Factor);
15441 
15442     SmallVector<Value *, 2> Ops;
15443     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
15444     Ops.push_back(Builder.getInt32(LI->getAlignment()));
15445 
15446     CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
15447 
15448     // Replace uses of each shufflevector with the corresponding vector loaded
15449     // by ldN.
15450     for (unsigned i = 0; i < Shuffles.size(); i++) {
15451       ShuffleVectorInst *SV = Shuffles[i];
15452       unsigned Index = Indices[i];
15453 
15454       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
15455 
15456       // Convert the integer vector to pointer vector if the element is pointer.
15457       if (EltTy->isPointerTy())
15458         SubVec = Builder.CreateIntToPtr(
15459             SubVec, VectorType::get(SV->getType()->getVectorElementType(),
15460                                     VecTy->getVectorNumElements()));
15461 
15462       SubVecs[SV].push_back(SubVec);
15463     }
15464   }
15465 
15466   // Replace uses of the shufflevector instructions with the sub-vectors
15467   // returned by the load intrinsic. If a shufflevector instruction is
15468   // associated with more than one sub-vector, those sub-vectors will be
15469   // concatenated into a single wide vector.
15470   for (ShuffleVectorInst *SVI : Shuffles) {
15471     auto &SubVec = SubVecs[SVI];
15472     auto *WideVec =
15473         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
15474     SVI->replaceAllUsesWith(WideVec);
15475   }
15476 
15477   return true;
15478 }
15479 
15480 /// Lower an interleaved store into a vstN intrinsic.
15481 ///
15482 /// E.g. Lower an interleaved store (Factor = 3):
15483 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
15484 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
15485 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
15486 ///
15487 ///      Into:
15488 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
15489 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
15490 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
15491 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
15492 ///
15493 /// Note that the new shufflevectors will be removed and we'll only generate one
15494 /// vst3 instruction in CodeGen.
15495 ///
15496 /// Example for a more general valid mask (Factor 3). Lower:
15497 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
15498 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
15499 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
15500 ///
15501 ///      Into:
15502 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
15503 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
15504 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
15505 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
15506 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
15507                                               ShuffleVectorInst *SVI,
15508                                               unsigned Factor) const {
15509   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
15510          "Invalid interleave factor");
15511 
15512   VectorType *VecTy = SVI->getType();
15513   assert(VecTy->getVectorNumElements() % Factor == 0 &&
15514          "Invalid interleaved store");
15515 
15516   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
15517   Type *EltTy = VecTy->getVectorElementType();
15518   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
15519 
15520   const DataLayout &DL = SI->getModule()->getDataLayout();
15521 
15522   // Skip if we do not have NEON and skip illegal vector types. We can
15523   // "legalize" wide vector types into multiple interleaved accesses as long as
15524   // the vector types are divisible by 128.
15525   if (!Subtarget->hasNEON() || !isLegalInterleavedAccessType(SubVecTy, DL))
15526     return false;
15527 
15528   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
15529 
15530   Value *Op0 = SVI->getOperand(0);
15531   Value *Op1 = SVI->getOperand(1);
15532   IRBuilder<> Builder(SI);
15533 
15534   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
15535   // vectors to integer vectors.
15536   if (EltTy->isPointerTy()) {
15537     Type *IntTy = DL.getIntPtrType(EltTy);
15538 
15539     // Convert to the corresponding integer vector.
15540     Type *IntVecTy =
15541         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
15542     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
15543     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
15544 
15545     SubVecTy = VectorType::get(IntTy, LaneLen);
15546   }
15547 
15548   // The base address of the store.
15549   Value *BaseAddr = SI->getPointerOperand();
15550 
15551   if (NumStores > 1) {
15552     // If we're going to generate more than one store, reset the lane length
15553     // and sub-vector type to something legal.
15554     LaneLen /= NumStores;
15555     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
15556 
15557     // We will compute the pointer operand of each store from the original base
15558     // address using GEPs. Cast the base address to a pointer to the scalar
15559     // element type.
15560     BaseAddr = Builder.CreateBitCast(
15561         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
15562                       SI->getPointerAddressSpace()));
15563   }
15564 
15565   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
15566 
15567   auto Mask = SVI->getShuffleMask();
15568 
15569   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
15570   Type *Tys[] = {Int8Ptr, SubVecTy};
15571   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
15572                                              Intrinsic::arm_neon_vst3,
15573                                              Intrinsic::arm_neon_vst4};
15574 
15575   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
15576     // If we generating more than one store, we compute the base address of
15577     // subsequent stores as an offset from the previous.
15578     if (StoreCount > 0)
15579       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
15580                                             BaseAddr, LaneLen * Factor);
15581 
15582     SmallVector<Value *, 6> Ops;
15583     Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
15584 
15585     Function *VstNFunc =
15586         Intrinsic::getDeclaration(SI->getModule(), StoreInts[Factor - 2], Tys);
15587 
15588     // Split the shufflevector operands into sub vectors for the new vstN call.
15589     for (unsigned i = 0; i < Factor; i++) {
15590       unsigned IdxI = StoreCount * LaneLen * Factor + i;
15591       if (Mask[IdxI] >= 0) {
15592         Ops.push_back(Builder.CreateShuffleVector(
15593             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
15594       } else {
15595         unsigned StartMask = 0;
15596         for (unsigned j = 1; j < LaneLen; j++) {
15597           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
15598           if (Mask[IdxJ * Factor + IdxI] >= 0) {
15599             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
15600             break;
15601           }
15602         }
15603         // Note: If all elements in a chunk are undefs, StartMask=0!
15604         // Note: Filling undef gaps with random elements is ok, since
15605         // those elements were being written anyway (with undefs).
15606         // In the case of all undefs we're defaulting to using elems from 0
15607         // Note: StartMask cannot be negative, it's checked in
15608         // isReInterleaveMask
15609         Ops.push_back(Builder.CreateShuffleVector(
15610             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
15611       }
15612     }
15613 
15614     Ops.push_back(Builder.getInt32(SI->getAlignment()));
15615     Builder.CreateCall(VstNFunc, Ops);
15616   }
15617   return true;
15618 }
15619 
15620 enum HABaseType {
15621   HA_UNKNOWN = 0,
15622   HA_FLOAT,
15623   HA_DOUBLE,
15624   HA_VECT64,
15625   HA_VECT128
15626 };
15627 
15628 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
15629                                    uint64_t &Members) {
15630   if (auto *ST = dyn_cast<StructType>(Ty)) {
15631     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
15632       uint64_t SubMembers = 0;
15633       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
15634         return false;
15635       Members += SubMembers;
15636     }
15637   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
15638     uint64_t SubMembers = 0;
15639     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
15640       return false;
15641     Members += SubMembers * AT->getNumElements();
15642   } else if (Ty->isFloatTy()) {
15643     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
15644       return false;
15645     Members = 1;
15646     Base = HA_FLOAT;
15647   } else if (Ty->isDoubleTy()) {
15648     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
15649       return false;
15650     Members = 1;
15651     Base = HA_DOUBLE;
15652   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
15653     Members = 1;
15654     switch (Base) {
15655     case HA_FLOAT:
15656     case HA_DOUBLE:
15657       return false;
15658     case HA_VECT64:
15659       return VT->getBitWidth() == 64;
15660     case HA_VECT128:
15661       return VT->getBitWidth() == 128;
15662     case HA_UNKNOWN:
15663       switch (VT->getBitWidth()) {
15664       case 64:
15665         Base = HA_VECT64;
15666         return true;
15667       case 128:
15668         Base = HA_VECT128;
15669         return true;
15670       default:
15671         return false;
15672       }
15673     }
15674   }
15675 
15676   return (Members > 0 && Members <= 4);
15677 }
15678 
15679 /// Return the correct alignment for the current calling convention.
15680 unsigned
15681 ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
15682                                                  DataLayout DL) const {
15683   if (!ArgTy->isVectorTy())
15684     return DL.getABITypeAlignment(ArgTy);
15685 
15686   // Avoid over-aligning vector parameters. It would require realigning the
15687   // stack and waste space for no real benefit.
15688   return std::min(DL.getABITypeAlignment(ArgTy), DL.getStackAlignment());
15689 }
15690 
15691 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
15692 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
15693 /// passing according to AAPCS rules.
15694 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
15695     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
15696   if (getEffectiveCallingConv(CallConv, isVarArg) !=
15697       CallingConv::ARM_AAPCS_VFP)
15698     return false;
15699 
15700   HABaseType Base = HA_UNKNOWN;
15701   uint64_t Members = 0;
15702   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
15703   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
15704 
15705   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
15706   return IsHA || IsIntArray;
15707 }
15708 
15709 unsigned ARMTargetLowering::getExceptionPointerRegister(
15710     const Constant *PersonalityFn) const {
15711   // Platforms which do not use SjLj EH may return values in these registers
15712   // via the personality function.
15713   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
15714 }
15715 
15716 unsigned ARMTargetLowering::getExceptionSelectorRegister(
15717     const Constant *PersonalityFn) const {
15718   // Platforms which do not use SjLj EH may return values in these registers
15719   // via the personality function.
15720   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
15721 }
15722 
15723 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15724   // Update IsSplitCSR in ARMFunctionInfo.
15725   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
15726   AFI->setIsSplitCSR(true);
15727 }
15728 
15729 void ARMTargetLowering::insertCopiesSplitCSR(
15730     MachineBasicBlock *Entry,
15731     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15732   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
15733   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15734   if (!IStart)
15735     return;
15736 
15737   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
15738   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15739   MachineBasicBlock::iterator MBBI = Entry->begin();
15740   for (const MCPhysReg *I = IStart; *I; ++I) {
15741     const TargetRegisterClass *RC = nullptr;
15742     if (ARM::GPRRegClass.contains(*I))
15743       RC = &ARM::GPRRegClass;
15744     else if (ARM::DPRRegClass.contains(*I))
15745       RC = &ARM::DPRRegClass;
15746     else
15747       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15748 
15749     unsigned NewVR = MRI->createVirtualRegister(RC);
15750     // Create copy from CSR to a virtual register.
15751     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15752     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15753     // nounwind. If we want to generalize this later, we may need to emit
15754     // CFI pseudo-instructions.
15755     assert(Entry->getParent()->getFunction().hasFnAttribute(
15756                Attribute::NoUnwind) &&
15757            "Function should be nounwind in insertCopiesSplitCSR!");
15758     Entry->addLiveIn(*I);
15759     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15760         .addReg(*I);
15761 
15762     // Insert the copy-back instructions right before the terminator.
15763     for (auto *Exit : Exits)
15764       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15765               TII->get(TargetOpcode::COPY), *I)
15766           .addReg(NewVR);
15767   }
15768 }
15769 
15770 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
15771   MF.getFrameInfo().computeMaxCallFrameSize(MF);
15772   TargetLoweringBase::finalizeLowering(MF);
15773 }
15774