1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMBaseRegisterInfo.h" 19 #include "ARMCallingConv.h" 20 #include "ARMConstantPoolValue.h" 21 #include "ARMISelLowering.h" 22 #include "ARMMachineFunctionInfo.h" 23 #include "ARMSubtarget.h" 24 #include "MCTargetDesc/ARMAddressingModes.h" 25 #include "MCTargetDesc/ARMBaseInfo.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/CodeGen/CallingConvLower.h" 32 #include "llvm/CodeGen/FastISel.h" 33 #include "llvm/CodeGen/FunctionLoweringInfo.h" 34 #include "llvm/CodeGen/ISDOpcodes.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineMemOperand.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/MachineValueType.h" 43 #include "llvm/CodeGen/RuntimeLibcalls.h" 44 #include "llvm/CodeGen/ValueTypes.h" 45 #include "llvm/IR/Argument.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/CallSite.h" 48 #include "llvm/IR/CallingConv.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/GetElementPtrTypeIterator.h" 55 #include "llvm/IR/GlobalValue.h" 56 #include "llvm/IR/GlobalVariable.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/MC/MCInstrDesc.h" 67 #include "llvm/MC/MCRegisterInfo.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/Compiler.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Target/TargetInstrInfo.h" 73 #include "llvm/Target/TargetLowering.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include "llvm/Target/TargetOptions.h" 76 #include <cassert> 77 #include <cstdint> 78 #include <utility> 79 80 using namespace llvm; 81 82 namespace { 83 84 // All possible address modes, plus some. 85 typedef struct Address { 86 enum { 87 RegBase, 88 FrameIndexBase 89 } BaseType = RegBase; 90 91 union { 92 unsigned Reg; 93 int FI; 94 } Base; 95 96 int Offset = 0; 97 98 // Innocuous defaults for our address. 99 Address() { 100 Base.Reg = 0; 101 } 102 } Address; 103 104 class ARMFastISel final : public FastISel { 105 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 106 /// make the right decision when generating code for different targets. 107 const ARMSubtarget *Subtarget; 108 Module &M; 109 const TargetMachine &TM; 110 const TargetInstrInfo &TII; 111 const TargetLowering &TLI; 112 ARMFunctionInfo *AFI; 113 114 // Convenience variables to avoid some queries. 115 bool isThumb2; 116 LLVMContext *Context; 117 118 public: 119 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 120 const TargetLibraryInfo *libInfo) 121 : FastISel(funcInfo, libInfo), 122 Subtarget( 123 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 124 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 125 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 126 TLI(*Subtarget->getTargetLowering()) { 127 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 128 isThumb2 = AFI->isThumbFunction(); 129 Context = &funcInfo.Fn->getContext(); 130 } 131 132 private: 133 // Code from FastISel.cpp. 134 135 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 136 const TargetRegisterClass *RC, 137 unsigned Op0, bool Op0IsKill); 138 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 139 const TargetRegisterClass *RC, 140 unsigned Op0, bool Op0IsKill, 141 unsigned Op1, bool Op1IsKill); 142 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 143 const TargetRegisterClass *RC, 144 unsigned Op0, bool Op0IsKill, 145 uint64_t Imm); 146 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 147 const TargetRegisterClass *RC, 148 uint64_t Imm); 149 150 // Backend specific FastISel code. 151 152 bool fastSelectInstruction(const Instruction *I) override; 153 unsigned fastMaterializeConstant(const Constant *C) override; 154 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 155 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 156 const LoadInst *LI) override; 157 bool fastLowerArguments() override; 158 159 #include "ARMGenFastISel.inc" 160 161 // Instruction selection routines. 162 163 bool SelectLoad(const Instruction *I); 164 bool SelectStore(const Instruction *I); 165 bool SelectBranch(const Instruction *I); 166 bool SelectIndirectBr(const Instruction *I); 167 bool SelectCmp(const Instruction *I); 168 bool SelectFPExt(const Instruction *I); 169 bool SelectFPTrunc(const Instruction *I); 170 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 171 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 172 bool SelectIToFP(const Instruction *I, bool isSigned); 173 bool SelectFPToI(const Instruction *I, bool isSigned); 174 bool SelectDiv(const Instruction *I, bool isSigned); 175 bool SelectRem(const Instruction *I, bool isSigned); 176 bool SelectCall(const Instruction *I, const char *IntrMemName); 177 bool SelectIntrinsicCall(const IntrinsicInst &I); 178 bool SelectSelect(const Instruction *I); 179 bool SelectRet(const Instruction *I); 180 bool SelectTrunc(const Instruction *I); 181 bool SelectIntExt(const Instruction *I); 182 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 183 184 // Utility routines. 185 186 bool isPositionIndependent() const; 187 bool isTypeLegal(Type *Ty, MVT &VT); 188 bool isLoadTypeLegal(Type *Ty, MVT &VT); 189 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 190 bool isZExt); 191 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 192 unsigned Alignment = 0, bool isZExt = true, 193 bool allocReg = true); 194 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 195 unsigned Alignment = 0); 196 bool ARMComputeAddress(const Value *Obj, Address &Addr); 197 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 198 bool ARMIsMemCpySmall(uint64_t Len); 199 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 200 unsigned Alignment); 201 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 202 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 203 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 204 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 205 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 206 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 207 unsigned ARMSelectCallOp(bool UseReg); 208 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 209 210 const TargetLowering *getTargetLowering() { return &TLI; } 211 212 // Call handling routines. 213 214 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 215 bool Return, 216 bool isVarArg); 217 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 218 SmallVectorImpl<unsigned> &ArgRegs, 219 SmallVectorImpl<MVT> &ArgVTs, 220 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 221 SmallVectorImpl<unsigned> &RegArgs, 222 CallingConv::ID CC, 223 unsigned &NumBytes, 224 bool isVarArg); 225 unsigned getLibcallReg(const Twine &Name); 226 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 227 const Instruction *I, CallingConv::ID CC, 228 unsigned &NumBytes, bool isVarArg); 229 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 230 231 // OptionalDef handling routines. 232 233 bool isARMNEONPred(const MachineInstr *MI); 234 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 235 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 236 void AddLoadStoreOperands(MVT VT, Address &Addr, 237 const MachineInstrBuilder &MIB, 238 MachineMemOperand::Flags Flags, bool useAM3); 239 }; 240 241 } // end anonymous namespace 242 243 #include "ARMGenCallingConv.inc" 244 245 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 246 // we don't care about implicit defs here, just places we'll need to add a 247 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 248 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 249 if (!MI->hasOptionalDef()) 250 return false; 251 252 // Look to see if our OptionalDef is defining CPSR or CCR. 253 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 254 const MachineOperand &MO = MI->getOperand(i); 255 if (!MO.isReg() || !MO.isDef()) continue; 256 if (MO.getReg() == ARM::CPSR) 257 *CPSR = true; 258 } 259 return true; 260 } 261 262 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 263 const MCInstrDesc &MCID = MI->getDesc(); 264 265 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 266 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 267 AFI->isThumb2Function()) 268 return MI->isPredicable(); 269 270 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 271 if (MCID.OpInfo[i].isPredicate()) 272 return true; 273 274 return false; 275 } 276 277 // If the machine is predicable go ahead and add the predicate operands, if 278 // it needs default CC operands add those. 279 // TODO: If we want to support thumb1 then we'll need to deal with optional 280 // CPSR defs that need to be added before the remaining operands. See s_cc_out 281 // for descriptions why. 282 const MachineInstrBuilder & 283 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 284 MachineInstr *MI = &*MIB; 285 286 // Do we use a predicate? or... 287 // Are we NEON in ARM mode and have a predicate operand? If so, I know 288 // we're not predicable but add it anyways. 289 if (isARMNEONPred(MI)) 290 MIB.add(predOps(ARMCC::AL)); 291 292 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 293 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 294 bool CPSR = false; 295 if (DefinesOptionalPredicate(MI, &CPSR)) 296 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); 297 return MIB; 298 } 299 300 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 301 const TargetRegisterClass *RC, 302 unsigned Op0, bool Op0IsKill) { 303 unsigned ResultReg = createResultReg(RC); 304 const MCInstrDesc &II = TII.get(MachineInstOpcode); 305 306 // Make sure the input operand is sufficiently constrained to be legal 307 // for this instruction. 308 Op0 = constrainOperandRegClass(II, Op0, 1); 309 if (II.getNumDefs() >= 1) { 310 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 311 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 312 } else { 313 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 314 .addReg(Op0, Op0IsKill * RegState::Kill)); 315 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 316 TII.get(TargetOpcode::COPY), ResultReg) 317 .addReg(II.ImplicitDefs[0])); 318 } 319 return ResultReg; 320 } 321 322 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 323 const TargetRegisterClass *RC, 324 unsigned Op0, bool Op0IsKill, 325 unsigned Op1, bool Op1IsKill) { 326 unsigned ResultReg = createResultReg(RC); 327 const MCInstrDesc &II = TII.get(MachineInstOpcode); 328 329 // Make sure the input operands are sufficiently constrained to be legal 330 // for this instruction. 331 Op0 = constrainOperandRegClass(II, Op0, 1); 332 Op1 = constrainOperandRegClass(II, Op1, 2); 333 334 if (II.getNumDefs() >= 1) { 335 AddOptionalDefs( 336 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 337 .addReg(Op0, Op0IsKill * RegState::Kill) 338 .addReg(Op1, Op1IsKill * RegState::Kill)); 339 } else { 340 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 341 .addReg(Op0, Op0IsKill * RegState::Kill) 342 .addReg(Op1, Op1IsKill * RegState::Kill)); 343 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 344 TII.get(TargetOpcode::COPY), ResultReg) 345 .addReg(II.ImplicitDefs[0])); 346 } 347 return ResultReg; 348 } 349 350 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 351 const TargetRegisterClass *RC, 352 unsigned Op0, bool Op0IsKill, 353 uint64_t Imm) { 354 unsigned ResultReg = createResultReg(RC); 355 const MCInstrDesc &II = TII.get(MachineInstOpcode); 356 357 // Make sure the input operand is sufficiently constrained to be legal 358 // for this instruction. 359 Op0 = constrainOperandRegClass(II, Op0, 1); 360 if (II.getNumDefs() >= 1) { 361 AddOptionalDefs( 362 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 363 .addReg(Op0, Op0IsKill * RegState::Kill) 364 .addImm(Imm)); 365 } else { 366 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 367 .addReg(Op0, Op0IsKill * RegState::Kill) 368 .addImm(Imm)); 369 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 370 TII.get(TargetOpcode::COPY), ResultReg) 371 .addReg(II.ImplicitDefs[0])); 372 } 373 return ResultReg; 374 } 375 376 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 377 const TargetRegisterClass *RC, 378 uint64_t Imm) { 379 unsigned ResultReg = createResultReg(RC); 380 const MCInstrDesc &II = TII.get(MachineInstOpcode); 381 382 if (II.getNumDefs() >= 1) { 383 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 384 ResultReg).addImm(Imm)); 385 } else { 386 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 387 .addImm(Imm)); 388 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 389 TII.get(TargetOpcode::COPY), ResultReg) 390 .addReg(II.ImplicitDefs[0])); 391 } 392 return ResultReg; 393 } 394 395 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 396 // checks from the various callers. 397 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 398 if (VT == MVT::f64) return 0; 399 400 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 401 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 402 TII.get(ARM::VMOVSR), MoveReg) 403 .addReg(SrcReg)); 404 return MoveReg; 405 } 406 407 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 408 if (VT == MVT::i64) return 0; 409 410 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 411 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 412 TII.get(ARM::VMOVRS), MoveReg) 413 .addReg(SrcReg)); 414 return MoveReg; 415 } 416 417 // For double width floating point we need to materialize two constants 418 // (the high and the low) into integer registers then use a move to get 419 // the combined constant into an FP reg. 420 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 421 const APFloat Val = CFP->getValueAPF(); 422 bool is64bit = VT == MVT::f64; 423 424 // This checks to see if we can use VFP3 instructions to materialize 425 // a constant, otherwise we have to go through the constant pool. 426 if (TLI.isFPImmLegal(Val, VT)) { 427 int Imm; 428 unsigned Opc; 429 if (is64bit) { 430 Imm = ARM_AM::getFP64Imm(Val); 431 Opc = ARM::FCONSTD; 432 } else { 433 Imm = ARM_AM::getFP32Imm(Val); 434 Opc = ARM::FCONSTS; 435 } 436 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 437 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 438 TII.get(Opc), DestReg).addImm(Imm)); 439 return DestReg; 440 } 441 442 // Require VFP2 for loading fp constants. 443 if (!Subtarget->hasVFP2()) return false; 444 445 // MachineConstantPool wants an explicit alignment. 446 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 447 if (Align == 0) { 448 // TODO: Figure out if this is correct. 449 Align = DL.getTypeAllocSize(CFP->getType()); 450 } 451 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 452 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 453 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 454 455 // The extra reg is for addrmode5. 456 AddOptionalDefs( 457 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 458 .addConstantPoolIndex(Idx) 459 .addReg(0)); 460 return DestReg; 461 } 462 463 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 464 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 465 return 0; 466 467 // If we can do this in a single instruction without a constant pool entry 468 // do so now. 469 const ConstantInt *CI = cast<ConstantInt>(C); 470 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 471 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 472 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 473 &ARM::GPRRegClass; 474 unsigned ImmReg = createResultReg(RC); 475 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 476 TII.get(Opc), ImmReg) 477 .addImm(CI->getZExtValue())); 478 return ImmReg; 479 } 480 481 // Use MVN to emit negative constants. 482 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 483 unsigned Imm = (unsigned)~(CI->getSExtValue()); 484 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 485 (ARM_AM::getSOImmVal(Imm) != -1); 486 if (UseImm) { 487 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 488 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 489 &ARM::GPRRegClass; 490 unsigned ImmReg = createResultReg(RC); 491 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 492 TII.get(Opc), ImmReg) 493 .addImm(Imm)); 494 return ImmReg; 495 } 496 } 497 498 unsigned ResultReg = 0; 499 if (Subtarget->useMovt(*FuncInfo.MF)) 500 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 501 502 if (ResultReg) 503 return ResultReg; 504 505 // Load from constant pool. For now 32-bit only. 506 if (VT != MVT::i32) 507 return 0; 508 509 // MachineConstantPool wants an explicit alignment. 510 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 511 if (Align == 0) { 512 // TODO: Figure out if this is correct. 513 Align = DL.getTypeAllocSize(C->getType()); 514 } 515 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 516 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 517 if (isThumb2) 518 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 519 TII.get(ARM::t2LDRpci), ResultReg) 520 .addConstantPoolIndex(Idx)); 521 else { 522 // The extra immediate is for addrmode2. 523 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 524 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 525 TII.get(ARM::LDRcp), ResultReg) 526 .addConstantPoolIndex(Idx) 527 .addImm(0)); 528 } 529 return ResultReg; 530 } 531 532 bool ARMFastISel::isPositionIndependent() const { 533 return TLI.isPositionIndependent(); 534 } 535 536 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 537 // For now 32-bit only. 538 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 539 540 // ROPI/RWPI not currently supported. 541 if (Subtarget->isROPI() || Subtarget->isRWPI()) 542 return 0; 543 544 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 545 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 546 : &ARM::GPRRegClass; 547 unsigned DestReg = createResultReg(RC); 548 549 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 550 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 551 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 552 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 553 554 bool IsPositionIndependent = isPositionIndependent(); 555 // Use movw+movt when possible, it avoids constant pool entries. 556 // Non-darwin targets only support static movt relocations in FastISel. 557 if (Subtarget->useMovt(*FuncInfo.MF) && 558 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 559 unsigned Opc; 560 unsigned char TF = 0; 561 if (Subtarget->isTargetMachO()) 562 TF = ARMII::MO_NONLAZY; 563 564 if (IsPositionIndependent) 565 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 566 else 567 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 568 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 569 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 570 } else { 571 // MachineConstantPool wants an explicit alignment. 572 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 573 if (Align == 0) { 574 // TODO: Figure out if this is correct. 575 Align = DL.getTypeAllocSize(GV->getType()); 576 } 577 578 if (Subtarget->isTargetELF() && IsPositionIndependent) 579 return ARMLowerPICELF(GV, Align, VT); 580 581 // Grab index. 582 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 583 unsigned Id = AFI->createPICLabelUId(); 584 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 585 ARMCP::CPValue, 586 PCAdj); 587 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 588 589 // Load value. 590 MachineInstrBuilder MIB; 591 if (isThumb2) { 592 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 593 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 594 DestReg).addConstantPoolIndex(Idx); 595 if (IsPositionIndependent) 596 MIB.addImm(Id); 597 AddOptionalDefs(MIB); 598 } else { 599 // The extra immediate is for addrmode2. 600 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 601 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 602 TII.get(ARM::LDRcp), DestReg) 603 .addConstantPoolIndex(Idx) 604 .addImm(0); 605 AddOptionalDefs(MIB); 606 607 if (IsPositionIndependent) { 608 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 609 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 610 611 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 612 DbgLoc, TII.get(Opc), NewDestReg) 613 .addReg(DestReg) 614 .addImm(Id); 615 AddOptionalDefs(MIB); 616 return NewDestReg; 617 } 618 } 619 } 620 621 if (IsIndirect) { 622 MachineInstrBuilder MIB; 623 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 624 if (isThumb2) 625 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 626 TII.get(ARM::t2LDRi12), NewDestReg) 627 .addReg(DestReg) 628 .addImm(0); 629 else 630 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 631 TII.get(ARM::LDRi12), NewDestReg) 632 .addReg(DestReg) 633 .addImm(0); 634 DestReg = NewDestReg; 635 AddOptionalDefs(MIB); 636 } 637 638 return DestReg; 639 } 640 641 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 642 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 643 644 // Only handle simple types. 645 if (!CEVT.isSimple()) return 0; 646 MVT VT = CEVT.getSimpleVT(); 647 648 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 649 return ARMMaterializeFP(CFP, VT); 650 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 651 return ARMMaterializeGV(GV, VT); 652 else if (isa<ConstantInt>(C)) 653 return ARMMaterializeInt(C, VT); 654 655 return 0; 656 } 657 658 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 659 660 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 661 // Don't handle dynamic allocas. 662 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 663 664 MVT VT; 665 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 666 667 DenseMap<const AllocaInst*, int>::iterator SI = 668 FuncInfo.StaticAllocaMap.find(AI); 669 670 // This will get lowered later into the correct offsets and registers 671 // via rewriteXFrameIndex. 672 if (SI != FuncInfo.StaticAllocaMap.end()) { 673 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 674 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 675 unsigned ResultReg = createResultReg(RC); 676 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 677 678 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 679 TII.get(Opc), ResultReg) 680 .addFrameIndex(SI->second) 681 .addImm(0)); 682 return ResultReg; 683 } 684 685 return 0; 686 } 687 688 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 689 EVT evt = TLI.getValueType(DL, Ty, true); 690 691 // Only handle simple types. 692 if (evt == MVT::Other || !evt.isSimple()) return false; 693 VT = evt.getSimpleVT(); 694 695 // Handle all legal types, i.e. a register that will directly hold this 696 // value. 697 return TLI.isTypeLegal(VT); 698 } 699 700 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 701 if (isTypeLegal(Ty, VT)) return true; 702 703 // If this is a type than can be sign or zero-extended to a basic operation 704 // go ahead and accept it now. 705 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 706 return true; 707 708 return false; 709 } 710 711 // Computes the address to get to an object. 712 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 713 // Some boilerplate from the X86 FastISel. 714 const User *U = nullptr; 715 unsigned Opcode = Instruction::UserOp1; 716 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 717 // Don't walk into other basic blocks unless the object is an alloca from 718 // another block, otherwise it may not have a virtual register assigned. 719 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 720 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 721 Opcode = I->getOpcode(); 722 U = I; 723 } 724 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 725 Opcode = C->getOpcode(); 726 U = C; 727 } 728 729 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 730 if (Ty->getAddressSpace() > 255) 731 // Fast instruction selection doesn't support the special 732 // address spaces. 733 return false; 734 735 switch (Opcode) { 736 default: 737 break; 738 case Instruction::BitCast: 739 // Look through bitcasts. 740 return ARMComputeAddress(U->getOperand(0), Addr); 741 case Instruction::IntToPtr: 742 // Look past no-op inttoptrs. 743 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 744 TLI.getPointerTy(DL)) 745 return ARMComputeAddress(U->getOperand(0), Addr); 746 break; 747 case Instruction::PtrToInt: 748 // Look past no-op ptrtoints. 749 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 750 return ARMComputeAddress(U->getOperand(0), Addr); 751 break; 752 case Instruction::GetElementPtr: { 753 Address SavedAddr = Addr; 754 int TmpOffset = Addr.Offset; 755 756 // Iterate through the GEP folding the constants into offsets where 757 // we can. 758 gep_type_iterator GTI = gep_type_begin(U); 759 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 760 i != e; ++i, ++GTI) { 761 const Value *Op = *i; 762 if (StructType *STy = GTI.getStructTypeOrNull()) { 763 const StructLayout *SL = DL.getStructLayout(STy); 764 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 765 TmpOffset += SL->getElementOffset(Idx); 766 } else { 767 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 768 while (true) { 769 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 770 // Constant-offset addressing. 771 TmpOffset += CI->getSExtValue() * S; 772 break; 773 } 774 if (canFoldAddIntoGEP(U, Op)) { 775 // A compatible add with a constant operand. Fold the constant. 776 ConstantInt *CI = 777 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 778 TmpOffset += CI->getSExtValue() * S; 779 // Iterate on the other operand. 780 Op = cast<AddOperator>(Op)->getOperand(0); 781 continue; 782 } 783 // Unsupported 784 goto unsupported_gep; 785 } 786 } 787 } 788 789 // Try to grab the base operand now. 790 Addr.Offset = TmpOffset; 791 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 792 793 // We failed, restore everything and try the other options. 794 Addr = SavedAddr; 795 796 unsupported_gep: 797 break; 798 } 799 case Instruction::Alloca: { 800 const AllocaInst *AI = cast<AllocaInst>(Obj); 801 DenseMap<const AllocaInst*, int>::iterator SI = 802 FuncInfo.StaticAllocaMap.find(AI); 803 if (SI != FuncInfo.StaticAllocaMap.end()) { 804 Addr.BaseType = Address::FrameIndexBase; 805 Addr.Base.FI = SI->second; 806 return true; 807 } 808 break; 809 } 810 } 811 812 // Try to get this in a register if nothing else has worked. 813 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 814 return Addr.Base.Reg != 0; 815 } 816 817 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 818 bool needsLowering = false; 819 switch (VT.SimpleTy) { 820 default: llvm_unreachable("Unhandled load/store type!"); 821 case MVT::i1: 822 case MVT::i8: 823 case MVT::i16: 824 case MVT::i32: 825 if (!useAM3) { 826 // Integer loads/stores handle 12-bit offsets. 827 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 828 // Handle negative offsets. 829 if (needsLowering && isThumb2) 830 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 831 Addr.Offset > -256); 832 } else { 833 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 834 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 835 } 836 break; 837 case MVT::f32: 838 case MVT::f64: 839 // Floating point operands handle 8-bit offsets. 840 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 841 break; 842 } 843 844 // If this is a stack pointer and the offset needs to be simplified then 845 // put the alloca address into a register, set the base type back to 846 // register and continue. This should almost never happen. 847 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 848 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 849 : &ARM::GPRRegClass; 850 unsigned ResultReg = createResultReg(RC); 851 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 852 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 853 TII.get(Opc), ResultReg) 854 .addFrameIndex(Addr.Base.FI) 855 .addImm(0)); 856 Addr.Base.Reg = ResultReg; 857 Addr.BaseType = Address::RegBase; 858 } 859 860 // Since the offset is too large for the load/store instruction 861 // get the reg+offset into a register. 862 if (needsLowering) { 863 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 864 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 865 Addr.Offset = 0; 866 } 867 } 868 869 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 870 const MachineInstrBuilder &MIB, 871 MachineMemOperand::Flags Flags, 872 bool useAM3) { 873 // addrmode5 output depends on the selection dag addressing dividing the 874 // offset by 4 that it then later multiplies. Do this here as well. 875 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 876 Addr.Offset /= 4; 877 878 // Frame base works a bit differently. Handle it separately. 879 if (Addr.BaseType == Address::FrameIndexBase) { 880 int FI = Addr.Base.FI; 881 int Offset = Addr.Offset; 882 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 883 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 884 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); 885 // Now add the rest of the operands. 886 MIB.addFrameIndex(FI); 887 888 // ARM halfword load/stores and signed byte loads need an additional 889 // operand. 890 if (useAM3) { 891 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 892 MIB.addReg(0); 893 MIB.addImm(Imm); 894 } else { 895 MIB.addImm(Addr.Offset); 896 } 897 MIB.addMemOperand(MMO); 898 } else { 899 // Now add the rest of the operands. 900 MIB.addReg(Addr.Base.Reg); 901 902 // ARM halfword load/stores and signed byte loads need an additional 903 // operand. 904 if (useAM3) { 905 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 906 MIB.addReg(0); 907 MIB.addImm(Imm); 908 } else { 909 MIB.addImm(Addr.Offset); 910 } 911 } 912 AddOptionalDefs(MIB); 913 } 914 915 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 916 unsigned Alignment, bool isZExt, bool allocReg) { 917 unsigned Opc; 918 bool useAM3 = false; 919 bool needVMOV = false; 920 const TargetRegisterClass *RC; 921 switch (VT.SimpleTy) { 922 // This is mostly going to be Neon/vector support. 923 default: return false; 924 case MVT::i1: 925 case MVT::i8: 926 if (isThumb2) { 927 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 928 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 929 else 930 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 931 } else { 932 if (isZExt) { 933 Opc = ARM::LDRBi12; 934 } else { 935 Opc = ARM::LDRSB; 936 useAM3 = true; 937 } 938 } 939 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 940 break; 941 case MVT::i16: 942 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 943 return false; 944 945 if (isThumb2) { 946 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 947 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 948 else 949 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 950 } else { 951 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 952 useAM3 = true; 953 } 954 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 955 break; 956 case MVT::i32: 957 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 958 return false; 959 960 if (isThumb2) { 961 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 962 Opc = ARM::t2LDRi8; 963 else 964 Opc = ARM::t2LDRi12; 965 } else { 966 Opc = ARM::LDRi12; 967 } 968 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 969 break; 970 case MVT::f32: 971 if (!Subtarget->hasVFP2()) return false; 972 // Unaligned loads need special handling. Floats require word-alignment. 973 if (Alignment && Alignment < 4) { 974 needVMOV = true; 975 VT = MVT::i32; 976 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 977 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 978 } else { 979 Opc = ARM::VLDRS; 980 RC = TLI.getRegClassFor(VT); 981 } 982 break; 983 case MVT::f64: 984 if (!Subtarget->hasVFP2()) return false; 985 // FIXME: Unaligned loads need special handling. Doublewords require 986 // word-alignment. 987 if (Alignment && Alignment < 4) 988 return false; 989 990 Opc = ARM::VLDRD; 991 RC = TLI.getRegClassFor(VT); 992 break; 993 } 994 // Simplify this down to something we can handle. 995 ARMSimplifyAddress(Addr, VT, useAM3); 996 997 // Create the base instruction, then add the operands. 998 if (allocReg) 999 ResultReg = createResultReg(RC); 1000 assert(ResultReg > 255 && "Expected an allocated virtual register."); 1001 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1002 TII.get(Opc), ResultReg); 1003 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1004 1005 // If we had an unaligned load of a float we've converted it to an regular 1006 // load. Now we must move from the GRP to the FP register. 1007 if (needVMOV) { 1008 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1009 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1010 TII.get(ARM::VMOVSR), MoveReg) 1011 .addReg(ResultReg)); 1012 ResultReg = MoveReg; 1013 } 1014 return true; 1015 } 1016 1017 bool ARMFastISel::SelectLoad(const Instruction *I) { 1018 // Atomic loads need special handling. 1019 if (cast<LoadInst>(I)->isAtomic()) 1020 return false; 1021 1022 const Value *SV = I->getOperand(0); 1023 if (TLI.supportSwiftError()) { 1024 // Swifterror values can come from either a function parameter with 1025 // swifterror attribute or an alloca with swifterror attribute. 1026 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1027 if (Arg->hasSwiftErrorAttr()) 1028 return false; 1029 } 1030 1031 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1032 if (Alloca->isSwiftError()) 1033 return false; 1034 } 1035 } 1036 1037 // Verify we have a legal type before going any further. 1038 MVT VT; 1039 if (!isLoadTypeLegal(I->getType(), VT)) 1040 return false; 1041 1042 // See if we can handle this address. 1043 Address Addr; 1044 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1045 1046 unsigned ResultReg; 1047 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1048 return false; 1049 updateValueMap(I, ResultReg); 1050 return true; 1051 } 1052 1053 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1054 unsigned Alignment) { 1055 unsigned StrOpc; 1056 bool useAM3 = false; 1057 switch (VT.SimpleTy) { 1058 // This is mostly going to be Neon/vector support. 1059 default: return false; 1060 case MVT::i1: { 1061 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1062 : &ARM::GPRRegClass); 1063 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1064 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1065 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1066 TII.get(Opc), Res) 1067 .addReg(SrcReg).addImm(1)); 1068 SrcReg = Res; 1069 LLVM_FALLTHROUGH; 1070 } 1071 case MVT::i8: 1072 if (isThumb2) { 1073 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1074 StrOpc = ARM::t2STRBi8; 1075 else 1076 StrOpc = ARM::t2STRBi12; 1077 } else { 1078 StrOpc = ARM::STRBi12; 1079 } 1080 break; 1081 case MVT::i16: 1082 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1083 return false; 1084 1085 if (isThumb2) { 1086 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1087 StrOpc = ARM::t2STRHi8; 1088 else 1089 StrOpc = ARM::t2STRHi12; 1090 } else { 1091 StrOpc = ARM::STRH; 1092 useAM3 = true; 1093 } 1094 break; 1095 case MVT::i32: 1096 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1097 return false; 1098 1099 if (isThumb2) { 1100 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1101 StrOpc = ARM::t2STRi8; 1102 else 1103 StrOpc = ARM::t2STRi12; 1104 } else { 1105 StrOpc = ARM::STRi12; 1106 } 1107 break; 1108 case MVT::f32: 1109 if (!Subtarget->hasVFP2()) return false; 1110 // Unaligned stores need special handling. Floats require word-alignment. 1111 if (Alignment && Alignment < 4) { 1112 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1113 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1114 TII.get(ARM::VMOVRS), MoveReg) 1115 .addReg(SrcReg)); 1116 SrcReg = MoveReg; 1117 VT = MVT::i32; 1118 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1119 } else { 1120 StrOpc = ARM::VSTRS; 1121 } 1122 break; 1123 case MVT::f64: 1124 if (!Subtarget->hasVFP2()) return false; 1125 // FIXME: Unaligned stores need special handling. Doublewords require 1126 // word-alignment. 1127 if (Alignment && Alignment < 4) 1128 return false; 1129 1130 StrOpc = ARM::VSTRD; 1131 break; 1132 } 1133 // Simplify this down to something we can handle. 1134 ARMSimplifyAddress(Addr, VT, useAM3); 1135 1136 // Create the base instruction, then add the operands. 1137 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1138 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1139 TII.get(StrOpc)) 1140 .addReg(SrcReg); 1141 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1142 return true; 1143 } 1144 1145 bool ARMFastISel::SelectStore(const Instruction *I) { 1146 Value *Op0 = I->getOperand(0); 1147 unsigned SrcReg = 0; 1148 1149 // Atomic stores need special handling. 1150 if (cast<StoreInst>(I)->isAtomic()) 1151 return false; 1152 1153 const Value *PtrV = I->getOperand(1); 1154 if (TLI.supportSwiftError()) { 1155 // Swifterror values can come from either a function parameter with 1156 // swifterror attribute or an alloca with swifterror attribute. 1157 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1158 if (Arg->hasSwiftErrorAttr()) 1159 return false; 1160 } 1161 1162 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1163 if (Alloca->isSwiftError()) 1164 return false; 1165 } 1166 } 1167 1168 // Verify we have a legal type before going any further. 1169 MVT VT; 1170 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1171 return false; 1172 1173 // Get the value to be stored into a register. 1174 SrcReg = getRegForValue(Op0); 1175 if (SrcReg == 0) return false; 1176 1177 // See if we can handle this address. 1178 Address Addr; 1179 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1180 return false; 1181 1182 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1183 return false; 1184 return true; 1185 } 1186 1187 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1188 switch (Pred) { 1189 // Needs two compares... 1190 case CmpInst::FCMP_ONE: 1191 case CmpInst::FCMP_UEQ: 1192 default: 1193 // AL is our "false" for now. The other two need more compares. 1194 return ARMCC::AL; 1195 case CmpInst::ICMP_EQ: 1196 case CmpInst::FCMP_OEQ: 1197 return ARMCC::EQ; 1198 case CmpInst::ICMP_SGT: 1199 case CmpInst::FCMP_OGT: 1200 return ARMCC::GT; 1201 case CmpInst::ICMP_SGE: 1202 case CmpInst::FCMP_OGE: 1203 return ARMCC::GE; 1204 case CmpInst::ICMP_UGT: 1205 case CmpInst::FCMP_UGT: 1206 return ARMCC::HI; 1207 case CmpInst::FCMP_OLT: 1208 return ARMCC::MI; 1209 case CmpInst::ICMP_ULE: 1210 case CmpInst::FCMP_OLE: 1211 return ARMCC::LS; 1212 case CmpInst::FCMP_ORD: 1213 return ARMCC::VC; 1214 case CmpInst::FCMP_UNO: 1215 return ARMCC::VS; 1216 case CmpInst::FCMP_UGE: 1217 return ARMCC::PL; 1218 case CmpInst::ICMP_SLT: 1219 case CmpInst::FCMP_ULT: 1220 return ARMCC::LT; 1221 case CmpInst::ICMP_SLE: 1222 case CmpInst::FCMP_ULE: 1223 return ARMCC::LE; 1224 case CmpInst::FCMP_UNE: 1225 case CmpInst::ICMP_NE: 1226 return ARMCC::NE; 1227 case CmpInst::ICMP_UGE: 1228 return ARMCC::HS; 1229 case CmpInst::ICMP_ULT: 1230 return ARMCC::LO; 1231 } 1232 } 1233 1234 bool ARMFastISel::SelectBranch(const Instruction *I) { 1235 const BranchInst *BI = cast<BranchInst>(I); 1236 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1237 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1238 1239 // Simple branch support. 1240 1241 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1242 // behavior. 1243 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1244 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1245 // Get the compare predicate. 1246 // Try to take advantage of fallthrough opportunities. 1247 CmpInst::Predicate Predicate = CI->getPredicate(); 1248 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1249 std::swap(TBB, FBB); 1250 Predicate = CmpInst::getInversePredicate(Predicate); 1251 } 1252 1253 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1254 1255 // We may not handle every CC for now. 1256 if (ARMPred == ARMCC::AL) return false; 1257 1258 // Emit the compare. 1259 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1260 return false; 1261 1262 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1263 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1264 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1265 finishCondBranch(BI->getParent(), TBB, FBB); 1266 return true; 1267 } 1268 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1269 MVT SourceVT; 1270 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1271 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1272 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1273 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1274 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1275 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1276 TII.get(TstOpc)) 1277 .addReg(OpReg).addImm(1)); 1278 1279 unsigned CCMode = ARMCC::NE; 1280 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1281 std::swap(TBB, FBB); 1282 CCMode = ARMCC::EQ; 1283 } 1284 1285 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1286 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1287 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1288 1289 finishCondBranch(BI->getParent(), TBB, FBB); 1290 return true; 1291 } 1292 } else if (const ConstantInt *CI = 1293 dyn_cast<ConstantInt>(BI->getCondition())) { 1294 uint64_t Imm = CI->getZExtValue(); 1295 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1296 fastEmitBranch(Target, DbgLoc); 1297 return true; 1298 } 1299 1300 unsigned CmpReg = getRegForValue(BI->getCondition()); 1301 if (CmpReg == 0) return false; 1302 1303 // We've been divorced from our compare! Our block was split, and 1304 // now our compare lives in a predecessor block. We musn't 1305 // re-compare here, as the children of the compare aren't guaranteed 1306 // live across the block boundary (we *could* check for this). 1307 // Regardless, the compare has been done in the predecessor block, 1308 // and it left a value for us in a virtual register. Ergo, we test 1309 // the one-bit value left in the virtual register. 1310 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1311 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1312 AddOptionalDefs( 1313 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1314 .addReg(CmpReg) 1315 .addImm(1)); 1316 1317 unsigned CCMode = ARMCC::NE; 1318 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1319 std::swap(TBB, FBB); 1320 CCMode = ARMCC::EQ; 1321 } 1322 1323 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1324 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1325 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1326 finishCondBranch(BI->getParent(), TBB, FBB); 1327 return true; 1328 } 1329 1330 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1331 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1332 if (AddrReg == 0) return false; 1333 1334 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1335 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1336 TII.get(Opc)).addReg(AddrReg)); 1337 1338 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1339 for (const BasicBlock *SuccBB : IB->successors()) 1340 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1341 1342 return true; 1343 } 1344 1345 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1346 bool isZExt) { 1347 Type *Ty = Src1Value->getType(); 1348 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1349 if (!SrcEVT.isSimple()) return false; 1350 MVT SrcVT = SrcEVT.getSimpleVT(); 1351 1352 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1353 if (isFloat && !Subtarget->hasVFP2()) 1354 return false; 1355 1356 // Check to see if the 2nd operand is a constant that we can encode directly 1357 // in the compare. 1358 int Imm = 0; 1359 bool UseImm = false; 1360 bool isNegativeImm = false; 1361 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1362 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1363 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1364 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1365 SrcVT == MVT::i1) { 1366 const APInt &CIVal = ConstInt->getValue(); 1367 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1368 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1369 // then a cmn, because there is no way to represent 2147483648 as a 1370 // signed 32-bit int. 1371 if (Imm < 0 && Imm != (int)0x80000000) { 1372 isNegativeImm = true; 1373 Imm = -Imm; 1374 } 1375 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1376 (ARM_AM::getSOImmVal(Imm) != -1); 1377 } 1378 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1379 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1380 if (ConstFP->isZero() && !ConstFP->isNegative()) 1381 UseImm = true; 1382 } 1383 1384 unsigned CmpOpc; 1385 bool isICmp = true; 1386 bool needsExt = false; 1387 switch (SrcVT.SimpleTy) { 1388 default: return false; 1389 // TODO: Verify compares. 1390 case MVT::f32: 1391 isICmp = false; 1392 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1393 break; 1394 case MVT::f64: 1395 isICmp = false; 1396 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1397 break; 1398 case MVT::i1: 1399 case MVT::i8: 1400 case MVT::i16: 1401 needsExt = true; 1402 // Intentional fall-through. 1403 case MVT::i32: 1404 if (isThumb2) { 1405 if (!UseImm) 1406 CmpOpc = ARM::t2CMPrr; 1407 else 1408 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1409 } else { 1410 if (!UseImm) 1411 CmpOpc = ARM::CMPrr; 1412 else 1413 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1414 } 1415 break; 1416 } 1417 1418 unsigned SrcReg1 = getRegForValue(Src1Value); 1419 if (SrcReg1 == 0) return false; 1420 1421 unsigned SrcReg2 = 0; 1422 if (!UseImm) { 1423 SrcReg2 = getRegForValue(Src2Value); 1424 if (SrcReg2 == 0) return false; 1425 } 1426 1427 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1428 if (needsExt) { 1429 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1430 if (SrcReg1 == 0) return false; 1431 if (!UseImm) { 1432 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1433 if (SrcReg2 == 0) return false; 1434 } 1435 } 1436 1437 const MCInstrDesc &II = TII.get(CmpOpc); 1438 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1439 if (!UseImm) { 1440 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1441 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1442 .addReg(SrcReg1).addReg(SrcReg2)); 1443 } else { 1444 MachineInstrBuilder MIB; 1445 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1446 .addReg(SrcReg1); 1447 1448 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1449 if (isICmp) 1450 MIB.addImm(Imm); 1451 AddOptionalDefs(MIB); 1452 } 1453 1454 // For floating point we need to move the result to a comparison register 1455 // that we can then use for branches. 1456 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1457 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1458 TII.get(ARM::FMSTAT))); 1459 return true; 1460 } 1461 1462 bool ARMFastISel::SelectCmp(const Instruction *I) { 1463 const CmpInst *CI = cast<CmpInst>(I); 1464 1465 // Get the compare predicate. 1466 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1467 1468 // We may not handle every CC for now. 1469 if (ARMPred == ARMCC::AL) return false; 1470 1471 // Emit the compare. 1472 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1473 return false; 1474 1475 // Now set a register based on the comparison. Explicitly set the predicates 1476 // here. 1477 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1478 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1479 : &ARM::GPRRegClass; 1480 unsigned DestReg = createResultReg(RC); 1481 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1482 unsigned ZeroReg = fastMaterializeConstant(Zero); 1483 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1484 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1485 .addReg(ZeroReg).addImm(1) 1486 .addImm(ARMPred).addReg(ARM::CPSR); 1487 1488 updateValueMap(I, DestReg); 1489 return true; 1490 } 1491 1492 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1493 // Make sure we have VFP and that we're extending float to double. 1494 if (!Subtarget->hasVFP2()) return false; 1495 1496 Value *V = I->getOperand(0); 1497 if (!I->getType()->isDoubleTy() || 1498 !V->getType()->isFloatTy()) return false; 1499 1500 unsigned Op = getRegForValue(V); 1501 if (Op == 0) return false; 1502 1503 unsigned Result = createResultReg(&ARM::DPRRegClass); 1504 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1505 TII.get(ARM::VCVTDS), Result) 1506 .addReg(Op)); 1507 updateValueMap(I, Result); 1508 return true; 1509 } 1510 1511 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1512 // Make sure we have VFP and that we're truncating double to float. 1513 if (!Subtarget->hasVFP2()) return false; 1514 1515 Value *V = I->getOperand(0); 1516 if (!(I->getType()->isFloatTy() && 1517 V->getType()->isDoubleTy())) return false; 1518 1519 unsigned Op = getRegForValue(V); 1520 if (Op == 0) return false; 1521 1522 unsigned Result = createResultReg(&ARM::SPRRegClass); 1523 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1524 TII.get(ARM::VCVTSD), Result) 1525 .addReg(Op)); 1526 updateValueMap(I, Result); 1527 return true; 1528 } 1529 1530 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1531 // Make sure we have VFP. 1532 if (!Subtarget->hasVFP2()) return false; 1533 1534 MVT DstVT; 1535 Type *Ty = I->getType(); 1536 if (!isTypeLegal(Ty, DstVT)) 1537 return false; 1538 1539 Value *Src = I->getOperand(0); 1540 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1541 if (!SrcEVT.isSimple()) 1542 return false; 1543 MVT SrcVT = SrcEVT.getSimpleVT(); 1544 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1545 return false; 1546 1547 unsigned SrcReg = getRegForValue(Src); 1548 if (SrcReg == 0) return false; 1549 1550 // Handle sign-extension. 1551 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1552 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1553 /*isZExt*/!isSigned); 1554 if (SrcReg == 0) return false; 1555 } 1556 1557 // The conversion routine works on fp-reg to fp-reg and the operand above 1558 // was an integer, move it to the fp registers if possible. 1559 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1560 if (FP == 0) return false; 1561 1562 unsigned Opc; 1563 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1564 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1565 else return false; 1566 1567 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1568 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1569 TII.get(Opc), ResultReg).addReg(FP)); 1570 updateValueMap(I, ResultReg); 1571 return true; 1572 } 1573 1574 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1575 // Make sure we have VFP. 1576 if (!Subtarget->hasVFP2()) return false; 1577 1578 MVT DstVT; 1579 Type *RetTy = I->getType(); 1580 if (!isTypeLegal(RetTy, DstVT)) 1581 return false; 1582 1583 unsigned Op = getRegForValue(I->getOperand(0)); 1584 if (Op == 0) return false; 1585 1586 unsigned Opc; 1587 Type *OpTy = I->getOperand(0)->getType(); 1588 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1589 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1590 else return false; 1591 1592 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1593 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1594 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1595 TII.get(Opc), ResultReg).addReg(Op)); 1596 1597 // This result needs to be in an integer register, but the conversion only 1598 // takes place in fp-regs. 1599 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1600 if (IntReg == 0) return false; 1601 1602 updateValueMap(I, IntReg); 1603 return true; 1604 } 1605 1606 bool ARMFastISel::SelectSelect(const Instruction *I) { 1607 MVT VT; 1608 if (!isTypeLegal(I->getType(), VT)) 1609 return false; 1610 1611 // Things need to be register sized for register moves. 1612 if (VT != MVT::i32) return false; 1613 1614 unsigned CondReg = getRegForValue(I->getOperand(0)); 1615 if (CondReg == 0) return false; 1616 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1617 if (Op1Reg == 0) return false; 1618 1619 // Check to see if we can use an immediate in the conditional move. 1620 int Imm = 0; 1621 bool UseImm = false; 1622 bool isNegativeImm = false; 1623 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1624 assert(VT == MVT::i32 && "Expecting an i32."); 1625 Imm = (int)ConstInt->getValue().getZExtValue(); 1626 if (Imm < 0) { 1627 isNegativeImm = true; 1628 Imm = ~Imm; 1629 } 1630 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1631 (ARM_AM::getSOImmVal(Imm) != -1); 1632 } 1633 1634 unsigned Op2Reg = 0; 1635 if (!UseImm) { 1636 Op2Reg = getRegForValue(I->getOperand(2)); 1637 if (Op2Reg == 0) return false; 1638 } 1639 1640 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1641 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1642 AddOptionalDefs( 1643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1644 .addReg(CondReg) 1645 .addImm(1)); 1646 1647 unsigned MovCCOpc; 1648 const TargetRegisterClass *RC; 1649 if (!UseImm) { 1650 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1651 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1652 } else { 1653 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1654 if (!isNegativeImm) 1655 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1656 else 1657 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1658 } 1659 unsigned ResultReg = createResultReg(RC); 1660 if (!UseImm) { 1661 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1662 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1663 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1664 ResultReg) 1665 .addReg(Op2Reg) 1666 .addReg(Op1Reg) 1667 .addImm(ARMCC::NE) 1668 .addReg(ARM::CPSR); 1669 } else { 1670 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1671 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1672 ResultReg) 1673 .addReg(Op1Reg) 1674 .addImm(Imm) 1675 .addImm(ARMCC::EQ) 1676 .addReg(ARM::CPSR); 1677 } 1678 updateValueMap(I, ResultReg); 1679 return true; 1680 } 1681 1682 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1683 MVT VT; 1684 Type *Ty = I->getType(); 1685 if (!isTypeLegal(Ty, VT)) 1686 return false; 1687 1688 // If we have integer div support we should have selected this automagically. 1689 // In case we have a real miss go ahead and return false and we'll pick 1690 // it up later. 1691 if (Subtarget->hasDivide()) return false; 1692 1693 // Otherwise emit a libcall. 1694 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1695 if (VT == MVT::i8) 1696 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1697 else if (VT == MVT::i16) 1698 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1699 else if (VT == MVT::i32) 1700 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1701 else if (VT == MVT::i64) 1702 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1703 else if (VT == MVT::i128) 1704 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1705 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1706 1707 return ARMEmitLibcall(I, LC); 1708 } 1709 1710 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1711 MVT VT; 1712 Type *Ty = I->getType(); 1713 if (!isTypeLegal(Ty, VT)) 1714 return false; 1715 1716 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1717 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1718 // multi-reg returns, we'll have to bail out. 1719 if (!TLI.hasStandaloneRem(VT)) { 1720 return false; 1721 } 1722 1723 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1724 if (VT == MVT::i8) 1725 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1726 else if (VT == MVT::i16) 1727 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1728 else if (VT == MVT::i32) 1729 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1730 else if (VT == MVT::i64) 1731 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1732 else if (VT == MVT::i128) 1733 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1734 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1735 1736 return ARMEmitLibcall(I, LC); 1737 } 1738 1739 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1740 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1741 1742 // We can get here in the case when we have a binary operation on a non-legal 1743 // type and the target independent selector doesn't know how to handle it. 1744 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1745 return false; 1746 1747 unsigned Opc; 1748 switch (ISDOpcode) { 1749 default: return false; 1750 case ISD::ADD: 1751 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1752 break; 1753 case ISD::OR: 1754 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1755 break; 1756 case ISD::SUB: 1757 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1758 break; 1759 } 1760 1761 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1762 if (SrcReg1 == 0) return false; 1763 1764 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1765 // in the instruction, rather then materializing the value in a register. 1766 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1767 if (SrcReg2 == 0) return false; 1768 1769 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1770 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1771 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1772 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1773 TII.get(Opc), ResultReg) 1774 .addReg(SrcReg1).addReg(SrcReg2)); 1775 updateValueMap(I, ResultReg); 1776 return true; 1777 } 1778 1779 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1780 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1781 if (!FPVT.isSimple()) return false; 1782 MVT VT = FPVT.getSimpleVT(); 1783 1784 // FIXME: Support vector types where possible. 1785 if (VT.isVector()) 1786 return false; 1787 1788 // We can get here in the case when we want to use NEON for our fp 1789 // operations, but can't figure out how to. Just use the vfp instructions 1790 // if we have them. 1791 // FIXME: It'd be nice to use NEON instructions. 1792 Type *Ty = I->getType(); 1793 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1794 if (isFloat && !Subtarget->hasVFP2()) 1795 return false; 1796 1797 unsigned Opc; 1798 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1799 switch (ISDOpcode) { 1800 default: return false; 1801 case ISD::FADD: 1802 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1803 break; 1804 case ISD::FSUB: 1805 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1806 break; 1807 case ISD::FMUL: 1808 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1809 break; 1810 } 1811 unsigned Op1 = getRegForValue(I->getOperand(0)); 1812 if (Op1 == 0) return false; 1813 1814 unsigned Op2 = getRegForValue(I->getOperand(1)); 1815 if (Op2 == 0) return false; 1816 1817 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1818 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1819 TII.get(Opc), ResultReg) 1820 .addReg(Op1).addReg(Op2)); 1821 updateValueMap(I, ResultReg); 1822 return true; 1823 } 1824 1825 // Call Handling Code 1826 1827 // This is largely taken directly from CCAssignFnForNode 1828 // TODO: We may not support all of this. 1829 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1830 bool Return, 1831 bool isVarArg) { 1832 switch (CC) { 1833 default: 1834 llvm_unreachable("Unsupported calling convention"); 1835 case CallingConv::Fast: 1836 if (Subtarget->hasVFP2() && !isVarArg) { 1837 if (!Subtarget->isAAPCS_ABI()) 1838 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1839 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1840 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1841 } 1842 LLVM_FALLTHROUGH; 1843 case CallingConv::C: 1844 case CallingConv::CXX_FAST_TLS: 1845 // Use target triple & subtarget features to do actual dispatch. 1846 if (Subtarget->isAAPCS_ABI()) { 1847 if (Subtarget->hasVFP2() && 1848 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1849 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1850 else 1851 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1852 } else { 1853 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1854 } 1855 case CallingConv::ARM_AAPCS_VFP: 1856 case CallingConv::Swift: 1857 if (!isVarArg) 1858 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1859 // Fall through to soft float variant, variadic functions don't 1860 // use hard floating point ABI. 1861 LLVM_FALLTHROUGH; 1862 case CallingConv::ARM_AAPCS: 1863 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1864 case CallingConv::ARM_APCS: 1865 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1866 case CallingConv::GHC: 1867 if (Return) 1868 llvm_unreachable("Can't return in GHC call convention"); 1869 else 1870 return CC_ARM_APCS_GHC; 1871 } 1872 } 1873 1874 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1875 SmallVectorImpl<unsigned> &ArgRegs, 1876 SmallVectorImpl<MVT> &ArgVTs, 1877 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1878 SmallVectorImpl<unsigned> &RegArgs, 1879 CallingConv::ID CC, 1880 unsigned &NumBytes, 1881 bool isVarArg) { 1882 SmallVector<CCValAssign, 16> ArgLocs; 1883 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1884 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1885 CCAssignFnForCall(CC, false, isVarArg)); 1886 1887 // Check that we can handle all of the arguments. If we can't, then bail out 1888 // now before we add code to the MBB. 1889 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1890 CCValAssign &VA = ArgLocs[i]; 1891 MVT ArgVT = ArgVTs[VA.getValNo()]; 1892 1893 // We don't handle NEON/vector parameters yet. 1894 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1895 return false; 1896 1897 // Now copy/store arg to correct locations. 1898 if (VA.isRegLoc() && !VA.needsCustom()) { 1899 continue; 1900 } else if (VA.needsCustom()) { 1901 // TODO: We need custom lowering for vector (v2f64) args. 1902 if (VA.getLocVT() != MVT::f64 || 1903 // TODO: Only handle register args for now. 1904 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1905 return false; 1906 } else { 1907 switch (ArgVT.SimpleTy) { 1908 default: 1909 return false; 1910 case MVT::i1: 1911 case MVT::i8: 1912 case MVT::i16: 1913 case MVT::i32: 1914 break; 1915 case MVT::f32: 1916 if (!Subtarget->hasVFP2()) 1917 return false; 1918 break; 1919 case MVT::f64: 1920 if (!Subtarget->hasVFP2()) 1921 return false; 1922 break; 1923 } 1924 } 1925 } 1926 1927 // At the point, we are able to handle the call's arguments in fast isel. 1928 1929 // Get a count of how many bytes are to be pushed on the stack. 1930 NumBytes = CCInfo.getNextStackOffset(); 1931 1932 // Issue CALLSEQ_START 1933 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1934 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1935 TII.get(AdjStackDown)) 1936 .addImm(NumBytes)); 1937 1938 // Process the args. 1939 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1940 CCValAssign &VA = ArgLocs[i]; 1941 const Value *ArgVal = Args[VA.getValNo()]; 1942 unsigned Arg = ArgRegs[VA.getValNo()]; 1943 MVT ArgVT = ArgVTs[VA.getValNo()]; 1944 1945 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1946 "We don't handle NEON/vector parameters yet."); 1947 1948 // Handle arg promotion, etc. 1949 switch (VA.getLocInfo()) { 1950 case CCValAssign::Full: break; 1951 case CCValAssign::SExt: { 1952 MVT DestVT = VA.getLocVT(); 1953 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1954 assert(Arg != 0 && "Failed to emit a sext"); 1955 ArgVT = DestVT; 1956 break; 1957 } 1958 case CCValAssign::AExt: 1959 // Intentional fall-through. Handle AExt and ZExt. 1960 case CCValAssign::ZExt: { 1961 MVT DestVT = VA.getLocVT(); 1962 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1963 assert(Arg != 0 && "Failed to emit a zext"); 1964 ArgVT = DestVT; 1965 break; 1966 } 1967 case CCValAssign::BCvt: { 1968 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1969 /*TODO: Kill=*/false); 1970 assert(BC != 0 && "Failed to emit a bitcast!"); 1971 Arg = BC; 1972 ArgVT = VA.getLocVT(); 1973 break; 1974 } 1975 default: llvm_unreachable("Unknown arg promotion!"); 1976 } 1977 1978 // Now copy/store arg to correct locations. 1979 if (VA.isRegLoc() && !VA.needsCustom()) { 1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1981 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1982 RegArgs.push_back(VA.getLocReg()); 1983 } else if (VA.needsCustom()) { 1984 // TODO: We need custom lowering for vector (v2f64) args. 1985 assert(VA.getLocVT() == MVT::f64 && 1986 "Custom lowering for v2f64 args not available"); 1987 1988 CCValAssign &NextVA = ArgLocs[++i]; 1989 1990 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1991 "We only handle register args!"); 1992 1993 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1994 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1995 .addReg(NextVA.getLocReg(), RegState::Define) 1996 .addReg(Arg)); 1997 RegArgs.push_back(VA.getLocReg()); 1998 RegArgs.push_back(NextVA.getLocReg()); 1999 } else { 2000 assert(VA.isMemLoc()); 2001 // Need to store on the stack. 2002 2003 // Don't emit stores for undef values. 2004 if (isa<UndefValue>(ArgVal)) 2005 continue; 2006 2007 Address Addr; 2008 Addr.BaseType = Address::RegBase; 2009 Addr.Base.Reg = ARM::SP; 2010 Addr.Offset = VA.getLocMemOffset(); 2011 2012 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2013 assert(EmitRet && "Could not emit a store for argument!"); 2014 } 2015 } 2016 2017 return true; 2018 } 2019 2020 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2021 const Instruction *I, CallingConv::ID CC, 2022 unsigned &NumBytes, bool isVarArg) { 2023 // Issue CALLSEQ_END 2024 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2025 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2026 TII.get(AdjStackUp)) 2027 .addImm(NumBytes).addImm(0)); 2028 2029 // Now the return value. 2030 if (RetVT != MVT::isVoid) { 2031 SmallVector<CCValAssign, 16> RVLocs; 2032 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2033 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2034 2035 // Copy all of the result registers out of their specified physreg. 2036 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2037 // For this move we copy into two registers and then move into the 2038 // double fp reg we want. 2039 MVT DestVT = RVLocs[0].getValVT(); 2040 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2041 unsigned ResultReg = createResultReg(DstRC); 2042 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2043 TII.get(ARM::VMOVDRR), ResultReg) 2044 .addReg(RVLocs[0].getLocReg()) 2045 .addReg(RVLocs[1].getLocReg())); 2046 2047 UsedRegs.push_back(RVLocs[0].getLocReg()); 2048 UsedRegs.push_back(RVLocs[1].getLocReg()); 2049 2050 // Finally update the result. 2051 updateValueMap(I, ResultReg); 2052 } else { 2053 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2054 MVT CopyVT = RVLocs[0].getValVT(); 2055 2056 // Special handling for extended integers. 2057 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2058 CopyVT = MVT::i32; 2059 2060 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2061 2062 unsigned ResultReg = createResultReg(DstRC); 2063 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2064 TII.get(TargetOpcode::COPY), 2065 ResultReg).addReg(RVLocs[0].getLocReg()); 2066 UsedRegs.push_back(RVLocs[0].getLocReg()); 2067 2068 // Finally update the result. 2069 updateValueMap(I, ResultReg); 2070 } 2071 } 2072 2073 return true; 2074 } 2075 2076 bool ARMFastISel::SelectRet(const Instruction *I) { 2077 const ReturnInst *Ret = cast<ReturnInst>(I); 2078 const Function &F = *I->getParent()->getParent(); 2079 2080 if (!FuncInfo.CanLowerReturn) 2081 return false; 2082 2083 if (TLI.supportSwiftError() && 2084 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2085 return false; 2086 2087 if (TLI.supportSplitCSR(FuncInfo.MF)) 2088 return false; 2089 2090 // Build a list of return value registers. 2091 SmallVector<unsigned, 4> RetRegs; 2092 2093 CallingConv::ID CC = F.getCallingConv(); 2094 if (Ret->getNumOperands() > 0) { 2095 SmallVector<ISD::OutputArg, 4> Outs; 2096 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2097 2098 // Analyze operands of the call, assigning locations to each operand. 2099 SmallVector<CCValAssign, 16> ValLocs; 2100 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2101 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2102 F.isVarArg())); 2103 2104 const Value *RV = Ret->getOperand(0); 2105 unsigned Reg = getRegForValue(RV); 2106 if (Reg == 0) 2107 return false; 2108 2109 // Only handle a single return value for now. 2110 if (ValLocs.size() != 1) 2111 return false; 2112 2113 CCValAssign &VA = ValLocs[0]; 2114 2115 // Don't bother handling odd stuff for now. 2116 if (VA.getLocInfo() != CCValAssign::Full) 2117 return false; 2118 // Only handle register returns for now. 2119 if (!VA.isRegLoc()) 2120 return false; 2121 2122 unsigned SrcReg = Reg + VA.getValNo(); 2123 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2124 if (!RVEVT.isSimple()) return false; 2125 MVT RVVT = RVEVT.getSimpleVT(); 2126 MVT DestVT = VA.getValVT(); 2127 // Special handling for extended integers. 2128 if (RVVT != DestVT) { 2129 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2130 return false; 2131 2132 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2133 2134 // Perform extension if flagged as either zext or sext. Otherwise, do 2135 // nothing. 2136 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2137 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2138 if (SrcReg == 0) return false; 2139 } 2140 } 2141 2142 // Make the copy. 2143 unsigned DstReg = VA.getLocReg(); 2144 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2145 // Avoid a cross-class copy. This is very unlikely. 2146 if (!SrcRC->contains(DstReg)) 2147 return false; 2148 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2149 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2150 2151 // Add register to return instruction. 2152 RetRegs.push_back(VA.getLocReg()); 2153 } 2154 2155 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2156 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2157 TII.get(RetOpc)); 2158 AddOptionalDefs(MIB); 2159 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2160 MIB.addReg(RetRegs[i], RegState::Implicit); 2161 return true; 2162 } 2163 2164 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2165 if (UseReg) 2166 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2167 else 2168 return isThumb2 ? ARM::tBL : ARM::BL; 2169 } 2170 2171 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2172 // Manually compute the global's type to avoid building it when unnecessary. 2173 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2174 EVT LCREVT = TLI.getValueType(DL, GVTy); 2175 if (!LCREVT.isSimple()) return 0; 2176 2177 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2178 GlobalValue::ExternalLinkage, nullptr, 2179 Name); 2180 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2181 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2182 } 2183 2184 // A quick function that will emit a call for a named libcall in F with the 2185 // vector of passed arguments for the Instruction in I. We can assume that we 2186 // can emit a call for any libcall we can produce. This is an abridged version 2187 // of the full call infrastructure since we won't need to worry about things 2188 // like computed function pointers or strange arguments at call sites. 2189 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2190 // with X86. 2191 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2192 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2193 2194 // Handle *simple* calls for now. 2195 Type *RetTy = I->getType(); 2196 MVT RetVT; 2197 if (RetTy->isVoidTy()) 2198 RetVT = MVT::isVoid; 2199 else if (!isTypeLegal(RetTy, RetVT)) 2200 return false; 2201 2202 // Can't handle non-double multi-reg retvals. 2203 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2204 SmallVector<CCValAssign, 16> RVLocs; 2205 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2206 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2207 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2208 return false; 2209 } 2210 2211 // Set up the argument vectors. 2212 SmallVector<Value*, 8> Args; 2213 SmallVector<unsigned, 8> ArgRegs; 2214 SmallVector<MVT, 8> ArgVTs; 2215 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2216 Args.reserve(I->getNumOperands()); 2217 ArgRegs.reserve(I->getNumOperands()); 2218 ArgVTs.reserve(I->getNumOperands()); 2219 ArgFlags.reserve(I->getNumOperands()); 2220 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2221 Value *Op = I->getOperand(i); 2222 unsigned Arg = getRegForValue(Op); 2223 if (Arg == 0) return false; 2224 2225 Type *ArgTy = Op->getType(); 2226 MVT ArgVT; 2227 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2228 2229 ISD::ArgFlagsTy Flags; 2230 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2231 Flags.setOrigAlign(OriginalAlignment); 2232 2233 Args.push_back(Op); 2234 ArgRegs.push_back(Arg); 2235 ArgVTs.push_back(ArgVT); 2236 ArgFlags.push_back(Flags); 2237 } 2238 2239 // Handle the arguments now that we've gotten them. 2240 SmallVector<unsigned, 4> RegArgs; 2241 unsigned NumBytes; 2242 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2243 RegArgs, CC, NumBytes, false)) 2244 return false; 2245 2246 unsigned CalleeReg = 0; 2247 if (Subtarget->genLongCalls()) { 2248 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2249 if (CalleeReg == 0) return false; 2250 } 2251 2252 // Issue the call. 2253 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2254 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2255 DbgLoc, TII.get(CallOpc)); 2256 // BL / BLX don't take a predicate, but tBL / tBLX do. 2257 if (isThumb2) 2258 MIB.add(predOps(ARMCC::AL)); 2259 if (Subtarget->genLongCalls()) 2260 MIB.addReg(CalleeReg); 2261 else 2262 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2263 2264 // Add implicit physical register uses to the call. 2265 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2266 MIB.addReg(RegArgs[i], RegState::Implicit); 2267 2268 // Add a register mask with the call-preserved registers. 2269 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2270 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2271 2272 // Finish off the call including any return values. 2273 SmallVector<unsigned, 4> UsedRegs; 2274 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2275 2276 // Set all unused physreg defs as dead. 2277 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2278 2279 return true; 2280 } 2281 2282 bool ARMFastISel::SelectCall(const Instruction *I, 2283 const char *IntrMemName = nullptr) { 2284 const CallInst *CI = cast<CallInst>(I); 2285 const Value *Callee = CI->getCalledValue(); 2286 2287 // Can't handle inline asm. 2288 if (isa<InlineAsm>(Callee)) return false; 2289 2290 // Allow SelectionDAG isel to handle tail calls. 2291 if (CI->isTailCall()) return false; 2292 2293 // Check the calling convention. 2294 ImmutableCallSite CS(CI); 2295 CallingConv::ID CC = CS.getCallingConv(); 2296 2297 // TODO: Avoid some calling conventions? 2298 2299 FunctionType *FTy = CS.getFunctionType(); 2300 bool isVarArg = FTy->isVarArg(); 2301 2302 // Handle *simple* calls for now. 2303 Type *RetTy = I->getType(); 2304 MVT RetVT; 2305 if (RetTy->isVoidTy()) 2306 RetVT = MVT::isVoid; 2307 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2308 RetVT != MVT::i8 && RetVT != MVT::i1) 2309 return false; 2310 2311 // Can't handle non-double multi-reg retvals. 2312 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2313 RetVT != MVT::i16 && RetVT != MVT::i32) { 2314 SmallVector<CCValAssign, 16> RVLocs; 2315 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2316 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2317 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2318 return false; 2319 } 2320 2321 // Set up the argument vectors. 2322 SmallVector<Value*, 8> Args; 2323 SmallVector<unsigned, 8> ArgRegs; 2324 SmallVector<MVT, 8> ArgVTs; 2325 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2326 unsigned arg_size = CS.arg_size(); 2327 Args.reserve(arg_size); 2328 ArgRegs.reserve(arg_size); 2329 ArgVTs.reserve(arg_size); 2330 ArgFlags.reserve(arg_size); 2331 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2332 i != e; ++i) { 2333 // If we're lowering a memory intrinsic instead of a regular call, skip the 2334 // last two arguments, which shouldn't be passed to the underlying function. 2335 if (IntrMemName && e-i <= 2) 2336 break; 2337 2338 ISD::ArgFlagsTy Flags; 2339 unsigned AttrInd = i - CS.arg_begin() + 1; 2340 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2341 Flags.setSExt(); 2342 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2343 Flags.setZExt(); 2344 2345 // FIXME: Only handle *easy* calls for now. 2346 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2347 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2348 CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) || 2349 CS.paramHasAttr(AttrInd, Attribute::SwiftError) || 2350 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2351 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2352 return false; 2353 2354 Type *ArgTy = (*i)->getType(); 2355 MVT ArgVT; 2356 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2357 ArgVT != MVT::i1) 2358 return false; 2359 2360 unsigned Arg = getRegForValue(*i); 2361 if (Arg == 0) 2362 return false; 2363 2364 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2365 Flags.setOrigAlign(OriginalAlignment); 2366 2367 Args.push_back(*i); 2368 ArgRegs.push_back(Arg); 2369 ArgVTs.push_back(ArgVT); 2370 ArgFlags.push_back(Flags); 2371 } 2372 2373 // Handle the arguments now that we've gotten them. 2374 SmallVector<unsigned, 4> RegArgs; 2375 unsigned NumBytes; 2376 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2377 RegArgs, CC, NumBytes, isVarArg)) 2378 return false; 2379 2380 bool UseReg = false; 2381 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2382 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2383 2384 unsigned CalleeReg = 0; 2385 if (UseReg) { 2386 if (IntrMemName) 2387 CalleeReg = getLibcallReg(IntrMemName); 2388 else 2389 CalleeReg = getRegForValue(Callee); 2390 2391 if (CalleeReg == 0) return false; 2392 } 2393 2394 // Issue the call. 2395 unsigned CallOpc = ARMSelectCallOp(UseReg); 2396 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2397 DbgLoc, TII.get(CallOpc)); 2398 2399 // ARM calls don't take a predicate, but tBL / tBLX do. 2400 if(isThumb2) 2401 MIB.add(predOps(ARMCC::AL)); 2402 if (UseReg) 2403 MIB.addReg(CalleeReg); 2404 else if (!IntrMemName) 2405 MIB.addGlobalAddress(GV, 0, 0); 2406 else 2407 MIB.addExternalSymbol(IntrMemName, 0); 2408 2409 // Add implicit physical register uses to the call. 2410 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2411 MIB.addReg(RegArgs[i], RegState::Implicit); 2412 2413 // Add a register mask with the call-preserved registers. 2414 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2415 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2416 2417 // Finish off the call including any return values. 2418 SmallVector<unsigned, 4> UsedRegs; 2419 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2420 return false; 2421 2422 // Set all unused physreg defs as dead. 2423 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2424 2425 return true; 2426 } 2427 2428 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2429 return Len <= 16; 2430 } 2431 2432 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2433 uint64_t Len, unsigned Alignment) { 2434 // Make sure we don't bloat code by inlining very large memcpy's. 2435 if (!ARMIsMemCpySmall(Len)) 2436 return false; 2437 2438 while (Len) { 2439 MVT VT; 2440 if (!Alignment || Alignment >= 4) { 2441 if (Len >= 4) 2442 VT = MVT::i32; 2443 else if (Len >= 2) 2444 VT = MVT::i16; 2445 else { 2446 assert(Len == 1 && "Expected a length of 1!"); 2447 VT = MVT::i8; 2448 } 2449 } else { 2450 // Bound based on alignment. 2451 if (Len >= 2 && Alignment == 2) 2452 VT = MVT::i16; 2453 else { 2454 VT = MVT::i8; 2455 } 2456 } 2457 2458 bool RV; 2459 unsigned ResultReg; 2460 RV = ARMEmitLoad(VT, ResultReg, Src); 2461 assert(RV && "Should be able to handle this load."); 2462 RV = ARMEmitStore(VT, ResultReg, Dest); 2463 assert(RV && "Should be able to handle this store."); 2464 (void)RV; 2465 2466 unsigned Size = VT.getSizeInBits()/8; 2467 Len -= Size; 2468 Dest.Offset += Size; 2469 Src.Offset += Size; 2470 } 2471 2472 return true; 2473 } 2474 2475 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2476 // FIXME: Handle more intrinsics. 2477 switch (I.getIntrinsicID()) { 2478 default: return false; 2479 case Intrinsic::frameaddress: { 2480 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 2481 MFI.setFrameAddressIsTaken(true); 2482 2483 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2484 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2485 : &ARM::GPRRegClass; 2486 2487 const ARMBaseRegisterInfo *RegInfo = 2488 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2489 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2490 unsigned SrcReg = FramePtr; 2491 2492 // Recursively load frame address 2493 // ldr r0 [fp] 2494 // ldr r0 [r0] 2495 // ldr r0 [r0] 2496 // ... 2497 unsigned DestReg; 2498 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2499 while (Depth--) { 2500 DestReg = createResultReg(RC); 2501 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2502 TII.get(LdrOpc), DestReg) 2503 .addReg(SrcReg).addImm(0)); 2504 SrcReg = DestReg; 2505 } 2506 updateValueMap(&I, SrcReg); 2507 return true; 2508 } 2509 case Intrinsic::memcpy: 2510 case Intrinsic::memmove: { 2511 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2512 // Don't handle volatile. 2513 if (MTI.isVolatile()) 2514 return false; 2515 2516 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2517 // we would emit dead code because we don't currently handle memmoves. 2518 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2519 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2520 // Small memcpy's are common enough that we want to do them without a call 2521 // if possible. 2522 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2523 if (ARMIsMemCpySmall(Len)) { 2524 Address Dest, Src; 2525 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2526 !ARMComputeAddress(MTI.getRawSource(), Src)) 2527 return false; 2528 unsigned Alignment = MTI.getAlignment(); 2529 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2530 return true; 2531 } 2532 } 2533 2534 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2535 return false; 2536 2537 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2538 return false; 2539 2540 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2541 return SelectCall(&I, IntrMemName); 2542 } 2543 case Intrinsic::memset: { 2544 const MemSetInst &MSI = cast<MemSetInst>(I); 2545 // Don't handle volatile. 2546 if (MSI.isVolatile()) 2547 return false; 2548 2549 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2550 return false; 2551 2552 if (MSI.getDestAddressSpace() > 255) 2553 return false; 2554 2555 return SelectCall(&I, "memset"); 2556 } 2557 case Intrinsic::trap: { 2558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2559 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2560 return true; 2561 } 2562 } 2563 } 2564 2565 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2566 // The high bits for a type smaller than the register size are assumed to be 2567 // undefined. 2568 Value *Op = I->getOperand(0); 2569 2570 EVT SrcVT, DestVT; 2571 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2572 DestVT = TLI.getValueType(DL, I->getType(), true); 2573 2574 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2575 return false; 2576 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2577 return false; 2578 2579 unsigned SrcReg = getRegForValue(Op); 2580 if (!SrcReg) return false; 2581 2582 // Because the high bits are undefined, a truncate doesn't generate 2583 // any code. 2584 updateValueMap(I, SrcReg); 2585 return true; 2586 } 2587 2588 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2589 bool isZExt) { 2590 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2591 return 0; 2592 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2593 return 0; 2594 2595 // Table of which combinations can be emitted as a single instruction, 2596 // and which will require two. 2597 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2598 // ARM Thumb 2599 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2600 // ext: s z s z s z s z 2601 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2602 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2603 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2604 }; 2605 2606 // Target registers for: 2607 // - For ARM can never be PC. 2608 // - For 16-bit Thumb are restricted to lower 8 registers. 2609 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2610 static const TargetRegisterClass *RCTbl[2][2] = { 2611 // Instructions: Two Single 2612 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2613 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2614 }; 2615 2616 // Table governing the instruction(s) to be emitted. 2617 static const struct InstructionTable { 2618 uint32_t Opc : 16; 2619 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2620 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2621 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2622 } IT[2][2][3][2] = { 2623 { // Two instructions (first is left shift, second is in this table). 2624 { // ARM Opc S Shift Imm 2625 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2626 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2627 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2628 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2629 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2630 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2631 }, 2632 { // Thumb Opc S Shift Imm 2633 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2634 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2635 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2636 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2637 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2638 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2639 } 2640 }, 2641 { // Single instruction. 2642 { // ARM Opc S Shift Imm 2643 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2644 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2645 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2646 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2647 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2648 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2649 }, 2650 { // Thumb Opc S Shift Imm 2651 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2652 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2653 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2654 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2655 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2656 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2657 } 2658 } 2659 }; 2660 2661 unsigned SrcBits = SrcVT.getSizeInBits(); 2662 unsigned DestBits = DestVT.getSizeInBits(); 2663 (void) DestBits; 2664 assert((SrcBits < DestBits) && "can only extend to larger types"); 2665 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2666 "other sizes unimplemented"); 2667 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2668 "other sizes unimplemented"); 2669 2670 bool hasV6Ops = Subtarget->hasV6Ops(); 2671 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2672 assert((Bitness < 3) && "sanity-check table bounds"); 2673 2674 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2675 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2676 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2677 unsigned Opc = ITP->Opc; 2678 assert(ARM::KILL != Opc && "Invalid table entry"); 2679 unsigned hasS = ITP->hasS; 2680 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2681 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2682 "only MOVsi has shift operand addressing mode"); 2683 unsigned Imm = ITP->Imm; 2684 2685 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2686 bool setsCPSR = &ARM::tGPRRegClass == RC; 2687 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2688 unsigned ResultReg; 2689 // MOVsi encodes shift and immediate in shift operand addressing mode. 2690 // The following condition has the same value when emitting two 2691 // instruction sequences: both are shifts. 2692 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2693 2694 // Either one or two instructions are emitted. 2695 // They're always of the form: 2696 // dst = in OP imm 2697 // CPSR is set only by 16-bit Thumb instructions. 2698 // Predicate, if any, is AL. 2699 // S bit, if available, is always 0. 2700 // When two are emitted the first's result will feed as the second's input, 2701 // that value is then dead. 2702 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2703 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2704 ResultReg = createResultReg(RC); 2705 bool isLsl = (0 == Instr) && !isSingleInstr; 2706 unsigned Opcode = isLsl ? LSLOpc : Opc; 2707 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2708 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2709 bool isKill = 1 == Instr; 2710 MachineInstrBuilder MIB = BuildMI( 2711 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2712 if (setsCPSR) 2713 MIB.addReg(ARM::CPSR, RegState::Define); 2714 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2715 MIB.addReg(SrcReg, isKill * RegState::Kill) 2716 .addImm(ImmEnc) 2717 .add(predOps(ARMCC::AL)); 2718 if (hasS) 2719 MIB.add(condCodeOp()); 2720 // Second instruction consumes the first's result. 2721 SrcReg = ResultReg; 2722 } 2723 2724 return ResultReg; 2725 } 2726 2727 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2728 // On ARM, in general, integer casts don't involve legal types; this code 2729 // handles promotable integers. 2730 Type *DestTy = I->getType(); 2731 Value *Src = I->getOperand(0); 2732 Type *SrcTy = Src->getType(); 2733 2734 bool isZExt = isa<ZExtInst>(I); 2735 unsigned SrcReg = getRegForValue(Src); 2736 if (!SrcReg) return false; 2737 2738 EVT SrcEVT, DestEVT; 2739 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2740 DestEVT = TLI.getValueType(DL, DestTy, true); 2741 if (!SrcEVT.isSimple()) return false; 2742 if (!DestEVT.isSimple()) return false; 2743 2744 MVT SrcVT = SrcEVT.getSimpleVT(); 2745 MVT DestVT = DestEVT.getSimpleVT(); 2746 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2747 if (ResultReg == 0) return false; 2748 updateValueMap(I, ResultReg); 2749 return true; 2750 } 2751 2752 bool ARMFastISel::SelectShift(const Instruction *I, 2753 ARM_AM::ShiftOpc ShiftTy) { 2754 // We handle thumb2 mode by target independent selector 2755 // or SelectionDAG ISel. 2756 if (isThumb2) 2757 return false; 2758 2759 // Only handle i32 now. 2760 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2761 if (DestVT != MVT::i32) 2762 return false; 2763 2764 unsigned Opc = ARM::MOVsr; 2765 unsigned ShiftImm; 2766 Value *Src2Value = I->getOperand(1); 2767 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2768 ShiftImm = CI->getZExtValue(); 2769 2770 // Fall back to selection DAG isel if the shift amount 2771 // is zero or greater than the width of the value type. 2772 if (ShiftImm == 0 || ShiftImm >=32) 2773 return false; 2774 2775 Opc = ARM::MOVsi; 2776 } 2777 2778 Value *Src1Value = I->getOperand(0); 2779 unsigned Reg1 = getRegForValue(Src1Value); 2780 if (Reg1 == 0) return false; 2781 2782 unsigned Reg2 = 0; 2783 if (Opc == ARM::MOVsr) { 2784 Reg2 = getRegForValue(Src2Value); 2785 if (Reg2 == 0) return false; 2786 } 2787 2788 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2789 if(ResultReg == 0) return false; 2790 2791 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2792 TII.get(Opc), ResultReg) 2793 .addReg(Reg1); 2794 2795 if (Opc == ARM::MOVsi) 2796 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2797 else if (Opc == ARM::MOVsr) { 2798 MIB.addReg(Reg2); 2799 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2800 } 2801 2802 AddOptionalDefs(MIB); 2803 updateValueMap(I, ResultReg); 2804 return true; 2805 } 2806 2807 // TODO: SoftFP support. 2808 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2809 switch (I->getOpcode()) { 2810 case Instruction::Load: 2811 return SelectLoad(I); 2812 case Instruction::Store: 2813 return SelectStore(I); 2814 case Instruction::Br: 2815 return SelectBranch(I); 2816 case Instruction::IndirectBr: 2817 return SelectIndirectBr(I); 2818 case Instruction::ICmp: 2819 case Instruction::FCmp: 2820 return SelectCmp(I); 2821 case Instruction::FPExt: 2822 return SelectFPExt(I); 2823 case Instruction::FPTrunc: 2824 return SelectFPTrunc(I); 2825 case Instruction::SIToFP: 2826 return SelectIToFP(I, /*isSigned*/ true); 2827 case Instruction::UIToFP: 2828 return SelectIToFP(I, /*isSigned*/ false); 2829 case Instruction::FPToSI: 2830 return SelectFPToI(I, /*isSigned*/ true); 2831 case Instruction::FPToUI: 2832 return SelectFPToI(I, /*isSigned*/ false); 2833 case Instruction::Add: 2834 return SelectBinaryIntOp(I, ISD::ADD); 2835 case Instruction::Or: 2836 return SelectBinaryIntOp(I, ISD::OR); 2837 case Instruction::Sub: 2838 return SelectBinaryIntOp(I, ISD::SUB); 2839 case Instruction::FAdd: 2840 return SelectBinaryFPOp(I, ISD::FADD); 2841 case Instruction::FSub: 2842 return SelectBinaryFPOp(I, ISD::FSUB); 2843 case Instruction::FMul: 2844 return SelectBinaryFPOp(I, ISD::FMUL); 2845 case Instruction::SDiv: 2846 return SelectDiv(I, /*isSigned*/ true); 2847 case Instruction::UDiv: 2848 return SelectDiv(I, /*isSigned*/ false); 2849 case Instruction::SRem: 2850 return SelectRem(I, /*isSigned*/ true); 2851 case Instruction::URem: 2852 return SelectRem(I, /*isSigned*/ false); 2853 case Instruction::Call: 2854 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2855 return SelectIntrinsicCall(*II); 2856 return SelectCall(I); 2857 case Instruction::Select: 2858 return SelectSelect(I); 2859 case Instruction::Ret: 2860 return SelectRet(I); 2861 case Instruction::Trunc: 2862 return SelectTrunc(I); 2863 case Instruction::ZExt: 2864 case Instruction::SExt: 2865 return SelectIntExt(I); 2866 case Instruction::Shl: 2867 return SelectShift(I, ARM_AM::lsl); 2868 case Instruction::LShr: 2869 return SelectShift(I, ARM_AM::lsr); 2870 case Instruction::AShr: 2871 return SelectShift(I, ARM_AM::asr); 2872 default: break; 2873 } 2874 return false; 2875 } 2876 2877 namespace { 2878 2879 // This table describes sign- and zero-extend instructions which can be 2880 // folded into a preceding load. All of these extends have an immediate 2881 // (sometimes a mask and sometimes a shift) that's applied after 2882 // extension. 2883 const struct FoldableLoadExtendsStruct { 2884 uint16_t Opc[2]; // ARM, Thumb. 2885 uint8_t ExpectedImm; 2886 uint8_t isZExt : 1; 2887 uint8_t ExpectedVT : 7; 2888 } FoldableLoadExtends[] = { 2889 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2890 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2891 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2892 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2893 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2894 }; 2895 2896 } // end anonymous namespace 2897 2898 /// \brief The specified machine instr operand is a vreg, and that 2899 /// vreg is being provided by the specified load instruction. If possible, 2900 /// try to fold the load as an operand to the instruction, returning true if 2901 /// successful. 2902 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2903 const LoadInst *LI) { 2904 // Verify we have a legal type before going any further. 2905 MVT VT; 2906 if (!isLoadTypeLegal(LI->getType(), VT)) 2907 return false; 2908 2909 // Combine load followed by zero- or sign-extend. 2910 // ldrb r1, [r0] ldrb r1, [r0] 2911 // uxtb r2, r1 => 2912 // mov r3, r2 mov r3, r1 2913 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2914 return false; 2915 const uint64_t Imm = MI->getOperand(2).getImm(); 2916 2917 bool Found = false; 2918 bool isZExt; 2919 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2920 i != e; ++i) { 2921 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 2922 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 2923 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 2924 Found = true; 2925 isZExt = FoldableLoadExtends[i].isZExt; 2926 } 2927 } 2928 if (!Found) return false; 2929 2930 // See if we can handle this address. 2931 Address Addr; 2932 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2933 2934 unsigned ResultReg = MI->getOperand(0).getReg(); 2935 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2936 return false; 2937 MI->eraseFromParent(); 2938 return true; 2939 } 2940 2941 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2942 unsigned Align, MVT VT) { 2943 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 2944 2945 LLVMContext *Context = &MF->getFunction()->getContext(); 2946 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2947 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2948 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2949 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2950 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2951 /*AddCurrentAddress=*/UseGOT_PREL); 2952 2953 unsigned ConstAlign = 2954 MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context)); 2955 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2956 2957 unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2958 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2959 MachineInstrBuilder MIB = 2960 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) 2961 .addConstantPoolIndex(Idx); 2962 if (Opc == ARM::LDRcp) 2963 MIB.addImm(0); 2964 MIB.add(predOps(ARMCC::AL)); 2965 2966 // Fix the address by adding pc. 2967 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 2968 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2969 : ARM::PICADD; 2970 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2971 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2972 .addReg(TempReg) 2973 .addImm(ARMPCLabelIndex); 2974 if (!Subtarget->isThumb()) 2975 MIB.add(predOps(ARMCC::AL)); 2976 2977 if (UseGOT_PREL && Subtarget->isThumb()) { 2978 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2979 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2980 TII.get(ARM::t2LDRi12), NewDestReg) 2981 .addReg(DestReg) 2982 .addImm(0); 2983 DestReg = NewDestReg; 2984 AddOptionalDefs(MIB); 2985 } 2986 return DestReg; 2987 } 2988 2989 bool ARMFastISel::fastLowerArguments() { 2990 if (!FuncInfo.CanLowerReturn) 2991 return false; 2992 2993 const Function *F = FuncInfo.Fn; 2994 if (F->isVarArg()) 2995 return false; 2996 2997 CallingConv::ID CC = F->getCallingConv(); 2998 switch (CC) { 2999 default: 3000 return false; 3001 case CallingConv::Fast: 3002 case CallingConv::C: 3003 case CallingConv::ARM_AAPCS_VFP: 3004 case CallingConv::ARM_AAPCS: 3005 case CallingConv::ARM_APCS: 3006 case CallingConv::Swift: 3007 break; 3008 } 3009 3010 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3011 // which are passed in r0 - r3. 3012 unsigned Idx = 1; 3013 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3014 I != E; ++I, ++Idx) { 3015 if (Idx > 4) 3016 return false; 3017 3018 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3019 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3020 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) || 3021 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) || 3022 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3023 return false; 3024 3025 Type *ArgTy = I->getType(); 3026 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3027 return false; 3028 3029 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3030 if (!ArgVT.isSimple()) return false; 3031 switch (ArgVT.getSimpleVT().SimpleTy) { 3032 case MVT::i8: 3033 case MVT::i16: 3034 case MVT::i32: 3035 break; 3036 default: 3037 return false; 3038 } 3039 } 3040 3041 static const MCPhysReg GPRArgRegs[] = { 3042 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3043 }; 3044 3045 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3046 Idx = 0; 3047 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3048 I != E; ++I, ++Idx) { 3049 unsigned SrcReg = GPRArgRegs[Idx]; 3050 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3051 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3052 // Without this, EmitLiveInCopies may eliminate the livein if its only 3053 // use is a bitcast (which isn't turned into an instruction). 3054 unsigned ResultReg = createResultReg(RC); 3055 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3056 TII.get(TargetOpcode::COPY), 3057 ResultReg).addReg(DstReg, getKillRegState(true)); 3058 updateValueMap(&*I, ResultReg); 3059 } 3060 3061 return true; 3062 } 3063 3064 namespace llvm { 3065 3066 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3067 const TargetLibraryInfo *libInfo) { 3068 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3069 return new ARMFastISel(funcInfo, libInfo); 3070 3071 return nullptr; 3072 } 3073 3074 } // end namespace llvm 3075