1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 using namespace llvm; 51 52 extern cl::opt<bool> EnableARMLongCalls; 53 54 namespace { 55 56 // All possible address modes, plus some. 57 typedef struct Address { 58 enum { 59 RegBase, 60 FrameIndexBase 61 } BaseType; 62 63 union { 64 unsigned Reg; 65 int FI; 66 } Base; 67 68 int Offset; 69 70 // Innocuous defaults for our address. 71 Address() 72 : BaseType(RegBase), Offset(0) { 73 Base.Reg = 0; 74 } 75 } Address; 76 77 class ARMFastISel final : public FastISel { 78 79 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 80 /// make the right decision when generating code for different targets. 81 const ARMSubtarget *Subtarget; 82 Module &M; 83 const TargetMachine &TM; 84 const TargetInstrInfo &TII; 85 const TargetLowering &TLI; 86 ARMFunctionInfo *AFI; 87 88 // Convenience variables to avoid some queries. 89 bool isThumb2; 90 LLVMContext *Context; 91 92 public: 93 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 94 const TargetLibraryInfo *libInfo) 95 : FastISel(funcInfo, libInfo), 96 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 97 TM(funcInfo.MF->getTarget()), 98 TII(*TM.getSubtargetImpl()->getInstrInfo()), 99 TLI(*TM.getSubtargetImpl()->getTargetLowering()) { 100 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 101 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 102 isThumb2 = AFI->isThumbFunction(); 103 Context = &funcInfo.Fn->getContext(); 104 } 105 106 // Code from FastISel.cpp. 107 private: 108 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 109 const TargetRegisterClass *RC, 110 unsigned Op0, bool Op0IsKill); 111 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 112 const TargetRegisterClass *RC, 113 unsigned Op0, bool Op0IsKill, 114 unsigned Op1, bool Op1IsKill); 115 unsigned fastEmitInst_rrr(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 unsigned Op0, bool Op0IsKill, 118 unsigned Op1, bool Op1IsKill, 119 unsigned Op2, bool Op2IsKill); 120 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 121 const TargetRegisterClass *RC, 122 unsigned Op0, bool Op0IsKill, 123 uint64_t Imm); 124 unsigned fastEmitInst_rri(unsigned MachineInstOpcode, 125 const TargetRegisterClass *RC, 126 unsigned Op0, bool Op0IsKill, 127 unsigned Op1, bool Op1IsKill, 128 uint64_t Imm); 129 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 130 const TargetRegisterClass *RC, 131 uint64_t Imm); 132 133 // Backend specific FastISel code. 134 private: 135 bool fastSelectInstruction(const Instruction *I) override; 136 unsigned fastMaterializeConstant(const Constant *C) override; 137 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 138 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 139 const LoadInst *LI) override; 140 bool fastLowerArguments() override; 141 private: 142 #include "ARMGenFastISel.inc" 143 144 // Instruction selection routines. 145 private: 146 bool SelectLoad(const Instruction *I); 147 bool SelectStore(const Instruction *I); 148 bool SelectBranch(const Instruction *I); 149 bool SelectIndirectBr(const Instruction *I); 150 bool SelectCmp(const Instruction *I); 151 bool SelectFPExt(const Instruction *I); 152 bool SelectFPTrunc(const Instruction *I); 153 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 154 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 155 bool SelectIToFP(const Instruction *I, bool isSigned); 156 bool SelectFPToI(const Instruction *I, bool isSigned); 157 bool SelectDiv(const Instruction *I, bool isSigned); 158 bool SelectRem(const Instruction *I, bool isSigned); 159 bool SelectCall(const Instruction *I, const char *IntrMemName); 160 bool SelectIntrinsicCall(const IntrinsicInst &I); 161 bool SelectSelect(const Instruction *I); 162 bool SelectRet(const Instruction *I); 163 bool SelectTrunc(const Instruction *I); 164 bool SelectIntExt(const Instruction *I); 165 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 166 167 // Utility routines. 168 private: 169 bool isTypeLegal(Type *Ty, MVT &VT); 170 bool isLoadTypeLegal(Type *Ty, MVT &VT); 171 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 172 bool isZExt); 173 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 174 unsigned Alignment = 0, bool isZExt = true, 175 bool allocReg = true); 176 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 177 unsigned Alignment = 0); 178 bool ARMComputeAddress(const Value *Obj, Address &Addr); 179 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 180 bool ARMIsMemCpySmall(uint64_t Len); 181 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 182 unsigned Alignment); 183 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 184 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 185 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 186 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 187 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 188 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 189 unsigned ARMSelectCallOp(bool UseReg); 190 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 191 192 const TargetLowering *getTargetLowering() { 193 return TM.getSubtargetImpl()->getTargetLowering(); 194 } 195 196 // Call handling routines. 197 private: 198 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 199 bool Return, 200 bool isVarArg); 201 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 202 SmallVectorImpl<unsigned> &ArgRegs, 203 SmallVectorImpl<MVT> &ArgVTs, 204 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 205 SmallVectorImpl<unsigned> &RegArgs, 206 CallingConv::ID CC, 207 unsigned &NumBytes, 208 bool isVarArg); 209 unsigned getLibcallReg(const Twine &Name); 210 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 211 const Instruction *I, CallingConv::ID CC, 212 unsigned &NumBytes, bool isVarArg); 213 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 214 215 // OptionalDef handling routines. 216 private: 217 bool isARMNEONPred(const MachineInstr *MI); 218 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 219 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 220 void AddLoadStoreOperands(MVT VT, Address &Addr, 221 const MachineInstrBuilder &MIB, 222 unsigned Flags, bool useAM3); 223 }; 224 225 } // end anonymous namespace 226 227 #include "ARMGenCallingConv.inc" 228 229 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 230 // we don't care about implicit defs here, just places we'll need to add a 231 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 232 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 233 if (!MI->hasOptionalDef()) 234 return false; 235 236 // Look to see if our OptionalDef is defining CPSR or CCR. 237 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 238 const MachineOperand &MO = MI->getOperand(i); 239 if (!MO.isReg() || !MO.isDef()) continue; 240 if (MO.getReg() == ARM::CPSR) 241 *CPSR = true; 242 } 243 return true; 244 } 245 246 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 247 const MCInstrDesc &MCID = MI->getDesc(); 248 249 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 250 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 251 AFI->isThumb2Function()) 252 return MI->isPredicable(); 253 254 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 255 if (MCID.OpInfo[i].isPredicate()) 256 return true; 257 258 return false; 259 } 260 261 // If the machine is predicable go ahead and add the predicate operands, if 262 // it needs default CC operands add those. 263 // TODO: If we want to support thumb1 then we'll need to deal with optional 264 // CPSR defs that need to be added before the remaining operands. See s_cc_out 265 // for descriptions why. 266 const MachineInstrBuilder & 267 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 268 MachineInstr *MI = &*MIB; 269 270 // Do we use a predicate? or... 271 // Are we NEON in ARM mode and have a predicate operand? If so, I know 272 // we're not predicable but add it anyways. 273 if (isARMNEONPred(MI)) 274 AddDefaultPred(MIB); 275 276 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 277 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 278 bool CPSR = false; 279 if (DefinesOptionalPredicate(MI, &CPSR)) { 280 if (CPSR) 281 AddDefaultT1CC(MIB); 282 else 283 AddDefaultCC(MIB); 284 } 285 return MIB; 286 } 287 288 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 289 const TargetRegisterClass *RC, 290 unsigned Op0, bool Op0IsKill) { 291 unsigned ResultReg = createResultReg(RC); 292 const MCInstrDesc &II = TII.get(MachineInstOpcode); 293 294 // Make sure the input operand is sufficiently constrained to be legal 295 // for this instruction. 296 Op0 = constrainOperandRegClass(II, Op0, 1); 297 if (II.getNumDefs() >= 1) { 298 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 299 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 300 } else { 301 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 302 .addReg(Op0, Op0IsKill * RegState::Kill)); 303 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 304 TII.get(TargetOpcode::COPY), ResultReg) 305 .addReg(II.ImplicitDefs[0])); 306 } 307 return ResultReg; 308 } 309 310 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 311 const TargetRegisterClass *RC, 312 unsigned Op0, bool Op0IsKill, 313 unsigned Op1, bool Op1IsKill) { 314 unsigned ResultReg = createResultReg(RC); 315 const MCInstrDesc &II = TII.get(MachineInstOpcode); 316 317 // Make sure the input operands are sufficiently constrained to be legal 318 // for this instruction. 319 Op0 = constrainOperandRegClass(II, Op0, 1); 320 Op1 = constrainOperandRegClass(II, Op1, 2); 321 322 if (II.getNumDefs() >= 1) { 323 AddOptionalDefs( 324 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 325 .addReg(Op0, Op0IsKill * RegState::Kill) 326 .addReg(Op1, Op1IsKill * RegState::Kill)); 327 } else { 328 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 329 .addReg(Op0, Op0IsKill * RegState::Kill) 330 .addReg(Op1, Op1IsKill * RegState::Kill)); 331 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 332 TII.get(TargetOpcode::COPY), ResultReg) 333 .addReg(II.ImplicitDefs[0])); 334 } 335 return ResultReg; 336 } 337 338 unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 339 const TargetRegisterClass *RC, 340 unsigned Op0, bool Op0IsKill, 341 unsigned Op1, bool Op1IsKill, 342 unsigned Op2, bool Op2IsKill) { 343 unsigned ResultReg = createResultReg(RC); 344 const MCInstrDesc &II = TII.get(MachineInstOpcode); 345 346 // Make sure the input operands are sufficiently constrained to be legal 347 // for this instruction. 348 Op0 = constrainOperandRegClass(II, Op0, 1); 349 Op1 = constrainOperandRegClass(II, Op1, 2); 350 Op2 = constrainOperandRegClass(II, Op1, 3); 351 352 if (II.getNumDefs() >= 1) { 353 AddOptionalDefs( 354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 355 .addReg(Op0, Op0IsKill * RegState::Kill) 356 .addReg(Op1, Op1IsKill * RegState::Kill) 357 .addReg(Op2, Op2IsKill * RegState::Kill)); 358 } else { 359 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 360 .addReg(Op0, Op0IsKill * RegState::Kill) 361 .addReg(Op1, Op1IsKill * RegState::Kill) 362 .addReg(Op2, Op2IsKill * RegState::Kill)); 363 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 364 TII.get(TargetOpcode::COPY), ResultReg) 365 .addReg(II.ImplicitDefs[0])); 366 } 367 return ResultReg; 368 } 369 370 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 371 const TargetRegisterClass *RC, 372 unsigned Op0, bool Op0IsKill, 373 uint64_t Imm) { 374 unsigned ResultReg = createResultReg(RC); 375 const MCInstrDesc &II = TII.get(MachineInstOpcode); 376 377 // Make sure the input operand is sufficiently constrained to be legal 378 // for this instruction. 379 Op0 = constrainOperandRegClass(II, Op0, 1); 380 if (II.getNumDefs() >= 1) { 381 AddOptionalDefs( 382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 383 .addReg(Op0, Op0IsKill * RegState::Kill) 384 .addImm(Imm)); 385 } else { 386 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 387 .addReg(Op0, Op0IsKill * RegState::Kill) 388 .addImm(Imm)); 389 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 390 TII.get(TargetOpcode::COPY), ResultReg) 391 .addReg(II.ImplicitDefs[0])); 392 } 393 return ResultReg; 394 } 395 396 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 397 const TargetRegisterClass *RC, 398 unsigned Op0, bool Op0IsKill, 399 unsigned Op1, bool Op1IsKill, 400 uint64_t Imm) { 401 unsigned ResultReg = createResultReg(RC); 402 const MCInstrDesc &II = TII.get(MachineInstOpcode); 403 404 // Make sure the input operands are sufficiently constrained to be legal 405 // for this instruction. 406 Op0 = constrainOperandRegClass(II, Op0, 1); 407 Op1 = constrainOperandRegClass(II, Op1, 2); 408 if (II.getNumDefs() >= 1) { 409 AddOptionalDefs( 410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 411 .addReg(Op0, Op0IsKill * RegState::Kill) 412 .addReg(Op1, Op1IsKill * RegState::Kill) 413 .addImm(Imm)); 414 } else { 415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 416 .addReg(Op0, Op0IsKill * RegState::Kill) 417 .addReg(Op1, Op1IsKill * RegState::Kill) 418 .addImm(Imm)); 419 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 420 TII.get(TargetOpcode::COPY), ResultReg) 421 .addReg(II.ImplicitDefs[0])); 422 } 423 return ResultReg; 424 } 425 426 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 427 const TargetRegisterClass *RC, 428 uint64_t Imm) { 429 unsigned ResultReg = createResultReg(RC); 430 const MCInstrDesc &II = TII.get(MachineInstOpcode); 431 432 if (II.getNumDefs() >= 1) { 433 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 434 ResultReg).addImm(Imm)); 435 } else { 436 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 437 .addImm(Imm)); 438 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 439 TII.get(TargetOpcode::COPY), ResultReg) 440 .addReg(II.ImplicitDefs[0])); 441 } 442 return ResultReg; 443 } 444 445 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 446 // checks from the various callers. 447 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 448 if (VT == MVT::f64) return 0; 449 450 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 451 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 452 TII.get(ARM::VMOVSR), MoveReg) 453 .addReg(SrcReg)); 454 return MoveReg; 455 } 456 457 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 458 if (VT == MVT::i64) return 0; 459 460 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 461 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 462 TII.get(ARM::VMOVRS), MoveReg) 463 .addReg(SrcReg)); 464 return MoveReg; 465 } 466 467 // For double width floating point we need to materialize two constants 468 // (the high and the low) into integer registers then use a move to get 469 // the combined constant into an FP reg. 470 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 471 const APFloat Val = CFP->getValueAPF(); 472 bool is64bit = VT == MVT::f64; 473 474 // This checks to see if we can use VFP3 instructions to materialize 475 // a constant, otherwise we have to go through the constant pool. 476 if (TLI.isFPImmLegal(Val, VT)) { 477 int Imm; 478 unsigned Opc; 479 if (is64bit) { 480 Imm = ARM_AM::getFP64Imm(Val); 481 Opc = ARM::FCONSTD; 482 } else { 483 Imm = ARM_AM::getFP32Imm(Val); 484 Opc = ARM::FCONSTS; 485 } 486 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 487 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 488 TII.get(Opc), DestReg).addImm(Imm)); 489 return DestReg; 490 } 491 492 // Require VFP2 for loading fp constants. 493 if (!Subtarget->hasVFP2()) return false; 494 495 // MachineConstantPool wants an explicit alignment. 496 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 497 if (Align == 0) { 498 // TODO: Figure out if this is correct. 499 Align = DL.getTypeAllocSize(CFP->getType()); 500 } 501 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 502 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 503 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 504 505 // The extra reg is for addrmode5. 506 AddOptionalDefs( 507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 508 .addConstantPoolIndex(Idx) 509 .addReg(0)); 510 return DestReg; 511 } 512 513 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 514 515 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 516 return 0; 517 518 // If we can do this in a single instruction without a constant pool entry 519 // do so now. 520 const ConstantInt *CI = cast<ConstantInt>(C); 521 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 522 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 523 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 524 &ARM::GPRRegClass; 525 unsigned ImmReg = createResultReg(RC); 526 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 527 TII.get(Opc), ImmReg) 528 .addImm(CI->getZExtValue())); 529 return ImmReg; 530 } 531 532 // Use MVN to emit negative constants. 533 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 534 unsigned Imm = (unsigned)~(CI->getSExtValue()); 535 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 536 (ARM_AM::getSOImmVal(Imm) != -1); 537 if (UseImm) { 538 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 539 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 540 &ARM::GPRRegClass; 541 unsigned ImmReg = createResultReg(RC); 542 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 543 TII.get(Opc), ImmReg) 544 .addImm(Imm)); 545 return ImmReg; 546 } 547 } 548 549 unsigned ResultReg = 0; 550 if (Subtarget->useMovt(*FuncInfo.MF)) 551 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 552 553 if (ResultReg) 554 return ResultReg; 555 556 // Load from constant pool. For now 32-bit only. 557 if (VT != MVT::i32) 558 return 0; 559 560 // MachineConstantPool wants an explicit alignment. 561 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 562 if (Align == 0) { 563 // TODO: Figure out if this is correct. 564 Align = DL.getTypeAllocSize(C->getType()); 565 } 566 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 567 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 568 if (isThumb2) 569 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 570 TII.get(ARM::t2LDRpci), ResultReg) 571 .addConstantPoolIndex(Idx)); 572 else { 573 // The extra immediate is for addrmode2. 574 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 575 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 576 TII.get(ARM::LDRcp), ResultReg) 577 .addConstantPoolIndex(Idx) 578 .addImm(0)); 579 } 580 return ResultReg; 581 } 582 583 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 584 // For now 32-bit only. 585 if (VT != MVT::i32) return 0; 586 587 Reloc::Model RelocM = TM.getRelocationModel(); 588 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 589 const TargetRegisterClass *RC = isThumb2 ? 590 (const TargetRegisterClass*)&ARM::rGPRRegClass : 591 (const TargetRegisterClass*)&ARM::GPRRegClass; 592 unsigned DestReg = createResultReg(RC); 593 594 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 595 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 596 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 597 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 598 599 // Use movw+movt when possible, it avoids constant pool entries. 600 // Non-darwin targets only support static movt relocations in FastISel. 601 if (Subtarget->useMovt(*FuncInfo.MF) && 602 (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) { 603 unsigned Opc; 604 unsigned char TF = 0; 605 if (Subtarget->isTargetMachO()) 606 TF = ARMII::MO_NONLAZY; 607 608 switch (RelocM) { 609 case Reloc::PIC_: 610 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 611 break; 612 default: 613 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 614 break; 615 } 616 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 617 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 618 } else { 619 // MachineConstantPool wants an explicit alignment. 620 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 621 if (Align == 0) { 622 // TODO: Figure out if this is correct. 623 Align = DL.getTypeAllocSize(GV->getType()); 624 } 625 626 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 627 return ARMLowerPICELF(GV, Align, VT); 628 629 // Grab index. 630 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 631 (Subtarget->isThumb() ? 4 : 8); 632 unsigned Id = AFI->createPICLabelUId(); 633 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 634 ARMCP::CPValue, 635 PCAdj); 636 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 637 638 // Load value. 639 MachineInstrBuilder MIB; 640 if (isThumb2) { 641 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 642 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 643 DestReg).addConstantPoolIndex(Idx); 644 if (RelocM == Reloc::PIC_) 645 MIB.addImm(Id); 646 AddOptionalDefs(MIB); 647 } else { 648 // The extra immediate is for addrmode2. 649 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 650 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 651 TII.get(ARM::LDRcp), DestReg) 652 .addConstantPoolIndex(Idx) 653 .addImm(0); 654 AddOptionalDefs(MIB); 655 656 if (RelocM == Reloc::PIC_) { 657 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 658 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 659 660 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 661 DbgLoc, TII.get(Opc), NewDestReg) 662 .addReg(DestReg) 663 .addImm(Id); 664 AddOptionalDefs(MIB); 665 return NewDestReg; 666 } 667 } 668 } 669 670 if (IsIndirect) { 671 MachineInstrBuilder MIB; 672 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 673 if (isThumb2) 674 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 675 TII.get(ARM::t2LDRi12), NewDestReg) 676 .addReg(DestReg) 677 .addImm(0); 678 else 679 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 680 TII.get(ARM::LDRi12), NewDestReg) 681 .addReg(DestReg) 682 .addImm(0); 683 DestReg = NewDestReg; 684 AddOptionalDefs(MIB); 685 } 686 687 return DestReg; 688 } 689 690 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 691 EVT CEVT = TLI.getValueType(C->getType(), true); 692 693 // Only handle simple types. 694 if (!CEVT.isSimple()) return 0; 695 MVT VT = CEVT.getSimpleVT(); 696 697 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 698 return ARMMaterializeFP(CFP, VT); 699 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 700 return ARMMaterializeGV(GV, VT); 701 else if (isa<ConstantInt>(C)) 702 return ARMMaterializeInt(C, VT); 703 704 return 0; 705 } 706 707 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 708 709 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 710 // Don't handle dynamic allocas. 711 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 712 713 MVT VT; 714 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 715 716 DenseMap<const AllocaInst*, int>::iterator SI = 717 FuncInfo.StaticAllocaMap.find(AI); 718 719 // This will get lowered later into the correct offsets and registers 720 // via rewriteXFrameIndex. 721 if (SI != FuncInfo.StaticAllocaMap.end()) { 722 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 723 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 724 unsigned ResultReg = createResultReg(RC); 725 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 726 727 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 728 TII.get(Opc), ResultReg) 729 .addFrameIndex(SI->second) 730 .addImm(0)); 731 return ResultReg; 732 } 733 734 return 0; 735 } 736 737 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 738 EVT evt = TLI.getValueType(Ty, true); 739 740 // Only handle simple types. 741 if (evt == MVT::Other || !evt.isSimple()) return false; 742 VT = evt.getSimpleVT(); 743 744 // Handle all legal types, i.e. a register that will directly hold this 745 // value. 746 return TLI.isTypeLegal(VT); 747 } 748 749 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 750 if (isTypeLegal(Ty, VT)) return true; 751 752 // If this is a type than can be sign or zero-extended to a basic operation 753 // go ahead and accept it now. 754 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 755 return true; 756 757 return false; 758 } 759 760 // Computes the address to get to an object. 761 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 762 // Some boilerplate from the X86 FastISel. 763 const User *U = nullptr; 764 unsigned Opcode = Instruction::UserOp1; 765 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 766 // Don't walk into other basic blocks unless the object is an alloca from 767 // another block, otherwise it may not have a virtual register assigned. 768 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 769 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 770 Opcode = I->getOpcode(); 771 U = I; 772 } 773 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 774 Opcode = C->getOpcode(); 775 U = C; 776 } 777 778 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 779 if (Ty->getAddressSpace() > 255) 780 // Fast instruction selection doesn't support the special 781 // address spaces. 782 return false; 783 784 switch (Opcode) { 785 default: 786 break; 787 case Instruction::BitCast: 788 // Look through bitcasts. 789 return ARMComputeAddress(U->getOperand(0), Addr); 790 case Instruction::IntToPtr: 791 // Look past no-op inttoptrs. 792 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 793 return ARMComputeAddress(U->getOperand(0), Addr); 794 break; 795 case Instruction::PtrToInt: 796 // Look past no-op ptrtoints. 797 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 798 return ARMComputeAddress(U->getOperand(0), Addr); 799 break; 800 case Instruction::GetElementPtr: { 801 Address SavedAddr = Addr; 802 int TmpOffset = Addr.Offset; 803 804 // Iterate through the GEP folding the constants into offsets where 805 // we can. 806 gep_type_iterator GTI = gep_type_begin(U); 807 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 808 i != e; ++i, ++GTI) { 809 const Value *Op = *i; 810 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 811 const StructLayout *SL = DL.getStructLayout(STy); 812 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 813 TmpOffset += SL->getElementOffset(Idx); 814 } else { 815 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 816 for (;;) { 817 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 818 // Constant-offset addressing. 819 TmpOffset += CI->getSExtValue() * S; 820 break; 821 } 822 if (canFoldAddIntoGEP(U, Op)) { 823 // A compatible add with a constant operand. Fold the constant. 824 ConstantInt *CI = 825 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 826 TmpOffset += CI->getSExtValue() * S; 827 // Iterate on the other operand. 828 Op = cast<AddOperator>(Op)->getOperand(0); 829 continue; 830 } 831 // Unsupported 832 goto unsupported_gep; 833 } 834 } 835 } 836 837 // Try to grab the base operand now. 838 Addr.Offset = TmpOffset; 839 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 840 841 // We failed, restore everything and try the other options. 842 Addr = SavedAddr; 843 844 unsupported_gep: 845 break; 846 } 847 case Instruction::Alloca: { 848 const AllocaInst *AI = cast<AllocaInst>(Obj); 849 DenseMap<const AllocaInst*, int>::iterator SI = 850 FuncInfo.StaticAllocaMap.find(AI); 851 if (SI != FuncInfo.StaticAllocaMap.end()) { 852 Addr.BaseType = Address::FrameIndexBase; 853 Addr.Base.FI = SI->second; 854 return true; 855 } 856 break; 857 } 858 } 859 860 // Try to get this in a register if nothing else has worked. 861 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 862 return Addr.Base.Reg != 0; 863 } 864 865 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 866 bool needsLowering = false; 867 switch (VT.SimpleTy) { 868 default: llvm_unreachable("Unhandled load/store type!"); 869 case MVT::i1: 870 case MVT::i8: 871 case MVT::i16: 872 case MVT::i32: 873 if (!useAM3) { 874 // Integer loads/stores handle 12-bit offsets. 875 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 876 // Handle negative offsets. 877 if (needsLowering && isThumb2) 878 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 879 Addr.Offset > -256); 880 } else { 881 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 882 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 883 } 884 break; 885 case MVT::f32: 886 case MVT::f64: 887 // Floating point operands handle 8-bit offsets. 888 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 889 break; 890 } 891 892 // If this is a stack pointer and the offset needs to be simplified then 893 // put the alloca address into a register, set the base type back to 894 // register and continue. This should almost never happen. 895 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 896 const TargetRegisterClass *RC = isThumb2 ? 897 (const TargetRegisterClass*)&ARM::tGPRRegClass : 898 (const TargetRegisterClass*)&ARM::GPRRegClass; 899 unsigned ResultReg = createResultReg(RC); 900 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 901 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 902 TII.get(Opc), ResultReg) 903 .addFrameIndex(Addr.Base.FI) 904 .addImm(0)); 905 Addr.Base.Reg = ResultReg; 906 Addr.BaseType = Address::RegBase; 907 } 908 909 // Since the offset is too large for the load/store instruction 910 // get the reg+offset into a register. 911 if (needsLowering) { 912 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 913 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 914 Addr.Offset = 0; 915 } 916 } 917 918 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 919 const MachineInstrBuilder &MIB, 920 unsigned Flags, bool useAM3) { 921 // addrmode5 output depends on the selection dag addressing dividing the 922 // offset by 4 that it then later multiplies. Do this here as well. 923 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 924 Addr.Offset /= 4; 925 926 // Frame base works a bit differently. Handle it separately. 927 if (Addr.BaseType == Address::FrameIndexBase) { 928 int FI = Addr.Base.FI; 929 int Offset = Addr.Offset; 930 MachineMemOperand *MMO = 931 FuncInfo.MF->getMachineMemOperand( 932 MachinePointerInfo::getFixedStack(FI, Offset), 933 Flags, 934 MFI.getObjectSize(FI), 935 MFI.getObjectAlignment(FI)); 936 // Now add the rest of the operands. 937 MIB.addFrameIndex(FI); 938 939 // ARM halfword load/stores and signed byte loads need an additional 940 // operand. 941 if (useAM3) { 942 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 943 MIB.addReg(0); 944 MIB.addImm(Imm); 945 } else { 946 MIB.addImm(Addr.Offset); 947 } 948 MIB.addMemOperand(MMO); 949 } else { 950 // Now add the rest of the operands. 951 MIB.addReg(Addr.Base.Reg); 952 953 // ARM halfword load/stores and signed byte loads need an additional 954 // operand. 955 if (useAM3) { 956 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 957 MIB.addReg(0); 958 MIB.addImm(Imm); 959 } else { 960 MIB.addImm(Addr.Offset); 961 } 962 } 963 AddOptionalDefs(MIB); 964 } 965 966 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 967 unsigned Alignment, bool isZExt, bool allocReg) { 968 unsigned Opc; 969 bool useAM3 = false; 970 bool needVMOV = false; 971 const TargetRegisterClass *RC; 972 switch (VT.SimpleTy) { 973 // This is mostly going to be Neon/vector support. 974 default: return false; 975 case MVT::i1: 976 case MVT::i8: 977 if (isThumb2) { 978 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 979 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 980 else 981 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 982 } else { 983 if (isZExt) { 984 Opc = ARM::LDRBi12; 985 } else { 986 Opc = ARM::LDRSB; 987 useAM3 = true; 988 } 989 } 990 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 991 break; 992 case MVT::i16: 993 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 994 return false; 995 996 if (isThumb2) { 997 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 998 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 999 else 1000 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 1001 } else { 1002 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 1003 useAM3 = true; 1004 } 1005 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1006 break; 1007 case MVT::i32: 1008 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1009 return false; 1010 1011 if (isThumb2) { 1012 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1013 Opc = ARM::t2LDRi8; 1014 else 1015 Opc = ARM::t2LDRi12; 1016 } else { 1017 Opc = ARM::LDRi12; 1018 } 1019 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1020 break; 1021 case MVT::f32: 1022 if (!Subtarget->hasVFP2()) return false; 1023 // Unaligned loads need special handling. Floats require word-alignment. 1024 if (Alignment && Alignment < 4) { 1025 needVMOV = true; 1026 VT = MVT::i32; 1027 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1028 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1029 } else { 1030 Opc = ARM::VLDRS; 1031 RC = TLI.getRegClassFor(VT); 1032 } 1033 break; 1034 case MVT::f64: 1035 if (!Subtarget->hasVFP2()) return false; 1036 // FIXME: Unaligned loads need special handling. Doublewords require 1037 // word-alignment. 1038 if (Alignment && Alignment < 4) 1039 return false; 1040 1041 Opc = ARM::VLDRD; 1042 RC = TLI.getRegClassFor(VT); 1043 break; 1044 } 1045 // Simplify this down to something we can handle. 1046 ARMSimplifyAddress(Addr, VT, useAM3); 1047 1048 // Create the base instruction, then add the operands. 1049 if (allocReg) 1050 ResultReg = createResultReg(RC); 1051 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1052 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1053 TII.get(Opc), ResultReg); 1054 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1055 1056 // If we had an unaligned load of a float we've converted it to an regular 1057 // load. Now we must move from the GRP to the FP register. 1058 if (needVMOV) { 1059 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1060 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1061 TII.get(ARM::VMOVSR), MoveReg) 1062 .addReg(ResultReg)); 1063 ResultReg = MoveReg; 1064 } 1065 return true; 1066 } 1067 1068 bool ARMFastISel::SelectLoad(const Instruction *I) { 1069 // Atomic loads need special handling. 1070 if (cast<LoadInst>(I)->isAtomic()) 1071 return false; 1072 1073 // Verify we have a legal type before going any further. 1074 MVT VT; 1075 if (!isLoadTypeLegal(I->getType(), VT)) 1076 return false; 1077 1078 // See if we can handle this address. 1079 Address Addr; 1080 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1081 1082 unsigned ResultReg; 1083 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1084 return false; 1085 updateValueMap(I, ResultReg); 1086 return true; 1087 } 1088 1089 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1090 unsigned Alignment) { 1091 unsigned StrOpc; 1092 bool useAM3 = false; 1093 switch (VT.SimpleTy) { 1094 // This is mostly going to be Neon/vector support. 1095 default: return false; 1096 case MVT::i1: { 1097 unsigned Res = createResultReg(isThumb2 ? 1098 (const TargetRegisterClass*)&ARM::tGPRRegClass : 1099 (const TargetRegisterClass*)&ARM::GPRRegClass); 1100 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1101 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1102 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1103 TII.get(Opc), Res) 1104 .addReg(SrcReg).addImm(1)); 1105 SrcReg = Res; 1106 } // Fallthrough here. 1107 case MVT::i8: 1108 if (isThumb2) { 1109 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1110 StrOpc = ARM::t2STRBi8; 1111 else 1112 StrOpc = ARM::t2STRBi12; 1113 } else { 1114 StrOpc = ARM::STRBi12; 1115 } 1116 break; 1117 case MVT::i16: 1118 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1119 return false; 1120 1121 if (isThumb2) { 1122 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1123 StrOpc = ARM::t2STRHi8; 1124 else 1125 StrOpc = ARM::t2STRHi12; 1126 } else { 1127 StrOpc = ARM::STRH; 1128 useAM3 = true; 1129 } 1130 break; 1131 case MVT::i32: 1132 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1133 return false; 1134 1135 if (isThumb2) { 1136 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1137 StrOpc = ARM::t2STRi8; 1138 else 1139 StrOpc = ARM::t2STRi12; 1140 } else { 1141 StrOpc = ARM::STRi12; 1142 } 1143 break; 1144 case MVT::f32: 1145 if (!Subtarget->hasVFP2()) return false; 1146 // Unaligned stores need special handling. Floats require word-alignment. 1147 if (Alignment && Alignment < 4) { 1148 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1149 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1150 TII.get(ARM::VMOVRS), MoveReg) 1151 .addReg(SrcReg)); 1152 SrcReg = MoveReg; 1153 VT = MVT::i32; 1154 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1155 } else { 1156 StrOpc = ARM::VSTRS; 1157 } 1158 break; 1159 case MVT::f64: 1160 if (!Subtarget->hasVFP2()) return false; 1161 // FIXME: Unaligned stores need special handling. Doublewords require 1162 // word-alignment. 1163 if (Alignment && Alignment < 4) 1164 return false; 1165 1166 StrOpc = ARM::VSTRD; 1167 break; 1168 } 1169 // Simplify this down to something we can handle. 1170 ARMSimplifyAddress(Addr, VT, useAM3); 1171 1172 // Create the base instruction, then add the operands. 1173 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1174 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1175 TII.get(StrOpc)) 1176 .addReg(SrcReg); 1177 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1178 return true; 1179 } 1180 1181 bool ARMFastISel::SelectStore(const Instruction *I) { 1182 Value *Op0 = I->getOperand(0); 1183 unsigned SrcReg = 0; 1184 1185 // Atomic stores need special handling. 1186 if (cast<StoreInst>(I)->isAtomic()) 1187 return false; 1188 1189 // Verify we have a legal type before going any further. 1190 MVT VT; 1191 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1192 return false; 1193 1194 // Get the value to be stored into a register. 1195 SrcReg = getRegForValue(Op0); 1196 if (SrcReg == 0) return false; 1197 1198 // See if we can handle this address. 1199 Address Addr; 1200 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1201 return false; 1202 1203 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1204 return false; 1205 return true; 1206 } 1207 1208 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1209 switch (Pred) { 1210 // Needs two compares... 1211 case CmpInst::FCMP_ONE: 1212 case CmpInst::FCMP_UEQ: 1213 default: 1214 // AL is our "false" for now. The other two need more compares. 1215 return ARMCC::AL; 1216 case CmpInst::ICMP_EQ: 1217 case CmpInst::FCMP_OEQ: 1218 return ARMCC::EQ; 1219 case CmpInst::ICMP_SGT: 1220 case CmpInst::FCMP_OGT: 1221 return ARMCC::GT; 1222 case CmpInst::ICMP_SGE: 1223 case CmpInst::FCMP_OGE: 1224 return ARMCC::GE; 1225 case CmpInst::ICMP_UGT: 1226 case CmpInst::FCMP_UGT: 1227 return ARMCC::HI; 1228 case CmpInst::FCMP_OLT: 1229 return ARMCC::MI; 1230 case CmpInst::ICMP_ULE: 1231 case CmpInst::FCMP_OLE: 1232 return ARMCC::LS; 1233 case CmpInst::FCMP_ORD: 1234 return ARMCC::VC; 1235 case CmpInst::FCMP_UNO: 1236 return ARMCC::VS; 1237 case CmpInst::FCMP_UGE: 1238 return ARMCC::PL; 1239 case CmpInst::ICMP_SLT: 1240 case CmpInst::FCMP_ULT: 1241 return ARMCC::LT; 1242 case CmpInst::ICMP_SLE: 1243 case CmpInst::FCMP_ULE: 1244 return ARMCC::LE; 1245 case CmpInst::FCMP_UNE: 1246 case CmpInst::ICMP_NE: 1247 return ARMCC::NE; 1248 case CmpInst::ICMP_UGE: 1249 return ARMCC::HS; 1250 case CmpInst::ICMP_ULT: 1251 return ARMCC::LO; 1252 } 1253 } 1254 1255 bool ARMFastISel::SelectBranch(const Instruction *I) { 1256 const BranchInst *BI = cast<BranchInst>(I); 1257 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1258 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1259 1260 // Simple branch support. 1261 1262 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1263 // behavior. 1264 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1265 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1266 1267 // Get the compare predicate. 1268 // Try to take advantage of fallthrough opportunities. 1269 CmpInst::Predicate Predicate = CI->getPredicate(); 1270 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1271 std::swap(TBB, FBB); 1272 Predicate = CmpInst::getInversePredicate(Predicate); 1273 } 1274 1275 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1276 1277 // We may not handle every CC for now. 1278 if (ARMPred == ARMCC::AL) return false; 1279 1280 // Emit the compare. 1281 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1282 return false; 1283 1284 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1286 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1287 fastEmitBranch(FBB, DbgLoc); 1288 FuncInfo.MBB->addSuccessor(TBB); 1289 return true; 1290 } 1291 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1292 MVT SourceVT; 1293 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1294 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1295 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1296 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1297 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1298 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1299 TII.get(TstOpc)) 1300 .addReg(OpReg).addImm(1)); 1301 1302 unsigned CCMode = ARMCC::NE; 1303 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1304 std::swap(TBB, FBB); 1305 CCMode = ARMCC::EQ; 1306 } 1307 1308 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1309 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1310 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1311 1312 fastEmitBranch(FBB, DbgLoc); 1313 FuncInfo.MBB->addSuccessor(TBB); 1314 return true; 1315 } 1316 } else if (const ConstantInt *CI = 1317 dyn_cast<ConstantInt>(BI->getCondition())) { 1318 uint64_t Imm = CI->getZExtValue(); 1319 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1320 fastEmitBranch(Target, DbgLoc); 1321 return true; 1322 } 1323 1324 unsigned CmpReg = getRegForValue(BI->getCondition()); 1325 if (CmpReg == 0) return false; 1326 1327 // We've been divorced from our compare! Our block was split, and 1328 // now our compare lives in a predecessor block. We musn't 1329 // re-compare here, as the children of the compare aren't guaranteed 1330 // live across the block boundary (we *could* check for this). 1331 // Regardless, the compare has been done in the predecessor block, 1332 // and it left a value for us in a virtual register. Ergo, we test 1333 // the one-bit value left in the virtual register. 1334 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1335 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1336 AddOptionalDefs( 1337 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1338 .addReg(CmpReg) 1339 .addImm(1)); 1340 1341 unsigned CCMode = ARMCC::NE; 1342 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1343 std::swap(TBB, FBB); 1344 CCMode = ARMCC::EQ; 1345 } 1346 1347 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1349 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1350 fastEmitBranch(FBB, DbgLoc); 1351 FuncInfo.MBB->addSuccessor(TBB); 1352 return true; 1353 } 1354 1355 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1356 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1357 if (AddrReg == 0) return false; 1358 1359 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1360 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1361 TII.get(Opc)).addReg(AddrReg)); 1362 1363 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1364 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1365 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1366 1367 return true; 1368 } 1369 1370 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1371 bool isZExt) { 1372 Type *Ty = Src1Value->getType(); 1373 EVT SrcEVT = TLI.getValueType(Ty, true); 1374 if (!SrcEVT.isSimple()) return false; 1375 MVT SrcVT = SrcEVT.getSimpleVT(); 1376 1377 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1378 if (isFloat && !Subtarget->hasVFP2()) 1379 return false; 1380 1381 // Check to see if the 2nd operand is a constant that we can encode directly 1382 // in the compare. 1383 int Imm = 0; 1384 bool UseImm = false; 1385 bool isNegativeImm = false; 1386 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1387 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1388 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1389 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1390 SrcVT == MVT::i1) { 1391 const APInt &CIVal = ConstInt->getValue(); 1392 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1393 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1394 // then a cmn, because there is no way to represent 2147483648 as a 1395 // signed 32-bit int. 1396 if (Imm < 0 && Imm != (int)0x80000000) { 1397 isNegativeImm = true; 1398 Imm = -Imm; 1399 } 1400 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1401 (ARM_AM::getSOImmVal(Imm) != -1); 1402 } 1403 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1404 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1405 if (ConstFP->isZero() && !ConstFP->isNegative()) 1406 UseImm = true; 1407 } 1408 1409 unsigned CmpOpc; 1410 bool isICmp = true; 1411 bool needsExt = false; 1412 switch (SrcVT.SimpleTy) { 1413 default: return false; 1414 // TODO: Verify compares. 1415 case MVT::f32: 1416 isICmp = false; 1417 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1418 break; 1419 case MVT::f64: 1420 isICmp = false; 1421 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1422 break; 1423 case MVT::i1: 1424 case MVT::i8: 1425 case MVT::i16: 1426 needsExt = true; 1427 // Intentional fall-through. 1428 case MVT::i32: 1429 if (isThumb2) { 1430 if (!UseImm) 1431 CmpOpc = ARM::t2CMPrr; 1432 else 1433 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1434 } else { 1435 if (!UseImm) 1436 CmpOpc = ARM::CMPrr; 1437 else 1438 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1439 } 1440 break; 1441 } 1442 1443 unsigned SrcReg1 = getRegForValue(Src1Value); 1444 if (SrcReg1 == 0) return false; 1445 1446 unsigned SrcReg2 = 0; 1447 if (!UseImm) { 1448 SrcReg2 = getRegForValue(Src2Value); 1449 if (SrcReg2 == 0) return false; 1450 } 1451 1452 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1453 if (needsExt) { 1454 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1455 if (SrcReg1 == 0) return false; 1456 if (!UseImm) { 1457 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1458 if (SrcReg2 == 0) return false; 1459 } 1460 } 1461 1462 const MCInstrDesc &II = TII.get(CmpOpc); 1463 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1464 if (!UseImm) { 1465 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1466 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1467 .addReg(SrcReg1).addReg(SrcReg2)); 1468 } else { 1469 MachineInstrBuilder MIB; 1470 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1471 .addReg(SrcReg1); 1472 1473 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1474 if (isICmp) 1475 MIB.addImm(Imm); 1476 AddOptionalDefs(MIB); 1477 } 1478 1479 // For floating point we need to move the result to a comparison register 1480 // that we can then use for branches. 1481 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1482 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1483 TII.get(ARM::FMSTAT))); 1484 return true; 1485 } 1486 1487 bool ARMFastISel::SelectCmp(const Instruction *I) { 1488 const CmpInst *CI = cast<CmpInst>(I); 1489 1490 // Get the compare predicate. 1491 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1492 1493 // We may not handle every CC for now. 1494 if (ARMPred == ARMCC::AL) return false; 1495 1496 // Emit the compare. 1497 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1498 return false; 1499 1500 // Now set a register based on the comparison. Explicitly set the predicates 1501 // here. 1502 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1503 const TargetRegisterClass *RC = isThumb2 ? 1504 (const TargetRegisterClass*)&ARM::rGPRRegClass : 1505 (const TargetRegisterClass*)&ARM::GPRRegClass; 1506 unsigned DestReg = createResultReg(RC); 1507 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1508 unsigned ZeroReg = fastMaterializeConstant(Zero); 1509 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1510 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1511 .addReg(ZeroReg).addImm(1) 1512 .addImm(ARMPred).addReg(ARM::CPSR); 1513 1514 updateValueMap(I, DestReg); 1515 return true; 1516 } 1517 1518 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1519 // Make sure we have VFP and that we're extending float to double. 1520 if (!Subtarget->hasVFP2()) return false; 1521 1522 Value *V = I->getOperand(0); 1523 if (!I->getType()->isDoubleTy() || 1524 !V->getType()->isFloatTy()) return false; 1525 1526 unsigned Op = getRegForValue(V); 1527 if (Op == 0) return false; 1528 1529 unsigned Result = createResultReg(&ARM::DPRRegClass); 1530 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1531 TII.get(ARM::VCVTDS), Result) 1532 .addReg(Op)); 1533 updateValueMap(I, Result); 1534 return true; 1535 } 1536 1537 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1538 // Make sure we have VFP and that we're truncating double to float. 1539 if (!Subtarget->hasVFP2()) return false; 1540 1541 Value *V = I->getOperand(0); 1542 if (!(I->getType()->isFloatTy() && 1543 V->getType()->isDoubleTy())) return false; 1544 1545 unsigned Op = getRegForValue(V); 1546 if (Op == 0) return false; 1547 1548 unsigned Result = createResultReg(&ARM::SPRRegClass); 1549 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1550 TII.get(ARM::VCVTSD), Result) 1551 .addReg(Op)); 1552 updateValueMap(I, Result); 1553 return true; 1554 } 1555 1556 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1557 // Make sure we have VFP. 1558 if (!Subtarget->hasVFP2()) return false; 1559 1560 MVT DstVT; 1561 Type *Ty = I->getType(); 1562 if (!isTypeLegal(Ty, DstVT)) 1563 return false; 1564 1565 Value *Src = I->getOperand(0); 1566 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 1567 if (!SrcEVT.isSimple()) 1568 return false; 1569 MVT SrcVT = SrcEVT.getSimpleVT(); 1570 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1571 return false; 1572 1573 unsigned SrcReg = getRegForValue(Src); 1574 if (SrcReg == 0) return false; 1575 1576 // Handle sign-extension. 1577 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1578 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1579 /*isZExt*/!isSigned); 1580 if (SrcReg == 0) return false; 1581 } 1582 1583 // The conversion routine works on fp-reg to fp-reg and the operand above 1584 // was an integer, move it to the fp registers if possible. 1585 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1586 if (FP == 0) return false; 1587 1588 unsigned Opc; 1589 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1590 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1591 else return false; 1592 1593 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1594 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1595 TII.get(Opc), ResultReg).addReg(FP)); 1596 updateValueMap(I, ResultReg); 1597 return true; 1598 } 1599 1600 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1601 // Make sure we have VFP. 1602 if (!Subtarget->hasVFP2()) return false; 1603 1604 MVT DstVT; 1605 Type *RetTy = I->getType(); 1606 if (!isTypeLegal(RetTy, DstVT)) 1607 return false; 1608 1609 unsigned Op = getRegForValue(I->getOperand(0)); 1610 if (Op == 0) return false; 1611 1612 unsigned Opc; 1613 Type *OpTy = I->getOperand(0)->getType(); 1614 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1615 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1616 else return false; 1617 1618 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1619 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1620 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1621 TII.get(Opc), ResultReg).addReg(Op)); 1622 1623 // This result needs to be in an integer register, but the conversion only 1624 // takes place in fp-regs. 1625 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1626 if (IntReg == 0) return false; 1627 1628 updateValueMap(I, IntReg); 1629 return true; 1630 } 1631 1632 bool ARMFastISel::SelectSelect(const Instruction *I) { 1633 MVT VT; 1634 if (!isTypeLegal(I->getType(), VT)) 1635 return false; 1636 1637 // Things need to be register sized for register moves. 1638 if (VT != MVT::i32) return false; 1639 1640 unsigned CondReg = getRegForValue(I->getOperand(0)); 1641 if (CondReg == 0) return false; 1642 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1643 if (Op1Reg == 0) return false; 1644 1645 // Check to see if we can use an immediate in the conditional move. 1646 int Imm = 0; 1647 bool UseImm = false; 1648 bool isNegativeImm = false; 1649 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1650 assert (VT == MVT::i32 && "Expecting an i32."); 1651 Imm = (int)ConstInt->getValue().getZExtValue(); 1652 if (Imm < 0) { 1653 isNegativeImm = true; 1654 Imm = ~Imm; 1655 } 1656 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1657 (ARM_AM::getSOImmVal(Imm) != -1); 1658 } 1659 1660 unsigned Op2Reg = 0; 1661 if (!UseImm) { 1662 Op2Reg = getRegForValue(I->getOperand(2)); 1663 if (Op2Reg == 0) return false; 1664 } 1665 1666 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 1667 CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0); 1668 AddOptionalDefs( 1669 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) 1670 .addReg(CondReg) 1671 .addImm(0)); 1672 1673 unsigned MovCCOpc; 1674 const TargetRegisterClass *RC; 1675 if (!UseImm) { 1676 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1677 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1678 } else { 1679 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1680 if (!isNegativeImm) 1681 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1682 else 1683 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1684 } 1685 unsigned ResultReg = createResultReg(RC); 1686 if (!UseImm) { 1687 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1688 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1689 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1690 ResultReg) 1691 .addReg(Op2Reg) 1692 .addReg(Op1Reg) 1693 .addImm(ARMCC::NE) 1694 .addReg(ARM::CPSR); 1695 } else { 1696 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1697 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1698 ResultReg) 1699 .addReg(Op1Reg) 1700 .addImm(Imm) 1701 .addImm(ARMCC::EQ) 1702 .addReg(ARM::CPSR); 1703 } 1704 updateValueMap(I, ResultReg); 1705 return true; 1706 } 1707 1708 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1709 MVT VT; 1710 Type *Ty = I->getType(); 1711 if (!isTypeLegal(Ty, VT)) 1712 return false; 1713 1714 // If we have integer div support we should have selected this automagically. 1715 // In case we have a real miss go ahead and return false and we'll pick 1716 // it up later. 1717 if (Subtarget->hasDivide()) return false; 1718 1719 // Otherwise emit a libcall. 1720 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1721 if (VT == MVT::i8) 1722 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1723 else if (VT == MVT::i16) 1724 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1725 else if (VT == MVT::i32) 1726 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1727 else if (VT == MVT::i64) 1728 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1729 else if (VT == MVT::i128) 1730 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1731 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1732 1733 return ARMEmitLibcall(I, LC); 1734 } 1735 1736 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1737 MVT VT; 1738 Type *Ty = I->getType(); 1739 if (!isTypeLegal(Ty, VT)) 1740 return false; 1741 1742 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1743 if (VT == MVT::i8) 1744 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1745 else if (VT == MVT::i16) 1746 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1747 else if (VT == MVT::i32) 1748 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1749 else if (VT == MVT::i64) 1750 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1751 else if (VT == MVT::i128) 1752 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1753 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1754 1755 return ARMEmitLibcall(I, LC); 1756 } 1757 1758 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1759 EVT DestVT = TLI.getValueType(I->getType(), true); 1760 1761 // We can get here in the case when we have a binary operation on a non-legal 1762 // type and the target independent selector doesn't know how to handle it. 1763 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1764 return false; 1765 1766 unsigned Opc; 1767 switch (ISDOpcode) { 1768 default: return false; 1769 case ISD::ADD: 1770 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1771 break; 1772 case ISD::OR: 1773 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1774 break; 1775 case ISD::SUB: 1776 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1777 break; 1778 } 1779 1780 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1781 if (SrcReg1 == 0) return false; 1782 1783 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1784 // in the instruction, rather then materializing the value in a register. 1785 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1786 if (SrcReg2 == 0) return false; 1787 1788 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1789 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1790 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1791 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1792 TII.get(Opc), ResultReg) 1793 .addReg(SrcReg1).addReg(SrcReg2)); 1794 updateValueMap(I, ResultReg); 1795 return true; 1796 } 1797 1798 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1799 EVT FPVT = TLI.getValueType(I->getType(), true); 1800 if (!FPVT.isSimple()) return false; 1801 MVT VT = FPVT.getSimpleVT(); 1802 1803 // We can get here in the case when we want to use NEON for our fp 1804 // operations, but can't figure out how to. Just use the vfp instructions 1805 // if we have them. 1806 // FIXME: It'd be nice to use NEON instructions. 1807 Type *Ty = I->getType(); 1808 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1809 if (isFloat && !Subtarget->hasVFP2()) 1810 return false; 1811 1812 unsigned Opc; 1813 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1814 switch (ISDOpcode) { 1815 default: return false; 1816 case ISD::FADD: 1817 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1818 break; 1819 case ISD::FSUB: 1820 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1821 break; 1822 case ISD::FMUL: 1823 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1824 break; 1825 } 1826 unsigned Op1 = getRegForValue(I->getOperand(0)); 1827 if (Op1 == 0) return false; 1828 1829 unsigned Op2 = getRegForValue(I->getOperand(1)); 1830 if (Op2 == 0) return false; 1831 1832 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1833 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1834 TII.get(Opc), ResultReg) 1835 .addReg(Op1).addReg(Op2)); 1836 updateValueMap(I, ResultReg); 1837 return true; 1838 } 1839 1840 // Call Handling Code 1841 1842 // This is largely taken directly from CCAssignFnForNode 1843 // TODO: We may not support all of this. 1844 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1845 bool Return, 1846 bool isVarArg) { 1847 switch (CC) { 1848 default: 1849 llvm_unreachable("Unsupported calling convention"); 1850 case CallingConv::Fast: 1851 if (Subtarget->hasVFP2() && !isVarArg) { 1852 if (!Subtarget->isAAPCS_ABI()) 1853 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1854 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1855 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1856 } 1857 // Fallthrough 1858 case CallingConv::C: 1859 // Use target triple & subtarget features to do actual dispatch. 1860 if (Subtarget->isAAPCS_ABI()) { 1861 if (Subtarget->hasVFP2() && 1862 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1863 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1864 else 1865 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1866 } else 1867 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1868 case CallingConv::ARM_AAPCS_VFP: 1869 if (!isVarArg) 1870 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1871 // Fall through to soft float variant, variadic functions don't 1872 // use hard floating point ABI. 1873 case CallingConv::ARM_AAPCS: 1874 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1875 case CallingConv::ARM_APCS: 1876 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1877 case CallingConv::GHC: 1878 if (Return) 1879 llvm_unreachable("Can't return in GHC call convention"); 1880 else 1881 return CC_ARM_APCS_GHC; 1882 } 1883 } 1884 1885 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1886 SmallVectorImpl<unsigned> &ArgRegs, 1887 SmallVectorImpl<MVT> &ArgVTs, 1888 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1889 SmallVectorImpl<unsigned> &RegArgs, 1890 CallingConv::ID CC, 1891 unsigned &NumBytes, 1892 bool isVarArg) { 1893 SmallVector<CCValAssign, 16> ArgLocs; 1894 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1895 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1896 CCAssignFnForCall(CC, false, isVarArg)); 1897 1898 // Check that we can handle all of the arguments. If we can't, then bail out 1899 // now before we add code to the MBB. 1900 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1901 CCValAssign &VA = ArgLocs[i]; 1902 MVT ArgVT = ArgVTs[VA.getValNo()]; 1903 1904 // We don't handle NEON/vector parameters yet. 1905 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1906 return false; 1907 1908 // Now copy/store arg to correct locations. 1909 if (VA.isRegLoc() && !VA.needsCustom()) { 1910 continue; 1911 } else if (VA.needsCustom()) { 1912 // TODO: We need custom lowering for vector (v2f64) args. 1913 if (VA.getLocVT() != MVT::f64 || 1914 // TODO: Only handle register args for now. 1915 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1916 return false; 1917 } else { 1918 switch (ArgVT.SimpleTy) { 1919 default: 1920 return false; 1921 case MVT::i1: 1922 case MVT::i8: 1923 case MVT::i16: 1924 case MVT::i32: 1925 break; 1926 case MVT::f32: 1927 if (!Subtarget->hasVFP2()) 1928 return false; 1929 break; 1930 case MVT::f64: 1931 if (!Subtarget->hasVFP2()) 1932 return false; 1933 break; 1934 } 1935 } 1936 } 1937 1938 // At the point, we are able to handle the call's arguments in fast isel. 1939 1940 // Get a count of how many bytes are to be pushed on the stack. 1941 NumBytes = CCInfo.getNextStackOffset(); 1942 1943 // Issue CALLSEQ_START 1944 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1945 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1946 TII.get(AdjStackDown)) 1947 .addImm(NumBytes)); 1948 1949 // Process the args. 1950 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1951 CCValAssign &VA = ArgLocs[i]; 1952 const Value *ArgVal = Args[VA.getValNo()]; 1953 unsigned Arg = ArgRegs[VA.getValNo()]; 1954 MVT ArgVT = ArgVTs[VA.getValNo()]; 1955 1956 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1957 "We don't handle NEON/vector parameters yet."); 1958 1959 // Handle arg promotion, etc. 1960 switch (VA.getLocInfo()) { 1961 case CCValAssign::Full: break; 1962 case CCValAssign::SExt: { 1963 MVT DestVT = VA.getLocVT(); 1964 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1965 assert (Arg != 0 && "Failed to emit a sext"); 1966 ArgVT = DestVT; 1967 break; 1968 } 1969 case CCValAssign::AExt: 1970 // Intentional fall-through. Handle AExt and ZExt. 1971 case CCValAssign::ZExt: { 1972 MVT DestVT = VA.getLocVT(); 1973 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1974 assert (Arg != 0 && "Failed to emit a zext"); 1975 ArgVT = DestVT; 1976 break; 1977 } 1978 case CCValAssign::BCvt: { 1979 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1980 /*TODO: Kill=*/false); 1981 assert(BC != 0 && "Failed to emit a bitcast!"); 1982 Arg = BC; 1983 ArgVT = VA.getLocVT(); 1984 break; 1985 } 1986 default: llvm_unreachable("Unknown arg promotion!"); 1987 } 1988 1989 // Now copy/store arg to correct locations. 1990 if (VA.isRegLoc() && !VA.needsCustom()) { 1991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1992 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1993 RegArgs.push_back(VA.getLocReg()); 1994 } else if (VA.needsCustom()) { 1995 // TODO: We need custom lowering for vector (v2f64) args. 1996 assert(VA.getLocVT() == MVT::f64 && 1997 "Custom lowering for v2f64 args not available"); 1998 1999 CCValAssign &NextVA = ArgLocs[++i]; 2000 2001 assert(VA.isRegLoc() && NextVA.isRegLoc() && 2002 "We only handle register args!"); 2003 2004 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2005 TII.get(ARM::VMOVRRD), VA.getLocReg()) 2006 .addReg(NextVA.getLocReg(), RegState::Define) 2007 .addReg(Arg)); 2008 RegArgs.push_back(VA.getLocReg()); 2009 RegArgs.push_back(NextVA.getLocReg()); 2010 } else { 2011 assert(VA.isMemLoc()); 2012 // Need to store on the stack. 2013 2014 // Don't emit stores for undef values. 2015 if (isa<UndefValue>(ArgVal)) 2016 continue; 2017 2018 Address Addr; 2019 Addr.BaseType = Address::RegBase; 2020 Addr.Base.Reg = ARM::SP; 2021 Addr.Offset = VA.getLocMemOffset(); 2022 2023 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2024 assert(EmitRet && "Could not emit a store for argument!"); 2025 } 2026 } 2027 2028 return true; 2029 } 2030 2031 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2032 const Instruction *I, CallingConv::ID CC, 2033 unsigned &NumBytes, bool isVarArg) { 2034 // Issue CALLSEQ_END 2035 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2036 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2037 TII.get(AdjStackUp)) 2038 .addImm(NumBytes).addImm(0)); 2039 2040 // Now the return value. 2041 if (RetVT != MVT::isVoid) { 2042 SmallVector<CCValAssign, 16> RVLocs; 2043 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2044 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2045 2046 // Copy all of the result registers out of their specified physreg. 2047 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2048 // For this move we copy into two registers and then move into the 2049 // double fp reg we want. 2050 MVT DestVT = RVLocs[0].getValVT(); 2051 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2052 unsigned ResultReg = createResultReg(DstRC); 2053 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2054 TII.get(ARM::VMOVDRR), ResultReg) 2055 .addReg(RVLocs[0].getLocReg()) 2056 .addReg(RVLocs[1].getLocReg())); 2057 2058 UsedRegs.push_back(RVLocs[0].getLocReg()); 2059 UsedRegs.push_back(RVLocs[1].getLocReg()); 2060 2061 // Finally update the result. 2062 updateValueMap(I, ResultReg); 2063 } else { 2064 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2065 MVT CopyVT = RVLocs[0].getValVT(); 2066 2067 // Special handling for extended integers. 2068 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2069 CopyVT = MVT::i32; 2070 2071 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2072 2073 unsigned ResultReg = createResultReg(DstRC); 2074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2075 TII.get(TargetOpcode::COPY), 2076 ResultReg).addReg(RVLocs[0].getLocReg()); 2077 UsedRegs.push_back(RVLocs[0].getLocReg()); 2078 2079 // Finally update the result. 2080 updateValueMap(I, ResultReg); 2081 } 2082 } 2083 2084 return true; 2085 } 2086 2087 bool ARMFastISel::SelectRet(const Instruction *I) { 2088 const ReturnInst *Ret = cast<ReturnInst>(I); 2089 const Function &F = *I->getParent()->getParent(); 2090 2091 if (!FuncInfo.CanLowerReturn) 2092 return false; 2093 2094 // Build a list of return value registers. 2095 SmallVector<unsigned, 4> RetRegs; 2096 2097 CallingConv::ID CC = F.getCallingConv(); 2098 if (Ret->getNumOperands() > 0) { 2099 SmallVector<ISD::OutputArg, 4> Outs; 2100 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 2101 2102 // Analyze operands of the call, assigning locations to each operand. 2103 SmallVector<CCValAssign, 16> ValLocs; 2104 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2105 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2106 F.isVarArg())); 2107 2108 const Value *RV = Ret->getOperand(0); 2109 unsigned Reg = getRegForValue(RV); 2110 if (Reg == 0) 2111 return false; 2112 2113 // Only handle a single return value for now. 2114 if (ValLocs.size() != 1) 2115 return false; 2116 2117 CCValAssign &VA = ValLocs[0]; 2118 2119 // Don't bother handling odd stuff for now. 2120 if (VA.getLocInfo() != CCValAssign::Full) 2121 return false; 2122 // Only handle register returns for now. 2123 if (!VA.isRegLoc()) 2124 return false; 2125 2126 unsigned SrcReg = Reg + VA.getValNo(); 2127 EVT RVEVT = TLI.getValueType(RV->getType()); 2128 if (!RVEVT.isSimple()) return false; 2129 MVT RVVT = RVEVT.getSimpleVT(); 2130 MVT DestVT = VA.getValVT(); 2131 // Special handling for extended integers. 2132 if (RVVT != DestVT) { 2133 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2134 return false; 2135 2136 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2137 2138 // Perform extension if flagged as either zext or sext. Otherwise, do 2139 // nothing. 2140 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2141 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2142 if (SrcReg == 0) return false; 2143 } 2144 } 2145 2146 // Make the copy. 2147 unsigned DstReg = VA.getLocReg(); 2148 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2149 // Avoid a cross-class copy. This is very unlikely. 2150 if (!SrcRC->contains(DstReg)) 2151 return false; 2152 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2153 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2154 2155 // Add register to return instruction. 2156 RetRegs.push_back(VA.getLocReg()); 2157 } 2158 2159 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2160 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2161 TII.get(RetOpc)); 2162 AddOptionalDefs(MIB); 2163 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2164 MIB.addReg(RetRegs[i], RegState::Implicit); 2165 return true; 2166 } 2167 2168 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2169 if (UseReg) 2170 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2171 else 2172 return isThumb2 ? ARM::tBL : ARM::BL; 2173 } 2174 2175 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2176 // Manually compute the global's type to avoid building it when unnecessary. 2177 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2178 EVT LCREVT = TLI.getValueType(GVTy); 2179 if (!LCREVT.isSimple()) return 0; 2180 2181 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2182 GlobalValue::ExternalLinkage, nullptr, 2183 Name); 2184 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2185 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2186 } 2187 2188 // A quick function that will emit a call for a named libcall in F with the 2189 // vector of passed arguments for the Instruction in I. We can assume that we 2190 // can emit a call for any libcall we can produce. This is an abridged version 2191 // of the full call infrastructure since we won't need to worry about things 2192 // like computed function pointers or strange arguments at call sites. 2193 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2194 // with X86. 2195 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2196 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2197 2198 // Handle *simple* calls for now. 2199 Type *RetTy = I->getType(); 2200 MVT RetVT; 2201 if (RetTy->isVoidTy()) 2202 RetVT = MVT::isVoid; 2203 else if (!isTypeLegal(RetTy, RetVT)) 2204 return false; 2205 2206 // Can't handle non-double multi-reg retvals. 2207 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2208 SmallVector<CCValAssign, 16> RVLocs; 2209 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2210 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2211 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2212 return false; 2213 } 2214 2215 // Set up the argument vectors. 2216 SmallVector<Value*, 8> Args; 2217 SmallVector<unsigned, 8> ArgRegs; 2218 SmallVector<MVT, 8> ArgVTs; 2219 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2220 Args.reserve(I->getNumOperands()); 2221 ArgRegs.reserve(I->getNumOperands()); 2222 ArgVTs.reserve(I->getNumOperands()); 2223 ArgFlags.reserve(I->getNumOperands()); 2224 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2225 Value *Op = I->getOperand(i); 2226 unsigned Arg = getRegForValue(Op); 2227 if (Arg == 0) return false; 2228 2229 Type *ArgTy = Op->getType(); 2230 MVT ArgVT; 2231 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2232 2233 ISD::ArgFlagsTy Flags; 2234 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2235 Flags.setOrigAlign(OriginalAlignment); 2236 2237 Args.push_back(Op); 2238 ArgRegs.push_back(Arg); 2239 ArgVTs.push_back(ArgVT); 2240 ArgFlags.push_back(Flags); 2241 } 2242 2243 // Handle the arguments now that we've gotten them. 2244 SmallVector<unsigned, 4> RegArgs; 2245 unsigned NumBytes; 2246 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2247 RegArgs, CC, NumBytes, false)) 2248 return false; 2249 2250 unsigned CalleeReg = 0; 2251 if (EnableARMLongCalls) { 2252 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2253 if (CalleeReg == 0) return false; 2254 } 2255 2256 // Issue the call. 2257 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls); 2258 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2259 DbgLoc, TII.get(CallOpc)); 2260 // BL / BLX don't take a predicate, but tBL / tBLX do. 2261 if (isThumb2) 2262 AddDefaultPred(MIB); 2263 if (EnableARMLongCalls) 2264 MIB.addReg(CalleeReg); 2265 else 2266 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2267 2268 // Add implicit physical register uses to the call. 2269 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2270 MIB.addReg(RegArgs[i], RegState::Implicit); 2271 2272 // Add a register mask with the call-preserved registers. 2273 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2274 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2275 2276 // Finish off the call including any return values. 2277 SmallVector<unsigned, 4> UsedRegs; 2278 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2279 2280 // Set all unused physreg defs as dead. 2281 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2282 2283 return true; 2284 } 2285 2286 bool ARMFastISel::SelectCall(const Instruction *I, 2287 const char *IntrMemName = nullptr) { 2288 const CallInst *CI = cast<CallInst>(I); 2289 const Value *Callee = CI->getCalledValue(); 2290 2291 // Can't handle inline asm. 2292 if (isa<InlineAsm>(Callee)) return false; 2293 2294 // Allow SelectionDAG isel to handle tail calls. 2295 if (CI->isTailCall()) return false; 2296 2297 // Check the calling convention. 2298 ImmutableCallSite CS(CI); 2299 CallingConv::ID CC = CS.getCallingConv(); 2300 2301 // TODO: Avoid some calling conventions? 2302 2303 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2304 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2305 bool isVarArg = FTy->isVarArg(); 2306 2307 // Handle *simple* calls for now. 2308 Type *RetTy = I->getType(); 2309 MVT RetVT; 2310 if (RetTy->isVoidTy()) 2311 RetVT = MVT::isVoid; 2312 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2313 RetVT != MVT::i8 && RetVT != MVT::i1) 2314 return false; 2315 2316 // Can't handle non-double multi-reg retvals. 2317 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2318 RetVT != MVT::i16 && RetVT != MVT::i32) { 2319 SmallVector<CCValAssign, 16> RVLocs; 2320 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2321 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2322 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2323 return false; 2324 } 2325 2326 // Set up the argument vectors. 2327 SmallVector<Value*, 8> Args; 2328 SmallVector<unsigned, 8> ArgRegs; 2329 SmallVector<MVT, 8> ArgVTs; 2330 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2331 unsigned arg_size = CS.arg_size(); 2332 Args.reserve(arg_size); 2333 ArgRegs.reserve(arg_size); 2334 ArgVTs.reserve(arg_size); 2335 ArgFlags.reserve(arg_size); 2336 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2337 i != e; ++i) { 2338 // If we're lowering a memory intrinsic instead of a regular call, skip the 2339 // last two arguments, which shouldn't be passed to the underlying function. 2340 if (IntrMemName && e-i <= 2) 2341 break; 2342 2343 ISD::ArgFlagsTy Flags; 2344 unsigned AttrInd = i - CS.arg_begin() + 1; 2345 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2346 Flags.setSExt(); 2347 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2348 Flags.setZExt(); 2349 2350 // FIXME: Only handle *easy* calls for now. 2351 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2352 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2353 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2354 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2355 return false; 2356 2357 Type *ArgTy = (*i)->getType(); 2358 MVT ArgVT; 2359 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2360 ArgVT != MVT::i1) 2361 return false; 2362 2363 unsigned Arg = getRegForValue(*i); 2364 if (Arg == 0) 2365 return false; 2366 2367 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2368 Flags.setOrigAlign(OriginalAlignment); 2369 2370 Args.push_back(*i); 2371 ArgRegs.push_back(Arg); 2372 ArgVTs.push_back(ArgVT); 2373 ArgFlags.push_back(Flags); 2374 } 2375 2376 // Handle the arguments now that we've gotten them. 2377 SmallVector<unsigned, 4> RegArgs; 2378 unsigned NumBytes; 2379 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2380 RegArgs, CC, NumBytes, isVarArg)) 2381 return false; 2382 2383 bool UseReg = false; 2384 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2385 if (!GV || EnableARMLongCalls) UseReg = true; 2386 2387 unsigned CalleeReg = 0; 2388 if (UseReg) { 2389 if (IntrMemName) 2390 CalleeReg = getLibcallReg(IntrMemName); 2391 else 2392 CalleeReg = getRegForValue(Callee); 2393 2394 if (CalleeReg == 0) return false; 2395 } 2396 2397 // Issue the call. 2398 unsigned CallOpc = ARMSelectCallOp(UseReg); 2399 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2400 DbgLoc, TII.get(CallOpc)); 2401 2402 unsigned char OpFlags = 0; 2403 2404 // Add MO_PLT for global address or external symbol in the PIC relocation 2405 // model. 2406 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 2407 OpFlags = ARMII::MO_PLT; 2408 2409 // ARM calls don't take a predicate, but tBL / tBLX do. 2410 if(isThumb2) 2411 AddDefaultPred(MIB); 2412 if (UseReg) 2413 MIB.addReg(CalleeReg); 2414 else if (!IntrMemName) 2415 MIB.addGlobalAddress(GV, 0, OpFlags); 2416 else 2417 MIB.addExternalSymbol(IntrMemName, OpFlags); 2418 2419 // Add implicit physical register uses to the call. 2420 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2421 MIB.addReg(RegArgs[i], RegState::Implicit); 2422 2423 // Add a register mask with the call-preserved registers. 2424 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2425 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2426 2427 // Finish off the call including any return values. 2428 SmallVector<unsigned, 4> UsedRegs; 2429 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2430 return false; 2431 2432 // Set all unused physreg defs as dead. 2433 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2434 2435 return true; 2436 } 2437 2438 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2439 return Len <= 16; 2440 } 2441 2442 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2443 uint64_t Len, unsigned Alignment) { 2444 // Make sure we don't bloat code by inlining very large memcpy's. 2445 if (!ARMIsMemCpySmall(Len)) 2446 return false; 2447 2448 while (Len) { 2449 MVT VT; 2450 if (!Alignment || Alignment >= 4) { 2451 if (Len >= 4) 2452 VT = MVT::i32; 2453 else if (Len >= 2) 2454 VT = MVT::i16; 2455 else { 2456 assert (Len == 1 && "Expected a length of 1!"); 2457 VT = MVT::i8; 2458 } 2459 } else { 2460 // Bound based on alignment. 2461 if (Len >= 2 && Alignment == 2) 2462 VT = MVT::i16; 2463 else { 2464 VT = MVT::i8; 2465 } 2466 } 2467 2468 bool RV; 2469 unsigned ResultReg; 2470 RV = ARMEmitLoad(VT, ResultReg, Src); 2471 assert (RV == true && "Should be able to handle this load."); 2472 RV = ARMEmitStore(VT, ResultReg, Dest); 2473 assert (RV == true && "Should be able to handle this store."); 2474 (void)RV; 2475 2476 unsigned Size = VT.getSizeInBits()/8; 2477 Len -= Size; 2478 Dest.Offset += Size; 2479 Src.Offset += Size; 2480 } 2481 2482 return true; 2483 } 2484 2485 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2486 // FIXME: Handle more intrinsics. 2487 switch (I.getIntrinsicID()) { 2488 default: return false; 2489 case Intrinsic::frameaddress: { 2490 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2491 MFI->setFrameAddressIsTaken(true); 2492 2493 unsigned LdrOpc; 2494 const TargetRegisterClass *RC; 2495 if (isThumb2) { 2496 LdrOpc = ARM::t2LDRi12; 2497 RC = (const TargetRegisterClass*)&ARM::tGPRRegClass; 2498 } else { 2499 LdrOpc = ARM::LDRi12; 2500 RC = (const TargetRegisterClass*)&ARM::GPRRegClass; 2501 } 2502 2503 const ARMBaseRegisterInfo *RegInfo = 2504 static_cast<const ARMBaseRegisterInfo *>( 2505 TM.getSubtargetImpl()->getRegisterInfo()); 2506 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2507 unsigned SrcReg = FramePtr; 2508 2509 // Recursively load frame address 2510 // ldr r0 [fp] 2511 // ldr r0 [r0] 2512 // ldr r0 [r0] 2513 // ... 2514 unsigned DestReg; 2515 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2516 while (Depth--) { 2517 DestReg = createResultReg(RC); 2518 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2519 TII.get(LdrOpc), DestReg) 2520 .addReg(SrcReg).addImm(0)); 2521 SrcReg = DestReg; 2522 } 2523 updateValueMap(&I, SrcReg); 2524 return true; 2525 } 2526 case Intrinsic::memcpy: 2527 case Intrinsic::memmove: { 2528 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2529 // Don't handle volatile. 2530 if (MTI.isVolatile()) 2531 return false; 2532 2533 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2534 // we would emit dead code because we don't currently handle memmoves. 2535 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2536 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2537 // Small memcpy's are common enough that we want to do them without a call 2538 // if possible. 2539 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2540 if (ARMIsMemCpySmall(Len)) { 2541 Address Dest, Src; 2542 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2543 !ARMComputeAddress(MTI.getRawSource(), Src)) 2544 return false; 2545 unsigned Alignment = MTI.getAlignment(); 2546 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2547 return true; 2548 } 2549 } 2550 2551 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2552 return false; 2553 2554 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2555 return false; 2556 2557 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2558 return SelectCall(&I, IntrMemName); 2559 } 2560 case Intrinsic::memset: { 2561 const MemSetInst &MSI = cast<MemSetInst>(I); 2562 // Don't handle volatile. 2563 if (MSI.isVolatile()) 2564 return false; 2565 2566 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2567 return false; 2568 2569 if (MSI.getDestAddressSpace() > 255) 2570 return false; 2571 2572 return SelectCall(&I, "memset"); 2573 } 2574 case Intrinsic::trap: { 2575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2576 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2577 return true; 2578 } 2579 } 2580 } 2581 2582 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2583 // The high bits for a type smaller than the register size are assumed to be 2584 // undefined. 2585 Value *Op = I->getOperand(0); 2586 2587 EVT SrcVT, DestVT; 2588 SrcVT = TLI.getValueType(Op->getType(), true); 2589 DestVT = TLI.getValueType(I->getType(), true); 2590 2591 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2592 return false; 2593 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2594 return false; 2595 2596 unsigned SrcReg = getRegForValue(Op); 2597 if (!SrcReg) return false; 2598 2599 // Because the high bits are undefined, a truncate doesn't generate 2600 // any code. 2601 updateValueMap(I, SrcReg); 2602 return true; 2603 } 2604 2605 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2606 bool isZExt) { 2607 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2608 return 0; 2609 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2610 return 0; 2611 2612 // Table of which combinations can be emitted as a single instruction, 2613 // and which will require two. 2614 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2615 // ARM Thumb 2616 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2617 // ext: s z s z s z s z 2618 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2619 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2620 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2621 }; 2622 2623 // Target registers for: 2624 // - For ARM can never be PC. 2625 // - For 16-bit Thumb are restricted to lower 8 registers. 2626 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2627 static const TargetRegisterClass *RCTbl[2][2] = { 2628 // Instructions: Two Single 2629 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2630 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2631 }; 2632 2633 // Table governing the instruction(s) to be emitted. 2634 static const struct InstructionTable { 2635 uint32_t Opc : 16; 2636 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2637 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2638 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2639 } IT[2][2][3][2] = { 2640 { // Two instructions (first is left shift, second is in this table). 2641 { // ARM Opc S Shift Imm 2642 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2643 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2644 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2645 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2646 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2647 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2648 }, 2649 { // Thumb Opc S Shift Imm 2650 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2651 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2652 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2653 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2654 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2655 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2656 } 2657 }, 2658 { // Single instruction. 2659 { // ARM Opc S Shift Imm 2660 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2661 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2662 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2663 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2664 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2665 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2666 }, 2667 { // Thumb Opc S Shift Imm 2668 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2669 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2670 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2671 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2672 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2673 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2674 } 2675 } 2676 }; 2677 2678 unsigned SrcBits = SrcVT.getSizeInBits(); 2679 unsigned DestBits = DestVT.getSizeInBits(); 2680 (void) DestBits; 2681 assert((SrcBits < DestBits) && "can only extend to larger types"); 2682 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2683 "other sizes unimplemented"); 2684 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2685 "other sizes unimplemented"); 2686 2687 bool hasV6Ops = Subtarget->hasV6Ops(); 2688 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2689 assert((Bitness < 3) && "sanity-check table bounds"); 2690 2691 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2692 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2693 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2694 unsigned Opc = ITP->Opc; 2695 assert(ARM::KILL != Opc && "Invalid table entry"); 2696 unsigned hasS = ITP->hasS; 2697 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2698 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2699 "only MOVsi has shift operand addressing mode"); 2700 unsigned Imm = ITP->Imm; 2701 2702 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2703 bool setsCPSR = &ARM::tGPRRegClass == RC; 2704 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2705 unsigned ResultReg; 2706 // MOVsi encodes shift and immediate in shift operand addressing mode. 2707 // The following condition has the same value when emitting two 2708 // instruction sequences: both are shifts. 2709 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2710 2711 // Either one or two instructions are emitted. 2712 // They're always of the form: 2713 // dst = in OP imm 2714 // CPSR is set only by 16-bit Thumb instructions. 2715 // Predicate, if any, is AL. 2716 // S bit, if available, is always 0. 2717 // When two are emitted the first's result will feed as the second's input, 2718 // that value is then dead. 2719 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2720 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2721 ResultReg = createResultReg(RC); 2722 bool isLsl = (0 == Instr) && !isSingleInstr; 2723 unsigned Opcode = isLsl ? LSLOpc : Opc; 2724 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2725 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2726 bool isKill = 1 == Instr; 2727 MachineInstrBuilder MIB = BuildMI( 2728 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2729 if (setsCPSR) 2730 MIB.addReg(ARM::CPSR, RegState::Define); 2731 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2732 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2733 if (hasS) 2734 AddDefaultCC(MIB); 2735 // Second instruction consumes the first's result. 2736 SrcReg = ResultReg; 2737 } 2738 2739 return ResultReg; 2740 } 2741 2742 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2743 // On ARM, in general, integer casts don't involve legal types; this code 2744 // handles promotable integers. 2745 Type *DestTy = I->getType(); 2746 Value *Src = I->getOperand(0); 2747 Type *SrcTy = Src->getType(); 2748 2749 bool isZExt = isa<ZExtInst>(I); 2750 unsigned SrcReg = getRegForValue(Src); 2751 if (!SrcReg) return false; 2752 2753 EVT SrcEVT, DestEVT; 2754 SrcEVT = TLI.getValueType(SrcTy, true); 2755 DestEVT = TLI.getValueType(DestTy, true); 2756 if (!SrcEVT.isSimple()) return false; 2757 if (!DestEVT.isSimple()) return false; 2758 2759 MVT SrcVT = SrcEVT.getSimpleVT(); 2760 MVT DestVT = DestEVT.getSimpleVT(); 2761 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2762 if (ResultReg == 0) return false; 2763 updateValueMap(I, ResultReg); 2764 return true; 2765 } 2766 2767 bool ARMFastISel::SelectShift(const Instruction *I, 2768 ARM_AM::ShiftOpc ShiftTy) { 2769 // We handle thumb2 mode by target independent selector 2770 // or SelectionDAG ISel. 2771 if (isThumb2) 2772 return false; 2773 2774 // Only handle i32 now. 2775 EVT DestVT = TLI.getValueType(I->getType(), true); 2776 if (DestVT != MVT::i32) 2777 return false; 2778 2779 unsigned Opc = ARM::MOVsr; 2780 unsigned ShiftImm; 2781 Value *Src2Value = I->getOperand(1); 2782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2783 ShiftImm = CI->getZExtValue(); 2784 2785 // Fall back to selection DAG isel if the shift amount 2786 // is zero or greater than the width of the value type. 2787 if (ShiftImm == 0 || ShiftImm >=32) 2788 return false; 2789 2790 Opc = ARM::MOVsi; 2791 } 2792 2793 Value *Src1Value = I->getOperand(0); 2794 unsigned Reg1 = getRegForValue(Src1Value); 2795 if (Reg1 == 0) return false; 2796 2797 unsigned Reg2 = 0; 2798 if (Opc == ARM::MOVsr) { 2799 Reg2 = getRegForValue(Src2Value); 2800 if (Reg2 == 0) return false; 2801 } 2802 2803 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2804 if(ResultReg == 0) return false; 2805 2806 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2807 TII.get(Opc), ResultReg) 2808 .addReg(Reg1); 2809 2810 if (Opc == ARM::MOVsi) 2811 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2812 else if (Opc == ARM::MOVsr) { 2813 MIB.addReg(Reg2); 2814 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2815 } 2816 2817 AddOptionalDefs(MIB); 2818 updateValueMap(I, ResultReg); 2819 return true; 2820 } 2821 2822 // TODO: SoftFP support. 2823 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2824 2825 switch (I->getOpcode()) { 2826 case Instruction::Load: 2827 return SelectLoad(I); 2828 case Instruction::Store: 2829 return SelectStore(I); 2830 case Instruction::Br: 2831 return SelectBranch(I); 2832 case Instruction::IndirectBr: 2833 return SelectIndirectBr(I); 2834 case Instruction::ICmp: 2835 case Instruction::FCmp: 2836 return SelectCmp(I); 2837 case Instruction::FPExt: 2838 return SelectFPExt(I); 2839 case Instruction::FPTrunc: 2840 return SelectFPTrunc(I); 2841 case Instruction::SIToFP: 2842 return SelectIToFP(I, /*isSigned*/ true); 2843 case Instruction::UIToFP: 2844 return SelectIToFP(I, /*isSigned*/ false); 2845 case Instruction::FPToSI: 2846 return SelectFPToI(I, /*isSigned*/ true); 2847 case Instruction::FPToUI: 2848 return SelectFPToI(I, /*isSigned*/ false); 2849 case Instruction::Add: 2850 return SelectBinaryIntOp(I, ISD::ADD); 2851 case Instruction::Or: 2852 return SelectBinaryIntOp(I, ISD::OR); 2853 case Instruction::Sub: 2854 return SelectBinaryIntOp(I, ISD::SUB); 2855 case Instruction::FAdd: 2856 return SelectBinaryFPOp(I, ISD::FADD); 2857 case Instruction::FSub: 2858 return SelectBinaryFPOp(I, ISD::FSUB); 2859 case Instruction::FMul: 2860 return SelectBinaryFPOp(I, ISD::FMUL); 2861 case Instruction::SDiv: 2862 return SelectDiv(I, /*isSigned*/ true); 2863 case Instruction::UDiv: 2864 return SelectDiv(I, /*isSigned*/ false); 2865 case Instruction::SRem: 2866 return SelectRem(I, /*isSigned*/ true); 2867 case Instruction::URem: 2868 return SelectRem(I, /*isSigned*/ false); 2869 case Instruction::Call: 2870 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2871 return SelectIntrinsicCall(*II); 2872 return SelectCall(I); 2873 case Instruction::Select: 2874 return SelectSelect(I); 2875 case Instruction::Ret: 2876 return SelectRet(I); 2877 case Instruction::Trunc: 2878 return SelectTrunc(I); 2879 case Instruction::ZExt: 2880 case Instruction::SExt: 2881 return SelectIntExt(I); 2882 case Instruction::Shl: 2883 return SelectShift(I, ARM_AM::lsl); 2884 case Instruction::LShr: 2885 return SelectShift(I, ARM_AM::lsr); 2886 case Instruction::AShr: 2887 return SelectShift(I, ARM_AM::asr); 2888 default: break; 2889 } 2890 return false; 2891 } 2892 2893 namespace { 2894 // This table describes sign- and zero-extend instructions which can be 2895 // folded into a preceding load. All of these extends have an immediate 2896 // (sometimes a mask and sometimes a shift) that's applied after 2897 // extension. 2898 const struct FoldableLoadExtendsStruct { 2899 uint16_t Opc[2]; // ARM, Thumb. 2900 uint8_t ExpectedImm; 2901 uint8_t isZExt : 1; 2902 uint8_t ExpectedVT : 7; 2903 } FoldableLoadExtends[] = { 2904 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2905 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2906 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2907 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2908 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2909 }; 2910 } 2911 2912 /// \brief The specified machine instr operand is a vreg, and that 2913 /// vreg is being provided by the specified load instruction. If possible, 2914 /// try to fold the load as an operand to the instruction, returning true if 2915 /// successful. 2916 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2917 const LoadInst *LI) { 2918 // Verify we have a legal type before going any further. 2919 MVT VT; 2920 if (!isLoadTypeLegal(LI->getType(), VT)) 2921 return false; 2922 2923 // Combine load followed by zero- or sign-extend. 2924 // ldrb r1, [r0] ldrb r1, [r0] 2925 // uxtb r2, r1 => 2926 // mov r3, r2 mov r3, r1 2927 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2928 return false; 2929 const uint64_t Imm = MI->getOperand(2).getImm(); 2930 2931 bool Found = false; 2932 bool isZExt; 2933 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2934 i != e; ++i) { 2935 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 2936 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 2937 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 2938 Found = true; 2939 isZExt = FoldableLoadExtends[i].isZExt; 2940 } 2941 } 2942 if (!Found) return false; 2943 2944 // See if we can handle this address. 2945 Address Addr; 2946 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2947 2948 unsigned ResultReg = MI->getOperand(0).getReg(); 2949 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2950 return false; 2951 MI->eraseFromParent(); 2952 return true; 2953 } 2954 2955 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2956 unsigned Align, MVT VT) { 2957 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 2958 ARMConstantPoolConstant *CPV = 2959 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 2960 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 2961 2962 unsigned Opc; 2963 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 2964 // Load value. 2965 if (isThumb2) { 2966 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 2967 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2968 TII.get(ARM::t2LDRpci), DestReg1) 2969 .addConstantPoolIndex(Idx)); 2970 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 2971 } else { 2972 // The extra immediate is for addrmode2. 2973 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 2974 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2975 DbgLoc, TII.get(ARM::LDRcp), DestReg1) 2976 .addConstantPoolIndex(Idx).addImm(0)); 2977 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 2978 } 2979 2980 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 2981 if (GlobalBaseReg == 0) { 2982 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 2983 AFI->setGlobalBaseReg(GlobalBaseReg); 2984 } 2985 2986 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 2987 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 2988 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 2989 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 2990 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2991 DbgLoc, TII.get(Opc), DestReg2) 2992 .addReg(DestReg1) 2993 .addReg(GlobalBaseReg); 2994 if (!UseGOTOFF) 2995 MIB.addImm(0); 2996 AddOptionalDefs(MIB); 2997 2998 return DestReg2; 2999 } 3000 3001 bool ARMFastISel::fastLowerArguments() { 3002 if (!FuncInfo.CanLowerReturn) 3003 return false; 3004 3005 const Function *F = FuncInfo.Fn; 3006 if (F->isVarArg()) 3007 return false; 3008 3009 CallingConv::ID CC = F->getCallingConv(); 3010 switch (CC) { 3011 default: 3012 return false; 3013 case CallingConv::Fast: 3014 case CallingConv::C: 3015 case CallingConv::ARM_AAPCS_VFP: 3016 case CallingConv::ARM_AAPCS: 3017 case CallingConv::ARM_APCS: 3018 break; 3019 } 3020 3021 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3022 // which are passed in r0 - r3. 3023 unsigned Idx = 1; 3024 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3025 I != E; ++I, ++Idx) { 3026 if (Idx > 4) 3027 return false; 3028 3029 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3030 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3031 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3032 return false; 3033 3034 Type *ArgTy = I->getType(); 3035 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3036 return false; 3037 3038 EVT ArgVT = TLI.getValueType(ArgTy); 3039 if (!ArgVT.isSimple()) return false; 3040 switch (ArgVT.getSimpleVT().SimpleTy) { 3041 case MVT::i8: 3042 case MVT::i16: 3043 case MVT::i32: 3044 break; 3045 default: 3046 return false; 3047 } 3048 } 3049 3050 3051 static const uint16_t GPRArgRegs[] = { 3052 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3053 }; 3054 3055 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3056 Idx = 0; 3057 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3058 I != E; ++I, ++Idx) { 3059 unsigned SrcReg = GPRArgRegs[Idx]; 3060 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3061 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3062 // Without this, EmitLiveInCopies may eliminate the livein if its only 3063 // use is a bitcast (which isn't turned into an instruction). 3064 unsigned ResultReg = createResultReg(RC); 3065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3066 TII.get(TargetOpcode::COPY), 3067 ResultReg).addReg(DstReg, getKillRegState(true)); 3068 updateValueMap(I, ResultReg); 3069 } 3070 3071 return true; 3072 } 3073 3074 namespace llvm { 3075 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3076 const TargetLibraryInfo *libInfo) { 3077 const TargetMachine &TM = funcInfo.MF->getTarget(); 3078 3079 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 3080 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 3081 bool UseFastISel = false; 3082 UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only(); 3083 UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb(); 3084 UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb(); 3085 3086 if (UseFastISel) { 3087 // iOS always has a FP for backtracking, force other targets 3088 // to keep their FP when doing FastISel. The emitted code is 3089 // currently superior, and in cases like test-suite's lencod 3090 // FastISel isn't quite correct when FP is eliminated. 3091 TM.Options.NoFramePointerElim = true; 3092 return new ARMFastISel(funcInfo, libInfo); 3093 } 3094 return nullptr; 3095 } 3096 } 3097