1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/CallSite.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalValue.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include "llvm/Target/TargetOptions.h"
80 #include <cassert>
81 #include <cstdint>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 namespace {
87 
88   // All possible address modes, plus some.
89   struct Address {
90     enum {
91       RegBase,
92       FrameIndexBase
93     } BaseType = RegBase;
94 
95     union {
96       unsigned Reg;
97       int FI;
98     } Base;
99 
100     int Offset = 0;
101 
102     // Innocuous defaults for our address.
103     Address() {
104       Base.Reg = 0;
105     }
106   };
107 
108 class ARMFastISel final : public FastISel {
109   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
110   /// make the right decision when generating code for different targets.
111   const ARMSubtarget *Subtarget;
112   Module &M;
113   const TargetMachine &TM;
114   const TargetInstrInfo &TII;
115   const TargetLowering &TLI;
116   ARMFunctionInfo *AFI;
117 
118   // Convenience variables to avoid some queries.
119   bool isThumb2;
120   LLVMContext *Context;
121 
122   public:
123     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
124                          const TargetLibraryInfo *libInfo)
125         : FastISel(funcInfo, libInfo),
126           Subtarget(
127               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
128           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
129           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
130           TLI(*Subtarget->getTargetLowering()) {
131       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
132       isThumb2 = AFI->isThumbFunction();
133       Context = &funcInfo.Fn->getContext();
134     }
135 
136   private:
137     // Code from FastISel.cpp.
138 
139     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
140                             const TargetRegisterClass *RC,
141                             unsigned Op0, bool Op0IsKill);
142     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
143                              const TargetRegisterClass *RC,
144                              unsigned Op0, bool Op0IsKill,
145                              unsigned Op1, bool Op1IsKill);
146     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
147                              const TargetRegisterClass *RC,
148                              unsigned Op0, bool Op0IsKill,
149                              uint64_t Imm);
150     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
151                             const TargetRegisterClass *RC,
152                             uint64_t Imm);
153 
154     // Backend specific FastISel code.
155 
156     bool fastSelectInstruction(const Instruction *I) override;
157     unsigned fastMaterializeConstant(const Constant *C) override;
158     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
159     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
160                              const LoadInst *LI) override;
161     bool fastLowerArguments() override;
162 
163   #include "ARMGenFastISel.inc"
164 
165     // Instruction selection routines.
166 
167     bool SelectLoad(const Instruction *I);
168     bool SelectStore(const Instruction *I);
169     bool SelectBranch(const Instruction *I);
170     bool SelectIndirectBr(const Instruction *I);
171     bool SelectCmp(const Instruction *I);
172     bool SelectFPExt(const Instruction *I);
173     bool SelectFPTrunc(const Instruction *I);
174     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
175     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
176     bool SelectIToFP(const Instruction *I, bool isSigned);
177     bool SelectFPToI(const Instruction *I, bool isSigned);
178     bool SelectDiv(const Instruction *I, bool isSigned);
179     bool SelectRem(const Instruction *I, bool isSigned);
180     bool SelectCall(const Instruction *I, const char *IntrMemName);
181     bool SelectIntrinsicCall(const IntrinsicInst &I);
182     bool SelectSelect(const Instruction *I);
183     bool SelectRet(const Instruction *I);
184     bool SelectTrunc(const Instruction *I);
185     bool SelectIntExt(const Instruction *I);
186     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
187 
188     // Utility routines.
189 
190     bool isPositionIndependent() const;
191     bool isTypeLegal(Type *Ty, MVT &VT);
192     bool isLoadTypeLegal(Type *Ty, MVT &VT);
193     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
194                     bool isZExt);
195     bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
196                      unsigned Alignment = 0, bool isZExt = true,
197                      bool allocReg = true);
198     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
199                       unsigned Alignment = 0);
200     bool ARMComputeAddress(const Value *Obj, Address &Addr);
201     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
202     bool ARMIsMemCpySmall(uint64_t Len);
203     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
204                                unsigned Alignment);
205     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
206     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
207     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
208     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
209     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
210     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
211     unsigned ARMSelectCallOp(bool UseReg);
212     unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);
213 
214     const TargetLowering *getTargetLowering() { return &TLI; }
215 
216     // Call handling routines.
217 
218     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
219                                   bool Return,
220                                   bool isVarArg);
221     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
222                          SmallVectorImpl<Register> &ArgRegs,
223                          SmallVectorImpl<MVT> &ArgVTs,
224                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
225                          SmallVectorImpl<Register> &RegArgs,
226                          CallingConv::ID CC,
227                          unsigned &NumBytes,
228                          bool isVarArg);
229     unsigned getLibcallReg(const Twine &Name);
230     bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
231                     const Instruction *I, CallingConv::ID CC,
232                     unsigned &NumBytes, bool isVarArg);
233     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
234 
235     // OptionalDef handling routines.
236 
237     bool isARMNEONPred(const MachineInstr *MI);
238     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
239     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
240     void AddLoadStoreOperands(MVT VT, Address &Addr,
241                               const MachineInstrBuilder &MIB,
242                               MachineMemOperand::Flags Flags, bool useAM3);
243 };
244 
245 } // end anonymous namespace
246 
247 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
248 // we don't care about implicit defs here, just places we'll need to add a
249 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
250 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
251   if (!MI->hasOptionalDef())
252     return false;
253 
254   // Look to see if our OptionalDef is defining CPSR or CCR.
255   for (const MachineOperand &MO : MI->operands()) {
256     if (!MO.isReg() || !MO.isDef()) continue;
257     if (MO.getReg() == ARM::CPSR)
258       *CPSR = true;
259   }
260   return true;
261 }
262 
263 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
264   const MCInstrDesc &MCID = MI->getDesc();
265 
266   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
267   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
268        AFI->isThumb2Function())
269     return MI->isPredicable();
270 
271   for (const MCOperandInfo &opInfo : MCID.operands())
272     if (opInfo.isPredicate())
273       return true;
274 
275   return false;
276 }
277 
278 // If the machine is predicable go ahead and add the predicate operands, if
279 // it needs default CC operands add those.
280 // TODO: If we want to support thumb1 then we'll need to deal with optional
281 // CPSR defs that need to be added before the remaining operands. See s_cc_out
282 // for descriptions why.
283 const MachineInstrBuilder &
284 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
285   MachineInstr *MI = &*MIB;
286 
287   // Do we use a predicate? or...
288   // Are we NEON in ARM mode and have a predicate operand? If so, I know
289   // we're not predicable but add it anyways.
290   if (isARMNEONPred(MI))
291     MIB.add(predOps(ARMCC::AL));
292 
293   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
294   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
295   bool CPSR = false;
296   if (DefinesOptionalPredicate(MI, &CPSR))
297     MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
298   return MIB;
299 }
300 
301 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
302                                      const TargetRegisterClass *RC,
303                                      unsigned Op0, bool Op0IsKill) {
304   Register ResultReg = createResultReg(RC);
305   const MCInstrDesc &II = TII.get(MachineInstOpcode);
306 
307   // Make sure the input operand is sufficiently constrained to be legal
308   // for this instruction.
309   Op0 = constrainOperandRegClass(II, Op0, 1);
310   if (II.getNumDefs() >= 1) {
311     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
312                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
313   } else {
314     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
315                    .addReg(Op0, Op0IsKill * RegState::Kill));
316     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
317                    TII.get(TargetOpcode::COPY), ResultReg)
318                    .addReg(II.ImplicitDefs[0]));
319   }
320   return ResultReg;
321 }
322 
323 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
324                                       const TargetRegisterClass *RC,
325                                       unsigned Op0, bool Op0IsKill,
326                                       unsigned Op1, bool Op1IsKill) {
327   unsigned ResultReg = createResultReg(RC);
328   const MCInstrDesc &II = TII.get(MachineInstOpcode);
329 
330   // Make sure the input operands are sufficiently constrained to be legal
331   // for this instruction.
332   Op0 = constrainOperandRegClass(II, Op0, 1);
333   Op1 = constrainOperandRegClass(II, Op1, 2);
334 
335   if (II.getNumDefs() >= 1) {
336     AddOptionalDefs(
337         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
338             .addReg(Op0, Op0IsKill * RegState::Kill)
339             .addReg(Op1, Op1IsKill * RegState::Kill));
340   } else {
341     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
342                    .addReg(Op0, Op0IsKill * RegState::Kill)
343                    .addReg(Op1, Op1IsKill * RegState::Kill));
344     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
345                            TII.get(TargetOpcode::COPY), ResultReg)
346                    .addReg(II.ImplicitDefs[0]));
347   }
348   return ResultReg;
349 }
350 
351 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
352                                       const TargetRegisterClass *RC,
353                                       unsigned Op0, bool Op0IsKill,
354                                       uint64_t Imm) {
355   unsigned ResultReg = createResultReg(RC);
356   const MCInstrDesc &II = TII.get(MachineInstOpcode);
357 
358   // Make sure the input operand is sufficiently constrained to be legal
359   // for this instruction.
360   Op0 = constrainOperandRegClass(II, Op0, 1);
361   if (II.getNumDefs() >= 1) {
362     AddOptionalDefs(
363         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
364             .addReg(Op0, Op0IsKill * RegState::Kill)
365             .addImm(Imm));
366   } else {
367     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
368                    .addReg(Op0, Op0IsKill * RegState::Kill)
369                    .addImm(Imm));
370     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
371                            TII.get(TargetOpcode::COPY), ResultReg)
372                    .addReg(II.ImplicitDefs[0]));
373   }
374   return ResultReg;
375 }
376 
377 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
378                                      const TargetRegisterClass *RC,
379                                      uint64_t Imm) {
380   unsigned ResultReg = createResultReg(RC);
381   const MCInstrDesc &II = TII.get(MachineInstOpcode);
382 
383   if (II.getNumDefs() >= 1) {
384     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
385                             ResultReg).addImm(Imm));
386   } else {
387     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
388                    .addImm(Imm));
389     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
390                            TII.get(TargetOpcode::COPY), ResultReg)
391                    .addReg(II.ImplicitDefs[0]));
392   }
393   return ResultReg;
394 }
395 
396 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
397 // checks from the various callers.
398 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
399   if (VT == MVT::f64) return 0;
400 
401   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
402   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
403                           TII.get(ARM::VMOVSR), MoveReg)
404                   .addReg(SrcReg));
405   return MoveReg;
406 }
407 
408 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
409   if (VT == MVT::i64) return 0;
410 
411   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
412   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
413                           TII.get(ARM::VMOVRS), MoveReg)
414                   .addReg(SrcReg));
415   return MoveReg;
416 }
417 
418 // For double width floating point we need to materialize two constants
419 // (the high and the low) into integer registers then use a move to get
420 // the combined constant into an FP reg.
421 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
422   const APFloat Val = CFP->getValueAPF();
423   bool is64bit = VT == MVT::f64;
424 
425   // This checks to see if we can use VFP3 instructions to materialize
426   // a constant, otherwise we have to go through the constant pool.
427   if (TLI.isFPImmLegal(Val, VT)) {
428     int Imm;
429     unsigned Opc;
430     if (is64bit) {
431       Imm = ARM_AM::getFP64Imm(Val);
432       Opc = ARM::FCONSTD;
433     } else {
434       Imm = ARM_AM::getFP32Imm(Val);
435       Opc = ARM::FCONSTS;
436     }
437     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
438     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
439                             TII.get(Opc), DestReg).addImm(Imm));
440     return DestReg;
441   }
442 
443   // Require VFP2 for loading fp constants.
444   if (!Subtarget->hasVFP2Base()) return false;
445 
446   // MachineConstantPool wants an explicit alignment.
447   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
448   if (Align == 0) {
449     // TODO: Figure out if this is correct.
450     Align = DL.getTypeAllocSize(CFP->getType());
451   }
452   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
453   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
454   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
455 
456   // The extra reg is for addrmode5.
457   AddOptionalDefs(
458       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
459           .addConstantPoolIndex(Idx)
460           .addReg(0));
461   return DestReg;
462 }
463 
464 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
465   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
466     return 0;
467 
468   // If we can do this in a single instruction without a constant pool entry
469   // do so now.
470   const ConstantInt *CI = cast<ConstantInt>(C);
471   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
472     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
473     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
474       &ARM::GPRRegClass;
475     unsigned ImmReg = createResultReg(RC);
476     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
477                             TII.get(Opc), ImmReg)
478                     .addImm(CI->getZExtValue()));
479     return ImmReg;
480   }
481 
482   // Use MVN to emit negative constants.
483   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
484     unsigned Imm = (unsigned)~(CI->getSExtValue());
485     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
486       (ARM_AM::getSOImmVal(Imm) != -1);
487     if (UseImm) {
488       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
489       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
490                                                  &ARM::GPRRegClass;
491       unsigned ImmReg = createResultReg(RC);
492       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
493                               TII.get(Opc), ImmReg)
494                       .addImm(Imm));
495       return ImmReg;
496     }
497   }
498 
499   unsigned ResultReg = 0;
500   if (Subtarget->useMovt())
501     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
502 
503   if (ResultReg)
504     return ResultReg;
505 
506   // Load from constant pool.  For now 32-bit only.
507   if (VT != MVT::i32)
508     return 0;
509 
510   // MachineConstantPool wants an explicit alignment.
511   unsigned Align = DL.getPrefTypeAlignment(C->getType());
512   if (Align == 0) {
513     // TODO: Figure out if this is correct.
514     Align = DL.getTypeAllocSize(C->getType());
515   }
516   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
517   ResultReg = createResultReg(TLI.getRegClassFor(VT));
518   if (isThumb2)
519     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
520                             TII.get(ARM::t2LDRpci), ResultReg)
521                       .addConstantPoolIndex(Idx));
522   else {
523     // The extra immediate is for addrmode2.
524     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
525     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
526                             TII.get(ARM::LDRcp), ResultReg)
527                       .addConstantPoolIndex(Idx)
528                       .addImm(0));
529   }
530   return ResultReg;
531 }
532 
533 bool ARMFastISel::isPositionIndependent() const {
534   return TLI.isPositionIndependent();
535 }
536 
537 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
538   // For now 32-bit only.
539   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
540 
541   // ROPI/RWPI not currently supported.
542   if (Subtarget->isROPI() || Subtarget->isRWPI())
543     return 0;
544 
545   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
546   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
547                                            : &ARM::GPRRegClass;
548   unsigned DestReg = createResultReg(RC);
549 
550   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
551   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
552   bool IsThreadLocal = GVar && GVar->isThreadLocal();
553   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
554 
555   bool IsPositionIndependent = isPositionIndependent();
556   // Use movw+movt when possible, it avoids constant pool entries.
557   // Non-darwin targets only support static movt relocations in FastISel.
558   if (Subtarget->useMovt() &&
559       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
560     unsigned Opc;
561     unsigned char TF = 0;
562     if (Subtarget->isTargetMachO())
563       TF = ARMII::MO_NONLAZY;
564 
565     if (IsPositionIndependent)
566       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
567     else
568       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
569     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
570                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
571   } else {
572     // MachineConstantPool wants an explicit alignment.
573     Align Alignment = DL.getPrefTypeAlign(GV->getType());
574 
575     if (Subtarget->isTargetELF() && IsPositionIndependent)
576       return ARMLowerPICELF(GV, VT);
577 
578     // Grab index.
579     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
580     unsigned Id = AFI->createPICLabelUId();
581     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
582                                                                 ARMCP::CPValue,
583                                                                 PCAdj);
584     unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment.value());
585 
586     // Load value.
587     MachineInstrBuilder MIB;
588     if (isThumb2) {
589       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
590       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
591                     DestReg).addConstantPoolIndex(Idx);
592       if (IsPositionIndependent)
593         MIB.addImm(Id);
594       AddOptionalDefs(MIB);
595     } else {
596       // The extra immediate is for addrmode2.
597       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
598       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
599                     TII.get(ARM::LDRcp), DestReg)
600                 .addConstantPoolIndex(Idx)
601                 .addImm(0);
602       AddOptionalDefs(MIB);
603 
604       if (IsPositionIndependent) {
605         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
606         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
607 
608         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
609                                           DbgLoc, TII.get(Opc), NewDestReg)
610                                   .addReg(DestReg)
611                                   .addImm(Id);
612         AddOptionalDefs(MIB);
613         return NewDestReg;
614       }
615     }
616   }
617 
618   if (IsIndirect) {
619     MachineInstrBuilder MIB;
620     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
621     if (isThumb2)
622       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
623                     TII.get(ARM::t2LDRi12), NewDestReg)
624             .addReg(DestReg)
625             .addImm(0);
626     else
627       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
628                     TII.get(ARM::LDRi12), NewDestReg)
629                 .addReg(DestReg)
630                 .addImm(0);
631     DestReg = NewDestReg;
632     AddOptionalDefs(MIB);
633   }
634 
635   return DestReg;
636 }
637 
638 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
639   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
640 
641   // Only handle simple types.
642   if (!CEVT.isSimple()) return 0;
643   MVT VT = CEVT.getSimpleVT();
644 
645   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
646     return ARMMaterializeFP(CFP, VT);
647   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
648     return ARMMaterializeGV(GV, VT);
649   else if (isa<ConstantInt>(C))
650     return ARMMaterializeInt(C, VT);
651 
652   return 0;
653 }
654 
655 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
656 
657 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
658   // Don't handle dynamic allocas.
659   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
660 
661   MVT VT;
662   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
663 
664   DenseMap<const AllocaInst*, int>::iterator SI =
665     FuncInfo.StaticAllocaMap.find(AI);
666 
667   // This will get lowered later into the correct offsets and registers
668   // via rewriteXFrameIndex.
669   if (SI != FuncInfo.StaticAllocaMap.end()) {
670     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
671     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
672     unsigned ResultReg = createResultReg(RC);
673     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
674 
675     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
676                             TII.get(Opc), ResultReg)
677                             .addFrameIndex(SI->second)
678                             .addImm(0));
679     return ResultReg;
680   }
681 
682   return 0;
683 }
684 
685 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
686   EVT evt = TLI.getValueType(DL, Ty, true);
687 
688   // Only handle simple types.
689   if (evt == MVT::Other || !evt.isSimple()) return false;
690   VT = evt.getSimpleVT();
691 
692   // Handle all legal types, i.e. a register that will directly hold this
693   // value.
694   return TLI.isTypeLegal(VT);
695 }
696 
697 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
698   if (isTypeLegal(Ty, VT)) return true;
699 
700   // If this is a type than can be sign or zero-extended to a basic operation
701   // go ahead and accept it now.
702   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
703     return true;
704 
705   return false;
706 }
707 
708 // Computes the address to get to an object.
709 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
710   // Some boilerplate from the X86 FastISel.
711   const User *U = nullptr;
712   unsigned Opcode = Instruction::UserOp1;
713   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
714     // Don't walk into other basic blocks unless the object is an alloca from
715     // another block, otherwise it may not have a virtual register assigned.
716     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
717         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
718       Opcode = I->getOpcode();
719       U = I;
720     }
721   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
722     Opcode = C->getOpcode();
723     U = C;
724   }
725 
726   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
727     if (Ty->getAddressSpace() > 255)
728       // Fast instruction selection doesn't support the special
729       // address spaces.
730       return false;
731 
732   switch (Opcode) {
733     default:
734     break;
735     case Instruction::BitCast:
736       // Look through bitcasts.
737       return ARMComputeAddress(U->getOperand(0), Addr);
738     case Instruction::IntToPtr:
739       // Look past no-op inttoptrs.
740       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
741           TLI.getPointerTy(DL))
742         return ARMComputeAddress(U->getOperand(0), Addr);
743       break;
744     case Instruction::PtrToInt:
745       // Look past no-op ptrtoints.
746       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
747         return ARMComputeAddress(U->getOperand(0), Addr);
748       break;
749     case Instruction::GetElementPtr: {
750       Address SavedAddr = Addr;
751       int TmpOffset = Addr.Offset;
752 
753       // Iterate through the GEP folding the constants into offsets where
754       // we can.
755       gep_type_iterator GTI = gep_type_begin(U);
756       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
757            i != e; ++i, ++GTI) {
758         const Value *Op = *i;
759         if (StructType *STy = GTI.getStructTypeOrNull()) {
760           const StructLayout *SL = DL.getStructLayout(STy);
761           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
762           TmpOffset += SL->getElementOffset(Idx);
763         } else {
764           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
765           while (true) {
766             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
767               // Constant-offset addressing.
768               TmpOffset += CI->getSExtValue() * S;
769               break;
770             }
771             if (canFoldAddIntoGEP(U, Op)) {
772               // A compatible add with a constant operand. Fold the constant.
773               ConstantInt *CI =
774               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
775               TmpOffset += CI->getSExtValue() * S;
776               // Iterate on the other operand.
777               Op = cast<AddOperator>(Op)->getOperand(0);
778               continue;
779             }
780             // Unsupported
781             goto unsupported_gep;
782           }
783         }
784       }
785 
786       // Try to grab the base operand now.
787       Addr.Offset = TmpOffset;
788       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
789 
790       // We failed, restore everything and try the other options.
791       Addr = SavedAddr;
792 
793       unsupported_gep:
794       break;
795     }
796     case Instruction::Alloca: {
797       const AllocaInst *AI = cast<AllocaInst>(Obj);
798       DenseMap<const AllocaInst*, int>::iterator SI =
799         FuncInfo.StaticAllocaMap.find(AI);
800       if (SI != FuncInfo.StaticAllocaMap.end()) {
801         Addr.BaseType = Address::FrameIndexBase;
802         Addr.Base.FI = SI->second;
803         return true;
804       }
805       break;
806     }
807   }
808 
809   // Try to get this in a register if nothing else has worked.
810   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
811   return Addr.Base.Reg != 0;
812 }
813 
814 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
815   bool needsLowering = false;
816   switch (VT.SimpleTy) {
817     default: llvm_unreachable("Unhandled load/store type!");
818     case MVT::i1:
819     case MVT::i8:
820     case MVT::i16:
821     case MVT::i32:
822       if (!useAM3) {
823         // Integer loads/stores handle 12-bit offsets.
824         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
825         // Handle negative offsets.
826         if (needsLowering && isThumb2)
827           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
828                             Addr.Offset > -256);
829       } else {
830         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
831         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
832       }
833       break;
834     case MVT::f32:
835     case MVT::f64:
836       // Floating point operands handle 8-bit offsets.
837       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
838       break;
839   }
840 
841   // If this is a stack pointer and the offset needs to be simplified then
842   // put the alloca address into a register, set the base type back to
843   // register and continue. This should almost never happen.
844   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
845     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
846                                              : &ARM::GPRRegClass;
847     unsigned ResultReg = createResultReg(RC);
848     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
849     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
850                             TII.get(Opc), ResultReg)
851                             .addFrameIndex(Addr.Base.FI)
852                             .addImm(0));
853     Addr.Base.Reg = ResultReg;
854     Addr.BaseType = Address::RegBase;
855   }
856 
857   // Since the offset is too large for the load/store instruction
858   // get the reg+offset into a register.
859   if (needsLowering) {
860     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
861                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
862     Addr.Offset = 0;
863   }
864 }
865 
866 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
867                                        const MachineInstrBuilder &MIB,
868                                        MachineMemOperand::Flags Flags,
869                                        bool useAM3) {
870   // addrmode5 output depends on the selection dag addressing dividing the
871   // offset by 4 that it then later multiplies. Do this here as well.
872   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
873     Addr.Offset /= 4;
874 
875   // Frame base works a bit differently. Handle it separately.
876   if (Addr.BaseType == Address::FrameIndexBase) {
877     int FI = Addr.Base.FI;
878     int Offset = Addr.Offset;
879     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
880         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
881         MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
882     // Now add the rest of the operands.
883     MIB.addFrameIndex(FI);
884 
885     // ARM halfword load/stores and signed byte loads need an additional
886     // operand.
887     if (useAM3) {
888       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
889       MIB.addReg(0);
890       MIB.addImm(Imm);
891     } else {
892       MIB.addImm(Addr.Offset);
893     }
894     MIB.addMemOperand(MMO);
895   } else {
896     // Now add the rest of the operands.
897     MIB.addReg(Addr.Base.Reg);
898 
899     // ARM halfword load/stores and signed byte loads need an additional
900     // operand.
901     if (useAM3) {
902       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
903       MIB.addReg(0);
904       MIB.addImm(Imm);
905     } else {
906       MIB.addImm(Addr.Offset);
907     }
908   }
909   AddOptionalDefs(MIB);
910 }
911 
912 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
913                               unsigned Alignment, bool isZExt, bool allocReg) {
914   unsigned Opc;
915   bool useAM3 = false;
916   bool needVMOV = false;
917   const TargetRegisterClass *RC;
918   switch (VT.SimpleTy) {
919     // This is mostly going to be Neon/vector support.
920     default: return false;
921     case MVT::i1:
922     case MVT::i8:
923       if (isThumb2) {
924         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
925           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
926         else
927           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
928       } else {
929         if (isZExt) {
930           Opc = ARM::LDRBi12;
931         } else {
932           Opc = ARM::LDRSB;
933           useAM3 = true;
934         }
935       }
936       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
937       break;
938     case MVT::i16:
939       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
940         return false;
941 
942       if (isThumb2) {
943         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
944           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
945         else
946           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
947       } else {
948         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
949         useAM3 = true;
950       }
951       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
952       break;
953     case MVT::i32:
954       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
955         return false;
956 
957       if (isThumb2) {
958         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
959           Opc = ARM::t2LDRi8;
960         else
961           Opc = ARM::t2LDRi12;
962       } else {
963         Opc = ARM::LDRi12;
964       }
965       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
966       break;
967     case MVT::f32:
968       if (!Subtarget->hasVFP2Base()) return false;
969       // Unaligned loads need special handling. Floats require word-alignment.
970       if (Alignment && Alignment < 4) {
971         needVMOV = true;
972         VT = MVT::i32;
973         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
974         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
975       } else {
976         Opc = ARM::VLDRS;
977         RC = TLI.getRegClassFor(VT);
978       }
979       break;
980     case MVT::f64:
981       // Can load and store double precision even without FeatureFP64
982       if (!Subtarget->hasVFP2Base()) return false;
983       // FIXME: Unaligned loads need special handling.  Doublewords require
984       // word-alignment.
985       if (Alignment && Alignment < 4)
986         return false;
987 
988       Opc = ARM::VLDRD;
989       RC = TLI.getRegClassFor(VT);
990       break;
991   }
992   // Simplify this down to something we can handle.
993   ARMSimplifyAddress(Addr, VT, useAM3);
994 
995   // Create the base instruction, then add the operands.
996   if (allocReg)
997     ResultReg = createResultReg(RC);
998   assert(ResultReg > 255 && "Expected an allocated virtual register.");
999   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1000                                     TII.get(Opc), ResultReg);
1001   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1002 
1003   // If we had an unaligned load of a float we've converted it to an regular
1004   // load.  Now we must move from the GRP to the FP register.
1005   if (needVMOV) {
1006     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1007     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1008                             TII.get(ARM::VMOVSR), MoveReg)
1009                     .addReg(ResultReg));
1010     ResultReg = MoveReg;
1011   }
1012   return true;
1013 }
1014 
1015 bool ARMFastISel::SelectLoad(const Instruction *I) {
1016   // Atomic loads need special handling.
1017   if (cast<LoadInst>(I)->isAtomic())
1018     return false;
1019 
1020   const Value *SV = I->getOperand(0);
1021   if (TLI.supportSwiftError()) {
1022     // Swifterror values can come from either a function parameter with
1023     // swifterror attribute or an alloca with swifterror attribute.
1024     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1025       if (Arg->hasSwiftErrorAttr())
1026         return false;
1027     }
1028 
1029     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1030       if (Alloca->isSwiftError())
1031         return false;
1032     }
1033   }
1034 
1035   // Verify we have a legal type before going any further.
1036   MVT VT;
1037   if (!isLoadTypeLegal(I->getType(), VT))
1038     return false;
1039 
1040   // See if we can handle this address.
1041   Address Addr;
1042   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1043 
1044   Register ResultReg;
1045   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1046     return false;
1047   updateValueMap(I, ResultReg);
1048   return true;
1049 }
1050 
1051 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1052                                unsigned Alignment) {
1053   unsigned StrOpc;
1054   bool useAM3 = false;
1055   switch (VT.SimpleTy) {
1056     // This is mostly going to be Neon/vector support.
1057     default: return false;
1058     case MVT::i1: {
1059       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1060                                               : &ARM::GPRRegClass);
1061       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1062       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1063       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1064                               TII.get(Opc), Res)
1065                       .addReg(SrcReg).addImm(1));
1066       SrcReg = Res;
1067       LLVM_FALLTHROUGH;
1068     }
1069     case MVT::i8:
1070       if (isThumb2) {
1071         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1072           StrOpc = ARM::t2STRBi8;
1073         else
1074           StrOpc = ARM::t2STRBi12;
1075       } else {
1076         StrOpc = ARM::STRBi12;
1077       }
1078       break;
1079     case MVT::i16:
1080       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1081         return false;
1082 
1083       if (isThumb2) {
1084         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1085           StrOpc = ARM::t2STRHi8;
1086         else
1087           StrOpc = ARM::t2STRHi12;
1088       } else {
1089         StrOpc = ARM::STRH;
1090         useAM3 = true;
1091       }
1092       break;
1093     case MVT::i32:
1094       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1095         return false;
1096 
1097       if (isThumb2) {
1098         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1099           StrOpc = ARM::t2STRi8;
1100         else
1101           StrOpc = ARM::t2STRi12;
1102       } else {
1103         StrOpc = ARM::STRi12;
1104       }
1105       break;
1106     case MVT::f32:
1107       if (!Subtarget->hasVFP2Base()) return false;
1108       // Unaligned stores need special handling. Floats require word-alignment.
1109       if (Alignment && Alignment < 4) {
1110         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1111         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1112                                 TII.get(ARM::VMOVRS), MoveReg)
1113                         .addReg(SrcReg));
1114         SrcReg = MoveReg;
1115         VT = MVT::i32;
1116         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1117       } else {
1118         StrOpc = ARM::VSTRS;
1119       }
1120       break;
1121     case MVT::f64:
1122       // Can load and store double precision even without FeatureFP64
1123       if (!Subtarget->hasVFP2Base()) return false;
1124       // FIXME: Unaligned stores need special handling.  Doublewords require
1125       // word-alignment.
1126       if (Alignment && Alignment < 4)
1127           return false;
1128 
1129       StrOpc = ARM::VSTRD;
1130       break;
1131   }
1132   // Simplify this down to something we can handle.
1133   ARMSimplifyAddress(Addr, VT, useAM3);
1134 
1135   // Create the base instruction, then add the operands.
1136   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1137   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1138                                     TII.get(StrOpc))
1139                             .addReg(SrcReg);
1140   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1141   return true;
1142 }
1143 
1144 bool ARMFastISel::SelectStore(const Instruction *I) {
1145   Value *Op0 = I->getOperand(0);
1146   unsigned SrcReg = 0;
1147 
1148   // Atomic stores need special handling.
1149   if (cast<StoreInst>(I)->isAtomic())
1150     return false;
1151 
1152   const Value *PtrV = I->getOperand(1);
1153   if (TLI.supportSwiftError()) {
1154     // Swifterror values can come from either a function parameter with
1155     // swifterror attribute or an alloca with swifterror attribute.
1156     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1157       if (Arg->hasSwiftErrorAttr())
1158         return false;
1159     }
1160 
1161     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1162       if (Alloca->isSwiftError())
1163         return false;
1164     }
1165   }
1166 
1167   // Verify we have a legal type before going any further.
1168   MVT VT;
1169   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1170     return false;
1171 
1172   // Get the value to be stored into a register.
1173   SrcReg = getRegForValue(Op0);
1174   if (SrcReg == 0) return false;
1175 
1176   // See if we can handle this address.
1177   Address Addr;
1178   if (!ARMComputeAddress(I->getOperand(1), Addr))
1179     return false;
1180 
1181   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1182     return false;
1183   return true;
1184 }
1185 
1186 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1187   switch (Pred) {
1188     // Needs two compares...
1189     case CmpInst::FCMP_ONE:
1190     case CmpInst::FCMP_UEQ:
1191     default:
1192       // AL is our "false" for now. The other two need more compares.
1193       return ARMCC::AL;
1194     case CmpInst::ICMP_EQ:
1195     case CmpInst::FCMP_OEQ:
1196       return ARMCC::EQ;
1197     case CmpInst::ICMP_SGT:
1198     case CmpInst::FCMP_OGT:
1199       return ARMCC::GT;
1200     case CmpInst::ICMP_SGE:
1201     case CmpInst::FCMP_OGE:
1202       return ARMCC::GE;
1203     case CmpInst::ICMP_UGT:
1204     case CmpInst::FCMP_UGT:
1205       return ARMCC::HI;
1206     case CmpInst::FCMP_OLT:
1207       return ARMCC::MI;
1208     case CmpInst::ICMP_ULE:
1209     case CmpInst::FCMP_OLE:
1210       return ARMCC::LS;
1211     case CmpInst::FCMP_ORD:
1212       return ARMCC::VC;
1213     case CmpInst::FCMP_UNO:
1214       return ARMCC::VS;
1215     case CmpInst::FCMP_UGE:
1216       return ARMCC::PL;
1217     case CmpInst::ICMP_SLT:
1218     case CmpInst::FCMP_ULT:
1219       return ARMCC::LT;
1220     case CmpInst::ICMP_SLE:
1221     case CmpInst::FCMP_ULE:
1222       return ARMCC::LE;
1223     case CmpInst::FCMP_UNE:
1224     case CmpInst::ICMP_NE:
1225       return ARMCC::NE;
1226     case CmpInst::ICMP_UGE:
1227       return ARMCC::HS;
1228     case CmpInst::ICMP_ULT:
1229       return ARMCC::LO;
1230   }
1231 }
1232 
1233 bool ARMFastISel::SelectBranch(const Instruction *I) {
1234   const BranchInst *BI = cast<BranchInst>(I);
1235   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1236   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1237 
1238   // Simple branch support.
1239 
1240   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1241   // behavior.
1242   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1243     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1244       // Get the compare predicate.
1245       // Try to take advantage of fallthrough opportunities.
1246       CmpInst::Predicate Predicate = CI->getPredicate();
1247       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1248         std::swap(TBB, FBB);
1249         Predicate = CmpInst::getInversePredicate(Predicate);
1250       }
1251 
1252       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1253 
1254       // We may not handle every CC for now.
1255       if (ARMPred == ARMCC::AL) return false;
1256 
1257       // Emit the compare.
1258       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1259         return false;
1260 
1261       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1262       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1263       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1264       finishCondBranch(BI->getParent(), TBB, FBB);
1265       return true;
1266     }
1267   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1268     MVT SourceVT;
1269     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1270         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1271       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1272       unsigned OpReg = getRegForValue(TI->getOperand(0));
1273       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1274       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1275                               TII.get(TstOpc))
1276                       .addReg(OpReg).addImm(1));
1277 
1278       unsigned CCMode = ARMCC::NE;
1279       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1280         std::swap(TBB, FBB);
1281         CCMode = ARMCC::EQ;
1282       }
1283 
1284       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1285       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1286       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1287 
1288       finishCondBranch(BI->getParent(), TBB, FBB);
1289       return true;
1290     }
1291   } else if (const ConstantInt *CI =
1292              dyn_cast<ConstantInt>(BI->getCondition())) {
1293     uint64_t Imm = CI->getZExtValue();
1294     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1295     fastEmitBranch(Target, DbgLoc);
1296     return true;
1297   }
1298 
1299   unsigned CmpReg = getRegForValue(BI->getCondition());
1300   if (CmpReg == 0) return false;
1301 
1302   // We've been divorced from our compare!  Our block was split, and
1303   // now our compare lives in a predecessor block.  We musn't
1304   // re-compare here, as the children of the compare aren't guaranteed
1305   // live across the block boundary (we *could* check for this).
1306   // Regardless, the compare has been done in the predecessor block,
1307   // and it left a value for us in a virtual register.  Ergo, we test
1308   // the one-bit value left in the virtual register.
1309   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1310   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1311   AddOptionalDefs(
1312       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1313           .addReg(CmpReg)
1314           .addImm(1));
1315 
1316   unsigned CCMode = ARMCC::NE;
1317   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1318     std::swap(TBB, FBB);
1319     CCMode = ARMCC::EQ;
1320   }
1321 
1322   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1323   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1324                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1325   finishCondBranch(BI->getParent(), TBB, FBB);
1326   return true;
1327 }
1328 
1329 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1330   unsigned AddrReg = getRegForValue(I->getOperand(0));
1331   if (AddrReg == 0) return false;
1332 
1333   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1334   assert(isThumb2 || Subtarget->hasV4TOps());
1335 
1336   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1337                           TII.get(Opc)).addReg(AddrReg));
1338 
1339   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1340   for (const BasicBlock *SuccBB : IB->successors())
1341     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1342 
1343   return true;
1344 }
1345 
1346 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1347                              bool isZExt) {
1348   Type *Ty = Src1Value->getType();
1349   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1350   if (!SrcEVT.isSimple()) return false;
1351   MVT SrcVT = SrcEVT.getSimpleVT();
1352 
1353   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1354     return false;
1355 
1356   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1357     return false;
1358 
1359   // Check to see if the 2nd operand is a constant that we can encode directly
1360   // in the compare.
1361   int Imm = 0;
1362   bool UseImm = false;
1363   bool isNegativeImm = false;
1364   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1365   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1366   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1367     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1368         SrcVT == MVT::i1) {
1369       const APInt &CIVal = ConstInt->getValue();
1370       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1371       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1372       // then a cmn, because there is no way to represent 2147483648 as a
1373       // signed 32-bit int.
1374       if (Imm < 0 && Imm != (int)0x80000000) {
1375         isNegativeImm = true;
1376         Imm = -Imm;
1377       }
1378       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1379         (ARM_AM::getSOImmVal(Imm) != -1);
1380     }
1381   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1382     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1383       if (ConstFP->isZero() && !ConstFP->isNegative())
1384         UseImm = true;
1385   }
1386 
1387   unsigned CmpOpc;
1388   bool isICmp = true;
1389   bool needsExt = false;
1390   switch (SrcVT.SimpleTy) {
1391     default: return false;
1392     // TODO: Verify compares.
1393     case MVT::f32:
1394       isICmp = false;
1395       CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1396       break;
1397     case MVT::f64:
1398       isICmp = false;
1399       CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1400       break;
1401     case MVT::i1:
1402     case MVT::i8:
1403     case MVT::i16:
1404       needsExt = true;
1405       LLVM_FALLTHROUGH;
1406     case MVT::i32:
1407       if (isThumb2) {
1408         if (!UseImm)
1409           CmpOpc = ARM::t2CMPrr;
1410         else
1411           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1412       } else {
1413         if (!UseImm)
1414           CmpOpc = ARM::CMPrr;
1415         else
1416           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1417       }
1418       break;
1419   }
1420 
1421   unsigned SrcReg1 = getRegForValue(Src1Value);
1422   if (SrcReg1 == 0) return false;
1423 
1424   unsigned SrcReg2 = 0;
1425   if (!UseImm) {
1426     SrcReg2 = getRegForValue(Src2Value);
1427     if (SrcReg2 == 0) return false;
1428   }
1429 
1430   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1431   if (needsExt) {
1432     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1433     if (SrcReg1 == 0) return false;
1434     if (!UseImm) {
1435       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1436       if (SrcReg2 == 0) return false;
1437     }
1438   }
1439 
1440   const MCInstrDesc &II = TII.get(CmpOpc);
1441   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1442   if (!UseImm) {
1443     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1444     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1445                     .addReg(SrcReg1).addReg(SrcReg2));
1446   } else {
1447     MachineInstrBuilder MIB;
1448     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1449       .addReg(SrcReg1);
1450 
1451     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1452     if (isICmp)
1453       MIB.addImm(Imm);
1454     AddOptionalDefs(MIB);
1455   }
1456 
1457   // For floating point we need to move the result to a comparison register
1458   // that we can then use for branches.
1459   if (Ty->isFloatTy() || Ty->isDoubleTy())
1460     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1461                             TII.get(ARM::FMSTAT)));
1462   return true;
1463 }
1464 
1465 bool ARMFastISel::SelectCmp(const Instruction *I) {
1466   const CmpInst *CI = cast<CmpInst>(I);
1467 
1468   // Get the compare predicate.
1469   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1470 
1471   // We may not handle every CC for now.
1472   if (ARMPred == ARMCC::AL) return false;
1473 
1474   // Emit the compare.
1475   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1476     return false;
1477 
1478   // Now set a register based on the comparison. Explicitly set the predicates
1479   // here.
1480   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1481   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1482                                            : &ARM::GPRRegClass;
1483   unsigned DestReg = createResultReg(RC);
1484   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1485   unsigned ZeroReg = fastMaterializeConstant(Zero);
1486   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1487   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1488           .addReg(ZeroReg).addImm(1)
1489           .addImm(ARMPred).addReg(ARM::CPSR);
1490 
1491   updateValueMap(I, DestReg);
1492   return true;
1493 }
1494 
1495 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1496   // Make sure we have VFP and that we're extending float to double.
1497   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1498 
1499   Value *V = I->getOperand(0);
1500   if (!I->getType()->isDoubleTy() ||
1501       !V->getType()->isFloatTy()) return false;
1502 
1503   unsigned Op = getRegForValue(V);
1504   if (Op == 0) return false;
1505 
1506   unsigned Result = createResultReg(&ARM::DPRRegClass);
1507   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1508                           TII.get(ARM::VCVTDS), Result)
1509                   .addReg(Op));
1510   updateValueMap(I, Result);
1511   return true;
1512 }
1513 
1514 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1515   // Make sure we have VFP and that we're truncating double to float.
1516   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1517 
1518   Value *V = I->getOperand(0);
1519   if (!(I->getType()->isFloatTy() &&
1520         V->getType()->isDoubleTy())) return false;
1521 
1522   unsigned Op = getRegForValue(V);
1523   if (Op == 0) return false;
1524 
1525   unsigned Result = createResultReg(&ARM::SPRRegClass);
1526   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1527                           TII.get(ARM::VCVTSD), Result)
1528                   .addReg(Op));
1529   updateValueMap(I, Result);
1530   return true;
1531 }
1532 
1533 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1534   // Make sure we have VFP.
1535   if (!Subtarget->hasVFP2Base()) return false;
1536 
1537   MVT DstVT;
1538   Type *Ty = I->getType();
1539   if (!isTypeLegal(Ty, DstVT))
1540     return false;
1541 
1542   Value *Src = I->getOperand(0);
1543   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1544   if (!SrcEVT.isSimple())
1545     return false;
1546   MVT SrcVT = SrcEVT.getSimpleVT();
1547   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1548     return false;
1549 
1550   unsigned SrcReg = getRegForValue(Src);
1551   if (SrcReg == 0) return false;
1552 
1553   // Handle sign-extension.
1554   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1555     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1556                                        /*isZExt*/!isSigned);
1557     if (SrcReg == 0) return false;
1558   }
1559 
1560   // The conversion routine works on fp-reg to fp-reg and the operand above
1561   // was an integer, move it to the fp registers if possible.
1562   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1563   if (FP == 0) return false;
1564 
1565   unsigned Opc;
1566   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1567   else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1568     Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1569   else return false;
1570 
1571   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1572   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1573                           TII.get(Opc), ResultReg).addReg(FP));
1574   updateValueMap(I, ResultReg);
1575   return true;
1576 }
1577 
1578 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1579   // Make sure we have VFP.
1580   if (!Subtarget->hasVFP2Base()) return false;
1581 
1582   MVT DstVT;
1583   Type *RetTy = I->getType();
1584   if (!isTypeLegal(RetTy, DstVT))
1585     return false;
1586 
1587   unsigned Op = getRegForValue(I->getOperand(0));
1588   if (Op == 0) return false;
1589 
1590   unsigned Opc;
1591   Type *OpTy = I->getOperand(0)->getType();
1592   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1593   else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1594     Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1595   else return false;
1596 
1597   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1598   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1599   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1600                           TII.get(Opc), ResultReg).addReg(Op));
1601 
1602   // This result needs to be in an integer register, but the conversion only
1603   // takes place in fp-regs.
1604   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1605   if (IntReg == 0) return false;
1606 
1607   updateValueMap(I, IntReg);
1608   return true;
1609 }
1610 
1611 bool ARMFastISel::SelectSelect(const Instruction *I) {
1612   MVT VT;
1613   if (!isTypeLegal(I->getType(), VT))
1614     return false;
1615 
1616   // Things need to be register sized for register moves.
1617   if (VT != MVT::i32) return false;
1618 
1619   unsigned CondReg = getRegForValue(I->getOperand(0));
1620   if (CondReg == 0) return false;
1621   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1622   if (Op1Reg == 0) return false;
1623 
1624   // Check to see if we can use an immediate in the conditional move.
1625   int Imm = 0;
1626   bool UseImm = false;
1627   bool isNegativeImm = false;
1628   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1629     assert(VT == MVT::i32 && "Expecting an i32.");
1630     Imm = (int)ConstInt->getValue().getZExtValue();
1631     if (Imm < 0) {
1632       isNegativeImm = true;
1633       Imm = ~Imm;
1634     }
1635     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1636       (ARM_AM::getSOImmVal(Imm) != -1);
1637   }
1638 
1639   unsigned Op2Reg = 0;
1640   if (!UseImm) {
1641     Op2Reg = getRegForValue(I->getOperand(2));
1642     if (Op2Reg == 0) return false;
1643   }
1644 
1645   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1646   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1647   AddOptionalDefs(
1648       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1649           .addReg(CondReg)
1650           .addImm(1));
1651 
1652   unsigned MovCCOpc;
1653   const TargetRegisterClass *RC;
1654   if (!UseImm) {
1655     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1656     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1657   } else {
1658     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1659     if (!isNegativeImm)
1660       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1661     else
1662       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1663   }
1664   unsigned ResultReg = createResultReg(RC);
1665   if (!UseImm) {
1666     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1667     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1668     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1669             ResultReg)
1670         .addReg(Op2Reg)
1671         .addReg(Op1Reg)
1672         .addImm(ARMCC::NE)
1673         .addReg(ARM::CPSR);
1674   } else {
1675     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1676     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1677             ResultReg)
1678         .addReg(Op1Reg)
1679         .addImm(Imm)
1680         .addImm(ARMCC::EQ)
1681         .addReg(ARM::CPSR);
1682   }
1683   updateValueMap(I, ResultReg);
1684   return true;
1685 }
1686 
1687 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1688   MVT VT;
1689   Type *Ty = I->getType();
1690   if (!isTypeLegal(Ty, VT))
1691     return false;
1692 
1693   // If we have integer div support we should have selected this automagically.
1694   // In case we have a real miss go ahead and return false and we'll pick
1695   // it up later.
1696   if (Subtarget->hasDivideInThumbMode())
1697     return false;
1698 
1699   // Otherwise emit a libcall.
1700   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1701   if (VT == MVT::i8)
1702     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1703   else if (VT == MVT::i16)
1704     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1705   else if (VT == MVT::i32)
1706     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1707   else if (VT == MVT::i64)
1708     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1709   else if (VT == MVT::i128)
1710     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1711   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1712 
1713   return ARMEmitLibcall(I, LC);
1714 }
1715 
1716 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1717   MVT VT;
1718   Type *Ty = I->getType();
1719   if (!isTypeLegal(Ty, VT))
1720     return false;
1721 
1722   // Many ABIs do not provide a libcall for standalone remainder, so we need to
1723   // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1724   // multi-reg returns, we'll have to bail out.
1725   if (!TLI.hasStandaloneRem(VT)) {
1726     return false;
1727   }
1728 
1729   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1730   if (VT == MVT::i8)
1731     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1732   else if (VT == MVT::i16)
1733     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1734   else if (VT == MVT::i32)
1735     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1736   else if (VT == MVT::i64)
1737     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1738   else if (VT == MVT::i128)
1739     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1740   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1741 
1742   return ARMEmitLibcall(I, LC);
1743 }
1744 
1745 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1746   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1747 
1748   // We can get here in the case when we have a binary operation on a non-legal
1749   // type and the target independent selector doesn't know how to handle it.
1750   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1751     return false;
1752 
1753   unsigned Opc;
1754   switch (ISDOpcode) {
1755     default: return false;
1756     case ISD::ADD:
1757       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1758       break;
1759     case ISD::OR:
1760       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1761       break;
1762     case ISD::SUB:
1763       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1764       break;
1765   }
1766 
1767   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1768   if (SrcReg1 == 0) return false;
1769 
1770   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1771   // in the instruction, rather then materializing the value in a register.
1772   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1773   if (SrcReg2 == 0) return false;
1774 
1775   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1776   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1777   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1778   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1779                           TII.get(Opc), ResultReg)
1780                   .addReg(SrcReg1).addReg(SrcReg2));
1781   updateValueMap(I, ResultReg);
1782   return true;
1783 }
1784 
1785 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1786   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1787   if (!FPVT.isSimple()) return false;
1788   MVT VT = FPVT.getSimpleVT();
1789 
1790   // FIXME: Support vector types where possible.
1791   if (VT.isVector())
1792     return false;
1793 
1794   // We can get here in the case when we want to use NEON for our fp
1795   // operations, but can't figure out how to. Just use the vfp instructions
1796   // if we have them.
1797   // FIXME: It'd be nice to use NEON instructions.
1798   Type *Ty = I->getType();
1799   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1800     return false;
1801   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1802     return false;
1803 
1804   unsigned Opc;
1805   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1806   switch (ISDOpcode) {
1807     default: return false;
1808     case ISD::FADD:
1809       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1810       break;
1811     case ISD::FSUB:
1812       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1813       break;
1814     case ISD::FMUL:
1815       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1816       break;
1817   }
1818   unsigned Op1 = getRegForValue(I->getOperand(0));
1819   if (Op1 == 0) return false;
1820 
1821   unsigned Op2 = getRegForValue(I->getOperand(1));
1822   if (Op2 == 0) return false;
1823 
1824   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1825   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1826                           TII.get(Opc), ResultReg)
1827                   .addReg(Op1).addReg(Op2));
1828   updateValueMap(I, ResultReg);
1829   return true;
1830 }
1831 
1832 // Call Handling Code
1833 
1834 // This is largely taken directly from CCAssignFnForNode
1835 // TODO: We may not support all of this.
1836 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1837                                            bool Return,
1838                                            bool isVarArg) {
1839   switch (CC) {
1840   default:
1841     report_fatal_error("Unsupported calling convention");
1842   case CallingConv::Fast:
1843     if (Subtarget->hasVFP2Base() && !isVarArg) {
1844       if (!Subtarget->isAAPCS_ABI())
1845         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1846       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1847       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1848     }
1849     LLVM_FALLTHROUGH;
1850   case CallingConv::C:
1851   case CallingConv::CXX_FAST_TLS:
1852     // Use target triple & subtarget features to do actual dispatch.
1853     if (Subtarget->isAAPCS_ABI()) {
1854       if (Subtarget->hasVFP2Base() &&
1855           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1856         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1857       else
1858         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1859     } else {
1860       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1861     }
1862   case CallingConv::ARM_AAPCS_VFP:
1863   case CallingConv::Swift:
1864     if (!isVarArg)
1865       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1866     // Fall through to soft float variant, variadic functions don't
1867     // use hard floating point ABI.
1868     LLVM_FALLTHROUGH;
1869   case CallingConv::ARM_AAPCS:
1870     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1871   case CallingConv::ARM_APCS:
1872     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1873   case CallingConv::GHC:
1874     if (Return)
1875       report_fatal_error("Can't return in GHC call convention");
1876     else
1877       return CC_ARM_APCS_GHC;
1878   case CallingConv::CFGuard_Check:
1879     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1880   }
1881 }
1882 
1883 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1884                                   SmallVectorImpl<Register> &ArgRegs,
1885                                   SmallVectorImpl<MVT> &ArgVTs,
1886                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1887                                   SmallVectorImpl<Register> &RegArgs,
1888                                   CallingConv::ID CC,
1889                                   unsigned &NumBytes,
1890                                   bool isVarArg) {
1891   SmallVector<CCValAssign, 16> ArgLocs;
1892   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1893   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1894                              CCAssignFnForCall(CC, false, isVarArg));
1895 
1896   // Check that we can handle all of the arguments. If we can't, then bail out
1897   // now before we add code to the MBB.
1898   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1899     CCValAssign &VA = ArgLocs[i];
1900     MVT ArgVT = ArgVTs[VA.getValNo()];
1901 
1902     // We don't handle NEON/vector parameters yet.
1903     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1904       return false;
1905 
1906     // Now copy/store arg to correct locations.
1907     if (VA.isRegLoc() && !VA.needsCustom()) {
1908       continue;
1909     } else if (VA.needsCustom()) {
1910       // TODO: We need custom lowering for vector (v2f64) args.
1911       if (VA.getLocVT() != MVT::f64 ||
1912           // TODO: Only handle register args for now.
1913           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1914         return false;
1915     } else {
1916       switch (ArgVT.SimpleTy) {
1917       default:
1918         return false;
1919       case MVT::i1:
1920       case MVT::i8:
1921       case MVT::i16:
1922       case MVT::i32:
1923         break;
1924       case MVT::f32:
1925         if (!Subtarget->hasVFP2Base())
1926           return false;
1927         break;
1928       case MVT::f64:
1929         if (!Subtarget->hasVFP2Base())
1930           return false;
1931         break;
1932       }
1933     }
1934   }
1935 
1936   // At the point, we are able to handle the call's arguments in fast isel.
1937 
1938   // Get a count of how many bytes are to be pushed on the stack.
1939   NumBytes = CCInfo.getNextStackOffset();
1940 
1941   // Issue CALLSEQ_START
1942   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1943   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1944                           TII.get(AdjStackDown))
1945                   .addImm(NumBytes).addImm(0));
1946 
1947   // Process the args.
1948   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1949     CCValAssign &VA = ArgLocs[i];
1950     const Value *ArgVal = Args[VA.getValNo()];
1951     Register Arg = ArgRegs[VA.getValNo()];
1952     MVT ArgVT = ArgVTs[VA.getValNo()];
1953 
1954     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1955            "We don't handle NEON/vector parameters yet.");
1956 
1957     // Handle arg promotion, etc.
1958     switch (VA.getLocInfo()) {
1959       case CCValAssign::Full: break;
1960       case CCValAssign::SExt: {
1961         MVT DestVT = VA.getLocVT();
1962         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1963         assert(Arg != 0 && "Failed to emit a sext");
1964         ArgVT = DestVT;
1965         break;
1966       }
1967       case CCValAssign::AExt:
1968       // Intentional fall-through.  Handle AExt and ZExt.
1969       case CCValAssign::ZExt: {
1970         MVT DestVT = VA.getLocVT();
1971         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1972         assert(Arg != 0 && "Failed to emit a zext");
1973         ArgVT = DestVT;
1974         break;
1975       }
1976       case CCValAssign::BCvt: {
1977         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1978                                  /*TODO: Kill=*/false);
1979         assert(BC != 0 && "Failed to emit a bitcast!");
1980         Arg = BC;
1981         ArgVT = VA.getLocVT();
1982         break;
1983       }
1984       default: llvm_unreachable("Unknown arg promotion!");
1985     }
1986 
1987     // Now copy/store arg to correct locations.
1988     if (VA.isRegLoc() && !VA.needsCustom()) {
1989       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1990               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1991       RegArgs.push_back(VA.getLocReg());
1992     } else if (VA.needsCustom()) {
1993       // TODO: We need custom lowering for vector (v2f64) args.
1994       assert(VA.getLocVT() == MVT::f64 &&
1995              "Custom lowering for v2f64 args not available");
1996 
1997       // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
1998       CCValAssign &NextVA = ArgLocs[++i];
1999 
2000       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2001              "We only handle register args!");
2002 
2003       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2004                               TII.get(ARM::VMOVRRD), VA.getLocReg())
2005                       .addReg(NextVA.getLocReg(), RegState::Define)
2006                       .addReg(Arg));
2007       RegArgs.push_back(VA.getLocReg());
2008       RegArgs.push_back(NextVA.getLocReg());
2009     } else {
2010       assert(VA.isMemLoc());
2011       // Need to store on the stack.
2012 
2013       // Don't emit stores for undef values.
2014       if (isa<UndefValue>(ArgVal))
2015         continue;
2016 
2017       Address Addr;
2018       Addr.BaseType = Address::RegBase;
2019       Addr.Base.Reg = ARM::SP;
2020       Addr.Offset = VA.getLocMemOffset();
2021 
2022       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2023       assert(EmitRet && "Could not emit a store for argument!");
2024     }
2025   }
2026 
2027   return true;
2028 }
2029 
2030 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2031                              const Instruction *I, CallingConv::ID CC,
2032                              unsigned &NumBytes, bool isVarArg) {
2033   // Issue CALLSEQ_END
2034   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2035   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2036                           TII.get(AdjStackUp))
2037                   .addImm(NumBytes).addImm(0));
2038 
2039   // Now the return value.
2040   if (RetVT != MVT::isVoid) {
2041     SmallVector<CCValAssign, 16> RVLocs;
2042     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2043     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2044 
2045     // Copy all of the result registers out of their specified physreg.
2046     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2047       // For this move we copy into two registers and then move into the
2048       // double fp reg we want.
2049       MVT DestVT = RVLocs[0].getValVT();
2050       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2051       Register ResultReg = createResultReg(DstRC);
2052       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2053                               TII.get(ARM::VMOVDRR), ResultReg)
2054                       .addReg(RVLocs[0].getLocReg())
2055                       .addReg(RVLocs[1].getLocReg()));
2056 
2057       UsedRegs.push_back(RVLocs[0].getLocReg());
2058       UsedRegs.push_back(RVLocs[1].getLocReg());
2059 
2060       // Finally update the result.
2061       updateValueMap(I, ResultReg);
2062     } else {
2063       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2064       MVT CopyVT = RVLocs[0].getValVT();
2065 
2066       // Special handling for extended integers.
2067       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2068         CopyVT = MVT::i32;
2069 
2070       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2071 
2072       Register ResultReg = createResultReg(DstRC);
2073       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2074               TII.get(TargetOpcode::COPY),
2075               ResultReg).addReg(RVLocs[0].getLocReg());
2076       UsedRegs.push_back(RVLocs[0].getLocReg());
2077 
2078       // Finally update the result.
2079       updateValueMap(I, ResultReg);
2080     }
2081   }
2082 
2083   return true;
2084 }
2085 
2086 bool ARMFastISel::SelectRet(const Instruction *I) {
2087   const ReturnInst *Ret = cast<ReturnInst>(I);
2088   const Function &F = *I->getParent()->getParent();
2089 
2090   if (!FuncInfo.CanLowerReturn)
2091     return false;
2092 
2093   if (TLI.supportSwiftError() &&
2094       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2095     return false;
2096 
2097   if (TLI.supportSplitCSR(FuncInfo.MF))
2098     return false;
2099 
2100   // Build a list of return value registers.
2101   SmallVector<unsigned, 4> RetRegs;
2102 
2103   CallingConv::ID CC = F.getCallingConv();
2104   if (Ret->getNumOperands() > 0) {
2105     SmallVector<ISD::OutputArg, 4> Outs;
2106     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2107 
2108     // Analyze operands of the call, assigning locations to each operand.
2109     SmallVector<CCValAssign, 16> ValLocs;
2110     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2111     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2112                                                  F.isVarArg()));
2113 
2114     const Value *RV = Ret->getOperand(0);
2115     unsigned Reg = getRegForValue(RV);
2116     if (Reg == 0)
2117       return false;
2118 
2119     // Only handle a single return value for now.
2120     if (ValLocs.size() != 1)
2121       return false;
2122 
2123     CCValAssign &VA = ValLocs[0];
2124 
2125     // Don't bother handling odd stuff for now.
2126     if (VA.getLocInfo() != CCValAssign::Full)
2127       return false;
2128     // Only handle register returns for now.
2129     if (!VA.isRegLoc())
2130       return false;
2131 
2132     unsigned SrcReg = Reg + VA.getValNo();
2133     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2134     if (!RVEVT.isSimple()) return false;
2135     MVT RVVT = RVEVT.getSimpleVT();
2136     MVT DestVT = VA.getValVT();
2137     // Special handling for extended integers.
2138     if (RVVT != DestVT) {
2139       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2140         return false;
2141 
2142       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2143 
2144       // Perform extension if flagged as either zext or sext.  Otherwise, do
2145       // nothing.
2146       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2147         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2148         if (SrcReg == 0) return false;
2149       }
2150     }
2151 
2152     // Make the copy.
2153     Register DstReg = VA.getLocReg();
2154     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2155     // Avoid a cross-class copy. This is very unlikely.
2156     if (!SrcRC->contains(DstReg))
2157       return false;
2158     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2159             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2160 
2161     // Add register to return instruction.
2162     RetRegs.push_back(VA.getLocReg());
2163   }
2164 
2165   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2166                                     TII.get(Subtarget->getReturnOpcode()));
2167   AddOptionalDefs(MIB);
2168   for (unsigned R : RetRegs)
2169     MIB.addReg(R, RegState::Implicit);
2170   return true;
2171 }
2172 
2173 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2174   if (UseReg)
2175     return isThumb2 ? ARM::tBLXr : ARM::BLX;
2176   else
2177     return isThumb2 ? ARM::tBL : ARM::BL;
2178 }
2179 
2180 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2181   // Manually compute the global's type to avoid building it when unnecessary.
2182   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2183   EVT LCREVT = TLI.getValueType(DL, GVTy);
2184   if (!LCREVT.isSimple()) return 0;
2185 
2186   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2187                                        GlobalValue::ExternalLinkage, nullptr,
2188                                        Name);
2189   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2190   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2191 }
2192 
2193 // A quick function that will emit a call for a named libcall in F with the
2194 // vector of passed arguments for the Instruction in I. We can assume that we
2195 // can emit a call for any libcall we can produce. This is an abridged version
2196 // of the full call infrastructure since we won't need to worry about things
2197 // like computed function pointers or strange arguments at call sites.
2198 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2199 // with X86.
2200 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2201   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2202 
2203   // Handle *simple* calls for now.
2204   Type *RetTy = I->getType();
2205   MVT RetVT;
2206   if (RetTy->isVoidTy())
2207     RetVT = MVT::isVoid;
2208   else if (!isTypeLegal(RetTy, RetVT))
2209     return false;
2210 
2211   // Can't handle non-double multi-reg retvals.
2212   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2213     SmallVector<CCValAssign, 16> RVLocs;
2214     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2215     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2216     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2217       return false;
2218   }
2219 
2220   // Set up the argument vectors.
2221   SmallVector<Value*, 8> Args;
2222   SmallVector<Register, 8> ArgRegs;
2223   SmallVector<MVT, 8> ArgVTs;
2224   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2225   Args.reserve(I->getNumOperands());
2226   ArgRegs.reserve(I->getNumOperands());
2227   ArgVTs.reserve(I->getNumOperands());
2228   ArgFlags.reserve(I->getNumOperands());
2229   for (Value *Op :  I->operands()) {
2230     unsigned Arg = getRegForValue(Op);
2231     if (Arg == 0) return false;
2232 
2233     Type *ArgTy = Op->getType();
2234     MVT ArgVT;
2235     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2236 
2237     ISD::ArgFlagsTy Flags;
2238     Flags.setOrigAlign(Align(DL.getABITypeAlignment(ArgTy)));
2239 
2240     Args.push_back(Op);
2241     ArgRegs.push_back(Arg);
2242     ArgVTs.push_back(ArgVT);
2243     ArgFlags.push_back(Flags);
2244   }
2245 
2246   // Handle the arguments now that we've gotten them.
2247   SmallVector<Register, 4> RegArgs;
2248   unsigned NumBytes;
2249   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2250                        RegArgs, CC, NumBytes, false))
2251     return false;
2252 
2253   Register CalleeReg;
2254   if (Subtarget->genLongCalls()) {
2255     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2256     if (CalleeReg == 0) return false;
2257   }
2258 
2259   // Issue the call.
2260   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2261   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2262                                     DbgLoc, TII.get(CallOpc));
2263   // BL / BLX don't take a predicate, but tBL / tBLX do.
2264   if (isThumb2)
2265     MIB.add(predOps(ARMCC::AL));
2266   if (Subtarget->genLongCalls())
2267     MIB.addReg(CalleeReg);
2268   else
2269     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2270 
2271   // Add implicit physical register uses to the call.
2272   for (Register R : RegArgs)
2273     MIB.addReg(R, RegState::Implicit);
2274 
2275   // Add a register mask with the call-preserved registers.
2276   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2277   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2278 
2279   // Finish off the call including any return values.
2280   SmallVector<Register, 4> UsedRegs;
2281   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2282 
2283   // Set all unused physreg defs as dead.
2284   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2285 
2286   return true;
2287 }
2288 
2289 bool ARMFastISel::SelectCall(const Instruction *I,
2290                              const char *IntrMemName = nullptr) {
2291   const CallInst *CI = cast<CallInst>(I);
2292   const Value *Callee = CI->getCalledValue();
2293 
2294   // Can't handle inline asm.
2295   if (isa<InlineAsm>(Callee)) return false;
2296 
2297   // Allow SelectionDAG isel to handle tail calls.
2298   if (CI->isTailCall()) return false;
2299 
2300   // Check the calling convention.
2301   ImmutableCallSite CS(CI);
2302   CallingConv::ID CC = CS.getCallingConv();
2303 
2304   // TODO: Avoid some calling conventions?
2305 
2306   FunctionType *FTy = CS.getFunctionType();
2307   bool isVarArg = FTy->isVarArg();
2308 
2309   // Handle *simple* calls for now.
2310   Type *RetTy = I->getType();
2311   MVT RetVT;
2312   if (RetTy->isVoidTy())
2313     RetVT = MVT::isVoid;
2314   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2315            RetVT != MVT::i8  && RetVT != MVT::i1)
2316     return false;
2317 
2318   // Can't handle non-double multi-reg retvals.
2319   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2320       RetVT != MVT::i16 && RetVT != MVT::i32) {
2321     SmallVector<CCValAssign, 16> RVLocs;
2322     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2323     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2324     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2325       return false;
2326   }
2327 
2328   // Set up the argument vectors.
2329   SmallVector<Value*, 8> Args;
2330   SmallVector<Register, 8> ArgRegs;
2331   SmallVector<MVT, 8> ArgVTs;
2332   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2333   unsigned arg_size = CS.arg_size();
2334   Args.reserve(arg_size);
2335   ArgRegs.reserve(arg_size);
2336   ArgVTs.reserve(arg_size);
2337   ArgFlags.reserve(arg_size);
2338   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2339        i != e; ++i) {
2340     // If we're lowering a memory intrinsic instead of a regular call, skip the
2341     // last argument, which shouldn't be passed to the underlying function.
2342     if (IntrMemName && e - i <= 1)
2343       break;
2344 
2345     ISD::ArgFlagsTy Flags;
2346     unsigned ArgIdx = i - CS.arg_begin();
2347     if (CS.paramHasAttr(ArgIdx, Attribute::SExt))
2348       Flags.setSExt();
2349     if (CS.paramHasAttr(ArgIdx, Attribute::ZExt))
2350       Flags.setZExt();
2351 
2352     // FIXME: Only handle *easy* calls for now.
2353     if (CS.paramHasAttr(ArgIdx, Attribute::InReg) ||
2354         CS.paramHasAttr(ArgIdx, Attribute::StructRet) ||
2355         CS.paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2356         CS.paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2357         CS.paramHasAttr(ArgIdx, Attribute::Nest) ||
2358         CS.paramHasAttr(ArgIdx, Attribute::ByVal))
2359       return false;
2360 
2361     Type *ArgTy = (*i)->getType();
2362     MVT ArgVT;
2363     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2364         ArgVT != MVT::i1)
2365       return false;
2366 
2367     Register Arg = getRegForValue(*i);
2368     if (!Arg.isValid())
2369       return false;
2370 
2371     Flags.setOrigAlign(Align(DL.getABITypeAlignment(ArgTy)));
2372 
2373     Args.push_back(*i);
2374     ArgRegs.push_back(Arg);
2375     ArgVTs.push_back(ArgVT);
2376     ArgFlags.push_back(Flags);
2377   }
2378 
2379   // Handle the arguments now that we've gotten them.
2380   SmallVector<Register, 4> RegArgs;
2381   unsigned NumBytes;
2382   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2383                        RegArgs, CC, NumBytes, isVarArg))
2384     return false;
2385 
2386   bool UseReg = false;
2387   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2388   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2389 
2390   Register CalleeReg;
2391   if (UseReg) {
2392     if (IntrMemName)
2393       CalleeReg = getLibcallReg(IntrMemName);
2394     else
2395       CalleeReg = getRegForValue(Callee);
2396 
2397     if (CalleeReg == 0) return false;
2398   }
2399 
2400   // Issue the call.
2401   unsigned CallOpc = ARMSelectCallOp(UseReg);
2402   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2403                                     DbgLoc, TII.get(CallOpc));
2404 
2405   // ARM calls don't take a predicate, but tBL / tBLX do.
2406   if(isThumb2)
2407     MIB.add(predOps(ARMCC::AL));
2408   if (UseReg)
2409     MIB.addReg(CalleeReg);
2410   else if (!IntrMemName)
2411     MIB.addGlobalAddress(GV, 0, 0);
2412   else
2413     MIB.addExternalSymbol(IntrMemName, 0);
2414 
2415   // Add implicit physical register uses to the call.
2416   for (Register R : RegArgs)
2417     MIB.addReg(R, RegState::Implicit);
2418 
2419   // Add a register mask with the call-preserved registers.
2420   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2421   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2422 
2423   // Finish off the call including any return values.
2424   SmallVector<Register, 4> UsedRegs;
2425   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2426     return false;
2427 
2428   // Set all unused physreg defs as dead.
2429   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2430 
2431   return true;
2432 }
2433 
2434 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2435   return Len <= 16;
2436 }
2437 
2438 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2439                                         uint64_t Len, unsigned Alignment) {
2440   // Make sure we don't bloat code by inlining very large memcpy's.
2441   if (!ARMIsMemCpySmall(Len))
2442     return false;
2443 
2444   while (Len) {
2445     MVT VT;
2446     if (!Alignment || Alignment >= 4) {
2447       if (Len >= 4)
2448         VT = MVT::i32;
2449       else if (Len >= 2)
2450         VT = MVT::i16;
2451       else {
2452         assert(Len == 1 && "Expected a length of 1!");
2453         VT = MVT::i8;
2454       }
2455     } else {
2456       // Bound based on alignment.
2457       if (Len >= 2 && Alignment == 2)
2458         VT = MVT::i16;
2459       else {
2460         VT = MVT::i8;
2461       }
2462     }
2463 
2464     bool RV;
2465     Register ResultReg;
2466     RV = ARMEmitLoad(VT, ResultReg, Src);
2467     assert(RV && "Should be able to handle this load.");
2468     RV = ARMEmitStore(VT, ResultReg, Dest);
2469     assert(RV && "Should be able to handle this store.");
2470     (void)RV;
2471 
2472     unsigned Size = VT.getSizeInBits()/8;
2473     Len -= Size;
2474     Dest.Offset += Size;
2475     Src.Offset += Size;
2476   }
2477 
2478   return true;
2479 }
2480 
2481 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2482   // FIXME: Handle more intrinsics.
2483   switch (I.getIntrinsicID()) {
2484   default: return false;
2485   case Intrinsic::frameaddress: {
2486     MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2487     MFI.setFrameAddressIsTaken(true);
2488 
2489     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2490     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2491                                              : &ARM::GPRRegClass;
2492 
2493     const ARMBaseRegisterInfo *RegInfo =
2494         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2495     Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2496     unsigned SrcReg = FramePtr;
2497 
2498     // Recursively load frame address
2499     // ldr r0 [fp]
2500     // ldr r0 [r0]
2501     // ldr r0 [r0]
2502     // ...
2503     unsigned DestReg;
2504     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2505     while (Depth--) {
2506       DestReg = createResultReg(RC);
2507       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2508                               TII.get(LdrOpc), DestReg)
2509                       .addReg(SrcReg).addImm(0));
2510       SrcReg = DestReg;
2511     }
2512     updateValueMap(&I, SrcReg);
2513     return true;
2514   }
2515   case Intrinsic::memcpy:
2516   case Intrinsic::memmove: {
2517     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2518     // Don't handle volatile.
2519     if (MTI.isVolatile())
2520       return false;
2521 
2522     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2523     // we would emit dead code because we don't currently handle memmoves.
2524     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2525     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2526       // Small memcpy's are common enough that we want to do them without a call
2527       // if possible.
2528       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2529       if (ARMIsMemCpySmall(Len)) {
2530         Address Dest, Src;
2531         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2532             !ARMComputeAddress(MTI.getRawSource(), Src))
2533           return false;
2534         unsigned Alignment = MinAlign(MTI.getDestAlignment(),
2535                                       MTI.getSourceAlignment());
2536         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2537           return true;
2538       }
2539     }
2540 
2541     if (!MTI.getLength()->getType()->isIntegerTy(32))
2542       return false;
2543 
2544     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2545       return false;
2546 
2547     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2548     return SelectCall(&I, IntrMemName);
2549   }
2550   case Intrinsic::memset: {
2551     const MemSetInst &MSI = cast<MemSetInst>(I);
2552     // Don't handle volatile.
2553     if (MSI.isVolatile())
2554       return false;
2555 
2556     if (!MSI.getLength()->getType()->isIntegerTy(32))
2557       return false;
2558 
2559     if (MSI.getDestAddressSpace() > 255)
2560       return false;
2561 
2562     return SelectCall(&I, "memset");
2563   }
2564   case Intrinsic::trap: {
2565     unsigned Opcode;
2566     if (Subtarget->isThumb())
2567       Opcode = ARM::tTRAP;
2568     else
2569       Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
2570     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode));
2571     return true;
2572   }
2573   }
2574 }
2575 
2576 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2577   // The high bits for a type smaller than the register size are assumed to be
2578   // undefined.
2579   Value *Op = I->getOperand(0);
2580 
2581   EVT SrcVT, DestVT;
2582   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2583   DestVT = TLI.getValueType(DL, I->getType(), true);
2584 
2585   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2586     return false;
2587   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2588     return false;
2589 
2590   unsigned SrcReg = getRegForValue(Op);
2591   if (!SrcReg) return false;
2592 
2593   // Because the high bits are undefined, a truncate doesn't generate
2594   // any code.
2595   updateValueMap(I, SrcReg);
2596   return true;
2597 }
2598 
2599 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2600                                     bool isZExt) {
2601   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2602     return 0;
2603   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2604     return 0;
2605 
2606   // Table of which combinations can be emitted as a single instruction,
2607   // and which will require two.
2608   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2609     //            ARM                     Thumb
2610     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2611     //    ext:     s  z      s  z          s  z      s  z
2612     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2613     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2614     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2615   };
2616 
2617   // Target registers for:
2618   //  - For ARM can never be PC.
2619   //  - For 16-bit Thumb are restricted to lower 8 registers.
2620   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2621   static const TargetRegisterClass *RCTbl[2][2] = {
2622     // Instructions: Two                     Single
2623     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2624     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2625   };
2626 
2627   // Table governing the instruction(s) to be emitted.
2628   static const struct InstructionTable {
2629     uint32_t Opc   : 16;
2630     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2631     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2632     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2633   } IT[2][2][3][2] = {
2634     { // Two instructions (first is left shift, second is in this table).
2635       { // ARM                Opc           S  Shift             Imm
2636         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2637         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2638         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2639         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2640         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2641         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2642       },
2643       { // Thumb              Opc           S  Shift             Imm
2644         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2645         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2646         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2647         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2648         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2649         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2650       }
2651     },
2652     { // Single instruction.
2653       { // ARM                Opc           S  Shift             Imm
2654         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2655         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2656         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2657         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2658         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2659         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2660       },
2661       { // Thumb              Opc           S  Shift             Imm
2662         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2663         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2664         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2665         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2666         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2667         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2668       }
2669     }
2670   };
2671 
2672   unsigned SrcBits = SrcVT.getSizeInBits();
2673   unsigned DestBits = DestVT.getSizeInBits();
2674   (void) DestBits;
2675   assert((SrcBits < DestBits) && "can only extend to larger types");
2676   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2677          "other sizes unimplemented");
2678   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2679          "other sizes unimplemented");
2680 
2681   bool hasV6Ops = Subtarget->hasV6Ops();
2682   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2683   assert((Bitness < 3) && "sanity-check table bounds");
2684 
2685   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2686   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2687   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2688   unsigned Opc = ITP->Opc;
2689   assert(ARM::KILL != Opc && "Invalid table entry");
2690   unsigned hasS = ITP->hasS;
2691   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2692   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2693          "only MOVsi has shift operand addressing mode");
2694   unsigned Imm = ITP->Imm;
2695 
2696   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2697   bool setsCPSR = &ARM::tGPRRegClass == RC;
2698   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2699   unsigned ResultReg;
2700   // MOVsi encodes shift and immediate in shift operand addressing mode.
2701   // The following condition has the same value when emitting two
2702   // instruction sequences: both are shifts.
2703   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2704 
2705   // Either one or two instructions are emitted.
2706   // They're always of the form:
2707   //   dst = in OP imm
2708   // CPSR is set only by 16-bit Thumb instructions.
2709   // Predicate, if any, is AL.
2710   // S bit, if available, is always 0.
2711   // When two are emitted the first's result will feed as the second's input,
2712   // that value is then dead.
2713   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2714   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2715     ResultReg = createResultReg(RC);
2716     bool isLsl = (0 == Instr) && !isSingleInstr;
2717     unsigned Opcode = isLsl ? LSLOpc : Opc;
2718     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2719     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2720     bool isKill = 1 == Instr;
2721     MachineInstrBuilder MIB = BuildMI(
2722         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2723     if (setsCPSR)
2724       MIB.addReg(ARM::CPSR, RegState::Define);
2725     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2726     MIB.addReg(SrcReg, isKill * RegState::Kill)
2727         .addImm(ImmEnc)
2728         .add(predOps(ARMCC::AL));
2729     if (hasS)
2730       MIB.add(condCodeOp());
2731     // Second instruction consumes the first's result.
2732     SrcReg = ResultReg;
2733   }
2734 
2735   return ResultReg;
2736 }
2737 
2738 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2739   // On ARM, in general, integer casts don't involve legal types; this code
2740   // handles promotable integers.
2741   Type *DestTy = I->getType();
2742   Value *Src = I->getOperand(0);
2743   Type *SrcTy = Src->getType();
2744 
2745   bool isZExt = isa<ZExtInst>(I);
2746   unsigned SrcReg = getRegForValue(Src);
2747   if (!SrcReg) return false;
2748 
2749   EVT SrcEVT, DestEVT;
2750   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2751   DestEVT = TLI.getValueType(DL, DestTy, true);
2752   if (!SrcEVT.isSimple()) return false;
2753   if (!DestEVT.isSimple()) return false;
2754 
2755   MVT SrcVT = SrcEVT.getSimpleVT();
2756   MVT DestVT = DestEVT.getSimpleVT();
2757   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2758   if (ResultReg == 0) return false;
2759   updateValueMap(I, ResultReg);
2760   return true;
2761 }
2762 
2763 bool ARMFastISel::SelectShift(const Instruction *I,
2764                               ARM_AM::ShiftOpc ShiftTy) {
2765   // We handle thumb2 mode by target independent selector
2766   // or SelectionDAG ISel.
2767   if (isThumb2)
2768     return false;
2769 
2770   // Only handle i32 now.
2771   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2772   if (DestVT != MVT::i32)
2773     return false;
2774 
2775   unsigned Opc = ARM::MOVsr;
2776   unsigned ShiftImm;
2777   Value *Src2Value = I->getOperand(1);
2778   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2779     ShiftImm = CI->getZExtValue();
2780 
2781     // Fall back to selection DAG isel if the shift amount
2782     // is zero or greater than the width of the value type.
2783     if (ShiftImm == 0 || ShiftImm >=32)
2784       return false;
2785 
2786     Opc = ARM::MOVsi;
2787   }
2788 
2789   Value *Src1Value = I->getOperand(0);
2790   unsigned Reg1 = getRegForValue(Src1Value);
2791   if (Reg1 == 0) return false;
2792 
2793   unsigned Reg2 = 0;
2794   if (Opc == ARM::MOVsr) {
2795     Reg2 = getRegForValue(Src2Value);
2796     if (Reg2 == 0) return false;
2797   }
2798 
2799   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2800   if(ResultReg == 0) return false;
2801 
2802   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2803                                     TII.get(Opc), ResultReg)
2804                             .addReg(Reg1);
2805 
2806   if (Opc == ARM::MOVsi)
2807     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2808   else if (Opc == ARM::MOVsr) {
2809     MIB.addReg(Reg2);
2810     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2811   }
2812 
2813   AddOptionalDefs(MIB);
2814   updateValueMap(I, ResultReg);
2815   return true;
2816 }
2817 
2818 // TODO: SoftFP support.
2819 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2820   switch (I->getOpcode()) {
2821     case Instruction::Load:
2822       return SelectLoad(I);
2823     case Instruction::Store:
2824       return SelectStore(I);
2825     case Instruction::Br:
2826       return SelectBranch(I);
2827     case Instruction::IndirectBr:
2828       return SelectIndirectBr(I);
2829     case Instruction::ICmp:
2830     case Instruction::FCmp:
2831       return SelectCmp(I);
2832     case Instruction::FPExt:
2833       return SelectFPExt(I);
2834     case Instruction::FPTrunc:
2835       return SelectFPTrunc(I);
2836     case Instruction::SIToFP:
2837       return SelectIToFP(I, /*isSigned*/ true);
2838     case Instruction::UIToFP:
2839       return SelectIToFP(I, /*isSigned*/ false);
2840     case Instruction::FPToSI:
2841       return SelectFPToI(I, /*isSigned*/ true);
2842     case Instruction::FPToUI:
2843       return SelectFPToI(I, /*isSigned*/ false);
2844     case Instruction::Add:
2845       return SelectBinaryIntOp(I, ISD::ADD);
2846     case Instruction::Or:
2847       return SelectBinaryIntOp(I, ISD::OR);
2848     case Instruction::Sub:
2849       return SelectBinaryIntOp(I, ISD::SUB);
2850     case Instruction::FAdd:
2851       return SelectBinaryFPOp(I, ISD::FADD);
2852     case Instruction::FSub:
2853       return SelectBinaryFPOp(I, ISD::FSUB);
2854     case Instruction::FMul:
2855       return SelectBinaryFPOp(I, ISD::FMUL);
2856     case Instruction::SDiv:
2857       return SelectDiv(I, /*isSigned*/ true);
2858     case Instruction::UDiv:
2859       return SelectDiv(I, /*isSigned*/ false);
2860     case Instruction::SRem:
2861       return SelectRem(I, /*isSigned*/ true);
2862     case Instruction::URem:
2863       return SelectRem(I, /*isSigned*/ false);
2864     case Instruction::Call:
2865       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2866         return SelectIntrinsicCall(*II);
2867       return SelectCall(I);
2868     case Instruction::Select:
2869       return SelectSelect(I);
2870     case Instruction::Ret:
2871       return SelectRet(I);
2872     case Instruction::Trunc:
2873       return SelectTrunc(I);
2874     case Instruction::ZExt:
2875     case Instruction::SExt:
2876       return SelectIntExt(I);
2877     case Instruction::Shl:
2878       return SelectShift(I, ARM_AM::lsl);
2879     case Instruction::LShr:
2880       return SelectShift(I, ARM_AM::lsr);
2881     case Instruction::AShr:
2882       return SelectShift(I, ARM_AM::asr);
2883     default: break;
2884   }
2885   return false;
2886 }
2887 
2888 // This table describes sign- and zero-extend instructions which can be
2889 // folded into a preceding load. All of these extends have an immediate
2890 // (sometimes a mask and sometimes a shift) that's applied after
2891 // extension.
2892 static const struct FoldableLoadExtendsStruct {
2893   uint16_t Opc[2];  // ARM, Thumb.
2894   uint8_t ExpectedImm;
2895   uint8_t isZExt     : 1;
2896   uint8_t ExpectedVT : 7;
2897 } FoldableLoadExtends[] = {
2898   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2899   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2900   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2901   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2902   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2903 };
2904 
2905 /// The specified machine instr operand is a vreg, and that
2906 /// vreg is being provided by the specified load instruction.  If possible,
2907 /// try to fold the load as an operand to the instruction, returning true if
2908 /// successful.
2909 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2910                                       const LoadInst *LI) {
2911   // Verify we have a legal type before going any further.
2912   MVT VT;
2913   if (!isLoadTypeLegal(LI->getType(), VT))
2914     return false;
2915 
2916   // Combine load followed by zero- or sign-extend.
2917   // ldrb r1, [r0]       ldrb r1, [r0]
2918   // uxtb r2, r1     =>
2919   // mov  r3, r2         mov  r3, r1
2920   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2921     return false;
2922   const uint64_t Imm = MI->getOperand(2).getImm();
2923 
2924   bool Found = false;
2925   bool isZExt;
2926   for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2927     if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2928         (uint64_t)FLE.ExpectedImm == Imm &&
2929         MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2930       Found = true;
2931       isZExt = FLE.isZExt;
2932     }
2933   }
2934   if (!Found) return false;
2935 
2936   // See if we can handle this address.
2937   Address Addr;
2938   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2939 
2940   Register ResultReg = MI->getOperand(0).getReg();
2941   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2942     return false;
2943   MachineBasicBlock::iterator I(MI);
2944   removeDeadCode(I, std::next(I));
2945   return true;
2946 }
2947 
2948 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
2949   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2950 
2951   LLVMContext *Context = &MF->getFunction().getContext();
2952   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2953   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2954   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2955       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2956       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2957       /*AddCurrentAddress=*/UseGOT_PREL);
2958 
2959   unsigned ConstAlign =
2960       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2961   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2962   MachineMemOperand *CPMMO =
2963       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2964                                MachineMemOperand::MOLoad, 4, Align(4));
2965 
2966   Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2967   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2968   MachineInstrBuilder MIB =
2969       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2970           .addConstantPoolIndex(Idx)
2971           .addMemOperand(CPMMO);
2972   if (Opc == ARM::LDRcp)
2973     MIB.addImm(0);
2974   MIB.add(predOps(ARMCC::AL));
2975 
2976   // Fix the address by adding pc.
2977   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2978   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2979                                                           : ARM::PICADD;
2980   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2981   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2982             .addReg(TempReg)
2983             .addImm(ARMPCLabelIndex);
2984 
2985   if (!Subtarget->isThumb())
2986     MIB.add(predOps(ARMCC::AL));
2987 
2988   if (UseGOT_PREL && Subtarget->isThumb()) {
2989     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2990     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2991                   TII.get(ARM::t2LDRi12), NewDestReg)
2992               .addReg(DestReg)
2993               .addImm(0);
2994     DestReg = NewDestReg;
2995     AddOptionalDefs(MIB);
2996   }
2997   return DestReg;
2998 }
2999 
3000 bool ARMFastISel::fastLowerArguments() {
3001   if (!FuncInfo.CanLowerReturn)
3002     return false;
3003 
3004   const Function *F = FuncInfo.Fn;
3005   if (F->isVarArg())
3006     return false;
3007 
3008   CallingConv::ID CC = F->getCallingConv();
3009   switch (CC) {
3010   default:
3011     return false;
3012   case CallingConv::Fast:
3013   case CallingConv::C:
3014   case CallingConv::ARM_AAPCS_VFP:
3015   case CallingConv::ARM_AAPCS:
3016   case CallingConv::ARM_APCS:
3017   case CallingConv::Swift:
3018     break;
3019   }
3020 
3021   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3022   // which are passed in r0 - r3.
3023   for (const Argument &Arg : F->args()) {
3024     if (Arg.getArgNo() >= 4)
3025       return false;
3026 
3027     if (Arg.hasAttribute(Attribute::InReg) ||
3028         Arg.hasAttribute(Attribute::StructRet) ||
3029         Arg.hasAttribute(Attribute::SwiftSelf) ||
3030         Arg.hasAttribute(Attribute::SwiftError) ||
3031         Arg.hasAttribute(Attribute::ByVal))
3032       return false;
3033 
3034     Type *ArgTy = Arg.getType();
3035     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3036       return false;
3037 
3038     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3039     if (!ArgVT.isSimple()) return false;
3040     switch (ArgVT.getSimpleVT().SimpleTy) {
3041     case MVT::i8:
3042     case MVT::i16:
3043     case MVT::i32:
3044       break;
3045     default:
3046       return false;
3047     }
3048   }
3049 
3050   static const MCPhysReg GPRArgRegs[] = {
3051     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3052   };
3053 
3054   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3055   for (const Argument &Arg : F->args()) {
3056     unsigned ArgNo = Arg.getArgNo();
3057     unsigned SrcReg = GPRArgRegs[ArgNo];
3058     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3059     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3060     // Without this, EmitLiveInCopies may eliminate the livein if its only
3061     // use is a bitcast (which isn't turned into an instruction).
3062     unsigned ResultReg = createResultReg(RC);
3063     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3064             TII.get(TargetOpcode::COPY),
3065             ResultReg).addReg(DstReg, getKillRegState(true));
3066     updateValueMap(&Arg, ResultReg);
3067   }
3068 
3069   return true;
3070 }
3071 
3072 namespace llvm {
3073 
3074   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3075                                 const TargetLibraryInfo *libInfo) {
3076     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3077       return new ARMFastISel(funcInfo, libInfo);
3078 
3079     return nullptr;
3080   }
3081 
3082 } // end namespace llvm
3083