1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_fp, prev_lr | 51 // | (a.k.a. "frame record") | 52 // | | 53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 54 // | | 55 // | callee-saved gpr registers | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | callee-saved fp/simd regs | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.8-byte.alignment.....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- base pointer (not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses r6) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // In some cases when a base pointer is not strictly needed, it is generated 92 // anyway when offsets from the frame pointer to access local variables become 93 // so large that the offset can't be encoded in the immediate fields of loads 94 // or stores. 95 // 96 // The frame pointer might be chosen to be r7 or r11, depending on the target 97 // architecture and operating system. See ARMSubtarget::useR7AsFramePointer for 98 // details. 99 // 100 // Outgoing function arguments must be at the bottom of the stack frame when 101 // calling another function. If we do not have variable-sized stack objects, we 102 // can allocate a "reserved call frame" area at the bottom of the local 103 // variable area, large enough for all outgoing calls. If we do have VLAs, then 104 // the stack pointer must be decremented and incremented around each call to 105 // make space for the arguments below the VLAs. 106 // 107 //===----------------------------------------------------------------------===// 108 109 #include "ARMFrameLowering.h" 110 #include "ARMBaseInstrInfo.h" 111 #include "ARMBaseRegisterInfo.h" 112 #include "ARMConstantPoolValue.h" 113 #include "ARMMachineFunctionInfo.h" 114 #include "ARMSubtarget.h" 115 #include "MCTargetDesc/ARMAddressingModes.h" 116 #include "MCTargetDesc/ARMBaseInfo.h" 117 #include "Utils/ARMBaseInfo.h" 118 #include "llvm/ADT/BitVector.h" 119 #include "llvm/ADT/STLExtras.h" 120 #include "llvm/ADT/SmallPtrSet.h" 121 #include "llvm/ADT/SmallVector.h" 122 #include "llvm/CodeGen/MachineBasicBlock.h" 123 #include "llvm/CodeGen/MachineConstantPool.h" 124 #include "llvm/CodeGen/MachineFrameInfo.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineInstr.h" 127 #include "llvm/CodeGen/MachineInstrBuilder.h" 128 #include "llvm/CodeGen/MachineJumpTableInfo.h" 129 #include "llvm/CodeGen/MachineModuleInfo.h" 130 #include "llvm/CodeGen/MachineOperand.h" 131 #include "llvm/CodeGen/MachineRegisterInfo.h" 132 #include "llvm/CodeGen/RegisterScavenging.h" 133 #include "llvm/CodeGen/TargetInstrInfo.h" 134 #include "llvm/CodeGen/TargetOpcodes.h" 135 #include "llvm/CodeGen/TargetRegisterInfo.h" 136 #include "llvm/CodeGen/TargetSubtargetInfo.h" 137 #include "llvm/IR/Attributes.h" 138 #include "llvm/IR/CallingConv.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/MC/MCContext.h" 142 #include "llvm/MC/MCDwarf.h" 143 #include "llvm/MC/MCInstrDesc.h" 144 #include "llvm/MC/MCRegisterInfo.h" 145 #include "llvm/Support/CodeGen.h" 146 #include "llvm/Support/CommandLine.h" 147 #include "llvm/Support/Compiler.h" 148 #include "llvm/Support/Debug.h" 149 #include "llvm/Support/ErrorHandling.h" 150 #include "llvm/Support/MathExtras.h" 151 #include "llvm/Support/raw_ostream.h" 152 #include "llvm/Target/TargetMachine.h" 153 #include "llvm/Target/TargetOptions.h" 154 #include <algorithm> 155 #include <cassert> 156 #include <cstddef> 157 #include <cstdint> 158 #include <iterator> 159 #include <utility> 160 #include <vector> 161 162 #define DEBUG_TYPE "arm-frame-lowering" 163 164 using namespace llvm; 165 166 static cl::opt<bool> 167 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 168 cl::desc("Align ARM NEON spills in prolog and epilog")); 169 170 static MachineBasicBlock::iterator 171 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 172 unsigned NumAlignedDPRCS2Regs); 173 174 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 175 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 176 STI(sti) {} 177 178 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 179 // iOS always has a FP for backtracking, force other targets to keep their FP 180 // when doing FastISel. The emitted code is currently superior, and in cases 181 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 182 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 183 } 184 185 /// Returns true if the target can safely skip saving callee-saved registers 186 /// for noreturn nounwind functions. 187 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 188 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 189 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 190 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 191 192 // Frame pointer and link register are not treated as normal CSR, thus we 193 // can always skip CSR saves for nonreturning functions. 194 return true; 195 } 196 197 /// hasFP - Return true if the specified function should have a dedicated frame 198 /// pointer register. This is true if the function has variable sized allocas 199 /// or if frame pointer elimination is disabled. 200 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 201 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 203 204 // ABI-required frame pointer. 205 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 206 return true; 207 208 // Frame pointer required for use within this function. 209 return (RegInfo->needsStackRealignment(MF) || 210 MFI.hasVarSizedObjects() || 211 MFI.isFrameAddressTaken()); 212 } 213 214 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 215 /// not required, we reserve argument space for call sites in the function 216 /// immediately on entry to the current function. This eliminates the need for 217 /// add/sub sp brackets around call sites. Returns true if the call frame is 218 /// included as part of the stack frame. 219 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 220 const MachineFrameInfo &MFI = MF.getFrameInfo(); 221 unsigned CFSize = MFI.getMaxCallFrameSize(); 222 // It's not always a good idea to include the call frame as part of the 223 // stack frame. ARM (especially Thumb) has small immediate offset to 224 // address the stack frame. So a large call frame can cause poor codegen 225 // and may even makes it impossible to scavenge a register. 226 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 227 return false; 228 229 return !MFI.hasVarSizedObjects(); 230 } 231 232 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 233 /// call frame pseudos can be simplified. Unlike most targets, having a FP 234 /// is not sufficient here since we still may reference some objects via SP 235 /// even when FP is available in Thumb2 mode. 236 bool 237 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 238 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 239 } 240 241 static void emitRegPlusImmediate( 242 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 243 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 244 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 245 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 246 if (isARM) 247 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 248 Pred, PredReg, TII, MIFlags); 249 else 250 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 251 Pred, PredReg, TII, MIFlags); 252 } 253 254 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 255 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 256 const ARMBaseInstrInfo &TII, int NumBytes, 257 unsigned MIFlags = MachineInstr::NoFlags, 258 ARMCC::CondCodes Pred = ARMCC::AL, 259 unsigned PredReg = 0) { 260 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 261 MIFlags, Pred, PredReg); 262 } 263 264 static int sizeOfSPAdjustment(const MachineInstr &MI) { 265 int RegSize; 266 switch (MI.getOpcode()) { 267 case ARM::VSTMDDB_UPD: 268 RegSize = 8; 269 break; 270 case ARM::STMDB_UPD: 271 case ARM::t2STMDB_UPD: 272 RegSize = 4; 273 break; 274 case ARM::t2STR_PRE: 275 case ARM::STR_PRE_IMM: 276 return 4; 277 default: 278 llvm_unreachable("Unknown push or pop like instruction"); 279 } 280 281 int count = 0; 282 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 283 // pred) so the list starts at 4. 284 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 285 count += RegSize; 286 return count; 287 } 288 289 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 290 size_t StackSizeInBytes) { 291 const MachineFrameInfo &MFI = MF.getFrameInfo(); 292 const Function &F = MF.getFunction(); 293 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 294 if (F.hasFnAttribute("stack-probe-size")) 295 F.getFnAttribute("stack-probe-size") 296 .getValueAsString() 297 .getAsInteger(0, StackProbeSize); 298 return (StackSizeInBytes >= StackProbeSize) && 299 !F.hasFnAttribute("no-stack-arg-probe"); 300 } 301 302 namespace { 303 304 struct StackAdjustingInsts { 305 struct InstInfo { 306 MachineBasicBlock::iterator I; 307 unsigned SPAdjust; 308 bool BeforeFPSet; 309 }; 310 311 SmallVector<InstInfo, 4> Insts; 312 313 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 314 bool BeforeFPSet = false) { 315 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 316 Insts.push_back(Info); 317 } 318 319 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 320 auto Info = 321 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 322 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 323 Info->SPAdjust += ExtraBytes; 324 } 325 326 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 327 const ARMBaseInstrInfo &TII, bool HasFP) { 328 MachineFunction &MF = *MBB.getParent(); 329 unsigned CFAOffset = 0; 330 for (auto &Info : Insts) { 331 if (HasFP && !Info.BeforeFPSet) 332 return; 333 334 CFAOffset += Info.SPAdjust; 335 unsigned CFIIndex = MF.addFrameInst( 336 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 337 BuildMI(MBB, std::next(Info.I), dl, 338 TII.get(TargetOpcode::CFI_INSTRUCTION)) 339 .addCFIIndex(CFIIndex) 340 .setMIFlags(MachineInstr::FrameSetup); 341 } 342 } 343 }; 344 345 } // end anonymous namespace 346 347 /// Emit an instruction sequence that will align the address in 348 /// register Reg by zero-ing out the lower bits. For versions of the 349 /// architecture that support Neon, this must be done in a single 350 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 351 /// single instruction. That function only gets called when optimizing 352 /// spilling of D registers on a core with the Neon instruction set 353 /// present. 354 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 355 const TargetInstrInfo &TII, 356 MachineBasicBlock &MBB, 357 MachineBasicBlock::iterator MBBI, 358 const DebugLoc &DL, const unsigned Reg, 359 const Align Alignment, 360 const bool MustBeSingleInstruction) { 361 const ARMSubtarget &AST = 362 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 363 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 364 const unsigned AlignMask = Alignment.value() - 1U; 365 const unsigned NrBitsToZero = Log2(Alignment); 366 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 367 if (!AFI->isThumbFunction()) { 368 // if the BFC instruction is available, use that to zero the lower 369 // bits: 370 // bfc Reg, #0, log2(Alignment) 371 // otherwise use BIC, if the mask to zero the required number of bits 372 // can be encoded in the bic immediate field 373 // bic Reg, Reg, Alignment-1 374 // otherwise, emit 375 // lsr Reg, Reg, log2(Alignment) 376 // lsl Reg, Reg, log2(Alignment) 377 if (CanUseBFC) { 378 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 379 .addReg(Reg, RegState::Kill) 380 .addImm(~AlignMask) 381 .add(predOps(ARMCC::AL)); 382 } else if (AlignMask <= 255) { 383 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 384 .addReg(Reg, RegState::Kill) 385 .addImm(AlignMask) 386 .add(predOps(ARMCC::AL)) 387 .add(condCodeOp()); 388 } else { 389 assert(!MustBeSingleInstruction && 390 "Shouldn't call emitAligningInstructions demanding a single " 391 "instruction to be emitted for large stack alignment for a target " 392 "without BFC."); 393 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 394 .addReg(Reg, RegState::Kill) 395 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 396 .add(predOps(ARMCC::AL)) 397 .add(condCodeOp()); 398 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 399 .addReg(Reg, RegState::Kill) 400 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 401 .add(predOps(ARMCC::AL)) 402 .add(condCodeOp()); 403 } 404 } else { 405 // Since this is only reached for Thumb-2 targets, the BFC instruction 406 // should always be available. 407 assert(CanUseBFC); 408 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 409 .addReg(Reg, RegState::Kill) 410 .addImm(~AlignMask) 411 .add(predOps(ARMCC::AL)); 412 } 413 } 414 415 /// We need the offset of the frame pointer relative to other MachineFrameInfo 416 /// offsets which are encoded relative to SP at function begin. 417 /// See also emitPrologue() for how the FP is set up. 418 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 419 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 420 /// this to produce a conservative estimate that we check in an assert() later. 421 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) { 422 // For Thumb1, push.w isn't available, so the first push will always push 423 // r7 and lr onto the stack first. 424 if (AFI.isThumb1OnlyFunction()) 425 return -AFI.getArgRegsSaveSize() - (2 * 4); 426 // This is a conservative estimation: Assume the frame pointer being r7 and 427 // pc("r15") up to r8 getting spilled before (= 8 registers). 428 int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 429 return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4); 430 } 431 432 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 433 MachineBasicBlock &MBB) const { 434 MachineBasicBlock::iterator MBBI = MBB.begin(); 435 MachineFrameInfo &MFI = MF.getFrameInfo(); 436 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 437 MachineModuleInfo &MMI = MF.getMMI(); 438 MCContext &Context = MMI.getContext(); 439 const TargetMachine &TM = MF.getTarget(); 440 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 441 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 442 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 443 assert(!AFI->isThumb1OnlyFunction() && 444 "This emitPrologue does not support Thumb1!"); 445 bool isARM = !AFI->isThumbFunction(); 446 Align Alignment = STI.getFrameLowering()->getStackAlign(); 447 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 448 unsigned NumBytes = MFI.getStackSize(); 449 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 450 int FPCXTSaveSize = 0; 451 452 // Debug location must be unknown since the first debug location is used 453 // to determine the end of the prologue. 454 DebugLoc dl; 455 456 Register FramePtr = RegInfo->getFrameRegister(MF); 457 458 // Determine the sizes of each callee-save spill areas and record which frame 459 // belongs to which callee-save spill areas. 460 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 461 int FramePtrSpillFI = 0; 462 int D8SpillFI = 0; 463 464 // All calls are tail calls in GHC calling conv, and functions have no 465 // prologue/epilogue. 466 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 467 return; 468 469 StackAdjustingInsts DefCFAOffsetCandidates; 470 bool HasFP = hasFP(MF); 471 472 // Allocate the vararg register save area. 473 if (ArgRegsSaveSize) { 474 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 475 MachineInstr::FrameSetup); 476 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 477 } 478 479 if (!AFI->hasStackFrame() && 480 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 481 if (NumBytes - ArgRegsSaveSize != 0) { 482 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 483 MachineInstr::FrameSetup); 484 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 485 NumBytes - ArgRegsSaveSize, true); 486 } 487 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 488 return; 489 } 490 491 // Determine spill area sizes. 492 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 493 unsigned Reg = CSI[i].getReg(); 494 int FI = CSI[i].getFrameIdx(); 495 switch (Reg) { 496 case ARM::R8: 497 case ARM::R9: 498 case ARM::R10: 499 case ARM::R11: 500 case ARM::R12: 501 if (STI.splitFramePushPop(MF)) { 502 GPRCS2Size += 4; 503 break; 504 } 505 LLVM_FALLTHROUGH; 506 case ARM::R0: 507 case ARM::R1: 508 case ARM::R2: 509 case ARM::R3: 510 case ARM::R4: 511 case ARM::R5: 512 case ARM::R6: 513 case ARM::R7: 514 case ARM::LR: 515 if (Reg == FramePtr) 516 FramePtrSpillFI = FI; 517 GPRCS1Size += 4; 518 break; 519 case ARM::FPCXTNS: 520 FPCXTSaveSize = 4; 521 break; 522 default: 523 // This is a DPR. Exclude the aligned DPRCS2 spills. 524 if (Reg == ARM::D8) 525 D8SpillFI = FI; 526 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 527 DPRCSSize += 8; 528 } 529 } 530 531 // Move past FPCXT area. 532 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 533 if (FPCXTSaveSize > 0) { 534 LastPush = MBBI++; 535 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 536 } 537 538 // Move past area 1. 539 if (GPRCS1Size > 0) { 540 GPRCS1Push = LastPush = MBBI++; 541 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 542 } 543 544 // Determine starting offsets of spill areas. 545 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 546 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 547 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 548 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 549 unsigned DPRGapSize = 550 (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) % 551 DPRAlign.value(); 552 553 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 554 int FramePtrOffsetInPush = 0; 555 if (HasFP) { 556 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 557 assert(getMaxFPOffset(STI, *AFI) <= FPOffset && 558 "Max FP estimation is wrong"); 559 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 560 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 561 NumBytes); 562 } 563 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 564 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 565 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 566 567 // Move past area 2. 568 if (GPRCS2Size > 0) { 569 GPRCS2Push = LastPush = MBBI++; 570 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 571 } 572 573 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 574 // .cfi_offset operations will reflect that. 575 if (DPRGapSize) { 576 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 577 if (LastPush != MBB.end() && 578 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 579 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 580 else { 581 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 582 MachineInstr::FrameSetup); 583 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 584 } 585 } 586 587 // Move past area 3. 588 if (DPRCSSize > 0) { 589 // Since vpush register list cannot have gaps, there may be multiple vpush 590 // instructions in the prologue. 591 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 592 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 593 LastPush = MBBI++; 594 } 595 } 596 597 // Move past the aligned DPRCS2 area. 598 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 599 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 600 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 601 // leaves the stack pointer pointing to the DPRCS2 area. 602 // 603 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 604 NumBytes += MFI.getObjectOffset(D8SpillFI); 605 } else 606 NumBytes = DPRCSOffset; 607 608 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 609 uint32_t NumWords = NumBytes >> 2; 610 611 if (NumWords < 65536) 612 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 613 .addImm(NumWords) 614 .setMIFlags(MachineInstr::FrameSetup) 615 .add(predOps(ARMCC::AL)); 616 else 617 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 618 .addImm(NumWords) 619 .setMIFlags(MachineInstr::FrameSetup); 620 621 switch (TM.getCodeModel()) { 622 case CodeModel::Tiny: 623 llvm_unreachable("Tiny code model not available on ARM."); 624 case CodeModel::Small: 625 case CodeModel::Medium: 626 case CodeModel::Kernel: 627 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 628 .add(predOps(ARMCC::AL)) 629 .addExternalSymbol("__chkstk") 630 .addReg(ARM::R4, RegState::Implicit) 631 .setMIFlags(MachineInstr::FrameSetup); 632 break; 633 case CodeModel::Large: 634 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 635 .addExternalSymbol("__chkstk") 636 .setMIFlags(MachineInstr::FrameSetup); 637 638 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 639 .add(predOps(ARMCC::AL)) 640 .addReg(ARM::R12, RegState::Kill) 641 .addReg(ARM::R4, RegState::Implicit) 642 .setMIFlags(MachineInstr::FrameSetup); 643 break; 644 } 645 646 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 647 .addReg(ARM::SP, RegState::Kill) 648 .addReg(ARM::R4, RegState::Kill) 649 .setMIFlags(MachineInstr::FrameSetup) 650 .add(predOps(ARMCC::AL)) 651 .add(condCodeOp()); 652 NumBytes = 0; 653 } 654 655 if (NumBytes) { 656 // Adjust SP after all the callee-save spills. 657 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 658 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 659 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 660 else { 661 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 662 MachineInstr::FrameSetup); 663 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 664 } 665 666 if (HasFP && isARM) 667 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 668 // Note it's not safe to do this in Thumb2 mode because it would have 669 // taken two instructions: 670 // mov sp, r7 671 // sub sp, #24 672 // If an interrupt is taken between the two instructions, then sp is in 673 // an inconsistent state (pointing to the middle of callee-saved area). 674 // The interrupt handler can end up clobbering the registers. 675 AFI->setShouldRestoreSPFromFP(true); 676 } 677 678 // Set FP to point to the stack slot that contains the previous FP. 679 // For iOS, FP is R7, which has now been stored in spill area 1. 680 // Otherwise, if this is not iOS, all the callee-saved registers go 681 // into spill area 1, including the FP in R11. In either case, it 682 // is in area one and the adjustment needs to take place just after 683 // that push. 684 if (HasFP) { 685 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 686 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 687 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 688 dl, TII, FramePtr, ARM::SP, 689 PushSize + FramePtrOffsetInPush, 690 MachineInstr::FrameSetup); 691 if (FramePtrOffsetInPush + PushSize != 0) { 692 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 693 nullptr, MRI->getDwarfRegNum(FramePtr, true), 694 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 695 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 696 .addCFIIndex(CFIIndex) 697 .setMIFlags(MachineInstr::FrameSetup); 698 } else { 699 unsigned CFIIndex = 700 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 701 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 702 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 703 .addCFIIndex(CFIIndex) 704 .setMIFlags(MachineInstr::FrameSetup); 705 } 706 } 707 708 // Now that the prologue's actual instructions are finalised, we can insert 709 // the necessary DWARF cf instructions to describe the situation. Start by 710 // recording where each register ended up: 711 if (GPRCS1Size > 0) { 712 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 713 int CFIIndex; 714 for (const auto &Entry : CSI) { 715 unsigned Reg = Entry.getReg(); 716 int FI = Entry.getFrameIdx(); 717 switch (Reg) { 718 case ARM::R8: 719 case ARM::R9: 720 case ARM::R10: 721 case ARM::R11: 722 case ARM::R12: 723 if (STI.splitFramePushPop(MF)) 724 break; 725 LLVM_FALLTHROUGH; 726 case ARM::R0: 727 case ARM::R1: 728 case ARM::R2: 729 case ARM::R3: 730 case ARM::R4: 731 case ARM::R5: 732 case ARM::R6: 733 case ARM::R7: 734 case ARM::LR: 735 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 736 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 737 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 738 .addCFIIndex(CFIIndex) 739 .setMIFlags(MachineInstr::FrameSetup); 740 break; 741 } 742 } 743 } 744 745 if (GPRCS2Size > 0) { 746 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 747 for (const auto &Entry : CSI) { 748 unsigned Reg = Entry.getReg(); 749 int FI = Entry.getFrameIdx(); 750 switch (Reg) { 751 case ARM::R8: 752 case ARM::R9: 753 case ARM::R10: 754 case ARM::R11: 755 case ARM::R12: 756 if (STI.splitFramePushPop(MF)) { 757 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 758 unsigned Offset = MFI.getObjectOffset(FI); 759 unsigned CFIIndex = MF.addFrameInst( 760 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 761 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 762 .addCFIIndex(CFIIndex) 763 .setMIFlags(MachineInstr::FrameSetup); 764 } 765 break; 766 } 767 } 768 } 769 770 if (DPRCSSize > 0) { 771 // Since vpush register list cannot have gaps, there may be multiple vpush 772 // instructions in the prologue. 773 MachineBasicBlock::iterator Pos = std::next(LastPush); 774 for (const auto &Entry : CSI) { 775 unsigned Reg = Entry.getReg(); 776 int FI = Entry.getFrameIdx(); 777 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 778 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 779 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 780 unsigned Offset = MFI.getObjectOffset(FI); 781 unsigned CFIIndex = MF.addFrameInst( 782 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 783 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 784 .addCFIIndex(CFIIndex) 785 .setMIFlags(MachineInstr::FrameSetup); 786 } 787 } 788 } 789 790 // Now we can emit descriptions of where the canonical frame address was 791 // throughout the process. If we have a frame pointer, it takes over the job 792 // half-way through, so only the first few .cfi_def_cfa_offset instructions 793 // actually get emitted. 794 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 795 796 if (STI.isTargetELF() && hasFP(MF)) 797 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 798 AFI->getFramePtrSpillOffset()); 799 800 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 801 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 802 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 803 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 804 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 805 806 // If we need dynamic stack realignment, do it here. Be paranoid and make 807 // sure if we also have VLAs, we have a base pointer for frame access. 808 // If aligned NEON registers were spilled, the stack has already been 809 // realigned. 810 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 811 Align MaxAlign = MFI.getMaxAlign(); 812 assert(!AFI->isThumb1OnlyFunction()); 813 if (!AFI->isThumbFunction()) { 814 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 815 false); 816 } else { 817 // We cannot use sp as source/dest register here, thus we're using r4 to 818 // perform the calculations. We're emitting the following sequence: 819 // mov r4, sp 820 // -- use emitAligningInstructions to produce best sequence to zero 821 // -- out lower bits in r4 822 // mov sp, r4 823 // FIXME: It will be better just to find spare register here. 824 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 825 .addReg(ARM::SP, RegState::Kill) 826 .add(predOps(ARMCC::AL)); 827 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 828 false); 829 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 830 .addReg(ARM::R4, RegState::Kill) 831 .add(predOps(ARMCC::AL)); 832 } 833 834 AFI->setShouldRestoreSPFromFP(true); 835 } 836 837 // If we need a base pointer, set it up here. It's whatever the value 838 // of the stack pointer is at this point. Any variable size objects 839 // will be allocated after this, so we can still use the base pointer 840 // to reference locals. 841 // FIXME: Clarify FrameSetup flags here. 842 if (RegInfo->hasBasePointer(MF)) { 843 if (isARM) 844 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 845 .addReg(ARM::SP) 846 .add(predOps(ARMCC::AL)) 847 .add(condCodeOp()); 848 else 849 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 850 .addReg(ARM::SP) 851 .add(predOps(ARMCC::AL)); 852 } 853 854 // If the frame has variable sized objects then the epilogue must restore 855 // the sp from fp. We can assume there's an FP here since hasFP already 856 // checks for hasVarSizedObjects. 857 if (MFI.hasVarSizedObjects()) 858 AFI->setShouldRestoreSPFromFP(true); 859 } 860 861 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 862 MachineBasicBlock &MBB) const { 863 MachineFrameInfo &MFI = MF.getFrameInfo(); 864 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 865 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 866 const ARMBaseInstrInfo &TII = 867 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 868 assert(!AFI->isThumb1OnlyFunction() && 869 "This emitEpilogue does not support Thumb1!"); 870 bool isARM = !AFI->isThumbFunction(); 871 872 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 873 int NumBytes = (int)MFI.getStackSize(); 874 Register FramePtr = RegInfo->getFrameRegister(MF); 875 876 // All calls are tail calls in GHC calling conv, and functions have no 877 // prologue/epilogue. 878 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 879 return; 880 881 // First put ourselves on the first (from top) terminator instructions. 882 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 883 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 884 885 if (!AFI->hasStackFrame()) { 886 if (NumBytes - ArgRegsSaveSize != 0) 887 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize, 888 MachineInstr::FrameDestroy); 889 } else { 890 // Unwind MBBI to point to first LDR / VLDRD. 891 if (MBBI != MBB.begin()) { 892 do { 893 --MBBI; 894 } while (MBBI != MBB.begin() && 895 MBBI->getFlag(MachineInstr::FrameDestroy)); 896 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 897 ++MBBI; 898 } 899 900 // Move SP to start of FP callee save spill area. 901 NumBytes -= (ArgRegsSaveSize + 902 AFI->getFPCXTSaveAreaSize() + 903 AFI->getGPRCalleeSavedArea1Size() + 904 AFI->getGPRCalleeSavedArea2Size() + 905 AFI->getDPRCalleeSavedGapSize() + 906 AFI->getDPRCalleeSavedAreaSize()); 907 908 // Reset SP based on frame pointer only if the stack frame extends beyond 909 // frame pointer stack slot or target is ELF and the function has FP. 910 if (AFI->shouldRestoreSPFromFP()) { 911 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 912 if (NumBytes) { 913 if (isARM) 914 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 915 ARMCC::AL, 0, TII, 916 MachineInstr::FrameDestroy); 917 else { 918 // It's not possible to restore SP from FP in a single instruction. 919 // For iOS, this looks like: 920 // mov sp, r7 921 // sub sp, #24 922 // This is bad, if an interrupt is taken after the mov, sp is in an 923 // inconsistent state. 924 // Use the first callee-saved register as a scratch register. 925 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 926 "No scratch register to restore SP from FP!"); 927 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 928 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 929 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 930 .addReg(ARM::R4) 931 .add(predOps(ARMCC::AL)) 932 .setMIFlag(MachineInstr::FrameDestroy); 933 } 934 } else { 935 // Thumb2 or ARM. 936 if (isARM) 937 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 938 .addReg(FramePtr) 939 .add(predOps(ARMCC::AL)) 940 .add(condCodeOp()) 941 .setMIFlag(MachineInstr::FrameDestroy); 942 else 943 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 944 .addReg(FramePtr) 945 .add(predOps(ARMCC::AL)) 946 .setMIFlag(MachineInstr::FrameDestroy); 947 } 948 } else if (NumBytes && 949 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 950 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 951 MachineInstr::FrameDestroy); 952 953 // Increment past our save areas. 954 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 955 MBBI++; 956 // Since vpop register list cannot have gaps, there may be multiple vpop 957 // instructions in the epilogue. 958 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 959 MBBI++; 960 } 961 if (AFI->getDPRCalleeSavedGapSize()) { 962 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 963 "unexpected DPR alignment gap"); 964 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 965 MachineInstr::FrameDestroy); 966 } 967 968 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 969 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 970 if (AFI->getFPCXTSaveAreaSize()) MBBI++; 971 } 972 973 if (ArgRegsSaveSize) 974 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize, 975 MachineInstr::FrameDestroy); 976 } 977 978 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 979 /// debug info. It's the same as what we use for resolving the code-gen 980 /// references for now. FIXME: This can go wrong when references are 981 /// SP-relative and simple call frames aren't used. 982 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 983 int FI, 984 Register &FrameReg) const { 985 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 986 } 987 988 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 989 int FI, Register &FrameReg, 990 int SPAdj) const { 991 const MachineFrameInfo &MFI = MF.getFrameInfo(); 992 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 993 MF.getSubtarget().getRegisterInfo()); 994 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 995 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 996 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 997 bool isFixed = MFI.isFixedObjectIndex(FI); 998 999 FrameReg = ARM::SP; 1000 Offset += SPAdj; 1001 1002 // SP can move around if there are allocas. We may also lose track of SP 1003 // when emergency spilling inside a non-reserved call frame setup. 1004 bool hasMovingSP = !hasReservedCallFrame(MF); 1005 1006 // When dynamically realigning the stack, use the frame pointer for 1007 // parameters, and the stack/base pointer for locals. 1008 if (RegInfo->needsStackRealignment(MF)) { 1009 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1010 if (isFixed) { 1011 FrameReg = RegInfo->getFrameRegister(MF); 1012 Offset = FPOffset; 1013 } else if (hasMovingSP) { 1014 assert(RegInfo->hasBasePointer(MF) && 1015 "VLAs and dynamic stack alignment, but missing base pointer!"); 1016 FrameReg = RegInfo->getBaseRegister(); 1017 Offset -= SPAdj; 1018 } 1019 return Offset; 1020 } 1021 1022 // If there is a frame pointer, use it when we can. 1023 if (hasFP(MF) && AFI->hasStackFrame()) { 1024 // Use frame pointer to reference fixed objects. Use it for locals if 1025 // there are VLAs (and thus the SP isn't reliable as a base). 1026 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1027 FrameReg = RegInfo->getFrameRegister(MF); 1028 return FPOffset; 1029 } else if (hasMovingSP) { 1030 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1031 if (AFI->isThumb2Function()) { 1032 // Try to use the frame pointer if we can, else use the base pointer 1033 // since it's available. This is handy for the emergency spill slot, in 1034 // particular. 1035 if (FPOffset >= -255 && FPOffset < 0) { 1036 FrameReg = RegInfo->getFrameRegister(MF); 1037 return FPOffset; 1038 } 1039 } 1040 } else if (AFI->isThumbFunction()) { 1041 // Prefer SP to base pointer, if the offset is suitably aligned and in 1042 // range as the effective range of the immediate offset is bigger when 1043 // basing off SP. 1044 // Use add <rd>, sp, #<imm8> 1045 // ldr <rd>, [sp, #<imm8>] 1046 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1047 return Offset; 1048 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1049 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1050 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1051 FrameReg = RegInfo->getFrameRegister(MF); 1052 return FPOffset; 1053 } 1054 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1055 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1056 FrameReg = RegInfo->getFrameRegister(MF); 1057 return FPOffset; 1058 } 1059 } 1060 // Use the base pointer if we have one. 1061 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1062 // That can happen if we forced a base pointer for a large call frame. 1063 if (RegInfo->hasBasePointer(MF)) { 1064 FrameReg = RegInfo->getBaseRegister(); 1065 Offset -= SPAdj; 1066 } 1067 return Offset; 1068 } 1069 1070 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1071 MachineBasicBlock::iterator MI, 1072 ArrayRef<CalleeSavedInfo> CSI, 1073 unsigned StmOpc, unsigned StrOpc, 1074 bool NoGap, bool (*Func)(unsigned, bool), 1075 unsigned NumAlignedDPRCS2Regs, 1076 unsigned MIFlags) const { 1077 MachineFunction &MF = *MBB.getParent(); 1078 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1079 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1080 1081 DebugLoc DL; 1082 1083 using RegAndKill = std::pair<unsigned, bool>; 1084 1085 SmallVector<RegAndKill, 4> Regs; 1086 unsigned i = CSI.size(); 1087 while (i != 0) { 1088 unsigned LastReg = 0; 1089 for (; i != 0; --i) { 1090 unsigned Reg = CSI[i-1].getReg(); 1091 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1092 1093 // D-registers in the aligned area DPRCS2 are NOT spilled here. 1094 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1095 continue; 1096 1097 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1098 bool isLiveIn = MRI.isLiveIn(Reg); 1099 if (!isLiveIn && !MRI.isReserved(Reg)) 1100 MBB.addLiveIn(Reg); 1101 // If NoGap is true, push consecutive registers and then leave the rest 1102 // for other instructions. e.g. 1103 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1104 if (NoGap && LastReg && LastReg != Reg-1) 1105 break; 1106 LastReg = Reg; 1107 // Do not set a kill flag on values that are also marked as live-in. This 1108 // happens with the @llvm-returnaddress intrinsic and with arguments 1109 // passed in callee saved registers. 1110 // Omitting the kill flags is conservatively correct even if the live-in 1111 // is not used after all. 1112 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1113 } 1114 1115 if (Regs.empty()) 1116 continue; 1117 1118 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1119 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1120 }); 1121 1122 if (Regs.size() > 1 || StrOpc== 0) { 1123 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1124 .addReg(ARM::SP) 1125 .setMIFlags(MIFlags) 1126 .add(predOps(ARMCC::AL)); 1127 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1128 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1129 } else if (Regs.size() == 1) { 1130 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1131 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1132 .addReg(ARM::SP) 1133 .setMIFlags(MIFlags) 1134 .addImm(-4) 1135 .add(predOps(ARMCC::AL)); 1136 } 1137 Regs.clear(); 1138 1139 // Put any subsequent vpush instructions before this one: they will refer to 1140 // higher register numbers so need to be pushed first in order to preserve 1141 // monotonicity. 1142 if (MI != MBB.begin()) 1143 --MI; 1144 } 1145 } 1146 1147 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1148 MachineBasicBlock::iterator MI, 1149 MutableArrayRef<CalleeSavedInfo> CSI, 1150 unsigned LdmOpc, unsigned LdrOpc, 1151 bool isVarArg, bool NoGap, 1152 bool (*Func)(unsigned, bool), 1153 unsigned NumAlignedDPRCS2Regs) const { 1154 MachineFunction &MF = *MBB.getParent(); 1155 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1156 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1157 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1158 DebugLoc DL; 1159 bool isTailCall = false; 1160 bool isInterrupt = false; 1161 bool isTrap = false; 1162 bool isCmseEntry = false; 1163 if (MBB.end() != MI) { 1164 DL = MI->getDebugLoc(); 1165 unsigned RetOpcode = MI->getOpcode(); 1166 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1167 isInterrupt = 1168 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1169 isTrap = 1170 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1171 RetOpcode == ARM::tTRAP; 1172 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1173 } 1174 1175 SmallVector<unsigned, 4> Regs; 1176 unsigned i = CSI.size(); 1177 while (i != 0) { 1178 unsigned LastReg = 0; 1179 bool DeleteRet = false; 1180 for (; i != 0; --i) { 1181 CalleeSavedInfo &Info = CSI[i-1]; 1182 unsigned Reg = Info.getReg(); 1183 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1184 1185 // The aligned reloads from area DPRCS2 are not inserted here. 1186 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1187 continue; 1188 1189 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1190 !isCmseEntry && !isTrap && STI.hasV5TOps()) { 1191 if (MBB.succ_empty()) { 1192 Reg = ARM::PC; 1193 // Fold the return instruction into the LDM. 1194 DeleteRet = true; 1195 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1196 // We 'restore' LR into PC so it is not live out of the return block: 1197 // Clear Restored bit. 1198 Info.setRestored(false); 1199 } else 1200 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1201 } 1202 1203 // If NoGap is true, pop consecutive registers and then leave the rest 1204 // for other instructions. e.g. 1205 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1206 if (NoGap && LastReg && LastReg != Reg-1) 1207 break; 1208 1209 LastReg = Reg; 1210 Regs.push_back(Reg); 1211 } 1212 1213 if (Regs.empty()) 1214 continue; 1215 1216 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1217 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1218 }); 1219 1220 if (Regs.size() > 1 || LdrOpc == 0) { 1221 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1222 .addReg(ARM::SP) 1223 .add(predOps(ARMCC::AL)) 1224 .setMIFlags(MachineInstr::FrameDestroy); 1225 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1226 MIB.addReg(Regs[i], getDefRegState(true)); 1227 if (DeleteRet) { 1228 if (MI != MBB.end()) { 1229 MIB.copyImplicitOps(*MI); 1230 MI->eraseFromParent(); 1231 } 1232 } 1233 MI = MIB; 1234 } else if (Regs.size() == 1) { 1235 // If we adjusted the reg to PC from LR above, switch it back here. We 1236 // only do that for LDM. 1237 if (Regs[0] == ARM::PC) 1238 Regs[0] = ARM::LR; 1239 MachineInstrBuilder MIB = 1240 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1241 .addReg(ARM::SP, RegState::Define) 1242 .addReg(ARM::SP) 1243 .setMIFlags(MachineInstr::FrameDestroy); 1244 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1245 // that refactoring is complete (eventually). 1246 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1247 MIB.addReg(0); 1248 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1249 } else 1250 MIB.addImm(4); 1251 MIB.add(predOps(ARMCC::AL)); 1252 } 1253 Regs.clear(); 1254 1255 // Put any subsequent vpop instructions after this one: they will refer to 1256 // higher register numbers so need to be popped afterwards. 1257 if (MI != MBB.end()) 1258 ++MI; 1259 } 1260 } 1261 1262 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1263 /// starting from d8. Also insert stack realignment code and leave the stack 1264 /// pointer pointing to the d8 spill slot. 1265 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1266 MachineBasicBlock::iterator MI, 1267 unsigned NumAlignedDPRCS2Regs, 1268 ArrayRef<CalleeSavedInfo> CSI, 1269 const TargetRegisterInfo *TRI) { 1270 MachineFunction &MF = *MBB.getParent(); 1271 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1272 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1273 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1274 MachineFrameInfo &MFI = MF.getFrameInfo(); 1275 1276 // Mark the D-register spill slots as properly aligned. Since MFI computes 1277 // stack slot layout backwards, this can actually mean that the d-reg stack 1278 // slot offsets can be wrong. The offset for d8 will always be correct. 1279 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1280 unsigned DNum = CSI[i].getReg() - ARM::D8; 1281 if (DNum > NumAlignedDPRCS2Regs - 1) 1282 continue; 1283 int FI = CSI[i].getFrameIdx(); 1284 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1285 // registers will be 8-byte aligned. 1286 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1287 1288 // The stack slot for D8 needs to be maximally aligned because this is 1289 // actually the point where we align the stack pointer. MachineFrameInfo 1290 // computes all offsets relative to the incoming stack pointer which is a 1291 // bit weird when realigning the stack. Any extra padding for this 1292 // over-alignment is not realized because the code inserted below adjusts 1293 // the stack pointer by numregs * 8 before aligning the stack pointer. 1294 if (DNum == 0) 1295 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1296 } 1297 1298 // Move the stack pointer to the d8 spill slot, and align it at the same 1299 // time. Leave the stack slot address in the scratch register r4. 1300 // 1301 // sub r4, sp, #numregs * 8 1302 // bic r4, r4, #align - 1 1303 // mov sp, r4 1304 // 1305 bool isThumb = AFI->isThumbFunction(); 1306 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1307 AFI->setShouldRestoreSPFromFP(true); 1308 1309 // sub r4, sp, #numregs * 8 1310 // The immediate is <= 64, so it doesn't need any special encoding. 1311 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1312 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1313 .addReg(ARM::SP) 1314 .addImm(8 * NumAlignedDPRCS2Regs) 1315 .add(predOps(ARMCC::AL)) 1316 .add(condCodeOp()); 1317 1318 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1319 // We must set parameter MustBeSingleInstruction to true, since 1320 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1321 // stack alignment. Luckily, this can always be done since all ARM 1322 // architecture versions that support Neon also support the BFC 1323 // instruction. 1324 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1325 1326 // mov sp, r4 1327 // The stack pointer must be adjusted before spilling anything, otherwise 1328 // the stack slots could be clobbered by an interrupt handler. 1329 // Leave r4 live, it is used below. 1330 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1331 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1332 .addReg(ARM::R4) 1333 .add(predOps(ARMCC::AL)); 1334 if (!isThumb) 1335 MIB.add(condCodeOp()); 1336 1337 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1338 // r4 holds the stack slot address. 1339 unsigned NextReg = ARM::D8; 1340 1341 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1342 // The writeback is only needed when emitting two vst1.64 instructions. 1343 if (NumAlignedDPRCS2Regs >= 6) { 1344 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1345 &ARM::QQPRRegClass); 1346 MBB.addLiveIn(SupReg); 1347 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1348 .addReg(ARM::R4, RegState::Kill) 1349 .addImm(16) 1350 .addReg(NextReg) 1351 .addReg(SupReg, RegState::ImplicitKill) 1352 .add(predOps(ARMCC::AL)); 1353 NextReg += 4; 1354 NumAlignedDPRCS2Regs -= 4; 1355 } 1356 1357 // We won't modify r4 beyond this point. It currently points to the next 1358 // register to be spilled. 1359 unsigned R4BaseReg = NextReg; 1360 1361 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1362 if (NumAlignedDPRCS2Regs >= 4) { 1363 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1364 &ARM::QQPRRegClass); 1365 MBB.addLiveIn(SupReg); 1366 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1367 .addReg(ARM::R4) 1368 .addImm(16) 1369 .addReg(NextReg) 1370 .addReg(SupReg, RegState::ImplicitKill) 1371 .add(predOps(ARMCC::AL)); 1372 NextReg += 4; 1373 NumAlignedDPRCS2Regs -= 4; 1374 } 1375 1376 // 16-byte aligned vst1.64 with 2 d-regs. 1377 if (NumAlignedDPRCS2Regs >= 2) { 1378 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1379 &ARM::QPRRegClass); 1380 MBB.addLiveIn(SupReg); 1381 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1382 .addReg(ARM::R4) 1383 .addImm(16) 1384 .addReg(SupReg) 1385 .add(predOps(ARMCC::AL)); 1386 NextReg += 2; 1387 NumAlignedDPRCS2Regs -= 2; 1388 } 1389 1390 // Finally, use a vanilla vstr.64 for the odd last register. 1391 if (NumAlignedDPRCS2Regs) { 1392 MBB.addLiveIn(NextReg); 1393 // vstr.64 uses addrmode5 which has an offset scale of 4. 1394 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1395 .addReg(NextReg) 1396 .addReg(ARM::R4) 1397 .addImm((NextReg - R4BaseReg) * 2) 1398 .add(predOps(ARMCC::AL)); 1399 } 1400 1401 // The last spill instruction inserted should kill the scratch register r4. 1402 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1403 } 1404 1405 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1406 /// iterator to the following instruction. 1407 static MachineBasicBlock::iterator 1408 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1409 unsigned NumAlignedDPRCS2Regs) { 1410 // sub r4, sp, #numregs * 8 1411 // bic r4, r4, #align - 1 1412 // mov sp, r4 1413 ++MI; ++MI; ++MI; 1414 assert(MI->mayStore() && "Expecting spill instruction"); 1415 1416 // These switches all fall through. 1417 switch(NumAlignedDPRCS2Regs) { 1418 case 7: 1419 ++MI; 1420 assert(MI->mayStore() && "Expecting spill instruction"); 1421 LLVM_FALLTHROUGH; 1422 default: 1423 ++MI; 1424 assert(MI->mayStore() && "Expecting spill instruction"); 1425 LLVM_FALLTHROUGH; 1426 case 1: 1427 case 2: 1428 case 4: 1429 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1430 ++MI; 1431 } 1432 return MI; 1433 } 1434 1435 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1436 /// starting from d8. These instructions are assumed to execute while the 1437 /// stack is still aligned, unlike the code inserted by emitPopInst. 1438 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1439 MachineBasicBlock::iterator MI, 1440 unsigned NumAlignedDPRCS2Regs, 1441 ArrayRef<CalleeSavedInfo> CSI, 1442 const TargetRegisterInfo *TRI) { 1443 MachineFunction &MF = *MBB.getParent(); 1444 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1445 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1446 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1447 1448 // Find the frame index assigned to d8. 1449 int D8SpillFI = 0; 1450 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1451 if (CSI[i].getReg() == ARM::D8) { 1452 D8SpillFI = CSI[i].getFrameIdx(); 1453 break; 1454 } 1455 1456 // Materialize the address of the d8 spill slot into the scratch register r4. 1457 // This can be fairly complicated if the stack frame is large, so just use 1458 // the normal frame index elimination mechanism to do it. This code runs as 1459 // the initial part of the epilog where the stack and base pointers haven't 1460 // been changed yet. 1461 bool isThumb = AFI->isThumbFunction(); 1462 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1463 1464 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1465 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1466 .addFrameIndex(D8SpillFI) 1467 .addImm(0) 1468 .add(predOps(ARMCC::AL)) 1469 .add(condCodeOp()); 1470 1471 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1472 unsigned NextReg = ARM::D8; 1473 1474 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1475 if (NumAlignedDPRCS2Regs >= 6) { 1476 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1477 &ARM::QQPRRegClass); 1478 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1479 .addReg(ARM::R4, RegState::Define) 1480 .addReg(ARM::R4, RegState::Kill) 1481 .addImm(16) 1482 .addReg(SupReg, RegState::ImplicitDefine) 1483 .add(predOps(ARMCC::AL)); 1484 NextReg += 4; 1485 NumAlignedDPRCS2Regs -= 4; 1486 } 1487 1488 // We won't modify r4 beyond this point. It currently points to the next 1489 // register to be spilled. 1490 unsigned R4BaseReg = NextReg; 1491 1492 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1493 if (NumAlignedDPRCS2Regs >= 4) { 1494 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1495 &ARM::QQPRRegClass); 1496 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1497 .addReg(ARM::R4) 1498 .addImm(16) 1499 .addReg(SupReg, RegState::ImplicitDefine) 1500 .add(predOps(ARMCC::AL)); 1501 NextReg += 4; 1502 NumAlignedDPRCS2Regs -= 4; 1503 } 1504 1505 // 16-byte aligned vld1.64 with 2 d-regs. 1506 if (NumAlignedDPRCS2Regs >= 2) { 1507 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1508 &ARM::QPRRegClass); 1509 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1510 .addReg(ARM::R4) 1511 .addImm(16) 1512 .add(predOps(ARMCC::AL)); 1513 NextReg += 2; 1514 NumAlignedDPRCS2Regs -= 2; 1515 } 1516 1517 // Finally, use a vanilla vldr.64 for the remaining odd register. 1518 if (NumAlignedDPRCS2Regs) 1519 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1520 .addReg(ARM::R4) 1521 .addImm(2 * (NextReg - R4BaseReg)) 1522 .add(predOps(ARMCC::AL)); 1523 1524 // Last store kills r4. 1525 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1526 } 1527 1528 bool ARMFrameLowering::spillCalleeSavedRegisters( 1529 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1530 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1531 if (CSI.empty()) 1532 return false; 1533 1534 MachineFunction &MF = *MBB.getParent(); 1535 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1536 1537 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1538 unsigned PushOneOpc = AFI->isThumbFunction() ? 1539 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1540 unsigned FltOpc = ARM::VSTMDDB_UPD; 1541 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1542 // Save the non-secure floating point context. 1543 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 1544 return C.getReg() == ARM::FPCXTNS; 1545 })) { 1546 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 1547 ARM::SP) 1548 .addReg(ARM::SP) 1549 .addImm(-4) 1550 .add(predOps(ARMCC::AL)); 1551 } 1552 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1553 MachineInstr::FrameSetup); 1554 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1555 MachineInstr::FrameSetup); 1556 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1557 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1558 1559 // The code above does not insert spill code for the aligned DPRCS2 registers. 1560 // The stack realignment code will be inserted between the push instructions 1561 // and these spills. 1562 if (NumAlignedDPRCS2Regs) 1563 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1564 1565 return true; 1566 } 1567 1568 bool ARMFrameLowering::restoreCalleeSavedRegisters( 1569 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1570 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1571 if (CSI.empty()) 1572 return false; 1573 1574 MachineFunction &MF = *MBB.getParent(); 1575 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1576 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1577 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1578 1579 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1580 // registers. Do that here instead. 1581 if (NumAlignedDPRCS2Regs) 1582 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1583 1584 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1585 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1586 unsigned FltOpc = ARM::VLDMDIA_UPD; 1587 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1588 NumAlignedDPRCS2Regs); 1589 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1590 &isARMArea2Register, 0); 1591 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1592 &isARMArea1Register, 0); 1593 1594 return true; 1595 } 1596 1597 // FIXME: Make generic? 1598 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 1599 const ARMBaseInstrInfo &TII) { 1600 unsigned FnSize = 0; 1601 for (auto &MBB : MF) { 1602 for (auto &MI : MBB) 1603 FnSize += TII.getInstSizeInBytes(MI); 1604 } 1605 if (MF.getJumpTableInfo()) 1606 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 1607 FnSize += Table.MBBs.size() * 4; 1608 FnSize += MF.getConstantPool()->getConstants().size() * 4; 1609 return FnSize; 1610 } 1611 1612 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1613 /// frames and return the stack size limit beyond which some of these 1614 /// instructions will require a scratch register during their expansion later. 1615 // FIXME: Move to TII? 1616 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1617 const TargetFrameLowering *TFI, 1618 bool &HasNonSPFrameIndex) { 1619 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1620 const ARMBaseInstrInfo &TII = 1621 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1622 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1623 unsigned Limit = (1 << 12) - 1; 1624 for (auto &MBB : MF) { 1625 for (auto &MI : MBB) { 1626 if (MI.isDebugInstr()) 1627 continue; 1628 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1629 if (!MI.getOperand(i).isFI()) 1630 continue; 1631 1632 // When using ADDri to get the address of a stack object, 255 is the 1633 // largest offset guaranteed to fit in the immediate offset. 1634 if (MI.getOpcode() == ARM::ADDri) { 1635 Limit = std::min(Limit, (1U << 8) - 1); 1636 break; 1637 } 1638 // t2ADDri will not require an extra register, it can reuse the 1639 // destination. 1640 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 1641 break; 1642 1643 const MCInstrDesc &MCID = MI.getDesc(); 1644 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 1645 if (RegClass && !RegClass->contains(ARM::SP)) 1646 HasNonSPFrameIndex = true; 1647 1648 // Otherwise check the addressing mode. 1649 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1650 case ARMII::AddrMode_i12: 1651 case ARMII::AddrMode2: 1652 // Default 12 bit limit. 1653 break; 1654 case ARMII::AddrMode3: 1655 case ARMII::AddrModeT2_i8: 1656 Limit = std::min(Limit, (1U << 8) - 1); 1657 break; 1658 case ARMII::AddrMode5FP16: 1659 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 1660 break; 1661 case ARMII::AddrMode5: 1662 case ARMII::AddrModeT2_i8s4: 1663 case ARMII::AddrModeT2_ldrex: 1664 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1665 break; 1666 case ARMII::AddrModeT2_i12: 1667 // i12 supports only positive offset so these will be converted to 1668 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1669 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1670 Limit = std::min(Limit, (1U << 8) - 1); 1671 break; 1672 case ARMII::AddrMode4: 1673 case ARMII::AddrMode6: 1674 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1675 // immediate offset for stack references. 1676 return 0; 1677 case ARMII::AddrModeT2_i7: 1678 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 1679 break; 1680 case ARMII::AddrModeT2_i7s2: 1681 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 1682 break; 1683 case ARMII::AddrModeT2_i7s4: 1684 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 1685 break; 1686 default: 1687 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 1688 } 1689 break; // At most one FI per instruction 1690 } 1691 } 1692 } 1693 1694 return Limit; 1695 } 1696 1697 // In functions that realign the stack, it can be an advantage to spill the 1698 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1699 // instructions take alignment hints that can improve performance. 1700 static void 1701 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1702 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1703 if (!SpillAlignedNEONRegs) 1704 return; 1705 1706 // Naked functions don't spill callee-saved registers. 1707 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1708 return; 1709 1710 // We are planning to use NEON instructions vst1 / vld1. 1711 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1712 return; 1713 1714 // Don't bother if the default stack alignment is sufficiently high. 1715 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 1716 return; 1717 1718 // Aligned spills require stack realignment. 1719 if (!static_cast<const ARMBaseRegisterInfo *>( 1720 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1721 return; 1722 1723 // We always spill contiguous d-registers starting from d8. Count how many 1724 // needs spilling. The register allocator will almost always use the 1725 // callee-saved registers in order, but it can happen that there are holes in 1726 // the range. Registers above the hole will be spilled to the standard DPRCS 1727 // area. 1728 unsigned NumSpills = 0; 1729 for (; NumSpills < 8; ++NumSpills) 1730 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1731 break; 1732 1733 // Don't do this for just one d-register. It's not worth it. 1734 if (NumSpills < 2) 1735 return; 1736 1737 // Spill the first NumSpills D-registers after realigning the stack. 1738 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1739 1740 // A scratch register is required for the vst1 / vld1 instructions. 1741 SavedRegs.set(ARM::R4); 1742 } 1743 1744 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 1745 // For CMSE entry functions, we want to save the FPCXT_NS immediately 1746 // upon function entry (resp. restore it immmediately before return) 1747 if (STI.hasV8_1MMainlineOps() && 1748 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 1749 return false; 1750 1751 return true; 1752 } 1753 1754 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1755 BitVector &SavedRegs, 1756 RegScavenger *RS) const { 1757 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1758 // This tells PEI to spill the FP as if it is any other callee-save register 1759 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1760 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1761 // to combine multiple loads / stores. 1762 bool CanEliminateFrame = true; 1763 bool CS1Spilled = false; 1764 bool LRSpilled = false; 1765 unsigned NumGPRSpills = 0; 1766 unsigned NumFPRSpills = 0; 1767 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1768 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1769 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1770 MF.getSubtarget().getRegisterInfo()); 1771 const ARMBaseInstrInfo &TII = 1772 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1773 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1774 MachineFrameInfo &MFI = MF.getFrameInfo(); 1775 MachineRegisterInfo &MRI = MF.getRegInfo(); 1776 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1777 (void)TRI; // Silence unused warning in non-assert builds. 1778 Register FramePtr = RegInfo->getFrameRegister(MF); 1779 1780 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1781 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1782 // since it's not always possible to restore sp from fp in a single 1783 // instruction. 1784 // FIXME: It will be better just to find spare register here. 1785 if (AFI->isThumb2Function() && 1786 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1787 SavedRegs.set(ARM::R4); 1788 1789 // If a stack probe will be emitted, spill R4 and LR, since they are 1790 // clobbered by the stack probe call. 1791 // This estimate should be a safe, conservative estimate. The actual 1792 // stack probe is enabled based on the size of the local objects; 1793 // this estimate also includes the varargs store size. 1794 if (STI.isTargetWindows() && 1795 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 1796 SavedRegs.set(ARM::R4); 1797 SavedRegs.set(ARM::LR); 1798 } 1799 1800 if (AFI->isThumb1OnlyFunction()) { 1801 // Spill LR if Thumb1 function uses variable length argument lists. 1802 if (AFI->getArgRegsSaveSize() > 0) 1803 SavedRegs.set(ARM::LR); 1804 1805 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1806 // requires stack alignment. We don't know for sure what the stack size 1807 // will be, but for this, an estimate is good enough. If there anything 1808 // changes it, it'll be a spill, which implies we've used all the registers 1809 // and so R4 is already used, so not marking it here will be OK. 1810 // FIXME: It will be better just to find spare register here. 1811 if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) || 1812 MFI.estimateStackSize(MF) > 508) 1813 SavedRegs.set(ARM::R4); 1814 } 1815 1816 // See if we can spill vector registers to aligned stack. 1817 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1818 1819 // Spill the BasePtr if it's used. 1820 if (RegInfo->hasBasePointer(MF)) 1821 SavedRegs.set(RegInfo->getBaseRegister()); 1822 1823 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 1824 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 1825 CanEliminateFrame = false; 1826 1827 // Don't spill FP if the frame can be eliminated. This is determined 1828 // by scanning the callee-save registers to see if any is modified. 1829 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1830 for (unsigned i = 0; CSRegs[i]; ++i) { 1831 unsigned Reg = CSRegs[i]; 1832 bool Spilled = false; 1833 if (SavedRegs.test(Reg)) { 1834 Spilled = true; 1835 CanEliminateFrame = false; 1836 } 1837 1838 if (!ARM::GPRRegClass.contains(Reg)) { 1839 if (Spilled) { 1840 if (ARM::SPRRegClass.contains(Reg)) 1841 NumFPRSpills++; 1842 else if (ARM::DPRRegClass.contains(Reg)) 1843 NumFPRSpills += 2; 1844 else if (ARM::QPRRegClass.contains(Reg)) 1845 NumFPRSpills += 4; 1846 } 1847 continue; 1848 } 1849 1850 if (Spilled) { 1851 NumGPRSpills++; 1852 1853 if (!STI.splitFramePushPop(MF)) { 1854 if (Reg == ARM::LR) 1855 LRSpilled = true; 1856 CS1Spilled = true; 1857 continue; 1858 } 1859 1860 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1861 switch (Reg) { 1862 case ARM::LR: 1863 LRSpilled = true; 1864 LLVM_FALLTHROUGH; 1865 case ARM::R0: case ARM::R1: 1866 case ARM::R2: case ARM::R3: 1867 case ARM::R4: case ARM::R5: 1868 case ARM::R6: case ARM::R7: 1869 CS1Spilled = true; 1870 break; 1871 default: 1872 break; 1873 } 1874 } else { 1875 if (!STI.splitFramePushPop(MF)) { 1876 UnspilledCS1GPRs.push_back(Reg); 1877 continue; 1878 } 1879 1880 switch (Reg) { 1881 case ARM::R0: case ARM::R1: 1882 case ARM::R2: case ARM::R3: 1883 case ARM::R4: case ARM::R5: 1884 case ARM::R6: case ARM::R7: 1885 case ARM::LR: 1886 UnspilledCS1GPRs.push_back(Reg); 1887 break; 1888 default: 1889 UnspilledCS2GPRs.push_back(Reg); 1890 break; 1891 } 1892 } 1893 } 1894 1895 bool ForceLRSpill = false; 1896 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1897 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 1898 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1899 // use of BL to implement far jump. 1900 if (FnSize >= (1 << 11)) { 1901 CanEliminateFrame = false; 1902 ForceLRSpill = true; 1903 } 1904 } 1905 1906 // If any of the stack slot references may be out of range of an immediate 1907 // offset, make sure a register (or a spill slot) is available for the 1908 // register scavenger. Note that if we're indexing off the frame pointer, the 1909 // effective stack size is 4 bytes larger since the FP points to the stack 1910 // slot of the previous FP. Also, if we have variable sized objects in the 1911 // function, stack slot references will often be negative, and some of 1912 // our instructions are positive-offset only, so conservatively consider 1913 // that case to want a spill slot (or register) as well. Similarly, if 1914 // the function adjusts the stack pointer during execution and the 1915 // adjustments aren't already part of our stack size estimate, our offset 1916 // calculations may be off, so be conservative. 1917 // FIXME: We could add logic to be more precise about negative offsets 1918 // and which instructions will need a scratch register for them. Is it 1919 // worth the effort and added fragility? 1920 unsigned EstimatedStackSize = 1921 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1922 1923 // Determine biggest (positive) SP offset in MachineFrameInfo. 1924 int MaxFixedOffset = 0; 1925 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1926 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1927 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1928 } 1929 1930 bool HasFP = hasFP(MF); 1931 if (HasFP) { 1932 if (AFI->hasStackFrame()) 1933 EstimatedStackSize += 4; 1934 } else { 1935 // If FP is not used, SP will be used to access arguments, so count the 1936 // size of arguments into the estimation. 1937 EstimatedStackSize += MaxFixedOffset; 1938 } 1939 EstimatedStackSize += 16; // For possible paddings. 1940 1941 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 1942 bool HasNonSPFrameIndex = false; 1943 if (AFI->isThumb1OnlyFunction()) { 1944 // For Thumb1, don't bother to iterate over the function. The only 1945 // instruction that requires an emergency spill slot is a store to a 1946 // frame index. 1947 // 1948 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 1949 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 1950 // a 5-bit unsigned immediate. 1951 // 1952 // We could try to check if the function actually contains a tSTRspi 1953 // that might need the spill slot, but it's not really important. 1954 // Functions with VLAs or extremely large call frames are rare, and 1955 // if a function is allocating more than 1KB of stack, an extra 4-byte 1956 // slot probably isn't relevant. 1957 if (RegInfo->hasBasePointer(MF)) 1958 EstimatedRSStackSizeLimit = (1U << 5) * 4; 1959 else 1960 EstimatedRSStackSizeLimit = (1U << 8) * 4; 1961 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 1962 } else { 1963 EstimatedRSStackSizeLimit = 1964 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 1965 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 1966 } 1967 // Final estimate of whether sp or bp-relative accesses might require 1968 // scavenging. 1969 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 1970 1971 // If the stack pointer moves and we don't have a base pointer, the 1972 // estimate logic doesn't work. The actual offsets might be larger when 1973 // we're constructing a call frame, or we might need to use negative 1974 // offsets from fp. 1975 bool HasMovingSP = MFI.hasVarSizedObjects() || 1976 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 1977 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 1978 1979 // If we have a frame pointer, we assume arguments will be accessed 1980 // relative to the frame pointer. Check whether fp-relative accesses to 1981 // arguments require scavenging. 1982 // 1983 // We could do slightly better on Thumb1; in some cases, an sp-relative 1984 // offset would be legal even though an fp-relative offset is not. 1985 int MaxFPOffset = getMaxFPOffset(STI, *AFI); 1986 bool HasLargeArgumentList = 1987 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 1988 1989 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 1990 HasLargeArgumentList || HasNonSPFrameIndex; 1991 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 1992 << "; EstimatedStack: " << EstimatedStackSize 1993 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 1994 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 1995 if (BigFrameOffsets || 1996 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1997 AFI->setHasStackFrame(true); 1998 1999 if (HasFP) { 2000 SavedRegs.set(FramePtr); 2001 // If the frame pointer is required by the ABI, also spill LR so that we 2002 // emit a complete frame record. 2003 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 2004 SavedRegs.set(ARM::LR); 2005 LRSpilled = true; 2006 NumGPRSpills++; 2007 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2008 if (LRPos != UnspilledCS1GPRs.end()) 2009 UnspilledCS1GPRs.erase(LRPos); 2010 } 2011 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2012 if (FPPos != UnspilledCS1GPRs.end()) 2013 UnspilledCS1GPRs.erase(FPPos); 2014 NumGPRSpills++; 2015 if (FramePtr == ARM::R7) 2016 CS1Spilled = true; 2017 } 2018 2019 // This is true when we inserted a spill for a callee-save GPR which is 2020 // not otherwise used by the function. This guaranteees it is possible 2021 // to scavenge a register to hold the address of a stack slot. On Thumb1, 2022 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other 2023 // subtargets, this is any GPR, i.e. r4-r11 or lr. 2024 // 2025 // If we don't insert a spill, we instead allocate an emergency spill 2026 // slot, which can be used by scavenging to spill an arbitrary register. 2027 // 2028 // We currently don't try to figure out whether any specific instruction 2029 // requires scavening an additional register. 2030 bool ExtraCSSpill = false; 2031 2032 if (AFI->isThumb1OnlyFunction()) { 2033 // For Thumb1-only targets, we need some low registers when we save and 2034 // restore the high registers (which aren't allocatable, but could be 2035 // used by inline assembly) because the push/pop instructions can not 2036 // access high registers. If necessary, we might need to push more low 2037 // registers to ensure that there is at least one free that can be used 2038 // for the saving & restoring, and preferably we should ensure that as 2039 // many as are needed are available so that fewer push/pop instructions 2040 // are required. 2041 2042 // Low registers which are not currently pushed, but could be (r4-r7). 2043 SmallVector<unsigned, 4> AvailableRegs; 2044 2045 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2046 // free. 2047 int EntryRegDeficit = 0; 2048 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2049 if (!MF.getRegInfo().isLiveIn(Reg)) { 2050 --EntryRegDeficit; 2051 LLVM_DEBUG(dbgs() 2052 << printReg(Reg, TRI) 2053 << " is unused argument register, EntryRegDeficit = " 2054 << EntryRegDeficit << "\n"); 2055 } 2056 } 2057 2058 // Unused return registers can be clobbered in the epilogue for free. 2059 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2060 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2061 << " return regs used, ExitRegDeficit = " 2062 << ExitRegDeficit << "\n"); 2063 2064 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2065 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2066 2067 // r4-r6 can be used in the prologue if they are pushed by the first push 2068 // instruction. 2069 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2070 if (SavedRegs.test(Reg)) { 2071 --RegDeficit; 2072 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2073 << " is saved low register, RegDeficit = " 2074 << RegDeficit << "\n"); 2075 } else { 2076 AvailableRegs.push_back(Reg); 2077 LLVM_DEBUG( 2078 dbgs() 2079 << printReg(Reg, TRI) 2080 << " is non-saved low register, adding to AvailableRegs\n"); 2081 } 2082 } 2083 2084 // r7 can be used if it is not being used as the frame pointer. 2085 if (!HasFP) { 2086 if (SavedRegs.test(ARM::R7)) { 2087 --RegDeficit; 2088 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2089 << RegDeficit << "\n"); 2090 } else { 2091 AvailableRegs.push_back(ARM::R7); 2092 LLVM_DEBUG( 2093 dbgs() 2094 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2095 } 2096 } 2097 2098 // Each of r8-r11 needs to be copied to a low register, then pushed. 2099 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2100 if (SavedRegs.test(Reg)) { 2101 ++RegDeficit; 2102 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2103 << " is saved high register, RegDeficit = " 2104 << RegDeficit << "\n"); 2105 } 2106 } 2107 2108 // LR can only be used by PUSH, not POP, and can't be used at all if the 2109 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2110 // are more limited at function entry than exit. 2111 if ((EntryRegDeficit > ExitRegDeficit) && 2112 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2113 MF.getFrameInfo().isReturnAddressTaken())) { 2114 if (SavedRegs.test(ARM::LR)) { 2115 --RegDeficit; 2116 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2117 << RegDeficit << "\n"); 2118 } else { 2119 AvailableRegs.push_back(ARM::LR); 2120 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2121 } 2122 } 2123 2124 // If there are more high registers that need pushing than low registers 2125 // available, push some more low registers so that we can use fewer push 2126 // instructions. This might not reduce RegDeficit all the way to zero, 2127 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2128 // need saving. 2129 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2130 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2131 unsigned Reg = AvailableRegs.pop_back_val(); 2132 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2133 << " to make up reg deficit\n"); 2134 SavedRegs.set(Reg); 2135 NumGPRSpills++; 2136 CS1Spilled = true; 2137 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2138 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2139 ExtraCSSpill = true; 2140 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2141 if (Reg == ARM::LR) 2142 LRSpilled = true; 2143 } 2144 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2145 << "\n"); 2146 } 2147 2148 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2149 // restore LR in that case. 2150 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2151 2152 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2153 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2154 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2155 SavedRegs.set(ARM::LR); 2156 NumGPRSpills++; 2157 SmallVectorImpl<unsigned>::iterator LRPos; 2158 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2159 if (LRPos != UnspilledCS1GPRs.end()) 2160 UnspilledCS1GPRs.erase(LRPos); 2161 2162 ForceLRSpill = false; 2163 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2164 !AFI->isThumb1OnlyFunction()) 2165 ExtraCSSpill = true; 2166 } 2167 2168 // If stack and double are 8-byte aligned and we are spilling an odd number 2169 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2170 // the integer and double callee save areas. 2171 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2172 const Align TargetAlign = getStackAlign(); 2173 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2174 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2175 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 2176 unsigned Reg = UnspilledCS1GPRs[i]; 2177 // Don't spill high register if the function is thumb. In the case of 2178 // Windows on ARM, accept R11 (frame pointer) 2179 if (!AFI->isThumbFunction() || 2180 (STI.isTargetWindows() && Reg == ARM::R11) || 2181 isARMLowRegister(Reg) || 2182 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2183 SavedRegs.set(Reg); 2184 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2185 << " to make up alignment\n"); 2186 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2187 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2188 ExtraCSSpill = true; 2189 break; 2190 } 2191 } 2192 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2193 unsigned Reg = UnspilledCS2GPRs.front(); 2194 SavedRegs.set(Reg); 2195 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2196 << " to make up alignment\n"); 2197 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2198 ExtraCSSpill = true; 2199 } 2200 } 2201 2202 // Estimate if we might need to scavenge a register at some point in order 2203 // to materialize a stack offset. If so, either spill one additional 2204 // callee-saved register or reserve a special spill slot to facilitate 2205 // register scavenging. Thumb1 needs a spill slot for stack pointer 2206 // adjustments also, even when the frame itself is small. 2207 if (BigFrameOffsets && !ExtraCSSpill) { 2208 // If any non-reserved CS register isn't spilled, just spill one or two 2209 // extra. That should take care of it! 2210 unsigned NumExtras = TargetAlign.value() / 4; 2211 SmallVector<unsigned, 2> Extras; 2212 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2213 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2214 if (!MRI.isReserved(Reg) && 2215 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2216 Extras.push_back(Reg); 2217 NumExtras--; 2218 } 2219 } 2220 // For non-Thumb1 functions, also check for hi-reg CS registers 2221 if (!AFI->isThumb1OnlyFunction()) { 2222 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2223 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2224 if (!MRI.isReserved(Reg)) { 2225 Extras.push_back(Reg); 2226 NumExtras--; 2227 } 2228 } 2229 } 2230 if (NumExtras == 0) { 2231 for (unsigned Reg : Extras) { 2232 SavedRegs.set(Reg); 2233 if (!MRI.isPhysRegUsed(Reg)) 2234 ExtraCSSpill = true; 2235 } 2236 } 2237 if (!ExtraCSSpill && RS) { 2238 // Reserve a slot closest to SP or frame pointer. 2239 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2240 const TargetRegisterClass &RC = ARM::GPRRegClass; 2241 unsigned Size = TRI->getSpillSize(RC); 2242 Align Alignment = TRI->getSpillAlign(RC); 2243 RS->addScavengingFrameIndex( 2244 MFI.CreateStackObject(Size, Alignment, false)); 2245 } 2246 } 2247 } 2248 2249 if (ForceLRSpill) 2250 SavedRegs.set(ARM::LR); 2251 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2252 } 2253 2254 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2255 BitVector &SavedRegs) const { 2256 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2257 2258 // If we have the "returned" parameter attribute which guarantees that we 2259 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2260 // record that fact for IPRA. 2261 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2262 if (AFI->getPreservesR0()) 2263 SavedRegs.set(ARM::R0); 2264 } 2265 2266 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2267 MachineFunction &MF, const TargetRegisterInfo *TRI, 2268 std::vector<CalleeSavedInfo> &CSI) const { 2269 // For CMSE entry functions, handle floating-point context as if it was a 2270 // callee-saved register. 2271 if (STI.hasV8_1MMainlineOps() && 2272 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2273 CSI.emplace_back(ARM::FPCXTNS); 2274 CSI.back().setRestored(false); 2275 } 2276 2277 return false; 2278 } 2279 2280 const TargetFrameLowering::SpillSlot * 2281 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2282 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2283 NumEntries = array_lengthof(FixedSpillOffsets); 2284 return FixedSpillOffsets; 2285 } 2286 2287 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2288 MachineFunction &MF, MachineBasicBlock &MBB, 2289 MachineBasicBlock::iterator I) const { 2290 const ARMBaseInstrInfo &TII = 2291 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2292 if (!hasReservedCallFrame(MF)) { 2293 // If we have alloca, convert as follows: 2294 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2295 // ADJCALLSTACKUP -> add, sp, sp, amount 2296 MachineInstr &Old = *I; 2297 DebugLoc dl = Old.getDebugLoc(); 2298 unsigned Amount = TII.getFrameSize(Old); 2299 if (Amount != 0) { 2300 // We need to keep the stack aligned properly. To do this, we round the 2301 // amount of space needed for the outgoing arguments up to the next 2302 // alignment boundary. 2303 Amount = alignSPAdjust(Amount); 2304 2305 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2306 assert(!AFI->isThumb1OnlyFunction() && 2307 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2308 bool isARM = !AFI->isThumbFunction(); 2309 2310 // Replace the pseudo instruction with a new instruction... 2311 unsigned Opc = Old.getOpcode(); 2312 int PIdx = Old.findFirstPredOperandIdx(); 2313 ARMCC::CondCodes Pred = 2314 (PIdx == -1) ? ARMCC::AL 2315 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2316 unsigned PredReg = TII.getFramePred(Old); 2317 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2318 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2319 Pred, PredReg); 2320 } else { 2321 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2322 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2323 Pred, PredReg); 2324 } 2325 } 2326 } 2327 return MBB.erase(I); 2328 } 2329 2330 /// Get the minimum constant for ARM that is greater than or equal to the 2331 /// argument. In ARM, constants can have any value that can be produced by 2332 /// rotating an 8-bit value to the right by an even number of bits within a 2333 /// 32-bit word. 2334 static uint32_t alignToARMConstant(uint32_t Value) { 2335 unsigned Shifted = 0; 2336 2337 if (Value == 0) 2338 return 0; 2339 2340 while (!(Value & 0xC0000000)) { 2341 Value = Value << 2; 2342 Shifted += 2; 2343 } 2344 2345 bool Carry = (Value & 0x00FFFFFF); 2346 Value = ((Value & 0xFF000000) >> 24) + Carry; 2347 2348 if (Value & 0x0000100) 2349 Value = Value & 0x000001FC; 2350 2351 if (Shifted > 24) 2352 Value = Value >> (Shifted - 24); 2353 else 2354 Value = Value << (24 - Shifted); 2355 2356 return Value; 2357 } 2358 2359 // The stack limit in the TCB is set to this many bytes above the actual 2360 // stack limit. 2361 static const uint64_t kSplitStackAvailable = 256; 2362 2363 // Adjust the function prologue to enable split stacks. This currently only 2364 // supports android and linux. 2365 // 2366 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2367 // must be well defined in order to allow for consistent implementations of the 2368 // __morestack helper function. The ABI is also not a normal ABI in that it 2369 // doesn't follow the normal calling conventions because this allows the 2370 // prologue of each function to be optimized further. 2371 // 2372 // Currently, the ABI looks like (when calling __morestack) 2373 // 2374 // * r4 holds the minimum stack size requested for this function call 2375 // * r5 holds the stack size of the arguments to the function 2376 // * the beginning of the function is 3 instructions after the call to 2377 // __morestack 2378 // 2379 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2380 // place the arguments on to the new stack, and the 3-instruction knowledge to 2381 // jump directly to the body of the function when working on the new stack. 2382 // 2383 // An old (and possibly no longer compatible) implementation of __morestack for 2384 // ARM can be found at [1]. 2385 // 2386 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2387 void ARMFrameLowering::adjustForSegmentedStacks( 2388 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2389 unsigned Opcode; 2390 unsigned CFIIndex; 2391 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2392 bool Thumb = ST->isThumb(); 2393 2394 // Sadly, this currently doesn't support varargs, platforms other than 2395 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2396 if (MF.getFunction().isVarArg()) 2397 report_fatal_error("Segmented stacks do not support vararg functions."); 2398 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2399 report_fatal_error("Segmented stacks not supported on this platform."); 2400 2401 MachineFrameInfo &MFI = MF.getFrameInfo(); 2402 MachineModuleInfo &MMI = MF.getMMI(); 2403 MCContext &Context = MMI.getContext(); 2404 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2405 const ARMBaseInstrInfo &TII = 2406 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2407 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2408 DebugLoc DL; 2409 2410 uint64_t StackSize = MFI.getStackSize(); 2411 2412 // Do not generate a prologue for leaf functions with a stack of size zero. 2413 // For non-leaf functions we have to allow for the possibility that the 2414 // callis to a non-split function, as in PR37807. This function could also 2415 // take the address of a non-split function. When the linker tries to adjust 2416 // its non-existent prologue, it would fail with an error. Mark the object 2417 // file so that such failures are not errors. See this Go language bug-report 2418 // https://go-review.googlesource.com/c/go/+/148819/ 2419 if (StackSize == 0 && !MFI.hasTailCall()) { 2420 MF.getMMI().setHasNosplitStack(true); 2421 return; 2422 } 2423 2424 // Use R4 and R5 as scratch registers. 2425 // We save R4 and R5 before use and restore them before leaving the function. 2426 unsigned ScratchReg0 = ARM::R4; 2427 unsigned ScratchReg1 = ARM::R5; 2428 uint64_t AlignedStackSize; 2429 2430 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2431 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2432 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2433 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2434 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2435 2436 // Grab everything that reaches PrologueMBB to update there liveness as well. 2437 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2438 SmallVector<MachineBasicBlock *, 2> WalkList; 2439 WalkList.push_back(&PrologueMBB); 2440 2441 do { 2442 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2443 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2444 if (BeforePrologueRegion.insert(PredBB).second) 2445 WalkList.push_back(PredBB); 2446 } 2447 } while (!WalkList.empty()); 2448 2449 // The order in that list is important. 2450 // The blocks will all be inserted before PrologueMBB using that order. 2451 // Therefore the block that should appear first in the CFG should appear 2452 // first in the list. 2453 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2454 PostStackMBB}; 2455 2456 for (MachineBasicBlock *B : AddedBlocks) 2457 BeforePrologueRegion.insert(B); 2458 2459 for (const auto &LI : PrologueMBB.liveins()) { 2460 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2461 PredBB->addLiveIn(LI); 2462 } 2463 2464 // Remove the newly added blocks from the list, since we know 2465 // we do not have to do the following updates for them. 2466 for (MachineBasicBlock *B : AddedBlocks) { 2467 BeforePrologueRegion.erase(B); 2468 MF.insert(PrologueMBB.getIterator(), B); 2469 } 2470 2471 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2472 // Make sure the LiveIns are still sorted and unique. 2473 MBB->sortUniqueLiveIns(); 2474 // Replace the edges to PrologueMBB by edges to the sequences 2475 // we are about to add. 2476 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2477 } 2478 2479 // The required stack size that is aligned to ARM constant criterion. 2480 AlignedStackSize = alignToARMConstant(StackSize); 2481 2482 // When the frame size is less than 256 we just compare the stack 2483 // boundary directly to the value of the stack pointer, per gcc. 2484 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2485 2486 // We will use two of the callee save registers as scratch registers so we 2487 // need to save those registers onto the stack. 2488 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2489 // requested and arguments for __morestack(). 2490 // SR0: Scratch Register #0 2491 // SR1: Scratch Register #1 2492 // push {SR0, SR1} 2493 if (Thumb) { 2494 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2495 .add(predOps(ARMCC::AL)) 2496 .addReg(ScratchReg0) 2497 .addReg(ScratchReg1); 2498 } else { 2499 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2500 .addReg(ARM::SP, RegState::Define) 2501 .addReg(ARM::SP) 2502 .add(predOps(ARMCC::AL)) 2503 .addReg(ScratchReg0) 2504 .addReg(ScratchReg1); 2505 } 2506 2507 // Emit the relevant DWARF information about the change in stack pointer as 2508 // well as where to find both r4 and r5 (the callee-save registers) 2509 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 2510 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2511 .addCFIIndex(CFIIndex); 2512 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2513 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2514 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2515 .addCFIIndex(CFIIndex); 2516 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2517 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2518 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2519 .addCFIIndex(CFIIndex); 2520 2521 // mov SR1, sp 2522 if (Thumb) { 2523 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2524 .addReg(ARM::SP) 2525 .add(predOps(ARMCC::AL)); 2526 } else if (CompareStackPointer) { 2527 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2528 .addReg(ARM::SP) 2529 .add(predOps(ARMCC::AL)) 2530 .add(condCodeOp()); 2531 } 2532 2533 // sub SR1, sp, #StackSize 2534 if (!CompareStackPointer && Thumb) { 2535 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2536 .add(condCodeOp()) 2537 .addReg(ScratchReg1) 2538 .addImm(AlignedStackSize) 2539 .add(predOps(ARMCC::AL)); 2540 } else if (!CompareStackPointer) { 2541 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2542 .addReg(ARM::SP) 2543 .addImm(AlignedStackSize) 2544 .add(predOps(ARMCC::AL)) 2545 .add(condCodeOp()); 2546 } 2547 2548 if (Thumb && ST->isThumb1Only()) { 2549 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2550 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2551 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2552 MachineConstantPool *MCP = MF.getConstantPool(); 2553 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 2554 2555 // ldr SR0, [pc, offset(STACK_LIMIT)] 2556 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2557 .addConstantPoolIndex(CPI) 2558 .add(predOps(ARMCC::AL)); 2559 2560 // ldr SR0, [SR0] 2561 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2562 .addReg(ScratchReg0) 2563 .addImm(0) 2564 .add(predOps(ARMCC::AL)); 2565 } else { 2566 // Get TLS base address from the coprocessor 2567 // mrc p15, #0, SR0, c13, c0, #3 2568 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 2569 ScratchReg0) 2570 .addImm(15) 2571 .addImm(0) 2572 .addImm(13) 2573 .addImm(0) 2574 .addImm(3) 2575 .add(predOps(ARMCC::AL)); 2576 2577 // Use the last tls slot on android and a private field of the TCP on linux. 2578 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2579 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2580 2581 // Get the stack limit from the right offset 2582 // ldr SR0, [sr0, #4 * TlsOffset] 2583 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 2584 ScratchReg0) 2585 .addReg(ScratchReg0) 2586 .addImm(4 * TlsOffset) 2587 .add(predOps(ARMCC::AL)); 2588 } 2589 2590 // Compare stack limit with stack size requested. 2591 // cmp SR0, SR1 2592 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2593 BuildMI(GetMBB, DL, TII.get(Opcode)) 2594 .addReg(ScratchReg0) 2595 .addReg(ScratchReg1) 2596 .add(predOps(ARMCC::AL)); 2597 2598 // This jump is taken if StackLimit < SP - stack required. 2599 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2600 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2601 .addImm(ARMCC::LO) 2602 .addReg(ARM::CPSR); 2603 2604 2605 // Calling __morestack(StackSize, Size of stack arguments). 2606 // __morestack knows that the stack size requested is in SR0(r4) 2607 // and amount size of stack arguments is in SR1(r5). 2608 2609 // Pass first argument for the __morestack by Scratch Register #0. 2610 // The amount size of stack required 2611 if (Thumb) { 2612 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2613 .add(condCodeOp()) 2614 .addImm(AlignedStackSize) 2615 .add(predOps(ARMCC::AL)); 2616 } else { 2617 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2618 .addImm(AlignedStackSize) 2619 .add(predOps(ARMCC::AL)) 2620 .add(condCodeOp()); 2621 } 2622 // Pass second argument for the __morestack by Scratch Register #1. 2623 // The amount size of stack consumed to save function arguments. 2624 if (Thumb) { 2625 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2626 .add(condCodeOp()) 2627 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2628 .add(predOps(ARMCC::AL)); 2629 } else { 2630 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2631 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2632 .add(predOps(ARMCC::AL)) 2633 .add(condCodeOp()); 2634 } 2635 2636 // push {lr} - Save return address of this function. 2637 if (Thumb) { 2638 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2639 .add(predOps(ARMCC::AL)) 2640 .addReg(ARM::LR); 2641 } else { 2642 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2643 .addReg(ARM::SP, RegState::Define) 2644 .addReg(ARM::SP) 2645 .add(predOps(ARMCC::AL)) 2646 .addReg(ARM::LR); 2647 } 2648 2649 // Emit the DWARF info about the change in stack as well as where to find the 2650 // previous link register 2651 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 2652 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2653 .addCFIIndex(CFIIndex); 2654 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2655 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2656 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2657 .addCFIIndex(CFIIndex); 2658 2659 // Call __morestack(). 2660 if (Thumb) { 2661 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2662 .add(predOps(ARMCC::AL)) 2663 .addExternalSymbol("__morestack"); 2664 } else { 2665 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2666 .addExternalSymbol("__morestack"); 2667 } 2668 2669 // pop {lr} - Restore return address of this original function. 2670 if (Thumb) { 2671 if (ST->isThumb1Only()) { 2672 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2673 .add(predOps(ARMCC::AL)) 2674 .addReg(ScratchReg0); 2675 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2676 .addReg(ScratchReg0) 2677 .add(predOps(ARMCC::AL)); 2678 } else { 2679 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2680 .addReg(ARM::LR, RegState::Define) 2681 .addReg(ARM::SP, RegState::Define) 2682 .addReg(ARM::SP) 2683 .addImm(4) 2684 .add(predOps(ARMCC::AL)); 2685 } 2686 } else { 2687 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2688 .addReg(ARM::SP, RegState::Define) 2689 .addReg(ARM::SP) 2690 .add(predOps(ARMCC::AL)) 2691 .addReg(ARM::LR); 2692 } 2693 2694 // Restore SR0 and SR1 in case of __morestack() was called. 2695 // __morestack() will skip PostStackMBB block so we need to restore 2696 // scratch registers from here. 2697 // pop {SR0, SR1} 2698 if (Thumb) { 2699 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2700 .add(predOps(ARMCC::AL)) 2701 .addReg(ScratchReg0) 2702 .addReg(ScratchReg1); 2703 } else { 2704 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2705 .addReg(ARM::SP, RegState::Define) 2706 .addReg(ARM::SP) 2707 .add(predOps(ARMCC::AL)) 2708 .addReg(ScratchReg0) 2709 .addReg(ScratchReg1); 2710 } 2711 2712 // Update the CFA offset now that we've popped 2713 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 2714 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2715 .addCFIIndex(CFIIndex); 2716 2717 // Return from this function. 2718 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2719 2720 // Restore SR0 and SR1 in case of __morestack() was not called. 2721 // pop {SR0, SR1} 2722 if (Thumb) { 2723 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2724 .add(predOps(ARMCC::AL)) 2725 .addReg(ScratchReg0) 2726 .addReg(ScratchReg1); 2727 } else { 2728 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2729 .addReg(ARM::SP, RegState::Define) 2730 .addReg(ARM::SP) 2731 .add(predOps(ARMCC::AL)) 2732 .addReg(ScratchReg0) 2733 .addReg(ScratchReg1); 2734 } 2735 2736 // Update the CFA offset now that we've popped 2737 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 2738 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2739 .addCFIIndex(CFIIndex); 2740 2741 // Tell debuggers that r4 and r5 are now the same as they were in the 2742 // previous function, that they're the "Same Value". 2743 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2744 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2745 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2746 .addCFIIndex(CFIIndex); 2747 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2748 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2749 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2750 .addCFIIndex(CFIIndex); 2751 2752 // Organizing MBB lists 2753 PostStackMBB->addSuccessor(&PrologueMBB); 2754 2755 AllocMBB->addSuccessor(PostStackMBB); 2756 2757 GetMBB->addSuccessor(PostStackMBB); 2758 GetMBB->addSuccessor(AllocMBB); 2759 2760 McrMBB->addSuccessor(GetMBB); 2761 2762 PrevStackMBB->addSuccessor(McrMBB); 2763 2764 #ifdef EXPENSIVE_CHECKS 2765 MF.verify(); 2766 #endif 2767 } 2768