1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_fp, prev_lr | 51 // | (a.k.a. "frame record") | 52 // | | 53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 54 // | | 55 // | callee-saved gpr registers | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | callee-saved fp/simd regs | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.8-byte.alignment.....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- base pointer (not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses r6) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // In some cases when a base pointer is not strictly needed, it is generated 92 // anyway when offsets from the frame pointer to access local variables become 93 // so large that the offset can't be encoded in the immediate fields of loads 94 // or stores. 95 // 96 // The frame pointer might be chosen to be r7 or r11, depending on the target 97 // architecture and operating system. See ARMSubtarget::useR7AsFramePointer for 98 // details. 99 // 100 // Outgoing function arguments must be at the bottom of the stack frame when 101 // calling another function. If we do not have variable-sized stack objects, we 102 // can allocate a "reserved call frame" area at the bottom of the local 103 // variable area, large enough for all outgoing calls. If we do have VLAs, then 104 // the stack pointer must be decremented and incremented around each call to 105 // make space for the arguments below the VLAs. 106 // 107 //===----------------------------------------------------------------------===// 108 109 #include "ARMFrameLowering.h" 110 #include "ARMBaseInstrInfo.h" 111 #include "ARMBaseRegisterInfo.h" 112 #include "ARMConstantPoolValue.h" 113 #include "ARMMachineFunctionInfo.h" 114 #include "ARMSubtarget.h" 115 #include "MCTargetDesc/ARMAddressingModes.h" 116 #include "MCTargetDesc/ARMBaseInfo.h" 117 #include "Utils/ARMBaseInfo.h" 118 #include "llvm/ADT/BitVector.h" 119 #include "llvm/ADT/STLExtras.h" 120 #include "llvm/ADT/SmallPtrSet.h" 121 #include "llvm/ADT/SmallVector.h" 122 #include "llvm/CodeGen/MachineBasicBlock.h" 123 #include "llvm/CodeGen/MachineConstantPool.h" 124 #include "llvm/CodeGen/MachineFrameInfo.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineInstr.h" 127 #include "llvm/CodeGen/MachineInstrBuilder.h" 128 #include "llvm/CodeGen/MachineJumpTableInfo.h" 129 #include "llvm/CodeGen/MachineModuleInfo.h" 130 #include "llvm/CodeGen/MachineOperand.h" 131 #include "llvm/CodeGen/MachineRegisterInfo.h" 132 #include "llvm/CodeGen/RegisterScavenging.h" 133 #include "llvm/CodeGen/TargetInstrInfo.h" 134 #include "llvm/CodeGen/TargetOpcodes.h" 135 #include "llvm/CodeGen/TargetRegisterInfo.h" 136 #include "llvm/CodeGen/TargetSubtargetInfo.h" 137 #include "llvm/IR/Attributes.h" 138 #include "llvm/IR/CallingConv.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/MC/MCContext.h" 142 #include "llvm/MC/MCDwarf.h" 143 #include "llvm/MC/MCInstrDesc.h" 144 #include "llvm/MC/MCRegisterInfo.h" 145 #include "llvm/Support/CodeGen.h" 146 #include "llvm/Support/CommandLine.h" 147 #include "llvm/Support/Compiler.h" 148 #include "llvm/Support/Debug.h" 149 #include "llvm/Support/ErrorHandling.h" 150 #include "llvm/Support/MathExtras.h" 151 #include "llvm/Support/raw_ostream.h" 152 #include "llvm/Target/TargetMachine.h" 153 #include "llvm/Target/TargetOptions.h" 154 #include <algorithm> 155 #include <cassert> 156 #include <cstddef> 157 #include <cstdint> 158 #include <iterator> 159 #include <utility> 160 #include <vector> 161 162 #define DEBUG_TYPE "arm-frame-lowering" 163 164 using namespace llvm; 165 166 static cl::opt<bool> 167 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 168 cl::desc("Align ARM NEON spills in prolog and epilog")); 169 170 static MachineBasicBlock::iterator 171 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 172 unsigned NumAlignedDPRCS2Regs); 173 174 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 175 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 176 STI(sti) {} 177 178 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 179 // iOS always has a FP for backtracking, force other targets to keep their FP 180 // when doing FastISel. The emitted code is currently superior, and in cases 181 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 182 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 183 } 184 185 /// Returns true if the target can safely skip saving callee-saved registers 186 /// for noreturn nounwind functions. 187 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 188 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 189 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 190 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 191 192 // Frame pointer and link register are not treated as normal CSR, thus we 193 // can always skip CSR saves for nonreturning functions. 194 return true; 195 } 196 197 /// hasFP - Return true if the specified function should have a dedicated frame 198 /// pointer register. This is true if the function has variable sized allocas 199 /// or if frame pointer elimination is disabled. 200 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 201 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 203 204 // ABI-required frame pointer. 205 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 206 return true; 207 208 // Frame pointer required for use within this function. 209 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 210 MFI.isFrameAddressTaken()); 211 } 212 213 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 214 /// not required, we reserve argument space for call sites in the function 215 /// immediately on entry to the current function. This eliminates the need for 216 /// add/sub sp brackets around call sites. Returns true if the call frame is 217 /// included as part of the stack frame. 218 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 219 const MachineFrameInfo &MFI = MF.getFrameInfo(); 220 unsigned CFSize = MFI.getMaxCallFrameSize(); 221 // It's not always a good idea to include the call frame as part of the 222 // stack frame. ARM (especially Thumb) has small immediate offset to 223 // address the stack frame. So a large call frame can cause poor codegen 224 // and may even makes it impossible to scavenge a register. 225 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 226 return false; 227 228 return !MFI.hasVarSizedObjects(); 229 } 230 231 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 232 /// call frame pseudos can be simplified. Unlike most targets, having a FP 233 /// is not sufficient here since we still may reference some objects via SP 234 /// even when FP is available in Thumb2 mode. 235 bool 236 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 237 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 238 } 239 240 // Returns how much of the incoming argument stack area we should clean up in an 241 // epilogue. For the C calling convention this will be 0, for guaranteed tail 242 // call conventions it can be positive (a normal return or a tail call to a 243 // function that uses less stack space for arguments) or negative (for a tail 244 // call to a function that needs more stack space than us for arguments). 245 static int getArgumentStackToRestore(MachineFunction &MF, 246 MachineBasicBlock &MBB) { 247 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 248 bool IsTailCallReturn = false; 249 if (MBB.end() != MBBI) { 250 unsigned RetOpcode = MBBI->getOpcode(); 251 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 252 RetOpcode == ARM::TCRETURNri; 253 } 254 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 255 256 int ArgumentPopSize = 0; 257 if (IsTailCallReturn) { 258 MachineOperand &StackAdjust = MBBI->getOperand(1); 259 260 // For a tail-call in a callee-pops-arguments environment, some or all of 261 // the stack may actually be in use for the call's arguments, this is 262 // calculated during LowerCall and consumed here... 263 ArgumentPopSize = StackAdjust.getImm(); 264 } else { 265 // ... otherwise the amount to pop is *all* of the argument space, 266 // conveniently stored in the MachineFunctionInfo by 267 // LowerFormalArguments. This will, of course, be zero for the C calling 268 // convention. 269 ArgumentPopSize = AFI->getArgumentStackToRestore(); 270 } 271 272 return ArgumentPopSize; 273 } 274 275 static void emitRegPlusImmediate( 276 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 277 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 278 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 279 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 280 if (isARM) 281 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 282 Pred, PredReg, TII, MIFlags); 283 else 284 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 285 Pred, PredReg, TII, MIFlags); 286 } 287 288 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 289 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 290 const ARMBaseInstrInfo &TII, int NumBytes, 291 unsigned MIFlags = MachineInstr::NoFlags, 292 ARMCC::CondCodes Pred = ARMCC::AL, 293 unsigned PredReg = 0) { 294 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 295 MIFlags, Pred, PredReg); 296 } 297 298 static int sizeOfSPAdjustment(const MachineInstr &MI) { 299 int RegSize; 300 switch (MI.getOpcode()) { 301 case ARM::VSTMDDB_UPD: 302 RegSize = 8; 303 break; 304 case ARM::STMDB_UPD: 305 case ARM::t2STMDB_UPD: 306 RegSize = 4; 307 break; 308 case ARM::t2STR_PRE: 309 case ARM::STR_PRE_IMM: 310 return 4; 311 default: 312 llvm_unreachable("Unknown push or pop like instruction"); 313 } 314 315 int count = 0; 316 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 317 // pred) so the list starts at 4. 318 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 319 count += RegSize; 320 return count; 321 } 322 323 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 324 size_t StackSizeInBytes) { 325 const MachineFrameInfo &MFI = MF.getFrameInfo(); 326 const Function &F = MF.getFunction(); 327 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 328 if (F.hasFnAttribute("stack-probe-size")) 329 F.getFnAttribute("stack-probe-size") 330 .getValueAsString() 331 .getAsInteger(0, StackProbeSize); 332 return (StackSizeInBytes >= StackProbeSize) && 333 !F.hasFnAttribute("no-stack-arg-probe"); 334 } 335 336 namespace { 337 338 struct StackAdjustingInsts { 339 struct InstInfo { 340 MachineBasicBlock::iterator I; 341 unsigned SPAdjust; 342 bool BeforeFPSet; 343 }; 344 345 SmallVector<InstInfo, 4> Insts; 346 347 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 348 bool BeforeFPSet = false) { 349 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 350 Insts.push_back(Info); 351 } 352 353 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 354 auto Info = 355 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 356 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 357 Info->SPAdjust += ExtraBytes; 358 } 359 360 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 361 const ARMBaseInstrInfo &TII, bool HasFP) { 362 MachineFunction &MF = *MBB.getParent(); 363 unsigned CFAOffset = 0; 364 for (auto &Info : Insts) { 365 if (HasFP && !Info.BeforeFPSet) 366 return; 367 368 CFAOffset += Info.SPAdjust; 369 unsigned CFIIndex = MF.addFrameInst( 370 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 371 BuildMI(MBB, std::next(Info.I), dl, 372 TII.get(TargetOpcode::CFI_INSTRUCTION)) 373 .addCFIIndex(CFIIndex) 374 .setMIFlags(MachineInstr::FrameSetup); 375 } 376 } 377 }; 378 379 } // end anonymous namespace 380 381 /// Emit an instruction sequence that will align the address in 382 /// register Reg by zero-ing out the lower bits. For versions of the 383 /// architecture that support Neon, this must be done in a single 384 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 385 /// single instruction. That function only gets called when optimizing 386 /// spilling of D registers on a core with the Neon instruction set 387 /// present. 388 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 389 const TargetInstrInfo &TII, 390 MachineBasicBlock &MBB, 391 MachineBasicBlock::iterator MBBI, 392 const DebugLoc &DL, const unsigned Reg, 393 const Align Alignment, 394 const bool MustBeSingleInstruction) { 395 const ARMSubtarget &AST = 396 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 397 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 398 const unsigned AlignMask = Alignment.value() - 1U; 399 const unsigned NrBitsToZero = Log2(Alignment); 400 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 401 if (!AFI->isThumbFunction()) { 402 // if the BFC instruction is available, use that to zero the lower 403 // bits: 404 // bfc Reg, #0, log2(Alignment) 405 // otherwise use BIC, if the mask to zero the required number of bits 406 // can be encoded in the bic immediate field 407 // bic Reg, Reg, Alignment-1 408 // otherwise, emit 409 // lsr Reg, Reg, log2(Alignment) 410 // lsl Reg, Reg, log2(Alignment) 411 if (CanUseBFC) { 412 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 413 .addReg(Reg, RegState::Kill) 414 .addImm(~AlignMask) 415 .add(predOps(ARMCC::AL)); 416 } else if (AlignMask <= 255) { 417 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 418 .addReg(Reg, RegState::Kill) 419 .addImm(AlignMask) 420 .add(predOps(ARMCC::AL)) 421 .add(condCodeOp()); 422 } else { 423 assert(!MustBeSingleInstruction && 424 "Shouldn't call emitAligningInstructions demanding a single " 425 "instruction to be emitted for large stack alignment for a target " 426 "without BFC."); 427 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 428 .addReg(Reg, RegState::Kill) 429 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 430 .add(predOps(ARMCC::AL)) 431 .add(condCodeOp()); 432 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 433 .addReg(Reg, RegState::Kill) 434 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 435 .add(predOps(ARMCC::AL)) 436 .add(condCodeOp()); 437 } 438 } else { 439 // Since this is only reached for Thumb-2 targets, the BFC instruction 440 // should always be available. 441 assert(CanUseBFC); 442 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 443 .addReg(Reg, RegState::Kill) 444 .addImm(~AlignMask) 445 .add(predOps(ARMCC::AL)); 446 } 447 } 448 449 /// We need the offset of the frame pointer relative to other MachineFrameInfo 450 /// offsets which are encoded relative to SP at function begin. 451 /// See also emitPrologue() for how the FP is set up. 452 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 453 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 454 /// this to produce a conservative estimate that we check in an assert() later. 455 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) { 456 // For Thumb1, push.w isn't available, so the first push will always push 457 // r7 and lr onto the stack first. 458 if (AFI.isThumb1OnlyFunction()) 459 return -AFI.getArgRegsSaveSize() - (2 * 4); 460 // This is a conservative estimation: Assume the frame pointer being r7 and 461 // pc("r15") up to r8 getting spilled before (= 8 registers). 462 int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 463 return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4); 464 } 465 466 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 467 MachineBasicBlock &MBB) const { 468 MachineBasicBlock::iterator MBBI = MBB.begin(); 469 MachineFrameInfo &MFI = MF.getFrameInfo(); 470 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 471 MachineModuleInfo &MMI = MF.getMMI(); 472 MCContext &Context = MMI.getContext(); 473 const TargetMachine &TM = MF.getTarget(); 474 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 475 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 476 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 477 assert(!AFI->isThumb1OnlyFunction() && 478 "This emitPrologue does not support Thumb1!"); 479 bool isARM = !AFI->isThumbFunction(); 480 Align Alignment = STI.getFrameLowering()->getStackAlign(); 481 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 482 unsigned NumBytes = MFI.getStackSize(); 483 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 484 int FPCXTSaveSize = 0; 485 486 // Debug location must be unknown since the first debug location is used 487 // to determine the end of the prologue. 488 DebugLoc dl; 489 490 Register FramePtr = RegInfo->getFrameRegister(MF); 491 492 // Determine the sizes of each callee-save spill areas and record which frame 493 // belongs to which callee-save spill areas. 494 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 495 int FramePtrSpillFI = 0; 496 int D8SpillFI = 0; 497 498 // All calls are tail calls in GHC calling conv, and functions have no 499 // prologue/epilogue. 500 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 501 return; 502 503 StackAdjustingInsts DefCFAOffsetCandidates; 504 bool HasFP = hasFP(MF); 505 506 // Allocate the vararg register save area. 507 if (ArgRegsSaveSize) { 508 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 509 MachineInstr::FrameSetup); 510 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 511 } 512 513 if (!AFI->hasStackFrame() && 514 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 515 if (NumBytes - ArgRegsSaveSize != 0) { 516 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 517 MachineInstr::FrameSetup); 518 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 519 NumBytes - ArgRegsSaveSize, true); 520 } 521 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 522 return; 523 } 524 525 // Determine spill area sizes. 526 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 527 unsigned Reg = CSI[i].getReg(); 528 int FI = CSI[i].getFrameIdx(); 529 switch (Reg) { 530 case ARM::R8: 531 case ARM::R9: 532 case ARM::R10: 533 case ARM::R11: 534 case ARM::R12: 535 if (STI.splitFramePushPop(MF)) { 536 GPRCS2Size += 4; 537 break; 538 } 539 LLVM_FALLTHROUGH; 540 case ARM::R0: 541 case ARM::R1: 542 case ARM::R2: 543 case ARM::R3: 544 case ARM::R4: 545 case ARM::R5: 546 case ARM::R6: 547 case ARM::R7: 548 case ARM::LR: 549 if (Reg == FramePtr) 550 FramePtrSpillFI = FI; 551 GPRCS1Size += 4; 552 break; 553 case ARM::FPCXTNS: 554 FPCXTSaveSize = 4; 555 break; 556 default: 557 // This is a DPR. Exclude the aligned DPRCS2 spills. 558 if (Reg == ARM::D8) 559 D8SpillFI = FI; 560 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 561 DPRCSSize += 8; 562 } 563 } 564 565 // Move past FPCXT area. 566 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 567 if (FPCXTSaveSize > 0) { 568 LastPush = MBBI++; 569 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 570 } 571 572 // Move past area 1. 573 if (GPRCS1Size > 0) { 574 GPRCS1Push = LastPush = MBBI++; 575 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 576 } 577 578 // Determine starting offsets of spill areas. 579 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 580 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 581 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 582 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 583 unsigned DPRGapSize = 584 (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) % 585 DPRAlign.value(); 586 587 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 588 int FramePtrOffsetInPush = 0; 589 if (HasFP) { 590 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 591 assert(getMaxFPOffset(STI, *AFI) <= FPOffset && 592 "Max FP estimation is wrong"); 593 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 594 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 595 NumBytes); 596 } 597 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 598 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 599 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 600 601 // Move past area 2. 602 if (GPRCS2Size > 0) { 603 GPRCS2Push = LastPush = MBBI++; 604 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 605 } 606 607 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 608 // .cfi_offset operations will reflect that. 609 if (DPRGapSize) { 610 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 611 if (LastPush != MBB.end() && 612 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 613 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 614 else { 615 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 616 MachineInstr::FrameSetup); 617 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 618 } 619 } 620 621 // Move past area 3. 622 if (DPRCSSize > 0) { 623 // Since vpush register list cannot have gaps, there may be multiple vpush 624 // instructions in the prologue. 625 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 626 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 627 LastPush = MBBI++; 628 } 629 } 630 631 // Move past the aligned DPRCS2 area. 632 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 633 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 634 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 635 // leaves the stack pointer pointing to the DPRCS2 area. 636 // 637 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 638 NumBytes += MFI.getObjectOffset(D8SpillFI); 639 } else 640 NumBytes = DPRCSOffset; 641 642 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 643 uint32_t NumWords = NumBytes >> 2; 644 645 if (NumWords < 65536) 646 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 647 .addImm(NumWords) 648 .setMIFlags(MachineInstr::FrameSetup) 649 .add(predOps(ARMCC::AL)); 650 else 651 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 652 .addImm(NumWords) 653 .setMIFlags(MachineInstr::FrameSetup); 654 655 switch (TM.getCodeModel()) { 656 case CodeModel::Tiny: 657 llvm_unreachable("Tiny code model not available on ARM."); 658 case CodeModel::Small: 659 case CodeModel::Medium: 660 case CodeModel::Kernel: 661 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 662 .add(predOps(ARMCC::AL)) 663 .addExternalSymbol("__chkstk") 664 .addReg(ARM::R4, RegState::Implicit) 665 .setMIFlags(MachineInstr::FrameSetup); 666 break; 667 case CodeModel::Large: 668 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 669 .addExternalSymbol("__chkstk") 670 .setMIFlags(MachineInstr::FrameSetup); 671 672 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 673 .add(predOps(ARMCC::AL)) 674 .addReg(ARM::R12, RegState::Kill) 675 .addReg(ARM::R4, RegState::Implicit) 676 .setMIFlags(MachineInstr::FrameSetup); 677 break; 678 } 679 680 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 681 .addReg(ARM::SP, RegState::Kill) 682 .addReg(ARM::R4, RegState::Kill) 683 .setMIFlags(MachineInstr::FrameSetup) 684 .add(predOps(ARMCC::AL)) 685 .add(condCodeOp()); 686 NumBytes = 0; 687 } 688 689 if (NumBytes) { 690 // Adjust SP after all the callee-save spills. 691 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 692 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 693 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 694 else { 695 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 696 MachineInstr::FrameSetup); 697 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 698 } 699 700 if (HasFP && isARM) 701 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 702 // Note it's not safe to do this in Thumb2 mode because it would have 703 // taken two instructions: 704 // mov sp, r7 705 // sub sp, #24 706 // If an interrupt is taken between the two instructions, then sp is in 707 // an inconsistent state (pointing to the middle of callee-saved area). 708 // The interrupt handler can end up clobbering the registers. 709 AFI->setShouldRestoreSPFromFP(true); 710 } 711 712 // Set FP to point to the stack slot that contains the previous FP. 713 // For iOS, FP is R7, which has now been stored in spill area 1. 714 // Otherwise, if this is not iOS, all the callee-saved registers go 715 // into spill area 1, including the FP in R11. In either case, it 716 // is in area one and the adjustment needs to take place just after 717 // that push. 718 if (HasFP) { 719 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 720 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 721 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 722 dl, TII, FramePtr, ARM::SP, 723 PushSize + FramePtrOffsetInPush, 724 MachineInstr::FrameSetup); 725 if (FramePtrOffsetInPush + PushSize != 0) { 726 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 727 nullptr, MRI->getDwarfRegNum(FramePtr, true), 728 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 729 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 730 .addCFIIndex(CFIIndex) 731 .setMIFlags(MachineInstr::FrameSetup); 732 } else { 733 unsigned CFIIndex = 734 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 735 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 736 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 737 .addCFIIndex(CFIIndex) 738 .setMIFlags(MachineInstr::FrameSetup); 739 } 740 } 741 742 // Now that the prologue's actual instructions are finalised, we can insert 743 // the necessary DWARF cf instructions to describe the situation. Start by 744 // recording where each register ended up: 745 if (GPRCS1Size > 0) { 746 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 747 int CFIIndex; 748 for (const auto &Entry : CSI) { 749 unsigned Reg = Entry.getReg(); 750 int FI = Entry.getFrameIdx(); 751 switch (Reg) { 752 case ARM::R8: 753 case ARM::R9: 754 case ARM::R10: 755 case ARM::R11: 756 case ARM::R12: 757 if (STI.splitFramePushPop(MF)) 758 break; 759 LLVM_FALLTHROUGH; 760 case ARM::R0: 761 case ARM::R1: 762 case ARM::R2: 763 case ARM::R3: 764 case ARM::R4: 765 case ARM::R5: 766 case ARM::R6: 767 case ARM::R7: 768 case ARM::LR: 769 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 770 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 771 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 772 .addCFIIndex(CFIIndex) 773 .setMIFlags(MachineInstr::FrameSetup); 774 break; 775 } 776 } 777 } 778 779 if (GPRCS2Size > 0) { 780 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 781 for (const auto &Entry : CSI) { 782 unsigned Reg = Entry.getReg(); 783 int FI = Entry.getFrameIdx(); 784 switch (Reg) { 785 case ARM::R8: 786 case ARM::R9: 787 case ARM::R10: 788 case ARM::R11: 789 case ARM::R12: 790 if (STI.splitFramePushPop(MF)) { 791 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 792 unsigned Offset = MFI.getObjectOffset(FI); 793 unsigned CFIIndex = MF.addFrameInst( 794 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 795 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 796 .addCFIIndex(CFIIndex) 797 .setMIFlags(MachineInstr::FrameSetup); 798 } 799 break; 800 } 801 } 802 } 803 804 if (DPRCSSize > 0) { 805 // Since vpush register list cannot have gaps, there may be multiple vpush 806 // instructions in the prologue. 807 MachineBasicBlock::iterator Pos = std::next(LastPush); 808 for (const auto &Entry : CSI) { 809 unsigned Reg = Entry.getReg(); 810 int FI = Entry.getFrameIdx(); 811 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 812 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 813 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 814 unsigned Offset = MFI.getObjectOffset(FI); 815 unsigned CFIIndex = MF.addFrameInst( 816 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 817 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 818 .addCFIIndex(CFIIndex) 819 .setMIFlags(MachineInstr::FrameSetup); 820 } 821 } 822 } 823 824 // Now we can emit descriptions of where the canonical frame address was 825 // throughout the process. If we have a frame pointer, it takes over the job 826 // half-way through, so only the first few .cfi_def_cfa_offset instructions 827 // actually get emitted. 828 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 829 830 if (STI.isTargetELF() && hasFP(MF)) 831 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 832 AFI->getFramePtrSpillOffset()); 833 834 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 835 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 836 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 837 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 838 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 839 840 // If we need dynamic stack realignment, do it here. Be paranoid and make 841 // sure if we also have VLAs, we have a base pointer for frame access. 842 // If aligned NEON registers were spilled, the stack has already been 843 // realigned. 844 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 845 Align MaxAlign = MFI.getMaxAlign(); 846 assert(!AFI->isThumb1OnlyFunction()); 847 if (!AFI->isThumbFunction()) { 848 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 849 false); 850 } else { 851 // We cannot use sp as source/dest register here, thus we're using r4 to 852 // perform the calculations. We're emitting the following sequence: 853 // mov r4, sp 854 // -- use emitAligningInstructions to produce best sequence to zero 855 // -- out lower bits in r4 856 // mov sp, r4 857 // FIXME: It will be better just to find spare register here. 858 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 859 .addReg(ARM::SP, RegState::Kill) 860 .add(predOps(ARMCC::AL)); 861 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 862 false); 863 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 864 .addReg(ARM::R4, RegState::Kill) 865 .add(predOps(ARMCC::AL)); 866 } 867 868 AFI->setShouldRestoreSPFromFP(true); 869 } 870 871 // If we need a base pointer, set it up here. It's whatever the value 872 // of the stack pointer is at this point. Any variable size objects 873 // will be allocated after this, so we can still use the base pointer 874 // to reference locals. 875 // FIXME: Clarify FrameSetup flags here. 876 if (RegInfo->hasBasePointer(MF)) { 877 if (isARM) 878 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 879 .addReg(ARM::SP) 880 .add(predOps(ARMCC::AL)) 881 .add(condCodeOp()); 882 else 883 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 884 .addReg(ARM::SP) 885 .add(predOps(ARMCC::AL)); 886 } 887 888 // If the frame has variable sized objects then the epilogue must restore 889 // the sp from fp. We can assume there's an FP here since hasFP already 890 // checks for hasVarSizedObjects. 891 if (MFI.hasVarSizedObjects()) 892 AFI->setShouldRestoreSPFromFP(true); 893 } 894 895 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 896 MachineBasicBlock &MBB) const { 897 MachineFrameInfo &MFI = MF.getFrameInfo(); 898 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 899 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 900 const ARMBaseInstrInfo &TII = 901 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 902 assert(!AFI->isThumb1OnlyFunction() && 903 "This emitEpilogue does not support Thumb1!"); 904 bool isARM = !AFI->isThumbFunction(); 905 906 // Amount of stack space we reserved next to incoming args for either 907 // varargs registers or stack arguments in tail calls made by this function. 908 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 909 910 // How much of the stack used by incoming arguments this function is expected 911 // to restore in this particular epilogue. 912 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 913 int NumBytes = (int)MFI.getStackSize(); 914 Register FramePtr = RegInfo->getFrameRegister(MF); 915 916 // All calls are tail calls in GHC calling conv, and functions have no 917 // prologue/epilogue. 918 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 919 return; 920 921 // First put ourselves on the first (from top) terminator instructions. 922 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 923 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 924 925 if (!AFI->hasStackFrame()) { 926 if (NumBytes - ReservedArgStack != 0) 927 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ReservedArgStack, 928 MachineInstr::FrameDestroy); 929 } else { 930 // Unwind MBBI to point to first LDR / VLDRD. 931 if (MBBI != MBB.begin()) { 932 do { 933 --MBBI; 934 } while (MBBI != MBB.begin() && 935 MBBI->getFlag(MachineInstr::FrameDestroy)); 936 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 937 ++MBBI; 938 } 939 940 // Move SP to start of FP callee save spill area. 941 NumBytes -= (ReservedArgStack + 942 AFI->getFPCXTSaveAreaSize() + 943 AFI->getGPRCalleeSavedArea1Size() + 944 AFI->getGPRCalleeSavedArea2Size() + 945 AFI->getDPRCalleeSavedGapSize() + 946 AFI->getDPRCalleeSavedAreaSize()); 947 948 // Reset SP based on frame pointer only if the stack frame extends beyond 949 // frame pointer stack slot or target is ELF and the function has FP. 950 if (AFI->shouldRestoreSPFromFP()) { 951 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 952 if (NumBytes) { 953 if (isARM) 954 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 955 ARMCC::AL, 0, TII, 956 MachineInstr::FrameDestroy); 957 else { 958 // It's not possible to restore SP from FP in a single instruction. 959 // For iOS, this looks like: 960 // mov sp, r7 961 // sub sp, #24 962 // This is bad, if an interrupt is taken after the mov, sp is in an 963 // inconsistent state. 964 // Use the first callee-saved register as a scratch register. 965 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 966 "No scratch register to restore SP from FP!"); 967 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 968 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 969 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 970 .addReg(ARM::R4) 971 .add(predOps(ARMCC::AL)) 972 .setMIFlag(MachineInstr::FrameDestroy); 973 } 974 } else { 975 // Thumb2 or ARM. 976 if (isARM) 977 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 978 .addReg(FramePtr) 979 .add(predOps(ARMCC::AL)) 980 .add(condCodeOp()) 981 .setMIFlag(MachineInstr::FrameDestroy); 982 else 983 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 984 .addReg(FramePtr) 985 .add(predOps(ARMCC::AL)) 986 .setMIFlag(MachineInstr::FrameDestroy); 987 } 988 } else if (NumBytes && 989 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 990 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 991 MachineInstr::FrameDestroy); 992 993 // Increment past our save areas. 994 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 995 MBBI++; 996 // Since vpop register list cannot have gaps, there may be multiple vpop 997 // instructions in the epilogue. 998 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 999 MBBI++; 1000 } 1001 if (AFI->getDPRCalleeSavedGapSize()) { 1002 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1003 "unexpected DPR alignment gap"); 1004 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1005 MachineInstr::FrameDestroy); 1006 } 1007 1008 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 1009 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1010 if (AFI->getFPCXTSaveAreaSize()) MBBI++; 1011 } 1012 1013 if (ReservedArgStack || IncomingArgStackToRestore) { 1014 assert(ReservedArgStack + IncomingArgStackToRestore >= 0 && 1015 "attempting to restore negative stack amount"); 1016 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1017 ReservedArgStack + IncomingArgStackToRestore, 1018 MachineInstr::FrameDestroy); 1019 } 1020 } 1021 1022 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1023 /// debug info. It's the same as what we use for resolving the code-gen 1024 /// references for now. FIXME: This can go wrong when references are 1025 /// SP-relative and simple call frames aren't used. 1026 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1027 int FI, 1028 Register &FrameReg) const { 1029 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1030 } 1031 1032 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1033 int FI, Register &FrameReg, 1034 int SPAdj) const { 1035 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1036 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1037 MF.getSubtarget().getRegisterInfo()); 1038 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1039 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1040 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1041 bool isFixed = MFI.isFixedObjectIndex(FI); 1042 1043 FrameReg = ARM::SP; 1044 Offset += SPAdj; 1045 1046 // SP can move around if there are allocas. We may also lose track of SP 1047 // when emergency spilling inside a non-reserved call frame setup. 1048 bool hasMovingSP = !hasReservedCallFrame(MF); 1049 1050 // When dynamically realigning the stack, use the frame pointer for 1051 // parameters, and the stack/base pointer for locals. 1052 if (RegInfo->hasStackRealignment(MF)) { 1053 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1054 if (isFixed) { 1055 FrameReg = RegInfo->getFrameRegister(MF); 1056 Offset = FPOffset; 1057 } else if (hasMovingSP) { 1058 assert(RegInfo->hasBasePointer(MF) && 1059 "VLAs and dynamic stack alignment, but missing base pointer!"); 1060 FrameReg = RegInfo->getBaseRegister(); 1061 Offset -= SPAdj; 1062 } 1063 return Offset; 1064 } 1065 1066 // If there is a frame pointer, use it when we can. 1067 if (hasFP(MF) && AFI->hasStackFrame()) { 1068 // Use frame pointer to reference fixed objects. Use it for locals if 1069 // there are VLAs (and thus the SP isn't reliable as a base). 1070 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1071 FrameReg = RegInfo->getFrameRegister(MF); 1072 return FPOffset; 1073 } else if (hasMovingSP) { 1074 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1075 if (AFI->isThumb2Function()) { 1076 // Try to use the frame pointer if we can, else use the base pointer 1077 // since it's available. This is handy for the emergency spill slot, in 1078 // particular. 1079 if (FPOffset >= -255 && FPOffset < 0) { 1080 FrameReg = RegInfo->getFrameRegister(MF); 1081 return FPOffset; 1082 } 1083 } 1084 } else if (AFI->isThumbFunction()) { 1085 // Prefer SP to base pointer, if the offset is suitably aligned and in 1086 // range as the effective range of the immediate offset is bigger when 1087 // basing off SP. 1088 // Use add <rd>, sp, #<imm8> 1089 // ldr <rd>, [sp, #<imm8>] 1090 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1091 return Offset; 1092 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1093 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1094 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1095 FrameReg = RegInfo->getFrameRegister(MF); 1096 return FPOffset; 1097 } 1098 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1099 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1100 FrameReg = RegInfo->getFrameRegister(MF); 1101 return FPOffset; 1102 } 1103 } 1104 // Use the base pointer if we have one. 1105 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1106 // That can happen if we forced a base pointer for a large call frame. 1107 if (RegInfo->hasBasePointer(MF)) { 1108 FrameReg = RegInfo->getBaseRegister(); 1109 Offset -= SPAdj; 1110 } 1111 return Offset; 1112 } 1113 1114 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1115 MachineBasicBlock::iterator MI, 1116 ArrayRef<CalleeSavedInfo> CSI, 1117 unsigned StmOpc, unsigned StrOpc, 1118 bool NoGap, bool (*Func)(unsigned, bool), 1119 unsigned NumAlignedDPRCS2Regs, 1120 unsigned MIFlags) const { 1121 MachineFunction &MF = *MBB.getParent(); 1122 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1123 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1124 1125 DebugLoc DL; 1126 1127 using RegAndKill = std::pair<unsigned, bool>; 1128 1129 SmallVector<RegAndKill, 4> Regs; 1130 unsigned i = CSI.size(); 1131 while (i != 0) { 1132 unsigned LastReg = 0; 1133 for (; i != 0; --i) { 1134 unsigned Reg = CSI[i-1].getReg(); 1135 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1136 1137 // D-registers in the aligned area DPRCS2 are NOT spilled here. 1138 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1139 continue; 1140 1141 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1142 bool isLiveIn = MRI.isLiveIn(Reg); 1143 if (!isLiveIn && !MRI.isReserved(Reg)) 1144 MBB.addLiveIn(Reg); 1145 // If NoGap is true, push consecutive registers and then leave the rest 1146 // for other instructions. e.g. 1147 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1148 if (NoGap && LastReg && LastReg != Reg-1) 1149 break; 1150 LastReg = Reg; 1151 // Do not set a kill flag on values that are also marked as live-in. This 1152 // happens with the @llvm-returnaddress intrinsic and with arguments 1153 // passed in callee saved registers. 1154 // Omitting the kill flags is conservatively correct even if the live-in 1155 // is not used after all. 1156 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1157 } 1158 1159 if (Regs.empty()) 1160 continue; 1161 1162 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1163 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1164 }); 1165 1166 if (Regs.size() > 1 || StrOpc== 0) { 1167 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1168 .addReg(ARM::SP) 1169 .setMIFlags(MIFlags) 1170 .add(predOps(ARMCC::AL)); 1171 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1172 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1173 } else if (Regs.size() == 1) { 1174 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1175 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1176 .addReg(ARM::SP) 1177 .setMIFlags(MIFlags) 1178 .addImm(-4) 1179 .add(predOps(ARMCC::AL)); 1180 } 1181 Regs.clear(); 1182 1183 // Put any subsequent vpush instructions before this one: they will refer to 1184 // higher register numbers so need to be pushed first in order to preserve 1185 // monotonicity. 1186 if (MI != MBB.begin()) 1187 --MI; 1188 } 1189 } 1190 1191 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1192 MachineBasicBlock::iterator MI, 1193 MutableArrayRef<CalleeSavedInfo> CSI, 1194 unsigned LdmOpc, unsigned LdrOpc, 1195 bool isVarArg, bool NoGap, 1196 bool (*Func)(unsigned, bool), 1197 unsigned NumAlignedDPRCS2Regs) const { 1198 MachineFunction &MF = *MBB.getParent(); 1199 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1200 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1201 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1202 DebugLoc DL; 1203 bool isTailCall = false; 1204 bool isInterrupt = false; 1205 bool isTrap = false; 1206 bool isCmseEntry = false; 1207 if (MBB.end() != MI) { 1208 DL = MI->getDebugLoc(); 1209 unsigned RetOpcode = MI->getOpcode(); 1210 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1211 isInterrupt = 1212 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1213 isTrap = 1214 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1215 RetOpcode == ARM::tTRAP; 1216 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1217 } 1218 1219 SmallVector<unsigned, 4> Regs; 1220 unsigned i = CSI.size(); 1221 while (i != 0) { 1222 unsigned LastReg = 0; 1223 bool DeleteRet = false; 1224 for (; i != 0; --i) { 1225 CalleeSavedInfo &Info = CSI[i-1]; 1226 unsigned Reg = Info.getReg(); 1227 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1228 1229 // The aligned reloads from area DPRCS2 are not inserted here. 1230 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1231 continue; 1232 1233 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1234 !isCmseEntry && !isTrap && STI.hasV5TOps()) { 1235 if (MBB.succ_empty()) { 1236 Reg = ARM::PC; 1237 // Fold the return instruction into the LDM. 1238 DeleteRet = true; 1239 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1240 // We 'restore' LR into PC so it is not live out of the return block: 1241 // Clear Restored bit. 1242 Info.setRestored(false); 1243 } else 1244 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1245 } 1246 1247 // If NoGap is true, pop consecutive registers and then leave the rest 1248 // for other instructions. e.g. 1249 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1250 if (NoGap && LastReg && LastReg != Reg-1) 1251 break; 1252 1253 LastReg = Reg; 1254 Regs.push_back(Reg); 1255 } 1256 1257 if (Regs.empty()) 1258 continue; 1259 1260 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1261 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1262 }); 1263 1264 if (Regs.size() > 1 || LdrOpc == 0) { 1265 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1266 .addReg(ARM::SP) 1267 .add(predOps(ARMCC::AL)) 1268 .setMIFlags(MachineInstr::FrameDestroy); 1269 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1270 MIB.addReg(Regs[i], getDefRegState(true)); 1271 if (DeleteRet) { 1272 if (MI != MBB.end()) { 1273 MIB.copyImplicitOps(*MI); 1274 MI->eraseFromParent(); 1275 } 1276 } 1277 MI = MIB; 1278 } else if (Regs.size() == 1) { 1279 // If we adjusted the reg to PC from LR above, switch it back here. We 1280 // only do that for LDM. 1281 if (Regs[0] == ARM::PC) 1282 Regs[0] = ARM::LR; 1283 MachineInstrBuilder MIB = 1284 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1285 .addReg(ARM::SP, RegState::Define) 1286 .addReg(ARM::SP) 1287 .setMIFlags(MachineInstr::FrameDestroy); 1288 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1289 // that refactoring is complete (eventually). 1290 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1291 MIB.addReg(0); 1292 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1293 } else 1294 MIB.addImm(4); 1295 MIB.add(predOps(ARMCC::AL)); 1296 } 1297 Regs.clear(); 1298 1299 // Put any subsequent vpop instructions after this one: they will refer to 1300 // higher register numbers so need to be popped afterwards. 1301 if (MI != MBB.end()) 1302 ++MI; 1303 } 1304 } 1305 1306 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1307 /// starting from d8. Also insert stack realignment code and leave the stack 1308 /// pointer pointing to the d8 spill slot. 1309 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1310 MachineBasicBlock::iterator MI, 1311 unsigned NumAlignedDPRCS2Regs, 1312 ArrayRef<CalleeSavedInfo> CSI, 1313 const TargetRegisterInfo *TRI) { 1314 MachineFunction &MF = *MBB.getParent(); 1315 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1316 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1317 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1318 MachineFrameInfo &MFI = MF.getFrameInfo(); 1319 1320 // Mark the D-register spill slots as properly aligned. Since MFI computes 1321 // stack slot layout backwards, this can actually mean that the d-reg stack 1322 // slot offsets can be wrong. The offset for d8 will always be correct. 1323 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1324 unsigned DNum = CSI[i].getReg() - ARM::D8; 1325 if (DNum > NumAlignedDPRCS2Regs - 1) 1326 continue; 1327 int FI = CSI[i].getFrameIdx(); 1328 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1329 // registers will be 8-byte aligned. 1330 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1331 1332 // The stack slot for D8 needs to be maximally aligned because this is 1333 // actually the point where we align the stack pointer. MachineFrameInfo 1334 // computes all offsets relative to the incoming stack pointer which is a 1335 // bit weird when realigning the stack. Any extra padding for this 1336 // over-alignment is not realized because the code inserted below adjusts 1337 // the stack pointer by numregs * 8 before aligning the stack pointer. 1338 if (DNum == 0) 1339 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1340 } 1341 1342 // Move the stack pointer to the d8 spill slot, and align it at the same 1343 // time. Leave the stack slot address in the scratch register r4. 1344 // 1345 // sub r4, sp, #numregs * 8 1346 // bic r4, r4, #align - 1 1347 // mov sp, r4 1348 // 1349 bool isThumb = AFI->isThumbFunction(); 1350 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1351 AFI->setShouldRestoreSPFromFP(true); 1352 1353 // sub r4, sp, #numregs * 8 1354 // The immediate is <= 64, so it doesn't need any special encoding. 1355 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1356 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1357 .addReg(ARM::SP) 1358 .addImm(8 * NumAlignedDPRCS2Regs) 1359 .add(predOps(ARMCC::AL)) 1360 .add(condCodeOp()); 1361 1362 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1363 // We must set parameter MustBeSingleInstruction to true, since 1364 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1365 // stack alignment. Luckily, this can always be done since all ARM 1366 // architecture versions that support Neon also support the BFC 1367 // instruction. 1368 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1369 1370 // mov sp, r4 1371 // The stack pointer must be adjusted before spilling anything, otherwise 1372 // the stack slots could be clobbered by an interrupt handler. 1373 // Leave r4 live, it is used below. 1374 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1375 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1376 .addReg(ARM::R4) 1377 .add(predOps(ARMCC::AL)); 1378 if (!isThumb) 1379 MIB.add(condCodeOp()); 1380 1381 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1382 // r4 holds the stack slot address. 1383 unsigned NextReg = ARM::D8; 1384 1385 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1386 // The writeback is only needed when emitting two vst1.64 instructions. 1387 if (NumAlignedDPRCS2Regs >= 6) { 1388 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1389 &ARM::QQPRRegClass); 1390 MBB.addLiveIn(SupReg); 1391 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1392 .addReg(ARM::R4, RegState::Kill) 1393 .addImm(16) 1394 .addReg(NextReg) 1395 .addReg(SupReg, RegState::ImplicitKill) 1396 .add(predOps(ARMCC::AL)); 1397 NextReg += 4; 1398 NumAlignedDPRCS2Regs -= 4; 1399 } 1400 1401 // We won't modify r4 beyond this point. It currently points to the next 1402 // register to be spilled. 1403 unsigned R4BaseReg = NextReg; 1404 1405 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1406 if (NumAlignedDPRCS2Regs >= 4) { 1407 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1408 &ARM::QQPRRegClass); 1409 MBB.addLiveIn(SupReg); 1410 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1411 .addReg(ARM::R4) 1412 .addImm(16) 1413 .addReg(NextReg) 1414 .addReg(SupReg, RegState::ImplicitKill) 1415 .add(predOps(ARMCC::AL)); 1416 NextReg += 4; 1417 NumAlignedDPRCS2Regs -= 4; 1418 } 1419 1420 // 16-byte aligned vst1.64 with 2 d-regs. 1421 if (NumAlignedDPRCS2Regs >= 2) { 1422 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1423 &ARM::QPRRegClass); 1424 MBB.addLiveIn(SupReg); 1425 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1426 .addReg(ARM::R4) 1427 .addImm(16) 1428 .addReg(SupReg) 1429 .add(predOps(ARMCC::AL)); 1430 NextReg += 2; 1431 NumAlignedDPRCS2Regs -= 2; 1432 } 1433 1434 // Finally, use a vanilla vstr.64 for the odd last register. 1435 if (NumAlignedDPRCS2Regs) { 1436 MBB.addLiveIn(NextReg); 1437 // vstr.64 uses addrmode5 which has an offset scale of 4. 1438 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1439 .addReg(NextReg) 1440 .addReg(ARM::R4) 1441 .addImm((NextReg - R4BaseReg) * 2) 1442 .add(predOps(ARMCC::AL)); 1443 } 1444 1445 // The last spill instruction inserted should kill the scratch register r4. 1446 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1447 } 1448 1449 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1450 /// iterator to the following instruction. 1451 static MachineBasicBlock::iterator 1452 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1453 unsigned NumAlignedDPRCS2Regs) { 1454 // sub r4, sp, #numregs * 8 1455 // bic r4, r4, #align - 1 1456 // mov sp, r4 1457 ++MI; ++MI; ++MI; 1458 assert(MI->mayStore() && "Expecting spill instruction"); 1459 1460 // These switches all fall through. 1461 switch(NumAlignedDPRCS2Regs) { 1462 case 7: 1463 ++MI; 1464 assert(MI->mayStore() && "Expecting spill instruction"); 1465 LLVM_FALLTHROUGH; 1466 default: 1467 ++MI; 1468 assert(MI->mayStore() && "Expecting spill instruction"); 1469 LLVM_FALLTHROUGH; 1470 case 1: 1471 case 2: 1472 case 4: 1473 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1474 ++MI; 1475 } 1476 return MI; 1477 } 1478 1479 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1480 /// starting from d8. These instructions are assumed to execute while the 1481 /// stack is still aligned, unlike the code inserted by emitPopInst. 1482 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1483 MachineBasicBlock::iterator MI, 1484 unsigned NumAlignedDPRCS2Regs, 1485 ArrayRef<CalleeSavedInfo> CSI, 1486 const TargetRegisterInfo *TRI) { 1487 MachineFunction &MF = *MBB.getParent(); 1488 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1489 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1490 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1491 1492 // Find the frame index assigned to d8. 1493 int D8SpillFI = 0; 1494 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1495 if (CSI[i].getReg() == ARM::D8) { 1496 D8SpillFI = CSI[i].getFrameIdx(); 1497 break; 1498 } 1499 1500 // Materialize the address of the d8 spill slot into the scratch register r4. 1501 // This can be fairly complicated if the stack frame is large, so just use 1502 // the normal frame index elimination mechanism to do it. This code runs as 1503 // the initial part of the epilog where the stack and base pointers haven't 1504 // been changed yet. 1505 bool isThumb = AFI->isThumbFunction(); 1506 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1507 1508 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1509 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1510 .addFrameIndex(D8SpillFI) 1511 .addImm(0) 1512 .add(predOps(ARMCC::AL)) 1513 .add(condCodeOp()); 1514 1515 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1516 unsigned NextReg = ARM::D8; 1517 1518 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1519 if (NumAlignedDPRCS2Regs >= 6) { 1520 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1521 &ARM::QQPRRegClass); 1522 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1523 .addReg(ARM::R4, RegState::Define) 1524 .addReg(ARM::R4, RegState::Kill) 1525 .addImm(16) 1526 .addReg(SupReg, RegState::ImplicitDefine) 1527 .add(predOps(ARMCC::AL)); 1528 NextReg += 4; 1529 NumAlignedDPRCS2Regs -= 4; 1530 } 1531 1532 // We won't modify r4 beyond this point. It currently points to the next 1533 // register to be spilled. 1534 unsigned R4BaseReg = NextReg; 1535 1536 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1537 if (NumAlignedDPRCS2Regs >= 4) { 1538 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1539 &ARM::QQPRRegClass); 1540 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1541 .addReg(ARM::R4) 1542 .addImm(16) 1543 .addReg(SupReg, RegState::ImplicitDefine) 1544 .add(predOps(ARMCC::AL)); 1545 NextReg += 4; 1546 NumAlignedDPRCS2Regs -= 4; 1547 } 1548 1549 // 16-byte aligned vld1.64 with 2 d-regs. 1550 if (NumAlignedDPRCS2Regs >= 2) { 1551 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1552 &ARM::QPRRegClass); 1553 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1554 .addReg(ARM::R4) 1555 .addImm(16) 1556 .add(predOps(ARMCC::AL)); 1557 NextReg += 2; 1558 NumAlignedDPRCS2Regs -= 2; 1559 } 1560 1561 // Finally, use a vanilla vldr.64 for the remaining odd register. 1562 if (NumAlignedDPRCS2Regs) 1563 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1564 .addReg(ARM::R4) 1565 .addImm(2 * (NextReg - R4BaseReg)) 1566 .add(predOps(ARMCC::AL)); 1567 1568 // Last store kills r4. 1569 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1570 } 1571 1572 bool ARMFrameLowering::spillCalleeSavedRegisters( 1573 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1574 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1575 if (CSI.empty()) 1576 return false; 1577 1578 MachineFunction &MF = *MBB.getParent(); 1579 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1580 1581 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1582 unsigned PushOneOpc = AFI->isThumbFunction() ? 1583 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1584 unsigned FltOpc = ARM::VSTMDDB_UPD; 1585 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1586 // Save the non-secure floating point context. 1587 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 1588 return C.getReg() == ARM::FPCXTNS; 1589 })) { 1590 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 1591 ARM::SP) 1592 .addReg(ARM::SP) 1593 .addImm(-4) 1594 .add(predOps(ARMCC::AL)); 1595 } 1596 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1597 MachineInstr::FrameSetup); 1598 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1599 MachineInstr::FrameSetup); 1600 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1601 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1602 1603 // The code above does not insert spill code for the aligned DPRCS2 registers. 1604 // The stack realignment code will be inserted between the push instructions 1605 // and these spills. 1606 if (NumAlignedDPRCS2Regs) 1607 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1608 1609 return true; 1610 } 1611 1612 bool ARMFrameLowering::restoreCalleeSavedRegisters( 1613 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1614 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1615 if (CSI.empty()) 1616 return false; 1617 1618 MachineFunction &MF = *MBB.getParent(); 1619 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1620 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1621 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1622 1623 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1624 // registers. Do that here instead. 1625 if (NumAlignedDPRCS2Regs) 1626 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1627 1628 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1629 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1630 unsigned FltOpc = ARM::VLDMDIA_UPD; 1631 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1632 NumAlignedDPRCS2Regs); 1633 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1634 &isARMArea2Register, 0); 1635 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1636 &isARMArea1Register, 0); 1637 1638 return true; 1639 } 1640 1641 // FIXME: Make generic? 1642 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 1643 const ARMBaseInstrInfo &TII) { 1644 unsigned FnSize = 0; 1645 for (auto &MBB : MF) { 1646 for (auto &MI : MBB) 1647 FnSize += TII.getInstSizeInBytes(MI); 1648 } 1649 if (MF.getJumpTableInfo()) 1650 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 1651 FnSize += Table.MBBs.size() * 4; 1652 FnSize += MF.getConstantPool()->getConstants().size() * 4; 1653 return FnSize; 1654 } 1655 1656 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1657 /// frames and return the stack size limit beyond which some of these 1658 /// instructions will require a scratch register during their expansion later. 1659 // FIXME: Move to TII? 1660 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1661 const TargetFrameLowering *TFI, 1662 bool &HasNonSPFrameIndex) { 1663 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1664 const ARMBaseInstrInfo &TII = 1665 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1666 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1667 unsigned Limit = (1 << 12) - 1; 1668 for (auto &MBB : MF) { 1669 for (auto &MI : MBB) { 1670 if (MI.isDebugInstr()) 1671 continue; 1672 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1673 if (!MI.getOperand(i).isFI()) 1674 continue; 1675 1676 // When using ADDri to get the address of a stack object, 255 is the 1677 // largest offset guaranteed to fit in the immediate offset. 1678 if (MI.getOpcode() == ARM::ADDri) { 1679 Limit = std::min(Limit, (1U << 8) - 1); 1680 break; 1681 } 1682 // t2ADDri will not require an extra register, it can reuse the 1683 // destination. 1684 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 1685 break; 1686 1687 const MCInstrDesc &MCID = MI.getDesc(); 1688 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 1689 if (RegClass && !RegClass->contains(ARM::SP)) 1690 HasNonSPFrameIndex = true; 1691 1692 // Otherwise check the addressing mode. 1693 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1694 case ARMII::AddrMode_i12: 1695 case ARMII::AddrMode2: 1696 // Default 12 bit limit. 1697 break; 1698 case ARMII::AddrMode3: 1699 case ARMII::AddrModeT2_i8: 1700 Limit = std::min(Limit, (1U << 8) - 1); 1701 break; 1702 case ARMII::AddrMode5FP16: 1703 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 1704 break; 1705 case ARMII::AddrMode5: 1706 case ARMII::AddrModeT2_i8s4: 1707 case ARMII::AddrModeT2_ldrex: 1708 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1709 break; 1710 case ARMII::AddrModeT2_i12: 1711 // i12 supports only positive offset so these will be converted to 1712 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1713 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1714 Limit = std::min(Limit, (1U << 8) - 1); 1715 break; 1716 case ARMII::AddrMode4: 1717 case ARMII::AddrMode6: 1718 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1719 // immediate offset for stack references. 1720 return 0; 1721 case ARMII::AddrModeT2_i7: 1722 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 1723 break; 1724 case ARMII::AddrModeT2_i7s2: 1725 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 1726 break; 1727 case ARMII::AddrModeT2_i7s4: 1728 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 1729 break; 1730 default: 1731 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 1732 } 1733 break; // At most one FI per instruction 1734 } 1735 } 1736 } 1737 1738 return Limit; 1739 } 1740 1741 // In functions that realign the stack, it can be an advantage to spill the 1742 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1743 // instructions take alignment hints that can improve performance. 1744 static void 1745 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1746 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1747 if (!SpillAlignedNEONRegs) 1748 return; 1749 1750 // Naked functions don't spill callee-saved registers. 1751 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1752 return; 1753 1754 // We are planning to use NEON instructions vst1 / vld1. 1755 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1756 return; 1757 1758 // Don't bother if the default stack alignment is sufficiently high. 1759 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 1760 return; 1761 1762 // Aligned spills require stack realignment. 1763 if (!static_cast<const ARMBaseRegisterInfo *>( 1764 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1765 return; 1766 1767 // We always spill contiguous d-registers starting from d8. Count how many 1768 // needs spilling. The register allocator will almost always use the 1769 // callee-saved registers in order, but it can happen that there are holes in 1770 // the range. Registers above the hole will be spilled to the standard DPRCS 1771 // area. 1772 unsigned NumSpills = 0; 1773 for (; NumSpills < 8; ++NumSpills) 1774 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1775 break; 1776 1777 // Don't do this for just one d-register. It's not worth it. 1778 if (NumSpills < 2) 1779 return; 1780 1781 // Spill the first NumSpills D-registers after realigning the stack. 1782 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1783 1784 // A scratch register is required for the vst1 / vld1 instructions. 1785 SavedRegs.set(ARM::R4); 1786 } 1787 1788 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 1789 // For CMSE entry functions, we want to save the FPCXT_NS immediately 1790 // upon function entry (resp. restore it immmediately before return) 1791 if (STI.hasV8_1MMainlineOps() && 1792 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 1793 return false; 1794 1795 return true; 1796 } 1797 1798 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1799 BitVector &SavedRegs, 1800 RegScavenger *RS) const { 1801 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1802 // This tells PEI to spill the FP as if it is any other callee-save register 1803 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1804 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1805 // to combine multiple loads / stores. 1806 bool CanEliminateFrame = true; 1807 bool CS1Spilled = false; 1808 bool LRSpilled = false; 1809 unsigned NumGPRSpills = 0; 1810 unsigned NumFPRSpills = 0; 1811 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1812 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1813 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1814 MF.getSubtarget().getRegisterInfo()); 1815 const ARMBaseInstrInfo &TII = 1816 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1817 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1818 MachineFrameInfo &MFI = MF.getFrameInfo(); 1819 MachineRegisterInfo &MRI = MF.getRegInfo(); 1820 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1821 (void)TRI; // Silence unused warning in non-assert builds. 1822 Register FramePtr = RegInfo->getFrameRegister(MF); 1823 1824 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1825 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1826 // since it's not always possible to restore sp from fp in a single 1827 // instruction. 1828 // FIXME: It will be better just to find spare register here. 1829 if (AFI->isThumb2Function() && 1830 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 1831 SavedRegs.set(ARM::R4); 1832 1833 // If a stack probe will be emitted, spill R4 and LR, since they are 1834 // clobbered by the stack probe call. 1835 // This estimate should be a safe, conservative estimate. The actual 1836 // stack probe is enabled based on the size of the local objects; 1837 // this estimate also includes the varargs store size. 1838 if (STI.isTargetWindows() && 1839 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 1840 SavedRegs.set(ARM::R4); 1841 SavedRegs.set(ARM::LR); 1842 } 1843 1844 if (AFI->isThumb1OnlyFunction()) { 1845 // Spill LR if Thumb1 function uses variable length argument lists. 1846 if (AFI->getArgRegsSaveSize() > 0) 1847 SavedRegs.set(ARM::LR); 1848 1849 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1850 // requires stack alignment. We don't know for sure what the stack size 1851 // will be, but for this, an estimate is good enough. If there anything 1852 // changes it, it'll be a spill, which implies we've used all the registers 1853 // and so R4 is already used, so not marking it here will be OK. 1854 // FIXME: It will be better just to find spare register here. 1855 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 1856 MFI.estimateStackSize(MF) > 508) 1857 SavedRegs.set(ARM::R4); 1858 } 1859 1860 // See if we can spill vector registers to aligned stack. 1861 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1862 1863 // Spill the BasePtr if it's used. 1864 if (RegInfo->hasBasePointer(MF)) 1865 SavedRegs.set(RegInfo->getBaseRegister()); 1866 1867 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 1868 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 1869 CanEliminateFrame = false; 1870 1871 // Don't spill FP if the frame can be eliminated. This is determined 1872 // by scanning the callee-save registers to see if any is modified. 1873 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1874 for (unsigned i = 0; CSRegs[i]; ++i) { 1875 unsigned Reg = CSRegs[i]; 1876 bool Spilled = false; 1877 if (SavedRegs.test(Reg)) { 1878 Spilled = true; 1879 CanEliminateFrame = false; 1880 } 1881 1882 if (!ARM::GPRRegClass.contains(Reg)) { 1883 if (Spilled) { 1884 if (ARM::SPRRegClass.contains(Reg)) 1885 NumFPRSpills++; 1886 else if (ARM::DPRRegClass.contains(Reg)) 1887 NumFPRSpills += 2; 1888 else if (ARM::QPRRegClass.contains(Reg)) 1889 NumFPRSpills += 4; 1890 } 1891 continue; 1892 } 1893 1894 if (Spilled) { 1895 NumGPRSpills++; 1896 1897 if (!STI.splitFramePushPop(MF)) { 1898 if (Reg == ARM::LR) 1899 LRSpilled = true; 1900 CS1Spilled = true; 1901 continue; 1902 } 1903 1904 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1905 switch (Reg) { 1906 case ARM::LR: 1907 LRSpilled = true; 1908 LLVM_FALLTHROUGH; 1909 case ARM::R0: case ARM::R1: 1910 case ARM::R2: case ARM::R3: 1911 case ARM::R4: case ARM::R5: 1912 case ARM::R6: case ARM::R7: 1913 CS1Spilled = true; 1914 break; 1915 default: 1916 break; 1917 } 1918 } else { 1919 if (!STI.splitFramePushPop(MF)) { 1920 UnspilledCS1GPRs.push_back(Reg); 1921 continue; 1922 } 1923 1924 switch (Reg) { 1925 case ARM::R0: case ARM::R1: 1926 case ARM::R2: case ARM::R3: 1927 case ARM::R4: case ARM::R5: 1928 case ARM::R6: case ARM::R7: 1929 case ARM::LR: 1930 UnspilledCS1GPRs.push_back(Reg); 1931 break; 1932 default: 1933 UnspilledCS2GPRs.push_back(Reg); 1934 break; 1935 } 1936 } 1937 } 1938 1939 bool ForceLRSpill = false; 1940 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1941 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 1942 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1943 // use of BL to implement far jump. 1944 if (FnSize >= (1 << 11)) { 1945 CanEliminateFrame = false; 1946 ForceLRSpill = true; 1947 } 1948 } 1949 1950 // If any of the stack slot references may be out of range of an immediate 1951 // offset, make sure a register (or a spill slot) is available for the 1952 // register scavenger. Note that if we're indexing off the frame pointer, the 1953 // effective stack size is 4 bytes larger since the FP points to the stack 1954 // slot of the previous FP. Also, if we have variable sized objects in the 1955 // function, stack slot references will often be negative, and some of 1956 // our instructions are positive-offset only, so conservatively consider 1957 // that case to want a spill slot (or register) as well. Similarly, if 1958 // the function adjusts the stack pointer during execution and the 1959 // adjustments aren't already part of our stack size estimate, our offset 1960 // calculations may be off, so be conservative. 1961 // FIXME: We could add logic to be more precise about negative offsets 1962 // and which instructions will need a scratch register for them. Is it 1963 // worth the effort and added fragility? 1964 unsigned EstimatedStackSize = 1965 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1966 1967 // Determine biggest (positive) SP offset in MachineFrameInfo. 1968 int MaxFixedOffset = 0; 1969 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1970 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1971 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1972 } 1973 1974 bool HasFP = hasFP(MF); 1975 if (HasFP) { 1976 if (AFI->hasStackFrame()) 1977 EstimatedStackSize += 4; 1978 } else { 1979 // If FP is not used, SP will be used to access arguments, so count the 1980 // size of arguments into the estimation. 1981 EstimatedStackSize += MaxFixedOffset; 1982 } 1983 EstimatedStackSize += 16; // For possible paddings. 1984 1985 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 1986 bool HasNonSPFrameIndex = false; 1987 if (AFI->isThumb1OnlyFunction()) { 1988 // For Thumb1, don't bother to iterate over the function. The only 1989 // instruction that requires an emergency spill slot is a store to a 1990 // frame index. 1991 // 1992 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 1993 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 1994 // a 5-bit unsigned immediate. 1995 // 1996 // We could try to check if the function actually contains a tSTRspi 1997 // that might need the spill slot, but it's not really important. 1998 // Functions with VLAs or extremely large call frames are rare, and 1999 // if a function is allocating more than 1KB of stack, an extra 4-byte 2000 // slot probably isn't relevant. 2001 if (RegInfo->hasBasePointer(MF)) 2002 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2003 else 2004 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2005 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2006 } else { 2007 EstimatedRSStackSizeLimit = 2008 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2009 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2010 } 2011 // Final estimate of whether sp or bp-relative accesses might require 2012 // scavenging. 2013 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2014 2015 // If the stack pointer moves and we don't have a base pointer, the 2016 // estimate logic doesn't work. The actual offsets might be larger when 2017 // we're constructing a call frame, or we might need to use negative 2018 // offsets from fp. 2019 bool HasMovingSP = MFI.hasVarSizedObjects() || 2020 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2021 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2022 2023 // If we have a frame pointer, we assume arguments will be accessed 2024 // relative to the frame pointer. Check whether fp-relative accesses to 2025 // arguments require scavenging. 2026 // 2027 // We could do slightly better on Thumb1; in some cases, an sp-relative 2028 // offset would be legal even though an fp-relative offset is not. 2029 int MaxFPOffset = getMaxFPOffset(STI, *AFI); 2030 bool HasLargeArgumentList = 2031 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2032 2033 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2034 HasLargeArgumentList || HasNonSPFrameIndex; 2035 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2036 << "; EstimatedStack: " << EstimatedStackSize 2037 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2038 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2039 if (BigFrameOffsets || 2040 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2041 AFI->setHasStackFrame(true); 2042 2043 if (HasFP) { 2044 SavedRegs.set(FramePtr); 2045 // If the frame pointer is required by the ABI, also spill LR so that we 2046 // emit a complete frame record. 2047 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 2048 SavedRegs.set(ARM::LR); 2049 LRSpilled = true; 2050 NumGPRSpills++; 2051 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2052 if (LRPos != UnspilledCS1GPRs.end()) 2053 UnspilledCS1GPRs.erase(LRPos); 2054 } 2055 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2056 if (FPPos != UnspilledCS1GPRs.end()) 2057 UnspilledCS1GPRs.erase(FPPos); 2058 NumGPRSpills++; 2059 if (FramePtr == ARM::R7) 2060 CS1Spilled = true; 2061 } 2062 2063 // This is true when we inserted a spill for a callee-save GPR which is 2064 // not otherwise used by the function. This guaranteees it is possible 2065 // to scavenge a register to hold the address of a stack slot. On Thumb1, 2066 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other 2067 // subtargets, this is any GPR, i.e. r4-r11 or lr. 2068 // 2069 // If we don't insert a spill, we instead allocate an emergency spill 2070 // slot, which can be used by scavenging to spill an arbitrary register. 2071 // 2072 // We currently don't try to figure out whether any specific instruction 2073 // requires scavening an additional register. 2074 bool ExtraCSSpill = false; 2075 2076 if (AFI->isThumb1OnlyFunction()) { 2077 // For Thumb1-only targets, we need some low registers when we save and 2078 // restore the high registers (which aren't allocatable, but could be 2079 // used by inline assembly) because the push/pop instructions can not 2080 // access high registers. If necessary, we might need to push more low 2081 // registers to ensure that there is at least one free that can be used 2082 // for the saving & restoring, and preferably we should ensure that as 2083 // many as are needed are available so that fewer push/pop instructions 2084 // are required. 2085 2086 // Low registers which are not currently pushed, but could be (r4-r7). 2087 SmallVector<unsigned, 4> AvailableRegs; 2088 2089 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2090 // free. 2091 int EntryRegDeficit = 0; 2092 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2093 if (!MF.getRegInfo().isLiveIn(Reg)) { 2094 --EntryRegDeficit; 2095 LLVM_DEBUG(dbgs() 2096 << printReg(Reg, TRI) 2097 << " is unused argument register, EntryRegDeficit = " 2098 << EntryRegDeficit << "\n"); 2099 } 2100 } 2101 2102 // Unused return registers can be clobbered in the epilogue for free. 2103 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2104 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2105 << " return regs used, ExitRegDeficit = " 2106 << ExitRegDeficit << "\n"); 2107 2108 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2109 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2110 2111 // r4-r6 can be used in the prologue if they are pushed by the first push 2112 // instruction. 2113 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2114 if (SavedRegs.test(Reg)) { 2115 --RegDeficit; 2116 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2117 << " is saved low register, RegDeficit = " 2118 << RegDeficit << "\n"); 2119 } else { 2120 AvailableRegs.push_back(Reg); 2121 LLVM_DEBUG( 2122 dbgs() 2123 << printReg(Reg, TRI) 2124 << " is non-saved low register, adding to AvailableRegs\n"); 2125 } 2126 } 2127 2128 // r7 can be used if it is not being used as the frame pointer. 2129 if (!HasFP) { 2130 if (SavedRegs.test(ARM::R7)) { 2131 --RegDeficit; 2132 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2133 << RegDeficit << "\n"); 2134 } else { 2135 AvailableRegs.push_back(ARM::R7); 2136 LLVM_DEBUG( 2137 dbgs() 2138 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2139 } 2140 } 2141 2142 // Each of r8-r11 needs to be copied to a low register, then pushed. 2143 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2144 if (SavedRegs.test(Reg)) { 2145 ++RegDeficit; 2146 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2147 << " is saved high register, RegDeficit = " 2148 << RegDeficit << "\n"); 2149 } 2150 } 2151 2152 // LR can only be used by PUSH, not POP, and can't be used at all if the 2153 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2154 // are more limited at function entry than exit. 2155 if ((EntryRegDeficit > ExitRegDeficit) && 2156 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2157 MF.getFrameInfo().isReturnAddressTaken())) { 2158 if (SavedRegs.test(ARM::LR)) { 2159 --RegDeficit; 2160 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2161 << RegDeficit << "\n"); 2162 } else { 2163 AvailableRegs.push_back(ARM::LR); 2164 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2165 } 2166 } 2167 2168 // If there are more high registers that need pushing than low registers 2169 // available, push some more low registers so that we can use fewer push 2170 // instructions. This might not reduce RegDeficit all the way to zero, 2171 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2172 // need saving. 2173 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2174 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2175 unsigned Reg = AvailableRegs.pop_back_val(); 2176 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2177 << " to make up reg deficit\n"); 2178 SavedRegs.set(Reg); 2179 NumGPRSpills++; 2180 CS1Spilled = true; 2181 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2182 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2183 ExtraCSSpill = true; 2184 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2185 if (Reg == ARM::LR) 2186 LRSpilled = true; 2187 } 2188 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2189 << "\n"); 2190 } 2191 2192 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2193 // restore LR in that case. 2194 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2195 2196 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2197 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2198 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2199 SavedRegs.set(ARM::LR); 2200 NumGPRSpills++; 2201 SmallVectorImpl<unsigned>::iterator LRPos; 2202 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2203 if (LRPos != UnspilledCS1GPRs.end()) 2204 UnspilledCS1GPRs.erase(LRPos); 2205 2206 ForceLRSpill = false; 2207 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2208 !AFI->isThumb1OnlyFunction()) 2209 ExtraCSSpill = true; 2210 } 2211 2212 // If stack and double are 8-byte aligned and we are spilling an odd number 2213 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2214 // the integer and double callee save areas. 2215 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2216 const Align TargetAlign = getStackAlign(); 2217 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2218 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2219 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 2220 unsigned Reg = UnspilledCS1GPRs[i]; 2221 // Don't spill high register if the function is thumb. In the case of 2222 // Windows on ARM, accept R11 (frame pointer) 2223 if (!AFI->isThumbFunction() || 2224 (STI.isTargetWindows() && Reg == ARM::R11) || 2225 isARMLowRegister(Reg) || 2226 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2227 SavedRegs.set(Reg); 2228 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2229 << " to make up alignment\n"); 2230 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2231 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2232 ExtraCSSpill = true; 2233 break; 2234 } 2235 } 2236 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2237 unsigned Reg = UnspilledCS2GPRs.front(); 2238 SavedRegs.set(Reg); 2239 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2240 << " to make up alignment\n"); 2241 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2242 ExtraCSSpill = true; 2243 } 2244 } 2245 2246 // Estimate if we might need to scavenge a register at some point in order 2247 // to materialize a stack offset. If so, either spill one additional 2248 // callee-saved register or reserve a special spill slot to facilitate 2249 // register scavenging. Thumb1 needs a spill slot for stack pointer 2250 // adjustments also, even when the frame itself is small. 2251 if (BigFrameOffsets && !ExtraCSSpill) { 2252 // If any non-reserved CS register isn't spilled, just spill one or two 2253 // extra. That should take care of it! 2254 unsigned NumExtras = TargetAlign.value() / 4; 2255 SmallVector<unsigned, 2> Extras; 2256 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2257 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2258 if (!MRI.isReserved(Reg) && 2259 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2260 Extras.push_back(Reg); 2261 NumExtras--; 2262 } 2263 } 2264 // For non-Thumb1 functions, also check for hi-reg CS registers 2265 if (!AFI->isThumb1OnlyFunction()) { 2266 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2267 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2268 if (!MRI.isReserved(Reg)) { 2269 Extras.push_back(Reg); 2270 NumExtras--; 2271 } 2272 } 2273 } 2274 if (NumExtras == 0) { 2275 for (unsigned Reg : Extras) { 2276 SavedRegs.set(Reg); 2277 if (!MRI.isPhysRegUsed(Reg)) 2278 ExtraCSSpill = true; 2279 } 2280 } 2281 if (!ExtraCSSpill && RS) { 2282 // Reserve a slot closest to SP or frame pointer. 2283 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2284 const TargetRegisterClass &RC = ARM::GPRRegClass; 2285 unsigned Size = TRI->getSpillSize(RC); 2286 Align Alignment = TRI->getSpillAlign(RC); 2287 RS->addScavengingFrameIndex( 2288 MFI.CreateStackObject(Size, Alignment, false)); 2289 } 2290 } 2291 } 2292 2293 if (ForceLRSpill) 2294 SavedRegs.set(ARM::LR); 2295 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2296 } 2297 2298 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2299 BitVector &SavedRegs) const { 2300 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2301 2302 // If we have the "returned" parameter attribute which guarantees that we 2303 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2304 // record that fact for IPRA. 2305 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2306 if (AFI->getPreservesR0()) 2307 SavedRegs.set(ARM::R0); 2308 } 2309 2310 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2311 MachineFunction &MF, const TargetRegisterInfo *TRI, 2312 std::vector<CalleeSavedInfo> &CSI) const { 2313 // For CMSE entry functions, handle floating-point context as if it was a 2314 // callee-saved register. 2315 if (STI.hasV8_1MMainlineOps() && 2316 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2317 CSI.emplace_back(ARM::FPCXTNS); 2318 CSI.back().setRestored(false); 2319 } 2320 2321 return false; 2322 } 2323 2324 const TargetFrameLowering::SpillSlot * 2325 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2326 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2327 NumEntries = array_lengthof(FixedSpillOffsets); 2328 return FixedSpillOffsets; 2329 } 2330 2331 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2332 MachineFunction &MF, MachineBasicBlock &MBB, 2333 MachineBasicBlock::iterator I) const { 2334 const ARMBaseInstrInfo &TII = 2335 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2336 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2337 bool isARM = !AFI->isThumbFunction(); 2338 DebugLoc dl = I->getDebugLoc(); 2339 unsigned Opc = I->getOpcode(); 2340 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 2341 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 2342 2343 assert(!AFI->isThumb1OnlyFunction() && 2344 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2345 2346 int PIdx = I->findFirstPredOperandIdx(); 2347 ARMCC::CondCodes Pred = (PIdx == -1) 2348 ? ARMCC::AL 2349 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 2350 unsigned PredReg = TII.getFramePred(*I); 2351 2352 if (!hasReservedCallFrame(MF)) { 2353 // Bail early if the callee is expected to do the adjustment. 2354 if (IsDestroy && CalleePopAmount != -1U) 2355 return MBB.erase(I); 2356 2357 // If we have alloca, convert as follows: 2358 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2359 // ADJCALLSTACKUP -> add, sp, sp, amount 2360 unsigned Amount = TII.getFrameSize(*I); 2361 if (Amount != 0) { 2362 // We need to keep the stack aligned properly. To do this, we round the 2363 // amount of space needed for the outgoing arguments up to the next 2364 // alignment boundary. 2365 Amount = alignSPAdjust(Amount); 2366 2367 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2368 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2369 Pred, PredReg); 2370 } else { 2371 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2372 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2373 Pred, PredReg); 2374 } 2375 } 2376 } else if (CalleePopAmount != -1U) { 2377 // If the calling convention demands that the callee pops arguments from the 2378 // stack, we want to add it back if we have a reserved call frame. 2379 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 2380 MachineInstr::NoFlags, Pred, PredReg); 2381 } 2382 return MBB.erase(I); 2383 } 2384 2385 /// Get the minimum constant for ARM that is greater than or equal to the 2386 /// argument. In ARM, constants can have any value that can be produced by 2387 /// rotating an 8-bit value to the right by an even number of bits within a 2388 /// 32-bit word. 2389 static uint32_t alignToARMConstant(uint32_t Value) { 2390 unsigned Shifted = 0; 2391 2392 if (Value == 0) 2393 return 0; 2394 2395 while (!(Value & 0xC0000000)) { 2396 Value = Value << 2; 2397 Shifted += 2; 2398 } 2399 2400 bool Carry = (Value & 0x00FFFFFF); 2401 Value = ((Value & 0xFF000000) >> 24) + Carry; 2402 2403 if (Value & 0x0000100) 2404 Value = Value & 0x000001FC; 2405 2406 if (Shifted > 24) 2407 Value = Value >> (Shifted - 24); 2408 else 2409 Value = Value << (24 - Shifted); 2410 2411 return Value; 2412 } 2413 2414 // The stack limit in the TCB is set to this many bytes above the actual 2415 // stack limit. 2416 static const uint64_t kSplitStackAvailable = 256; 2417 2418 // Adjust the function prologue to enable split stacks. This currently only 2419 // supports android and linux. 2420 // 2421 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2422 // must be well defined in order to allow for consistent implementations of the 2423 // __morestack helper function. The ABI is also not a normal ABI in that it 2424 // doesn't follow the normal calling conventions because this allows the 2425 // prologue of each function to be optimized further. 2426 // 2427 // Currently, the ABI looks like (when calling __morestack) 2428 // 2429 // * r4 holds the minimum stack size requested for this function call 2430 // * r5 holds the stack size of the arguments to the function 2431 // * the beginning of the function is 3 instructions after the call to 2432 // __morestack 2433 // 2434 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2435 // place the arguments on to the new stack, and the 3-instruction knowledge to 2436 // jump directly to the body of the function when working on the new stack. 2437 // 2438 // An old (and possibly no longer compatible) implementation of __morestack for 2439 // ARM can be found at [1]. 2440 // 2441 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2442 void ARMFrameLowering::adjustForSegmentedStacks( 2443 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2444 unsigned Opcode; 2445 unsigned CFIIndex; 2446 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2447 bool Thumb = ST->isThumb(); 2448 2449 // Sadly, this currently doesn't support varargs, platforms other than 2450 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2451 if (MF.getFunction().isVarArg()) 2452 report_fatal_error("Segmented stacks do not support vararg functions."); 2453 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2454 report_fatal_error("Segmented stacks not supported on this platform."); 2455 2456 MachineFrameInfo &MFI = MF.getFrameInfo(); 2457 MachineModuleInfo &MMI = MF.getMMI(); 2458 MCContext &Context = MMI.getContext(); 2459 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2460 const ARMBaseInstrInfo &TII = 2461 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2462 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2463 DebugLoc DL; 2464 2465 uint64_t StackSize = MFI.getStackSize(); 2466 2467 // Do not generate a prologue for leaf functions with a stack of size zero. 2468 // For non-leaf functions we have to allow for the possibility that the 2469 // callis to a non-split function, as in PR37807. This function could also 2470 // take the address of a non-split function. When the linker tries to adjust 2471 // its non-existent prologue, it would fail with an error. Mark the object 2472 // file so that such failures are not errors. See this Go language bug-report 2473 // https://go-review.googlesource.com/c/go/+/148819/ 2474 if (StackSize == 0 && !MFI.hasTailCall()) { 2475 MF.getMMI().setHasNosplitStack(true); 2476 return; 2477 } 2478 2479 // Use R4 and R5 as scratch registers. 2480 // We save R4 and R5 before use and restore them before leaving the function. 2481 unsigned ScratchReg0 = ARM::R4; 2482 unsigned ScratchReg1 = ARM::R5; 2483 uint64_t AlignedStackSize; 2484 2485 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2486 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2487 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2488 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2489 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2490 2491 // Grab everything that reaches PrologueMBB to update there liveness as well. 2492 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2493 SmallVector<MachineBasicBlock *, 2> WalkList; 2494 WalkList.push_back(&PrologueMBB); 2495 2496 do { 2497 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2498 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2499 if (BeforePrologueRegion.insert(PredBB).second) 2500 WalkList.push_back(PredBB); 2501 } 2502 } while (!WalkList.empty()); 2503 2504 // The order in that list is important. 2505 // The blocks will all be inserted before PrologueMBB using that order. 2506 // Therefore the block that should appear first in the CFG should appear 2507 // first in the list. 2508 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2509 PostStackMBB}; 2510 2511 for (MachineBasicBlock *B : AddedBlocks) 2512 BeforePrologueRegion.insert(B); 2513 2514 for (const auto &LI : PrologueMBB.liveins()) { 2515 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2516 PredBB->addLiveIn(LI); 2517 } 2518 2519 // Remove the newly added blocks from the list, since we know 2520 // we do not have to do the following updates for them. 2521 for (MachineBasicBlock *B : AddedBlocks) { 2522 BeforePrologueRegion.erase(B); 2523 MF.insert(PrologueMBB.getIterator(), B); 2524 } 2525 2526 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2527 // Make sure the LiveIns are still sorted and unique. 2528 MBB->sortUniqueLiveIns(); 2529 // Replace the edges to PrologueMBB by edges to the sequences 2530 // we are about to add. 2531 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2532 } 2533 2534 // The required stack size that is aligned to ARM constant criterion. 2535 AlignedStackSize = alignToARMConstant(StackSize); 2536 2537 // When the frame size is less than 256 we just compare the stack 2538 // boundary directly to the value of the stack pointer, per gcc. 2539 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2540 2541 // We will use two of the callee save registers as scratch registers so we 2542 // need to save those registers onto the stack. 2543 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2544 // requested and arguments for __morestack(). 2545 // SR0: Scratch Register #0 2546 // SR1: Scratch Register #1 2547 // push {SR0, SR1} 2548 if (Thumb) { 2549 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2550 .add(predOps(ARMCC::AL)) 2551 .addReg(ScratchReg0) 2552 .addReg(ScratchReg1); 2553 } else { 2554 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2555 .addReg(ARM::SP, RegState::Define) 2556 .addReg(ARM::SP) 2557 .add(predOps(ARMCC::AL)) 2558 .addReg(ScratchReg0) 2559 .addReg(ScratchReg1); 2560 } 2561 2562 // Emit the relevant DWARF information about the change in stack pointer as 2563 // well as where to find both r4 and r5 (the callee-save registers) 2564 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 2565 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2566 .addCFIIndex(CFIIndex); 2567 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2568 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2569 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2570 .addCFIIndex(CFIIndex); 2571 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2572 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2573 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2574 .addCFIIndex(CFIIndex); 2575 2576 // mov SR1, sp 2577 if (Thumb) { 2578 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2579 .addReg(ARM::SP) 2580 .add(predOps(ARMCC::AL)); 2581 } else if (CompareStackPointer) { 2582 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2583 .addReg(ARM::SP) 2584 .add(predOps(ARMCC::AL)) 2585 .add(condCodeOp()); 2586 } 2587 2588 // sub SR1, sp, #StackSize 2589 if (!CompareStackPointer && Thumb) { 2590 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2591 .add(condCodeOp()) 2592 .addReg(ScratchReg1) 2593 .addImm(AlignedStackSize) 2594 .add(predOps(ARMCC::AL)); 2595 } else if (!CompareStackPointer) { 2596 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2597 .addReg(ARM::SP) 2598 .addImm(AlignedStackSize) 2599 .add(predOps(ARMCC::AL)) 2600 .add(condCodeOp()); 2601 } 2602 2603 if (Thumb && ST->isThumb1Only()) { 2604 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2605 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2606 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2607 MachineConstantPool *MCP = MF.getConstantPool(); 2608 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 2609 2610 // ldr SR0, [pc, offset(STACK_LIMIT)] 2611 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2612 .addConstantPoolIndex(CPI) 2613 .add(predOps(ARMCC::AL)); 2614 2615 // ldr SR0, [SR0] 2616 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2617 .addReg(ScratchReg0) 2618 .addImm(0) 2619 .add(predOps(ARMCC::AL)); 2620 } else { 2621 // Get TLS base address from the coprocessor 2622 // mrc p15, #0, SR0, c13, c0, #3 2623 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 2624 ScratchReg0) 2625 .addImm(15) 2626 .addImm(0) 2627 .addImm(13) 2628 .addImm(0) 2629 .addImm(3) 2630 .add(predOps(ARMCC::AL)); 2631 2632 // Use the last tls slot on android and a private field of the TCP on linux. 2633 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2634 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2635 2636 // Get the stack limit from the right offset 2637 // ldr SR0, [sr0, #4 * TlsOffset] 2638 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 2639 ScratchReg0) 2640 .addReg(ScratchReg0) 2641 .addImm(4 * TlsOffset) 2642 .add(predOps(ARMCC::AL)); 2643 } 2644 2645 // Compare stack limit with stack size requested. 2646 // cmp SR0, SR1 2647 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2648 BuildMI(GetMBB, DL, TII.get(Opcode)) 2649 .addReg(ScratchReg0) 2650 .addReg(ScratchReg1) 2651 .add(predOps(ARMCC::AL)); 2652 2653 // This jump is taken if StackLimit < SP - stack required. 2654 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2655 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2656 .addImm(ARMCC::LO) 2657 .addReg(ARM::CPSR); 2658 2659 2660 // Calling __morestack(StackSize, Size of stack arguments). 2661 // __morestack knows that the stack size requested is in SR0(r4) 2662 // and amount size of stack arguments is in SR1(r5). 2663 2664 // Pass first argument for the __morestack by Scratch Register #0. 2665 // The amount size of stack required 2666 if (Thumb) { 2667 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2668 .add(condCodeOp()) 2669 .addImm(AlignedStackSize) 2670 .add(predOps(ARMCC::AL)); 2671 } else { 2672 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2673 .addImm(AlignedStackSize) 2674 .add(predOps(ARMCC::AL)) 2675 .add(condCodeOp()); 2676 } 2677 // Pass second argument for the __morestack by Scratch Register #1. 2678 // The amount size of stack consumed to save function arguments. 2679 if (Thumb) { 2680 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2681 .add(condCodeOp()) 2682 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2683 .add(predOps(ARMCC::AL)); 2684 } else { 2685 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2686 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2687 .add(predOps(ARMCC::AL)) 2688 .add(condCodeOp()); 2689 } 2690 2691 // push {lr} - Save return address of this function. 2692 if (Thumb) { 2693 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2694 .add(predOps(ARMCC::AL)) 2695 .addReg(ARM::LR); 2696 } else { 2697 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2698 .addReg(ARM::SP, RegState::Define) 2699 .addReg(ARM::SP) 2700 .add(predOps(ARMCC::AL)) 2701 .addReg(ARM::LR); 2702 } 2703 2704 // Emit the DWARF info about the change in stack as well as where to find the 2705 // previous link register 2706 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 2707 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2708 .addCFIIndex(CFIIndex); 2709 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2710 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2711 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2712 .addCFIIndex(CFIIndex); 2713 2714 // Call __morestack(). 2715 if (Thumb) { 2716 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2717 .add(predOps(ARMCC::AL)) 2718 .addExternalSymbol("__morestack"); 2719 } else { 2720 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2721 .addExternalSymbol("__morestack"); 2722 } 2723 2724 // pop {lr} - Restore return address of this original function. 2725 if (Thumb) { 2726 if (ST->isThumb1Only()) { 2727 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2728 .add(predOps(ARMCC::AL)) 2729 .addReg(ScratchReg0); 2730 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2731 .addReg(ScratchReg0) 2732 .add(predOps(ARMCC::AL)); 2733 } else { 2734 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2735 .addReg(ARM::LR, RegState::Define) 2736 .addReg(ARM::SP, RegState::Define) 2737 .addReg(ARM::SP) 2738 .addImm(4) 2739 .add(predOps(ARMCC::AL)); 2740 } 2741 } else { 2742 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2743 .addReg(ARM::SP, RegState::Define) 2744 .addReg(ARM::SP) 2745 .add(predOps(ARMCC::AL)) 2746 .addReg(ARM::LR); 2747 } 2748 2749 // Restore SR0 and SR1 in case of __morestack() was called. 2750 // __morestack() will skip PostStackMBB block so we need to restore 2751 // scratch registers from here. 2752 // pop {SR0, SR1} 2753 if (Thumb) { 2754 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2755 .add(predOps(ARMCC::AL)) 2756 .addReg(ScratchReg0) 2757 .addReg(ScratchReg1); 2758 } else { 2759 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2760 .addReg(ARM::SP, RegState::Define) 2761 .addReg(ARM::SP) 2762 .add(predOps(ARMCC::AL)) 2763 .addReg(ScratchReg0) 2764 .addReg(ScratchReg1); 2765 } 2766 2767 // Update the CFA offset now that we've popped 2768 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 2769 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2770 .addCFIIndex(CFIIndex); 2771 2772 // Return from this function. 2773 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2774 2775 // Restore SR0 and SR1 in case of __morestack() was not called. 2776 // pop {SR0, SR1} 2777 if (Thumb) { 2778 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2779 .add(predOps(ARMCC::AL)) 2780 .addReg(ScratchReg0) 2781 .addReg(ScratchReg1); 2782 } else { 2783 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2784 .addReg(ARM::SP, RegState::Define) 2785 .addReg(ARM::SP) 2786 .add(predOps(ARMCC::AL)) 2787 .addReg(ScratchReg0) 2788 .addReg(ScratchReg1); 2789 } 2790 2791 // Update the CFA offset now that we've popped 2792 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 2793 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2794 .addCFIIndex(CFIIndex); 2795 2796 // Tell debuggers that r4 and r5 are now the same as they were in the 2797 // previous function, that they're the "Same Value". 2798 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2799 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2800 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2801 .addCFIIndex(CFIIndex); 2802 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2803 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2804 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2805 .addCFIIndex(CFIIndex); 2806 2807 // Organizing MBB lists 2808 PostStackMBB->addSuccessor(&PrologueMBB); 2809 2810 AllocMBB->addSuccessor(PostStackMBB); 2811 2812 GetMBB->addSuccessor(PostStackMBB); 2813 GetMBB->addSuccessor(AllocMBB); 2814 2815 McrMBB->addSuccessor(GetMBB); 2816 2817 PrevStackMBB->addSuccessor(McrMBB); 2818 2819 #ifdef EXPENSIVE_CHECKS 2820 MF.verify(); 2821 #endif 2822 } 2823