1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_fp, prev_lr                  |
51 // | (a.k.a. "frame record")           |
52 // |                                   |
53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
54 // |                                   |
55 // | callee-saved gpr registers        |
56 // |                                   |
57 // |-----------------------------------|
58 // |                                   |
59 // | callee-saved fp/simd regs         |
60 // |                                   |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.8-byte.alignment.....|  compile time; if present)
65 // |-----------------------------------|
66 // |                                   |
67 // | local variables of fixed size     |
68 // | including spill slots             |
69 // |-----------------------------------| <- base pointer (not defined by ABI,
70 // |.variable-sized.local.variables....|       LLVM chooses r6)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................|  compile time)
73 // |-----------------------------------| <- sp
74 // |                                   | Lower address
75 //
76 //
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
83 //
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 //   variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 //   more-than-default alignment requirements.
90 //
91 // In some cases when a base pointer is not strictly needed, it is generated
92 // anyway when offsets from the frame pointer to access local variables become
93 // so large that the offset can't be encoded in the immediate fields of loads
94 // or stores.
95 //
96 // The frame pointer might be chosen to be r7 or r11, depending on the target
97 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
98 // details.
99 //
100 // Outgoing function arguments must be at the bottom of the stack frame when
101 // calling another function. If we do not have variable-sized stack objects, we
102 // can allocate a "reserved call frame" area at the bottom of the local
103 // variable area, large enough for all outgoing calls. If we do have VLAs, then
104 // the stack pointer must be decremented and incremented around each call to
105 // make space for the arguments below the VLAs.
106 //
107 //===----------------------------------------------------------------------===//
108 
109 #include "ARMFrameLowering.h"
110 #include "ARMBaseInstrInfo.h"
111 #include "ARMBaseRegisterInfo.h"
112 #include "ARMConstantPoolValue.h"
113 #include "ARMMachineFunctionInfo.h"
114 #include "ARMSubtarget.h"
115 #include "MCTargetDesc/ARMAddressingModes.h"
116 #include "MCTargetDesc/ARMBaseInfo.h"
117 #include "Utils/ARMBaseInfo.h"
118 #include "llvm/ADT/BitVector.h"
119 #include "llvm/ADT/STLExtras.h"
120 #include "llvm/ADT/SmallPtrSet.h"
121 #include "llvm/ADT/SmallVector.h"
122 #include "llvm/CodeGen/MachineBasicBlock.h"
123 #include "llvm/CodeGen/MachineConstantPool.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineJumpTableInfo.h"
129 #include "llvm/CodeGen/MachineModuleInfo.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/MachineRegisterInfo.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetInstrInfo.h"
134 #include "llvm/CodeGen/TargetOpcodes.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/IR/Attributes.h"
138 #include "llvm/IR/CallingConv.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCAsmInfo.h"
142 #include "llvm/MC/MCContext.h"
143 #include "llvm/MC/MCDwarf.h"
144 #include "llvm/MC/MCInstrDesc.h"
145 #include "llvm/MC/MCRegisterInfo.h"
146 #include "llvm/Support/CodeGen.h"
147 #include "llvm/Support/CommandLine.h"
148 #include "llvm/Support/Compiler.h"
149 #include "llvm/Support/Debug.h"
150 #include "llvm/Support/ErrorHandling.h"
151 #include "llvm/Support/MathExtras.h"
152 #include "llvm/Support/raw_ostream.h"
153 #include "llvm/Target/TargetMachine.h"
154 #include "llvm/Target/TargetOptions.h"
155 #include <algorithm>
156 #include <cassert>
157 #include <cstddef>
158 #include <cstdint>
159 #include <iterator>
160 #include <utility>
161 #include <vector>
162 
163 #define DEBUG_TYPE "arm-frame-lowering"
164 
165 using namespace llvm;
166 
167 static cl::opt<bool>
168 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
169                      cl::desc("Align ARM NEON spills in prolog and epilog"));
170 
171 static MachineBasicBlock::iterator
172 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
173                         unsigned NumAlignedDPRCS2Regs);
174 
175 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
176     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
177       STI(sti) {}
178 
179 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
180   // iOS always has a FP for backtracking, force other targets to keep their FP
181   // when doing FastISel. The emitted code is currently superior, and in cases
182   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
183   return MF.getSubtarget<ARMSubtarget>().useFastISel();
184 }
185 
186 /// Returns true if the target can safely skip saving callee-saved registers
187 /// for noreturn nounwind functions.
188 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
189   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
190          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
191          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
192 
193   // Frame pointer and link register are not treated as normal CSR, thus we
194   // can always skip CSR saves for nonreturning functions.
195   return true;
196 }
197 
198 /// hasFP - Return true if the specified function should have a dedicated frame
199 /// pointer register.  This is true if the function has variable sized allocas
200 /// or if frame pointer elimination is disabled.
201 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
202   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
203   const MachineFrameInfo &MFI = MF.getFrameInfo();
204 
205   // ABI-required frame pointer.
206   if (MF.getTarget().Options.DisableFramePointerElim(MF))
207     return true;
208 
209   // Frame pointer required for use within this function.
210   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
211           MFI.isFrameAddressTaken());
212 }
213 
214 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
215 /// not required, we reserve argument space for call sites in the function
216 /// immediately on entry to the current function.  This eliminates the need for
217 /// add/sub sp brackets around call sites.  Returns true if the call frame is
218 /// included as part of the stack frame.
219 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
220   const MachineFrameInfo &MFI = MF.getFrameInfo();
221   unsigned CFSize = MFI.getMaxCallFrameSize();
222   // It's not always a good idea to include the call frame as part of the
223   // stack frame. ARM (especially Thumb) has small immediate offset to
224   // address the stack frame. So a large call frame can cause poor codegen
225   // and may even makes it impossible to scavenge a register.
226   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
227     return false;
228 
229   return !MFI.hasVarSizedObjects();
230 }
231 
232 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
233 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
234 /// is not sufficient here since we still may reference some objects via SP
235 /// even when FP is available in Thumb2 mode.
236 bool
237 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
238   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
239 }
240 
241 // Returns how much of the incoming argument stack area we should clean up in an
242 // epilogue. For the C calling convention this will be 0, for guaranteed tail
243 // call conventions it can be positive (a normal return or a tail call to a
244 // function that uses less stack space for arguments) or negative (for a tail
245 // call to a function that needs more stack space than us for arguments).
246 static int getArgumentStackToRestore(MachineFunction &MF,
247                                      MachineBasicBlock &MBB) {
248   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
249   bool IsTailCallReturn = false;
250   if (MBB.end() != MBBI) {
251     unsigned RetOpcode = MBBI->getOpcode();
252     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
253                        RetOpcode == ARM::TCRETURNri;
254   }
255   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
256 
257   int ArgumentPopSize = 0;
258   if (IsTailCallReturn) {
259     MachineOperand &StackAdjust = MBBI->getOperand(1);
260 
261     // For a tail-call in a callee-pops-arguments environment, some or all of
262     // the stack may actually be in use for the call's arguments, this is
263     // calculated during LowerCall and consumed here...
264     ArgumentPopSize = StackAdjust.getImm();
265   } else {
266     // ... otherwise the amount to pop is *all* of the argument space,
267     // conveniently stored in the MachineFunctionInfo by
268     // LowerFormalArguments. This will, of course, be zero for the C calling
269     // convention.
270     ArgumentPopSize = AFI->getArgumentStackToRestore();
271   }
272 
273   return ArgumentPopSize;
274 }
275 
276 static bool needsWinCFI(const MachineFunction &MF) {
277   const Function &F = MF.getFunction();
278   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
279          F.needsUnwindTableEntry();
280 }
281 
282 // Given a load or a store instruction, generate an appropriate unwinding SEH
283 // code on Windows.
284 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
285                                              const TargetInstrInfo &TII,
286                                              unsigned Flags) {
287   unsigned Opc = MBBI->getOpcode();
288   MachineBasicBlock *MBB = MBBI->getParent();
289   MachineFunction &MF = *MBB->getParent();
290   DebugLoc DL = MBBI->getDebugLoc();
291   MachineInstrBuilder MIB;
292   const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
293   const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
294 
295   Flags |= MachineInstr::NoMerge;
296 
297   switch (Opc) {
298   default:
299     report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
300     break;
301   case ARM::t2ADDri:   // add.w r11, sp, #xx
302   case ARM::t2ADDri12: // add.w r11, sp, #xx
303   case ARM::t2MOVTi16: // movt  r4, #xx
304   case ARM::tBL:       // bl __chkstk
305     // These are harmless if used for just setting up a frame pointer,
306     // but that frame pointer can't be relied upon for unwinding, unless
307     // set up with SEH_SaveSP.
308     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
309               .addImm(/*Wide=*/1)
310               .setMIFlags(Flags);
311     break;
312 
313   case ARM::t2MOVi16: { // mov(w) r4, #xx
314     bool Wide = MBBI->getOperand(1).getImm() >= 256;
315     if (!Wide) {
316       MachineInstrBuilder NewInstr =
317           BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
318       NewInstr.add(MBBI->getOperand(0));
319       NewInstr.add(t1CondCodeOp(/*isDead=*/true));
320       for (unsigned i = 1, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
321         NewInstr.add(MBBI->getOperand(i));
322       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
323       MBB->erase(MBBI);
324       MBBI = NewMBBI;
325     }
326     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
327     break;
328   }
329 
330   case ARM::tBLXr: // blx r12 (__chkstk)
331     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
332               .addImm(/*Wide=*/0)
333               .setMIFlags(Flags);
334     break;
335 
336   case ARM::t2MOVi32imm: // movw+movt
337     // This pseudo instruction expands into two mov instructions. If the
338     // second operand is a symbol reference, this will stay as two wide
339     // instructions, movw+movt. If they're immediates, the first one can
340     // end up as a narrow mov though.
341     // As two SEH instructions are appended here, they won't get interleaved
342     // between the two final movw/movt instructions, but it doesn't make any
343     // practical difference.
344     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
345               .addImm(/*Wide=*/1)
346               .setMIFlags(Flags);
347     MBB->insertAfter(MBBI, MIB);
348     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
349               .addImm(/*Wide=*/1)
350               .setMIFlags(Flags);
351     break;
352 
353   case ARM::t2LDMIA_RET:
354   case ARM::t2LDMIA_UPD:
355   case ARM::t2STMDB_UPD: {
356     unsigned Mask = 0;
357     bool Wide = false;
358     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
359       const MachineOperand &MO = MBBI->getOperand(i);
360       if (!MO.isReg() || MO.isImplicit())
361         continue;
362       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
363       if (Reg == 15)
364         Reg = 14;
365       if (Reg >= 8 && Reg <= 13)
366         Wide = true;
367       else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
368         Wide = true;
369       Mask |= 1 << Reg;
370     }
371     if (!Wide) {
372       unsigned NewOpc;
373       switch (Opc) {
374       case ARM::t2LDMIA_RET:
375         NewOpc = ARM::tPOP_RET;
376         break;
377       case ARM::t2LDMIA_UPD:
378         NewOpc = ARM::tPOP;
379         break;
380       case ARM::t2STMDB_UPD:
381         NewOpc = ARM::tPUSH;
382         break;
383       default:
384         llvm_unreachable("");
385       }
386       MachineInstrBuilder NewInstr =
387           BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
388       for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
389         NewInstr.add(MBBI->getOperand(i));
390       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
391       MBB->erase(MBBI);
392       MBBI = NewMBBI;
393     }
394     unsigned SEHOpc =
395         (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
396     MIB = BuildMI(MF, DL, TII.get(SEHOpc))
397               .addImm(Mask)
398               .addImm(Wide ? 1 : 0)
399               .setMIFlags(Flags);
400     break;
401   }
402   case ARM::VSTMDDB_UPD:
403   case ARM::VLDMDIA_UPD: {
404     int First = -1, Last = 0;
405     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
406       const MachineOperand &MO = MBBI->getOperand(i);
407       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
408       if (First == -1)
409         First = Reg;
410       Last = Reg;
411     }
412     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
413               .addImm(First)
414               .addImm(Last)
415               .setMIFlags(Flags);
416     break;
417   }
418   case ARM::tSUBspi:
419   case ARM::tADDspi:
420     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
421               .addImm(MBBI->getOperand(2).getImm() * 4)
422               .addImm(/*Wide=*/0)
423               .setMIFlags(Flags);
424     break;
425   case ARM::t2SUBspImm:
426   case ARM::t2SUBspImm12:
427   case ARM::t2ADDspImm:
428   case ARM::t2ADDspImm12:
429     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
430               .addImm(MBBI->getOperand(2).getImm())
431               .addImm(/*Wide=*/1)
432               .setMIFlags(Flags);
433     break;
434 
435   case ARM::tMOVr:
436     if (MBBI->getOperand(1).getReg() == ARM::SP &&
437         (Flags & MachineInstr::FrameSetup)) {
438       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
439       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
440                 .addImm(Reg)
441                 .setMIFlags(Flags);
442     } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
443                (Flags & MachineInstr::FrameDestroy)) {
444       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
445       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
446                 .addImm(Reg)
447                 .setMIFlags(Flags);
448     } else {
449       report_fatal_error("No SEH Opcode for MOV");
450     }
451     break;
452 
453   case ARM::tBX_RET:
454   case ARM::TCRETURNri:
455     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
456               .addImm(/*Wide=*/0)
457               .setMIFlags(Flags);
458     break;
459 
460   case ARM::TCRETURNdi:
461     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
462               .addImm(/*Wide=*/1)
463               .setMIFlags(Flags);
464     break;
465   }
466   return MBB->insertAfter(MBBI, MIB);
467 }
468 
469 static MachineBasicBlock::iterator
470 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
471   if (MBBI == MBB.begin())
472     return MachineBasicBlock::iterator();
473   return std::prev(MBBI);
474 }
475 
476 static void insertSEHRange(MachineBasicBlock &MBB,
477                            MachineBasicBlock::iterator Start,
478                            const MachineBasicBlock::iterator &End,
479                            const ARMBaseInstrInfo &TII, unsigned MIFlags) {
480   if (Start.isValid())
481     Start = std::next(Start);
482   else
483     Start = MBB.begin();
484 
485   for (auto MI = Start; MI != End;) {
486     auto Next = std::next(MI);
487     // Check if this instruction already has got a SEH opcode added. In that
488     // case, don't do this generic mapping.
489     if (Next != End && isSEHInstruction(*Next)) {
490       MI = std::next(Next);
491       while (MI != End && isSEHInstruction(*MI))
492         ++MI;
493       continue;
494     }
495     insertSEH(MI, TII, MIFlags);
496     MI = Next;
497   }
498 }
499 
500 static void emitRegPlusImmediate(
501     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
502     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
503     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
504     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
505   if (isARM)
506     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
507                             Pred, PredReg, TII, MIFlags);
508   else
509     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
510                            Pred, PredReg, TII, MIFlags);
511 }
512 
513 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
514                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
515                          const ARMBaseInstrInfo &TII, int NumBytes,
516                          unsigned MIFlags = MachineInstr::NoFlags,
517                          ARMCC::CondCodes Pred = ARMCC::AL,
518                          unsigned PredReg = 0) {
519   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
520                        MIFlags, Pred, PredReg);
521 }
522 
523 static int sizeOfSPAdjustment(const MachineInstr &MI) {
524   int RegSize;
525   switch (MI.getOpcode()) {
526   case ARM::VSTMDDB_UPD:
527     RegSize = 8;
528     break;
529   case ARM::STMDB_UPD:
530   case ARM::t2STMDB_UPD:
531     RegSize = 4;
532     break;
533   case ARM::t2STR_PRE:
534   case ARM::STR_PRE_IMM:
535     return 4;
536   default:
537     llvm_unreachable("Unknown push or pop like instruction");
538   }
539 
540   int count = 0;
541   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
542   // pred) so the list starts at 4.
543   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
544     count += RegSize;
545   return count;
546 }
547 
548 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
549                                       size_t StackSizeInBytes) {
550   const MachineFrameInfo &MFI = MF.getFrameInfo();
551   const Function &F = MF.getFunction();
552   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
553   if (F.hasFnAttribute("stack-probe-size"))
554     F.getFnAttribute("stack-probe-size")
555         .getValueAsString()
556         .getAsInteger(0, StackProbeSize);
557   return (StackSizeInBytes >= StackProbeSize) &&
558          !F.hasFnAttribute("no-stack-arg-probe");
559 }
560 
561 namespace {
562 
563 struct StackAdjustingInsts {
564   struct InstInfo {
565     MachineBasicBlock::iterator I;
566     unsigned SPAdjust;
567     bool BeforeFPSet;
568   };
569 
570   SmallVector<InstInfo, 4> Insts;
571 
572   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
573                bool BeforeFPSet = false) {
574     InstInfo Info = {I, SPAdjust, BeforeFPSet};
575     Insts.push_back(Info);
576   }
577 
578   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
579     auto Info =
580         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
581     assert(Info != Insts.end() && "invalid sp adjusting instruction");
582     Info->SPAdjust += ExtraBytes;
583   }
584 
585   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
586                          const ARMBaseInstrInfo &TII, bool HasFP) {
587     MachineFunction &MF = *MBB.getParent();
588     unsigned CFAOffset = 0;
589     for (auto &Info : Insts) {
590       if (HasFP && !Info.BeforeFPSet)
591         return;
592 
593       CFAOffset += Info.SPAdjust;
594       unsigned CFIIndex = MF.addFrameInst(
595           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
596       BuildMI(MBB, std::next(Info.I), dl,
597               TII.get(TargetOpcode::CFI_INSTRUCTION))
598               .addCFIIndex(CFIIndex)
599               .setMIFlags(MachineInstr::FrameSetup);
600     }
601   }
602 };
603 
604 } // end anonymous namespace
605 
606 /// Emit an instruction sequence that will align the address in
607 /// register Reg by zero-ing out the lower bits.  For versions of the
608 /// architecture that support Neon, this must be done in a single
609 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
610 /// single instruction. That function only gets called when optimizing
611 /// spilling of D registers on a core with the Neon instruction set
612 /// present.
613 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
614                                      const TargetInstrInfo &TII,
615                                      MachineBasicBlock &MBB,
616                                      MachineBasicBlock::iterator MBBI,
617                                      const DebugLoc &DL, const unsigned Reg,
618                                      const Align Alignment,
619                                      const bool MustBeSingleInstruction) {
620   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
621   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
622   const unsigned AlignMask = Alignment.value() - 1U;
623   const unsigned NrBitsToZero = Log2(Alignment);
624   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
625   if (!AFI->isThumbFunction()) {
626     // if the BFC instruction is available, use that to zero the lower
627     // bits:
628     //   bfc Reg, #0, log2(Alignment)
629     // otherwise use BIC, if the mask to zero the required number of bits
630     // can be encoded in the bic immediate field
631     //   bic Reg, Reg, Alignment-1
632     // otherwise, emit
633     //   lsr Reg, Reg, log2(Alignment)
634     //   lsl Reg, Reg, log2(Alignment)
635     if (CanUseBFC) {
636       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
637           .addReg(Reg, RegState::Kill)
638           .addImm(~AlignMask)
639           .add(predOps(ARMCC::AL));
640     } else if (AlignMask <= 255) {
641       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
642           .addReg(Reg, RegState::Kill)
643           .addImm(AlignMask)
644           .add(predOps(ARMCC::AL))
645           .add(condCodeOp());
646     } else {
647       assert(!MustBeSingleInstruction &&
648              "Shouldn't call emitAligningInstructions demanding a single "
649              "instruction to be emitted for large stack alignment for a target "
650              "without BFC.");
651       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
652           .addReg(Reg, RegState::Kill)
653           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
654           .add(predOps(ARMCC::AL))
655           .add(condCodeOp());
656       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
657           .addReg(Reg, RegState::Kill)
658           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
659           .add(predOps(ARMCC::AL))
660           .add(condCodeOp());
661     }
662   } else {
663     // Since this is only reached for Thumb-2 targets, the BFC instruction
664     // should always be available.
665     assert(CanUseBFC);
666     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
667         .addReg(Reg, RegState::Kill)
668         .addImm(~AlignMask)
669         .add(predOps(ARMCC::AL));
670   }
671 }
672 
673 /// We need the offset of the frame pointer relative to other MachineFrameInfo
674 /// offsets which are encoded relative to SP at function begin.
675 /// See also emitPrologue() for how the FP is set up.
676 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
677 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
678 /// this to produce a conservative estimate that we check in an assert() later.
679 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
680                           const MachineFunction &MF) {
681   // For Thumb1, push.w isn't available, so the first push will always push
682   // r7 and lr onto the stack first.
683   if (AFI.isThumb1OnlyFunction())
684     return -AFI.getArgRegsSaveSize() - (2 * 4);
685   // This is a conservative estimation: Assume the frame pointer being r7 and
686   // pc("r15") up to r8 getting spilled before (= 8 registers).
687   int MaxRegBytes = 8 * 4;
688   if (STI.splitFramePointerPush(MF)) {
689     // Here, r11 can be stored below all of r4-r15 (3 registers more than
690     // above), plus d8-d15.
691     MaxRegBytes = 11 * 4 + 8 * 8;
692   }
693   int FPCXTSaveSize =
694       (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
695   return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
696 }
697 
698 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
699                                     MachineBasicBlock &MBB) const {
700   MachineBasicBlock::iterator MBBI = MBB.begin();
701   MachineFrameInfo  &MFI = MF.getFrameInfo();
702   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
703   MachineModuleInfo &MMI = MF.getMMI();
704   MCContext &Context = MMI.getContext();
705   const TargetMachine &TM = MF.getTarget();
706   const MCRegisterInfo *MRI = Context.getRegisterInfo();
707   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
708   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
709   assert(!AFI->isThumb1OnlyFunction() &&
710          "This emitPrologue does not support Thumb1!");
711   bool isARM = !AFI->isThumbFunction();
712   Align Alignment = STI.getFrameLowering()->getStackAlign();
713   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
714   unsigned NumBytes = MFI.getStackSize();
715   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
716   int FPCXTSaveSize = 0;
717   bool NeedsWinCFI = needsWinCFI(MF);
718 
719   // Debug location must be unknown since the first debug location is used
720   // to determine the end of the prologue.
721   DebugLoc dl;
722 
723   Register FramePtr = RegInfo->getFrameRegister(MF);
724 
725   // Determine the sizes of each callee-save spill areas and record which frame
726   // belongs to which callee-save spill areas.
727   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
728   int FramePtrSpillFI = 0;
729   int D8SpillFI = 0;
730 
731   // All calls are tail calls in GHC calling conv, and functions have no
732   // prologue/epilogue.
733   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
734     return;
735 
736   StackAdjustingInsts DefCFAOffsetCandidates;
737   bool HasFP = hasFP(MF);
738 
739   if (!AFI->hasStackFrame() &&
740       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
741     if (NumBytes != 0) {
742       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
743                    MachineInstr::FrameSetup);
744       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
745     }
746     if (!NeedsWinCFI)
747       DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
748     if (NeedsWinCFI && MBBI != MBB.begin()) {
749       insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
750       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
751           .setMIFlag(MachineInstr::FrameSetup);
752       MF.setHasWinCFI(true);
753     }
754     return;
755   }
756 
757   // Determine spill area sizes.
758   if (STI.splitFramePointerPush(MF)) {
759     for (const CalleeSavedInfo &I : CSI) {
760       Register Reg = I.getReg();
761       int FI = I.getFrameIdx();
762       switch (Reg) {
763       case ARM::R11:
764       case ARM::LR:
765         if (Reg == FramePtr)
766           FramePtrSpillFI = FI;
767         GPRCS2Size += 4;
768         break;
769       case ARM::R0:
770       case ARM::R1:
771       case ARM::R2:
772       case ARM::R3:
773       case ARM::R4:
774       case ARM::R5:
775       case ARM::R6:
776       case ARM::R7:
777       case ARM::R8:
778       case ARM::R9:
779       case ARM::R10:
780       case ARM::R12:
781         GPRCS1Size += 4;
782         break;
783       case ARM::FPCXTNS:
784         FPCXTSaveSize = 4;
785         break;
786       default:
787         // This is a DPR. Exclude the aligned DPRCS2 spills.
788         if (Reg == ARM::D8)
789           D8SpillFI = FI;
790         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
791           DPRCSSize += 8;
792       }
793     }
794   } else {
795     for (const CalleeSavedInfo &I : CSI) {
796       Register Reg = I.getReg();
797       int FI = I.getFrameIdx();
798       switch (Reg) {
799       case ARM::R8:
800       case ARM::R9:
801       case ARM::R10:
802       case ARM::R11:
803       case ARM::R12:
804         if (STI.splitFramePushPop(MF)) {
805           GPRCS2Size += 4;
806           break;
807         }
808         LLVM_FALLTHROUGH;
809       case ARM::R0:
810       case ARM::R1:
811       case ARM::R2:
812       case ARM::R3:
813       case ARM::R4:
814       case ARM::R5:
815       case ARM::R6:
816       case ARM::R7:
817       case ARM::LR:
818         if (Reg == FramePtr)
819           FramePtrSpillFI = FI;
820         GPRCS1Size += 4;
821         break;
822       case ARM::FPCXTNS:
823         FPCXTSaveSize = 4;
824         break;
825       default:
826         // This is a DPR. Exclude the aligned DPRCS2 spills.
827         if (Reg == ARM::D8)
828           D8SpillFI = FI;
829         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
830           DPRCSSize += 8;
831       }
832     }
833   }
834 
835   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
836 
837   // Move past the PAC computation.
838   if (AFI->shouldSignReturnAddress())
839     LastPush = MBBI++;
840 
841   // Move past FPCXT area.
842   if (FPCXTSaveSize > 0) {
843     LastPush = MBBI++;
844     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
845   }
846 
847   // Allocate the vararg register save area.
848   if (ArgRegsSaveSize) {
849     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
850                  MachineInstr::FrameSetup);
851     LastPush = std::prev(MBBI);
852     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
853   }
854 
855   // Move past area 1.
856   if (GPRCS1Size > 0) {
857     GPRCS1Push = LastPush = MBBI++;
858     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
859   }
860 
861   // Determine starting offsets of spill areas.
862   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
863   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
864   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
865   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
866   unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
867   if (!STI.splitFramePointerPush(MF)) {
868     DPRGapSize += GPRCS2Size;
869   }
870   DPRGapSize %= DPRAlign.value();
871 
872   unsigned DPRCSOffset;
873   if (STI.splitFramePointerPush(MF)) {
874     DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
875     GPRCS2Offset = DPRCSOffset - GPRCS2Size;
876   } else {
877     DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
878   }
879   int FramePtrOffsetInPush = 0;
880   if (HasFP) {
881     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
882     assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
883            "Max FP estimation is wrong");
884     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
885     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
886                                 NumBytes);
887   }
888   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
889   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
890   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
891 
892   // Move past area 2.
893   if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
894     GPRCS2Push = LastPush = MBBI++;
895     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
896   }
897 
898   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
899   // .cfi_offset operations will reflect that.
900   if (DPRGapSize) {
901     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
902     if (LastPush != MBB.end() &&
903         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
904       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
905     else {
906       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
907                    MachineInstr::FrameSetup);
908       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
909     }
910   }
911 
912   // Move past area 3.
913   if (DPRCSSize > 0) {
914     // Since vpush register list cannot have gaps, there may be multiple vpush
915     // instructions in the prologue.
916     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
917       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
918       LastPush = MBBI++;
919     }
920   }
921 
922   // Move past the aligned DPRCS2 area.
923   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
924     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
925     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
926     // leaves the stack pointer pointing to the DPRCS2 area.
927     //
928     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
929     NumBytes += MFI.getObjectOffset(D8SpillFI);
930   } else
931     NumBytes = DPRCSOffset;
932 
933   if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
934     GPRCS2Push = LastPush = MBBI++;
935     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
936   }
937 
938   bool NeedsWinCFIStackAlloc = NeedsWinCFI;
939   if (STI.splitFramePointerPush(MF) && HasFP)
940     NeedsWinCFIStackAlloc = false;
941 
942   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
943     uint32_t NumWords = NumBytes >> 2;
944 
945     if (NumWords < 65536) {
946       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
947           .addImm(NumWords)
948           .setMIFlags(MachineInstr::FrameSetup)
949           .add(predOps(ARMCC::AL));
950     } else {
951       // Split into two instructions here, instead of using t2MOVi32imm,
952       // to allow inserting accurate SEH instructions (including accurate
953       // instruction size for each of them).
954       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
955           .addImm(NumWords & 0xffff)
956           .setMIFlags(MachineInstr::FrameSetup)
957           .add(predOps(ARMCC::AL));
958       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
959           .addReg(ARM::R4)
960           .addImm(NumWords >> 16)
961           .setMIFlags(MachineInstr::FrameSetup)
962           .add(predOps(ARMCC::AL));
963     }
964 
965     switch (TM.getCodeModel()) {
966     case CodeModel::Tiny:
967       llvm_unreachable("Tiny code model not available on ARM.");
968     case CodeModel::Small:
969     case CodeModel::Medium:
970     case CodeModel::Kernel:
971       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
972           .add(predOps(ARMCC::AL))
973           .addExternalSymbol("__chkstk")
974           .addReg(ARM::R4, RegState::Implicit)
975           .setMIFlags(MachineInstr::FrameSetup);
976       break;
977     case CodeModel::Large:
978       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
979         .addExternalSymbol("__chkstk")
980         .setMIFlags(MachineInstr::FrameSetup);
981 
982       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
983           .add(predOps(ARMCC::AL))
984           .addReg(ARM::R12, RegState::Kill)
985           .addReg(ARM::R4, RegState::Implicit)
986           .setMIFlags(MachineInstr::FrameSetup);
987       break;
988     }
989 
990     MachineInstrBuilder Instr, SEH;
991     Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
992                 .addReg(ARM::SP, RegState::Kill)
993                 .addReg(ARM::R4, RegState::Kill)
994                 .setMIFlags(MachineInstr::FrameSetup)
995                 .add(predOps(ARMCC::AL))
996                 .add(condCodeOp());
997     if (NeedsWinCFIStackAlloc) {
998       SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
999                 .addImm(NumBytes)
1000                 .addImm(/*Wide=*/1)
1001                 .setMIFlags(MachineInstr::FrameSetup);
1002       MBB.insertAfter(Instr, SEH);
1003     }
1004     NumBytes = 0;
1005   }
1006 
1007   if (NumBytes) {
1008     // Adjust SP after all the callee-save spills.
1009     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1010         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1011       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1012     else {
1013       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1014                    MachineInstr::FrameSetup);
1015       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1016     }
1017 
1018     if (HasFP && isARM)
1019       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1020       // Note it's not safe to do this in Thumb2 mode because it would have
1021       // taken two instructions:
1022       // mov sp, r7
1023       // sub sp, #24
1024       // If an interrupt is taken between the two instructions, then sp is in
1025       // an inconsistent state (pointing to the middle of callee-saved area).
1026       // The interrupt handler can end up clobbering the registers.
1027       AFI->setShouldRestoreSPFromFP(true);
1028   }
1029 
1030   // Set FP to point to the stack slot that contains the previous FP.
1031   // For iOS, FP is R7, which has now been stored in spill area 1.
1032   // Otherwise, if this is not iOS, all the callee-saved registers go
1033   // into spill area 1, including the FP in R11.  In either case, it
1034   // is in area one and the adjustment needs to take place just after
1035   // that push.
1036   MachineBasicBlock::iterator AfterPush;
1037   if (HasFP) {
1038     AfterPush = std::next(GPRCS1Push);
1039     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
1040     int FPOffset = PushSize + FramePtrOffsetInPush;
1041     if (STI.splitFramePointerPush(MF)) {
1042       AfterPush = std::next(GPRCS2Push);
1043       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1044                            FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1045     } else {
1046       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1047                            FramePtr, ARM::SP, FPOffset,
1048                            MachineInstr::FrameSetup);
1049     }
1050     if (!NeedsWinCFI) {
1051       if (FramePtrOffsetInPush + PushSize != 0) {
1052         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1053             nullptr, MRI->getDwarfRegNum(FramePtr, true),
1054             FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1055         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1056             .addCFIIndex(CFIIndex)
1057             .setMIFlags(MachineInstr::FrameSetup);
1058       } else {
1059         unsigned CFIIndex =
1060             MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1061                 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1062         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1063             .addCFIIndex(CFIIndex)
1064             .setMIFlags(MachineInstr::FrameSetup);
1065       }
1066     }
1067   }
1068 
1069   // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1070   // instructions below don't need to be replayed to unwind the stack.
1071   if (NeedsWinCFI && MBBI != MBB.begin()) {
1072     MachineBasicBlock::iterator End = MBBI;
1073     if (HasFP && STI.splitFramePointerPush(MF))
1074       End = AfterPush;
1075     insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1076     BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1077         .setMIFlag(MachineInstr::FrameSetup);
1078     MF.setHasWinCFI(true);
1079   }
1080 
1081   // Now that the prologue's actual instructions are finalised, we can insert
1082   // the necessary DWARF cf instructions to describe the situation. Start by
1083   // recording where each register ended up:
1084   if (GPRCS1Size > 0 && !NeedsWinCFI) {
1085     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1086     int CFIIndex;
1087     for (const auto &Entry : CSI) {
1088       Register Reg = Entry.getReg();
1089       int FI = Entry.getFrameIdx();
1090       switch (Reg) {
1091       case ARM::R8:
1092       case ARM::R9:
1093       case ARM::R10:
1094       case ARM::R11:
1095       case ARM::R12:
1096         if (STI.splitFramePushPop(MF))
1097           break;
1098         LLVM_FALLTHROUGH;
1099       case ARM::R0:
1100       case ARM::R1:
1101       case ARM::R2:
1102       case ARM::R3:
1103       case ARM::R4:
1104       case ARM::R5:
1105       case ARM::R6:
1106       case ARM::R7:
1107       case ARM::LR:
1108         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1109             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1110         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1111             .addCFIIndex(CFIIndex)
1112             .setMIFlags(MachineInstr::FrameSetup);
1113         break;
1114       }
1115     }
1116   }
1117 
1118   if (GPRCS2Size > 0 && !NeedsWinCFI) {
1119     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1120     for (const auto &Entry : CSI) {
1121       Register Reg = Entry.getReg();
1122       int FI = Entry.getFrameIdx();
1123       switch (Reg) {
1124       case ARM::R8:
1125       case ARM::R9:
1126       case ARM::R10:
1127       case ARM::R11:
1128       case ARM::R12:
1129         if (STI.splitFramePushPop(MF)) {
1130           unsigned DwarfReg = MRI->getDwarfRegNum(
1131               Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1132           unsigned Offset = MFI.getObjectOffset(FI);
1133           unsigned CFIIndex = MF.addFrameInst(
1134               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1135           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1136               .addCFIIndex(CFIIndex)
1137               .setMIFlags(MachineInstr::FrameSetup);
1138         }
1139         break;
1140       }
1141     }
1142   }
1143 
1144   if (DPRCSSize > 0 && !NeedsWinCFI) {
1145     // Since vpush register list cannot have gaps, there may be multiple vpush
1146     // instructions in the prologue.
1147     MachineBasicBlock::iterator Pos = std::next(LastPush);
1148     for (const auto &Entry : CSI) {
1149       Register Reg = Entry.getReg();
1150       int FI = Entry.getFrameIdx();
1151       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1152           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1153         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1154         unsigned Offset = MFI.getObjectOffset(FI);
1155         unsigned CFIIndex = MF.addFrameInst(
1156             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1157         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1158             .addCFIIndex(CFIIndex)
1159             .setMIFlags(MachineInstr::FrameSetup);
1160       }
1161     }
1162   }
1163 
1164   // Now we can emit descriptions of where the canonical frame address was
1165   // throughout the process. If we have a frame pointer, it takes over the job
1166   // half-way through, so only the first few .cfi_def_cfa_offset instructions
1167   // actually get emitted.
1168   if (!NeedsWinCFI)
1169     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1170 
1171   if (STI.isTargetELF() && hasFP(MF))
1172     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1173                             AFI->getFramePtrSpillOffset());
1174 
1175   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1176   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1177   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1178   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1179   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1180 
1181   // If we need dynamic stack realignment, do it here. Be paranoid and make
1182   // sure if we also have VLAs, we have a base pointer for frame access.
1183   // If aligned NEON registers were spilled, the stack has already been
1184   // realigned.
1185   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1186     Align MaxAlign = MFI.getMaxAlign();
1187     assert(!AFI->isThumb1OnlyFunction());
1188     if (!AFI->isThumbFunction()) {
1189       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1190                                false);
1191     } else {
1192       // We cannot use sp as source/dest register here, thus we're using r4 to
1193       // perform the calculations. We're emitting the following sequence:
1194       // mov r4, sp
1195       // -- use emitAligningInstructions to produce best sequence to zero
1196       // -- out lower bits in r4
1197       // mov sp, r4
1198       // FIXME: It will be better just to find spare register here.
1199       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1200           .addReg(ARM::SP, RegState::Kill)
1201           .add(predOps(ARMCC::AL));
1202       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1203                                false);
1204       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1205           .addReg(ARM::R4, RegState::Kill)
1206           .add(predOps(ARMCC::AL));
1207     }
1208 
1209     AFI->setShouldRestoreSPFromFP(true);
1210   }
1211 
1212   // If we need a base pointer, set it up here. It's whatever the value
1213   // of the stack pointer is at this point. Any variable size objects
1214   // will be allocated after this, so we can still use the base pointer
1215   // to reference locals.
1216   // FIXME: Clarify FrameSetup flags here.
1217   if (RegInfo->hasBasePointer(MF)) {
1218     if (isARM)
1219       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1220           .addReg(ARM::SP)
1221           .add(predOps(ARMCC::AL))
1222           .add(condCodeOp());
1223     else
1224       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1225           .addReg(ARM::SP)
1226           .add(predOps(ARMCC::AL));
1227   }
1228 
1229   // If the frame has variable sized objects then the epilogue must restore
1230   // the sp from fp. We can assume there's an FP here since hasFP already
1231   // checks for hasVarSizedObjects.
1232   if (MFI.hasVarSizedObjects())
1233     AFI->setShouldRestoreSPFromFP(true);
1234 }
1235 
1236 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1237                                     MachineBasicBlock &MBB) const {
1238   MachineFrameInfo &MFI = MF.getFrameInfo();
1239   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1240   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1241   const ARMBaseInstrInfo &TII =
1242       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1243   assert(!AFI->isThumb1OnlyFunction() &&
1244          "This emitEpilogue does not support Thumb1!");
1245   bool isARM = !AFI->isThumbFunction();
1246 
1247   // Amount of stack space we reserved next to incoming args for either
1248   // varargs registers or stack arguments in tail calls made by this function.
1249   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1250 
1251   // How much of the stack used by incoming arguments this function is expected
1252   // to restore in this particular epilogue.
1253   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1254   int NumBytes = (int)MFI.getStackSize();
1255   Register FramePtr = RegInfo->getFrameRegister(MF);
1256 
1257   // All calls are tail calls in GHC calling conv, and functions have no
1258   // prologue/epilogue.
1259   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1260     return;
1261 
1262   // First put ourselves on the first (from top) terminator instructions.
1263   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1264   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1265 
1266   MachineBasicBlock::iterator RangeStart;
1267   if (!AFI->hasStackFrame()) {
1268     if (MF.hasWinCFI()) {
1269       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1270           .setMIFlag(MachineInstr::FrameDestroy);
1271       RangeStart = initMBBRange(MBB, MBBI);
1272     }
1273 
1274     if (NumBytes + IncomingArgStackToRestore != 0)
1275       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1276                    NumBytes + IncomingArgStackToRestore,
1277                    MachineInstr::FrameDestroy);
1278   } else {
1279     // Unwind MBBI to point to first LDR / VLDRD.
1280     if (MBBI != MBB.begin()) {
1281       do {
1282         --MBBI;
1283       } while (MBBI != MBB.begin() &&
1284                MBBI->getFlag(MachineInstr::FrameDestroy));
1285       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1286         ++MBBI;
1287     }
1288 
1289     if (MF.hasWinCFI()) {
1290       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1291           .setMIFlag(MachineInstr::FrameDestroy);
1292       RangeStart = initMBBRange(MBB, MBBI);
1293     }
1294 
1295     // Move SP to start of FP callee save spill area.
1296     NumBytes -= (ReservedArgStack +
1297                  AFI->getFPCXTSaveAreaSize() +
1298                  AFI->getGPRCalleeSavedArea1Size() +
1299                  AFI->getGPRCalleeSavedArea2Size() +
1300                  AFI->getDPRCalleeSavedGapSize() +
1301                  AFI->getDPRCalleeSavedAreaSize());
1302 
1303     // Reset SP based on frame pointer only if the stack frame extends beyond
1304     // frame pointer stack slot or target is ELF and the function has FP.
1305     if (AFI->shouldRestoreSPFromFP()) {
1306       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1307       if (NumBytes) {
1308         if (isARM)
1309           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1310                                   ARMCC::AL, 0, TII,
1311                                   MachineInstr::FrameDestroy);
1312         else {
1313           // It's not possible to restore SP from FP in a single instruction.
1314           // For iOS, this looks like:
1315           // mov sp, r7
1316           // sub sp, #24
1317           // This is bad, if an interrupt is taken after the mov, sp is in an
1318           // inconsistent state.
1319           // Use the first callee-saved register as a scratch register.
1320           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1321                  "No scratch register to restore SP from FP!");
1322           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1323                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1324           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1325               .addReg(ARM::R4)
1326               .add(predOps(ARMCC::AL))
1327               .setMIFlag(MachineInstr::FrameDestroy);
1328         }
1329       } else {
1330         // Thumb2 or ARM.
1331         if (isARM)
1332           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1333               .addReg(FramePtr)
1334               .add(predOps(ARMCC::AL))
1335               .add(condCodeOp())
1336               .setMIFlag(MachineInstr::FrameDestroy);
1337         else
1338           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1339               .addReg(FramePtr)
1340               .add(predOps(ARMCC::AL))
1341               .setMIFlag(MachineInstr::FrameDestroy);
1342       }
1343     } else if (NumBytes &&
1344                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1345       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1346                    MachineInstr::FrameDestroy);
1347 
1348     // Increment past our save areas.
1349     if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
1350       MBBI++;
1351 
1352     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1353       MBBI++;
1354       // Since vpop register list cannot have gaps, there may be multiple vpop
1355       // instructions in the epilogue.
1356       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1357         MBBI++;
1358     }
1359     if (AFI->getDPRCalleeSavedGapSize()) {
1360       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1361              "unexpected DPR alignment gap");
1362       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1363                    MachineInstr::FrameDestroy);
1364     }
1365 
1366     if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
1367       MBBI++;
1368     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1369 
1370     if (ReservedArgStack || IncomingArgStackToRestore) {
1371       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1372              "attempting to restore negative stack amount");
1373       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1374                    ReservedArgStack + IncomingArgStackToRestore,
1375                    MachineInstr::FrameDestroy);
1376     }
1377 
1378     // Validate PAC, It should have been already popped into R12. For CMSE entry
1379     // function, the validation instruction is emitted during expansion of the
1380     // tBXNS_RET, since the validation must use the value of SP at function
1381     // entry, before saving, resp. after restoring, FPCXTNS.
1382     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1383       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1384   }
1385 
1386   if (MF.hasWinCFI()) {
1387     insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1388     BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1389         .setMIFlag(MachineInstr::FrameDestroy);
1390   }
1391 }
1392 
1393 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1394 /// debug info.  It's the same as what we use for resolving the code-gen
1395 /// references for now.  FIXME: This can go wrong when references are
1396 /// SP-relative and simple call frames aren't used.
1397 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1398                                                      int FI,
1399                                                      Register &FrameReg) const {
1400   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1401 }
1402 
1403 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1404                                                  int FI, Register &FrameReg,
1405                                                  int SPAdj) const {
1406   const MachineFrameInfo &MFI = MF.getFrameInfo();
1407   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1408       MF.getSubtarget().getRegisterInfo());
1409   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1410   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1411   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1412   bool isFixed = MFI.isFixedObjectIndex(FI);
1413 
1414   FrameReg = ARM::SP;
1415   Offset += SPAdj;
1416 
1417   // SP can move around if there are allocas.  We may also lose track of SP
1418   // when emergency spilling inside a non-reserved call frame setup.
1419   bool hasMovingSP = !hasReservedCallFrame(MF);
1420 
1421   // When dynamically realigning the stack, use the frame pointer for
1422   // parameters, and the stack/base pointer for locals.
1423   if (RegInfo->hasStackRealignment(MF)) {
1424     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1425     if (isFixed) {
1426       FrameReg = RegInfo->getFrameRegister(MF);
1427       Offset = FPOffset;
1428     } else if (hasMovingSP) {
1429       assert(RegInfo->hasBasePointer(MF) &&
1430              "VLAs and dynamic stack alignment, but missing base pointer!");
1431       FrameReg = RegInfo->getBaseRegister();
1432       Offset -= SPAdj;
1433     }
1434     return Offset;
1435   }
1436 
1437   // If there is a frame pointer, use it when we can.
1438   if (hasFP(MF) && AFI->hasStackFrame()) {
1439     // Use frame pointer to reference fixed objects. Use it for locals if
1440     // there are VLAs (and thus the SP isn't reliable as a base).
1441     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1442       FrameReg = RegInfo->getFrameRegister(MF);
1443       return FPOffset;
1444     } else if (hasMovingSP) {
1445       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1446       if (AFI->isThumb2Function()) {
1447         // Try to use the frame pointer if we can, else use the base pointer
1448         // since it's available. This is handy for the emergency spill slot, in
1449         // particular.
1450         if (FPOffset >= -255 && FPOffset < 0) {
1451           FrameReg = RegInfo->getFrameRegister(MF);
1452           return FPOffset;
1453         }
1454       }
1455     } else if (AFI->isThumbFunction()) {
1456       // Prefer SP to base pointer, if the offset is suitably aligned and in
1457       // range as the effective range of the immediate offset is bigger when
1458       // basing off SP.
1459       // Use  add <rd>, sp, #<imm8>
1460       //      ldr <rd>, [sp, #<imm8>]
1461       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1462         return Offset;
1463       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1464       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1465       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1466         FrameReg = RegInfo->getFrameRegister(MF);
1467         return FPOffset;
1468       }
1469     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1470       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1471       FrameReg = RegInfo->getFrameRegister(MF);
1472       return FPOffset;
1473     }
1474   }
1475   // Use the base pointer if we have one.
1476   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1477   // That can happen if we forced a base pointer for a large call frame.
1478   if (RegInfo->hasBasePointer(MF)) {
1479     FrameReg = RegInfo->getBaseRegister();
1480     Offset -= SPAdj;
1481   }
1482   return Offset;
1483 }
1484 
1485 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1486                                     MachineBasicBlock::iterator MI,
1487                                     ArrayRef<CalleeSavedInfo> CSI,
1488                                     unsigned StmOpc, unsigned StrOpc,
1489                                     bool NoGap, bool (*Func)(unsigned, bool),
1490                                     unsigned NumAlignedDPRCS2Regs,
1491                                     unsigned MIFlags) const {
1492   MachineFunction &MF = *MBB.getParent();
1493   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1494   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1495 
1496   DebugLoc DL;
1497 
1498   using RegAndKill = std::pair<unsigned, bool>;
1499 
1500   SmallVector<RegAndKill, 4> Regs;
1501   unsigned i = CSI.size();
1502   while (i != 0) {
1503     unsigned LastReg = 0;
1504     for (; i != 0; --i) {
1505       Register Reg = CSI[i-1].getReg();
1506       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1507 
1508       // D-registers in the aligned area DPRCS2 are NOT spilled here.
1509       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1510         continue;
1511 
1512       const MachineRegisterInfo &MRI = MF.getRegInfo();
1513       bool isLiveIn = MRI.isLiveIn(Reg);
1514       if (!isLiveIn && !MRI.isReserved(Reg))
1515         MBB.addLiveIn(Reg);
1516       // If NoGap is true, push consecutive registers and then leave the rest
1517       // for other instructions. e.g.
1518       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1519       if (NoGap && LastReg && LastReg != Reg-1)
1520         break;
1521       LastReg = Reg;
1522       // Do not set a kill flag on values that are also marked as live-in. This
1523       // happens with the @llvm-returnaddress intrinsic and with arguments
1524       // passed in callee saved registers.
1525       // Omitting the kill flags is conservatively correct even if the live-in
1526       // is not used after all.
1527       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1528     }
1529 
1530     if (Regs.empty())
1531       continue;
1532 
1533     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1534       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1535     });
1536 
1537     if (Regs.size() > 1 || StrOpc== 0) {
1538       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1539                                     .addReg(ARM::SP)
1540                                     .setMIFlags(MIFlags)
1541                                     .add(predOps(ARMCC::AL));
1542       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1543         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1544     } else if (Regs.size() == 1) {
1545       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1546           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1547           .addReg(ARM::SP)
1548           .setMIFlags(MIFlags)
1549           .addImm(-4)
1550           .add(predOps(ARMCC::AL));
1551     }
1552     Regs.clear();
1553 
1554     // Put any subsequent vpush instructions before this one: they will refer to
1555     // higher register numbers so need to be pushed first in order to preserve
1556     // monotonicity.
1557     if (MI != MBB.begin())
1558       --MI;
1559   }
1560 }
1561 
1562 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1563                                    MachineBasicBlock::iterator MI,
1564                                    MutableArrayRef<CalleeSavedInfo> CSI,
1565                                    unsigned LdmOpc, unsigned LdrOpc,
1566                                    bool isVarArg, bool NoGap,
1567                                    bool (*Func)(unsigned, bool),
1568                                    unsigned NumAlignedDPRCS2Regs) const {
1569   MachineFunction &MF = *MBB.getParent();
1570   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1571   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1572   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1573   bool hasPAC = AFI->shouldSignReturnAddress();
1574   DebugLoc DL;
1575   bool isTailCall = false;
1576   bool isInterrupt = false;
1577   bool isTrap = false;
1578   bool isCmseEntry = false;
1579   if (MBB.end() != MI) {
1580     DL = MI->getDebugLoc();
1581     unsigned RetOpcode = MI->getOpcode();
1582     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1583     isInterrupt =
1584         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1585     isTrap =
1586         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1587         RetOpcode == ARM::tTRAP;
1588     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1589   }
1590 
1591   SmallVector<unsigned, 4> Regs;
1592   unsigned i = CSI.size();
1593   while (i != 0) {
1594     unsigned LastReg = 0;
1595     bool DeleteRet = false;
1596     for (; i != 0; --i) {
1597       CalleeSavedInfo &Info = CSI[i-1];
1598       Register Reg = Info.getReg();
1599       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1600 
1601       // The aligned reloads from area DPRCS2 are not inserted here.
1602       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1603         continue;
1604       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1605           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1606           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1607           !STI.splitFramePointerPush(MF)) {
1608         Reg = ARM::PC;
1609         // Fold the return instruction into the LDM.
1610         DeleteRet = true;
1611         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1612         // We 'restore' LR into PC so it is not live out of the return block:
1613         // Clear Restored bit.
1614         Info.setRestored(false);
1615       }
1616 
1617       // If NoGap is true, pop consecutive registers and then leave the rest
1618       // for other instructions. e.g.
1619       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1620       if (NoGap && LastReg && LastReg != Reg-1)
1621         break;
1622 
1623       LastReg = Reg;
1624       Regs.push_back(Reg);
1625     }
1626 
1627     if (Regs.empty())
1628       continue;
1629 
1630     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1631       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1632     });
1633 
1634     if (Regs.size() > 1 || LdrOpc == 0) {
1635       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1636                                     .addReg(ARM::SP)
1637                                     .add(predOps(ARMCC::AL))
1638                                     .setMIFlags(MachineInstr::FrameDestroy);
1639       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1640         MIB.addReg(Regs[i], getDefRegState(true));
1641       if (DeleteRet) {
1642         if (MI != MBB.end()) {
1643           MIB.copyImplicitOps(*MI);
1644           MI->eraseFromParent();
1645         }
1646       }
1647       MI = MIB;
1648     } else if (Regs.size() == 1) {
1649       // If we adjusted the reg to PC from LR above, switch it back here. We
1650       // only do that for LDM.
1651       if (Regs[0] == ARM::PC)
1652         Regs[0] = ARM::LR;
1653       MachineInstrBuilder MIB =
1654         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1655           .addReg(ARM::SP, RegState::Define)
1656           .addReg(ARM::SP)
1657           .setMIFlags(MachineInstr::FrameDestroy);
1658       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1659       // that refactoring is complete (eventually).
1660       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1661         MIB.addReg(0);
1662         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1663       } else
1664         MIB.addImm(4);
1665       MIB.add(predOps(ARMCC::AL));
1666     }
1667     Regs.clear();
1668 
1669     // Put any subsequent vpop instructions after this one: they will refer to
1670     // higher register numbers so need to be popped afterwards.
1671     if (MI != MBB.end())
1672       ++MI;
1673   }
1674 }
1675 
1676 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1677 /// starting from d8.  Also insert stack realignment code and leave the stack
1678 /// pointer pointing to the d8 spill slot.
1679 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1680                                     MachineBasicBlock::iterator MI,
1681                                     unsigned NumAlignedDPRCS2Regs,
1682                                     ArrayRef<CalleeSavedInfo> CSI,
1683                                     const TargetRegisterInfo *TRI) {
1684   MachineFunction &MF = *MBB.getParent();
1685   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1686   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1687   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1688   MachineFrameInfo &MFI = MF.getFrameInfo();
1689 
1690   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1691   // stack slot layout backwards, this can actually mean that the d-reg stack
1692   // slot offsets can be wrong. The offset for d8 will always be correct.
1693   for (const CalleeSavedInfo &I : CSI) {
1694     unsigned DNum = I.getReg() - ARM::D8;
1695     if (DNum > NumAlignedDPRCS2Regs - 1)
1696       continue;
1697     int FI = I.getFrameIdx();
1698     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1699     // registers will be 8-byte aligned.
1700     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1701 
1702     // The stack slot for D8 needs to be maximally aligned because this is
1703     // actually the point where we align the stack pointer.  MachineFrameInfo
1704     // computes all offsets relative to the incoming stack pointer which is a
1705     // bit weird when realigning the stack.  Any extra padding for this
1706     // over-alignment is not realized because the code inserted below adjusts
1707     // the stack pointer by numregs * 8 before aligning the stack pointer.
1708     if (DNum == 0)
1709       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1710   }
1711 
1712   // Move the stack pointer to the d8 spill slot, and align it at the same
1713   // time. Leave the stack slot address in the scratch register r4.
1714   //
1715   //   sub r4, sp, #numregs * 8
1716   //   bic r4, r4, #align - 1
1717   //   mov sp, r4
1718   //
1719   bool isThumb = AFI->isThumbFunction();
1720   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1721   AFI->setShouldRestoreSPFromFP(true);
1722 
1723   // sub r4, sp, #numregs * 8
1724   // The immediate is <= 64, so it doesn't need any special encoding.
1725   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1726   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1727       .addReg(ARM::SP)
1728       .addImm(8 * NumAlignedDPRCS2Regs)
1729       .add(predOps(ARMCC::AL))
1730       .add(condCodeOp());
1731 
1732   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1733   // We must set parameter MustBeSingleInstruction to true, since
1734   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1735   // stack alignment.  Luckily, this can always be done since all ARM
1736   // architecture versions that support Neon also support the BFC
1737   // instruction.
1738   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1739 
1740   // mov sp, r4
1741   // The stack pointer must be adjusted before spilling anything, otherwise
1742   // the stack slots could be clobbered by an interrupt handler.
1743   // Leave r4 live, it is used below.
1744   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1745   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1746                                 .addReg(ARM::R4)
1747                                 .add(predOps(ARMCC::AL));
1748   if (!isThumb)
1749     MIB.add(condCodeOp());
1750 
1751   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1752   // r4 holds the stack slot address.
1753   unsigned NextReg = ARM::D8;
1754 
1755   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1756   // The writeback is only needed when emitting two vst1.64 instructions.
1757   if (NumAlignedDPRCS2Regs >= 6) {
1758     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1759                                                &ARM::QQPRRegClass);
1760     MBB.addLiveIn(SupReg);
1761     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1762         .addReg(ARM::R4, RegState::Kill)
1763         .addImm(16)
1764         .addReg(NextReg)
1765         .addReg(SupReg, RegState::ImplicitKill)
1766         .add(predOps(ARMCC::AL));
1767     NextReg += 4;
1768     NumAlignedDPRCS2Regs -= 4;
1769   }
1770 
1771   // We won't modify r4 beyond this point.  It currently points to the next
1772   // register to be spilled.
1773   unsigned R4BaseReg = NextReg;
1774 
1775   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1776   if (NumAlignedDPRCS2Regs >= 4) {
1777     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1778                                                &ARM::QQPRRegClass);
1779     MBB.addLiveIn(SupReg);
1780     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1781         .addReg(ARM::R4)
1782         .addImm(16)
1783         .addReg(NextReg)
1784         .addReg(SupReg, RegState::ImplicitKill)
1785         .add(predOps(ARMCC::AL));
1786     NextReg += 4;
1787     NumAlignedDPRCS2Regs -= 4;
1788   }
1789 
1790   // 16-byte aligned vst1.64 with 2 d-regs.
1791   if (NumAlignedDPRCS2Regs >= 2) {
1792     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1793                                                &ARM::QPRRegClass);
1794     MBB.addLiveIn(SupReg);
1795     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1796         .addReg(ARM::R4)
1797         .addImm(16)
1798         .addReg(SupReg)
1799         .add(predOps(ARMCC::AL));
1800     NextReg += 2;
1801     NumAlignedDPRCS2Regs -= 2;
1802   }
1803 
1804   // Finally, use a vanilla vstr.64 for the odd last register.
1805   if (NumAlignedDPRCS2Regs) {
1806     MBB.addLiveIn(NextReg);
1807     // vstr.64 uses addrmode5 which has an offset scale of 4.
1808     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1809         .addReg(NextReg)
1810         .addReg(ARM::R4)
1811         .addImm((NextReg - R4BaseReg) * 2)
1812         .add(predOps(ARMCC::AL));
1813   }
1814 
1815   // The last spill instruction inserted should kill the scratch register r4.
1816   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1817 }
1818 
1819 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1820 /// iterator to the following instruction.
1821 static MachineBasicBlock::iterator
1822 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1823                         unsigned NumAlignedDPRCS2Regs) {
1824   //   sub r4, sp, #numregs * 8
1825   //   bic r4, r4, #align - 1
1826   //   mov sp, r4
1827   ++MI; ++MI; ++MI;
1828   assert(MI->mayStore() && "Expecting spill instruction");
1829 
1830   // These switches all fall through.
1831   switch(NumAlignedDPRCS2Regs) {
1832   case 7:
1833     ++MI;
1834     assert(MI->mayStore() && "Expecting spill instruction");
1835     LLVM_FALLTHROUGH;
1836   default:
1837     ++MI;
1838     assert(MI->mayStore() && "Expecting spill instruction");
1839     LLVM_FALLTHROUGH;
1840   case 1:
1841   case 2:
1842   case 4:
1843     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1844     ++MI;
1845   }
1846   return MI;
1847 }
1848 
1849 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1850 /// starting from d8.  These instructions are assumed to execute while the
1851 /// stack is still aligned, unlike the code inserted by emitPopInst.
1852 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1853                                       MachineBasicBlock::iterator MI,
1854                                       unsigned NumAlignedDPRCS2Regs,
1855                                       ArrayRef<CalleeSavedInfo> CSI,
1856                                       const TargetRegisterInfo *TRI) {
1857   MachineFunction &MF = *MBB.getParent();
1858   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1859   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1860   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1861 
1862   // Find the frame index assigned to d8.
1863   int D8SpillFI = 0;
1864   for (const CalleeSavedInfo &I : CSI)
1865     if (I.getReg() == ARM::D8) {
1866       D8SpillFI = I.getFrameIdx();
1867       break;
1868     }
1869 
1870   // Materialize the address of the d8 spill slot into the scratch register r4.
1871   // This can be fairly complicated if the stack frame is large, so just use
1872   // the normal frame index elimination mechanism to do it.  This code runs as
1873   // the initial part of the epilog where the stack and base pointers haven't
1874   // been changed yet.
1875   bool isThumb = AFI->isThumbFunction();
1876   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1877 
1878   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1879   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1880       .addFrameIndex(D8SpillFI)
1881       .addImm(0)
1882       .add(predOps(ARMCC::AL))
1883       .add(condCodeOp());
1884 
1885   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1886   unsigned NextReg = ARM::D8;
1887 
1888   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1889   if (NumAlignedDPRCS2Regs >= 6) {
1890     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1891                                                &ARM::QQPRRegClass);
1892     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1893         .addReg(ARM::R4, RegState::Define)
1894         .addReg(ARM::R4, RegState::Kill)
1895         .addImm(16)
1896         .addReg(SupReg, RegState::ImplicitDefine)
1897         .add(predOps(ARMCC::AL));
1898     NextReg += 4;
1899     NumAlignedDPRCS2Regs -= 4;
1900   }
1901 
1902   // We won't modify r4 beyond this point.  It currently points to the next
1903   // register to be spilled.
1904   unsigned R4BaseReg = NextReg;
1905 
1906   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1907   if (NumAlignedDPRCS2Regs >= 4) {
1908     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1909                                                &ARM::QQPRRegClass);
1910     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1911         .addReg(ARM::R4)
1912         .addImm(16)
1913         .addReg(SupReg, RegState::ImplicitDefine)
1914         .add(predOps(ARMCC::AL));
1915     NextReg += 4;
1916     NumAlignedDPRCS2Regs -= 4;
1917   }
1918 
1919   // 16-byte aligned vld1.64 with 2 d-regs.
1920   if (NumAlignedDPRCS2Regs >= 2) {
1921     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1922                                                &ARM::QPRRegClass);
1923     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1924         .addReg(ARM::R4)
1925         .addImm(16)
1926         .add(predOps(ARMCC::AL));
1927     NextReg += 2;
1928     NumAlignedDPRCS2Regs -= 2;
1929   }
1930 
1931   // Finally, use a vanilla vldr.64 for the remaining odd register.
1932   if (NumAlignedDPRCS2Regs)
1933     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1934         .addReg(ARM::R4)
1935         .addImm(2 * (NextReg - R4BaseReg))
1936         .add(predOps(ARMCC::AL));
1937 
1938   // Last store kills r4.
1939   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1940 }
1941 
1942 bool ARMFrameLowering::spillCalleeSavedRegisters(
1943     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1944     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1945   if (CSI.empty())
1946     return false;
1947 
1948   MachineFunction &MF = *MBB.getParent();
1949   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1950 
1951   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1952   unsigned PushOneOpc = AFI->isThumbFunction() ?
1953     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1954   unsigned FltOpc = ARM::VSTMDDB_UPD;
1955   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1956   // Compute PAC in R12.
1957   if (AFI->shouldSignReturnAddress()) {
1958     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1959         .setMIFlags(MachineInstr::FrameSetup);
1960   }
1961   // Save the non-secure floating point context.
1962   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1963         return C.getReg() == ARM::FPCXTNS;
1964       })) {
1965     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1966             ARM::SP)
1967         .addReg(ARM::SP)
1968         .addImm(-4)
1969         .add(predOps(ARMCC::AL));
1970   }
1971   if (STI.splitFramePointerPush(MF)) {
1972     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1973                  &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
1974     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1975                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1976     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
1977                  &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
1978   } else {
1979     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
1980                  0, MachineInstr::FrameSetup);
1981     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
1982                  0, MachineInstr::FrameSetup);
1983     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1984                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1985   }
1986 
1987   // The code above does not insert spill code for the aligned DPRCS2 registers.
1988   // The stack realignment code will be inserted between the push instructions
1989   // and these spills.
1990   if (NumAlignedDPRCS2Regs)
1991     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1992 
1993   return true;
1994 }
1995 
1996 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1997     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1998     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1999   if (CSI.empty())
2000     return false;
2001 
2002   MachineFunction &MF = *MBB.getParent();
2003   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2004   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2005   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2006 
2007   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2008   // registers. Do that here instead.
2009   if (NumAlignedDPRCS2Regs)
2010     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2011 
2012   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2013   unsigned LdrOpc =
2014       AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2015   unsigned FltOpc = ARM::VLDMDIA_UPD;
2016   if (STI.splitFramePointerPush(MF)) {
2017     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2018                 &isSplitFPArea2Register, 0);
2019     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2020                 NumAlignedDPRCS2Regs);
2021     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2022                 &isSplitFPArea1Register, 0);
2023   } else {
2024     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2025                 NumAlignedDPRCS2Regs);
2026     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2027                 &isARMArea2Register, 0);
2028     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2029                 &isARMArea1Register, 0);
2030   }
2031 
2032   return true;
2033 }
2034 
2035 // FIXME: Make generic?
2036 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2037                                             const ARMBaseInstrInfo &TII) {
2038   unsigned FnSize = 0;
2039   for (auto &MBB : MF) {
2040     for (auto &MI : MBB)
2041       FnSize += TII.getInstSizeInBytes(MI);
2042   }
2043   if (MF.getJumpTableInfo())
2044     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2045       FnSize += Table.MBBs.size() * 4;
2046   FnSize += MF.getConstantPool()->getConstants().size() * 4;
2047   return FnSize;
2048 }
2049 
2050 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2051 /// frames and return the stack size limit beyond which some of these
2052 /// instructions will require a scratch register during their expansion later.
2053 // FIXME: Move to TII?
2054 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2055                                          const TargetFrameLowering *TFI,
2056                                          bool &HasNonSPFrameIndex) {
2057   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2058   const ARMBaseInstrInfo &TII =
2059       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2060   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2061   unsigned Limit = (1 << 12) - 1;
2062   for (auto &MBB : MF) {
2063     for (auto &MI : MBB) {
2064       if (MI.isDebugInstr())
2065         continue;
2066       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2067         if (!MI.getOperand(i).isFI())
2068           continue;
2069 
2070         // When using ADDri to get the address of a stack object, 255 is the
2071         // largest offset guaranteed to fit in the immediate offset.
2072         if (MI.getOpcode() == ARM::ADDri) {
2073           Limit = std::min(Limit, (1U << 8) - 1);
2074           break;
2075         }
2076         // t2ADDri will not require an extra register, it can reuse the
2077         // destination.
2078         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2079           break;
2080 
2081         const MCInstrDesc &MCID = MI.getDesc();
2082         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2083         if (RegClass && !RegClass->contains(ARM::SP))
2084           HasNonSPFrameIndex = true;
2085 
2086         // Otherwise check the addressing mode.
2087         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2088         case ARMII::AddrMode_i12:
2089         case ARMII::AddrMode2:
2090           // Default 12 bit limit.
2091           break;
2092         case ARMII::AddrMode3:
2093         case ARMII::AddrModeT2_i8neg:
2094           Limit = std::min(Limit, (1U << 8) - 1);
2095           break;
2096         case ARMII::AddrMode5FP16:
2097           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2098           break;
2099         case ARMII::AddrMode5:
2100         case ARMII::AddrModeT2_i8s4:
2101         case ARMII::AddrModeT2_ldrex:
2102           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2103           break;
2104         case ARMII::AddrModeT2_i12:
2105           // i12 supports only positive offset so these will be converted to
2106           // i8 opcodes. See llvm::rewriteT2FrameIndex.
2107           if (TFI->hasFP(MF) && AFI->hasStackFrame())
2108             Limit = std::min(Limit, (1U << 8) - 1);
2109           break;
2110         case ARMII::AddrMode4:
2111         case ARMII::AddrMode6:
2112           // Addressing modes 4 & 6 (load/store) instructions can't encode an
2113           // immediate offset for stack references.
2114           return 0;
2115         case ARMII::AddrModeT2_i7:
2116           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2117           break;
2118         case ARMII::AddrModeT2_i7s2:
2119           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2120           break;
2121         case ARMII::AddrModeT2_i7s4:
2122           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2123           break;
2124         default:
2125           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2126         }
2127         break; // At most one FI per instruction
2128       }
2129     }
2130   }
2131 
2132   return Limit;
2133 }
2134 
2135 // In functions that realign the stack, it can be an advantage to spill the
2136 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2137 // instructions take alignment hints that can improve performance.
2138 static void
2139 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2140   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2141   if (!SpillAlignedNEONRegs)
2142     return;
2143 
2144   // Naked functions don't spill callee-saved registers.
2145   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2146     return;
2147 
2148   // We are planning to use NEON instructions vst1 / vld1.
2149   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2150     return;
2151 
2152   // Don't bother if the default stack alignment is sufficiently high.
2153   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2154     return;
2155 
2156   // Aligned spills require stack realignment.
2157   if (!static_cast<const ARMBaseRegisterInfo *>(
2158            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2159     return;
2160 
2161   // We always spill contiguous d-registers starting from d8. Count how many
2162   // needs spilling.  The register allocator will almost always use the
2163   // callee-saved registers in order, but it can happen that there are holes in
2164   // the range.  Registers above the hole will be spilled to the standard DPRCS
2165   // area.
2166   unsigned NumSpills = 0;
2167   for (; NumSpills < 8; ++NumSpills)
2168     if (!SavedRegs.test(ARM::D8 + NumSpills))
2169       break;
2170 
2171   // Don't do this for just one d-register. It's not worth it.
2172   if (NumSpills < 2)
2173     return;
2174 
2175   // Spill the first NumSpills D-registers after realigning the stack.
2176   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2177 
2178   // A scratch register is required for the vst1 / vld1 instructions.
2179   SavedRegs.set(ARM::R4);
2180 }
2181 
2182 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2183   // For CMSE entry functions, we want to save the FPCXT_NS immediately
2184   // upon function entry (resp. restore it immmediately before return)
2185   if (STI.hasV8_1MMainlineOps() &&
2186       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2187     return false;
2188 
2189   // We are disabling shrinkwrapping for now when PAC is enabled, as
2190   // shrinkwrapping can cause clobbering of r12 when the PAC code is
2191   // generated. A follow-up patch will fix this in a more performant manner.
2192   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2193           true /* SpillsLR */))
2194     return false;
2195 
2196   return true;
2197 }
2198 
2199 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2200                                             BitVector &SavedRegs,
2201                                             RegScavenger *RS) const {
2202   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2203   // This tells PEI to spill the FP as if it is any other callee-save register
2204   // to take advantage the eliminateFrameIndex machinery. This also ensures it
2205   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2206   // to combine multiple loads / stores.
2207   bool CanEliminateFrame = true;
2208   bool CS1Spilled = false;
2209   bool LRSpilled = false;
2210   unsigned NumGPRSpills = 0;
2211   unsigned NumFPRSpills = 0;
2212   SmallVector<unsigned, 4> UnspilledCS1GPRs;
2213   SmallVector<unsigned, 4> UnspilledCS2GPRs;
2214   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2215       MF.getSubtarget().getRegisterInfo());
2216   const ARMBaseInstrInfo &TII =
2217       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2218   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2219   MachineFrameInfo &MFI = MF.getFrameInfo();
2220   MachineRegisterInfo &MRI = MF.getRegInfo();
2221   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2222   (void)TRI;  // Silence unused warning in non-assert builds.
2223   Register FramePtr = RegInfo->getFrameRegister(MF);
2224 
2225   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2226   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2227   // since it's not always possible to restore sp from fp in a single
2228   // instruction.
2229   // FIXME: It will be better just to find spare register here.
2230   if (AFI->isThumb2Function() &&
2231       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2232     SavedRegs.set(ARM::R4);
2233 
2234   // If a stack probe will be emitted, spill R4 and LR, since they are
2235   // clobbered by the stack probe call.
2236   // This estimate should be a safe, conservative estimate. The actual
2237   // stack probe is enabled based on the size of the local objects;
2238   // this estimate also includes the varargs store size.
2239   if (STI.isTargetWindows() &&
2240       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2241     SavedRegs.set(ARM::R4);
2242     SavedRegs.set(ARM::LR);
2243   }
2244 
2245   if (AFI->isThumb1OnlyFunction()) {
2246     // Spill LR if Thumb1 function uses variable length argument lists.
2247     if (AFI->getArgRegsSaveSize() > 0)
2248       SavedRegs.set(ARM::LR);
2249 
2250     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2251     // requires stack alignment.  We don't know for sure what the stack size
2252     // will be, but for this, an estimate is good enough. If there anything
2253     // changes it, it'll be a spill, which implies we've used all the registers
2254     // and so R4 is already used, so not marking it here will be OK.
2255     // FIXME: It will be better just to find spare register here.
2256     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2257         MFI.estimateStackSize(MF) > 508)
2258       SavedRegs.set(ARM::R4);
2259   }
2260 
2261   // See if we can spill vector registers to aligned stack.
2262   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2263 
2264   // Spill the BasePtr if it's used.
2265   if (RegInfo->hasBasePointer(MF))
2266     SavedRegs.set(RegInfo->getBaseRegister());
2267 
2268   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2269   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2270     CanEliminateFrame = false;
2271 
2272   // Don't spill FP if the frame can be eliminated. This is determined
2273   // by scanning the callee-save registers to see if any is modified.
2274   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2275   for (unsigned i = 0; CSRegs[i]; ++i) {
2276     unsigned Reg = CSRegs[i];
2277     bool Spilled = false;
2278     if (SavedRegs.test(Reg)) {
2279       Spilled = true;
2280       CanEliminateFrame = false;
2281     }
2282 
2283     if (!ARM::GPRRegClass.contains(Reg)) {
2284       if (Spilled) {
2285         if (ARM::SPRRegClass.contains(Reg))
2286           NumFPRSpills++;
2287         else if (ARM::DPRRegClass.contains(Reg))
2288           NumFPRSpills += 2;
2289         else if (ARM::QPRRegClass.contains(Reg))
2290           NumFPRSpills += 4;
2291       }
2292       continue;
2293     }
2294 
2295     if (Spilled) {
2296       NumGPRSpills++;
2297 
2298       if (!STI.splitFramePushPop(MF)) {
2299         if (Reg == ARM::LR)
2300           LRSpilled = true;
2301         CS1Spilled = true;
2302         continue;
2303       }
2304 
2305       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2306       switch (Reg) {
2307       case ARM::LR:
2308         LRSpilled = true;
2309         LLVM_FALLTHROUGH;
2310       case ARM::R0: case ARM::R1:
2311       case ARM::R2: case ARM::R3:
2312       case ARM::R4: case ARM::R5:
2313       case ARM::R6: case ARM::R7:
2314         CS1Spilled = true;
2315         break;
2316       default:
2317         break;
2318       }
2319     } else {
2320       if (!STI.splitFramePushPop(MF)) {
2321         UnspilledCS1GPRs.push_back(Reg);
2322         continue;
2323       }
2324 
2325       switch (Reg) {
2326       case ARM::R0: case ARM::R1:
2327       case ARM::R2: case ARM::R3:
2328       case ARM::R4: case ARM::R5:
2329       case ARM::R6: case ARM::R7:
2330       case ARM::LR:
2331         UnspilledCS1GPRs.push_back(Reg);
2332         break;
2333       default:
2334         UnspilledCS2GPRs.push_back(Reg);
2335         break;
2336       }
2337     }
2338   }
2339 
2340   bool ForceLRSpill = false;
2341   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2342     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2343     // Force LR to be spilled if the Thumb function size is > 2048. This enables
2344     // use of BL to implement far jump.
2345     if (FnSize >= (1 << 11)) {
2346       CanEliminateFrame = false;
2347       ForceLRSpill = true;
2348     }
2349   }
2350 
2351   // If any of the stack slot references may be out of range of an immediate
2352   // offset, make sure a register (or a spill slot) is available for the
2353   // register scavenger. Note that if we're indexing off the frame pointer, the
2354   // effective stack size is 4 bytes larger since the FP points to the stack
2355   // slot of the previous FP. Also, if we have variable sized objects in the
2356   // function, stack slot references will often be negative, and some of
2357   // our instructions are positive-offset only, so conservatively consider
2358   // that case to want a spill slot (or register) as well. Similarly, if
2359   // the function adjusts the stack pointer during execution and the
2360   // adjustments aren't already part of our stack size estimate, our offset
2361   // calculations may be off, so be conservative.
2362   // FIXME: We could add logic to be more precise about negative offsets
2363   //        and which instructions will need a scratch register for them. Is it
2364   //        worth the effort and added fragility?
2365   unsigned EstimatedStackSize =
2366       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2367 
2368   // Determine biggest (positive) SP offset in MachineFrameInfo.
2369   int MaxFixedOffset = 0;
2370   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2371     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2372     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2373   }
2374 
2375   bool HasFP = hasFP(MF);
2376   if (HasFP) {
2377     if (AFI->hasStackFrame())
2378       EstimatedStackSize += 4;
2379   } else {
2380     // If FP is not used, SP will be used to access arguments, so count the
2381     // size of arguments into the estimation.
2382     EstimatedStackSize += MaxFixedOffset;
2383   }
2384   EstimatedStackSize += 16; // For possible paddings.
2385 
2386   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2387   bool HasNonSPFrameIndex = false;
2388   if (AFI->isThumb1OnlyFunction()) {
2389     // For Thumb1, don't bother to iterate over the function. The only
2390     // instruction that requires an emergency spill slot is a store to a
2391     // frame index.
2392     //
2393     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2394     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2395     // a 5-bit unsigned immediate.
2396     //
2397     // We could try to check if the function actually contains a tSTRspi
2398     // that might need the spill slot, but it's not really important.
2399     // Functions with VLAs or extremely large call frames are rare, and
2400     // if a function is allocating more than 1KB of stack, an extra 4-byte
2401     // slot probably isn't relevant.
2402     if (RegInfo->hasBasePointer(MF))
2403       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2404     else
2405       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2406     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2407   } else {
2408     EstimatedRSStackSizeLimit =
2409         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2410     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2411   }
2412   // Final estimate of whether sp or bp-relative accesses might require
2413   // scavenging.
2414   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2415 
2416   // If the stack pointer moves and we don't have a base pointer, the
2417   // estimate logic doesn't work. The actual offsets might be larger when
2418   // we're constructing a call frame, or we might need to use negative
2419   // offsets from fp.
2420   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2421     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2422   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2423 
2424   // If we have a frame pointer, we assume arguments will be accessed
2425   // relative to the frame pointer. Check whether fp-relative accesses to
2426   // arguments require scavenging.
2427   //
2428   // We could do slightly better on Thumb1; in some cases, an sp-relative
2429   // offset would be legal even though an fp-relative offset is not.
2430   int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2431   bool HasLargeArgumentList =
2432       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2433 
2434   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2435                          HasLargeArgumentList || HasNonSPFrameIndex;
2436   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2437                     << "; EstimatedStack: " << EstimatedStackSize
2438                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2439                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2440   if (BigFrameOffsets ||
2441       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2442     AFI->setHasStackFrame(true);
2443 
2444     if (HasFP) {
2445       SavedRegs.set(FramePtr);
2446       // If the frame pointer is required by the ABI, also spill LR so that we
2447       // emit a complete frame record.
2448       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
2449         SavedRegs.set(ARM::LR);
2450         LRSpilled = true;
2451         NumGPRSpills++;
2452         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2453         if (LRPos != UnspilledCS1GPRs.end())
2454           UnspilledCS1GPRs.erase(LRPos);
2455       }
2456       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2457       if (FPPos != UnspilledCS1GPRs.end())
2458         UnspilledCS1GPRs.erase(FPPos);
2459       NumGPRSpills++;
2460       if (FramePtr == ARM::R7)
2461         CS1Spilled = true;
2462     }
2463 
2464     // This is true when we inserted a spill for a callee-save GPR which is
2465     // not otherwise used by the function. This guaranteees it is possible
2466     // to scavenge a register to hold the address of a stack slot. On Thumb1,
2467     // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2468     // subtargets, this is any GPR, i.e. r4-r11 or lr.
2469     //
2470     // If we don't insert a spill, we instead allocate an emergency spill
2471     // slot, which can be used by scavenging to spill an arbitrary register.
2472     //
2473     // We currently don't try to figure out whether any specific instruction
2474     // requires scavening an additional register.
2475     bool ExtraCSSpill = false;
2476 
2477     if (AFI->isThumb1OnlyFunction()) {
2478       // For Thumb1-only targets, we need some low registers when we save and
2479       // restore the high registers (which aren't allocatable, but could be
2480       // used by inline assembly) because the push/pop instructions can not
2481       // access high registers. If necessary, we might need to push more low
2482       // registers to ensure that there is at least one free that can be used
2483       // for the saving & restoring, and preferably we should ensure that as
2484       // many as are needed are available so that fewer push/pop instructions
2485       // are required.
2486 
2487       // Low registers which are not currently pushed, but could be (r4-r7).
2488       SmallVector<unsigned, 4> AvailableRegs;
2489 
2490       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2491       // free.
2492       int EntryRegDeficit = 0;
2493       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2494         if (!MF.getRegInfo().isLiveIn(Reg)) {
2495           --EntryRegDeficit;
2496           LLVM_DEBUG(dbgs()
2497                      << printReg(Reg, TRI)
2498                      << " is unused argument register, EntryRegDeficit = "
2499                      << EntryRegDeficit << "\n");
2500         }
2501       }
2502 
2503       // Unused return registers can be clobbered in the epilogue for free.
2504       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2505       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2506                         << " return regs used, ExitRegDeficit = "
2507                         << ExitRegDeficit << "\n");
2508 
2509       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2510       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2511 
2512       // r4-r6 can be used in the prologue if they are pushed by the first push
2513       // instruction.
2514       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2515         if (SavedRegs.test(Reg)) {
2516           --RegDeficit;
2517           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2518                             << " is saved low register, RegDeficit = "
2519                             << RegDeficit << "\n");
2520         } else {
2521           AvailableRegs.push_back(Reg);
2522           LLVM_DEBUG(
2523               dbgs()
2524               << printReg(Reg, TRI)
2525               << " is non-saved low register, adding to AvailableRegs\n");
2526         }
2527       }
2528 
2529       // r7 can be used if it is not being used as the frame pointer.
2530       if (!HasFP) {
2531         if (SavedRegs.test(ARM::R7)) {
2532           --RegDeficit;
2533           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2534                             << RegDeficit << "\n");
2535         } else {
2536           AvailableRegs.push_back(ARM::R7);
2537           LLVM_DEBUG(
2538               dbgs()
2539               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2540         }
2541       }
2542 
2543       // Each of r8-r11 needs to be copied to a low register, then pushed.
2544       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2545         if (SavedRegs.test(Reg)) {
2546           ++RegDeficit;
2547           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2548                             << " is saved high register, RegDeficit = "
2549                             << RegDeficit << "\n");
2550         }
2551       }
2552 
2553       // LR can only be used by PUSH, not POP, and can't be used at all if the
2554       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2555       // are more limited at function entry than exit.
2556       if ((EntryRegDeficit > ExitRegDeficit) &&
2557           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2558             MF.getFrameInfo().isReturnAddressTaken())) {
2559         if (SavedRegs.test(ARM::LR)) {
2560           --RegDeficit;
2561           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2562                             << RegDeficit << "\n");
2563         } else {
2564           AvailableRegs.push_back(ARM::LR);
2565           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2566         }
2567       }
2568 
2569       // If there are more high registers that need pushing than low registers
2570       // available, push some more low registers so that we can use fewer push
2571       // instructions. This might not reduce RegDeficit all the way to zero,
2572       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2573       // need saving.
2574       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2575       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2576         unsigned Reg = AvailableRegs.pop_back_val();
2577         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2578                           << " to make up reg deficit\n");
2579         SavedRegs.set(Reg);
2580         NumGPRSpills++;
2581         CS1Spilled = true;
2582         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2583         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2584           ExtraCSSpill = true;
2585         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2586         if (Reg == ARM::LR)
2587           LRSpilled = true;
2588       }
2589       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2590                         << "\n");
2591     }
2592 
2593     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2594     // restore LR in that case.
2595     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2596 
2597     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2598     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2599     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2600       SavedRegs.set(ARM::LR);
2601       NumGPRSpills++;
2602       SmallVectorImpl<unsigned>::iterator LRPos;
2603       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2604       if (LRPos != UnspilledCS1GPRs.end())
2605         UnspilledCS1GPRs.erase(LRPos);
2606 
2607       ForceLRSpill = false;
2608       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2609           !AFI->isThumb1OnlyFunction())
2610         ExtraCSSpill = true;
2611     }
2612 
2613     // If stack and double are 8-byte aligned and we are spilling an odd number
2614     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2615     // the integer and double callee save areas.
2616     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2617     const Align TargetAlign = getStackAlign();
2618     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2619       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2620         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2621           unsigned Reg = UnspilledCS1GPRs[i];
2622           // Don't spill high register if the function is thumb.  In the case of
2623           // Windows on ARM, accept R11 (frame pointer)
2624           if (!AFI->isThumbFunction() ||
2625               (STI.isTargetWindows() && Reg == ARM::R11) ||
2626               isARMLowRegister(Reg) ||
2627               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2628             SavedRegs.set(Reg);
2629             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2630                               << " to make up alignment\n");
2631             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2632                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2633               ExtraCSSpill = true;
2634             break;
2635           }
2636         }
2637       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2638         unsigned Reg = UnspilledCS2GPRs.front();
2639         SavedRegs.set(Reg);
2640         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2641                           << " to make up alignment\n");
2642         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2643           ExtraCSSpill = true;
2644       }
2645     }
2646 
2647     // Estimate if we might need to scavenge a register at some point in order
2648     // to materialize a stack offset. If so, either spill one additional
2649     // callee-saved register or reserve a special spill slot to facilitate
2650     // register scavenging. Thumb1 needs a spill slot for stack pointer
2651     // adjustments also, even when the frame itself is small.
2652     if (BigFrameOffsets && !ExtraCSSpill) {
2653       // If any non-reserved CS register isn't spilled, just spill one or two
2654       // extra. That should take care of it!
2655       unsigned NumExtras = TargetAlign.value() / 4;
2656       SmallVector<unsigned, 2> Extras;
2657       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2658         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2659         if (!MRI.isReserved(Reg) &&
2660             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2661           Extras.push_back(Reg);
2662           NumExtras--;
2663         }
2664       }
2665       // For non-Thumb1 functions, also check for hi-reg CS registers
2666       if (!AFI->isThumb1OnlyFunction()) {
2667         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2668           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2669           if (!MRI.isReserved(Reg)) {
2670             Extras.push_back(Reg);
2671             NumExtras--;
2672           }
2673         }
2674       }
2675       if (NumExtras == 0) {
2676         for (unsigned Reg : Extras) {
2677           SavedRegs.set(Reg);
2678           if (!MRI.isPhysRegUsed(Reg))
2679             ExtraCSSpill = true;
2680         }
2681       }
2682       if (!ExtraCSSpill && RS) {
2683         // Reserve a slot closest to SP or frame pointer.
2684         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2685         const TargetRegisterClass &RC = ARM::GPRRegClass;
2686         unsigned Size = TRI->getSpillSize(RC);
2687         Align Alignment = TRI->getSpillAlign(RC);
2688         RS->addScavengingFrameIndex(
2689             MFI.CreateStackObject(Size, Alignment, false));
2690       }
2691     }
2692   }
2693 
2694   if (ForceLRSpill)
2695     SavedRegs.set(ARM::LR);
2696   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2697 }
2698 
2699 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2700                                       BitVector &SavedRegs) const {
2701   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2702 
2703   // If we have the "returned" parameter attribute which guarantees that we
2704   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2705   // record that fact for IPRA.
2706   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2707   if (AFI->getPreservesR0())
2708     SavedRegs.set(ARM::R0);
2709 }
2710 
2711 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2712     MachineFunction &MF, const TargetRegisterInfo *TRI,
2713     std::vector<CalleeSavedInfo> &CSI) const {
2714   // For CMSE entry functions, handle floating-point context as if it was a
2715   // callee-saved register.
2716   if (STI.hasV8_1MMainlineOps() &&
2717       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2718     CSI.emplace_back(ARM::FPCXTNS);
2719     CSI.back().setRestored(false);
2720   }
2721 
2722   // For functions, which sign their return address, upon function entry, the
2723   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2724   // in this case.
2725   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2726   if (AFI.shouldSignReturnAddress()) {
2727     // The order of register must match the order we push them, because the
2728     // PEI assigns frame indices in that order. When compiling for return
2729     // address sign and authenication, we use split push, therefore the orders
2730     // we want are:
2731     // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
2732     CSI.insert(find_if(CSI,
2733                        [=](const auto &CS) {
2734                          Register Reg = CS.getReg();
2735                          return Reg == ARM::R10 || Reg == ARM::R11 ||
2736                                 Reg == ARM::R8 || Reg == ARM::R9 ||
2737                                 ARM::DPRRegClass.contains(Reg);
2738                        }),
2739                CalleeSavedInfo(ARM::R12));
2740   }
2741 
2742   return false;
2743 }
2744 
2745 const TargetFrameLowering::SpillSlot *
2746 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2747   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2748   NumEntries = array_lengthof(FixedSpillOffsets);
2749   return FixedSpillOffsets;
2750 }
2751 
2752 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2753     MachineFunction &MF, MachineBasicBlock &MBB,
2754     MachineBasicBlock::iterator I) const {
2755   const ARMBaseInstrInfo &TII =
2756       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2757   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2758   bool isARM = !AFI->isThumbFunction();
2759   DebugLoc dl = I->getDebugLoc();
2760   unsigned Opc = I->getOpcode();
2761   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2762   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2763 
2764   assert(!AFI->isThumb1OnlyFunction() &&
2765          "This eliminateCallFramePseudoInstr does not support Thumb1!");
2766 
2767   int PIdx = I->findFirstPredOperandIdx();
2768   ARMCC::CondCodes Pred = (PIdx == -1)
2769                               ? ARMCC::AL
2770                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2771   unsigned PredReg = TII.getFramePred(*I);
2772 
2773   if (!hasReservedCallFrame(MF)) {
2774     // Bail early if the callee is expected to do the adjustment.
2775     if (IsDestroy && CalleePopAmount != -1U)
2776       return MBB.erase(I);
2777 
2778     // If we have alloca, convert as follows:
2779     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2780     // ADJCALLSTACKUP   -> add, sp, sp, amount
2781     unsigned Amount = TII.getFrameSize(*I);
2782     if (Amount != 0) {
2783       // We need to keep the stack aligned properly.  To do this, we round the
2784       // amount of space needed for the outgoing arguments up to the next
2785       // alignment boundary.
2786       Amount = alignSPAdjust(Amount);
2787 
2788       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2789         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2790                      Pred, PredReg);
2791       } else {
2792         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2793         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2794                      Pred, PredReg);
2795       }
2796     }
2797   } else if (CalleePopAmount != -1U) {
2798     // If the calling convention demands that the callee pops arguments from the
2799     // stack, we want to add it back if we have a reserved call frame.
2800     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2801                  MachineInstr::NoFlags, Pred, PredReg);
2802   }
2803   return MBB.erase(I);
2804 }
2805 
2806 /// Get the minimum constant for ARM that is greater than or equal to the
2807 /// argument. In ARM, constants can have any value that can be produced by
2808 /// rotating an 8-bit value to the right by an even number of bits within a
2809 /// 32-bit word.
2810 static uint32_t alignToARMConstant(uint32_t Value) {
2811   unsigned Shifted = 0;
2812 
2813   if (Value == 0)
2814       return 0;
2815 
2816   while (!(Value & 0xC0000000)) {
2817       Value = Value << 2;
2818       Shifted += 2;
2819   }
2820 
2821   bool Carry = (Value & 0x00FFFFFF);
2822   Value = ((Value & 0xFF000000) >> 24) + Carry;
2823 
2824   if (Value & 0x0000100)
2825       Value = Value & 0x000001FC;
2826 
2827   if (Shifted > 24)
2828       Value = Value >> (Shifted - 24);
2829   else
2830       Value = Value << (24 - Shifted);
2831 
2832   return Value;
2833 }
2834 
2835 // The stack limit in the TCB is set to this many bytes above the actual
2836 // stack limit.
2837 static const uint64_t kSplitStackAvailable = 256;
2838 
2839 // Adjust the function prologue to enable split stacks. This currently only
2840 // supports android and linux.
2841 //
2842 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2843 // must be well defined in order to allow for consistent implementations of the
2844 // __morestack helper function. The ABI is also not a normal ABI in that it
2845 // doesn't follow the normal calling conventions because this allows the
2846 // prologue of each function to be optimized further.
2847 //
2848 // Currently, the ABI looks like (when calling __morestack)
2849 //
2850 //  * r4 holds the minimum stack size requested for this function call
2851 //  * r5 holds the stack size of the arguments to the function
2852 //  * the beginning of the function is 3 instructions after the call to
2853 //    __morestack
2854 //
2855 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2856 // place the arguments on to the new stack, and the 3-instruction knowledge to
2857 // jump directly to the body of the function when working on the new stack.
2858 //
2859 // An old (and possibly no longer compatible) implementation of __morestack for
2860 // ARM can be found at [1].
2861 //
2862 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2863 void ARMFrameLowering::adjustForSegmentedStacks(
2864     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2865   unsigned Opcode;
2866   unsigned CFIIndex;
2867   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2868   bool Thumb = ST->isThumb();
2869   bool Thumb2 = ST->isThumb2();
2870 
2871   // Sadly, this currently doesn't support varargs, platforms other than
2872   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2873   if (MF.getFunction().isVarArg())
2874     report_fatal_error("Segmented stacks do not support vararg functions.");
2875   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2876     report_fatal_error("Segmented stacks not supported on this platform.");
2877 
2878   MachineFrameInfo &MFI = MF.getFrameInfo();
2879   MachineModuleInfo &MMI = MF.getMMI();
2880   MCContext &Context = MMI.getContext();
2881   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2882   const ARMBaseInstrInfo &TII =
2883       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2884   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2885   DebugLoc DL;
2886 
2887   if (!MFI.needsSplitStackProlog())
2888     return;
2889 
2890   uint64_t StackSize = MFI.getStackSize();
2891 
2892   // Use R4 and R5 as scratch registers.
2893   // We save R4 and R5 before use and restore them before leaving the function.
2894   unsigned ScratchReg0 = ARM::R4;
2895   unsigned ScratchReg1 = ARM::R5;
2896   uint64_t AlignedStackSize;
2897 
2898   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2899   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2900   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2901   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2902   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2903 
2904   // Grab everything that reaches PrologueMBB to update there liveness as well.
2905   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2906   SmallVector<MachineBasicBlock *, 2> WalkList;
2907   WalkList.push_back(&PrologueMBB);
2908 
2909   do {
2910     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2911     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2912       if (BeforePrologueRegion.insert(PredBB).second)
2913         WalkList.push_back(PredBB);
2914     }
2915   } while (!WalkList.empty());
2916 
2917   // The order in that list is important.
2918   // The blocks will all be inserted before PrologueMBB using that order.
2919   // Therefore the block that should appear first in the CFG should appear
2920   // first in the list.
2921   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2922                                       PostStackMBB};
2923 
2924   for (MachineBasicBlock *B : AddedBlocks)
2925     BeforePrologueRegion.insert(B);
2926 
2927   for (const auto &LI : PrologueMBB.liveins()) {
2928     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2929       PredBB->addLiveIn(LI);
2930   }
2931 
2932   // Remove the newly added blocks from the list, since we know
2933   // we do not have to do the following updates for them.
2934   for (MachineBasicBlock *B : AddedBlocks) {
2935     BeforePrologueRegion.erase(B);
2936     MF.insert(PrologueMBB.getIterator(), B);
2937   }
2938 
2939   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2940     // Make sure the LiveIns are still sorted and unique.
2941     MBB->sortUniqueLiveIns();
2942     // Replace the edges to PrologueMBB by edges to the sequences
2943     // we are about to add, but only update for immediate predecessors.
2944     if (MBB->isSuccessor(&PrologueMBB))
2945       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2946   }
2947 
2948   // The required stack size that is aligned to ARM constant criterion.
2949   AlignedStackSize = alignToARMConstant(StackSize);
2950 
2951   // When the frame size is less than 256 we just compare the stack
2952   // boundary directly to the value of the stack pointer, per gcc.
2953   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2954 
2955   // We will use two of the callee save registers as scratch registers so we
2956   // need to save those registers onto the stack.
2957   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2958   // requested and arguments for __morestack().
2959   // SR0: Scratch Register #0
2960   // SR1: Scratch Register #1
2961   // push {SR0, SR1}
2962   if (Thumb) {
2963     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2964         .add(predOps(ARMCC::AL))
2965         .addReg(ScratchReg0)
2966         .addReg(ScratchReg1);
2967   } else {
2968     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2969         .addReg(ARM::SP, RegState::Define)
2970         .addReg(ARM::SP)
2971         .add(predOps(ARMCC::AL))
2972         .addReg(ScratchReg0)
2973         .addReg(ScratchReg1);
2974   }
2975 
2976   // Emit the relevant DWARF information about the change in stack pointer as
2977   // well as where to find both r4 and r5 (the callee-save registers)
2978   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
2979     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2980     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2981         .addCFIIndex(CFIIndex);
2982     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2983         nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2984     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2985         .addCFIIndex(CFIIndex);
2986     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2987         nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2988     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2989         .addCFIIndex(CFIIndex);
2990   }
2991 
2992   // mov SR1, sp
2993   if (Thumb) {
2994     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2995         .addReg(ARM::SP)
2996         .add(predOps(ARMCC::AL));
2997   } else if (CompareStackPointer) {
2998     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2999         .addReg(ARM::SP)
3000         .add(predOps(ARMCC::AL))
3001         .add(condCodeOp());
3002   }
3003 
3004   // sub SR1, sp, #StackSize
3005   if (!CompareStackPointer && Thumb) {
3006     if (AlignedStackSize < 256) {
3007       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3008           .add(condCodeOp())
3009           .addReg(ScratchReg1)
3010           .addImm(AlignedStackSize)
3011           .add(predOps(ARMCC::AL));
3012     } else {
3013       if (Thumb2) {
3014         BuildMI(McrMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3015             .addImm(AlignedStackSize);
3016       } else {
3017         auto MBBI = McrMBB->end();
3018         auto RegInfo = STI.getRegisterInfo();
3019         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3020                                    AlignedStackSize);
3021       }
3022       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3023           .add(condCodeOp())
3024           .addReg(ScratchReg1)
3025           .addReg(ScratchReg0)
3026           .add(predOps(ARMCC::AL));
3027     }
3028   } else if (!CompareStackPointer) {
3029     if (AlignedStackSize < 256) {
3030       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3031           .addReg(ARM::SP)
3032           .addImm(AlignedStackSize)
3033           .add(predOps(ARMCC::AL))
3034           .add(condCodeOp());
3035     } else {
3036       auto MBBI = McrMBB->end();
3037       auto RegInfo = STI.getRegisterInfo();
3038       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3039                                  AlignedStackSize);
3040       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3041           .addReg(ARM::SP)
3042           .addReg(ScratchReg0)
3043           .add(predOps(ARMCC::AL))
3044           .add(condCodeOp());
3045     }
3046   }
3047 
3048   if (Thumb && ST->isThumb1Only()) {
3049     unsigned PCLabelId = ARMFI->createPICLabelUId();
3050     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3051         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3052     MachineConstantPool *MCP = MF.getConstantPool();
3053     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3054 
3055     // ldr SR0, [pc, offset(STACK_LIMIT)]
3056     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3057         .addConstantPoolIndex(CPI)
3058         .add(predOps(ARMCC::AL));
3059 
3060     // ldr SR0, [SR0]
3061     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3062         .addReg(ScratchReg0)
3063         .addImm(0)
3064         .add(predOps(ARMCC::AL));
3065   } else {
3066     // Get TLS base address from the coprocessor
3067     // mrc p15, #0, SR0, c13, c0, #3
3068     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3069             ScratchReg0)
3070         .addImm(15)
3071         .addImm(0)
3072         .addImm(13)
3073         .addImm(0)
3074         .addImm(3)
3075         .add(predOps(ARMCC::AL));
3076 
3077     // Use the last tls slot on android and a private field of the TCP on linux.
3078     assert(ST->isTargetAndroid() || ST->isTargetLinux());
3079     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3080 
3081     // Get the stack limit from the right offset
3082     // ldr SR0, [sr0, #4 * TlsOffset]
3083     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3084             ScratchReg0)
3085         .addReg(ScratchReg0)
3086         .addImm(4 * TlsOffset)
3087         .add(predOps(ARMCC::AL));
3088   }
3089 
3090   // Compare stack limit with stack size requested.
3091   // cmp SR0, SR1
3092   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3093   BuildMI(GetMBB, DL, TII.get(Opcode))
3094       .addReg(ScratchReg0)
3095       .addReg(ScratchReg1)
3096       .add(predOps(ARMCC::AL));
3097 
3098   // This jump is taken if StackLimit < SP - stack required.
3099   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3100   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
3101        .addImm(ARMCC::LO)
3102        .addReg(ARM::CPSR);
3103 
3104 
3105   // Calling __morestack(StackSize, Size of stack arguments).
3106   // __morestack knows that the stack size requested is in SR0(r4)
3107   // and amount size of stack arguments is in SR1(r5).
3108 
3109   // Pass first argument for the __morestack by Scratch Register #0.
3110   //   The amount size of stack required
3111   if (Thumb) {
3112     if (AlignedStackSize < 256) {
3113       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3114           .add(condCodeOp())
3115           .addImm(AlignedStackSize)
3116           .add(predOps(ARMCC::AL));
3117     } else {
3118       if (Thumb2) {
3119         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
3120             .addImm(AlignedStackSize);
3121       } else {
3122         auto MBBI = AllocMBB->end();
3123         auto RegInfo = STI.getRegisterInfo();
3124         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3125                                    AlignedStackSize);
3126       }
3127     }
3128   } else {
3129     if (AlignedStackSize < 256) {
3130       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3131           .addImm(AlignedStackSize)
3132           .add(predOps(ARMCC::AL))
3133           .add(condCodeOp());
3134     } else {
3135       auto MBBI = AllocMBB->end();
3136       auto RegInfo = STI.getRegisterInfo();
3137       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3138                                  AlignedStackSize);
3139     }
3140   }
3141 
3142   // Pass second argument for the __morestack by Scratch Register #1.
3143   //   The amount size of stack consumed to save function arguments.
3144   if (Thumb) {
3145     if (ARMFI->getArgumentStackSize() < 256) {
3146       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3147           .add(condCodeOp())
3148           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3149           .add(predOps(ARMCC::AL));
3150     } else {
3151       if (Thumb2) {
3152         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg1)
3153             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3154       } else {
3155         auto MBBI = AllocMBB->end();
3156         auto RegInfo = STI.getRegisterInfo();
3157         RegInfo->emitLoadConstPool(
3158             *AllocMBB, MBBI, DL, ScratchReg1, 0,
3159             alignToARMConstant(ARMFI->getArgumentStackSize()));
3160       }
3161     }
3162   } else {
3163     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3164       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3165           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3166           .add(predOps(ARMCC::AL))
3167           .add(condCodeOp());
3168     } else {
3169       auto MBBI = AllocMBB->end();
3170       auto RegInfo = STI.getRegisterInfo();
3171       RegInfo->emitLoadConstPool(
3172           *AllocMBB, MBBI, DL, ScratchReg1, 0,
3173           alignToARMConstant(ARMFI->getArgumentStackSize()));
3174     }
3175   }
3176 
3177   // push {lr} - Save return address of this function.
3178   if (Thumb) {
3179     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3180         .add(predOps(ARMCC::AL))
3181         .addReg(ARM::LR);
3182   } else {
3183     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3184         .addReg(ARM::SP, RegState::Define)
3185         .addReg(ARM::SP)
3186         .add(predOps(ARMCC::AL))
3187         .addReg(ARM::LR);
3188   }
3189 
3190   // Emit the DWARF info about the change in stack as well as where to find the
3191   // previous link register
3192   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3193     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3194     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3195         .addCFIIndex(CFIIndex);
3196     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3197         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3198     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3199         .addCFIIndex(CFIIndex);
3200   }
3201 
3202   // Call __morestack().
3203   if (Thumb) {
3204     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3205         .add(predOps(ARMCC::AL))
3206         .addExternalSymbol("__morestack");
3207   } else {
3208     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3209         .addExternalSymbol("__morestack");
3210   }
3211 
3212   // pop {lr} - Restore return address of this original function.
3213   if (Thumb) {
3214     if (ST->isThumb1Only()) {
3215       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3216           .add(predOps(ARMCC::AL))
3217           .addReg(ScratchReg0);
3218       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3219           .addReg(ScratchReg0)
3220           .add(predOps(ARMCC::AL));
3221     } else {
3222       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3223           .addReg(ARM::LR, RegState::Define)
3224           .addReg(ARM::SP, RegState::Define)
3225           .addReg(ARM::SP)
3226           .addImm(4)
3227           .add(predOps(ARMCC::AL));
3228     }
3229   } else {
3230     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3231         .addReg(ARM::SP, RegState::Define)
3232         .addReg(ARM::SP)
3233         .add(predOps(ARMCC::AL))
3234         .addReg(ARM::LR);
3235   }
3236 
3237   // Restore SR0 and SR1 in case of __morestack() was called.
3238   // __morestack() will skip PostStackMBB block so we need to restore
3239   // scratch registers from here.
3240   // pop {SR0, SR1}
3241   if (Thumb) {
3242     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3243         .add(predOps(ARMCC::AL))
3244         .addReg(ScratchReg0)
3245         .addReg(ScratchReg1);
3246   } else {
3247     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3248         .addReg(ARM::SP, RegState::Define)
3249         .addReg(ARM::SP)
3250         .add(predOps(ARMCC::AL))
3251         .addReg(ScratchReg0)
3252         .addReg(ScratchReg1);
3253   }
3254 
3255   // Update the CFA offset now that we've popped
3256   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3257     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3258     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3259         .addCFIIndex(CFIIndex);
3260   }
3261 
3262   // Return from this function.
3263   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3264 
3265   // Restore SR0 and SR1 in case of __morestack() was not called.
3266   // pop {SR0, SR1}
3267   if (Thumb) {
3268     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3269         .add(predOps(ARMCC::AL))
3270         .addReg(ScratchReg0)
3271         .addReg(ScratchReg1);
3272   } else {
3273     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3274         .addReg(ARM::SP, RegState::Define)
3275         .addReg(ARM::SP)
3276         .add(predOps(ARMCC::AL))
3277         .addReg(ScratchReg0)
3278         .addReg(ScratchReg1);
3279   }
3280 
3281   // Update the CFA offset now that we've popped
3282   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3283     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3284     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3285         .addCFIIndex(CFIIndex);
3286 
3287     // Tell debuggers that r4 and r5 are now the same as they were in the
3288     // previous function, that they're the "Same Value".
3289     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3290         nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3291     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3292         .addCFIIndex(CFIIndex);
3293     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3294         nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3295     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3296         .addCFIIndex(CFIIndex);
3297   }
3298 
3299   // Organizing MBB lists
3300   PostStackMBB->addSuccessor(&PrologueMBB);
3301 
3302   AllocMBB->addSuccessor(PostStackMBB);
3303 
3304   GetMBB->addSuccessor(PostStackMBB);
3305   GetMBB->addSuccessor(AllocMBB);
3306 
3307   McrMBB->addSuccessor(GetMBB);
3308 
3309   PrevStackMBB->addSuccessor(McrMBB);
3310 
3311 #ifdef EXPENSIVE_CHECKS
3312   MF.verify();
3313 #endif
3314 }
3315