1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMBaseRegisterInfo.h" 19 #include "ARMCallingConv.h" 20 #include "ARMConstantPoolValue.h" 21 #include "ARMISelLowering.h" 22 #include "ARMMachineFunctionInfo.h" 23 #include "ARMSubtarget.h" 24 #include "MCTargetDesc/ARMAddressingModes.h" 25 #include "MCTargetDesc/ARMBaseInfo.h" 26 #include "Utils/ARMBaseInfo.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/CodeGen/CallingConvLower.h" 32 #include "llvm/CodeGen/FastISel.h" 33 #include "llvm/CodeGen/FunctionLoweringInfo.h" 34 #include "llvm/CodeGen/ISDOpcodes.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineConstantPool.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineMemOperand.h" 42 #include "llvm/CodeGen/MachineOperand.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/MachineValueType.h" 45 #include "llvm/CodeGen/RuntimeLibcalls.h" 46 #include "llvm/CodeGen/TargetInstrInfo.h" 47 #include "llvm/CodeGen/TargetLowering.h" 48 #include "llvm/CodeGen/TargetOpcodes.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/ValueTypes.h" 51 #include "llvm/IR/Argument.h" 52 #include "llvm/IR/Attributes.h" 53 #include "llvm/IR/CallSite.h" 54 #include "llvm/IR/CallingConv.h" 55 #include "llvm/IR/Constant.h" 56 #include "llvm/IR/Constants.h" 57 #include "llvm/IR/DataLayout.h" 58 #include "llvm/IR/DerivedTypes.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/GetElementPtrTypeIterator.h" 61 #include "llvm/IR/GlobalValue.h" 62 #include "llvm/IR/GlobalVariable.h" 63 #include "llvm/IR/InstrTypes.h" 64 #include "llvm/IR/Instruction.h" 65 #include "llvm/IR/Instructions.h" 66 #include "llvm/IR/IntrinsicInst.h" 67 #include "llvm/IR/Intrinsics.h" 68 #include "llvm/IR/Module.h" 69 #include "llvm/IR/Operator.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/MC/MCInstrDesc.h" 74 #include "llvm/MC/MCRegisterInfo.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/Compiler.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Target/TargetMachine.h" 80 #include "llvm/Target/TargetOptions.h" 81 #include <cassert> 82 #include <cstdint> 83 #include <utility> 84 85 using namespace llvm; 86 87 namespace { 88 89 // All possible address modes, plus some. 90 struct Address { 91 enum { 92 RegBase, 93 FrameIndexBase 94 } BaseType = RegBase; 95 96 union { 97 unsigned Reg; 98 int FI; 99 } Base; 100 101 int Offset = 0; 102 103 // Innocuous defaults for our address. 104 Address() { 105 Base.Reg = 0; 106 } 107 }; 108 109 class ARMFastISel final : public FastISel { 110 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 111 /// make the right decision when generating code for different targets. 112 const ARMSubtarget *Subtarget; 113 Module &M; 114 const TargetMachine &TM; 115 const TargetInstrInfo &TII; 116 const TargetLowering &TLI; 117 ARMFunctionInfo *AFI; 118 119 // Convenience variables to avoid some queries. 120 bool isThumb2; 121 LLVMContext *Context; 122 123 public: 124 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 125 const TargetLibraryInfo *libInfo) 126 : FastISel(funcInfo, libInfo), 127 Subtarget( 128 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 129 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 130 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 131 TLI(*Subtarget->getTargetLowering()) { 132 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 133 isThumb2 = AFI->isThumbFunction(); 134 Context = &funcInfo.Fn->getContext(); 135 } 136 137 private: 138 // Code from FastISel.cpp. 139 140 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 141 const TargetRegisterClass *RC, 142 unsigned Op0, bool Op0IsKill); 143 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 144 const TargetRegisterClass *RC, 145 unsigned Op0, bool Op0IsKill, 146 unsigned Op1, bool Op1IsKill); 147 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 148 const TargetRegisterClass *RC, 149 unsigned Op0, bool Op0IsKill, 150 uint64_t Imm); 151 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 152 const TargetRegisterClass *RC, 153 uint64_t Imm); 154 155 // Backend specific FastISel code. 156 157 bool fastSelectInstruction(const Instruction *I) override; 158 unsigned fastMaterializeConstant(const Constant *C) override; 159 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 160 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 161 const LoadInst *LI) override; 162 bool fastLowerArguments() override; 163 164 #include "ARMGenFastISel.inc" 165 166 // Instruction selection routines. 167 168 bool SelectLoad(const Instruction *I); 169 bool SelectStore(const Instruction *I); 170 bool SelectBranch(const Instruction *I); 171 bool SelectIndirectBr(const Instruction *I); 172 bool SelectCmp(const Instruction *I); 173 bool SelectFPExt(const Instruction *I); 174 bool SelectFPTrunc(const Instruction *I); 175 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 176 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 177 bool SelectIToFP(const Instruction *I, bool isSigned); 178 bool SelectFPToI(const Instruction *I, bool isSigned); 179 bool SelectDiv(const Instruction *I, bool isSigned); 180 bool SelectRem(const Instruction *I, bool isSigned); 181 bool SelectCall(const Instruction *I, const char *IntrMemName); 182 bool SelectIntrinsicCall(const IntrinsicInst &I); 183 bool SelectSelect(const Instruction *I); 184 bool SelectRet(const Instruction *I); 185 bool SelectTrunc(const Instruction *I); 186 bool SelectIntExt(const Instruction *I); 187 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 188 189 // Utility routines. 190 191 bool isPositionIndependent() const; 192 bool isTypeLegal(Type *Ty, MVT &VT); 193 bool isLoadTypeLegal(Type *Ty, MVT &VT); 194 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 195 bool isZExt, bool isEquality); 196 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 197 unsigned Alignment = 0, bool isZExt = true, 198 bool allocReg = true); 199 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 200 unsigned Alignment = 0); 201 bool ARMComputeAddress(const Value *Obj, Address &Addr); 202 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 203 bool ARMIsMemCpySmall(uint64_t Len); 204 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 205 unsigned Alignment); 206 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 207 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 208 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 209 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 210 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 211 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 212 unsigned ARMSelectCallOp(bool UseReg); 213 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 214 215 const TargetLowering *getTargetLowering() { return &TLI; } 216 217 // Call handling routines. 218 219 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 220 bool Return, 221 bool isVarArg); 222 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 223 SmallVectorImpl<unsigned> &ArgRegs, 224 SmallVectorImpl<MVT> &ArgVTs, 225 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 226 SmallVectorImpl<unsigned> &RegArgs, 227 CallingConv::ID CC, 228 unsigned &NumBytes, 229 bool isVarArg); 230 unsigned getLibcallReg(const Twine &Name); 231 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 232 const Instruction *I, CallingConv::ID CC, 233 unsigned &NumBytes, bool isVarArg); 234 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 235 236 // OptionalDef handling routines. 237 238 bool isARMNEONPred(const MachineInstr *MI); 239 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 240 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 241 void AddLoadStoreOperands(MVT VT, Address &Addr, 242 const MachineInstrBuilder &MIB, 243 MachineMemOperand::Flags Flags, bool useAM3); 244 }; 245 246 } // end anonymous namespace 247 248 #include "ARMGenCallingConv.inc" 249 250 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 251 // we don't care about implicit defs here, just places we'll need to add a 252 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 253 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 254 if (!MI->hasOptionalDef()) 255 return false; 256 257 // Look to see if our OptionalDef is defining CPSR or CCR. 258 for (const MachineOperand &MO : MI->operands()) { 259 if (!MO.isReg() || !MO.isDef()) continue; 260 if (MO.getReg() == ARM::CPSR) 261 *CPSR = true; 262 } 263 return true; 264 } 265 266 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 267 const MCInstrDesc &MCID = MI->getDesc(); 268 269 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 270 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 271 AFI->isThumb2Function()) 272 return MI->isPredicable(); 273 274 for (const MCOperandInfo &opInfo : MCID.operands()) 275 if (opInfo.isPredicate()) 276 return true; 277 278 return false; 279 } 280 281 // If the machine is predicable go ahead and add the predicate operands, if 282 // it needs default CC operands add those. 283 // TODO: If we want to support thumb1 then we'll need to deal with optional 284 // CPSR defs that need to be added before the remaining operands. See s_cc_out 285 // for descriptions why. 286 const MachineInstrBuilder & 287 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 288 MachineInstr *MI = &*MIB; 289 290 // Do we use a predicate? or... 291 // Are we NEON in ARM mode and have a predicate operand? If so, I know 292 // we're not predicable but add it anyways. 293 if (isARMNEONPred(MI)) 294 MIB.add(predOps(ARMCC::AL)); 295 296 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 297 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 298 bool CPSR = false; 299 if (DefinesOptionalPredicate(MI, &CPSR)) 300 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); 301 return MIB; 302 } 303 304 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 305 const TargetRegisterClass *RC, 306 unsigned Op0, bool Op0IsKill) { 307 unsigned ResultReg = createResultReg(RC); 308 const MCInstrDesc &II = TII.get(MachineInstOpcode); 309 310 // Make sure the input operand is sufficiently constrained to be legal 311 // for this instruction. 312 Op0 = constrainOperandRegClass(II, Op0, 1); 313 if (II.getNumDefs() >= 1) { 314 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 315 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 316 } else { 317 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 318 .addReg(Op0, Op0IsKill * RegState::Kill)); 319 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 320 TII.get(TargetOpcode::COPY), ResultReg) 321 .addReg(II.ImplicitDefs[0])); 322 } 323 return ResultReg; 324 } 325 326 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 327 const TargetRegisterClass *RC, 328 unsigned Op0, bool Op0IsKill, 329 unsigned Op1, bool Op1IsKill) { 330 unsigned ResultReg = createResultReg(RC); 331 const MCInstrDesc &II = TII.get(MachineInstOpcode); 332 333 // Make sure the input operands are sufficiently constrained to be legal 334 // for this instruction. 335 Op0 = constrainOperandRegClass(II, Op0, 1); 336 Op1 = constrainOperandRegClass(II, Op1, 2); 337 338 if (II.getNumDefs() >= 1) { 339 AddOptionalDefs( 340 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 341 .addReg(Op0, Op0IsKill * RegState::Kill) 342 .addReg(Op1, Op1IsKill * RegState::Kill)); 343 } else { 344 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 345 .addReg(Op0, Op0IsKill * RegState::Kill) 346 .addReg(Op1, Op1IsKill * RegState::Kill)); 347 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 348 TII.get(TargetOpcode::COPY), ResultReg) 349 .addReg(II.ImplicitDefs[0])); 350 } 351 return ResultReg; 352 } 353 354 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 355 const TargetRegisterClass *RC, 356 unsigned Op0, bool Op0IsKill, 357 uint64_t Imm) { 358 unsigned ResultReg = createResultReg(RC); 359 const MCInstrDesc &II = TII.get(MachineInstOpcode); 360 361 // Make sure the input operand is sufficiently constrained to be legal 362 // for this instruction. 363 Op0 = constrainOperandRegClass(II, Op0, 1); 364 if (II.getNumDefs() >= 1) { 365 AddOptionalDefs( 366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 367 .addReg(Op0, Op0IsKill * RegState::Kill) 368 .addImm(Imm)); 369 } else { 370 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 371 .addReg(Op0, Op0IsKill * RegState::Kill) 372 .addImm(Imm)); 373 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 374 TII.get(TargetOpcode::COPY), ResultReg) 375 .addReg(II.ImplicitDefs[0])); 376 } 377 return ResultReg; 378 } 379 380 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 381 const TargetRegisterClass *RC, 382 uint64_t Imm) { 383 unsigned ResultReg = createResultReg(RC); 384 const MCInstrDesc &II = TII.get(MachineInstOpcode); 385 386 if (II.getNumDefs() >= 1) { 387 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 388 ResultReg).addImm(Imm)); 389 } else { 390 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 391 .addImm(Imm)); 392 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 393 TII.get(TargetOpcode::COPY), ResultReg) 394 .addReg(II.ImplicitDefs[0])); 395 } 396 return ResultReg; 397 } 398 399 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 400 // checks from the various callers. 401 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 402 if (VT == MVT::f64) return 0; 403 404 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 405 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 406 TII.get(ARM::VMOVSR), MoveReg) 407 .addReg(SrcReg)); 408 return MoveReg; 409 } 410 411 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 412 if (VT == MVT::i64) return 0; 413 414 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 416 TII.get(ARM::VMOVRS), MoveReg) 417 .addReg(SrcReg)); 418 return MoveReg; 419 } 420 421 // For double width floating point we need to materialize two constants 422 // (the high and the low) into integer registers then use a move to get 423 // the combined constant into an FP reg. 424 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 425 const APFloat Val = CFP->getValueAPF(); 426 bool is64bit = VT == MVT::f64; 427 428 // This checks to see if we can use VFP3 instructions to materialize 429 // a constant, otherwise we have to go through the constant pool. 430 if (TLI.isFPImmLegal(Val, VT)) { 431 int Imm; 432 unsigned Opc; 433 if (is64bit) { 434 Imm = ARM_AM::getFP64Imm(Val); 435 Opc = ARM::FCONSTD; 436 } else { 437 Imm = ARM_AM::getFP32Imm(Val); 438 Opc = ARM::FCONSTS; 439 } 440 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 441 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 442 TII.get(Opc), DestReg).addImm(Imm)); 443 return DestReg; 444 } 445 446 // Require VFP2 for loading fp constants. 447 if (!Subtarget->hasVFP2()) return false; 448 449 // MachineConstantPool wants an explicit alignment. 450 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 451 if (Align == 0) { 452 // TODO: Figure out if this is correct. 453 Align = DL.getTypeAllocSize(CFP->getType()); 454 } 455 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 456 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 457 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 458 459 // The extra reg is for addrmode5. 460 AddOptionalDefs( 461 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 462 .addConstantPoolIndex(Idx) 463 .addReg(0)); 464 return DestReg; 465 } 466 467 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 468 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 469 return 0; 470 471 // If we can do this in a single instruction without a constant pool entry 472 // do so now. 473 const ConstantInt *CI = cast<ConstantInt>(C); 474 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 475 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 476 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 477 &ARM::GPRRegClass; 478 unsigned ImmReg = createResultReg(RC); 479 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 480 TII.get(Opc), ImmReg) 481 .addImm(CI->getZExtValue())); 482 return ImmReg; 483 } 484 485 // Use MVN to emit negative constants. 486 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 487 unsigned Imm = (unsigned)~(CI->getSExtValue()); 488 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 489 (ARM_AM::getSOImmVal(Imm) != -1); 490 if (UseImm) { 491 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 492 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 493 &ARM::GPRRegClass; 494 unsigned ImmReg = createResultReg(RC); 495 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 496 TII.get(Opc), ImmReg) 497 .addImm(Imm)); 498 return ImmReg; 499 } 500 } 501 502 unsigned ResultReg = 0; 503 if (Subtarget->useMovt(*FuncInfo.MF)) 504 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 505 506 if (ResultReg) 507 return ResultReg; 508 509 // Load from constant pool. For now 32-bit only. 510 if (VT != MVT::i32) 511 return 0; 512 513 // MachineConstantPool wants an explicit alignment. 514 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 515 if (Align == 0) { 516 // TODO: Figure out if this is correct. 517 Align = DL.getTypeAllocSize(C->getType()); 518 } 519 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 520 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 521 if (isThumb2) 522 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 523 TII.get(ARM::t2LDRpci), ResultReg) 524 .addConstantPoolIndex(Idx)); 525 else { 526 // The extra immediate is for addrmode2. 527 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 528 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 529 TII.get(ARM::LDRcp), ResultReg) 530 .addConstantPoolIndex(Idx) 531 .addImm(0)); 532 } 533 return ResultReg; 534 } 535 536 bool ARMFastISel::isPositionIndependent() const { 537 return TLI.isPositionIndependent(); 538 } 539 540 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 541 // For now 32-bit only. 542 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 543 544 // ROPI/RWPI not currently supported. 545 if (Subtarget->isROPI() || Subtarget->isRWPI()) 546 return 0; 547 548 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 549 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 550 : &ARM::GPRRegClass; 551 unsigned DestReg = createResultReg(RC); 552 553 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 554 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 555 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 556 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 557 558 bool IsPositionIndependent = isPositionIndependent(); 559 // Use movw+movt when possible, it avoids constant pool entries. 560 // Non-darwin targets only support static movt relocations in FastISel. 561 if (Subtarget->useMovt(*FuncInfo.MF) && 562 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 563 unsigned Opc; 564 unsigned char TF = 0; 565 if (Subtarget->isTargetMachO()) 566 TF = ARMII::MO_NONLAZY; 567 568 if (IsPositionIndependent) 569 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 570 else 571 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 572 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 573 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 574 } else { 575 // MachineConstantPool wants an explicit alignment. 576 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 577 if (Align == 0) { 578 // TODO: Figure out if this is correct. 579 Align = DL.getTypeAllocSize(GV->getType()); 580 } 581 582 if (Subtarget->isTargetELF() && IsPositionIndependent) 583 return ARMLowerPICELF(GV, Align, VT); 584 585 // Grab index. 586 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 587 unsigned Id = AFI->createPICLabelUId(); 588 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 589 ARMCP::CPValue, 590 PCAdj); 591 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 592 593 // Load value. 594 MachineInstrBuilder MIB; 595 if (isThumb2) { 596 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 597 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 598 DestReg).addConstantPoolIndex(Idx); 599 if (IsPositionIndependent) 600 MIB.addImm(Id); 601 AddOptionalDefs(MIB); 602 } else { 603 // The extra immediate is for addrmode2. 604 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 605 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 606 TII.get(ARM::LDRcp), DestReg) 607 .addConstantPoolIndex(Idx) 608 .addImm(0); 609 AddOptionalDefs(MIB); 610 611 if (IsPositionIndependent) { 612 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 613 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 614 615 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 616 DbgLoc, TII.get(Opc), NewDestReg) 617 .addReg(DestReg) 618 .addImm(Id); 619 AddOptionalDefs(MIB); 620 return NewDestReg; 621 } 622 } 623 } 624 625 if (IsIndirect) { 626 MachineInstrBuilder MIB; 627 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 628 if (isThumb2) 629 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 630 TII.get(ARM::t2LDRi12), NewDestReg) 631 .addReg(DestReg) 632 .addImm(0); 633 else 634 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 635 TII.get(ARM::LDRi12), NewDestReg) 636 .addReg(DestReg) 637 .addImm(0); 638 DestReg = NewDestReg; 639 AddOptionalDefs(MIB); 640 } 641 642 return DestReg; 643 } 644 645 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 646 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 647 648 // Only handle simple types. 649 if (!CEVT.isSimple()) return 0; 650 MVT VT = CEVT.getSimpleVT(); 651 652 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 653 return ARMMaterializeFP(CFP, VT); 654 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 655 return ARMMaterializeGV(GV, VT); 656 else if (isa<ConstantInt>(C)) 657 return ARMMaterializeInt(C, VT); 658 659 return 0; 660 } 661 662 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 663 664 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 665 // Don't handle dynamic allocas. 666 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 667 668 MVT VT; 669 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 670 671 DenseMap<const AllocaInst*, int>::iterator SI = 672 FuncInfo.StaticAllocaMap.find(AI); 673 674 // This will get lowered later into the correct offsets and registers 675 // via rewriteXFrameIndex. 676 if (SI != FuncInfo.StaticAllocaMap.end()) { 677 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 678 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 679 unsigned ResultReg = createResultReg(RC); 680 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 681 682 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 683 TII.get(Opc), ResultReg) 684 .addFrameIndex(SI->second) 685 .addImm(0)); 686 return ResultReg; 687 } 688 689 return 0; 690 } 691 692 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 693 EVT evt = TLI.getValueType(DL, Ty, true); 694 695 // Only handle simple types. 696 if (evt == MVT::Other || !evt.isSimple()) return false; 697 VT = evt.getSimpleVT(); 698 699 // Handle all legal types, i.e. a register that will directly hold this 700 // value. 701 return TLI.isTypeLegal(VT); 702 } 703 704 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 705 if (isTypeLegal(Ty, VT)) return true; 706 707 // If this is a type than can be sign or zero-extended to a basic operation 708 // go ahead and accept it now. 709 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 710 return true; 711 712 return false; 713 } 714 715 // Computes the address to get to an object. 716 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 717 // Some boilerplate from the X86 FastISel. 718 const User *U = nullptr; 719 unsigned Opcode = Instruction::UserOp1; 720 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 721 // Don't walk into other basic blocks unless the object is an alloca from 722 // another block, otherwise it may not have a virtual register assigned. 723 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 724 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 725 Opcode = I->getOpcode(); 726 U = I; 727 } 728 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 729 Opcode = C->getOpcode(); 730 U = C; 731 } 732 733 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 734 if (Ty->getAddressSpace() > 255) 735 // Fast instruction selection doesn't support the special 736 // address spaces. 737 return false; 738 739 switch (Opcode) { 740 default: 741 break; 742 case Instruction::BitCast: 743 // Look through bitcasts. 744 return ARMComputeAddress(U->getOperand(0), Addr); 745 case Instruction::IntToPtr: 746 // Look past no-op inttoptrs. 747 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 748 TLI.getPointerTy(DL)) 749 return ARMComputeAddress(U->getOperand(0), Addr); 750 break; 751 case Instruction::PtrToInt: 752 // Look past no-op ptrtoints. 753 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 754 return ARMComputeAddress(U->getOperand(0), Addr); 755 break; 756 case Instruction::GetElementPtr: { 757 Address SavedAddr = Addr; 758 int TmpOffset = Addr.Offset; 759 760 // Iterate through the GEP folding the constants into offsets where 761 // we can. 762 gep_type_iterator GTI = gep_type_begin(U); 763 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 764 i != e; ++i, ++GTI) { 765 const Value *Op = *i; 766 if (StructType *STy = GTI.getStructTypeOrNull()) { 767 const StructLayout *SL = DL.getStructLayout(STy); 768 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 769 TmpOffset += SL->getElementOffset(Idx); 770 } else { 771 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 772 while (true) { 773 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 774 // Constant-offset addressing. 775 TmpOffset += CI->getSExtValue() * S; 776 break; 777 } 778 if (canFoldAddIntoGEP(U, Op)) { 779 // A compatible add with a constant operand. Fold the constant. 780 ConstantInt *CI = 781 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 782 TmpOffset += CI->getSExtValue() * S; 783 // Iterate on the other operand. 784 Op = cast<AddOperator>(Op)->getOperand(0); 785 continue; 786 } 787 // Unsupported 788 goto unsupported_gep; 789 } 790 } 791 } 792 793 // Try to grab the base operand now. 794 Addr.Offset = TmpOffset; 795 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 796 797 // We failed, restore everything and try the other options. 798 Addr = SavedAddr; 799 800 unsupported_gep: 801 break; 802 } 803 case Instruction::Alloca: { 804 const AllocaInst *AI = cast<AllocaInst>(Obj); 805 DenseMap<const AllocaInst*, int>::iterator SI = 806 FuncInfo.StaticAllocaMap.find(AI); 807 if (SI != FuncInfo.StaticAllocaMap.end()) { 808 Addr.BaseType = Address::FrameIndexBase; 809 Addr.Base.FI = SI->second; 810 return true; 811 } 812 break; 813 } 814 } 815 816 // Try to get this in a register if nothing else has worked. 817 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 818 return Addr.Base.Reg != 0; 819 } 820 821 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 822 bool needsLowering = false; 823 switch (VT.SimpleTy) { 824 default: llvm_unreachable("Unhandled load/store type!"); 825 case MVT::i1: 826 case MVT::i8: 827 case MVT::i16: 828 case MVT::i32: 829 if (!useAM3) { 830 // Integer loads/stores handle 12-bit offsets. 831 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 832 // Handle negative offsets. 833 if (needsLowering && isThumb2) 834 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 835 Addr.Offset > -256); 836 } else { 837 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 838 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 839 } 840 break; 841 case MVT::f32: 842 case MVT::f64: 843 // Floating point operands handle 8-bit offsets. 844 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 845 break; 846 } 847 848 // If this is a stack pointer and the offset needs to be simplified then 849 // put the alloca address into a register, set the base type back to 850 // register and continue. This should almost never happen. 851 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 852 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 853 : &ARM::GPRRegClass; 854 unsigned ResultReg = createResultReg(RC); 855 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 856 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 857 TII.get(Opc), ResultReg) 858 .addFrameIndex(Addr.Base.FI) 859 .addImm(0)); 860 Addr.Base.Reg = ResultReg; 861 Addr.BaseType = Address::RegBase; 862 } 863 864 // Since the offset is too large for the load/store instruction 865 // get the reg+offset into a register. 866 if (needsLowering) { 867 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 868 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 869 Addr.Offset = 0; 870 } 871 } 872 873 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 874 const MachineInstrBuilder &MIB, 875 MachineMemOperand::Flags Flags, 876 bool useAM3) { 877 // addrmode5 output depends on the selection dag addressing dividing the 878 // offset by 4 that it then later multiplies. Do this here as well. 879 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 880 Addr.Offset /= 4; 881 882 // Frame base works a bit differently. Handle it separately. 883 if (Addr.BaseType == Address::FrameIndexBase) { 884 int FI = Addr.Base.FI; 885 int Offset = Addr.Offset; 886 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 887 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 888 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); 889 // Now add the rest of the operands. 890 MIB.addFrameIndex(FI); 891 892 // ARM halfword load/stores and signed byte loads need an additional 893 // operand. 894 if (useAM3) { 895 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 896 MIB.addReg(0); 897 MIB.addImm(Imm); 898 } else { 899 MIB.addImm(Addr.Offset); 900 } 901 MIB.addMemOperand(MMO); 902 } else { 903 // Now add the rest of the operands. 904 MIB.addReg(Addr.Base.Reg); 905 906 // ARM halfword load/stores and signed byte loads need an additional 907 // operand. 908 if (useAM3) { 909 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 910 MIB.addReg(0); 911 MIB.addImm(Imm); 912 } else { 913 MIB.addImm(Addr.Offset); 914 } 915 } 916 AddOptionalDefs(MIB); 917 } 918 919 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 920 unsigned Alignment, bool isZExt, bool allocReg) { 921 unsigned Opc; 922 bool useAM3 = false; 923 bool needVMOV = false; 924 const TargetRegisterClass *RC; 925 switch (VT.SimpleTy) { 926 // This is mostly going to be Neon/vector support. 927 default: return false; 928 case MVT::i1: 929 case MVT::i8: 930 if (isThumb2) { 931 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 932 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 933 else 934 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 935 } else { 936 if (isZExt) { 937 Opc = ARM::LDRBi12; 938 } else { 939 Opc = ARM::LDRSB; 940 useAM3 = true; 941 } 942 } 943 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 944 break; 945 case MVT::i16: 946 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 947 return false; 948 949 if (isThumb2) { 950 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 951 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 952 else 953 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 954 } else { 955 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 956 useAM3 = true; 957 } 958 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 959 break; 960 case MVT::i32: 961 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 962 return false; 963 964 if (isThumb2) { 965 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 966 Opc = ARM::t2LDRi8; 967 else 968 Opc = ARM::t2LDRi12; 969 } else { 970 Opc = ARM::LDRi12; 971 } 972 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 973 break; 974 case MVT::f32: 975 if (!Subtarget->hasVFP2()) return false; 976 // Unaligned loads need special handling. Floats require word-alignment. 977 if (Alignment && Alignment < 4) { 978 needVMOV = true; 979 VT = MVT::i32; 980 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 981 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 982 } else { 983 Opc = ARM::VLDRS; 984 RC = TLI.getRegClassFor(VT); 985 } 986 break; 987 case MVT::f64: 988 if (!Subtarget->hasVFP2()) return false; 989 // FIXME: Unaligned loads need special handling. Doublewords require 990 // word-alignment. 991 if (Alignment && Alignment < 4) 992 return false; 993 994 Opc = ARM::VLDRD; 995 RC = TLI.getRegClassFor(VT); 996 break; 997 } 998 // Simplify this down to something we can handle. 999 ARMSimplifyAddress(Addr, VT, useAM3); 1000 1001 // Create the base instruction, then add the operands. 1002 if (allocReg) 1003 ResultReg = createResultReg(RC); 1004 assert(ResultReg > 255 && "Expected an allocated virtual register."); 1005 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1006 TII.get(Opc), ResultReg); 1007 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1008 1009 // If we had an unaligned load of a float we've converted it to an regular 1010 // load. Now we must move from the GRP to the FP register. 1011 if (needVMOV) { 1012 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1013 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1014 TII.get(ARM::VMOVSR), MoveReg) 1015 .addReg(ResultReg)); 1016 ResultReg = MoveReg; 1017 } 1018 return true; 1019 } 1020 1021 bool ARMFastISel::SelectLoad(const Instruction *I) { 1022 // Atomic loads need special handling. 1023 if (cast<LoadInst>(I)->isAtomic()) 1024 return false; 1025 1026 const Value *SV = I->getOperand(0); 1027 if (TLI.supportSwiftError()) { 1028 // Swifterror values can come from either a function parameter with 1029 // swifterror attribute or an alloca with swifterror attribute. 1030 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1031 if (Arg->hasSwiftErrorAttr()) 1032 return false; 1033 } 1034 1035 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1036 if (Alloca->isSwiftError()) 1037 return false; 1038 } 1039 } 1040 1041 // Verify we have a legal type before going any further. 1042 MVT VT; 1043 if (!isLoadTypeLegal(I->getType(), VT)) 1044 return false; 1045 1046 // See if we can handle this address. 1047 Address Addr; 1048 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1049 1050 unsigned ResultReg; 1051 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1052 return false; 1053 updateValueMap(I, ResultReg); 1054 return true; 1055 } 1056 1057 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1058 unsigned Alignment) { 1059 unsigned StrOpc; 1060 bool useAM3 = false; 1061 switch (VT.SimpleTy) { 1062 // This is mostly going to be Neon/vector support. 1063 default: return false; 1064 case MVT::i1: { 1065 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1066 : &ARM::GPRRegClass); 1067 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1068 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1069 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1070 TII.get(Opc), Res) 1071 .addReg(SrcReg).addImm(1)); 1072 SrcReg = Res; 1073 LLVM_FALLTHROUGH; 1074 } 1075 case MVT::i8: 1076 if (isThumb2) { 1077 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1078 StrOpc = ARM::t2STRBi8; 1079 else 1080 StrOpc = ARM::t2STRBi12; 1081 } else { 1082 StrOpc = ARM::STRBi12; 1083 } 1084 break; 1085 case MVT::i16: 1086 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1087 return false; 1088 1089 if (isThumb2) { 1090 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1091 StrOpc = ARM::t2STRHi8; 1092 else 1093 StrOpc = ARM::t2STRHi12; 1094 } else { 1095 StrOpc = ARM::STRH; 1096 useAM3 = true; 1097 } 1098 break; 1099 case MVT::i32: 1100 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1101 return false; 1102 1103 if (isThumb2) { 1104 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1105 StrOpc = ARM::t2STRi8; 1106 else 1107 StrOpc = ARM::t2STRi12; 1108 } else { 1109 StrOpc = ARM::STRi12; 1110 } 1111 break; 1112 case MVT::f32: 1113 if (!Subtarget->hasVFP2()) return false; 1114 // Unaligned stores need special handling. Floats require word-alignment. 1115 if (Alignment && Alignment < 4) { 1116 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1117 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1118 TII.get(ARM::VMOVRS), MoveReg) 1119 .addReg(SrcReg)); 1120 SrcReg = MoveReg; 1121 VT = MVT::i32; 1122 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1123 } else { 1124 StrOpc = ARM::VSTRS; 1125 } 1126 break; 1127 case MVT::f64: 1128 if (!Subtarget->hasVFP2()) return false; 1129 // FIXME: Unaligned stores need special handling. Doublewords require 1130 // word-alignment. 1131 if (Alignment && Alignment < 4) 1132 return false; 1133 1134 StrOpc = ARM::VSTRD; 1135 break; 1136 } 1137 // Simplify this down to something we can handle. 1138 ARMSimplifyAddress(Addr, VT, useAM3); 1139 1140 // Create the base instruction, then add the operands. 1141 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1142 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1143 TII.get(StrOpc)) 1144 .addReg(SrcReg); 1145 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1146 return true; 1147 } 1148 1149 bool ARMFastISel::SelectStore(const Instruction *I) { 1150 Value *Op0 = I->getOperand(0); 1151 unsigned SrcReg = 0; 1152 1153 // Atomic stores need special handling. 1154 if (cast<StoreInst>(I)->isAtomic()) 1155 return false; 1156 1157 const Value *PtrV = I->getOperand(1); 1158 if (TLI.supportSwiftError()) { 1159 // Swifterror values can come from either a function parameter with 1160 // swifterror attribute or an alloca with swifterror attribute. 1161 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1162 if (Arg->hasSwiftErrorAttr()) 1163 return false; 1164 } 1165 1166 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1167 if (Alloca->isSwiftError()) 1168 return false; 1169 } 1170 } 1171 1172 // Verify we have a legal type before going any further. 1173 MVT VT; 1174 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1175 return false; 1176 1177 // Get the value to be stored into a register. 1178 SrcReg = getRegForValue(Op0); 1179 if (SrcReg == 0) return false; 1180 1181 // See if we can handle this address. 1182 Address Addr; 1183 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1184 return false; 1185 1186 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1187 return false; 1188 return true; 1189 } 1190 1191 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1192 switch (Pred) { 1193 // Needs two compares... 1194 case CmpInst::FCMP_ONE: 1195 case CmpInst::FCMP_UEQ: 1196 default: 1197 // AL is our "false" for now. The other two need more compares. 1198 return ARMCC::AL; 1199 case CmpInst::ICMP_EQ: 1200 case CmpInst::FCMP_OEQ: 1201 return ARMCC::EQ; 1202 case CmpInst::ICMP_SGT: 1203 case CmpInst::FCMP_OGT: 1204 return ARMCC::GT; 1205 case CmpInst::ICMP_SGE: 1206 case CmpInst::FCMP_OGE: 1207 return ARMCC::GE; 1208 case CmpInst::ICMP_UGT: 1209 case CmpInst::FCMP_UGT: 1210 return ARMCC::HI; 1211 case CmpInst::FCMP_OLT: 1212 return ARMCC::MI; 1213 case CmpInst::ICMP_ULE: 1214 case CmpInst::FCMP_OLE: 1215 return ARMCC::LS; 1216 case CmpInst::FCMP_ORD: 1217 return ARMCC::VC; 1218 case CmpInst::FCMP_UNO: 1219 return ARMCC::VS; 1220 case CmpInst::FCMP_UGE: 1221 return ARMCC::PL; 1222 case CmpInst::ICMP_SLT: 1223 case CmpInst::FCMP_ULT: 1224 return ARMCC::LT; 1225 case CmpInst::ICMP_SLE: 1226 case CmpInst::FCMP_ULE: 1227 return ARMCC::LE; 1228 case CmpInst::FCMP_UNE: 1229 case CmpInst::ICMP_NE: 1230 return ARMCC::NE; 1231 case CmpInst::ICMP_UGE: 1232 return ARMCC::HS; 1233 case CmpInst::ICMP_ULT: 1234 return ARMCC::LO; 1235 } 1236 } 1237 1238 bool ARMFastISel::SelectBranch(const Instruction *I) { 1239 const BranchInst *BI = cast<BranchInst>(I); 1240 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1241 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1242 1243 // Simple branch support. 1244 1245 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1246 // behavior. 1247 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1248 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1249 // Get the compare predicate. 1250 // Try to take advantage of fallthrough opportunities. 1251 CmpInst::Predicate Predicate = CI->getPredicate(); 1252 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1253 std::swap(TBB, FBB); 1254 Predicate = CmpInst::getInversePredicate(Predicate); 1255 } 1256 1257 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1258 1259 // We may not handle every CC for now. 1260 if (ARMPred == ARMCC::AL) return false; 1261 1262 // Emit the compare. 1263 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 1264 CI->isEquality())) 1265 return false; 1266 1267 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1268 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1269 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1270 finishCondBranch(BI->getParent(), TBB, FBB); 1271 return true; 1272 } 1273 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1274 MVT SourceVT; 1275 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1276 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1277 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1278 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1279 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1280 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1281 TII.get(TstOpc)) 1282 .addReg(OpReg).addImm(1)); 1283 1284 unsigned CCMode = ARMCC::NE; 1285 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1286 std::swap(TBB, FBB); 1287 CCMode = ARMCC::EQ; 1288 } 1289 1290 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1291 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1292 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1293 1294 finishCondBranch(BI->getParent(), TBB, FBB); 1295 return true; 1296 } 1297 } else if (const ConstantInt *CI = 1298 dyn_cast<ConstantInt>(BI->getCondition())) { 1299 uint64_t Imm = CI->getZExtValue(); 1300 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1301 fastEmitBranch(Target, DbgLoc); 1302 return true; 1303 } 1304 1305 unsigned CmpReg = getRegForValue(BI->getCondition()); 1306 if (CmpReg == 0) return false; 1307 1308 // We've been divorced from our compare! Our block was split, and 1309 // now our compare lives in a predecessor block. We musn't 1310 // re-compare here, as the children of the compare aren't guaranteed 1311 // live across the block boundary (we *could* check for this). 1312 // Regardless, the compare has been done in the predecessor block, 1313 // and it left a value for us in a virtual register. Ergo, we test 1314 // the one-bit value left in the virtual register. 1315 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1316 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1317 AddOptionalDefs( 1318 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1319 .addReg(CmpReg) 1320 .addImm(1)); 1321 1322 unsigned CCMode = ARMCC::NE; 1323 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1324 std::swap(TBB, FBB); 1325 CCMode = ARMCC::EQ; 1326 } 1327 1328 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1329 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1330 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1331 finishCondBranch(BI->getParent(), TBB, FBB); 1332 return true; 1333 } 1334 1335 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1336 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1337 if (AddrReg == 0) return false; 1338 1339 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1340 assert(isThumb2 || Subtarget->hasV4TOps()); 1341 1342 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1343 TII.get(Opc)).addReg(AddrReg)); 1344 1345 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1346 for (const BasicBlock *SuccBB : IB->successors()) 1347 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1348 1349 return true; 1350 } 1351 1352 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1353 bool isZExt, bool isEquality) { 1354 Type *Ty = Src1Value->getType(); 1355 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1356 if (!SrcEVT.isSimple()) return false; 1357 MVT SrcVT = SrcEVT.getSimpleVT(); 1358 1359 if (Ty->isFloatTy() && !Subtarget->hasVFP2()) 1360 return false; 1361 1362 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP())) 1363 return false; 1364 1365 // Check to see if the 2nd operand is a constant that we can encode directly 1366 // in the compare. 1367 int Imm = 0; 1368 bool UseImm = false; 1369 bool isNegativeImm = false; 1370 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1371 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1372 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1373 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1374 SrcVT == MVT::i1) { 1375 const APInt &CIVal = ConstInt->getValue(); 1376 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1377 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1378 // then a cmn, because there is no way to represent 2147483648 as a 1379 // signed 32-bit int. 1380 if (Imm < 0 && Imm != (int)0x80000000) { 1381 isNegativeImm = true; 1382 Imm = -Imm; 1383 } 1384 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1385 (ARM_AM::getSOImmVal(Imm) != -1); 1386 } 1387 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1388 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1389 if (ConstFP->isZero() && !ConstFP->isNegative()) 1390 UseImm = true; 1391 } 1392 1393 unsigned CmpOpc; 1394 bool isICmp = true; 1395 bool needsExt = false; 1396 switch (SrcVT.SimpleTy) { 1397 default: return false; 1398 // TODO: Verify compares. 1399 case MVT::f32: 1400 isICmp = false; 1401 // Equality comparisons shouldn't raise Invalid on uordered inputs. 1402 if (isEquality) 1403 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; 1404 else 1405 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1406 break; 1407 case MVT::f64: 1408 isICmp = false; 1409 // Equality comparisons shouldn't raise Invalid on uordered inputs. 1410 if (isEquality) 1411 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; 1412 else 1413 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1414 break; 1415 case MVT::i1: 1416 case MVT::i8: 1417 case MVT::i16: 1418 needsExt = true; 1419 LLVM_FALLTHROUGH; 1420 case MVT::i32: 1421 if (isThumb2) { 1422 if (!UseImm) 1423 CmpOpc = ARM::t2CMPrr; 1424 else 1425 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1426 } else { 1427 if (!UseImm) 1428 CmpOpc = ARM::CMPrr; 1429 else 1430 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1431 } 1432 break; 1433 } 1434 1435 unsigned SrcReg1 = getRegForValue(Src1Value); 1436 if (SrcReg1 == 0) return false; 1437 1438 unsigned SrcReg2 = 0; 1439 if (!UseImm) { 1440 SrcReg2 = getRegForValue(Src2Value); 1441 if (SrcReg2 == 0) return false; 1442 } 1443 1444 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1445 if (needsExt) { 1446 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1447 if (SrcReg1 == 0) return false; 1448 if (!UseImm) { 1449 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1450 if (SrcReg2 == 0) return false; 1451 } 1452 } 1453 1454 const MCInstrDesc &II = TII.get(CmpOpc); 1455 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1456 if (!UseImm) { 1457 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1458 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1459 .addReg(SrcReg1).addReg(SrcReg2)); 1460 } else { 1461 MachineInstrBuilder MIB; 1462 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1463 .addReg(SrcReg1); 1464 1465 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1466 if (isICmp) 1467 MIB.addImm(Imm); 1468 AddOptionalDefs(MIB); 1469 } 1470 1471 // For floating point we need to move the result to a comparison register 1472 // that we can then use for branches. 1473 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1474 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1475 TII.get(ARM::FMSTAT))); 1476 return true; 1477 } 1478 1479 bool ARMFastISel::SelectCmp(const Instruction *I) { 1480 const CmpInst *CI = cast<CmpInst>(I); 1481 1482 // Get the compare predicate. 1483 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1484 1485 // We may not handle every CC for now. 1486 if (ARMPred == ARMCC::AL) return false; 1487 1488 // Emit the compare. 1489 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(), 1490 CI->isEquality())) 1491 return false; 1492 1493 // Now set a register based on the comparison. Explicitly set the predicates 1494 // here. 1495 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1496 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1497 : &ARM::GPRRegClass; 1498 unsigned DestReg = createResultReg(RC); 1499 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1500 unsigned ZeroReg = fastMaterializeConstant(Zero); 1501 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1503 .addReg(ZeroReg).addImm(1) 1504 .addImm(ARMPred).addReg(ARM::CPSR); 1505 1506 updateValueMap(I, DestReg); 1507 return true; 1508 } 1509 1510 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1511 // Make sure we have VFP and that we're extending float to double. 1512 if (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()) return false; 1513 1514 Value *V = I->getOperand(0); 1515 if (!I->getType()->isDoubleTy() || 1516 !V->getType()->isFloatTy()) return false; 1517 1518 unsigned Op = getRegForValue(V); 1519 if (Op == 0) return false; 1520 1521 unsigned Result = createResultReg(&ARM::DPRRegClass); 1522 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1523 TII.get(ARM::VCVTDS), Result) 1524 .addReg(Op)); 1525 updateValueMap(I, Result); 1526 return true; 1527 } 1528 1529 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1530 // Make sure we have VFP and that we're truncating double to float. 1531 if (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()) return false; 1532 1533 Value *V = I->getOperand(0); 1534 if (!(I->getType()->isFloatTy() && 1535 V->getType()->isDoubleTy())) return false; 1536 1537 unsigned Op = getRegForValue(V); 1538 if (Op == 0) return false; 1539 1540 unsigned Result = createResultReg(&ARM::SPRRegClass); 1541 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1542 TII.get(ARM::VCVTSD), Result) 1543 .addReg(Op)); 1544 updateValueMap(I, Result); 1545 return true; 1546 } 1547 1548 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1549 // Make sure we have VFP. 1550 if (!Subtarget->hasVFP2()) return false; 1551 1552 MVT DstVT; 1553 Type *Ty = I->getType(); 1554 if (!isTypeLegal(Ty, DstVT)) 1555 return false; 1556 1557 Value *Src = I->getOperand(0); 1558 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1559 if (!SrcEVT.isSimple()) 1560 return false; 1561 MVT SrcVT = SrcEVT.getSimpleVT(); 1562 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1563 return false; 1564 1565 unsigned SrcReg = getRegForValue(Src); 1566 if (SrcReg == 0) return false; 1567 1568 // Handle sign-extension. 1569 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1570 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1571 /*isZExt*/!isSigned); 1572 if (SrcReg == 0) return false; 1573 } 1574 1575 // The conversion routine works on fp-reg to fp-reg and the operand above 1576 // was an integer, move it to the fp registers if possible. 1577 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1578 if (FP == 0) return false; 1579 1580 unsigned Opc; 1581 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1582 else if (Ty->isDoubleTy() && !Subtarget->isFPOnlySP()) 1583 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1584 else return false; 1585 1586 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1587 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1588 TII.get(Opc), ResultReg).addReg(FP)); 1589 updateValueMap(I, ResultReg); 1590 return true; 1591 } 1592 1593 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1594 // Make sure we have VFP. 1595 if (!Subtarget->hasVFP2()) return false; 1596 1597 MVT DstVT; 1598 Type *RetTy = I->getType(); 1599 if (!isTypeLegal(RetTy, DstVT)) 1600 return false; 1601 1602 unsigned Op = getRegForValue(I->getOperand(0)); 1603 if (Op == 0) return false; 1604 1605 unsigned Opc; 1606 Type *OpTy = I->getOperand(0)->getType(); 1607 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1608 else if (OpTy->isDoubleTy() && !Subtarget->isFPOnlySP()) 1609 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1610 else return false; 1611 1612 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1613 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1614 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1615 TII.get(Opc), ResultReg).addReg(Op)); 1616 1617 // This result needs to be in an integer register, but the conversion only 1618 // takes place in fp-regs. 1619 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1620 if (IntReg == 0) return false; 1621 1622 updateValueMap(I, IntReg); 1623 return true; 1624 } 1625 1626 bool ARMFastISel::SelectSelect(const Instruction *I) { 1627 MVT VT; 1628 if (!isTypeLegal(I->getType(), VT)) 1629 return false; 1630 1631 // Things need to be register sized for register moves. 1632 if (VT != MVT::i32) return false; 1633 1634 unsigned CondReg = getRegForValue(I->getOperand(0)); 1635 if (CondReg == 0) return false; 1636 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1637 if (Op1Reg == 0) return false; 1638 1639 // Check to see if we can use an immediate in the conditional move. 1640 int Imm = 0; 1641 bool UseImm = false; 1642 bool isNegativeImm = false; 1643 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1644 assert(VT == MVT::i32 && "Expecting an i32."); 1645 Imm = (int)ConstInt->getValue().getZExtValue(); 1646 if (Imm < 0) { 1647 isNegativeImm = true; 1648 Imm = ~Imm; 1649 } 1650 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1651 (ARM_AM::getSOImmVal(Imm) != -1); 1652 } 1653 1654 unsigned Op2Reg = 0; 1655 if (!UseImm) { 1656 Op2Reg = getRegForValue(I->getOperand(2)); 1657 if (Op2Reg == 0) return false; 1658 } 1659 1660 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1661 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1662 AddOptionalDefs( 1663 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1664 .addReg(CondReg) 1665 .addImm(1)); 1666 1667 unsigned MovCCOpc; 1668 const TargetRegisterClass *RC; 1669 if (!UseImm) { 1670 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1671 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1672 } else { 1673 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1674 if (!isNegativeImm) 1675 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1676 else 1677 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1678 } 1679 unsigned ResultReg = createResultReg(RC); 1680 if (!UseImm) { 1681 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1682 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1683 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1684 ResultReg) 1685 .addReg(Op2Reg) 1686 .addReg(Op1Reg) 1687 .addImm(ARMCC::NE) 1688 .addReg(ARM::CPSR); 1689 } else { 1690 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1692 ResultReg) 1693 .addReg(Op1Reg) 1694 .addImm(Imm) 1695 .addImm(ARMCC::EQ) 1696 .addReg(ARM::CPSR); 1697 } 1698 updateValueMap(I, ResultReg); 1699 return true; 1700 } 1701 1702 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1703 MVT VT; 1704 Type *Ty = I->getType(); 1705 if (!isTypeLegal(Ty, VT)) 1706 return false; 1707 1708 // If we have integer div support we should have selected this automagically. 1709 // In case we have a real miss go ahead and return false and we'll pick 1710 // it up later. 1711 if (Subtarget->hasDivideInThumbMode()) 1712 return false; 1713 1714 // Otherwise emit a libcall. 1715 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1716 if (VT == MVT::i8) 1717 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1718 else if (VT == MVT::i16) 1719 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1720 else if (VT == MVT::i32) 1721 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1722 else if (VT == MVT::i64) 1723 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1724 else if (VT == MVT::i128) 1725 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1726 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1727 1728 return ARMEmitLibcall(I, LC); 1729 } 1730 1731 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1732 MVT VT; 1733 Type *Ty = I->getType(); 1734 if (!isTypeLegal(Ty, VT)) 1735 return false; 1736 1737 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1738 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1739 // multi-reg returns, we'll have to bail out. 1740 if (!TLI.hasStandaloneRem(VT)) { 1741 return false; 1742 } 1743 1744 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1745 if (VT == MVT::i8) 1746 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1747 else if (VT == MVT::i16) 1748 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1749 else if (VT == MVT::i32) 1750 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1751 else if (VT == MVT::i64) 1752 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1753 else if (VT == MVT::i128) 1754 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1755 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1756 1757 return ARMEmitLibcall(I, LC); 1758 } 1759 1760 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1761 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1762 1763 // We can get here in the case when we have a binary operation on a non-legal 1764 // type and the target independent selector doesn't know how to handle it. 1765 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1766 return false; 1767 1768 unsigned Opc; 1769 switch (ISDOpcode) { 1770 default: return false; 1771 case ISD::ADD: 1772 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1773 break; 1774 case ISD::OR: 1775 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1776 break; 1777 case ISD::SUB: 1778 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1779 break; 1780 } 1781 1782 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1783 if (SrcReg1 == 0) return false; 1784 1785 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1786 // in the instruction, rather then materializing the value in a register. 1787 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1788 if (SrcReg2 == 0) return false; 1789 1790 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1791 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1792 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1793 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1794 TII.get(Opc), ResultReg) 1795 .addReg(SrcReg1).addReg(SrcReg2)); 1796 updateValueMap(I, ResultReg); 1797 return true; 1798 } 1799 1800 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1801 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1802 if (!FPVT.isSimple()) return false; 1803 MVT VT = FPVT.getSimpleVT(); 1804 1805 // FIXME: Support vector types where possible. 1806 if (VT.isVector()) 1807 return false; 1808 1809 // We can get here in the case when we want to use NEON for our fp 1810 // operations, but can't figure out how to. Just use the vfp instructions 1811 // if we have them. 1812 // FIXME: It'd be nice to use NEON instructions. 1813 Type *Ty = I->getType(); 1814 if (Ty->isFloatTy() && !Subtarget->hasVFP2()) 1815 return false; 1816 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP())) 1817 return false; 1818 1819 unsigned Opc; 1820 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1821 switch (ISDOpcode) { 1822 default: return false; 1823 case ISD::FADD: 1824 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1825 break; 1826 case ISD::FSUB: 1827 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1828 break; 1829 case ISD::FMUL: 1830 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1831 break; 1832 } 1833 unsigned Op1 = getRegForValue(I->getOperand(0)); 1834 if (Op1 == 0) return false; 1835 1836 unsigned Op2 = getRegForValue(I->getOperand(1)); 1837 if (Op2 == 0) return false; 1838 1839 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1840 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1841 TII.get(Opc), ResultReg) 1842 .addReg(Op1).addReg(Op2)); 1843 updateValueMap(I, ResultReg); 1844 return true; 1845 } 1846 1847 // Call Handling Code 1848 1849 // This is largely taken directly from CCAssignFnForNode 1850 // TODO: We may not support all of this. 1851 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1852 bool Return, 1853 bool isVarArg) { 1854 switch (CC) { 1855 default: 1856 report_fatal_error("Unsupported calling convention"); 1857 case CallingConv::Fast: 1858 if (Subtarget->hasVFP2() && !isVarArg) { 1859 if (!Subtarget->isAAPCS_ABI()) 1860 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1861 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1862 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1863 } 1864 LLVM_FALLTHROUGH; 1865 case CallingConv::C: 1866 case CallingConv::CXX_FAST_TLS: 1867 // Use target triple & subtarget features to do actual dispatch. 1868 if (Subtarget->isAAPCS_ABI()) { 1869 if (Subtarget->hasVFP2() && 1870 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1871 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1872 else 1873 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1874 } else { 1875 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1876 } 1877 case CallingConv::ARM_AAPCS_VFP: 1878 case CallingConv::Swift: 1879 if (!isVarArg) 1880 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1881 // Fall through to soft float variant, variadic functions don't 1882 // use hard floating point ABI. 1883 LLVM_FALLTHROUGH; 1884 case CallingConv::ARM_AAPCS: 1885 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1886 case CallingConv::ARM_APCS: 1887 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1888 case CallingConv::GHC: 1889 if (Return) 1890 report_fatal_error("Can't return in GHC call convention"); 1891 else 1892 return CC_ARM_APCS_GHC; 1893 } 1894 } 1895 1896 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1897 SmallVectorImpl<unsigned> &ArgRegs, 1898 SmallVectorImpl<MVT> &ArgVTs, 1899 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1900 SmallVectorImpl<unsigned> &RegArgs, 1901 CallingConv::ID CC, 1902 unsigned &NumBytes, 1903 bool isVarArg) { 1904 SmallVector<CCValAssign, 16> ArgLocs; 1905 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1906 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1907 CCAssignFnForCall(CC, false, isVarArg)); 1908 1909 // Check that we can handle all of the arguments. If we can't, then bail out 1910 // now before we add code to the MBB. 1911 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1912 CCValAssign &VA = ArgLocs[i]; 1913 MVT ArgVT = ArgVTs[VA.getValNo()]; 1914 1915 // We don't handle NEON/vector parameters yet. 1916 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1917 return false; 1918 1919 // Now copy/store arg to correct locations. 1920 if (VA.isRegLoc() && !VA.needsCustom()) { 1921 continue; 1922 } else if (VA.needsCustom()) { 1923 // TODO: We need custom lowering for vector (v2f64) args. 1924 if (VA.getLocVT() != MVT::f64 || 1925 // TODO: Only handle register args for now. 1926 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1927 return false; 1928 } else { 1929 switch (ArgVT.SimpleTy) { 1930 default: 1931 return false; 1932 case MVT::i1: 1933 case MVT::i8: 1934 case MVT::i16: 1935 case MVT::i32: 1936 break; 1937 case MVT::f32: 1938 if (!Subtarget->hasVFP2()) 1939 return false; 1940 break; 1941 case MVT::f64: 1942 if (!Subtarget->hasVFP2()) 1943 return false; 1944 break; 1945 } 1946 } 1947 } 1948 1949 // At the point, we are able to handle the call's arguments in fast isel. 1950 1951 // Get a count of how many bytes are to be pushed on the stack. 1952 NumBytes = CCInfo.getNextStackOffset(); 1953 1954 // Issue CALLSEQ_START 1955 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1956 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1957 TII.get(AdjStackDown)) 1958 .addImm(NumBytes).addImm(0)); 1959 1960 // Process the args. 1961 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1962 CCValAssign &VA = ArgLocs[i]; 1963 const Value *ArgVal = Args[VA.getValNo()]; 1964 unsigned Arg = ArgRegs[VA.getValNo()]; 1965 MVT ArgVT = ArgVTs[VA.getValNo()]; 1966 1967 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1968 "We don't handle NEON/vector parameters yet."); 1969 1970 // Handle arg promotion, etc. 1971 switch (VA.getLocInfo()) { 1972 case CCValAssign::Full: break; 1973 case CCValAssign::SExt: { 1974 MVT DestVT = VA.getLocVT(); 1975 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1976 assert(Arg != 0 && "Failed to emit a sext"); 1977 ArgVT = DestVT; 1978 break; 1979 } 1980 case CCValAssign::AExt: 1981 // Intentional fall-through. Handle AExt and ZExt. 1982 case CCValAssign::ZExt: { 1983 MVT DestVT = VA.getLocVT(); 1984 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1985 assert(Arg != 0 && "Failed to emit a zext"); 1986 ArgVT = DestVT; 1987 break; 1988 } 1989 case CCValAssign::BCvt: { 1990 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1991 /*TODO: Kill=*/false); 1992 assert(BC != 0 && "Failed to emit a bitcast!"); 1993 Arg = BC; 1994 ArgVT = VA.getLocVT(); 1995 break; 1996 } 1997 default: llvm_unreachable("Unknown arg promotion!"); 1998 } 1999 2000 // Now copy/store arg to correct locations. 2001 if (VA.isRegLoc() && !VA.needsCustom()) { 2002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2003 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 2004 RegArgs.push_back(VA.getLocReg()); 2005 } else if (VA.needsCustom()) { 2006 // TODO: We need custom lowering for vector (v2f64) args. 2007 assert(VA.getLocVT() == MVT::f64 && 2008 "Custom lowering for v2f64 args not available"); 2009 2010 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() 2011 CCValAssign &NextVA = ArgLocs[++i]; 2012 2013 assert(VA.isRegLoc() && NextVA.isRegLoc() && 2014 "We only handle register args!"); 2015 2016 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2017 TII.get(ARM::VMOVRRD), VA.getLocReg()) 2018 .addReg(NextVA.getLocReg(), RegState::Define) 2019 .addReg(Arg)); 2020 RegArgs.push_back(VA.getLocReg()); 2021 RegArgs.push_back(NextVA.getLocReg()); 2022 } else { 2023 assert(VA.isMemLoc()); 2024 // Need to store on the stack. 2025 2026 // Don't emit stores for undef values. 2027 if (isa<UndefValue>(ArgVal)) 2028 continue; 2029 2030 Address Addr; 2031 Addr.BaseType = Address::RegBase; 2032 Addr.Base.Reg = ARM::SP; 2033 Addr.Offset = VA.getLocMemOffset(); 2034 2035 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2036 assert(EmitRet && "Could not emit a store for argument!"); 2037 } 2038 } 2039 2040 return true; 2041 } 2042 2043 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2044 const Instruction *I, CallingConv::ID CC, 2045 unsigned &NumBytes, bool isVarArg) { 2046 // Issue CALLSEQ_END 2047 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2048 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2049 TII.get(AdjStackUp)) 2050 .addImm(NumBytes).addImm(0)); 2051 2052 // Now the return value. 2053 if (RetVT != MVT::isVoid) { 2054 SmallVector<CCValAssign, 16> RVLocs; 2055 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2056 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2057 2058 // Copy all of the result registers out of their specified physreg. 2059 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2060 // For this move we copy into two registers and then move into the 2061 // double fp reg we want. 2062 MVT DestVT = RVLocs[0].getValVT(); 2063 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2064 unsigned ResultReg = createResultReg(DstRC); 2065 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2066 TII.get(ARM::VMOVDRR), ResultReg) 2067 .addReg(RVLocs[0].getLocReg()) 2068 .addReg(RVLocs[1].getLocReg())); 2069 2070 UsedRegs.push_back(RVLocs[0].getLocReg()); 2071 UsedRegs.push_back(RVLocs[1].getLocReg()); 2072 2073 // Finally update the result. 2074 updateValueMap(I, ResultReg); 2075 } else { 2076 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2077 MVT CopyVT = RVLocs[0].getValVT(); 2078 2079 // Special handling for extended integers. 2080 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2081 CopyVT = MVT::i32; 2082 2083 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2084 2085 unsigned ResultReg = createResultReg(DstRC); 2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2087 TII.get(TargetOpcode::COPY), 2088 ResultReg).addReg(RVLocs[0].getLocReg()); 2089 UsedRegs.push_back(RVLocs[0].getLocReg()); 2090 2091 // Finally update the result. 2092 updateValueMap(I, ResultReg); 2093 } 2094 } 2095 2096 return true; 2097 } 2098 2099 bool ARMFastISel::SelectRet(const Instruction *I) { 2100 const ReturnInst *Ret = cast<ReturnInst>(I); 2101 const Function &F = *I->getParent()->getParent(); 2102 2103 if (!FuncInfo.CanLowerReturn) 2104 return false; 2105 2106 if (TLI.supportSwiftError() && 2107 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2108 return false; 2109 2110 if (TLI.supportSplitCSR(FuncInfo.MF)) 2111 return false; 2112 2113 // Build a list of return value registers. 2114 SmallVector<unsigned, 4> RetRegs; 2115 2116 CallingConv::ID CC = F.getCallingConv(); 2117 if (Ret->getNumOperands() > 0) { 2118 SmallVector<ISD::OutputArg, 4> Outs; 2119 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2120 2121 // Analyze operands of the call, assigning locations to each operand. 2122 SmallVector<CCValAssign, 16> ValLocs; 2123 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2124 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2125 F.isVarArg())); 2126 2127 const Value *RV = Ret->getOperand(0); 2128 unsigned Reg = getRegForValue(RV); 2129 if (Reg == 0) 2130 return false; 2131 2132 // Only handle a single return value for now. 2133 if (ValLocs.size() != 1) 2134 return false; 2135 2136 CCValAssign &VA = ValLocs[0]; 2137 2138 // Don't bother handling odd stuff for now. 2139 if (VA.getLocInfo() != CCValAssign::Full) 2140 return false; 2141 // Only handle register returns for now. 2142 if (!VA.isRegLoc()) 2143 return false; 2144 2145 unsigned SrcReg = Reg + VA.getValNo(); 2146 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2147 if (!RVEVT.isSimple()) return false; 2148 MVT RVVT = RVEVT.getSimpleVT(); 2149 MVT DestVT = VA.getValVT(); 2150 // Special handling for extended integers. 2151 if (RVVT != DestVT) { 2152 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2153 return false; 2154 2155 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2156 2157 // Perform extension if flagged as either zext or sext. Otherwise, do 2158 // nothing. 2159 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2160 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2161 if (SrcReg == 0) return false; 2162 } 2163 } 2164 2165 // Make the copy. 2166 unsigned DstReg = VA.getLocReg(); 2167 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2168 // Avoid a cross-class copy. This is very unlikely. 2169 if (!SrcRC->contains(DstReg)) 2170 return false; 2171 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2172 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2173 2174 // Add register to return instruction. 2175 RetRegs.push_back(VA.getLocReg()); 2176 } 2177 2178 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2179 TII.get(Subtarget->getReturnOpcode())); 2180 AddOptionalDefs(MIB); 2181 for (unsigned R : RetRegs) 2182 MIB.addReg(R, RegState::Implicit); 2183 return true; 2184 } 2185 2186 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2187 if (UseReg) 2188 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2189 else 2190 return isThumb2 ? ARM::tBL : ARM::BL; 2191 } 2192 2193 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2194 // Manually compute the global's type to avoid building it when unnecessary. 2195 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2196 EVT LCREVT = TLI.getValueType(DL, GVTy); 2197 if (!LCREVT.isSimple()) return 0; 2198 2199 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2200 GlobalValue::ExternalLinkage, nullptr, 2201 Name); 2202 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2203 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2204 } 2205 2206 // A quick function that will emit a call for a named libcall in F with the 2207 // vector of passed arguments for the Instruction in I. We can assume that we 2208 // can emit a call for any libcall we can produce. This is an abridged version 2209 // of the full call infrastructure since we won't need to worry about things 2210 // like computed function pointers or strange arguments at call sites. 2211 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2212 // with X86. 2213 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2214 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2215 2216 // Handle *simple* calls for now. 2217 Type *RetTy = I->getType(); 2218 MVT RetVT; 2219 if (RetTy->isVoidTy()) 2220 RetVT = MVT::isVoid; 2221 else if (!isTypeLegal(RetTy, RetVT)) 2222 return false; 2223 2224 // Can't handle non-double multi-reg retvals. 2225 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2226 SmallVector<CCValAssign, 16> RVLocs; 2227 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2228 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2229 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2230 return false; 2231 } 2232 2233 // Set up the argument vectors. 2234 SmallVector<Value*, 8> Args; 2235 SmallVector<unsigned, 8> ArgRegs; 2236 SmallVector<MVT, 8> ArgVTs; 2237 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2238 Args.reserve(I->getNumOperands()); 2239 ArgRegs.reserve(I->getNumOperands()); 2240 ArgVTs.reserve(I->getNumOperands()); 2241 ArgFlags.reserve(I->getNumOperands()); 2242 for (Value *Op : I->operands()) { 2243 unsigned Arg = getRegForValue(Op); 2244 if (Arg == 0) return false; 2245 2246 Type *ArgTy = Op->getType(); 2247 MVT ArgVT; 2248 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2249 2250 ISD::ArgFlagsTy Flags; 2251 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2252 Flags.setOrigAlign(OriginalAlignment); 2253 2254 Args.push_back(Op); 2255 ArgRegs.push_back(Arg); 2256 ArgVTs.push_back(ArgVT); 2257 ArgFlags.push_back(Flags); 2258 } 2259 2260 // Handle the arguments now that we've gotten them. 2261 SmallVector<unsigned, 4> RegArgs; 2262 unsigned NumBytes; 2263 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2264 RegArgs, CC, NumBytes, false)) 2265 return false; 2266 2267 unsigned CalleeReg = 0; 2268 if (Subtarget->genLongCalls()) { 2269 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2270 if (CalleeReg == 0) return false; 2271 } 2272 2273 // Issue the call. 2274 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2275 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2276 DbgLoc, TII.get(CallOpc)); 2277 // BL / BLX don't take a predicate, but tBL / tBLX do. 2278 if (isThumb2) 2279 MIB.add(predOps(ARMCC::AL)); 2280 if (Subtarget->genLongCalls()) 2281 MIB.addReg(CalleeReg); 2282 else 2283 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2284 2285 // Add implicit physical register uses to the call. 2286 for (unsigned R : RegArgs) 2287 MIB.addReg(R, RegState::Implicit); 2288 2289 // Add a register mask with the call-preserved registers. 2290 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2291 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2292 2293 // Finish off the call including any return values. 2294 SmallVector<unsigned, 4> UsedRegs; 2295 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2296 2297 // Set all unused physreg defs as dead. 2298 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2299 2300 return true; 2301 } 2302 2303 bool ARMFastISel::SelectCall(const Instruction *I, 2304 const char *IntrMemName = nullptr) { 2305 const CallInst *CI = cast<CallInst>(I); 2306 const Value *Callee = CI->getCalledValue(); 2307 2308 // Can't handle inline asm. 2309 if (isa<InlineAsm>(Callee)) return false; 2310 2311 // Allow SelectionDAG isel to handle tail calls. 2312 if (CI->isTailCall()) return false; 2313 2314 // Check the calling convention. 2315 ImmutableCallSite CS(CI); 2316 CallingConv::ID CC = CS.getCallingConv(); 2317 2318 // TODO: Avoid some calling conventions? 2319 2320 FunctionType *FTy = CS.getFunctionType(); 2321 bool isVarArg = FTy->isVarArg(); 2322 2323 // Handle *simple* calls for now. 2324 Type *RetTy = I->getType(); 2325 MVT RetVT; 2326 if (RetTy->isVoidTy()) 2327 RetVT = MVT::isVoid; 2328 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2329 RetVT != MVT::i8 && RetVT != MVT::i1) 2330 return false; 2331 2332 // Can't handle non-double multi-reg retvals. 2333 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2334 RetVT != MVT::i16 && RetVT != MVT::i32) { 2335 SmallVector<CCValAssign, 16> RVLocs; 2336 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2337 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2338 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2339 return false; 2340 } 2341 2342 // Set up the argument vectors. 2343 SmallVector<Value*, 8> Args; 2344 SmallVector<unsigned, 8> ArgRegs; 2345 SmallVector<MVT, 8> ArgVTs; 2346 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2347 unsigned arg_size = CS.arg_size(); 2348 Args.reserve(arg_size); 2349 ArgRegs.reserve(arg_size); 2350 ArgVTs.reserve(arg_size); 2351 ArgFlags.reserve(arg_size); 2352 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2353 i != e; ++i) { 2354 // If we're lowering a memory intrinsic instead of a regular call, skip the 2355 // last argument, which shouldn't be passed to the underlying function. 2356 if (IntrMemName && e - i <= 1) 2357 break; 2358 2359 ISD::ArgFlagsTy Flags; 2360 unsigned ArgIdx = i - CS.arg_begin(); 2361 if (CS.paramHasAttr(ArgIdx, Attribute::SExt)) 2362 Flags.setSExt(); 2363 if (CS.paramHasAttr(ArgIdx, Attribute::ZExt)) 2364 Flags.setZExt(); 2365 2366 // FIXME: Only handle *easy* calls for now. 2367 if (CS.paramHasAttr(ArgIdx, Attribute::InReg) || 2368 CS.paramHasAttr(ArgIdx, Attribute::StructRet) || 2369 CS.paramHasAttr(ArgIdx, Attribute::SwiftSelf) || 2370 CS.paramHasAttr(ArgIdx, Attribute::SwiftError) || 2371 CS.paramHasAttr(ArgIdx, Attribute::Nest) || 2372 CS.paramHasAttr(ArgIdx, Attribute::ByVal)) 2373 return false; 2374 2375 Type *ArgTy = (*i)->getType(); 2376 MVT ArgVT; 2377 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2378 ArgVT != MVT::i1) 2379 return false; 2380 2381 unsigned Arg = getRegForValue(*i); 2382 if (Arg == 0) 2383 return false; 2384 2385 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2386 Flags.setOrigAlign(OriginalAlignment); 2387 2388 Args.push_back(*i); 2389 ArgRegs.push_back(Arg); 2390 ArgVTs.push_back(ArgVT); 2391 ArgFlags.push_back(Flags); 2392 } 2393 2394 // Handle the arguments now that we've gotten them. 2395 SmallVector<unsigned, 4> RegArgs; 2396 unsigned NumBytes; 2397 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2398 RegArgs, CC, NumBytes, isVarArg)) 2399 return false; 2400 2401 bool UseReg = false; 2402 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2403 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2404 2405 unsigned CalleeReg = 0; 2406 if (UseReg) { 2407 if (IntrMemName) 2408 CalleeReg = getLibcallReg(IntrMemName); 2409 else 2410 CalleeReg = getRegForValue(Callee); 2411 2412 if (CalleeReg == 0) return false; 2413 } 2414 2415 // Issue the call. 2416 unsigned CallOpc = ARMSelectCallOp(UseReg); 2417 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2418 DbgLoc, TII.get(CallOpc)); 2419 2420 // ARM calls don't take a predicate, but tBL / tBLX do. 2421 if(isThumb2) 2422 MIB.add(predOps(ARMCC::AL)); 2423 if (UseReg) 2424 MIB.addReg(CalleeReg); 2425 else if (!IntrMemName) 2426 MIB.addGlobalAddress(GV, 0, 0); 2427 else 2428 MIB.addExternalSymbol(IntrMemName, 0); 2429 2430 // Add implicit physical register uses to the call. 2431 for (unsigned R : RegArgs) 2432 MIB.addReg(R, RegState::Implicit); 2433 2434 // Add a register mask with the call-preserved registers. 2435 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2436 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2437 2438 // Finish off the call including any return values. 2439 SmallVector<unsigned, 4> UsedRegs; 2440 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2441 return false; 2442 2443 // Set all unused physreg defs as dead. 2444 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2445 2446 return true; 2447 } 2448 2449 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2450 return Len <= 16; 2451 } 2452 2453 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2454 uint64_t Len, unsigned Alignment) { 2455 // Make sure we don't bloat code by inlining very large memcpy's. 2456 if (!ARMIsMemCpySmall(Len)) 2457 return false; 2458 2459 while (Len) { 2460 MVT VT; 2461 if (!Alignment || Alignment >= 4) { 2462 if (Len >= 4) 2463 VT = MVT::i32; 2464 else if (Len >= 2) 2465 VT = MVT::i16; 2466 else { 2467 assert(Len == 1 && "Expected a length of 1!"); 2468 VT = MVT::i8; 2469 } 2470 } else { 2471 // Bound based on alignment. 2472 if (Len >= 2 && Alignment == 2) 2473 VT = MVT::i16; 2474 else { 2475 VT = MVT::i8; 2476 } 2477 } 2478 2479 bool RV; 2480 unsigned ResultReg; 2481 RV = ARMEmitLoad(VT, ResultReg, Src); 2482 assert(RV && "Should be able to handle this load."); 2483 RV = ARMEmitStore(VT, ResultReg, Dest); 2484 assert(RV && "Should be able to handle this store."); 2485 (void)RV; 2486 2487 unsigned Size = VT.getSizeInBits()/8; 2488 Len -= Size; 2489 Dest.Offset += Size; 2490 Src.Offset += Size; 2491 } 2492 2493 return true; 2494 } 2495 2496 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2497 // FIXME: Handle more intrinsics. 2498 switch (I.getIntrinsicID()) { 2499 default: return false; 2500 case Intrinsic::frameaddress: { 2501 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 2502 MFI.setFrameAddressIsTaken(true); 2503 2504 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2505 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2506 : &ARM::GPRRegClass; 2507 2508 const ARMBaseRegisterInfo *RegInfo = 2509 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2510 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2511 unsigned SrcReg = FramePtr; 2512 2513 // Recursively load frame address 2514 // ldr r0 [fp] 2515 // ldr r0 [r0] 2516 // ldr r0 [r0] 2517 // ... 2518 unsigned DestReg; 2519 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2520 while (Depth--) { 2521 DestReg = createResultReg(RC); 2522 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2523 TII.get(LdrOpc), DestReg) 2524 .addReg(SrcReg).addImm(0)); 2525 SrcReg = DestReg; 2526 } 2527 updateValueMap(&I, SrcReg); 2528 return true; 2529 } 2530 case Intrinsic::memcpy: 2531 case Intrinsic::memmove: { 2532 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2533 // Don't handle volatile. 2534 if (MTI.isVolatile()) 2535 return false; 2536 2537 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2538 // we would emit dead code because we don't currently handle memmoves. 2539 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2540 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2541 // Small memcpy's are common enough that we want to do them without a call 2542 // if possible. 2543 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2544 if (ARMIsMemCpySmall(Len)) { 2545 Address Dest, Src; 2546 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2547 !ARMComputeAddress(MTI.getRawSource(), Src)) 2548 return false; 2549 unsigned Alignment = MTI.getAlignment(); 2550 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2551 return true; 2552 } 2553 } 2554 2555 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2556 return false; 2557 2558 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2559 return false; 2560 2561 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2562 return SelectCall(&I, IntrMemName); 2563 } 2564 case Intrinsic::memset: { 2565 const MemSetInst &MSI = cast<MemSetInst>(I); 2566 // Don't handle volatile. 2567 if (MSI.isVolatile()) 2568 return false; 2569 2570 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2571 return false; 2572 2573 if (MSI.getDestAddressSpace() > 255) 2574 return false; 2575 2576 return SelectCall(&I, "memset"); 2577 } 2578 case Intrinsic::trap: { 2579 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2580 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2581 return true; 2582 } 2583 } 2584 } 2585 2586 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2587 // The high bits for a type smaller than the register size are assumed to be 2588 // undefined. 2589 Value *Op = I->getOperand(0); 2590 2591 EVT SrcVT, DestVT; 2592 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2593 DestVT = TLI.getValueType(DL, I->getType(), true); 2594 2595 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2596 return false; 2597 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2598 return false; 2599 2600 unsigned SrcReg = getRegForValue(Op); 2601 if (!SrcReg) return false; 2602 2603 // Because the high bits are undefined, a truncate doesn't generate 2604 // any code. 2605 updateValueMap(I, SrcReg); 2606 return true; 2607 } 2608 2609 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2610 bool isZExt) { 2611 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2612 return 0; 2613 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2614 return 0; 2615 2616 // Table of which combinations can be emitted as a single instruction, 2617 // and which will require two. 2618 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2619 // ARM Thumb 2620 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2621 // ext: s z s z s z s z 2622 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2623 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2624 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2625 }; 2626 2627 // Target registers for: 2628 // - For ARM can never be PC. 2629 // - For 16-bit Thumb are restricted to lower 8 registers. 2630 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2631 static const TargetRegisterClass *RCTbl[2][2] = { 2632 // Instructions: Two Single 2633 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2634 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2635 }; 2636 2637 // Table governing the instruction(s) to be emitted. 2638 static const struct InstructionTable { 2639 uint32_t Opc : 16; 2640 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2641 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2642 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2643 } IT[2][2][3][2] = { 2644 { // Two instructions (first is left shift, second is in this table). 2645 { // ARM Opc S Shift Imm 2646 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2647 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2648 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2649 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2650 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2651 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2652 }, 2653 { // Thumb Opc S Shift Imm 2654 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2655 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2656 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2657 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2658 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2659 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2660 } 2661 }, 2662 { // Single instruction. 2663 { // ARM Opc S Shift Imm 2664 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2665 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2666 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2667 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2668 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2669 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2670 }, 2671 { // Thumb Opc S Shift Imm 2672 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2673 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2674 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2675 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2676 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2677 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2678 } 2679 } 2680 }; 2681 2682 unsigned SrcBits = SrcVT.getSizeInBits(); 2683 unsigned DestBits = DestVT.getSizeInBits(); 2684 (void) DestBits; 2685 assert((SrcBits < DestBits) && "can only extend to larger types"); 2686 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2687 "other sizes unimplemented"); 2688 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2689 "other sizes unimplemented"); 2690 2691 bool hasV6Ops = Subtarget->hasV6Ops(); 2692 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2693 assert((Bitness < 3) && "sanity-check table bounds"); 2694 2695 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2696 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2697 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2698 unsigned Opc = ITP->Opc; 2699 assert(ARM::KILL != Opc && "Invalid table entry"); 2700 unsigned hasS = ITP->hasS; 2701 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2702 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2703 "only MOVsi has shift operand addressing mode"); 2704 unsigned Imm = ITP->Imm; 2705 2706 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2707 bool setsCPSR = &ARM::tGPRRegClass == RC; 2708 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2709 unsigned ResultReg; 2710 // MOVsi encodes shift and immediate in shift operand addressing mode. 2711 // The following condition has the same value when emitting two 2712 // instruction sequences: both are shifts. 2713 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2714 2715 // Either one or two instructions are emitted. 2716 // They're always of the form: 2717 // dst = in OP imm 2718 // CPSR is set only by 16-bit Thumb instructions. 2719 // Predicate, if any, is AL. 2720 // S bit, if available, is always 0. 2721 // When two are emitted the first's result will feed as the second's input, 2722 // that value is then dead. 2723 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2724 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2725 ResultReg = createResultReg(RC); 2726 bool isLsl = (0 == Instr) && !isSingleInstr; 2727 unsigned Opcode = isLsl ? LSLOpc : Opc; 2728 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2729 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2730 bool isKill = 1 == Instr; 2731 MachineInstrBuilder MIB = BuildMI( 2732 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2733 if (setsCPSR) 2734 MIB.addReg(ARM::CPSR, RegState::Define); 2735 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2736 MIB.addReg(SrcReg, isKill * RegState::Kill) 2737 .addImm(ImmEnc) 2738 .add(predOps(ARMCC::AL)); 2739 if (hasS) 2740 MIB.add(condCodeOp()); 2741 // Second instruction consumes the first's result. 2742 SrcReg = ResultReg; 2743 } 2744 2745 return ResultReg; 2746 } 2747 2748 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2749 // On ARM, in general, integer casts don't involve legal types; this code 2750 // handles promotable integers. 2751 Type *DestTy = I->getType(); 2752 Value *Src = I->getOperand(0); 2753 Type *SrcTy = Src->getType(); 2754 2755 bool isZExt = isa<ZExtInst>(I); 2756 unsigned SrcReg = getRegForValue(Src); 2757 if (!SrcReg) return false; 2758 2759 EVT SrcEVT, DestEVT; 2760 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2761 DestEVT = TLI.getValueType(DL, DestTy, true); 2762 if (!SrcEVT.isSimple()) return false; 2763 if (!DestEVT.isSimple()) return false; 2764 2765 MVT SrcVT = SrcEVT.getSimpleVT(); 2766 MVT DestVT = DestEVT.getSimpleVT(); 2767 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2768 if (ResultReg == 0) return false; 2769 updateValueMap(I, ResultReg); 2770 return true; 2771 } 2772 2773 bool ARMFastISel::SelectShift(const Instruction *I, 2774 ARM_AM::ShiftOpc ShiftTy) { 2775 // We handle thumb2 mode by target independent selector 2776 // or SelectionDAG ISel. 2777 if (isThumb2) 2778 return false; 2779 2780 // Only handle i32 now. 2781 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2782 if (DestVT != MVT::i32) 2783 return false; 2784 2785 unsigned Opc = ARM::MOVsr; 2786 unsigned ShiftImm; 2787 Value *Src2Value = I->getOperand(1); 2788 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2789 ShiftImm = CI->getZExtValue(); 2790 2791 // Fall back to selection DAG isel if the shift amount 2792 // is zero or greater than the width of the value type. 2793 if (ShiftImm == 0 || ShiftImm >=32) 2794 return false; 2795 2796 Opc = ARM::MOVsi; 2797 } 2798 2799 Value *Src1Value = I->getOperand(0); 2800 unsigned Reg1 = getRegForValue(Src1Value); 2801 if (Reg1 == 0) return false; 2802 2803 unsigned Reg2 = 0; 2804 if (Opc == ARM::MOVsr) { 2805 Reg2 = getRegForValue(Src2Value); 2806 if (Reg2 == 0) return false; 2807 } 2808 2809 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2810 if(ResultReg == 0) return false; 2811 2812 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2813 TII.get(Opc), ResultReg) 2814 .addReg(Reg1); 2815 2816 if (Opc == ARM::MOVsi) 2817 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2818 else if (Opc == ARM::MOVsr) { 2819 MIB.addReg(Reg2); 2820 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2821 } 2822 2823 AddOptionalDefs(MIB); 2824 updateValueMap(I, ResultReg); 2825 return true; 2826 } 2827 2828 // TODO: SoftFP support. 2829 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2830 switch (I->getOpcode()) { 2831 case Instruction::Load: 2832 return SelectLoad(I); 2833 case Instruction::Store: 2834 return SelectStore(I); 2835 case Instruction::Br: 2836 return SelectBranch(I); 2837 case Instruction::IndirectBr: 2838 return SelectIndirectBr(I); 2839 case Instruction::ICmp: 2840 case Instruction::FCmp: 2841 return SelectCmp(I); 2842 case Instruction::FPExt: 2843 return SelectFPExt(I); 2844 case Instruction::FPTrunc: 2845 return SelectFPTrunc(I); 2846 case Instruction::SIToFP: 2847 return SelectIToFP(I, /*isSigned*/ true); 2848 case Instruction::UIToFP: 2849 return SelectIToFP(I, /*isSigned*/ false); 2850 case Instruction::FPToSI: 2851 return SelectFPToI(I, /*isSigned*/ true); 2852 case Instruction::FPToUI: 2853 return SelectFPToI(I, /*isSigned*/ false); 2854 case Instruction::Add: 2855 return SelectBinaryIntOp(I, ISD::ADD); 2856 case Instruction::Or: 2857 return SelectBinaryIntOp(I, ISD::OR); 2858 case Instruction::Sub: 2859 return SelectBinaryIntOp(I, ISD::SUB); 2860 case Instruction::FAdd: 2861 return SelectBinaryFPOp(I, ISD::FADD); 2862 case Instruction::FSub: 2863 return SelectBinaryFPOp(I, ISD::FSUB); 2864 case Instruction::FMul: 2865 return SelectBinaryFPOp(I, ISD::FMUL); 2866 case Instruction::SDiv: 2867 return SelectDiv(I, /*isSigned*/ true); 2868 case Instruction::UDiv: 2869 return SelectDiv(I, /*isSigned*/ false); 2870 case Instruction::SRem: 2871 return SelectRem(I, /*isSigned*/ true); 2872 case Instruction::URem: 2873 return SelectRem(I, /*isSigned*/ false); 2874 case Instruction::Call: 2875 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2876 return SelectIntrinsicCall(*II); 2877 return SelectCall(I); 2878 case Instruction::Select: 2879 return SelectSelect(I); 2880 case Instruction::Ret: 2881 return SelectRet(I); 2882 case Instruction::Trunc: 2883 return SelectTrunc(I); 2884 case Instruction::ZExt: 2885 case Instruction::SExt: 2886 return SelectIntExt(I); 2887 case Instruction::Shl: 2888 return SelectShift(I, ARM_AM::lsl); 2889 case Instruction::LShr: 2890 return SelectShift(I, ARM_AM::lsr); 2891 case Instruction::AShr: 2892 return SelectShift(I, ARM_AM::asr); 2893 default: break; 2894 } 2895 return false; 2896 } 2897 2898 // This table describes sign- and zero-extend instructions which can be 2899 // folded into a preceding load. All of these extends have an immediate 2900 // (sometimes a mask and sometimes a shift) that's applied after 2901 // extension. 2902 static const struct FoldableLoadExtendsStruct { 2903 uint16_t Opc[2]; // ARM, Thumb. 2904 uint8_t ExpectedImm; 2905 uint8_t isZExt : 1; 2906 uint8_t ExpectedVT : 7; 2907 } FoldableLoadExtends[] = { 2908 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2909 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2910 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2911 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2912 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2913 }; 2914 2915 /// \brief The specified machine instr operand is a vreg, and that 2916 /// vreg is being provided by the specified load instruction. If possible, 2917 /// try to fold the load as an operand to the instruction, returning true if 2918 /// successful. 2919 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2920 const LoadInst *LI) { 2921 // Verify we have a legal type before going any further. 2922 MVT VT; 2923 if (!isLoadTypeLegal(LI->getType(), VT)) 2924 return false; 2925 2926 // Combine load followed by zero- or sign-extend. 2927 // ldrb r1, [r0] ldrb r1, [r0] 2928 // uxtb r2, r1 => 2929 // mov r3, r2 mov r3, r1 2930 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2931 return false; 2932 const uint64_t Imm = MI->getOperand(2).getImm(); 2933 2934 bool Found = false; 2935 bool isZExt; 2936 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) { 2937 if (FLE.Opc[isThumb2] == MI->getOpcode() && 2938 (uint64_t)FLE.ExpectedImm == Imm && 2939 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) { 2940 Found = true; 2941 isZExt = FLE.isZExt; 2942 } 2943 } 2944 if (!Found) return false; 2945 2946 // See if we can handle this address. 2947 Address Addr; 2948 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2949 2950 unsigned ResultReg = MI->getOperand(0).getReg(); 2951 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2952 return false; 2953 MI->eraseFromParent(); 2954 return true; 2955 } 2956 2957 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2958 unsigned Align, MVT VT) { 2959 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 2960 2961 LLVMContext *Context = &MF->getFunction().getContext(); 2962 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2963 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2964 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2965 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2966 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2967 /*AddCurrentAddress=*/UseGOT_PREL); 2968 2969 unsigned ConstAlign = 2970 MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context)); 2971 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2972 2973 unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2974 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2975 MachineInstrBuilder MIB = 2976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) 2977 .addConstantPoolIndex(Idx); 2978 if (Opc == ARM::LDRcp) 2979 MIB.addImm(0); 2980 MIB.add(predOps(ARMCC::AL)); 2981 2982 // Fix the address by adding pc. 2983 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 2984 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2985 : ARM::PICADD; 2986 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2987 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2988 .addReg(TempReg) 2989 .addImm(ARMPCLabelIndex); 2990 if (!Subtarget->isThumb()) 2991 MIB.add(predOps(ARMCC::AL)); 2992 2993 if (UseGOT_PREL && Subtarget->isThumb()) { 2994 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2995 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2996 TII.get(ARM::t2LDRi12), NewDestReg) 2997 .addReg(DestReg) 2998 .addImm(0); 2999 DestReg = NewDestReg; 3000 AddOptionalDefs(MIB); 3001 } 3002 return DestReg; 3003 } 3004 3005 bool ARMFastISel::fastLowerArguments() { 3006 if (!FuncInfo.CanLowerReturn) 3007 return false; 3008 3009 const Function *F = FuncInfo.Fn; 3010 if (F->isVarArg()) 3011 return false; 3012 3013 CallingConv::ID CC = F->getCallingConv(); 3014 switch (CC) { 3015 default: 3016 return false; 3017 case CallingConv::Fast: 3018 case CallingConv::C: 3019 case CallingConv::ARM_AAPCS_VFP: 3020 case CallingConv::ARM_AAPCS: 3021 case CallingConv::ARM_APCS: 3022 case CallingConv::Swift: 3023 break; 3024 } 3025 3026 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3027 // which are passed in r0 - r3. 3028 for (const Argument &Arg : F->args()) { 3029 if (Arg.getArgNo() >= 4) 3030 return false; 3031 3032 if (Arg.hasAttribute(Attribute::InReg) || 3033 Arg.hasAttribute(Attribute::StructRet) || 3034 Arg.hasAttribute(Attribute::SwiftSelf) || 3035 Arg.hasAttribute(Attribute::SwiftError) || 3036 Arg.hasAttribute(Attribute::ByVal)) 3037 return false; 3038 3039 Type *ArgTy = Arg.getType(); 3040 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3041 return false; 3042 3043 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3044 if (!ArgVT.isSimple()) return false; 3045 switch (ArgVT.getSimpleVT().SimpleTy) { 3046 case MVT::i8: 3047 case MVT::i16: 3048 case MVT::i32: 3049 break; 3050 default: 3051 return false; 3052 } 3053 } 3054 3055 static const MCPhysReg GPRArgRegs[] = { 3056 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3057 }; 3058 3059 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3060 for (const Argument &Arg : F->args()) { 3061 unsigned ArgNo = Arg.getArgNo(); 3062 unsigned SrcReg = GPRArgRegs[ArgNo]; 3063 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3064 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3065 // Without this, EmitLiveInCopies may eliminate the livein if its only 3066 // use is a bitcast (which isn't turned into an instruction). 3067 unsigned ResultReg = createResultReg(RC); 3068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3069 TII.get(TargetOpcode::COPY), 3070 ResultReg).addReg(DstReg, getKillRegState(true)); 3071 updateValueMap(&Arg, ResultReg); 3072 } 3073 3074 return true; 3075 } 3076 3077 namespace llvm { 3078 3079 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3080 const TargetLibraryInfo *libInfo) { 3081 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3082 return new ARMFastISel(funcInfo, libInfo); 3083 3084 return nullptr; 3085 } 3086 3087 } // end namespace llvm 3088