1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_fp, prev_lr                  |
51 // | (a.k.a. "frame record")           |
52 // |                                   |
53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
54 // |                                   |
55 // | callee-saved gpr registers        |
56 // |                                   |
57 // |-----------------------------------|
58 // |                                   |
59 // | callee-saved fp/simd regs         |
60 // |                                   |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.8-byte.alignment.....|  compile time; if present)
65 // |-----------------------------------|
66 // |                                   |
67 // | local variables of fixed size     |
68 // | including spill slots             |
69 // |-----------------------------------| <- base pointer (not defined by ABI,
70 // |.variable-sized.local.variables....|       LLVM chooses r6)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................|  compile time)
73 // |-----------------------------------| <- sp
74 // |                                   | Lower address
75 //
76 //
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
83 //
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 //   variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 //   more-than-default alignment requirements.
90 //
91 // In some cases when a base pointer is not strictly needed, it is generated
92 // anyway when offsets from the frame pointer to access local variables become
93 // so large that the offset can't be encoded in the immediate fields of loads
94 // or stores.
95 //
96 // The frame pointer might be chosen to be r7 or r11, depending on the target
97 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
98 // details.
99 //
100 // Outgoing function arguments must be at the bottom of the stack frame when
101 // calling another function. If we do not have variable-sized stack objects, we
102 // can allocate a "reserved call frame" area at the bottom of the local
103 // variable area, large enough for all outgoing calls. If we do have VLAs, then
104 // the stack pointer must be decremented and incremented around each call to
105 // make space for the arguments below the VLAs.
106 //
107 //===----------------------------------------------------------------------===//
108 
109 #include "ARMFrameLowering.h"
110 #include "ARMBaseInstrInfo.h"
111 #include "ARMBaseRegisterInfo.h"
112 #include "ARMConstantPoolValue.h"
113 #include "ARMMachineFunctionInfo.h"
114 #include "ARMSubtarget.h"
115 #include "MCTargetDesc/ARMAddressingModes.h"
116 #include "MCTargetDesc/ARMBaseInfo.h"
117 #include "Utils/ARMBaseInfo.h"
118 #include "llvm/ADT/BitVector.h"
119 #include "llvm/ADT/STLExtras.h"
120 #include "llvm/ADT/SmallPtrSet.h"
121 #include "llvm/ADT/SmallVector.h"
122 #include "llvm/CodeGen/MachineBasicBlock.h"
123 #include "llvm/CodeGen/MachineConstantPool.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineJumpTableInfo.h"
129 #include "llvm/CodeGen/MachineModuleInfo.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/MachineRegisterInfo.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetInstrInfo.h"
134 #include "llvm/CodeGen/TargetOpcodes.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/IR/Attributes.h"
138 #include "llvm/IR/CallingConv.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCContext.h"
142 #include "llvm/MC/MCDwarf.h"
143 #include "llvm/MC/MCInstrDesc.h"
144 #include "llvm/MC/MCRegisterInfo.h"
145 #include "llvm/Support/CodeGen.h"
146 #include "llvm/Support/CommandLine.h"
147 #include "llvm/Support/Compiler.h"
148 #include "llvm/Support/Debug.h"
149 #include "llvm/Support/ErrorHandling.h"
150 #include "llvm/Support/MathExtras.h"
151 #include "llvm/Support/raw_ostream.h"
152 #include "llvm/Target/TargetMachine.h"
153 #include "llvm/Target/TargetOptions.h"
154 #include <algorithm>
155 #include <cassert>
156 #include <cstddef>
157 #include <cstdint>
158 #include <iterator>
159 #include <utility>
160 #include <vector>
161 
162 #define DEBUG_TYPE "arm-frame-lowering"
163 
164 using namespace llvm;
165 
166 static cl::opt<bool>
167 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
168                      cl::desc("Align ARM NEON spills in prolog and epilog"));
169 
170 static MachineBasicBlock::iterator
171 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
172                         unsigned NumAlignedDPRCS2Regs);
173 
174 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
175     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
176       STI(sti) {}
177 
178 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
179   // iOS always has a FP for backtracking, force other targets to keep their FP
180   // when doing FastISel. The emitted code is currently superior, and in cases
181   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
182   return MF.getSubtarget<ARMSubtarget>().useFastISel();
183 }
184 
185 /// Returns true if the target can safely skip saving callee-saved registers
186 /// for noreturn nounwind functions.
187 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
188   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
189          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
190          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
191 
192   // Frame pointer and link register are not treated as normal CSR, thus we
193   // can always skip CSR saves for nonreturning functions.
194   return true;
195 }
196 
197 /// hasFP - Return true if the specified function should have a dedicated frame
198 /// pointer register.  This is true if the function has variable sized allocas
199 /// or if frame pointer elimination is disabled.
200 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
201   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
202   const MachineFrameInfo &MFI = MF.getFrameInfo();
203 
204   // ABI-required frame pointer.
205   if (MF.getTarget().Options.DisableFramePointerElim(MF))
206     return true;
207 
208   // Frame pointer required for use within this function.
209   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
210           MFI.isFrameAddressTaken());
211 }
212 
213 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
214 /// not required, we reserve argument space for call sites in the function
215 /// immediately on entry to the current function.  This eliminates the need for
216 /// add/sub sp brackets around call sites.  Returns true if the call frame is
217 /// included as part of the stack frame.
218 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
219   const MachineFrameInfo &MFI = MF.getFrameInfo();
220   unsigned CFSize = MFI.getMaxCallFrameSize();
221   // It's not always a good idea to include the call frame as part of the
222   // stack frame. ARM (especially Thumb) has small immediate offset to
223   // address the stack frame. So a large call frame can cause poor codegen
224   // and may even makes it impossible to scavenge a register.
225   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
226     return false;
227 
228   return !MFI.hasVarSizedObjects();
229 }
230 
231 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
232 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
233 /// is not sufficient here since we still may reference some objects via SP
234 /// even when FP is available in Thumb2 mode.
235 bool
236 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
237   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
238 }
239 
240 // Returns how much of the incoming argument stack area we should clean up in an
241 // epilogue. For the C calling convention this will be 0, for guaranteed tail
242 // call conventions it can be positive (a normal return or a tail call to a
243 // function that uses less stack space for arguments) or negative (for a tail
244 // call to a function that needs more stack space than us for arguments).
245 static int getArgumentStackToRestore(MachineFunction &MF,
246                                      MachineBasicBlock &MBB) {
247   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
248   bool IsTailCallReturn = false;
249   if (MBB.end() != MBBI) {
250     unsigned RetOpcode = MBBI->getOpcode();
251     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
252                        RetOpcode == ARM::TCRETURNri;
253   }
254   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
255 
256   int ArgumentPopSize = 0;
257   if (IsTailCallReturn) {
258     MachineOperand &StackAdjust = MBBI->getOperand(1);
259 
260     // For a tail-call in a callee-pops-arguments environment, some or all of
261     // the stack may actually be in use for the call's arguments, this is
262     // calculated during LowerCall and consumed here...
263     ArgumentPopSize = StackAdjust.getImm();
264   } else {
265     // ... otherwise the amount to pop is *all* of the argument space,
266     // conveniently stored in the MachineFunctionInfo by
267     // LowerFormalArguments. This will, of course, be zero for the C calling
268     // convention.
269     ArgumentPopSize = AFI->getArgumentStackToRestore();
270   }
271 
272   return ArgumentPopSize;
273 }
274 
275 static void emitRegPlusImmediate(
276     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
277     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
278     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
279     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
280   if (isARM)
281     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
282                             Pred, PredReg, TII, MIFlags);
283   else
284     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
285                            Pred, PredReg, TII, MIFlags);
286 }
287 
288 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
289                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
290                          const ARMBaseInstrInfo &TII, int NumBytes,
291                          unsigned MIFlags = MachineInstr::NoFlags,
292                          ARMCC::CondCodes Pred = ARMCC::AL,
293                          unsigned PredReg = 0) {
294   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
295                        MIFlags, Pred, PredReg);
296 }
297 
298 static int sizeOfSPAdjustment(const MachineInstr &MI) {
299   int RegSize;
300   switch (MI.getOpcode()) {
301   case ARM::VSTMDDB_UPD:
302     RegSize = 8;
303     break;
304   case ARM::STMDB_UPD:
305   case ARM::t2STMDB_UPD:
306     RegSize = 4;
307     break;
308   case ARM::t2STR_PRE:
309   case ARM::STR_PRE_IMM:
310     return 4;
311   default:
312     llvm_unreachable("Unknown push or pop like instruction");
313   }
314 
315   int count = 0;
316   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
317   // pred) so the list starts at 4.
318   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
319     count += RegSize;
320   return count;
321 }
322 
323 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
324                                       size_t StackSizeInBytes) {
325   const MachineFrameInfo &MFI = MF.getFrameInfo();
326   const Function &F = MF.getFunction();
327   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
328   if (F.hasFnAttribute("stack-probe-size"))
329     F.getFnAttribute("stack-probe-size")
330         .getValueAsString()
331         .getAsInteger(0, StackProbeSize);
332   return (StackSizeInBytes >= StackProbeSize) &&
333          !F.hasFnAttribute("no-stack-arg-probe");
334 }
335 
336 namespace {
337 
338 struct StackAdjustingInsts {
339   struct InstInfo {
340     MachineBasicBlock::iterator I;
341     unsigned SPAdjust;
342     bool BeforeFPSet;
343   };
344 
345   SmallVector<InstInfo, 4> Insts;
346 
347   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
348                bool BeforeFPSet = false) {
349     InstInfo Info = {I, SPAdjust, BeforeFPSet};
350     Insts.push_back(Info);
351   }
352 
353   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
354     auto Info =
355         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
356     assert(Info != Insts.end() && "invalid sp adjusting instruction");
357     Info->SPAdjust += ExtraBytes;
358   }
359 
360   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
361                          const ARMBaseInstrInfo &TII, bool HasFP) {
362     MachineFunction &MF = *MBB.getParent();
363     unsigned CFAOffset = 0;
364     for (auto &Info : Insts) {
365       if (HasFP && !Info.BeforeFPSet)
366         return;
367 
368       CFAOffset += Info.SPAdjust;
369       unsigned CFIIndex = MF.addFrameInst(
370           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
371       BuildMI(MBB, std::next(Info.I), dl,
372               TII.get(TargetOpcode::CFI_INSTRUCTION))
373               .addCFIIndex(CFIIndex)
374               .setMIFlags(MachineInstr::FrameSetup);
375     }
376   }
377 };
378 
379 } // end anonymous namespace
380 
381 /// Emit an instruction sequence that will align the address in
382 /// register Reg by zero-ing out the lower bits.  For versions of the
383 /// architecture that support Neon, this must be done in a single
384 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
385 /// single instruction. That function only gets called when optimizing
386 /// spilling of D registers on a core with the Neon instruction set
387 /// present.
388 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
389                                      const TargetInstrInfo &TII,
390                                      MachineBasicBlock &MBB,
391                                      MachineBasicBlock::iterator MBBI,
392                                      const DebugLoc &DL, const unsigned Reg,
393                                      const Align Alignment,
394                                      const bool MustBeSingleInstruction) {
395   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
396   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
397   const unsigned AlignMask = Alignment.value() - 1U;
398   const unsigned NrBitsToZero = Log2(Alignment);
399   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
400   if (!AFI->isThumbFunction()) {
401     // if the BFC instruction is available, use that to zero the lower
402     // bits:
403     //   bfc Reg, #0, log2(Alignment)
404     // otherwise use BIC, if the mask to zero the required number of bits
405     // can be encoded in the bic immediate field
406     //   bic Reg, Reg, Alignment-1
407     // otherwise, emit
408     //   lsr Reg, Reg, log2(Alignment)
409     //   lsl Reg, Reg, log2(Alignment)
410     if (CanUseBFC) {
411       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
412           .addReg(Reg, RegState::Kill)
413           .addImm(~AlignMask)
414           .add(predOps(ARMCC::AL));
415     } else if (AlignMask <= 255) {
416       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
417           .addReg(Reg, RegState::Kill)
418           .addImm(AlignMask)
419           .add(predOps(ARMCC::AL))
420           .add(condCodeOp());
421     } else {
422       assert(!MustBeSingleInstruction &&
423              "Shouldn't call emitAligningInstructions demanding a single "
424              "instruction to be emitted for large stack alignment for a target "
425              "without BFC.");
426       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
427           .addReg(Reg, RegState::Kill)
428           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
429           .add(predOps(ARMCC::AL))
430           .add(condCodeOp());
431       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
432           .addReg(Reg, RegState::Kill)
433           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
434           .add(predOps(ARMCC::AL))
435           .add(condCodeOp());
436     }
437   } else {
438     // Since this is only reached for Thumb-2 targets, the BFC instruction
439     // should always be available.
440     assert(CanUseBFC);
441     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
442         .addReg(Reg, RegState::Kill)
443         .addImm(~AlignMask)
444         .add(predOps(ARMCC::AL));
445   }
446 }
447 
448 /// We need the offset of the frame pointer relative to other MachineFrameInfo
449 /// offsets which are encoded relative to SP at function begin.
450 /// See also emitPrologue() for how the FP is set up.
451 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
452 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
453 /// this to produce a conservative estimate that we check in an assert() later.
454 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) {
455   // For Thumb1, push.w isn't available, so the first push will always push
456   // r7 and lr onto the stack first.
457   if (AFI.isThumb1OnlyFunction())
458     return -AFI.getArgRegsSaveSize() - (2 * 4);
459   // This is a conservative estimation: Assume the frame pointer being r7 and
460   // pc("r15") up to r8 getting spilled before (= 8 registers).
461   int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
462   return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4);
463 }
464 
465 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
466                                     MachineBasicBlock &MBB) const {
467   MachineBasicBlock::iterator MBBI = MBB.begin();
468   MachineFrameInfo  &MFI = MF.getFrameInfo();
469   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
470   MachineModuleInfo &MMI = MF.getMMI();
471   MCContext &Context = MMI.getContext();
472   const TargetMachine &TM = MF.getTarget();
473   const MCRegisterInfo *MRI = Context.getRegisterInfo();
474   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
475   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
476   assert(!AFI->isThumb1OnlyFunction() &&
477          "This emitPrologue does not support Thumb1!");
478   bool isARM = !AFI->isThumbFunction();
479   Align Alignment = STI.getFrameLowering()->getStackAlign();
480   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
481   unsigned NumBytes = MFI.getStackSize();
482   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
483   int FPCXTSaveSize = 0;
484 
485   // Debug location must be unknown since the first debug location is used
486   // to determine the end of the prologue.
487   DebugLoc dl;
488 
489   Register FramePtr = RegInfo->getFrameRegister(MF);
490 
491   // Determine the sizes of each callee-save spill areas and record which frame
492   // belongs to which callee-save spill areas.
493   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
494   int FramePtrSpillFI = 0;
495   int D8SpillFI = 0;
496 
497   // All calls are tail calls in GHC calling conv, and functions have no
498   // prologue/epilogue.
499   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
500     return;
501 
502   StackAdjustingInsts DefCFAOffsetCandidates;
503   bool HasFP = hasFP(MF);
504 
505   if (!AFI->hasStackFrame() &&
506       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
507     if (NumBytes != 0) {
508       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
509                    MachineInstr::FrameSetup);
510       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
511     }
512     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
513     return;
514   }
515 
516   // Determine spill area sizes.
517   for (const CalleeSavedInfo &I : CSI) {
518     Register Reg = I.getReg();
519     int FI = I.getFrameIdx();
520     switch (Reg) {
521     case ARM::R8:
522     case ARM::R9:
523     case ARM::R10:
524     case ARM::R11:
525     case ARM::R12:
526       if (STI.splitFramePushPop(MF)) {
527         GPRCS2Size += 4;
528         break;
529       }
530       LLVM_FALLTHROUGH;
531     case ARM::R0:
532     case ARM::R1:
533     case ARM::R2:
534     case ARM::R3:
535     case ARM::R4:
536     case ARM::R5:
537     case ARM::R6:
538     case ARM::R7:
539     case ARM::LR:
540       if (Reg == FramePtr)
541         FramePtrSpillFI = FI;
542       GPRCS1Size += 4;
543       break;
544     case ARM::FPCXTNS:
545       FPCXTSaveSize = 4;
546       break;
547     default:
548       // This is a DPR. Exclude the aligned DPRCS2 spills.
549       if (Reg == ARM::D8)
550         D8SpillFI = FI;
551       if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
552         DPRCSSize += 8;
553     }
554   }
555 
556   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
557 
558   // Move past the PAC computation.
559   if (AFI->shouldSignReturnAddress())
560     LastPush = MBBI++;
561 
562   // Move past FPCXT area.
563   if (FPCXTSaveSize > 0) {
564     LastPush = MBBI++;
565     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
566   }
567 
568   // Allocate the vararg register save area.
569   if (ArgRegsSaveSize) {
570     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
571                  MachineInstr::FrameSetup);
572     LastPush = std::prev(MBBI);
573     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
574   }
575 
576   // Move past area 1.
577   if (GPRCS1Size > 0) {
578     GPRCS1Push = LastPush = MBBI++;
579     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
580   }
581 
582   // Determine starting offsets of spill areas.
583   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
584   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
585   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
586   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
587   unsigned DPRGapSize =
588       (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) %
589       DPRAlign.value();
590 
591   unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
592   int FramePtrOffsetInPush = 0;
593   if (HasFP) {
594     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
595     assert(getMaxFPOffset(STI, *AFI) <= FPOffset &&
596            "Max FP estimation is wrong");
597     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
598     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
599                                 NumBytes);
600   }
601   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
602   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
603   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
604 
605   // Move past area 2.
606   if (GPRCS2Size > 0) {
607     GPRCS2Push = LastPush = MBBI++;
608     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
609   }
610 
611   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
612   // .cfi_offset operations will reflect that.
613   if (DPRGapSize) {
614     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
615     if (LastPush != MBB.end() &&
616         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
617       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
618     else {
619       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
620                    MachineInstr::FrameSetup);
621       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
622     }
623   }
624 
625   // Move past area 3.
626   if (DPRCSSize > 0) {
627     // Since vpush register list cannot have gaps, there may be multiple vpush
628     // instructions in the prologue.
629     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
630       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
631       LastPush = MBBI++;
632     }
633   }
634 
635   // Move past the aligned DPRCS2 area.
636   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
637     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
638     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
639     // leaves the stack pointer pointing to the DPRCS2 area.
640     //
641     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
642     NumBytes += MFI.getObjectOffset(D8SpillFI);
643   } else
644     NumBytes = DPRCSOffset;
645 
646   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
647     uint32_t NumWords = NumBytes >> 2;
648 
649     if (NumWords < 65536)
650       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
651           .addImm(NumWords)
652           .setMIFlags(MachineInstr::FrameSetup)
653           .add(predOps(ARMCC::AL));
654     else
655       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
656         .addImm(NumWords)
657         .setMIFlags(MachineInstr::FrameSetup);
658 
659     switch (TM.getCodeModel()) {
660     case CodeModel::Tiny:
661       llvm_unreachable("Tiny code model not available on ARM.");
662     case CodeModel::Small:
663     case CodeModel::Medium:
664     case CodeModel::Kernel:
665       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
666           .add(predOps(ARMCC::AL))
667           .addExternalSymbol("__chkstk")
668           .addReg(ARM::R4, RegState::Implicit)
669           .setMIFlags(MachineInstr::FrameSetup);
670       break;
671     case CodeModel::Large:
672       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
673         .addExternalSymbol("__chkstk")
674         .setMIFlags(MachineInstr::FrameSetup);
675 
676       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
677           .add(predOps(ARMCC::AL))
678           .addReg(ARM::R12, RegState::Kill)
679           .addReg(ARM::R4, RegState::Implicit)
680           .setMIFlags(MachineInstr::FrameSetup);
681       break;
682     }
683 
684     BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
685         .addReg(ARM::SP, RegState::Kill)
686         .addReg(ARM::R4, RegState::Kill)
687         .setMIFlags(MachineInstr::FrameSetup)
688         .add(predOps(ARMCC::AL))
689         .add(condCodeOp());
690     NumBytes = 0;
691   }
692 
693   if (NumBytes) {
694     // Adjust SP after all the callee-save spills.
695     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
696         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
697       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
698     else {
699       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
700                    MachineInstr::FrameSetup);
701       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
702     }
703 
704     if (HasFP && isARM)
705       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
706       // Note it's not safe to do this in Thumb2 mode because it would have
707       // taken two instructions:
708       // mov sp, r7
709       // sub sp, #24
710       // If an interrupt is taken between the two instructions, then sp is in
711       // an inconsistent state (pointing to the middle of callee-saved area).
712       // The interrupt handler can end up clobbering the registers.
713       AFI->setShouldRestoreSPFromFP(true);
714   }
715 
716   // Set FP to point to the stack slot that contains the previous FP.
717   // For iOS, FP is R7, which has now been stored in spill area 1.
718   // Otherwise, if this is not iOS, all the callee-saved registers go
719   // into spill area 1, including the FP in R11.  In either case, it
720   // is in area one and the adjustment needs to take place just after
721   // that push.
722   if (HasFP) {
723     MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
724     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
725     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
726                          dl, TII, FramePtr, ARM::SP,
727                          PushSize + FramePtrOffsetInPush,
728                          MachineInstr::FrameSetup);
729     if (FramePtrOffsetInPush + PushSize != 0) {
730       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
731           nullptr, MRI->getDwarfRegNum(FramePtr, true),
732           FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
733       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
734           .addCFIIndex(CFIIndex)
735           .setMIFlags(MachineInstr::FrameSetup);
736     } else {
737       unsigned CFIIndex =
738           MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
739               nullptr, MRI->getDwarfRegNum(FramePtr, true)));
740       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
741           .addCFIIndex(CFIIndex)
742           .setMIFlags(MachineInstr::FrameSetup);
743     }
744   }
745 
746   // Now that the prologue's actual instructions are finalised, we can insert
747   // the necessary DWARF cf instructions to describe the situation. Start by
748   // recording where each register ended up:
749   if (GPRCS1Size > 0) {
750     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
751     int CFIIndex;
752     for (const auto &Entry : CSI) {
753       Register Reg = Entry.getReg();
754       int FI = Entry.getFrameIdx();
755       switch (Reg) {
756       case ARM::R8:
757       case ARM::R9:
758       case ARM::R10:
759       case ARM::R11:
760       case ARM::R12:
761         if (STI.splitFramePushPop(MF))
762           break;
763         LLVM_FALLTHROUGH;
764       case ARM::R0:
765       case ARM::R1:
766       case ARM::R2:
767       case ARM::R3:
768       case ARM::R4:
769       case ARM::R5:
770       case ARM::R6:
771       case ARM::R7:
772       case ARM::LR:
773         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
774             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
775         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
776             .addCFIIndex(CFIIndex)
777             .setMIFlags(MachineInstr::FrameSetup);
778         break;
779       }
780     }
781   }
782 
783   if (GPRCS2Size > 0) {
784     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
785     for (const auto &Entry : CSI) {
786       Register Reg = Entry.getReg();
787       int FI = Entry.getFrameIdx();
788       switch (Reg) {
789       case ARM::R8:
790       case ARM::R9:
791       case ARM::R10:
792       case ARM::R11:
793       case ARM::R12:
794         if (STI.splitFramePushPop(MF)) {
795           unsigned DwarfReg = MRI->getDwarfRegNum(
796               Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
797           unsigned Offset = MFI.getObjectOffset(FI);
798           unsigned CFIIndex = MF.addFrameInst(
799               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
800           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
801               .addCFIIndex(CFIIndex)
802               .setMIFlags(MachineInstr::FrameSetup);
803         }
804         break;
805       }
806     }
807   }
808 
809   if (DPRCSSize > 0) {
810     // Since vpush register list cannot have gaps, there may be multiple vpush
811     // instructions in the prologue.
812     MachineBasicBlock::iterator Pos = std::next(LastPush);
813     for (const auto &Entry : CSI) {
814       Register Reg = Entry.getReg();
815       int FI = Entry.getFrameIdx();
816       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
817           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
818         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
819         unsigned Offset = MFI.getObjectOffset(FI);
820         unsigned CFIIndex = MF.addFrameInst(
821             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
822         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
823             .addCFIIndex(CFIIndex)
824             .setMIFlags(MachineInstr::FrameSetup);
825       }
826     }
827   }
828 
829   // Now we can emit descriptions of where the canonical frame address was
830   // throughout the process. If we have a frame pointer, it takes over the job
831   // half-way through, so only the first few .cfi_def_cfa_offset instructions
832   // actually get emitted.
833   DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
834 
835   if (STI.isTargetELF() && hasFP(MF))
836     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
837                             AFI->getFramePtrSpillOffset());
838 
839   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
840   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
841   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
842   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
843   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
844 
845   // If we need dynamic stack realignment, do it here. Be paranoid and make
846   // sure if we also have VLAs, we have a base pointer for frame access.
847   // If aligned NEON registers were spilled, the stack has already been
848   // realigned.
849   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
850     Align MaxAlign = MFI.getMaxAlign();
851     assert(!AFI->isThumb1OnlyFunction());
852     if (!AFI->isThumbFunction()) {
853       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
854                                false);
855     } else {
856       // We cannot use sp as source/dest register here, thus we're using r4 to
857       // perform the calculations. We're emitting the following sequence:
858       // mov r4, sp
859       // -- use emitAligningInstructions to produce best sequence to zero
860       // -- out lower bits in r4
861       // mov sp, r4
862       // FIXME: It will be better just to find spare register here.
863       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
864           .addReg(ARM::SP, RegState::Kill)
865           .add(predOps(ARMCC::AL));
866       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
867                                false);
868       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
869           .addReg(ARM::R4, RegState::Kill)
870           .add(predOps(ARMCC::AL));
871     }
872 
873     AFI->setShouldRestoreSPFromFP(true);
874   }
875 
876   // If we need a base pointer, set it up here. It's whatever the value
877   // of the stack pointer is at this point. Any variable size objects
878   // will be allocated after this, so we can still use the base pointer
879   // to reference locals.
880   // FIXME: Clarify FrameSetup flags here.
881   if (RegInfo->hasBasePointer(MF)) {
882     if (isARM)
883       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
884           .addReg(ARM::SP)
885           .add(predOps(ARMCC::AL))
886           .add(condCodeOp());
887     else
888       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
889           .addReg(ARM::SP)
890           .add(predOps(ARMCC::AL));
891   }
892 
893   // If the frame has variable sized objects then the epilogue must restore
894   // the sp from fp. We can assume there's an FP here since hasFP already
895   // checks for hasVarSizedObjects.
896   if (MFI.hasVarSizedObjects())
897     AFI->setShouldRestoreSPFromFP(true);
898 }
899 
900 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
901                                     MachineBasicBlock &MBB) const {
902   MachineFrameInfo &MFI = MF.getFrameInfo();
903   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
904   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
905   const ARMBaseInstrInfo &TII =
906       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
907   assert(!AFI->isThumb1OnlyFunction() &&
908          "This emitEpilogue does not support Thumb1!");
909   bool isARM = !AFI->isThumbFunction();
910 
911   // Amount of stack space we reserved next to incoming args for either
912   // varargs registers or stack arguments in tail calls made by this function.
913   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
914 
915   // How much of the stack used by incoming arguments this function is expected
916   // to restore in this particular epilogue.
917   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
918   int NumBytes = (int)MFI.getStackSize();
919   Register FramePtr = RegInfo->getFrameRegister(MF);
920 
921   // All calls are tail calls in GHC calling conv, and functions have no
922   // prologue/epilogue.
923   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
924     return;
925 
926   // First put ourselves on the first (from top) terminator instructions.
927   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
928   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
929 
930   if (!AFI->hasStackFrame()) {
931     if (NumBytes + IncomingArgStackToRestore != 0)
932       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
933                    NumBytes + IncomingArgStackToRestore,
934                    MachineInstr::FrameDestroy);
935   } else {
936     // Unwind MBBI to point to first LDR / VLDRD.
937     if (MBBI != MBB.begin()) {
938       do {
939         --MBBI;
940       } while (MBBI != MBB.begin() &&
941                MBBI->getFlag(MachineInstr::FrameDestroy));
942       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
943         ++MBBI;
944     }
945 
946     // Move SP to start of FP callee save spill area.
947     NumBytes -= (ReservedArgStack +
948                  AFI->getFPCXTSaveAreaSize() +
949                  AFI->getGPRCalleeSavedArea1Size() +
950                  AFI->getGPRCalleeSavedArea2Size() +
951                  AFI->getDPRCalleeSavedGapSize() +
952                  AFI->getDPRCalleeSavedAreaSize());
953 
954     // Reset SP based on frame pointer only if the stack frame extends beyond
955     // frame pointer stack slot or target is ELF and the function has FP.
956     if (AFI->shouldRestoreSPFromFP()) {
957       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
958       if (NumBytes) {
959         if (isARM)
960           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
961                                   ARMCC::AL, 0, TII,
962                                   MachineInstr::FrameDestroy);
963         else {
964           // It's not possible to restore SP from FP in a single instruction.
965           // For iOS, this looks like:
966           // mov sp, r7
967           // sub sp, #24
968           // This is bad, if an interrupt is taken after the mov, sp is in an
969           // inconsistent state.
970           // Use the first callee-saved register as a scratch register.
971           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
972                  "No scratch register to restore SP from FP!");
973           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
974                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
975           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
976               .addReg(ARM::R4)
977               .add(predOps(ARMCC::AL))
978               .setMIFlag(MachineInstr::FrameDestroy);
979         }
980       } else {
981         // Thumb2 or ARM.
982         if (isARM)
983           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
984               .addReg(FramePtr)
985               .add(predOps(ARMCC::AL))
986               .add(condCodeOp())
987               .setMIFlag(MachineInstr::FrameDestroy);
988         else
989           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
990               .addReg(FramePtr)
991               .add(predOps(ARMCC::AL))
992               .setMIFlag(MachineInstr::FrameDestroy);
993       }
994     } else if (NumBytes &&
995                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
996       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
997                    MachineInstr::FrameDestroy);
998 
999     // Increment past our save areas.
1000     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1001       MBBI++;
1002       // Since vpop register list cannot have gaps, there may be multiple vpop
1003       // instructions in the epilogue.
1004       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1005         MBBI++;
1006     }
1007     if (AFI->getDPRCalleeSavedGapSize()) {
1008       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1009              "unexpected DPR alignment gap");
1010       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1011                    MachineInstr::FrameDestroy);
1012     }
1013 
1014     if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
1015     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1016 
1017     if (ReservedArgStack || IncomingArgStackToRestore) {
1018       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1019              "attempting to restore negative stack amount");
1020       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1021                    ReservedArgStack + IncomingArgStackToRestore,
1022                    MachineInstr::FrameDestroy);
1023     }
1024 
1025     // Validate PAC, It should have been already popped into R12. For CMSE entry
1026     // function, the validation instruction is emitted during expansion of the
1027     // tBXNS_RET, since the validation must use the value of SP at function
1028     // entry, before saving, resp. after restoring, FPCXTNS.
1029     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1030       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1031   }
1032 }
1033 
1034 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1035 /// debug info.  It's the same as what we use for resolving the code-gen
1036 /// references for now.  FIXME: This can go wrong when references are
1037 /// SP-relative and simple call frames aren't used.
1038 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1039                                                      int FI,
1040                                                      Register &FrameReg) const {
1041   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1042 }
1043 
1044 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1045                                                  int FI, Register &FrameReg,
1046                                                  int SPAdj) const {
1047   const MachineFrameInfo &MFI = MF.getFrameInfo();
1048   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1049       MF.getSubtarget().getRegisterInfo());
1050   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1051   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1052   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1053   bool isFixed = MFI.isFixedObjectIndex(FI);
1054 
1055   FrameReg = ARM::SP;
1056   Offset += SPAdj;
1057 
1058   // SP can move around if there are allocas.  We may also lose track of SP
1059   // when emergency spilling inside a non-reserved call frame setup.
1060   bool hasMovingSP = !hasReservedCallFrame(MF);
1061 
1062   // When dynamically realigning the stack, use the frame pointer for
1063   // parameters, and the stack/base pointer for locals.
1064   if (RegInfo->hasStackRealignment(MF)) {
1065     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1066     if (isFixed) {
1067       FrameReg = RegInfo->getFrameRegister(MF);
1068       Offset = FPOffset;
1069     } else if (hasMovingSP) {
1070       assert(RegInfo->hasBasePointer(MF) &&
1071              "VLAs and dynamic stack alignment, but missing base pointer!");
1072       FrameReg = RegInfo->getBaseRegister();
1073       Offset -= SPAdj;
1074     }
1075     return Offset;
1076   }
1077 
1078   // If there is a frame pointer, use it when we can.
1079   if (hasFP(MF) && AFI->hasStackFrame()) {
1080     // Use frame pointer to reference fixed objects. Use it for locals if
1081     // there are VLAs (and thus the SP isn't reliable as a base).
1082     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1083       FrameReg = RegInfo->getFrameRegister(MF);
1084       return FPOffset;
1085     } else if (hasMovingSP) {
1086       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1087       if (AFI->isThumb2Function()) {
1088         // Try to use the frame pointer if we can, else use the base pointer
1089         // since it's available. This is handy for the emergency spill slot, in
1090         // particular.
1091         if (FPOffset >= -255 && FPOffset < 0) {
1092           FrameReg = RegInfo->getFrameRegister(MF);
1093           return FPOffset;
1094         }
1095       }
1096     } else if (AFI->isThumbFunction()) {
1097       // Prefer SP to base pointer, if the offset is suitably aligned and in
1098       // range as the effective range of the immediate offset is bigger when
1099       // basing off SP.
1100       // Use  add <rd>, sp, #<imm8>
1101       //      ldr <rd>, [sp, #<imm8>]
1102       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1103         return Offset;
1104       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1105       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1106       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1107         FrameReg = RegInfo->getFrameRegister(MF);
1108         return FPOffset;
1109       }
1110     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1111       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1112       FrameReg = RegInfo->getFrameRegister(MF);
1113       return FPOffset;
1114     }
1115   }
1116   // Use the base pointer if we have one.
1117   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1118   // That can happen if we forced a base pointer for a large call frame.
1119   if (RegInfo->hasBasePointer(MF)) {
1120     FrameReg = RegInfo->getBaseRegister();
1121     Offset -= SPAdj;
1122   }
1123   return Offset;
1124 }
1125 
1126 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1127                                     MachineBasicBlock::iterator MI,
1128                                     ArrayRef<CalleeSavedInfo> CSI,
1129                                     unsigned StmOpc, unsigned StrOpc,
1130                                     bool NoGap, bool (*Func)(unsigned, bool),
1131                                     unsigned NumAlignedDPRCS2Regs,
1132                                     unsigned MIFlags) const {
1133   MachineFunction &MF = *MBB.getParent();
1134   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1135   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1136 
1137   DebugLoc DL;
1138 
1139   using RegAndKill = std::pair<unsigned, bool>;
1140 
1141   SmallVector<RegAndKill, 4> Regs;
1142   unsigned i = CSI.size();
1143   while (i != 0) {
1144     unsigned LastReg = 0;
1145     for (; i != 0; --i) {
1146       Register Reg = CSI[i-1].getReg();
1147       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1148 
1149       // D-registers in the aligned area DPRCS2 are NOT spilled here.
1150       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1151         continue;
1152 
1153       const MachineRegisterInfo &MRI = MF.getRegInfo();
1154       bool isLiveIn = MRI.isLiveIn(Reg);
1155       if (!isLiveIn && !MRI.isReserved(Reg))
1156         MBB.addLiveIn(Reg);
1157       // If NoGap is true, push consecutive registers and then leave the rest
1158       // for other instructions. e.g.
1159       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1160       if (NoGap && LastReg && LastReg != Reg-1)
1161         break;
1162       LastReg = Reg;
1163       // Do not set a kill flag on values that are also marked as live-in. This
1164       // happens with the @llvm-returnaddress intrinsic and with arguments
1165       // passed in callee saved registers.
1166       // Omitting the kill flags is conservatively correct even if the live-in
1167       // is not used after all.
1168       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1169     }
1170 
1171     if (Regs.empty())
1172       continue;
1173 
1174     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1175       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1176     });
1177 
1178     if (Regs.size() > 1 || StrOpc== 0) {
1179       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1180                                     .addReg(ARM::SP)
1181                                     .setMIFlags(MIFlags)
1182                                     .add(predOps(ARMCC::AL));
1183       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1184         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1185     } else if (Regs.size() == 1) {
1186       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1187           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1188           .addReg(ARM::SP)
1189           .setMIFlags(MIFlags)
1190           .addImm(-4)
1191           .add(predOps(ARMCC::AL));
1192     }
1193     Regs.clear();
1194 
1195     // Put any subsequent vpush instructions before this one: they will refer to
1196     // higher register numbers so need to be pushed first in order to preserve
1197     // monotonicity.
1198     if (MI != MBB.begin())
1199       --MI;
1200   }
1201 }
1202 
1203 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1204                                    MachineBasicBlock::iterator MI,
1205                                    MutableArrayRef<CalleeSavedInfo> CSI,
1206                                    unsigned LdmOpc, unsigned LdrOpc,
1207                                    bool isVarArg, bool NoGap,
1208                                    bool (*Func)(unsigned, bool),
1209                                    unsigned NumAlignedDPRCS2Regs) const {
1210   MachineFunction &MF = *MBB.getParent();
1211   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1212   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1213   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1214   bool hasPAC = AFI->shouldSignReturnAddress();
1215   DebugLoc DL;
1216   bool isTailCall = false;
1217   bool isInterrupt = false;
1218   bool isTrap = false;
1219   bool isCmseEntry = false;
1220   if (MBB.end() != MI) {
1221     DL = MI->getDebugLoc();
1222     unsigned RetOpcode = MI->getOpcode();
1223     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1224     isInterrupt =
1225         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1226     isTrap =
1227         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1228         RetOpcode == ARM::tTRAP;
1229     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1230   }
1231 
1232   SmallVector<unsigned, 4> Regs;
1233   unsigned i = CSI.size();
1234   while (i != 0) {
1235     unsigned LastReg = 0;
1236     bool DeleteRet = false;
1237     for (; i != 0; --i) {
1238       CalleeSavedInfo &Info = CSI[i-1];
1239       Register Reg = Info.getReg();
1240       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1241 
1242       // The aligned reloads from area DPRCS2 are not inserted here.
1243       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1244         continue;
1245       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1246           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1247           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC) {
1248         Reg = ARM::PC;
1249         // Fold the return instruction into the LDM.
1250         DeleteRet = true;
1251         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1252         // We 'restore' LR into PC so it is not live out of the return block:
1253         // Clear Restored bit.
1254         Info.setRestored(false);
1255       }
1256 
1257       // If NoGap is true, pop consecutive registers and then leave the rest
1258       // for other instructions. e.g.
1259       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1260       if (NoGap && LastReg && LastReg != Reg-1)
1261         break;
1262 
1263       LastReg = Reg;
1264       Regs.push_back(Reg);
1265     }
1266 
1267     if (Regs.empty())
1268       continue;
1269 
1270     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1271       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1272     });
1273 
1274     if (Regs.size() > 1 || LdrOpc == 0) {
1275       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1276                                     .addReg(ARM::SP)
1277                                     .add(predOps(ARMCC::AL))
1278                                     .setMIFlags(MachineInstr::FrameDestroy);
1279       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1280         MIB.addReg(Regs[i], getDefRegState(true));
1281       if (DeleteRet) {
1282         if (MI != MBB.end()) {
1283           MIB.copyImplicitOps(*MI);
1284           MI->eraseFromParent();
1285         }
1286       }
1287       MI = MIB;
1288     } else if (Regs.size() == 1) {
1289       // If we adjusted the reg to PC from LR above, switch it back here. We
1290       // only do that for LDM.
1291       if (Regs[0] == ARM::PC)
1292         Regs[0] = ARM::LR;
1293       MachineInstrBuilder MIB =
1294         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1295           .addReg(ARM::SP, RegState::Define)
1296           .addReg(ARM::SP)
1297           .setMIFlags(MachineInstr::FrameDestroy);
1298       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1299       // that refactoring is complete (eventually).
1300       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1301         MIB.addReg(0);
1302         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1303       } else
1304         MIB.addImm(4);
1305       MIB.add(predOps(ARMCC::AL));
1306     }
1307     Regs.clear();
1308 
1309     // Put any subsequent vpop instructions after this one: they will refer to
1310     // higher register numbers so need to be popped afterwards.
1311     if (MI != MBB.end())
1312       ++MI;
1313   }
1314 }
1315 
1316 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1317 /// starting from d8.  Also insert stack realignment code and leave the stack
1318 /// pointer pointing to the d8 spill slot.
1319 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1320                                     MachineBasicBlock::iterator MI,
1321                                     unsigned NumAlignedDPRCS2Regs,
1322                                     ArrayRef<CalleeSavedInfo> CSI,
1323                                     const TargetRegisterInfo *TRI) {
1324   MachineFunction &MF = *MBB.getParent();
1325   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1326   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1327   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1328   MachineFrameInfo &MFI = MF.getFrameInfo();
1329 
1330   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1331   // stack slot layout backwards, this can actually mean that the d-reg stack
1332   // slot offsets can be wrong. The offset for d8 will always be correct.
1333   for (const CalleeSavedInfo &I : CSI) {
1334     unsigned DNum = I.getReg() - ARM::D8;
1335     if (DNum > NumAlignedDPRCS2Regs - 1)
1336       continue;
1337     int FI = I.getFrameIdx();
1338     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1339     // registers will be 8-byte aligned.
1340     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1341 
1342     // The stack slot for D8 needs to be maximally aligned because this is
1343     // actually the point where we align the stack pointer.  MachineFrameInfo
1344     // computes all offsets relative to the incoming stack pointer which is a
1345     // bit weird when realigning the stack.  Any extra padding for this
1346     // over-alignment is not realized because the code inserted below adjusts
1347     // the stack pointer by numregs * 8 before aligning the stack pointer.
1348     if (DNum == 0)
1349       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1350   }
1351 
1352   // Move the stack pointer to the d8 spill slot, and align it at the same
1353   // time. Leave the stack slot address in the scratch register r4.
1354   //
1355   //   sub r4, sp, #numregs * 8
1356   //   bic r4, r4, #align - 1
1357   //   mov sp, r4
1358   //
1359   bool isThumb = AFI->isThumbFunction();
1360   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1361   AFI->setShouldRestoreSPFromFP(true);
1362 
1363   // sub r4, sp, #numregs * 8
1364   // The immediate is <= 64, so it doesn't need any special encoding.
1365   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1366   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1367       .addReg(ARM::SP)
1368       .addImm(8 * NumAlignedDPRCS2Regs)
1369       .add(predOps(ARMCC::AL))
1370       .add(condCodeOp());
1371 
1372   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1373   // We must set parameter MustBeSingleInstruction to true, since
1374   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1375   // stack alignment.  Luckily, this can always be done since all ARM
1376   // architecture versions that support Neon also support the BFC
1377   // instruction.
1378   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1379 
1380   // mov sp, r4
1381   // The stack pointer must be adjusted before spilling anything, otherwise
1382   // the stack slots could be clobbered by an interrupt handler.
1383   // Leave r4 live, it is used below.
1384   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1385   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1386                                 .addReg(ARM::R4)
1387                                 .add(predOps(ARMCC::AL));
1388   if (!isThumb)
1389     MIB.add(condCodeOp());
1390 
1391   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1392   // r4 holds the stack slot address.
1393   unsigned NextReg = ARM::D8;
1394 
1395   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1396   // The writeback is only needed when emitting two vst1.64 instructions.
1397   if (NumAlignedDPRCS2Regs >= 6) {
1398     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1399                                                &ARM::QQPRRegClass);
1400     MBB.addLiveIn(SupReg);
1401     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1402         .addReg(ARM::R4, RegState::Kill)
1403         .addImm(16)
1404         .addReg(NextReg)
1405         .addReg(SupReg, RegState::ImplicitKill)
1406         .add(predOps(ARMCC::AL));
1407     NextReg += 4;
1408     NumAlignedDPRCS2Regs -= 4;
1409   }
1410 
1411   // We won't modify r4 beyond this point.  It currently points to the next
1412   // register to be spilled.
1413   unsigned R4BaseReg = NextReg;
1414 
1415   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1416   if (NumAlignedDPRCS2Regs >= 4) {
1417     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1418                                                &ARM::QQPRRegClass);
1419     MBB.addLiveIn(SupReg);
1420     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1421         .addReg(ARM::R4)
1422         .addImm(16)
1423         .addReg(NextReg)
1424         .addReg(SupReg, RegState::ImplicitKill)
1425         .add(predOps(ARMCC::AL));
1426     NextReg += 4;
1427     NumAlignedDPRCS2Regs -= 4;
1428   }
1429 
1430   // 16-byte aligned vst1.64 with 2 d-regs.
1431   if (NumAlignedDPRCS2Regs >= 2) {
1432     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1433                                                &ARM::QPRRegClass);
1434     MBB.addLiveIn(SupReg);
1435     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1436         .addReg(ARM::R4)
1437         .addImm(16)
1438         .addReg(SupReg)
1439         .add(predOps(ARMCC::AL));
1440     NextReg += 2;
1441     NumAlignedDPRCS2Regs -= 2;
1442   }
1443 
1444   // Finally, use a vanilla vstr.64 for the odd last register.
1445   if (NumAlignedDPRCS2Regs) {
1446     MBB.addLiveIn(NextReg);
1447     // vstr.64 uses addrmode5 which has an offset scale of 4.
1448     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1449         .addReg(NextReg)
1450         .addReg(ARM::R4)
1451         .addImm((NextReg - R4BaseReg) * 2)
1452         .add(predOps(ARMCC::AL));
1453   }
1454 
1455   // The last spill instruction inserted should kill the scratch register r4.
1456   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1457 }
1458 
1459 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1460 /// iterator to the following instruction.
1461 static MachineBasicBlock::iterator
1462 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1463                         unsigned NumAlignedDPRCS2Regs) {
1464   //   sub r4, sp, #numregs * 8
1465   //   bic r4, r4, #align - 1
1466   //   mov sp, r4
1467   ++MI; ++MI; ++MI;
1468   assert(MI->mayStore() && "Expecting spill instruction");
1469 
1470   // These switches all fall through.
1471   switch(NumAlignedDPRCS2Regs) {
1472   case 7:
1473     ++MI;
1474     assert(MI->mayStore() && "Expecting spill instruction");
1475     LLVM_FALLTHROUGH;
1476   default:
1477     ++MI;
1478     assert(MI->mayStore() && "Expecting spill instruction");
1479     LLVM_FALLTHROUGH;
1480   case 1:
1481   case 2:
1482   case 4:
1483     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1484     ++MI;
1485   }
1486   return MI;
1487 }
1488 
1489 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1490 /// starting from d8.  These instructions are assumed to execute while the
1491 /// stack is still aligned, unlike the code inserted by emitPopInst.
1492 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1493                                       MachineBasicBlock::iterator MI,
1494                                       unsigned NumAlignedDPRCS2Regs,
1495                                       ArrayRef<CalleeSavedInfo> CSI,
1496                                       const TargetRegisterInfo *TRI) {
1497   MachineFunction &MF = *MBB.getParent();
1498   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1499   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1500   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1501 
1502   // Find the frame index assigned to d8.
1503   int D8SpillFI = 0;
1504   for (const CalleeSavedInfo &I : CSI)
1505     if (I.getReg() == ARM::D8) {
1506       D8SpillFI = I.getFrameIdx();
1507       break;
1508     }
1509 
1510   // Materialize the address of the d8 spill slot into the scratch register r4.
1511   // This can be fairly complicated if the stack frame is large, so just use
1512   // the normal frame index elimination mechanism to do it.  This code runs as
1513   // the initial part of the epilog where the stack and base pointers haven't
1514   // been changed yet.
1515   bool isThumb = AFI->isThumbFunction();
1516   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1517 
1518   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1519   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1520       .addFrameIndex(D8SpillFI)
1521       .addImm(0)
1522       .add(predOps(ARMCC::AL))
1523       .add(condCodeOp());
1524 
1525   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1526   unsigned NextReg = ARM::D8;
1527 
1528   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1529   if (NumAlignedDPRCS2Regs >= 6) {
1530     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1531                                                &ARM::QQPRRegClass);
1532     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1533         .addReg(ARM::R4, RegState::Define)
1534         .addReg(ARM::R4, RegState::Kill)
1535         .addImm(16)
1536         .addReg(SupReg, RegState::ImplicitDefine)
1537         .add(predOps(ARMCC::AL));
1538     NextReg += 4;
1539     NumAlignedDPRCS2Regs -= 4;
1540   }
1541 
1542   // We won't modify r4 beyond this point.  It currently points to the next
1543   // register to be spilled.
1544   unsigned R4BaseReg = NextReg;
1545 
1546   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1547   if (NumAlignedDPRCS2Regs >= 4) {
1548     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1549                                                &ARM::QQPRRegClass);
1550     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1551         .addReg(ARM::R4)
1552         .addImm(16)
1553         .addReg(SupReg, RegState::ImplicitDefine)
1554         .add(predOps(ARMCC::AL));
1555     NextReg += 4;
1556     NumAlignedDPRCS2Regs -= 4;
1557   }
1558 
1559   // 16-byte aligned vld1.64 with 2 d-regs.
1560   if (NumAlignedDPRCS2Regs >= 2) {
1561     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1562                                                &ARM::QPRRegClass);
1563     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1564         .addReg(ARM::R4)
1565         .addImm(16)
1566         .add(predOps(ARMCC::AL));
1567     NextReg += 2;
1568     NumAlignedDPRCS2Regs -= 2;
1569   }
1570 
1571   // Finally, use a vanilla vldr.64 for the remaining odd register.
1572   if (NumAlignedDPRCS2Regs)
1573     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1574         .addReg(ARM::R4)
1575         .addImm(2 * (NextReg - R4BaseReg))
1576         .add(predOps(ARMCC::AL));
1577 
1578   // Last store kills r4.
1579   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1580 }
1581 
1582 bool ARMFrameLowering::spillCalleeSavedRegisters(
1583     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1584     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1585   if (CSI.empty())
1586     return false;
1587 
1588   MachineFunction &MF = *MBB.getParent();
1589   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1590 
1591   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1592   unsigned PushOneOpc = AFI->isThumbFunction() ?
1593     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1594   unsigned FltOpc = ARM::VSTMDDB_UPD;
1595   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1596   // Compute PAC in R12.
1597   if (AFI->shouldSignReturnAddress()) {
1598     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1599         .setMIFlags(MachineInstr::FrameSetup);
1600   }
1601   // Save the non-secure floating point context.
1602   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1603         return C.getReg() == ARM::FPCXTNS;
1604       })) {
1605     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1606             ARM::SP)
1607         .addReg(ARM::SP)
1608         .addImm(-4)
1609         .add(predOps(ARMCC::AL));
1610   }
1611   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1612                MachineInstr::FrameSetup);
1613   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1614                MachineInstr::FrameSetup);
1615   emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1616                NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1617 
1618   // The code above does not insert spill code for the aligned DPRCS2 registers.
1619   // The stack realignment code will be inserted between the push instructions
1620   // and these spills.
1621   if (NumAlignedDPRCS2Regs)
1622     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1623 
1624   return true;
1625 }
1626 
1627 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1628     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1629     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1630   if (CSI.empty())
1631     return false;
1632 
1633   MachineFunction &MF = *MBB.getParent();
1634   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1635   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1636   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1637 
1638   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1639   // registers. Do that here instead.
1640   if (NumAlignedDPRCS2Regs)
1641     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1642 
1643   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1644   unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1645   unsigned FltOpc = ARM::VLDMDIA_UPD;
1646   emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1647               NumAlignedDPRCS2Regs);
1648   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1649               &isARMArea2Register, 0);
1650   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1651               &isARMArea1Register, 0);
1652 
1653   return true;
1654 }
1655 
1656 // FIXME: Make generic?
1657 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
1658                                             const ARMBaseInstrInfo &TII) {
1659   unsigned FnSize = 0;
1660   for (auto &MBB : MF) {
1661     for (auto &MI : MBB)
1662       FnSize += TII.getInstSizeInBytes(MI);
1663   }
1664   if (MF.getJumpTableInfo())
1665     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
1666       FnSize += Table.MBBs.size() * 4;
1667   FnSize += MF.getConstantPool()->getConstants().size() * 4;
1668   return FnSize;
1669 }
1670 
1671 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1672 /// frames and return the stack size limit beyond which some of these
1673 /// instructions will require a scratch register during their expansion later.
1674 // FIXME: Move to TII?
1675 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1676                                          const TargetFrameLowering *TFI,
1677                                          bool &HasNonSPFrameIndex) {
1678   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1679   const ARMBaseInstrInfo &TII =
1680       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1681   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1682   unsigned Limit = (1 << 12) - 1;
1683   for (auto &MBB : MF) {
1684     for (auto &MI : MBB) {
1685       if (MI.isDebugInstr())
1686         continue;
1687       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1688         if (!MI.getOperand(i).isFI())
1689           continue;
1690 
1691         // When using ADDri to get the address of a stack object, 255 is the
1692         // largest offset guaranteed to fit in the immediate offset.
1693         if (MI.getOpcode() == ARM::ADDri) {
1694           Limit = std::min(Limit, (1U << 8) - 1);
1695           break;
1696         }
1697         // t2ADDri will not require an extra register, it can reuse the
1698         // destination.
1699         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
1700           break;
1701 
1702         const MCInstrDesc &MCID = MI.getDesc();
1703         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
1704         if (RegClass && !RegClass->contains(ARM::SP))
1705           HasNonSPFrameIndex = true;
1706 
1707         // Otherwise check the addressing mode.
1708         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1709         case ARMII::AddrMode_i12:
1710         case ARMII::AddrMode2:
1711           // Default 12 bit limit.
1712           break;
1713         case ARMII::AddrMode3:
1714         case ARMII::AddrModeT2_i8neg:
1715           Limit = std::min(Limit, (1U << 8) - 1);
1716           break;
1717         case ARMII::AddrMode5FP16:
1718           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
1719           break;
1720         case ARMII::AddrMode5:
1721         case ARMII::AddrModeT2_i8s4:
1722         case ARMII::AddrModeT2_ldrex:
1723           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1724           break;
1725         case ARMII::AddrModeT2_i12:
1726           // i12 supports only positive offset so these will be converted to
1727           // i8 opcodes. See llvm::rewriteT2FrameIndex.
1728           if (TFI->hasFP(MF) && AFI->hasStackFrame())
1729             Limit = std::min(Limit, (1U << 8) - 1);
1730           break;
1731         case ARMII::AddrMode4:
1732         case ARMII::AddrMode6:
1733           // Addressing modes 4 & 6 (load/store) instructions can't encode an
1734           // immediate offset for stack references.
1735           return 0;
1736         case ARMII::AddrModeT2_i7:
1737           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
1738           break;
1739         case ARMII::AddrModeT2_i7s2:
1740           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
1741           break;
1742         case ARMII::AddrModeT2_i7s4:
1743           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
1744           break;
1745         default:
1746           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1747         }
1748         break; // At most one FI per instruction
1749       }
1750     }
1751   }
1752 
1753   return Limit;
1754 }
1755 
1756 // In functions that realign the stack, it can be an advantage to spill the
1757 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1758 // instructions take alignment hints that can improve performance.
1759 static void
1760 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1761   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1762   if (!SpillAlignedNEONRegs)
1763     return;
1764 
1765   // Naked functions don't spill callee-saved registers.
1766   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1767     return;
1768 
1769   // We are planning to use NEON instructions vst1 / vld1.
1770   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
1771     return;
1772 
1773   // Don't bother if the default stack alignment is sufficiently high.
1774   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
1775     return;
1776 
1777   // Aligned spills require stack realignment.
1778   if (!static_cast<const ARMBaseRegisterInfo *>(
1779            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1780     return;
1781 
1782   // We always spill contiguous d-registers starting from d8. Count how many
1783   // needs spilling.  The register allocator will almost always use the
1784   // callee-saved registers in order, but it can happen that there are holes in
1785   // the range.  Registers above the hole will be spilled to the standard DPRCS
1786   // area.
1787   unsigned NumSpills = 0;
1788   for (; NumSpills < 8; ++NumSpills)
1789     if (!SavedRegs.test(ARM::D8 + NumSpills))
1790       break;
1791 
1792   // Don't do this for just one d-register. It's not worth it.
1793   if (NumSpills < 2)
1794     return;
1795 
1796   // Spill the first NumSpills D-registers after realigning the stack.
1797   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1798 
1799   // A scratch register is required for the vst1 / vld1 instructions.
1800   SavedRegs.set(ARM::R4);
1801 }
1802 
1803 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
1804   // For CMSE entry functions, we want to save the FPCXT_NS immediately
1805   // upon function entry (resp. restore it immmediately before return)
1806   if (STI.hasV8_1MMainlineOps() &&
1807       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
1808     return false;
1809 
1810   // We are disabling shrinkwrapping for now when PAC is enabled, as
1811   // shrinkwrapping can cause clobbering of r12 when the PAC code is
1812   // generated. A follow-up patch will fix this in a more performant manner.
1813   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
1814           true /* SpillsLR */))
1815     return false;
1816 
1817   return true;
1818 }
1819 
1820 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1821                                             BitVector &SavedRegs,
1822                                             RegScavenger *RS) const {
1823   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1824   // This tells PEI to spill the FP as if it is any other callee-save register
1825   // to take advantage the eliminateFrameIndex machinery. This also ensures it
1826   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1827   // to combine multiple loads / stores.
1828   bool CanEliminateFrame = true;
1829   bool CS1Spilled = false;
1830   bool LRSpilled = false;
1831   unsigned NumGPRSpills = 0;
1832   unsigned NumFPRSpills = 0;
1833   SmallVector<unsigned, 4> UnspilledCS1GPRs;
1834   SmallVector<unsigned, 4> UnspilledCS2GPRs;
1835   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1836       MF.getSubtarget().getRegisterInfo());
1837   const ARMBaseInstrInfo &TII =
1838       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1839   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1840   MachineFrameInfo &MFI = MF.getFrameInfo();
1841   MachineRegisterInfo &MRI = MF.getRegInfo();
1842   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1843   (void)TRI;  // Silence unused warning in non-assert builds.
1844   Register FramePtr = RegInfo->getFrameRegister(MF);
1845 
1846   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1847   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1848   // since it's not always possible to restore sp from fp in a single
1849   // instruction.
1850   // FIXME: It will be better just to find spare register here.
1851   if (AFI->isThumb2Function() &&
1852       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
1853     SavedRegs.set(ARM::R4);
1854 
1855   // If a stack probe will be emitted, spill R4 and LR, since they are
1856   // clobbered by the stack probe call.
1857   // This estimate should be a safe, conservative estimate. The actual
1858   // stack probe is enabled based on the size of the local objects;
1859   // this estimate also includes the varargs store size.
1860   if (STI.isTargetWindows() &&
1861       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1862     SavedRegs.set(ARM::R4);
1863     SavedRegs.set(ARM::LR);
1864   }
1865 
1866   if (AFI->isThumb1OnlyFunction()) {
1867     // Spill LR if Thumb1 function uses variable length argument lists.
1868     if (AFI->getArgRegsSaveSize() > 0)
1869       SavedRegs.set(ARM::LR);
1870 
1871     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1872     // requires stack alignment.  We don't know for sure what the stack size
1873     // will be, but for this, an estimate is good enough. If there anything
1874     // changes it, it'll be a spill, which implies we've used all the registers
1875     // and so R4 is already used, so not marking it here will be OK.
1876     // FIXME: It will be better just to find spare register here.
1877     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
1878         MFI.estimateStackSize(MF) > 508)
1879       SavedRegs.set(ARM::R4);
1880   }
1881 
1882   // See if we can spill vector registers to aligned stack.
1883   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1884 
1885   // Spill the BasePtr if it's used.
1886   if (RegInfo->hasBasePointer(MF))
1887     SavedRegs.set(RegInfo->getBaseRegister());
1888 
1889   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
1890   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
1891     CanEliminateFrame = false;
1892 
1893   // Don't spill FP if the frame can be eliminated. This is determined
1894   // by scanning the callee-save registers to see if any is modified.
1895   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1896   for (unsigned i = 0; CSRegs[i]; ++i) {
1897     unsigned Reg = CSRegs[i];
1898     bool Spilled = false;
1899     if (SavedRegs.test(Reg)) {
1900       Spilled = true;
1901       CanEliminateFrame = false;
1902     }
1903 
1904     if (!ARM::GPRRegClass.contains(Reg)) {
1905       if (Spilled) {
1906         if (ARM::SPRRegClass.contains(Reg))
1907           NumFPRSpills++;
1908         else if (ARM::DPRRegClass.contains(Reg))
1909           NumFPRSpills += 2;
1910         else if (ARM::QPRRegClass.contains(Reg))
1911           NumFPRSpills += 4;
1912       }
1913       continue;
1914     }
1915 
1916     if (Spilled) {
1917       NumGPRSpills++;
1918 
1919       if (!STI.splitFramePushPop(MF)) {
1920         if (Reg == ARM::LR)
1921           LRSpilled = true;
1922         CS1Spilled = true;
1923         continue;
1924       }
1925 
1926       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1927       switch (Reg) {
1928       case ARM::LR:
1929         LRSpilled = true;
1930         LLVM_FALLTHROUGH;
1931       case ARM::R0: case ARM::R1:
1932       case ARM::R2: case ARM::R3:
1933       case ARM::R4: case ARM::R5:
1934       case ARM::R6: case ARM::R7:
1935         CS1Spilled = true;
1936         break;
1937       default:
1938         break;
1939       }
1940     } else {
1941       if (!STI.splitFramePushPop(MF)) {
1942         UnspilledCS1GPRs.push_back(Reg);
1943         continue;
1944       }
1945 
1946       switch (Reg) {
1947       case ARM::R0: case ARM::R1:
1948       case ARM::R2: case ARM::R3:
1949       case ARM::R4: case ARM::R5:
1950       case ARM::R6: case ARM::R7:
1951       case ARM::LR:
1952         UnspilledCS1GPRs.push_back(Reg);
1953         break;
1954       default:
1955         UnspilledCS2GPRs.push_back(Reg);
1956         break;
1957       }
1958     }
1959   }
1960 
1961   bool ForceLRSpill = false;
1962   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1963     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
1964     // Force LR to be spilled if the Thumb function size is > 2048. This enables
1965     // use of BL to implement far jump.
1966     if (FnSize >= (1 << 11)) {
1967       CanEliminateFrame = false;
1968       ForceLRSpill = true;
1969     }
1970   }
1971 
1972   // If any of the stack slot references may be out of range of an immediate
1973   // offset, make sure a register (or a spill slot) is available for the
1974   // register scavenger. Note that if we're indexing off the frame pointer, the
1975   // effective stack size is 4 bytes larger since the FP points to the stack
1976   // slot of the previous FP. Also, if we have variable sized objects in the
1977   // function, stack slot references will often be negative, and some of
1978   // our instructions are positive-offset only, so conservatively consider
1979   // that case to want a spill slot (or register) as well. Similarly, if
1980   // the function adjusts the stack pointer during execution and the
1981   // adjustments aren't already part of our stack size estimate, our offset
1982   // calculations may be off, so be conservative.
1983   // FIXME: We could add logic to be more precise about negative offsets
1984   //        and which instructions will need a scratch register for them. Is it
1985   //        worth the effort and added fragility?
1986   unsigned EstimatedStackSize =
1987       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1988 
1989   // Determine biggest (positive) SP offset in MachineFrameInfo.
1990   int MaxFixedOffset = 0;
1991   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1992     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1993     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1994   }
1995 
1996   bool HasFP = hasFP(MF);
1997   if (HasFP) {
1998     if (AFI->hasStackFrame())
1999       EstimatedStackSize += 4;
2000   } else {
2001     // If FP is not used, SP will be used to access arguments, so count the
2002     // size of arguments into the estimation.
2003     EstimatedStackSize += MaxFixedOffset;
2004   }
2005   EstimatedStackSize += 16; // For possible paddings.
2006 
2007   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2008   bool HasNonSPFrameIndex = false;
2009   if (AFI->isThumb1OnlyFunction()) {
2010     // For Thumb1, don't bother to iterate over the function. The only
2011     // instruction that requires an emergency spill slot is a store to a
2012     // frame index.
2013     //
2014     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2015     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2016     // a 5-bit unsigned immediate.
2017     //
2018     // We could try to check if the function actually contains a tSTRspi
2019     // that might need the spill slot, but it's not really important.
2020     // Functions with VLAs or extremely large call frames are rare, and
2021     // if a function is allocating more than 1KB of stack, an extra 4-byte
2022     // slot probably isn't relevant.
2023     if (RegInfo->hasBasePointer(MF))
2024       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2025     else
2026       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2027     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2028   } else {
2029     EstimatedRSStackSizeLimit =
2030         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2031     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2032   }
2033   // Final estimate of whether sp or bp-relative accesses might require
2034   // scavenging.
2035   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2036 
2037   // If the stack pointer moves and we don't have a base pointer, the
2038   // estimate logic doesn't work. The actual offsets might be larger when
2039   // we're constructing a call frame, or we might need to use negative
2040   // offsets from fp.
2041   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2042     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2043   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2044 
2045   // If we have a frame pointer, we assume arguments will be accessed
2046   // relative to the frame pointer. Check whether fp-relative accesses to
2047   // arguments require scavenging.
2048   //
2049   // We could do slightly better on Thumb1; in some cases, an sp-relative
2050   // offset would be legal even though an fp-relative offset is not.
2051   int MaxFPOffset = getMaxFPOffset(STI, *AFI);
2052   bool HasLargeArgumentList =
2053       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2054 
2055   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2056                          HasLargeArgumentList || HasNonSPFrameIndex;
2057   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2058                     << "; EstimatedStack: " << EstimatedStackSize
2059                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2060                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2061   if (BigFrameOffsets ||
2062       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2063     AFI->setHasStackFrame(true);
2064 
2065     if (HasFP) {
2066       SavedRegs.set(FramePtr);
2067       // If the frame pointer is required by the ABI, also spill LR so that we
2068       // emit a complete frame record.
2069       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
2070         SavedRegs.set(ARM::LR);
2071         LRSpilled = true;
2072         NumGPRSpills++;
2073         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2074         if (LRPos != UnspilledCS1GPRs.end())
2075           UnspilledCS1GPRs.erase(LRPos);
2076       }
2077       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2078       if (FPPos != UnspilledCS1GPRs.end())
2079         UnspilledCS1GPRs.erase(FPPos);
2080       NumGPRSpills++;
2081       if (FramePtr == ARM::R7)
2082         CS1Spilled = true;
2083     }
2084 
2085     // This is true when we inserted a spill for a callee-save GPR which is
2086     // not otherwise used by the function. This guaranteees it is possible
2087     // to scavenge a register to hold the address of a stack slot. On Thumb1,
2088     // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2089     // subtargets, this is any GPR, i.e. r4-r11 or lr.
2090     //
2091     // If we don't insert a spill, we instead allocate an emergency spill
2092     // slot, which can be used by scavenging to spill an arbitrary register.
2093     //
2094     // We currently don't try to figure out whether any specific instruction
2095     // requires scavening an additional register.
2096     bool ExtraCSSpill = false;
2097 
2098     if (AFI->isThumb1OnlyFunction()) {
2099       // For Thumb1-only targets, we need some low registers when we save and
2100       // restore the high registers (which aren't allocatable, but could be
2101       // used by inline assembly) because the push/pop instructions can not
2102       // access high registers. If necessary, we might need to push more low
2103       // registers to ensure that there is at least one free that can be used
2104       // for the saving & restoring, and preferably we should ensure that as
2105       // many as are needed are available so that fewer push/pop instructions
2106       // are required.
2107 
2108       // Low registers which are not currently pushed, but could be (r4-r7).
2109       SmallVector<unsigned, 4> AvailableRegs;
2110 
2111       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2112       // free.
2113       int EntryRegDeficit = 0;
2114       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2115         if (!MF.getRegInfo().isLiveIn(Reg)) {
2116           --EntryRegDeficit;
2117           LLVM_DEBUG(dbgs()
2118                      << printReg(Reg, TRI)
2119                      << " is unused argument register, EntryRegDeficit = "
2120                      << EntryRegDeficit << "\n");
2121         }
2122       }
2123 
2124       // Unused return registers can be clobbered in the epilogue for free.
2125       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2126       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2127                         << " return regs used, ExitRegDeficit = "
2128                         << ExitRegDeficit << "\n");
2129 
2130       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2131       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2132 
2133       // r4-r6 can be used in the prologue if they are pushed by the first push
2134       // instruction.
2135       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2136         if (SavedRegs.test(Reg)) {
2137           --RegDeficit;
2138           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2139                             << " is saved low register, RegDeficit = "
2140                             << RegDeficit << "\n");
2141         } else {
2142           AvailableRegs.push_back(Reg);
2143           LLVM_DEBUG(
2144               dbgs()
2145               << printReg(Reg, TRI)
2146               << " is non-saved low register, adding to AvailableRegs\n");
2147         }
2148       }
2149 
2150       // r7 can be used if it is not being used as the frame pointer.
2151       if (!HasFP) {
2152         if (SavedRegs.test(ARM::R7)) {
2153           --RegDeficit;
2154           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2155                             << RegDeficit << "\n");
2156         } else {
2157           AvailableRegs.push_back(ARM::R7);
2158           LLVM_DEBUG(
2159               dbgs()
2160               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2161         }
2162       }
2163 
2164       // Each of r8-r11 needs to be copied to a low register, then pushed.
2165       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2166         if (SavedRegs.test(Reg)) {
2167           ++RegDeficit;
2168           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2169                             << " is saved high register, RegDeficit = "
2170                             << RegDeficit << "\n");
2171         }
2172       }
2173 
2174       // LR can only be used by PUSH, not POP, and can't be used at all if the
2175       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2176       // are more limited at function entry than exit.
2177       if ((EntryRegDeficit > ExitRegDeficit) &&
2178           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2179             MF.getFrameInfo().isReturnAddressTaken())) {
2180         if (SavedRegs.test(ARM::LR)) {
2181           --RegDeficit;
2182           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2183                             << RegDeficit << "\n");
2184         } else {
2185           AvailableRegs.push_back(ARM::LR);
2186           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2187         }
2188       }
2189 
2190       // If there are more high registers that need pushing than low registers
2191       // available, push some more low registers so that we can use fewer push
2192       // instructions. This might not reduce RegDeficit all the way to zero,
2193       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2194       // need saving.
2195       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2196       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2197         unsigned Reg = AvailableRegs.pop_back_val();
2198         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2199                           << " to make up reg deficit\n");
2200         SavedRegs.set(Reg);
2201         NumGPRSpills++;
2202         CS1Spilled = true;
2203         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2204         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2205           ExtraCSSpill = true;
2206         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2207         if (Reg == ARM::LR)
2208           LRSpilled = true;
2209       }
2210       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2211                         << "\n");
2212     }
2213 
2214     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2215     // restore LR in that case.
2216     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2217 
2218     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2219     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2220     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2221       SavedRegs.set(ARM::LR);
2222       NumGPRSpills++;
2223       SmallVectorImpl<unsigned>::iterator LRPos;
2224       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2225       if (LRPos != UnspilledCS1GPRs.end())
2226         UnspilledCS1GPRs.erase(LRPos);
2227 
2228       ForceLRSpill = false;
2229       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2230           !AFI->isThumb1OnlyFunction())
2231         ExtraCSSpill = true;
2232     }
2233 
2234     // If stack and double are 8-byte aligned and we are spilling an odd number
2235     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2236     // the integer and double callee save areas.
2237     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2238     const Align TargetAlign = getStackAlign();
2239     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2240       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2241         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2242           unsigned Reg = UnspilledCS1GPRs[i];
2243           // Don't spill high register if the function is thumb.  In the case of
2244           // Windows on ARM, accept R11 (frame pointer)
2245           if (!AFI->isThumbFunction() ||
2246               (STI.isTargetWindows() && Reg == ARM::R11) ||
2247               isARMLowRegister(Reg) ||
2248               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2249             SavedRegs.set(Reg);
2250             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2251                               << " to make up alignment\n");
2252             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2253                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2254               ExtraCSSpill = true;
2255             break;
2256           }
2257         }
2258       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2259         unsigned Reg = UnspilledCS2GPRs.front();
2260         SavedRegs.set(Reg);
2261         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2262                           << " to make up alignment\n");
2263         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2264           ExtraCSSpill = true;
2265       }
2266     }
2267 
2268     // Estimate if we might need to scavenge a register at some point in order
2269     // to materialize a stack offset. If so, either spill one additional
2270     // callee-saved register or reserve a special spill slot to facilitate
2271     // register scavenging. Thumb1 needs a spill slot for stack pointer
2272     // adjustments also, even when the frame itself is small.
2273     if (BigFrameOffsets && !ExtraCSSpill) {
2274       // If any non-reserved CS register isn't spilled, just spill one or two
2275       // extra. That should take care of it!
2276       unsigned NumExtras = TargetAlign.value() / 4;
2277       SmallVector<unsigned, 2> Extras;
2278       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2279         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2280         if (!MRI.isReserved(Reg) &&
2281             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2282           Extras.push_back(Reg);
2283           NumExtras--;
2284         }
2285       }
2286       // For non-Thumb1 functions, also check for hi-reg CS registers
2287       if (!AFI->isThumb1OnlyFunction()) {
2288         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2289           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2290           if (!MRI.isReserved(Reg)) {
2291             Extras.push_back(Reg);
2292             NumExtras--;
2293           }
2294         }
2295       }
2296       if (NumExtras == 0) {
2297         for (unsigned Reg : Extras) {
2298           SavedRegs.set(Reg);
2299           if (!MRI.isPhysRegUsed(Reg))
2300             ExtraCSSpill = true;
2301         }
2302       }
2303       if (!ExtraCSSpill && RS) {
2304         // Reserve a slot closest to SP or frame pointer.
2305         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2306         const TargetRegisterClass &RC = ARM::GPRRegClass;
2307         unsigned Size = TRI->getSpillSize(RC);
2308         Align Alignment = TRI->getSpillAlign(RC);
2309         RS->addScavengingFrameIndex(
2310             MFI.CreateStackObject(Size, Alignment, false));
2311       }
2312     }
2313   }
2314 
2315   if (ForceLRSpill)
2316     SavedRegs.set(ARM::LR);
2317   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2318 }
2319 
2320 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2321                                       BitVector &SavedRegs) const {
2322   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2323 
2324   // If we have the "returned" parameter attribute which guarantees that we
2325   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2326   // record that fact for IPRA.
2327   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2328   if (AFI->getPreservesR0())
2329     SavedRegs.set(ARM::R0);
2330 }
2331 
2332 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2333     MachineFunction &MF, const TargetRegisterInfo *TRI,
2334     std::vector<CalleeSavedInfo> &CSI) const {
2335   // For CMSE entry functions, handle floating-point context as if it was a
2336   // callee-saved register.
2337   if (STI.hasV8_1MMainlineOps() &&
2338       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2339     CSI.emplace_back(ARM::FPCXTNS);
2340     CSI.back().setRestored(false);
2341   }
2342 
2343   // For functions, which sign their return address, upon function entry, the
2344   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2345   // in this case.
2346   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2347   if (AFI.shouldSignReturnAddress()) {
2348     // The order of register must match the order we push them, because the
2349     // PEI assigns frame indices in that order. When compiling for return
2350     // address sign and authenication, we use split push, therefore the orders
2351     // we want are:
2352     // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
2353     CSI.insert(find_if(CSI,
2354                        [=](const auto &CS) {
2355                          Register Reg = CS.getReg();
2356                          return Reg == ARM::R10 || Reg == ARM::R11 ||
2357                                 Reg == ARM::R8 || Reg == ARM::R9 ||
2358                                 ARM::DPRRegClass.contains(Reg);
2359                        }),
2360                CalleeSavedInfo(ARM::R12));
2361   }
2362 
2363   return false;
2364 }
2365 
2366 const TargetFrameLowering::SpillSlot *
2367 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2368   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2369   NumEntries = array_lengthof(FixedSpillOffsets);
2370   return FixedSpillOffsets;
2371 }
2372 
2373 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2374     MachineFunction &MF, MachineBasicBlock &MBB,
2375     MachineBasicBlock::iterator I) const {
2376   const ARMBaseInstrInfo &TII =
2377       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2378   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2379   bool isARM = !AFI->isThumbFunction();
2380   DebugLoc dl = I->getDebugLoc();
2381   unsigned Opc = I->getOpcode();
2382   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2383   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2384 
2385   assert(!AFI->isThumb1OnlyFunction() &&
2386          "This eliminateCallFramePseudoInstr does not support Thumb1!");
2387 
2388   int PIdx = I->findFirstPredOperandIdx();
2389   ARMCC::CondCodes Pred = (PIdx == -1)
2390                               ? ARMCC::AL
2391                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2392   unsigned PredReg = TII.getFramePred(*I);
2393 
2394   if (!hasReservedCallFrame(MF)) {
2395     // Bail early if the callee is expected to do the adjustment.
2396     if (IsDestroy && CalleePopAmount != -1U)
2397       return MBB.erase(I);
2398 
2399     // If we have alloca, convert as follows:
2400     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2401     // ADJCALLSTACKUP   -> add, sp, sp, amount
2402     unsigned Amount = TII.getFrameSize(*I);
2403     if (Amount != 0) {
2404       // We need to keep the stack aligned properly.  To do this, we round the
2405       // amount of space needed for the outgoing arguments up to the next
2406       // alignment boundary.
2407       Amount = alignSPAdjust(Amount);
2408 
2409       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2410         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2411                      Pred, PredReg);
2412       } else {
2413         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2414         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2415                      Pred, PredReg);
2416       }
2417     }
2418   } else if (CalleePopAmount != -1U) {
2419     // If the calling convention demands that the callee pops arguments from the
2420     // stack, we want to add it back if we have a reserved call frame.
2421     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2422                  MachineInstr::NoFlags, Pred, PredReg);
2423   }
2424   return MBB.erase(I);
2425 }
2426 
2427 /// Get the minimum constant for ARM that is greater than or equal to the
2428 /// argument. In ARM, constants can have any value that can be produced by
2429 /// rotating an 8-bit value to the right by an even number of bits within a
2430 /// 32-bit word.
2431 static uint32_t alignToARMConstant(uint32_t Value) {
2432   unsigned Shifted = 0;
2433 
2434   if (Value == 0)
2435       return 0;
2436 
2437   while (!(Value & 0xC0000000)) {
2438       Value = Value << 2;
2439       Shifted += 2;
2440   }
2441 
2442   bool Carry = (Value & 0x00FFFFFF);
2443   Value = ((Value & 0xFF000000) >> 24) + Carry;
2444 
2445   if (Value & 0x0000100)
2446       Value = Value & 0x000001FC;
2447 
2448   if (Shifted > 24)
2449       Value = Value >> (Shifted - 24);
2450   else
2451       Value = Value << (24 - Shifted);
2452 
2453   return Value;
2454 }
2455 
2456 // The stack limit in the TCB is set to this many bytes above the actual
2457 // stack limit.
2458 static const uint64_t kSplitStackAvailable = 256;
2459 
2460 // Adjust the function prologue to enable split stacks. This currently only
2461 // supports android and linux.
2462 //
2463 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2464 // must be well defined in order to allow for consistent implementations of the
2465 // __morestack helper function. The ABI is also not a normal ABI in that it
2466 // doesn't follow the normal calling conventions because this allows the
2467 // prologue of each function to be optimized further.
2468 //
2469 // Currently, the ABI looks like (when calling __morestack)
2470 //
2471 //  * r4 holds the minimum stack size requested for this function call
2472 //  * r5 holds the stack size of the arguments to the function
2473 //  * the beginning of the function is 3 instructions after the call to
2474 //    __morestack
2475 //
2476 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2477 // place the arguments on to the new stack, and the 3-instruction knowledge to
2478 // jump directly to the body of the function when working on the new stack.
2479 //
2480 // An old (and possibly no longer compatible) implementation of __morestack for
2481 // ARM can be found at [1].
2482 //
2483 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2484 void ARMFrameLowering::adjustForSegmentedStacks(
2485     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2486   unsigned Opcode;
2487   unsigned CFIIndex;
2488   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2489   bool Thumb = ST->isThumb();
2490   bool Thumb2 = ST->isThumb2();
2491 
2492   // Sadly, this currently doesn't support varargs, platforms other than
2493   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2494   if (MF.getFunction().isVarArg())
2495     report_fatal_error("Segmented stacks do not support vararg functions.");
2496   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2497     report_fatal_error("Segmented stacks not supported on this platform.");
2498 
2499   MachineFrameInfo &MFI = MF.getFrameInfo();
2500   MachineModuleInfo &MMI = MF.getMMI();
2501   MCContext &Context = MMI.getContext();
2502   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2503   const ARMBaseInstrInfo &TII =
2504       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2505   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2506   DebugLoc DL;
2507 
2508   if (!MFI.needsSplitStackProlog())
2509     return;
2510 
2511   uint64_t StackSize = MFI.getStackSize();
2512 
2513   // Use R4 and R5 as scratch registers.
2514   // We save R4 and R5 before use and restore them before leaving the function.
2515   unsigned ScratchReg0 = ARM::R4;
2516   unsigned ScratchReg1 = ARM::R5;
2517   uint64_t AlignedStackSize;
2518 
2519   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2520   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2521   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2522   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2523   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2524 
2525   // Grab everything that reaches PrologueMBB to update there liveness as well.
2526   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2527   SmallVector<MachineBasicBlock *, 2> WalkList;
2528   WalkList.push_back(&PrologueMBB);
2529 
2530   do {
2531     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2532     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2533       if (BeforePrologueRegion.insert(PredBB).second)
2534         WalkList.push_back(PredBB);
2535     }
2536   } while (!WalkList.empty());
2537 
2538   // The order in that list is important.
2539   // The blocks will all be inserted before PrologueMBB using that order.
2540   // Therefore the block that should appear first in the CFG should appear
2541   // first in the list.
2542   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2543                                       PostStackMBB};
2544 
2545   for (MachineBasicBlock *B : AddedBlocks)
2546     BeforePrologueRegion.insert(B);
2547 
2548   for (const auto &LI : PrologueMBB.liveins()) {
2549     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2550       PredBB->addLiveIn(LI);
2551   }
2552 
2553   // Remove the newly added blocks from the list, since we know
2554   // we do not have to do the following updates for them.
2555   for (MachineBasicBlock *B : AddedBlocks) {
2556     BeforePrologueRegion.erase(B);
2557     MF.insert(PrologueMBB.getIterator(), B);
2558   }
2559 
2560   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2561     // Make sure the LiveIns are still sorted and unique.
2562     MBB->sortUniqueLiveIns();
2563     // Replace the edges to PrologueMBB by edges to the sequences
2564     // we are about to add, but only update for immediate predecessors.
2565     if (MBB->isSuccessor(&PrologueMBB))
2566       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2567   }
2568 
2569   // The required stack size that is aligned to ARM constant criterion.
2570   AlignedStackSize = alignToARMConstant(StackSize);
2571 
2572   // When the frame size is less than 256 we just compare the stack
2573   // boundary directly to the value of the stack pointer, per gcc.
2574   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2575 
2576   // We will use two of the callee save registers as scratch registers so we
2577   // need to save those registers onto the stack.
2578   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2579   // requested and arguments for __morestack().
2580   // SR0: Scratch Register #0
2581   // SR1: Scratch Register #1
2582   // push {SR0, SR1}
2583   if (Thumb) {
2584     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2585         .add(predOps(ARMCC::AL))
2586         .addReg(ScratchReg0)
2587         .addReg(ScratchReg1);
2588   } else {
2589     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2590         .addReg(ARM::SP, RegState::Define)
2591         .addReg(ARM::SP)
2592         .add(predOps(ARMCC::AL))
2593         .addReg(ScratchReg0)
2594         .addReg(ScratchReg1);
2595   }
2596 
2597   // Emit the relevant DWARF information about the change in stack pointer as
2598   // well as where to find both r4 and r5 (the callee-save registers)
2599   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2600   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2601       .addCFIIndex(CFIIndex);
2602   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2603       nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2604   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2605       .addCFIIndex(CFIIndex);
2606   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2607       nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2608   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2609       .addCFIIndex(CFIIndex);
2610 
2611   // mov SR1, sp
2612   if (Thumb) {
2613     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2614         .addReg(ARM::SP)
2615         .add(predOps(ARMCC::AL));
2616   } else if (CompareStackPointer) {
2617     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2618         .addReg(ARM::SP)
2619         .add(predOps(ARMCC::AL))
2620         .add(condCodeOp());
2621   }
2622 
2623   // sub SR1, sp, #StackSize
2624   if (!CompareStackPointer && Thumb) {
2625     if (AlignedStackSize < 256) {
2626       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2627           .add(condCodeOp())
2628           .addReg(ScratchReg1)
2629           .addImm(AlignedStackSize)
2630           .add(predOps(ARMCC::AL));
2631     } else {
2632       if (Thumb2) {
2633         BuildMI(McrMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
2634             .addImm(AlignedStackSize);
2635       } else {
2636         auto MBBI = McrMBB->end();
2637         auto RegInfo = STI.getRegisterInfo();
2638         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
2639                                    AlignedStackSize);
2640       }
2641       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
2642           .add(condCodeOp())
2643           .addReg(ScratchReg1)
2644           .addReg(ScratchReg0)
2645           .add(predOps(ARMCC::AL));
2646     }
2647   } else if (!CompareStackPointer) {
2648     if (AlignedStackSize < 256) {
2649       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2650           .addReg(ARM::SP)
2651           .addImm(AlignedStackSize)
2652           .add(predOps(ARMCC::AL))
2653           .add(condCodeOp());
2654     } else {
2655       auto MBBI = McrMBB->end();
2656       auto RegInfo = STI.getRegisterInfo();
2657       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
2658                                  AlignedStackSize);
2659       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
2660           .addReg(ARM::SP)
2661           .addReg(ScratchReg0)
2662           .add(predOps(ARMCC::AL))
2663           .add(condCodeOp());
2664     }
2665   }
2666 
2667   if (Thumb && ST->isThumb1Only()) {
2668     unsigned PCLabelId = ARMFI->createPICLabelUId();
2669     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2670         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2671     MachineConstantPool *MCP = MF.getConstantPool();
2672     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
2673 
2674     // ldr SR0, [pc, offset(STACK_LIMIT)]
2675     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2676         .addConstantPoolIndex(CPI)
2677         .add(predOps(ARMCC::AL));
2678 
2679     // ldr SR0, [SR0]
2680     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2681         .addReg(ScratchReg0)
2682         .addImm(0)
2683         .add(predOps(ARMCC::AL));
2684   } else {
2685     // Get TLS base address from the coprocessor
2686     // mrc p15, #0, SR0, c13, c0, #3
2687     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
2688             ScratchReg0)
2689         .addImm(15)
2690         .addImm(0)
2691         .addImm(13)
2692         .addImm(0)
2693         .addImm(3)
2694         .add(predOps(ARMCC::AL));
2695 
2696     // Use the last tls slot on android and a private field of the TCP on linux.
2697     assert(ST->isTargetAndroid() || ST->isTargetLinux());
2698     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2699 
2700     // Get the stack limit from the right offset
2701     // ldr SR0, [sr0, #4 * TlsOffset]
2702     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
2703             ScratchReg0)
2704         .addReg(ScratchReg0)
2705         .addImm(4 * TlsOffset)
2706         .add(predOps(ARMCC::AL));
2707   }
2708 
2709   // Compare stack limit with stack size requested.
2710   // cmp SR0, SR1
2711   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2712   BuildMI(GetMBB, DL, TII.get(Opcode))
2713       .addReg(ScratchReg0)
2714       .addReg(ScratchReg1)
2715       .add(predOps(ARMCC::AL));
2716 
2717   // This jump is taken if StackLimit < SP - stack required.
2718   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2719   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2720        .addImm(ARMCC::LO)
2721        .addReg(ARM::CPSR);
2722 
2723 
2724   // Calling __morestack(StackSize, Size of stack arguments).
2725   // __morestack knows that the stack size requested is in SR0(r4)
2726   // and amount size of stack arguments is in SR1(r5).
2727 
2728   // Pass first argument for the __morestack by Scratch Register #0.
2729   //   The amount size of stack required
2730   if (Thumb) {
2731     if (AlignedStackSize < 256) {
2732       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2733           .add(condCodeOp())
2734           .addImm(AlignedStackSize)
2735           .add(predOps(ARMCC::AL));
2736     } else {
2737       if (Thumb2) {
2738         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0)
2739             .addImm(AlignedStackSize);
2740       } else {
2741         auto MBBI = AllocMBB->end();
2742         auto RegInfo = STI.getRegisterInfo();
2743         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
2744                                    AlignedStackSize);
2745       }
2746     }
2747   } else {
2748     if (AlignedStackSize < 256) {
2749       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2750           .addImm(AlignedStackSize)
2751           .add(predOps(ARMCC::AL))
2752           .add(condCodeOp());
2753     } else {
2754       auto MBBI = AllocMBB->end();
2755       auto RegInfo = STI.getRegisterInfo();
2756       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
2757                                  AlignedStackSize);
2758     }
2759   }
2760 
2761   // Pass second argument for the __morestack by Scratch Register #1.
2762   //   The amount size of stack consumed to save function arguments.
2763   if (Thumb) {
2764     if (ARMFI->getArgumentStackSize() < 256) {
2765       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2766           .add(condCodeOp())
2767           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2768           .add(predOps(ARMCC::AL));
2769     } else {
2770       if (Thumb2) {
2771         BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg1)
2772             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
2773       } else {
2774         auto MBBI = AllocMBB->end();
2775         auto RegInfo = STI.getRegisterInfo();
2776         RegInfo->emitLoadConstPool(
2777             *AllocMBB, MBBI, DL, ScratchReg1, 0,
2778             alignToARMConstant(ARMFI->getArgumentStackSize()));
2779       }
2780     }
2781   } else {
2782     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
2783       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2784           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2785           .add(predOps(ARMCC::AL))
2786           .add(condCodeOp());
2787     } else {
2788       auto MBBI = AllocMBB->end();
2789       auto RegInfo = STI.getRegisterInfo();
2790       RegInfo->emitLoadConstPool(
2791           *AllocMBB, MBBI, DL, ScratchReg1, 0,
2792           alignToARMConstant(ARMFI->getArgumentStackSize()));
2793     }
2794   }
2795 
2796   // push {lr} - Save return address of this function.
2797   if (Thumb) {
2798     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2799         .add(predOps(ARMCC::AL))
2800         .addReg(ARM::LR);
2801   } else {
2802     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2803         .addReg(ARM::SP, RegState::Define)
2804         .addReg(ARM::SP)
2805         .add(predOps(ARMCC::AL))
2806         .addReg(ARM::LR);
2807   }
2808 
2809   // Emit the DWARF info about the change in stack as well as where to find the
2810   // previous link register
2811   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
2812   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2813       .addCFIIndex(CFIIndex);
2814   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2815         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2816   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2817       .addCFIIndex(CFIIndex);
2818 
2819   // Call __morestack().
2820   if (Thumb) {
2821     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2822         .add(predOps(ARMCC::AL))
2823         .addExternalSymbol("__morestack");
2824   } else {
2825     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2826         .addExternalSymbol("__morestack");
2827   }
2828 
2829   // pop {lr} - Restore return address of this original function.
2830   if (Thumb) {
2831     if (ST->isThumb1Only()) {
2832       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2833           .add(predOps(ARMCC::AL))
2834           .addReg(ScratchReg0);
2835       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2836           .addReg(ScratchReg0)
2837           .add(predOps(ARMCC::AL));
2838     } else {
2839       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2840           .addReg(ARM::LR, RegState::Define)
2841           .addReg(ARM::SP, RegState::Define)
2842           .addReg(ARM::SP)
2843           .addImm(4)
2844           .add(predOps(ARMCC::AL));
2845     }
2846   } else {
2847     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2848         .addReg(ARM::SP, RegState::Define)
2849         .addReg(ARM::SP)
2850         .add(predOps(ARMCC::AL))
2851         .addReg(ARM::LR);
2852   }
2853 
2854   // Restore SR0 and SR1 in case of __morestack() was called.
2855   // __morestack() will skip PostStackMBB block so we need to restore
2856   // scratch registers from here.
2857   // pop {SR0, SR1}
2858   if (Thumb) {
2859     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2860         .add(predOps(ARMCC::AL))
2861         .addReg(ScratchReg0)
2862         .addReg(ScratchReg1);
2863   } else {
2864     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2865         .addReg(ARM::SP, RegState::Define)
2866         .addReg(ARM::SP)
2867         .add(predOps(ARMCC::AL))
2868         .addReg(ScratchReg0)
2869         .addReg(ScratchReg1);
2870   }
2871 
2872   // Update the CFA offset now that we've popped
2873   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2874   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2875       .addCFIIndex(CFIIndex);
2876 
2877   // Return from this function.
2878   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2879 
2880   // Restore SR0 and SR1 in case of __morestack() was not called.
2881   // pop {SR0, SR1}
2882   if (Thumb) {
2883     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2884         .add(predOps(ARMCC::AL))
2885         .addReg(ScratchReg0)
2886         .addReg(ScratchReg1);
2887   } else {
2888     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2889         .addReg(ARM::SP, RegState::Define)
2890         .addReg(ARM::SP)
2891         .add(predOps(ARMCC::AL))
2892         .addReg(ScratchReg0)
2893         .addReg(ScratchReg1);
2894   }
2895 
2896   // Update the CFA offset now that we've popped
2897   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2898   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2899       .addCFIIndex(CFIIndex);
2900 
2901   // Tell debuggers that r4 and r5 are now the same as they were in the
2902   // previous function, that they're the "Same Value".
2903   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2904       nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2905   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2906       .addCFIIndex(CFIIndex);
2907   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2908       nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2909   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2910       .addCFIIndex(CFIIndex);
2911 
2912   // Organizing MBB lists
2913   PostStackMBB->addSuccessor(&PrologueMBB);
2914 
2915   AllocMBB->addSuccessor(PostStackMBB);
2916 
2917   GetMBB->addSuccessor(PostStackMBB);
2918   GetMBB->addSuccessor(AllocMBB);
2919 
2920   McrMBB->addSuccessor(GetMBB);
2921 
2922   PrevStackMBB->addSuccessor(McrMBB);
2923 
2924 #ifdef EXPENSIVE_CHECKS
2925   MF.verify();
2926 #endif
2927 }
2928