1 //===-- ARMFrameLowering.cpp - ARM Frame Information ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the ARM implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMFrameLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "MCTargetDesc/ARMAddressingModes.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/RegisterScavenging.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Target/TargetOptions.h"
32 
33 #define DEBUG_TYPE "arm-frame-lowering"
34 
35 using namespace llvm;
36 
37 static cl::opt<bool>
38 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
39                      cl::desc("Align ARM NEON spills in prolog and epilog"));
40 
41 static MachineBasicBlock::iterator
42 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
43                         unsigned NumAlignedDPRCS2Regs);
44 
45 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
46     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, 4),
47       STI(sti) {}
48 
49 bool ARMFrameLowering::noFramePointerElim(const MachineFunction &MF) const {
50   // iOS always has a FP for backtracking, force other targets to keep their FP
51   // when doing FastISel. The emitted code is currently superior, and in cases
52   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
53   return TargetFrameLowering::noFramePointerElim(MF) ||
54          MF.getSubtarget<ARMSubtarget>().useFastISel();
55 }
56 
57 /// hasFP - Return true if the specified function should have a dedicated frame
58 /// pointer register.  This is true if the function has variable sized allocas
59 /// or if frame pointer elimination is disabled.
60 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
61   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
62   const MachineFrameInfo &MFI = MF.getFrameInfo();
63 
64   // ABI-required frame pointer.
65   if (MF.getTarget().Options.DisableFramePointerElim(MF))
66     return true;
67 
68   // Frame pointer required for use within this function.
69   return (RegInfo->needsStackRealignment(MF) ||
70           MFI.hasVarSizedObjects() ||
71           MFI.isFrameAddressTaken());
72 }
73 
74 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
75 /// not required, we reserve argument space for call sites in the function
76 /// immediately on entry to the current function.  This eliminates the need for
77 /// add/sub sp brackets around call sites.  Returns true if the call frame is
78 /// included as part of the stack frame.
79 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
80   const MachineFrameInfo &MFI = MF.getFrameInfo();
81   unsigned CFSize = MFI.getMaxCallFrameSize();
82   // It's not always a good idea to include the call frame as part of the
83   // stack frame. ARM (especially Thumb) has small immediate offset to
84   // address the stack frame. So a large call frame can cause poor codegen
85   // and may even makes it impossible to scavenge a register.
86   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
87     return false;
88 
89   return !MFI.hasVarSizedObjects();
90 }
91 
92 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
93 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
94 /// is not sufficient here since we still may reference some objects via SP
95 /// even when FP is available in Thumb2 mode.
96 bool
97 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
98   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
99 }
100 
101 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII,
102                         const MCPhysReg *CSRegs) {
103   // Integer spill area is handled with "pop".
104   if (isPopOpcode(MI.getOpcode())) {
105     // The first two operands are predicates. The last two are
106     // imp-def and imp-use of SP. Check everything in between.
107     for (int i = 5, e = MI.getNumOperands(); i != e; ++i)
108       if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs))
109         return false;
110     return true;
111   }
112   if ((MI.getOpcode() == ARM::LDR_POST_IMM ||
113        MI.getOpcode() == ARM::LDR_POST_REG ||
114        MI.getOpcode() == ARM::t2LDR_POST) &&
115       isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) &&
116       MI.getOperand(1).getReg() == ARM::SP)
117     return true;
118 
119   return false;
120 }
121 
122 static void emitRegPlusImmediate(
123     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
124     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
125     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
126     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
127   if (isARM)
128     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
129                             Pred, PredReg, TII, MIFlags);
130   else
131     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
132                            Pred, PredReg, TII, MIFlags);
133 }
134 
135 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
136                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
137                          const ARMBaseInstrInfo &TII, int NumBytes,
138                          unsigned MIFlags = MachineInstr::NoFlags,
139                          ARMCC::CondCodes Pred = ARMCC::AL,
140                          unsigned PredReg = 0) {
141   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
142                        MIFlags, Pred, PredReg);
143 }
144 
145 static int sizeOfSPAdjustment(const MachineInstr &MI) {
146   int RegSize;
147   switch (MI.getOpcode()) {
148   case ARM::VSTMDDB_UPD:
149     RegSize = 8;
150     break;
151   case ARM::STMDB_UPD:
152   case ARM::t2STMDB_UPD:
153     RegSize = 4;
154     break;
155   case ARM::t2STR_PRE:
156   case ARM::STR_PRE_IMM:
157     return 4;
158   default:
159     llvm_unreachable("Unknown push or pop like instruction");
160   }
161 
162   int count = 0;
163   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
164   // pred) so the list starts at 4.
165   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
166     count += RegSize;
167   return count;
168 }
169 
170 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
171                                       size_t StackSizeInBytes) {
172   const MachineFrameInfo &MFI = MF.getFrameInfo();
173   const Function *F = MF.getFunction();
174   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
175   if (F->hasFnAttribute("stack-probe-size"))
176     F->getFnAttribute("stack-probe-size")
177         .getValueAsString()
178         .getAsInteger(0, StackProbeSize);
179   return StackSizeInBytes >= StackProbeSize;
180 }
181 
182 namespace {
183 struct StackAdjustingInsts {
184   struct InstInfo {
185     MachineBasicBlock::iterator I;
186     unsigned SPAdjust;
187     bool BeforeFPSet;
188   };
189 
190   SmallVector<InstInfo, 4> Insts;
191 
192   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
193                bool BeforeFPSet = false) {
194     InstInfo Info = {I, SPAdjust, BeforeFPSet};
195     Insts.push_back(Info);
196   }
197 
198   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
199     auto Info = find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
200     assert(Info != Insts.end() && "invalid sp adjusting instruction");
201     Info->SPAdjust += ExtraBytes;
202   }
203 
204   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
205                          const ARMBaseInstrInfo &TII, bool HasFP) {
206     MachineFunction &MF = *MBB.getParent();
207     unsigned CFAOffset = 0;
208     for (auto &Info : Insts) {
209       if (HasFP && !Info.BeforeFPSet)
210         return;
211 
212       CFAOffset -= Info.SPAdjust;
213       unsigned CFIIndex = MF.addFrameInst(
214           MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset));
215       BuildMI(MBB, std::next(Info.I), dl,
216               TII.get(TargetOpcode::CFI_INSTRUCTION))
217               .addCFIIndex(CFIIndex)
218               .setMIFlags(MachineInstr::FrameSetup);
219     }
220   }
221 };
222 }
223 
224 /// Emit an instruction sequence that will align the address in
225 /// register Reg by zero-ing out the lower bits.  For versions of the
226 /// architecture that support Neon, this must be done in a single
227 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
228 /// single instruction. That function only gets called when optimizing
229 /// spilling of D registers on a core with the Neon instruction set
230 /// present.
231 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
232                                      const TargetInstrInfo &TII,
233                                      MachineBasicBlock &MBB,
234                                      MachineBasicBlock::iterator MBBI,
235                                      const DebugLoc &DL, const unsigned Reg,
236                                      const unsigned Alignment,
237                                      const bool MustBeSingleInstruction) {
238   const ARMSubtarget &AST =
239       static_cast<const ARMSubtarget &>(MF.getSubtarget());
240   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
241   const unsigned AlignMask = Alignment - 1;
242   const unsigned NrBitsToZero = countTrailingZeros(Alignment);
243   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
244   if (!AFI->isThumbFunction()) {
245     // if the BFC instruction is available, use that to zero the lower
246     // bits:
247     //   bfc Reg, #0, log2(Alignment)
248     // otherwise use BIC, if the mask to zero the required number of bits
249     // can be encoded in the bic immediate field
250     //   bic Reg, Reg, Alignment-1
251     // otherwise, emit
252     //   lsr Reg, Reg, log2(Alignment)
253     //   lsl Reg, Reg, log2(Alignment)
254     if (CanUseBFC) {
255       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
256           .addReg(Reg, RegState::Kill)
257           .addImm(~AlignMask)
258           .add(predOps(ARMCC::AL));
259     } else if (AlignMask <= 255) {
260       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
261           .addReg(Reg, RegState::Kill)
262           .addImm(AlignMask)
263           .add(predOps(ARMCC::AL))
264           .add(condCodeOp());
265     } else {
266       assert(!MustBeSingleInstruction &&
267              "Shouldn't call emitAligningInstructions demanding a single "
268              "instruction to be emitted for large stack alignment for a target "
269              "without BFC.");
270       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
271           .addReg(Reg, RegState::Kill)
272           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
273           .add(predOps(ARMCC::AL))
274           .add(condCodeOp());
275       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
276           .addReg(Reg, RegState::Kill)
277           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
278           .add(predOps(ARMCC::AL))
279           .add(condCodeOp());
280     }
281   } else {
282     // Since this is only reached for Thumb-2 targets, the BFC instruction
283     // should always be available.
284     assert(CanUseBFC);
285     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
286         .addReg(Reg, RegState::Kill)
287         .addImm(~AlignMask)
288         .add(predOps(ARMCC::AL));
289   }
290 }
291 
292 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
293                                     MachineBasicBlock &MBB) const {
294   MachineBasicBlock::iterator MBBI = MBB.begin();
295   MachineFrameInfo  &MFI = MF.getFrameInfo();
296   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
297   MachineModuleInfo &MMI = MF.getMMI();
298   MCContext &Context = MMI.getContext();
299   const TargetMachine &TM = MF.getTarget();
300   const MCRegisterInfo *MRI = Context.getRegisterInfo();
301   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
302   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
303   assert(!AFI->isThumb1OnlyFunction() &&
304          "This emitPrologue does not support Thumb1!");
305   bool isARM = !AFI->isThumbFunction();
306   unsigned Align = STI.getFrameLowering()->getStackAlignment();
307   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
308   unsigned NumBytes = MFI.getStackSize();
309   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
310 
311   // Debug location must be unknown since the first debug location is used
312   // to determine the end of the prologue.
313   DebugLoc dl;
314 
315   unsigned FramePtr = RegInfo->getFrameRegister(MF);
316 
317   // Determine the sizes of each callee-save spill areas and record which frame
318   // belongs to which callee-save spill areas.
319   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
320   int FramePtrSpillFI = 0;
321   int D8SpillFI = 0;
322 
323   // All calls are tail calls in GHC calling conv, and functions have no
324   // prologue/epilogue.
325   if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
326     return;
327 
328   StackAdjustingInsts DefCFAOffsetCandidates;
329   bool HasFP = hasFP(MF);
330 
331   // Allocate the vararg register save area.
332   if (ArgRegsSaveSize) {
333     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
334                  MachineInstr::FrameSetup);
335     DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
336   }
337 
338   if (!AFI->hasStackFrame() &&
339       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
340     if (NumBytes - ArgRegsSaveSize != 0) {
341       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
342                    MachineInstr::FrameSetup);
343       DefCFAOffsetCandidates.addInst(std::prev(MBBI),
344                                      NumBytes - ArgRegsSaveSize, true);
345     }
346     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
347     return;
348   }
349 
350   // Determine spill area sizes.
351   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
352     unsigned Reg = CSI[i].getReg();
353     int FI = CSI[i].getFrameIdx();
354     switch (Reg) {
355     case ARM::R8:
356     case ARM::R9:
357     case ARM::R10:
358     case ARM::R11:
359     case ARM::R12:
360       if (STI.splitFramePushPop(MF)) {
361         GPRCS2Size += 4;
362         break;
363       }
364       LLVM_FALLTHROUGH;
365     case ARM::R0:
366     case ARM::R1:
367     case ARM::R2:
368     case ARM::R3:
369     case ARM::R4:
370     case ARM::R5:
371     case ARM::R6:
372     case ARM::R7:
373     case ARM::LR:
374       if (Reg == FramePtr)
375         FramePtrSpillFI = FI;
376       GPRCS1Size += 4;
377       break;
378     default:
379       // This is a DPR. Exclude the aligned DPRCS2 spills.
380       if (Reg == ARM::D8)
381         D8SpillFI = FI;
382       if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
383         DPRCSSize += 8;
384     }
385   }
386 
387   // Move past area 1.
388   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
389   if (GPRCS1Size > 0) {
390     GPRCS1Push = LastPush = MBBI++;
391     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
392   }
393 
394   // Determine starting offsets of spill areas.
395   unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size;
396   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
397   unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U;
398   unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign;
399   unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
400   int FramePtrOffsetInPush = 0;
401   if (HasFP) {
402     FramePtrOffsetInPush =
403         MFI.getObjectOffset(FramePtrSpillFI) + ArgRegsSaveSize;
404     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
405                                 NumBytes);
406   }
407   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
408   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
409   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
410 
411   // Move past area 2.
412   if (GPRCS2Size > 0) {
413     GPRCS2Push = LastPush = MBBI++;
414     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
415   }
416 
417   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
418   // .cfi_offset operations will reflect that.
419   if (DPRGapSize) {
420     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
421     if (LastPush != MBB.end() &&
422         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
423       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
424     else {
425       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
426                    MachineInstr::FrameSetup);
427       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
428     }
429   }
430 
431   // Move past area 3.
432   if (DPRCSSize > 0) {
433     // Since vpush register list cannot have gaps, there may be multiple vpush
434     // instructions in the prologue.
435     while (MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
436       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
437       LastPush = MBBI++;
438     }
439   }
440 
441   // Move past the aligned DPRCS2 area.
442   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
443     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
444     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
445     // leaves the stack pointer pointing to the DPRCS2 area.
446     //
447     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
448     NumBytes += MFI.getObjectOffset(D8SpillFI);
449   } else
450     NumBytes = DPRCSOffset;
451 
452   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
453     uint32_t NumWords = NumBytes >> 2;
454 
455     if (NumWords < 65536)
456       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
457           .addImm(NumWords)
458           .setMIFlags(MachineInstr::FrameSetup)
459           .add(predOps(ARMCC::AL));
460     else
461       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
462         .addImm(NumWords)
463         .setMIFlags(MachineInstr::FrameSetup);
464 
465     switch (TM.getCodeModel()) {
466     case CodeModel::Small:
467     case CodeModel::Medium:
468     case CodeModel::Default:
469     case CodeModel::Kernel:
470       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
471           .add(predOps(ARMCC::AL))
472           .addExternalSymbol("__chkstk")
473           .addReg(ARM::R4, RegState::Implicit)
474           .setMIFlags(MachineInstr::FrameSetup);
475       break;
476     case CodeModel::Large:
477     case CodeModel::JITDefault:
478       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
479         .addExternalSymbol("__chkstk")
480         .setMIFlags(MachineInstr::FrameSetup);
481 
482       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
483           .add(predOps(ARMCC::AL))
484           .addReg(ARM::R12, RegState::Kill)
485           .addReg(ARM::R4, RegState::Implicit)
486           .setMIFlags(MachineInstr::FrameSetup);
487       break;
488     }
489 
490     BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
491         .addReg(ARM::SP, RegState::Kill)
492         .addReg(ARM::R4, RegState::Kill)
493         .setMIFlags(MachineInstr::FrameSetup)
494         .add(predOps(ARMCC::AL))
495         .add(condCodeOp());
496     NumBytes = 0;
497   }
498 
499   if (NumBytes) {
500     // Adjust SP after all the callee-save spills.
501     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
502         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
503       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
504     else {
505       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
506                    MachineInstr::FrameSetup);
507       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
508     }
509 
510     if (HasFP && isARM)
511       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
512       // Note it's not safe to do this in Thumb2 mode because it would have
513       // taken two instructions:
514       // mov sp, r7
515       // sub sp, #24
516       // If an interrupt is taken between the two instructions, then sp is in
517       // an inconsistent state (pointing to the middle of callee-saved area).
518       // The interrupt handler can end up clobbering the registers.
519       AFI->setShouldRestoreSPFromFP(true);
520   }
521 
522   // Set FP to point to the stack slot that contains the previous FP.
523   // For iOS, FP is R7, which has now been stored in spill area 1.
524   // Otherwise, if this is not iOS, all the callee-saved registers go
525   // into spill area 1, including the FP in R11.  In either case, it
526   // is in area one and the adjustment needs to take place just after
527   // that push.
528   if (HasFP) {
529     MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
530     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
531     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
532                          dl, TII, FramePtr, ARM::SP,
533                          PushSize + FramePtrOffsetInPush,
534                          MachineInstr::FrameSetup);
535     if (FramePtrOffsetInPush + PushSize != 0) {
536       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa(
537           nullptr, MRI->getDwarfRegNum(FramePtr, true),
538           -(ArgRegsSaveSize - FramePtrOffsetInPush)));
539       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
540           .addCFIIndex(CFIIndex)
541           .setMIFlags(MachineInstr::FrameSetup);
542     } else {
543       unsigned CFIIndex =
544           MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
545               nullptr, MRI->getDwarfRegNum(FramePtr, true)));
546       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
547           .addCFIIndex(CFIIndex)
548           .setMIFlags(MachineInstr::FrameSetup);
549     }
550   }
551 
552   // Now that the prologue's actual instructions are finalised, we can insert
553   // the necessary DWARF cf instructions to describe the situation. Start by
554   // recording where each register ended up:
555   if (GPRCS1Size > 0) {
556     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
557     int CFIIndex;
558     for (const auto &Entry : CSI) {
559       unsigned Reg = Entry.getReg();
560       int FI = Entry.getFrameIdx();
561       switch (Reg) {
562       case ARM::R8:
563       case ARM::R9:
564       case ARM::R10:
565       case ARM::R11:
566       case ARM::R12:
567         if (STI.splitFramePushPop(MF))
568           break;
569         LLVM_FALLTHROUGH;
570       case ARM::R0:
571       case ARM::R1:
572       case ARM::R2:
573       case ARM::R3:
574       case ARM::R4:
575       case ARM::R5:
576       case ARM::R6:
577       case ARM::R7:
578       case ARM::LR:
579         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
580             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
581         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
582             .addCFIIndex(CFIIndex)
583             .setMIFlags(MachineInstr::FrameSetup);
584         break;
585       }
586     }
587   }
588 
589   if (GPRCS2Size > 0) {
590     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
591     for (const auto &Entry : CSI) {
592       unsigned Reg = Entry.getReg();
593       int FI = Entry.getFrameIdx();
594       switch (Reg) {
595       case ARM::R8:
596       case ARM::R9:
597       case ARM::R10:
598       case ARM::R11:
599       case ARM::R12:
600         if (STI.splitFramePushPop(MF)) {
601           unsigned DwarfReg =  MRI->getDwarfRegNum(Reg, true);
602           unsigned Offset = MFI.getObjectOffset(FI);
603           unsigned CFIIndex = MF.addFrameInst(
604               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
605           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
606               .addCFIIndex(CFIIndex)
607               .setMIFlags(MachineInstr::FrameSetup);
608         }
609         break;
610       }
611     }
612   }
613 
614   if (DPRCSSize > 0) {
615     // Since vpush register list cannot have gaps, there may be multiple vpush
616     // instructions in the prologue.
617     MachineBasicBlock::iterator Pos = std::next(LastPush);
618     for (const auto &Entry : CSI) {
619       unsigned Reg = Entry.getReg();
620       int FI = Entry.getFrameIdx();
621       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
622           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
623         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
624         unsigned Offset = MFI.getObjectOffset(FI);
625         unsigned CFIIndex = MF.addFrameInst(
626             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
627         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
628             .addCFIIndex(CFIIndex)
629             .setMIFlags(MachineInstr::FrameSetup);
630       }
631     }
632   }
633 
634   // Now we can emit descriptions of where the canonical frame address was
635   // throughout the process. If we have a frame pointer, it takes over the job
636   // half-way through, so only the first few .cfi_def_cfa_offset instructions
637   // actually get emitted.
638   DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
639 
640   if (STI.isTargetELF() && hasFP(MF))
641     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
642                             AFI->getFramePtrSpillOffset());
643 
644   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
645   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
646   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
647   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
648 
649   // If we need dynamic stack realignment, do it here. Be paranoid and make
650   // sure if we also have VLAs, we have a base pointer for frame access.
651   // If aligned NEON registers were spilled, the stack has already been
652   // realigned.
653   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
654     unsigned MaxAlign = MFI.getMaxAlignment();
655     assert(!AFI->isThumb1OnlyFunction());
656     if (!AFI->isThumbFunction()) {
657       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
658                                false);
659     } else {
660       // We cannot use sp as source/dest register here, thus we're using r4 to
661       // perform the calculations. We're emitting the following sequence:
662       // mov r4, sp
663       // -- use emitAligningInstructions to produce best sequence to zero
664       // -- out lower bits in r4
665       // mov sp, r4
666       // FIXME: It will be better just to find spare register here.
667       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
668           .addReg(ARM::SP, RegState::Kill)
669           .add(predOps(ARMCC::AL));
670       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
671                                false);
672       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
673           .addReg(ARM::R4, RegState::Kill)
674           .add(predOps(ARMCC::AL));
675     }
676 
677     AFI->setShouldRestoreSPFromFP(true);
678   }
679 
680   // If we need a base pointer, set it up here. It's whatever the value
681   // of the stack pointer is at this point. Any variable size objects
682   // will be allocated after this, so we can still use the base pointer
683   // to reference locals.
684   // FIXME: Clarify FrameSetup flags here.
685   if (RegInfo->hasBasePointer(MF)) {
686     if (isARM)
687       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
688           .addReg(ARM::SP)
689           .add(predOps(ARMCC::AL))
690           .add(condCodeOp());
691     else
692       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
693           .addReg(ARM::SP)
694           .add(predOps(ARMCC::AL));
695   }
696 
697   // If the frame has variable sized objects then the epilogue must restore
698   // the sp from fp. We can assume there's an FP here since hasFP already
699   // checks for hasVarSizedObjects.
700   if (MFI.hasVarSizedObjects())
701     AFI->setShouldRestoreSPFromFP(true);
702 }
703 
704 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
705                                     MachineBasicBlock &MBB) const {
706   MachineFrameInfo &MFI = MF.getFrameInfo();
707   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
708   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
709   const ARMBaseInstrInfo &TII =
710       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
711   assert(!AFI->isThumb1OnlyFunction() &&
712          "This emitEpilogue does not support Thumb1!");
713   bool isARM = !AFI->isThumbFunction();
714 
715   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
716   int NumBytes = (int)MFI.getStackSize();
717   unsigned FramePtr = RegInfo->getFrameRegister(MF);
718 
719   // All calls are tail calls in GHC calling conv, and functions have no
720   // prologue/epilogue.
721   if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
722     return;
723 
724   // First put ourselves on the first (from top) terminator instructions.
725   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
726   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
727 
728   if (!AFI->hasStackFrame()) {
729     if (NumBytes - ArgRegsSaveSize != 0)
730       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize);
731   } else {
732     // Unwind MBBI to point to first LDR / VLDRD.
733     const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
734     if (MBBI != MBB.begin()) {
735       do {
736         --MBBI;
737       } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs));
738       if (!isCSRestore(*MBBI, TII, CSRegs))
739         ++MBBI;
740     }
741 
742     // Move SP to start of FP callee save spill area.
743     NumBytes -= (ArgRegsSaveSize +
744                  AFI->getGPRCalleeSavedArea1Size() +
745                  AFI->getGPRCalleeSavedArea2Size() +
746                  AFI->getDPRCalleeSavedGapSize() +
747                  AFI->getDPRCalleeSavedAreaSize());
748 
749     // Reset SP based on frame pointer only if the stack frame extends beyond
750     // frame pointer stack slot or target is ELF and the function has FP.
751     if (AFI->shouldRestoreSPFromFP()) {
752       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
753       if (NumBytes) {
754         if (isARM)
755           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
756                                   ARMCC::AL, 0, TII);
757         else {
758           // It's not possible to restore SP from FP in a single instruction.
759           // For iOS, this looks like:
760           // mov sp, r7
761           // sub sp, #24
762           // This is bad, if an interrupt is taken after the mov, sp is in an
763           // inconsistent state.
764           // Use the first callee-saved register as a scratch register.
765           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
766                  "No scratch register to restore SP from FP!");
767           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
768                                  ARMCC::AL, 0, TII);
769           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
770               .addReg(ARM::R4)
771               .add(predOps(ARMCC::AL));
772         }
773       } else {
774         // Thumb2 or ARM.
775         if (isARM)
776           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
777               .addReg(FramePtr)
778               .add(predOps(ARMCC::AL))
779               .add(condCodeOp());
780         else
781           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
782               .addReg(FramePtr)
783               .add(predOps(ARMCC::AL));
784       }
785     } else if (NumBytes &&
786                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
787       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes);
788 
789     // Increment past our save areas.
790     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
791       MBBI++;
792       // Since vpop register list cannot have gaps, there may be multiple vpop
793       // instructions in the epilogue.
794       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
795         MBBI++;
796     }
797     if (AFI->getDPRCalleeSavedGapSize()) {
798       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
799              "unexpected DPR alignment gap");
800       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize());
801     }
802 
803     if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
804     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
805   }
806 
807   if (ArgRegsSaveSize)
808     emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize);
809 }
810 
811 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
812 /// debug info.  It's the same as what we use for resolving the code-gen
813 /// references for now.  FIXME: This can go wrong when references are
814 /// SP-relative and simple call frames aren't used.
815 int
816 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
817                                          unsigned &FrameReg) const {
818   return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
819 }
820 
821 int
822 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
823                                              int FI, unsigned &FrameReg,
824                                              int SPAdj) const {
825   const MachineFrameInfo &MFI = MF.getFrameInfo();
826   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
827       MF.getSubtarget().getRegisterInfo());
828   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
829   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
830   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
831   bool isFixed = MFI.isFixedObjectIndex(FI);
832 
833   FrameReg = ARM::SP;
834   Offset += SPAdj;
835 
836   // SP can move around if there are allocas.  We may also lose track of SP
837   // when emergency spilling inside a non-reserved call frame setup.
838   bool hasMovingSP = !hasReservedCallFrame(MF);
839 
840   // When dynamically realigning the stack, use the frame pointer for
841   // parameters, and the stack/base pointer for locals.
842   if (RegInfo->needsStackRealignment(MF)) {
843     assert (hasFP(MF) && "dynamic stack realignment without a FP!");
844     if (isFixed) {
845       FrameReg = RegInfo->getFrameRegister(MF);
846       Offset = FPOffset;
847     } else if (hasMovingSP) {
848       assert(RegInfo->hasBasePointer(MF) &&
849              "VLAs and dynamic stack alignment, but missing base pointer!");
850       FrameReg = RegInfo->getBaseRegister();
851     }
852     return Offset;
853   }
854 
855   // If there is a frame pointer, use it when we can.
856   if (hasFP(MF) && AFI->hasStackFrame()) {
857     // Use frame pointer to reference fixed objects. Use it for locals if
858     // there are VLAs (and thus the SP isn't reliable as a base).
859     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
860       FrameReg = RegInfo->getFrameRegister(MF);
861       return FPOffset;
862     } else if (hasMovingSP) {
863       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
864       if (AFI->isThumb2Function()) {
865         // Try to use the frame pointer if we can, else use the base pointer
866         // since it's available. This is handy for the emergency spill slot, in
867         // particular.
868         if (FPOffset >= -255 && FPOffset < 0) {
869           FrameReg = RegInfo->getFrameRegister(MF);
870           return FPOffset;
871         }
872       }
873     } else if (AFI->isThumb2Function()) {
874       // Use  add <rd>, sp, #<imm8>
875       //      ldr <rd>, [sp, #<imm8>]
876       // if at all possible to save space.
877       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
878         return Offset;
879       // In Thumb2 mode, the negative offset is very limited. Try to avoid
880       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
881       if (FPOffset >= -255 && FPOffset < 0) {
882         FrameReg = RegInfo->getFrameRegister(MF);
883         return FPOffset;
884       }
885     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
886       // Otherwise, use SP or FP, whichever is closer to the stack slot.
887       FrameReg = RegInfo->getFrameRegister(MF);
888       return FPOffset;
889     }
890   }
891   // Use the base pointer if we have one.
892   if (RegInfo->hasBasePointer(MF))
893     FrameReg = RegInfo->getBaseRegister();
894   return Offset;
895 }
896 
897 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
898                                     MachineBasicBlock::iterator MI,
899                                     const std::vector<CalleeSavedInfo> &CSI,
900                                     unsigned StmOpc, unsigned StrOpc,
901                                     bool NoGap,
902                                     bool(*Func)(unsigned, bool),
903                                     unsigned NumAlignedDPRCS2Regs,
904                                     unsigned MIFlags) const {
905   MachineFunction &MF = *MBB.getParent();
906   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
907   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
908 
909   DebugLoc DL;
910 
911   typedef std::pair<unsigned, bool> RegAndKill;
912   SmallVector<RegAndKill, 4> Regs;
913   unsigned i = CSI.size();
914   while (i != 0) {
915     unsigned LastReg = 0;
916     for (; i != 0; --i) {
917       unsigned Reg = CSI[i-1].getReg();
918       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
919 
920       // D-registers in the aligned area DPRCS2 are NOT spilled here.
921       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
922         continue;
923 
924       bool isLiveIn = MF.getRegInfo().isLiveIn(Reg);
925       if (!isLiveIn)
926         MBB.addLiveIn(Reg);
927       // If NoGap is true, push consecutive registers and then leave the rest
928       // for other instructions. e.g.
929       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
930       if (NoGap && LastReg && LastReg != Reg-1)
931         break;
932       LastReg = Reg;
933       // Do not set a kill flag on values that are also marked as live-in. This
934       // happens with the @llvm-returnaddress intrinsic and with arguments
935       // passed in callee saved registers.
936       // Omitting the kill flags is conservatively correct even if the live-in
937       // is not used after all.
938       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
939     }
940 
941     if (Regs.empty())
942       continue;
943 
944     std::sort(Regs.begin(), Regs.end(), [&](const RegAndKill &LHS,
945                                             const RegAndKill &RHS) {
946       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
947     });
948 
949     if (Regs.size() > 1 || StrOpc== 0) {
950       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
951                                     .addReg(ARM::SP)
952                                     .setMIFlags(MIFlags)
953                                     .add(predOps(ARMCC::AL));
954       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
955         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
956     } else if (Regs.size() == 1) {
957       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
958           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
959           .addReg(ARM::SP)
960           .setMIFlags(MIFlags)
961           .addImm(-4)
962           .add(predOps(ARMCC::AL));
963     }
964     Regs.clear();
965 
966     // Put any subsequent vpush instructions before this one: they will refer to
967     // higher register numbers so need to be pushed first in order to preserve
968     // monotonicity.
969     if (MI != MBB.begin())
970       --MI;
971   }
972 }
973 
974 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
975                                    MachineBasicBlock::iterator MI,
976                                    const std::vector<CalleeSavedInfo> &CSI,
977                                    unsigned LdmOpc, unsigned LdrOpc,
978                                    bool isVarArg, bool NoGap,
979                                    bool(*Func)(unsigned, bool),
980                                    unsigned NumAlignedDPRCS2Regs) const {
981   MachineFunction &MF = *MBB.getParent();
982   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
983   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
984   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
985   DebugLoc DL;
986   bool isTailCall = false;
987   bool isInterrupt = false;
988   bool isTrap = false;
989   if (MBB.end() != MI) {
990     DL = MI->getDebugLoc();
991     unsigned RetOpcode = MI->getOpcode();
992     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
993     isInterrupt =
994         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
995     isTrap =
996         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
997         RetOpcode == ARM::tTRAP;
998   }
999 
1000   SmallVector<unsigned, 4> Regs;
1001   unsigned i = CSI.size();
1002   while (i != 0) {
1003     unsigned LastReg = 0;
1004     bool DeleteRet = false;
1005     for (; i != 0; --i) {
1006       unsigned Reg = CSI[i-1].getReg();
1007       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1008 
1009       // The aligned reloads from area DPRCS2 are not inserted here.
1010       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1011         continue;
1012 
1013       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1014           !isTrap && STI.hasV5TOps()) {
1015         if (MBB.succ_empty()) {
1016           Reg = ARM::PC;
1017           DeleteRet = true;
1018           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1019         } else
1020           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1021         // Fold the return instruction into the LDM.
1022       }
1023 
1024       // If NoGap is true, pop consecutive registers and then leave the rest
1025       // for other instructions. e.g.
1026       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1027       if (NoGap && LastReg && LastReg != Reg-1)
1028         break;
1029 
1030       LastReg = Reg;
1031       Regs.push_back(Reg);
1032     }
1033 
1034     if (Regs.empty())
1035       continue;
1036 
1037     std::sort(Regs.begin(), Regs.end(), [&](unsigned LHS, unsigned RHS) {
1038       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1039     });
1040 
1041     if (Regs.size() > 1 || LdrOpc == 0) {
1042       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1043                                     .addReg(ARM::SP)
1044                                     .add(predOps(ARMCC::AL));
1045       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1046         MIB.addReg(Regs[i], getDefRegState(true));
1047       if (DeleteRet && MI != MBB.end()) {
1048         MIB.copyImplicitOps(*MI);
1049         MI->eraseFromParent();
1050       }
1051       MI = MIB;
1052     } else if (Regs.size() == 1) {
1053       // If we adjusted the reg to PC from LR above, switch it back here. We
1054       // only do that for LDM.
1055       if (Regs[0] == ARM::PC)
1056         Regs[0] = ARM::LR;
1057       MachineInstrBuilder MIB =
1058         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1059           .addReg(ARM::SP, RegState::Define)
1060           .addReg(ARM::SP);
1061       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1062       // that refactoring is complete (eventually).
1063       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1064         MIB.addReg(0);
1065         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1066       } else
1067         MIB.addImm(4);
1068       MIB.add(predOps(ARMCC::AL));
1069     }
1070     Regs.clear();
1071 
1072     // Put any subsequent vpop instructions after this one: they will refer to
1073     // higher register numbers so need to be popped afterwards.
1074     if (MI != MBB.end())
1075       ++MI;
1076   }
1077 }
1078 
1079 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1080 /// starting from d8.  Also insert stack realignment code and leave the stack
1081 /// pointer pointing to the d8 spill slot.
1082 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1083                                     MachineBasicBlock::iterator MI,
1084                                     unsigned NumAlignedDPRCS2Regs,
1085                                     const std::vector<CalleeSavedInfo> &CSI,
1086                                     const TargetRegisterInfo *TRI) {
1087   MachineFunction &MF = *MBB.getParent();
1088   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1089   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1090   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1091   MachineFrameInfo &MFI = MF.getFrameInfo();
1092 
1093   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1094   // stack slot layout backwards, this can actually mean that the d-reg stack
1095   // slot offsets can be wrong. The offset for d8 will always be correct.
1096   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1097     unsigned DNum = CSI[i].getReg() - ARM::D8;
1098     if (DNum > NumAlignedDPRCS2Regs - 1)
1099       continue;
1100     int FI = CSI[i].getFrameIdx();
1101     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1102     // registers will be 8-byte aligned.
1103     MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16);
1104 
1105     // The stack slot for D8 needs to be maximally aligned because this is
1106     // actually the point where we align the stack pointer.  MachineFrameInfo
1107     // computes all offsets relative to the incoming stack pointer which is a
1108     // bit weird when realigning the stack.  Any extra padding for this
1109     // over-alignment is not realized because the code inserted below adjusts
1110     // the stack pointer by numregs * 8 before aligning the stack pointer.
1111     if (DNum == 0)
1112       MFI.setObjectAlignment(FI, MFI.getMaxAlignment());
1113   }
1114 
1115   // Move the stack pointer to the d8 spill slot, and align it at the same
1116   // time. Leave the stack slot address in the scratch register r4.
1117   //
1118   //   sub r4, sp, #numregs * 8
1119   //   bic r4, r4, #align - 1
1120   //   mov sp, r4
1121   //
1122   bool isThumb = AFI->isThumbFunction();
1123   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1124   AFI->setShouldRestoreSPFromFP(true);
1125 
1126   // sub r4, sp, #numregs * 8
1127   // The immediate is <= 64, so it doesn't need any special encoding.
1128   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1129   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1130       .addReg(ARM::SP)
1131       .addImm(8 * NumAlignedDPRCS2Regs)
1132       .add(predOps(ARMCC::AL))
1133       .add(condCodeOp());
1134 
1135   unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment();
1136   // We must set parameter MustBeSingleInstruction to true, since
1137   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1138   // stack alignment.  Luckily, this can always be done since all ARM
1139   // architecture versions that support Neon also support the BFC
1140   // instruction.
1141   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1142 
1143   // mov sp, r4
1144   // The stack pointer must be adjusted before spilling anything, otherwise
1145   // the stack slots could be clobbered by an interrupt handler.
1146   // Leave r4 live, it is used below.
1147   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1148   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1149                                 .addReg(ARM::R4)
1150                                 .add(predOps(ARMCC::AL));
1151   if (!isThumb)
1152     MIB.add(condCodeOp());
1153 
1154   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1155   // r4 holds the stack slot address.
1156   unsigned NextReg = ARM::D8;
1157 
1158   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1159   // The writeback is only needed when emitting two vst1.64 instructions.
1160   if (NumAlignedDPRCS2Regs >= 6) {
1161     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1162                                                &ARM::QQPRRegClass);
1163     MBB.addLiveIn(SupReg);
1164     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1165         .addReg(ARM::R4, RegState::Kill)
1166         .addImm(16)
1167         .addReg(NextReg)
1168         .addReg(SupReg, RegState::ImplicitKill)
1169         .add(predOps(ARMCC::AL));
1170     NextReg += 4;
1171     NumAlignedDPRCS2Regs -= 4;
1172   }
1173 
1174   // We won't modify r4 beyond this point.  It currently points to the next
1175   // register to be spilled.
1176   unsigned R4BaseReg = NextReg;
1177 
1178   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1179   if (NumAlignedDPRCS2Regs >= 4) {
1180     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1181                                                &ARM::QQPRRegClass);
1182     MBB.addLiveIn(SupReg);
1183     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1184         .addReg(ARM::R4)
1185         .addImm(16)
1186         .addReg(NextReg)
1187         .addReg(SupReg, RegState::ImplicitKill)
1188         .add(predOps(ARMCC::AL));
1189     NextReg += 4;
1190     NumAlignedDPRCS2Regs -= 4;
1191   }
1192 
1193   // 16-byte aligned vst1.64 with 2 d-regs.
1194   if (NumAlignedDPRCS2Regs >= 2) {
1195     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1196                                                &ARM::QPRRegClass);
1197     MBB.addLiveIn(SupReg);
1198     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1199         .addReg(ARM::R4)
1200         .addImm(16)
1201         .addReg(SupReg)
1202         .add(predOps(ARMCC::AL));
1203     NextReg += 2;
1204     NumAlignedDPRCS2Regs -= 2;
1205   }
1206 
1207   // Finally, use a vanilla vstr.64 for the odd last register.
1208   if (NumAlignedDPRCS2Regs) {
1209     MBB.addLiveIn(NextReg);
1210     // vstr.64 uses addrmode5 which has an offset scale of 4.
1211     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1212         .addReg(NextReg)
1213         .addReg(ARM::R4)
1214         .addImm((NextReg - R4BaseReg) * 2)
1215         .add(predOps(ARMCC::AL));
1216   }
1217 
1218   // The last spill instruction inserted should kill the scratch register r4.
1219   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1220 }
1221 
1222 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1223 /// iterator to the following instruction.
1224 static MachineBasicBlock::iterator
1225 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1226                         unsigned NumAlignedDPRCS2Regs) {
1227   //   sub r4, sp, #numregs * 8
1228   //   bic r4, r4, #align - 1
1229   //   mov sp, r4
1230   ++MI; ++MI; ++MI;
1231   assert(MI->mayStore() && "Expecting spill instruction");
1232 
1233   // These switches all fall through.
1234   switch(NumAlignedDPRCS2Regs) {
1235   case 7:
1236     ++MI;
1237     assert(MI->mayStore() && "Expecting spill instruction");
1238   default:
1239     ++MI;
1240     assert(MI->mayStore() && "Expecting spill instruction");
1241   case 1:
1242   case 2:
1243   case 4:
1244     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1245     ++MI;
1246   }
1247   return MI;
1248 }
1249 
1250 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1251 /// starting from d8.  These instructions are assumed to execute while the
1252 /// stack is still aligned, unlike the code inserted by emitPopInst.
1253 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1254                                       MachineBasicBlock::iterator MI,
1255                                       unsigned NumAlignedDPRCS2Regs,
1256                                       const std::vector<CalleeSavedInfo> &CSI,
1257                                       const TargetRegisterInfo *TRI) {
1258   MachineFunction &MF = *MBB.getParent();
1259   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1260   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1261   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1262 
1263   // Find the frame index assigned to d8.
1264   int D8SpillFI = 0;
1265   for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1266     if (CSI[i].getReg() == ARM::D8) {
1267       D8SpillFI = CSI[i].getFrameIdx();
1268       break;
1269     }
1270 
1271   // Materialize the address of the d8 spill slot into the scratch register r4.
1272   // This can be fairly complicated if the stack frame is large, so just use
1273   // the normal frame index elimination mechanism to do it.  This code runs as
1274   // the initial part of the epilog where the stack and base pointers haven't
1275   // been changed yet.
1276   bool isThumb = AFI->isThumbFunction();
1277   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1278 
1279   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1280   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1281       .addFrameIndex(D8SpillFI)
1282       .addImm(0)
1283       .add(predOps(ARMCC::AL))
1284       .add(condCodeOp());
1285 
1286   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1287   unsigned NextReg = ARM::D8;
1288 
1289   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1290   if (NumAlignedDPRCS2Regs >= 6) {
1291     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1292                                                &ARM::QQPRRegClass);
1293     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1294         .addReg(ARM::R4, RegState::Define)
1295         .addReg(ARM::R4, RegState::Kill)
1296         .addImm(16)
1297         .addReg(SupReg, RegState::ImplicitDefine)
1298         .add(predOps(ARMCC::AL));
1299     NextReg += 4;
1300     NumAlignedDPRCS2Regs -= 4;
1301   }
1302 
1303   // We won't modify r4 beyond this point.  It currently points to the next
1304   // register to be spilled.
1305   unsigned R4BaseReg = NextReg;
1306 
1307   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1308   if (NumAlignedDPRCS2Regs >= 4) {
1309     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1310                                                &ARM::QQPRRegClass);
1311     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1312         .addReg(ARM::R4)
1313         .addImm(16)
1314         .addReg(SupReg, RegState::ImplicitDefine)
1315         .add(predOps(ARMCC::AL));
1316     NextReg += 4;
1317     NumAlignedDPRCS2Regs -= 4;
1318   }
1319 
1320   // 16-byte aligned vld1.64 with 2 d-regs.
1321   if (NumAlignedDPRCS2Regs >= 2) {
1322     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1323                                                &ARM::QPRRegClass);
1324     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1325         .addReg(ARM::R4)
1326         .addImm(16)
1327         .add(predOps(ARMCC::AL));
1328     NextReg += 2;
1329     NumAlignedDPRCS2Regs -= 2;
1330   }
1331 
1332   // Finally, use a vanilla vldr.64 for the remaining odd register.
1333   if (NumAlignedDPRCS2Regs)
1334     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1335         .addReg(ARM::R4)
1336         .addImm(2 * (NextReg - R4BaseReg))
1337         .add(predOps(ARMCC::AL));
1338 
1339   // Last store kills r4.
1340   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1341 }
1342 
1343 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1344                                         MachineBasicBlock::iterator MI,
1345                                         const std::vector<CalleeSavedInfo> &CSI,
1346                                         const TargetRegisterInfo *TRI) const {
1347   if (CSI.empty())
1348     return false;
1349 
1350   MachineFunction &MF = *MBB.getParent();
1351   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1352 
1353   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1354   unsigned PushOneOpc = AFI->isThumbFunction() ?
1355     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1356   unsigned FltOpc = ARM::VSTMDDB_UPD;
1357   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1358   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1359                MachineInstr::FrameSetup);
1360   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1361                MachineInstr::FrameSetup);
1362   emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1363                NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1364 
1365   // The code above does not insert spill code for the aligned DPRCS2 registers.
1366   // The stack realignment code will be inserted between the push instructions
1367   // and these spills.
1368   if (NumAlignedDPRCS2Regs)
1369     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1370 
1371   return true;
1372 }
1373 
1374 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1375                                         MachineBasicBlock::iterator MI,
1376                                         const std::vector<CalleeSavedInfo> &CSI,
1377                                         const TargetRegisterInfo *TRI) const {
1378   if (CSI.empty())
1379     return false;
1380 
1381   MachineFunction &MF = *MBB.getParent();
1382   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1383   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1384   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1385 
1386   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1387   // registers. Do that here instead.
1388   if (NumAlignedDPRCS2Regs)
1389     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1390 
1391   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1392   unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1393   unsigned FltOpc = ARM::VLDMDIA_UPD;
1394   emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1395               NumAlignedDPRCS2Regs);
1396   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1397               &isARMArea2Register, 0);
1398   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1399               &isARMArea1Register, 0);
1400 
1401   return true;
1402 }
1403 
1404 // FIXME: Make generic?
1405 static unsigned GetFunctionSizeInBytes(const MachineFunction &MF,
1406                                        const ARMBaseInstrInfo &TII) {
1407   unsigned FnSize = 0;
1408   for (auto &MBB : MF) {
1409     for (auto &MI : MBB)
1410       FnSize += TII.getInstSizeInBytes(MI);
1411   }
1412   return FnSize;
1413 }
1414 
1415 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1416 /// frames and return the stack size limit beyond which some of these
1417 /// instructions will require a scratch register during their expansion later.
1418 // FIXME: Move to TII?
1419 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1420                                          const TargetFrameLowering *TFI) {
1421   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1422   unsigned Limit = (1 << 12) - 1;
1423   for (auto &MBB : MF) {
1424     for (auto &MI : MBB) {
1425       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1426         if (!MI.getOperand(i).isFI())
1427           continue;
1428 
1429         // When using ADDri to get the address of a stack object, 255 is the
1430         // largest offset guaranteed to fit in the immediate offset.
1431         if (MI.getOpcode() == ARM::ADDri) {
1432           Limit = std::min(Limit, (1U << 8) - 1);
1433           break;
1434         }
1435 
1436         // Otherwise check the addressing mode.
1437         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1438         case ARMII::AddrMode3:
1439         case ARMII::AddrModeT2_i8:
1440           Limit = std::min(Limit, (1U << 8) - 1);
1441           break;
1442         case ARMII::AddrMode5:
1443         case ARMII::AddrModeT2_i8s4:
1444           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1445           break;
1446         case ARMII::AddrModeT2_i12:
1447           // i12 supports only positive offset so these will be converted to
1448           // i8 opcodes. See llvm::rewriteT2FrameIndex.
1449           if (TFI->hasFP(MF) && AFI->hasStackFrame())
1450             Limit = std::min(Limit, (1U << 8) - 1);
1451           break;
1452         case ARMII::AddrMode4:
1453         case ARMII::AddrMode6:
1454           // Addressing modes 4 & 6 (load/store) instructions can't encode an
1455           // immediate offset for stack references.
1456           return 0;
1457         default:
1458           break;
1459         }
1460         break; // At most one FI per instruction
1461       }
1462     }
1463   }
1464 
1465   return Limit;
1466 }
1467 
1468 // In functions that realign the stack, it can be an advantage to spill the
1469 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1470 // instructions take alignment hints that can improve performance.
1471 //
1472 static void
1473 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1474   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1475   if (!SpillAlignedNEONRegs)
1476     return;
1477 
1478   // Naked functions don't spill callee-saved registers.
1479   if (MF.getFunction()->hasFnAttribute(Attribute::Naked))
1480     return;
1481 
1482   // We are planning to use NEON instructions vst1 / vld1.
1483   if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1484     return;
1485 
1486   // Don't bother if the default stack alignment is sufficiently high.
1487   if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8)
1488     return;
1489 
1490   // Aligned spills require stack realignment.
1491   if (!static_cast<const ARMBaseRegisterInfo *>(
1492            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1493     return;
1494 
1495   // We always spill contiguous d-registers starting from d8. Count how many
1496   // needs spilling.  The register allocator will almost always use the
1497   // callee-saved registers in order, but it can happen that there are holes in
1498   // the range.  Registers above the hole will be spilled to the standard DPRCS
1499   // area.
1500   unsigned NumSpills = 0;
1501   for (; NumSpills < 8; ++NumSpills)
1502     if (!SavedRegs.test(ARM::D8 + NumSpills))
1503       break;
1504 
1505   // Don't do this for just one d-register. It's not worth it.
1506   if (NumSpills < 2)
1507     return;
1508 
1509   // Spill the first NumSpills D-registers after realigning the stack.
1510   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1511 
1512   // A scratch register is required for the vst1 / vld1 instructions.
1513   SavedRegs.set(ARM::R4);
1514 }
1515 
1516 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1517                                             BitVector &SavedRegs,
1518                                             RegScavenger *RS) const {
1519   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1520   // This tells PEI to spill the FP as if it is any other callee-save register
1521   // to take advantage the eliminateFrameIndex machinery. This also ensures it
1522   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1523   // to combine multiple loads / stores.
1524   bool CanEliminateFrame = true;
1525   bool CS1Spilled = false;
1526   bool LRSpilled = false;
1527   unsigned NumGPRSpills = 0;
1528   unsigned NumFPRSpills = 0;
1529   SmallVector<unsigned, 4> UnspilledCS1GPRs;
1530   SmallVector<unsigned, 4> UnspilledCS2GPRs;
1531   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1532       MF.getSubtarget().getRegisterInfo());
1533   const ARMBaseInstrInfo &TII =
1534       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1535   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1536   MachineFrameInfo &MFI = MF.getFrameInfo();
1537   MachineRegisterInfo &MRI = MF.getRegInfo();
1538   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1539   (void)TRI;  // Silence unused warning in non-assert builds.
1540   unsigned FramePtr = RegInfo->getFrameRegister(MF);
1541 
1542   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1543   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1544   // since it's not always possible to restore sp from fp in a single
1545   // instruction.
1546   // FIXME: It will be better just to find spare register here.
1547   if (AFI->isThumb2Function() &&
1548       (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
1549     SavedRegs.set(ARM::R4);
1550 
1551   if (AFI->isThumb1OnlyFunction()) {
1552     // Spill LR if Thumb1 function uses variable length argument lists.
1553     if (AFI->getArgRegsSaveSize() > 0)
1554       SavedRegs.set(ARM::LR);
1555 
1556     // Spill R4 if Thumb1 epilogue has to restore SP from FP. We don't know
1557     // for sure what the stack size will be, but for this, an estimate is good
1558     // enough. If there anything changes it, it'll be a spill, which implies
1559     // we've used all the registers and so R4 is already used, so not marking
1560     // it here will be OK.
1561     // FIXME: It will be better just to find spare register here.
1562     unsigned StackSize = MFI.estimateStackSize(MF);
1563     if (MFI.hasVarSizedObjects() || StackSize > 508)
1564       SavedRegs.set(ARM::R4);
1565   }
1566 
1567   // See if we can spill vector registers to aligned stack.
1568   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1569 
1570   // Spill the BasePtr if it's used.
1571   if (RegInfo->hasBasePointer(MF))
1572     SavedRegs.set(RegInfo->getBaseRegister());
1573 
1574   // Don't spill FP if the frame can be eliminated. This is determined
1575   // by scanning the callee-save registers to see if any is modified.
1576   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1577   for (unsigned i = 0; CSRegs[i]; ++i) {
1578     unsigned Reg = CSRegs[i];
1579     bool Spilled = false;
1580     if (SavedRegs.test(Reg)) {
1581       Spilled = true;
1582       CanEliminateFrame = false;
1583     }
1584 
1585     if (!ARM::GPRRegClass.contains(Reg)) {
1586       if (Spilled) {
1587         if (ARM::SPRRegClass.contains(Reg))
1588           NumFPRSpills++;
1589         else if (ARM::DPRRegClass.contains(Reg))
1590           NumFPRSpills += 2;
1591         else if (ARM::QPRRegClass.contains(Reg))
1592           NumFPRSpills += 4;
1593       }
1594       continue;
1595     }
1596 
1597     if (Spilled) {
1598       NumGPRSpills++;
1599 
1600       if (!STI.splitFramePushPop(MF)) {
1601         if (Reg == ARM::LR)
1602           LRSpilled = true;
1603         CS1Spilled = true;
1604         continue;
1605       }
1606 
1607       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1608       switch (Reg) {
1609       case ARM::LR:
1610         LRSpilled = true;
1611         LLVM_FALLTHROUGH;
1612       case ARM::R0: case ARM::R1:
1613       case ARM::R2: case ARM::R3:
1614       case ARM::R4: case ARM::R5:
1615       case ARM::R6: case ARM::R7:
1616         CS1Spilled = true;
1617         break;
1618       default:
1619         break;
1620       }
1621     } else {
1622       if (!STI.splitFramePushPop(MF)) {
1623         UnspilledCS1GPRs.push_back(Reg);
1624         continue;
1625       }
1626 
1627       switch (Reg) {
1628       case ARM::R0: case ARM::R1:
1629       case ARM::R2: case ARM::R3:
1630       case ARM::R4: case ARM::R5:
1631       case ARM::R6: case ARM::R7:
1632       case ARM::LR:
1633         UnspilledCS1GPRs.push_back(Reg);
1634         break;
1635       default:
1636         UnspilledCS2GPRs.push_back(Reg);
1637         break;
1638       }
1639     }
1640   }
1641 
1642   bool ForceLRSpill = false;
1643   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1644     unsigned FnSize = GetFunctionSizeInBytes(MF, TII);
1645     // Force LR to be spilled if the Thumb function size is > 2048. This enables
1646     // use of BL to implement far jump. If it turns out that it's not needed
1647     // then the branch fix up path will undo it.
1648     if (FnSize >= (1 << 11)) {
1649       CanEliminateFrame = false;
1650       ForceLRSpill = true;
1651     }
1652   }
1653 
1654   // If any of the stack slot references may be out of range of an immediate
1655   // offset, make sure a register (or a spill slot) is available for the
1656   // register scavenger. Note that if we're indexing off the frame pointer, the
1657   // effective stack size is 4 bytes larger since the FP points to the stack
1658   // slot of the previous FP. Also, if we have variable sized objects in the
1659   // function, stack slot references will often be negative, and some of
1660   // our instructions are positive-offset only, so conservatively consider
1661   // that case to want a spill slot (or register) as well. Similarly, if
1662   // the function adjusts the stack pointer during execution and the
1663   // adjustments aren't already part of our stack size estimate, our offset
1664   // calculations may be off, so be conservative.
1665   // FIXME: We could add logic to be more precise about negative offsets
1666   //        and which instructions will need a scratch register for them. Is it
1667   //        worth the effort and added fragility?
1668   unsigned EstimatedStackSize =
1669       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1670   if (hasFP(MF)) {
1671     if (AFI->hasStackFrame())
1672       EstimatedStackSize += 4;
1673   } else {
1674     // If FP is not used, SP will be used to access arguments, so count the
1675     // size of arguments into the estimation.
1676     EstimatedStackSize += MF.getInfo<ARMFunctionInfo>()->getArgumentStackSize();
1677   }
1678   EstimatedStackSize += 16; // For possible paddings.
1679 
1680   bool BigStack = EstimatedStackSize >= estimateRSStackSizeLimit(MF, this) ||
1681                   MFI.hasVarSizedObjects() ||
1682                   (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
1683   bool ExtraCSSpill = false;
1684   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1685     AFI->setHasStackFrame(true);
1686 
1687     if (hasFP(MF)) {
1688       SavedRegs.set(FramePtr);
1689       // If the frame pointer is required by the ABI, also spill LR so that we
1690       // emit a complete frame record.
1691       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
1692         SavedRegs.set(ARM::LR);
1693         LRSpilled = true;
1694         NumGPRSpills++;
1695         auto LRPos = find(UnspilledCS1GPRs, ARM::LR);
1696         if (LRPos != UnspilledCS1GPRs.end())
1697           UnspilledCS1GPRs.erase(LRPos);
1698       }
1699       auto FPPos = find(UnspilledCS1GPRs, FramePtr);
1700       if (FPPos != UnspilledCS1GPRs.end())
1701         UnspilledCS1GPRs.erase(FPPos);
1702       NumGPRSpills++;
1703       if (FramePtr == ARM::R7)
1704         CS1Spilled = true;
1705     }
1706 
1707     if (AFI->isThumb1OnlyFunction()) {
1708       // For Thumb1-only targets, we need some low registers when we save and
1709       // restore the high registers (which aren't allocatable, but could be
1710       // used by inline assembly) because the push/pop instructions can not
1711       // access high registers. If necessary, we might need to push more low
1712       // registers to ensure that there is at least one free that can be used
1713       // for the saving & restoring, and preferably we should ensure that as
1714       // many as are needed are available so that fewer push/pop instructions
1715       // are required.
1716 
1717       // Low registers which are not currently pushed, but could be (r4-r7).
1718       SmallVector<unsigned, 4> AvailableRegs;
1719 
1720       // Unused argument registers (r0-r3) can be clobbered in the prologue for
1721       // free.
1722       int EntryRegDeficit = 0;
1723       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
1724         if (!MF.getRegInfo().isLiveIn(Reg)) {
1725           --EntryRegDeficit;
1726           DEBUG(dbgs() << PrintReg(Reg, TRI)
1727                        << " is unused argument register, EntryRegDeficit = "
1728                        << EntryRegDeficit << "\n");
1729         }
1730       }
1731 
1732       // Unused return registers can be clobbered in the epilogue for free.
1733       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
1734       DEBUG(dbgs() << AFI->getReturnRegsCount()
1735                    << " return regs used, ExitRegDeficit = " << ExitRegDeficit
1736                    << "\n");
1737 
1738       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
1739       DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
1740 
1741       // r4-r6 can be used in the prologue if they are pushed by the first push
1742       // instruction.
1743       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
1744         if (SavedRegs.test(Reg)) {
1745           --RegDeficit;
1746           DEBUG(dbgs() << PrintReg(Reg, TRI)
1747                        << " is saved low register, RegDeficit = " << RegDeficit
1748                        << "\n");
1749         } else {
1750           AvailableRegs.push_back(Reg);
1751           DEBUG(dbgs()
1752                 << PrintReg(Reg, TRI)
1753                 << " is non-saved low register, adding to AvailableRegs\n");
1754         }
1755       }
1756 
1757       // r7 can be used if it is not being used as the frame pointer.
1758       if (!hasFP(MF)) {
1759         if (SavedRegs.test(ARM::R7)) {
1760           --RegDeficit;
1761           DEBUG(dbgs() << "%R7 is saved low register, RegDeficit = "
1762                        << RegDeficit << "\n");
1763         } else {
1764           AvailableRegs.push_back(ARM::R7);
1765           DEBUG(dbgs()
1766                 << "%R7 is non-saved low register, adding to AvailableRegs\n");
1767         }
1768       }
1769 
1770       // Each of r8-r11 needs to be copied to a low register, then pushed.
1771       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
1772         if (SavedRegs.test(Reg)) {
1773           ++RegDeficit;
1774           DEBUG(dbgs() << PrintReg(Reg, TRI)
1775                        << " is saved high register, RegDeficit = " << RegDeficit
1776                        << "\n");
1777         }
1778       }
1779 
1780       // LR can only be used by PUSH, not POP, and can't be used at all if the
1781       // llvm.returnaddress intrinsic is used. This is only worth doing if we
1782       // are more limited at function entry than exit.
1783       if ((EntryRegDeficit > ExitRegDeficit) &&
1784           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
1785             MF.getFrameInfo().isReturnAddressTaken())) {
1786         if (SavedRegs.test(ARM::LR)) {
1787           --RegDeficit;
1788           DEBUG(dbgs() << "%LR is saved register, RegDeficit = " << RegDeficit
1789                        << "\n");
1790         } else {
1791           AvailableRegs.push_back(ARM::LR);
1792           DEBUG(dbgs() << "%LR is not saved, adding to AvailableRegs\n");
1793         }
1794       }
1795 
1796       // If there are more high registers that need pushing than low registers
1797       // available, push some more low registers so that we can use fewer push
1798       // instructions. This might not reduce RegDeficit all the way to zero,
1799       // because we can only guarantee that r4-r6 are available, but r8-r11 may
1800       // need saving.
1801       DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
1802       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
1803         unsigned Reg = AvailableRegs.pop_back_val();
1804         DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI)
1805                      << " to make up reg deficit\n");
1806         SavedRegs.set(Reg);
1807         NumGPRSpills++;
1808         CS1Spilled = true;
1809         ExtraCSSpill = true;
1810         UnspilledCS1GPRs.erase(find(UnspilledCS1GPRs, Reg));
1811         if (Reg == ARM::LR)
1812           LRSpilled = true;
1813       }
1814       DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit << "\n");
1815     }
1816 
1817     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
1818     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
1819     if (!LRSpilled && CS1Spilled) {
1820       SavedRegs.set(ARM::LR);
1821       NumGPRSpills++;
1822       SmallVectorImpl<unsigned>::iterator LRPos;
1823       LRPos = find(UnspilledCS1GPRs, (unsigned)ARM::LR);
1824       if (LRPos != UnspilledCS1GPRs.end())
1825         UnspilledCS1GPRs.erase(LRPos);
1826 
1827       ForceLRSpill = false;
1828       ExtraCSSpill = true;
1829     }
1830 
1831     // If stack and double are 8-byte aligned and we are spilling an odd number
1832     // of GPRs, spill one extra callee save GPR so we won't have to pad between
1833     // the integer and double callee save areas.
1834     DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
1835     unsigned TargetAlign = getStackAlignment();
1836     if (TargetAlign >= 8 && (NumGPRSpills & 1)) {
1837       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
1838         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
1839           unsigned Reg = UnspilledCS1GPRs[i];
1840           // Don't spill high register if the function is thumb.  In the case of
1841           // Windows on ARM, accept R11 (frame pointer)
1842           if (!AFI->isThumbFunction() ||
1843               (STI.isTargetWindows() && Reg == ARM::R11) ||
1844               isARMLowRegister(Reg) || Reg == ARM::LR) {
1845             SavedRegs.set(Reg);
1846             DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI)
1847                          << " to make up alignment\n");
1848             if (!MRI.isReserved(Reg))
1849               ExtraCSSpill = true;
1850             break;
1851           }
1852         }
1853       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
1854         unsigned Reg = UnspilledCS2GPRs.front();
1855         SavedRegs.set(Reg);
1856         DEBUG(dbgs() << "Spilling " << PrintReg(Reg, TRI)
1857                      << " to make up alignment\n");
1858         if (!MRI.isReserved(Reg))
1859           ExtraCSSpill = true;
1860       }
1861     }
1862 
1863     // Estimate if we might need to scavenge a register at some point in order
1864     // to materialize a stack offset. If so, either spill one additional
1865     // callee-saved register or reserve a special spill slot to facilitate
1866     // register scavenging. Thumb1 needs a spill slot for stack pointer
1867     // adjustments also, even when the frame itself is small.
1868     if (BigStack && !ExtraCSSpill) {
1869       // If any non-reserved CS register isn't spilled, just spill one or two
1870       // extra. That should take care of it!
1871       unsigned NumExtras = TargetAlign / 4;
1872       SmallVector<unsigned, 2> Extras;
1873       while (NumExtras && !UnspilledCS1GPRs.empty()) {
1874         unsigned Reg = UnspilledCS1GPRs.back();
1875         UnspilledCS1GPRs.pop_back();
1876         if (!MRI.isReserved(Reg) &&
1877             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg) ||
1878              Reg == ARM::LR)) {
1879           Extras.push_back(Reg);
1880           NumExtras--;
1881         }
1882       }
1883       // For non-Thumb1 functions, also check for hi-reg CS registers
1884       if (!AFI->isThumb1OnlyFunction()) {
1885         while (NumExtras && !UnspilledCS2GPRs.empty()) {
1886           unsigned Reg = UnspilledCS2GPRs.back();
1887           UnspilledCS2GPRs.pop_back();
1888           if (!MRI.isReserved(Reg)) {
1889             Extras.push_back(Reg);
1890             NumExtras--;
1891           }
1892         }
1893       }
1894       if (Extras.size() && NumExtras == 0) {
1895         for (unsigned i = 0, e = Extras.size(); i != e; ++i) {
1896           SavedRegs.set(Extras[i]);
1897         }
1898       } else if (!AFI->isThumb1OnlyFunction()) {
1899         // note: Thumb1 functions spill to R12, not the stack.  Reserve a slot
1900         // closest to SP or frame pointer.
1901         assert(RS && "Register scavenging not provided");
1902         const TargetRegisterClass *RC = &ARM::GPRRegClass;
1903         RS->addScavengingFrameIndex(MFI.CreateStackObject(RC->getSize(),
1904                                                           RC->getAlignment(),
1905                                                           false));
1906       }
1907     }
1908   }
1909 
1910   if (ForceLRSpill) {
1911     SavedRegs.set(ARM::LR);
1912     AFI->setLRIsSpilledForFarJump(true);
1913   }
1914 }
1915 
1916 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
1917     MachineFunction &MF, MachineBasicBlock &MBB,
1918     MachineBasicBlock::iterator I) const {
1919   const ARMBaseInstrInfo &TII =
1920       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1921   if (!hasReservedCallFrame(MF)) {
1922     // If we have alloca, convert as follows:
1923     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
1924     // ADJCALLSTACKUP   -> add, sp, sp, amount
1925     MachineInstr &Old = *I;
1926     DebugLoc dl = Old.getDebugLoc();
1927     unsigned Amount = Old.getOperand(0).getImm();
1928     if (Amount != 0) {
1929       // We need to keep the stack aligned properly.  To do this, we round the
1930       // amount of space needed for the outgoing arguments up to the next
1931       // alignment boundary.
1932       Amount = alignSPAdjust(Amount);
1933 
1934       ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1935       assert(!AFI->isThumb1OnlyFunction() &&
1936              "This eliminateCallFramePseudoInstr does not support Thumb1!");
1937       bool isARM = !AFI->isThumbFunction();
1938 
1939       // Replace the pseudo instruction with a new instruction...
1940       unsigned Opc = Old.getOpcode();
1941       int PIdx = Old.findFirstPredOperandIdx();
1942       ARMCC::CondCodes Pred =
1943           (PIdx == -1) ? ARMCC::AL
1944                        : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
1945       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
1946         // Note: PredReg is operand 2 for ADJCALLSTACKDOWN.
1947         unsigned PredReg = Old.getOperand(2).getReg();
1948         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
1949                      Pred, PredReg);
1950       } else {
1951         // Note: PredReg is operand 3 for ADJCALLSTACKUP.
1952         unsigned PredReg = Old.getOperand(3).getReg();
1953         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
1954         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
1955                      Pred, PredReg);
1956       }
1957     }
1958   }
1959   return MBB.erase(I);
1960 }
1961 
1962 /// Get the minimum constant for ARM that is greater than or equal to the
1963 /// argument. In ARM, constants can have any value that can be produced by
1964 /// rotating an 8-bit value to the right by an even number of bits within a
1965 /// 32-bit word.
1966 static uint32_t alignToARMConstant(uint32_t Value) {
1967   unsigned Shifted = 0;
1968 
1969   if (Value == 0)
1970       return 0;
1971 
1972   while (!(Value & 0xC0000000)) {
1973       Value = Value << 2;
1974       Shifted += 2;
1975   }
1976 
1977   bool Carry = (Value & 0x00FFFFFF);
1978   Value = ((Value & 0xFF000000) >> 24) + Carry;
1979 
1980   if (Value & 0x0000100)
1981       Value = Value & 0x000001FC;
1982 
1983   if (Shifted > 24)
1984       Value = Value >> (Shifted - 24);
1985   else
1986       Value = Value << (24 - Shifted);
1987 
1988   return Value;
1989 }
1990 
1991 // The stack limit in the TCB is set to this many bytes above the actual
1992 // stack limit.
1993 static const uint64_t kSplitStackAvailable = 256;
1994 
1995 // Adjust the function prologue to enable split stacks. This currently only
1996 // supports android and linux.
1997 //
1998 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
1999 // must be well defined in order to allow for consistent implementations of the
2000 // __morestack helper function. The ABI is also not a normal ABI in that it
2001 // doesn't follow the normal calling conventions because this allows the
2002 // prologue of each function to be optimized further.
2003 //
2004 // Currently, the ABI looks like (when calling __morestack)
2005 //
2006 //  * r4 holds the minimum stack size requested for this function call
2007 //  * r5 holds the stack size of the arguments to the function
2008 //  * the beginning of the function is 3 instructions after the call to
2009 //    __morestack
2010 //
2011 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2012 // place the arguments on to the new stack, and the 3-instruction knowledge to
2013 // jump directly to the body of the function when working on the new stack.
2014 //
2015 // An old (and possibly no longer compatible) implementation of __morestack for
2016 // ARM can be found at [1].
2017 //
2018 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2019 void ARMFrameLowering::adjustForSegmentedStacks(
2020     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2021   unsigned Opcode;
2022   unsigned CFIIndex;
2023   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2024   bool Thumb = ST->isThumb();
2025 
2026   // Sadly, this currently doesn't support varargs, platforms other than
2027   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2028   if (MF.getFunction()->isVarArg())
2029     report_fatal_error("Segmented stacks do not support vararg functions.");
2030   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2031     report_fatal_error("Segmented stacks not supported on this platform.");
2032 
2033   MachineFrameInfo &MFI = MF.getFrameInfo();
2034   MachineModuleInfo &MMI = MF.getMMI();
2035   MCContext &Context = MMI.getContext();
2036   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2037   const ARMBaseInstrInfo &TII =
2038       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2039   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2040   DebugLoc DL;
2041 
2042   uint64_t StackSize = MFI.getStackSize();
2043 
2044   // Do not generate a prologue for functions with a stack of size zero
2045   if (StackSize == 0)
2046     return;
2047 
2048   // Use R4 and R5 as scratch registers.
2049   // We save R4 and R5 before use and restore them before leaving the function.
2050   unsigned ScratchReg0 = ARM::R4;
2051   unsigned ScratchReg1 = ARM::R5;
2052   uint64_t AlignedStackSize;
2053 
2054   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2055   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2056   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2057   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2058   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2059 
2060   // Grab everything that reaches PrologueMBB to update there liveness as well.
2061   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2062   SmallVector<MachineBasicBlock *, 2> WalkList;
2063   WalkList.push_back(&PrologueMBB);
2064 
2065   do {
2066     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2067     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2068       if (BeforePrologueRegion.insert(PredBB).second)
2069         WalkList.push_back(PredBB);
2070     }
2071   } while (!WalkList.empty());
2072 
2073   // The order in that list is important.
2074   // The blocks will all be inserted before PrologueMBB using that order.
2075   // Therefore the block that should appear first in the CFG should appear
2076   // first in the list.
2077   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2078                                       PostStackMBB};
2079 
2080   for (MachineBasicBlock *B : AddedBlocks)
2081     BeforePrologueRegion.insert(B);
2082 
2083   for (const auto &LI : PrologueMBB.liveins()) {
2084     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2085       PredBB->addLiveIn(LI);
2086   }
2087 
2088   // Remove the newly added blocks from the list, since we know
2089   // we do not have to do the following updates for them.
2090   for (MachineBasicBlock *B : AddedBlocks) {
2091     BeforePrologueRegion.erase(B);
2092     MF.insert(PrologueMBB.getIterator(), B);
2093   }
2094 
2095   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2096     // Make sure the LiveIns are still sorted and unique.
2097     MBB->sortUniqueLiveIns();
2098     // Replace the edges to PrologueMBB by edges to the sequences
2099     // we are about to add.
2100     MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2101   }
2102 
2103   // The required stack size that is aligned to ARM constant criterion.
2104   AlignedStackSize = alignToARMConstant(StackSize);
2105 
2106   // When the frame size is less than 256 we just compare the stack
2107   // boundary directly to the value of the stack pointer, per gcc.
2108   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2109 
2110   // We will use two of the callee save registers as scratch registers so we
2111   // need to save those registers onto the stack.
2112   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2113   // requested and arguments for __morestack().
2114   // SR0: Scratch Register #0
2115   // SR1: Scratch Register #1
2116   // push {SR0, SR1}
2117   if (Thumb) {
2118     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2119         .add(predOps(ARMCC::AL))
2120         .addReg(ScratchReg0)
2121         .addReg(ScratchReg1);
2122   } else {
2123     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2124         .addReg(ARM::SP, RegState::Define)
2125         .addReg(ARM::SP)
2126         .add(predOps(ARMCC::AL))
2127         .addReg(ScratchReg0)
2128         .addReg(ScratchReg1);
2129   }
2130 
2131   // Emit the relevant DWARF information about the change in stack pointer as
2132   // well as where to find both r4 and r5 (the callee-save registers)
2133   CFIIndex =
2134       MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8));
2135   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2136       .addCFIIndex(CFIIndex);
2137   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2138       nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2139   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2140       .addCFIIndex(CFIIndex);
2141   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2142       nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2143   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2144       .addCFIIndex(CFIIndex);
2145 
2146   // mov SR1, sp
2147   if (Thumb) {
2148     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2149         .addReg(ARM::SP)
2150         .add(predOps(ARMCC::AL));
2151   } else if (CompareStackPointer) {
2152     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2153         .addReg(ARM::SP)
2154         .add(predOps(ARMCC::AL))
2155         .add(condCodeOp());
2156   }
2157 
2158   // sub SR1, sp, #StackSize
2159   if (!CompareStackPointer && Thumb) {
2160     BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2161         .add(condCodeOp())
2162         .addReg(ScratchReg1)
2163         .addImm(AlignedStackSize)
2164         .add(predOps(ARMCC::AL));
2165   } else if (!CompareStackPointer) {
2166     BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2167         .addReg(ARM::SP)
2168         .addImm(AlignedStackSize)
2169         .add(predOps(ARMCC::AL))
2170         .add(condCodeOp());
2171   }
2172 
2173   if (Thumb && ST->isThumb1Only()) {
2174     unsigned PCLabelId = ARMFI->createPICLabelUId();
2175     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2176         MF.getFunction()->getContext(), "__STACK_LIMIT", PCLabelId, 0);
2177     MachineConstantPool *MCP = MF.getConstantPool();
2178     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4);
2179 
2180     // ldr SR0, [pc, offset(STACK_LIMIT)]
2181     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2182         .addConstantPoolIndex(CPI)
2183         .add(predOps(ARMCC::AL));
2184 
2185     // ldr SR0, [SR0]
2186     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2187         .addReg(ScratchReg0)
2188         .addImm(0)
2189         .add(predOps(ARMCC::AL));
2190   } else {
2191     // Get TLS base address from the coprocessor
2192     // mrc p15, #0, SR0, c13, c0, #3
2193     BuildMI(McrMBB, DL, TII.get(ARM::MRC), ScratchReg0)
2194         .addImm(15)
2195         .addImm(0)
2196         .addImm(13)
2197         .addImm(0)
2198         .addImm(3)
2199         .add(predOps(ARMCC::AL));
2200 
2201     // Use the last tls slot on android and a private field of the TCP on linux.
2202     assert(ST->isTargetAndroid() || ST->isTargetLinux());
2203     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2204 
2205     // Get the stack limit from the right offset
2206     // ldr SR0, [sr0, #4 * TlsOffset]
2207     BuildMI(GetMBB, DL, TII.get(ARM::LDRi12), ScratchReg0)
2208         .addReg(ScratchReg0)
2209         .addImm(4 * TlsOffset)
2210         .add(predOps(ARMCC::AL));
2211   }
2212 
2213   // Compare stack limit with stack size requested.
2214   // cmp SR0, SR1
2215   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2216   BuildMI(GetMBB, DL, TII.get(Opcode))
2217       .addReg(ScratchReg0)
2218       .addReg(ScratchReg1)
2219       .add(predOps(ARMCC::AL));
2220 
2221   // This jump is taken if StackLimit < SP - stack required.
2222   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2223   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2224        .addImm(ARMCC::LO)
2225        .addReg(ARM::CPSR);
2226 
2227 
2228   // Calling __morestack(StackSize, Size of stack arguments).
2229   // __morestack knows that the stack size requested is in SR0(r4)
2230   // and amount size of stack arguments is in SR1(r5).
2231 
2232   // Pass first argument for the __morestack by Scratch Register #0.
2233   //   The amount size of stack required
2234   if (Thumb) {
2235     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2236         .add(condCodeOp())
2237         .addImm(AlignedStackSize)
2238         .add(predOps(ARMCC::AL));
2239   } else {
2240     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2241         .addImm(AlignedStackSize)
2242         .add(predOps(ARMCC::AL))
2243         .add(condCodeOp());
2244   }
2245   // Pass second argument for the __morestack by Scratch Register #1.
2246   //   The amount size of stack consumed to save function arguments.
2247   if (Thumb) {
2248     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2249         .add(condCodeOp())
2250         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2251         .add(predOps(ARMCC::AL));
2252   } else {
2253     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2254         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2255         .add(predOps(ARMCC::AL))
2256         .add(condCodeOp());
2257   }
2258 
2259   // push {lr} - Save return address of this function.
2260   if (Thumb) {
2261     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2262         .add(predOps(ARMCC::AL))
2263         .addReg(ARM::LR);
2264   } else {
2265     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2266         .addReg(ARM::SP, RegState::Define)
2267         .addReg(ARM::SP)
2268         .add(predOps(ARMCC::AL))
2269         .addReg(ARM::LR);
2270   }
2271 
2272   // Emit the DWARF info about the change in stack as well as where to find the
2273   // previous link register
2274   CFIIndex =
2275       MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12));
2276   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2277       .addCFIIndex(CFIIndex);
2278   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2279         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2280   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2281       .addCFIIndex(CFIIndex);
2282 
2283   // Call __morestack().
2284   if (Thumb) {
2285     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2286         .add(predOps(ARMCC::AL))
2287         .addExternalSymbol("__morestack");
2288   } else {
2289     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2290         .addExternalSymbol("__morestack");
2291   }
2292 
2293   // pop {lr} - Restore return address of this original function.
2294   if (Thumb) {
2295     if (ST->isThumb1Only()) {
2296       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2297           .add(predOps(ARMCC::AL))
2298           .addReg(ScratchReg0);
2299       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2300           .addReg(ScratchReg0)
2301           .add(predOps(ARMCC::AL));
2302     } else {
2303       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2304           .addReg(ARM::LR, RegState::Define)
2305           .addReg(ARM::SP, RegState::Define)
2306           .addReg(ARM::SP)
2307           .addImm(4)
2308           .add(predOps(ARMCC::AL));
2309     }
2310   } else {
2311     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2312         .addReg(ARM::SP, RegState::Define)
2313         .addReg(ARM::SP)
2314         .add(predOps(ARMCC::AL))
2315         .addReg(ARM::LR);
2316   }
2317 
2318   // Restore SR0 and SR1 in case of __morestack() was called.
2319   // __morestack() will skip PostStackMBB block so we need to restore
2320   // scratch registers from here.
2321   // pop {SR0, SR1}
2322   if (Thumb) {
2323     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2324         .add(predOps(ARMCC::AL))
2325         .addReg(ScratchReg0)
2326         .addReg(ScratchReg1);
2327   } else {
2328     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2329         .addReg(ARM::SP, RegState::Define)
2330         .addReg(ARM::SP)
2331         .add(predOps(ARMCC::AL))
2332         .addReg(ScratchReg0)
2333         .addReg(ScratchReg1);
2334   }
2335 
2336   // Update the CFA offset now that we've popped
2337   CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2338   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2339       .addCFIIndex(CFIIndex);
2340 
2341   // bx lr - Return from this function.
2342   Opcode = Thumb ? ARM::tBX_RET : ARM::BX_RET;
2343   BuildMI(AllocMBB, DL, TII.get(Opcode)).add(predOps(ARMCC::AL));
2344 
2345   // Restore SR0 and SR1 in case of __morestack() was not called.
2346   // pop {SR0, SR1}
2347   if (Thumb) {
2348     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2349         .add(predOps(ARMCC::AL))
2350         .addReg(ScratchReg0)
2351         .addReg(ScratchReg1);
2352   } else {
2353     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2354         .addReg(ARM::SP, RegState::Define)
2355         .addReg(ARM::SP)
2356         .add(predOps(ARMCC::AL))
2357         .addReg(ScratchReg0)
2358         .addReg(ScratchReg1);
2359   }
2360 
2361   // Update the CFA offset now that we've popped
2362   CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0));
2363   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2364       .addCFIIndex(CFIIndex);
2365 
2366   // Tell debuggers that r4 and r5 are now the same as they were in the
2367   // previous function, that they're the "Same Value".
2368   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2369       nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2370   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2371       .addCFIIndex(CFIIndex);
2372   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2373       nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2374   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2375       .addCFIIndex(CFIIndex);
2376 
2377   // Organizing MBB lists
2378   PostStackMBB->addSuccessor(&PrologueMBB);
2379 
2380   AllocMBB->addSuccessor(PostStackMBB);
2381 
2382   GetMBB->addSuccessor(PostStackMBB);
2383   GetMBB->addSuccessor(AllocMBB);
2384 
2385   McrMBB->addSuccessor(GetMBB);
2386 
2387   PrevStackMBB->addSuccessor(McrMBB);
2388 
2389 #ifdef EXPENSIVE_CHECKS
2390   MF.verify();
2391 #endif
2392 }
2393