1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMRegisterInfo.h"
20 #include "ARMTargetMachine.h"
21 #include "ARMSubtarget.h"
22 #include "ARMConstantPoolValue.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Instructions.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/Module.h"
30 #include "llvm/Operator.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FastISel.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/Support/CallSite.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/GetElementPtrTypeIterator.h"
44 #include "llvm/Target/TargetData.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 using namespace llvm;
50 
51 static cl::opt<bool>
52 DisableARMFastISel("disable-arm-fast-isel",
53                     cl::desc("Turn off experimental ARM fast-isel support"),
54                     cl::init(false), cl::Hidden);
55 
56 extern cl::opt<bool> EnableARMLongCalls;
57 
58 namespace {
59 
60   // All possible address modes, plus some.
61   typedef struct Address {
62     enum {
63       RegBase,
64       FrameIndexBase
65     } BaseType;
66 
67     union {
68       unsigned Reg;
69       int FI;
70     } Base;
71 
72     int Offset;
73 
74     // Innocuous defaults for our address.
75     Address()
76      : BaseType(RegBase), Offset(0) {
77        Base.Reg = 0;
78      }
79   } Address;
80 
81 class ARMFastISel : public FastISel {
82 
83   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
84   /// make the right decision when generating code for different targets.
85   const ARMSubtarget *Subtarget;
86   const TargetMachine &TM;
87   const TargetInstrInfo &TII;
88   const TargetLowering &TLI;
89   ARMFunctionInfo *AFI;
90 
91   // Convenience variables to avoid some queries.
92   bool isThumb2;
93   LLVMContext *Context;
94 
95   public:
96     explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
97     : FastISel(funcInfo),
98       TM(funcInfo.MF->getTarget()),
99       TII(*TM.getInstrInfo()),
100       TLI(*TM.getTargetLowering()) {
101       Subtarget = &TM.getSubtarget<ARMSubtarget>();
102       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
103       isThumb2 = AFI->isThumbFunction();
104       Context = &funcInfo.Fn->getContext();
105     }
106 
107     // Code from FastISel.cpp.
108     virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
109                                    const TargetRegisterClass *RC);
110     virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
111                                     const TargetRegisterClass *RC,
112                                     unsigned Op0, bool Op0IsKill);
113     virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
114                                      const TargetRegisterClass *RC,
115                                      unsigned Op0, bool Op0IsKill,
116                                      unsigned Op1, bool Op1IsKill);
117     virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
118                                       const TargetRegisterClass *RC,
119                                       unsigned Op0, bool Op0IsKill,
120                                       unsigned Op1, bool Op1IsKill,
121                                       unsigned Op2, bool Op2IsKill);
122     virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
123                                      const TargetRegisterClass *RC,
124                                      unsigned Op0, bool Op0IsKill,
125                                      uint64_t Imm);
126     virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
127                                      const TargetRegisterClass *RC,
128                                      unsigned Op0, bool Op0IsKill,
129                                      const ConstantFP *FPImm);
130     virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
131                                       const TargetRegisterClass *RC,
132                                       unsigned Op0, bool Op0IsKill,
133                                       unsigned Op1, bool Op1IsKill,
134                                       uint64_t Imm);
135     virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
136                                     const TargetRegisterClass *RC,
137                                     uint64_t Imm);
138     virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
139                                      const TargetRegisterClass *RC,
140                                      uint64_t Imm1, uint64_t Imm2);
141 
142     virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
143                                                 unsigned Op0, bool Op0IsKill,
144                                                 uint32_t Idx);
145 
146     // Backend specific FastISel code.
147     virtual bool TargetSelectInstruction(const Instruction *I);
148     virtual unsigned TargetMaterializeConstant(const Constant *C);
149     virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
150     virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
151                                const LoadInst *LI);
152 
153   #include "ARMGenFastISel.inc"
154 
155     // Instruction selection routines.
156   private:
157     bool SelectLoad(const Instruction *I);
158     bool SelectStore(const Instruction *I);
159     bool SelectBranch(const Instruction *I);
160     bool SelectCmp(const Instruction *I);
161     bool SelectFPExt(const Instruction *I);
162     bool SelectFPTrunc(const Instruction *I);
163     bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
164     bool SelectSIToFP(const Instruction *I);
165     bool SelectFPToSI(const Instruction *I);
166     bool SelectSDiv(const Instruction *I);
167     bool SelectSRem(const Instruction *I);
168     bool SelectCall(const Instruction *I, const char *IntrMemName);
169     bool SelectIntrinsicCall(const IntrinsicInst &I);
170     bool SelectSelect(const Instruction *I);
171     bool SelectRet(const Instruction *I);
172     bool SelectTrunc(const Instruction *I);
173     bool SelectIntExt(const Instruction *I);
174 
175     // Utility routines.
176   private:
177     bool isTypeLegal(Type *Ty, MVT &VT);
178     bool isLoadTypeLegal(Type *Ty, MVT &VT);
179     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
180                     bool isZExt);
181     bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr, bool isZExt,
182                      bool allocReg);
183 
184     bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
185                       unsigned Alignment = 0);
186     bool ARMComputeAddress(const Value *Obj, Address &Addr);
187     void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3);
188     bool ARMIsMemCpySmall(uint64_t Len);
189     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len);
190     unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt);
191     unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
192     unsigned ARMMaterializeInt(const Constant *C, EVT VT);
193     unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
194     unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
195     unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
196     unsigned ARMSelectCallOp(const GlobalValue *GV);
197 
198     // Call handling routines.
199   private:
200     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
201     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
202                          SmallVectorImpl<unsigned> &ArgRegs,
203                          SmallVectorImpl<MVT> &ArgVTs,
204                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
205                          SmallVectorImpl<unsigned> &RegArgs,
206                          CallingConv::ID CC,
207                          unsigned &NumBytes);
208     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
209                     const Instruction *I, CallingConv::ID CC,
210                     unsigned &NumBytes);
211     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
212 
213     // OptionalDef handling routines.
214   private:
215     bool isARMNEONPred(const MachineInstr *MI);
216     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
217     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
218     void AddLoadStoreOperands(EVT VT, Address &Addr,
219                               const MachineInstrBuilder &MIB,
220                               unsigned Flags, bool useAM3);
221 };
222 
223 } // end anonymous namespace
224 
225 #include "ARMGenCallingConv.inc"
226 
227 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
228 // we don't care about implicit defs here, just places we'll need to add a
229 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
230 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
231   const MCInstrDesc &MCID = MI->getDesc();
232   if (!MCID.hasOptionalDef())
233     return false;
234 
235   // Look to see if our OptionalDef is defining CPSR or CCR.
236   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
237     const MachineOperand &MO = MI->getOperand(i);
238     if (!MO.isReg() || !MO.isDef()) continue;
239     if (MO.getReg() == ARM::CPSR)
240       *CPSR = true;
241   }
242   return true;
243 }
244 
245 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
246   const MCInstrDesc &MCID = MI->getDesc();
247 
248   // If we're a thumb2 or not NEON function we were handled via isPredicable.
249   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
250        AFI->isThumb2Function())
251     return false;
252 
253   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
254     if (MCID.OpInfo[i].isPredicate())
255       return true;
256 
257   return false;
258 }
259 
260 // If the machine is predicable go ahead and add the predicate operands, if
261 // it needs default CC operands add those.
262 // TODO: If we want to support thumb1 then we'll need to deal with optional
263 // CPSR defs that need to be added before the remaining operands. See s_cc_out
264 // for descriptions why.
265 const MachineInstrBuilder &
266 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
267   MachineInstr *MI = &*MIB;
268 
269   // Do we use a predicate? or...
270   // Are we NEON in ARM mode and have a predicate operand? If so, I know
271   // we're not predicable but add it anyways.
272   if (TII.isPredicable(MI) || isARMNEONPred(MI))
273     AddDefaultPred(MIB);
274 
275   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
276   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
277   bool CPSR = false;
278   if (DefinesOptionalPredicate(MI, &CPSR)) {
279     if (CPSR)
280       AddDefaultT1CC(MIB);
281     else
282       AddDefaultCC(MIB);
283   }
284   return MIB;
285 }
286 
287 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
288                                     const TargetRegisterClass* RC) {
289   unsigned ResultReg = createResultReg(RC);
290   const MCInstrDesc &II = TII.get(MachineInstOpcode);
291 
292   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
293   return ResultReg;
294 }
295 
296 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
297                                      const TargetRegisterClass *RC,
298                                      unsigned Op0, bool Op0IsKill) {
299   unsigned ResultReg = createResultReg(RC);
300   const MCInstrDesc &II = TII.get(MachineInstOpcode);
301 
302   if (II.getNumDefs() >= 1)
303     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
304                    .addReg(Op0, Op0IsKill * RegState::Kill));
305   else {
306     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
307                    .addReg(Op0, Op0IsKill * RegState::Kill));
308     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
309                    TII.get(TargetOpcode::COPY), ResultReg)
310                    .addReg(II.ImplicitDefs[0]));
311   }
312   return ResultReg;
313 }
314 
315 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
316                                       const TargetRegisterClass *RC,
317                                       unsigned Op0, bool Op0IsKill,
318                                       unsigned Op1, bool Op1IsKill) {
319   unsigned ResultReg = createResultReg(RC);
320   const MCInstrDesc &II = TII.get(MachineInstOpcode);
321 
322   if (II.getNumDefs() >= 1)
323     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
324                    .addReg(Op0, Op0IsKill * RegState::Kill)
325                    .addReg(Op1, Op1IsKill * RegState::Kill));
326   else {
327     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
328                    .addReg(Op0, Op0IsKill * RegState::Kill)
329                    .addReg(Op1, Op1IsKill * RegState::Kill));
330     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
331                            TII.get(TargetOpcode::COPY), ResultReg)
332                    .addReg(II.ImplicitDefs[0]));
333   }
334   return ResultReg;
335 }
336 
337 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
338                                        const TargetRegisterClass *RC,
339                                        unsigned Op0, bool Op0IsKill,
340                                        unsigned Op1, bool Op1IsKill,
341                                        unsigned Op2, bool Op2IsKill) {
342   unsigned ResultReg = createResultReg(RC);
343   const MCInstrDesc &II = TII.get(MachineInstOpcode);
344 
345   if (II.getNumDefs() >= 1)
346     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
347                    .addReg(Op0, Op0IsKill * RegState::Kill)
348                    .addReg(Op1, Op1IsKill * RegState::Kill)
349                    .addReg(Op2, Op2IsKill * RegState::Kill));
350   else {
351     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
352                    .addReg(Op0, Op0IsKill * RegState::Kill)
353                    .addReg(Op1, Op1IsKill * RegState::Kill)
354                    .addReg(Op2, Op2IsKill * RegState::Kill));
355     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
356                            TII.get(TargetOpcode::COPY), ResultReg)
357                    .addReg(II.ImplicitDefs[0]));
358   }
359   return ResultReg;
360 }
361 
362 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
363                                       const TargetRegisterClass *RC,
364                                       unsigned Op0, bool Op0IsKill,
365                                       uint64_t Imm) {
366   unsigned ResultReg = createResultReg(RC);
367   const MCInstrDesc &II = TII.get(MachineInstOpcode);
368 
369   if (II.getNumDefs() >= 1)
370     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
371                    .addReg(Op0, Op0IsKill * RegState::Kill)
372                    .addImm(Imm));
373   else {
374     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
375                    .addReg(Op0, Op0IsKill * RegState::Kill)
376                    .addImm(Imm));
377     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
378                            TII.get(TargetOpcode::COPY), ResultReg)
379                    .addReg(II.ImplicitDefs[0]));
380   }
381   return ResultReg;
382 }
383 
384 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
385                                       const TargetRegisterClass *RC,
386                                       unsigned Op0, bool Op0IsKill,
387                                       const ConstantFP *FPImm) {
388   unsigned ResultReg = createResultReg(RC);
389   const MCInstrDesc &II = TII.get(MachineInstOpcode);
390 
391   if (II.getNumDefs() >= 1)
392     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
393                    .addReg(Op0, Op0IsKill * RegState::Kill)
394                    .addFPImm(FPImm));
395   else {
396     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
397                    .addReg(Op0, Op0IsKill * RegState::Kill)
398                    .addFPImm(FPImm));
399     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
400                            TII.get(TargetOpcode::COPY), ResultReg)
401                    .addReg(II.ImplicitDefs[0]));
402   }
403   return ResultReg;
404 }
405 
406 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
407                                        const TargetRegisterClass *RC,
408                                        unsigned Op0, bool Op0IsKill,
409                                        unsigned Op1, bool Op1IsKill,
410                                        uint64_t Imm) {
411   unsigned ResultReg = createResultReg(RC);
412   const MCInstrDesc &II = TII.get(MachineInstOpcode);
413 
414   if (II.getNumDefs() >= 1)
415     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
416                    .addReg(Op0, Op0IsKill * RegState::Kill)
417                    .addReg(Op1, Op1IsKill * RegState::Kill)
418                    .addImm(Imm));
419   else {
420     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
421                    .addReg(Op0, Op0IsKill * RegState::Kill)
422                    .addReg(Op1, Op1IsKill * RegState::Kill)
423                    .addImm(Imm));
424     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
425                            TII.get(TargetOpcode::COPY), ResultReg)
426                    .addReg(II.ImplicitDefs[0]));
427   }
428   return ResultReg;
429 }
430 
431 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
432                                      const TargetRegisterClass *RC,
433                                      uint64_t Imm) {
434   unsigned ResultReg = createResultReg(RC);
435   const MCInstrDesc &II = TII.get(MachineInstOpcode);
436 
437   if (II.getNumDefs() >= 1)
438     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
439                    .addImm(Imm));
440   else {
441     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
442                    .addImm(Imm));
443     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
444                            TII.get(TargetOpcode::COPY), ResultReg)
445                    .addReg(II.ImplicitDefs[0]));
446   }
447   return ResultReg;
448 }
449 
450 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
451                                       const TargetRegisterClass *RC,
452                                       uint64_t Imm1, uint64_t Imm2) {
453   unsigned ResultReg = createResultReg(RC);
454   const MCInstrDesc &II = TII.get(MachineInstOpcode);
455 
456   if (II.getNumDefs() >= 1)
457     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
458                     .addImm(Imm1).addImm(Imm2));
459   else {
460     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
461                     .addImm(Imm1).addImm(Imm2));
462     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
463                             TII.get(TargetOpcode::COPY),
464                             ResultReg)
465                     .addReg(II.ImplicitDefs[0]));
466   }
467   return ResultReg;
468 }
469 
470 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
471                                                  unsigned Op0, bool Op0IsKill,
472                                                  uint32_t Idx) {
473   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
474   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
475          "Cannot yet extract from physregs");
476   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
477                          DL, TII.get(TargetOpcode::COPY), ResultReg)
478                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
479   return ResultReg;
480 }
481 
482 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
483 // checks from the various callers.
484 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
485   if (VT == MVT::f64) return 0;
486 
487   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
488   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
489                           TII.get(ARM::VMOVRS), MoveReg)
490                   .addReg(SrcReg));
491   return MoveReg;
492 }
493 
494 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
495   if (VT == MVT::i64) return 0;
496 
497   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
498   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
499                           TII.get(ARM::VMOVSR), MoveReg)
500                   .addReg(SrcReg));
501   return MoveReg;
502 }
503 
504 // For double width floating point we need to materialize two constants
505 // (the high and the low) into integer registers then use a move to get
506 // the combined constant into an FP reg.
507 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
508   const APFloat Val = CFP->getValueAPF();
509   bool is64bit = VT == MVT::f64;
510 
511   // This checks to see if we can use VFP3 instructions to materialize
512   // a constant, otherwise we have to go through the constant pool.
513   if (TLI.isFPImmLegal(Val, VT)) {
514     int Imm;
515     unsigned Opc;
516     if (is64bit) {
517       Imm = ARM_AM::getFP64Imm(Val);
518       Opc = ARM::FCONSTD;
519     } else {
520       Imm = ARM_AM::getFP32Imm(Val);
521       Opc = ARM::FCONSTS;
522     }
523     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
524     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
525                             DestReg)
526                     .addImm(Imm));
527     return DestReg;
528   }
529 
530   // Require VFP2 for loading fp constants.
531   if (!Subtarget->hasVFP2()) return false;
532 
533   // MachineConstantPool wants an explicit alignment.
534   unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
535   if (Align == 0) {
536     // TODO: Figure out if this is correct.
537     Align = TD.getTypeAllocSize(CFP->getType());
538   }
539   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
540   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
541   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
542 
543   // The extra reg is for addrmode5.
544   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
545                           DestReg)
546                   .addConstantPoolIndex(Idx)
547                   .addReg(0));
548   return DestReg;
549 }
550 
551 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
552 
553   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
554     return false;
555 
556   // If we can do this in a single instruction without a constant pool entry
557   // do so now.
558   const ConstantInt *CI = cast<ConstantInt>(C);
559   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
560     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
561     unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
562     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
563                             TII.get(Opc), ImmReg)
564                     .addImm(CI->getZExtValue()));
565     return ImmReg;
566   }
567 
568   // Use MVN to emit negative constants.
569   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
570     unsigned Imm = (unsigned)~(CI->getSExtValue());
571     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
572       (ARM_AM::getSOImmVal(Imm) != -1);
573     if (UseImm) {
574       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
575       unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32));
576       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
577                               TII.get(Opc), ImmReg)
578                       .addImm(Imm));
579       return ImmReg;
580     }
581   }
582 
583   // Load from constant pool.  For now 32-bit only.
584   if (VT != MVT::i32)
585     return false;
586 
587   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
588 
589   // MachineConstantPool wants an explicit alignment.
590   unsigned Align = TD.getPrefTypeAlignment(C->getType());
591   if (Align == 0) {
592     // TODO: Figure out if this is correct.
593     Align = TD.getTypeAllocSize(C->getType());
594   }
595   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
596 
597   if (isThumb2)
598     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
599                             TII.get(ARM::t2LDRpci), DestReg)
600                     .addConstantPoolIndex(Idx));
601   else
602     // The extra immediate is for addrmode2.
603     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
604                             TII.get(ARM::LDRcp), DestReg)
605                     .addConstantPoolIndex(Idx)
606                     .addImm(0));
607 
608   return DestReg;
609 }
610 
611 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
612   // For now 32-bit only.
613   if (VT != MVT::i32) return 0;
614 
615   Reloc::Model RelocM = TM.getRelocationModel();
616 
617   // TODO: Need more magic for ARM PIC.
618   if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0;
619 
620   // MachineConstantPool wants an explicit alignment.
621   unsigned Align = TD.getPrefTypeAlignment(GV->getType());
622   if (Align == 0) {
623     // TODO: Figure out if this is correct.
624     Align = TD.getTypeAllocSize(GV->getType());
625   }
626 
627   // Grab index.
628   unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
629   unsigned Id = AFI->createPICLabelUId();
630   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
631                                                               ARMCP::CPValue,
632                                                               PCAdj);
633   unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
634 
635   // Load value.
636   MachineInstrBuilder MIB;
637   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
638   if (isThumb2) {
639     unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
640     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
641           .addConstantPoolIndex(Idx);
642     if (RelocM == Reloc::PIC_)
643       MIB.addImm(Id);
644   } else {
645     // The extra immediate is for addrmode2.
646     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
647                   DestReg)
648           .addConstantPoolIndex(Idx)
649           .addImm(0);
650   }
651   AddOptionalDefs(MIB);
652 
653   if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) {
654     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
655     if (isThumb2)
656       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
657                     TII.get(ARM::t2LDRi12), NewDestReg)
658             .addReg(DestReg)
659             .addImm(0);
660     else
661       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12),
662                     NewDestReg)
663             .addReg(DestReg)
664             .addImm(0);
665     DestReg = NewDestReg;
666     AddOptionalDefs(MIB);
667   }
668 
669   return DestReg;
670 }
671 
672 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
673   EVT VT = TLI.getValueType(C->getType(), true);
674 
675   // Only handle simple types.
676   if (!VT.isSimple()) return 0;
677 
678   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
679     return ARMMaterializeFP(CFP, VT);
680   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
681     return ARMMaterializeGV(GV, VT);
682   else if (isa<ConstantInt>(C))
683     return ARMMaterializeInt(C, VT);
684 
685   return 0;
686 }
687 
688 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
689 
690 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
691   // Don't handle dynamic allocas.
692   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
693 
694   MVT VT;
695   if (!isLoadTypeLegal(AI->getType(), VT)) return false;
696 
697   DenseMap<const AllocaInst*, int>::iterator SI =
698     FuncInfo.StaticAllocaMap.find(AI);
699 
700   // This will get lowered later into the correct offsets and registers
701   // via rewriteXFrameIndex.
702   if (SI != FuncInfo.StaticAllocaMap.end()) {
703     TargetRegisterClass* RC = TLI.getRegClassFor(VT);
704     unsigned ResultReg = createResultReg(RC);
705     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
706     AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
707                             TII.get(Opc), ResultReg)
708                             .addFrameIndex(SI->second)
709                             .addImm(0));
710     return ResultReg;
711   }
712 
713   return 0;
714 }
715 
716 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
717   EVT evt = TLI.getValueType(Ty, true);
718 
719   // Only handle simple types.
720   if (evt == MVT::Other || !evt.isSimple()) return false;
721   VT = evt.getSimpleVT();
722 
723   // Handle all legal types, i.e. a register that will directly hold this
724   // value.
725   return TLI.isTypeLegal(VT);
726 }
727 
728 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
729   if (isTypeLegal(Ty, VT)) return true;
730 
731   // If this is a type than can be sign or zero-extended to a basic operation
732   // go ahead and accept it now.
733   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
734     return true;
735 
736   return false;
737 }
738 
739 // Computes the address to get to an object.
740 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
741   // Some boilerplate from the X86 FastISel.
742   const User *U = NULL;
743   unsigned Opcode = Instruction::UserOp1;
744   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
745     // Don't walk into other basic blocks unless the object is an alloca from
746     // another block, otherwise it may not have a virtual register assigned.
747     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
748         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
749       Opcode = I->getOpcode();
750       U = I;
751     }
752   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
753     Opcode = C->getOpcode();
754     U = C;
755   }
756 
757   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
758     if (Ty->getAddressSpace() > 255)
759       // Fast instruction selection doesn't support the special
760       // address spaces.
761       return false;
762 
763   switch (Opcode) {
764     default:
765     break;
766     case Instruction::BitCast: {
767       // Look through bitcasts.
768       return ARMComputeAddress(U->getOperand(0), Addr);
769     }
770     case Instruction::IntToPtr: {
771       // Look past no-op inttoptrs.
772       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
773         return ARMComputeAddress(U->getOperand(0), Addr);
774       break;
775     }
776     case Instruction::PtrToInt: {
777       // Look past no-op ptrtoints.
778       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
779         return ARMComputeAddress(U->getOperand(0), Addr);
780       break;
781     }
782     case Instruction::GetElementPtr: {
783       Address SavedAddr = Addr;
784       int TmpOffset = Addr.Offset;
785 
786       // Iterate through the GEP folding the constants into offsets where
787       // we can.
788       gep_type_iterator GTI = gep_type_begin(U);
789       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
790            i != e; ++i, ++GTI) {
791         const Value *Op = *i;
792         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
793           const StructLayout *SL = TD.getStructLayout(STy);
794           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
795           TmpOffset += SL->getElementOffset(Idx);
796         } else {
797           uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
798           for (;;) {
799             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
800               // Constant-offset addressing.
801               TmpOffset += CI->getSExtValue() * S;
802               break;
803             }
804             if (isa<AddOperator>(Op) &&
805                 (!isa<Instruction>(Op) ||
806                  FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
807                  == FuncInfo.MBB) &&
808                 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
809               // An add (in the same block) with a constant operand. Fold the
810               // constant.
811               ConstantInt *CI =
812               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
813               TmpOffset += CI->getSExtValue() * S;
814               // Iterate on the other operand.
815               Op = cast<AddOperator>(Op)->getOperand(0);
816               continue;
817             }
818             // Unsupported
819             goto unsupported_gep;
820           }
821         }
822       }
823 
824       // Try to grab the base operand now.
825       Addr.Offset = TmpOffset;
826       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
827 
828       // We failed, restore everything and try the other options.
829       Addr = SavedAddr;
830 
831       unsupported_gep:
832       break;
833     }
834     case Instruction::Alloca: {
835       const AllocaInst *AI = cast<AllocaInst>(Obj);
836       DenseMap<const AllocaInst*, int>::iterator SI =
837         FuncInfo.StaticAllocaMap.find(AI);
838       if (SI != FuncInfo.StaticAllocaMap.end()) {
839         Addr.BaseType = Address::FrameIndexBase;
840         Addr.Base.FI = SI->second;
841         return true;
842       }
843       break;
844     }
845   }
846 
847   // Materialize the global variable's address into a reg which can
848   // then be used later to load the variable.
849   if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
850     unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
851     if (Tmp == 0) return false;
852 
853     Addr.Base.Reg = Tmp;
854     return true;
855   }
856 
857   // Try to get this in a register if nothing else has worked.
858   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
859   return Addr.Base.Reg != 0;
860 }
861 
862 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) {
863 
864   assert(VT.isSimple() && "Non-simple types are invalid here!");
865 
866   bool needsLowering = false;
867   switch (VT.getSimpleVT().SimpleTy) {
868     default:
869       assert(false && "Unhandled load/store type!");
870       break;
871     case MVT::i1:
872     case MVT::i8:
873     case MVT::i16:
874     case MVT::i32:
875       if (!useAM3) {
876         // Integer loads/stores handle 12-bit offsets.
877         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
878         // Handle negative offsets.
879         if (needsLowering && isThumb2)
880           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
881                             Addr.Offset > -256);
882       } else {
883         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
884         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
885       }
886       break;
887     case MVT::f32:
888     case MVT::f64:
889       // Floating point operands handle 8-bit offsets.
890       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
891       break;
892   }
893 
894   // If this is a stack pointer and the offset needs to be simplified then
895   // put the alloca address into a register, set the base type back to
896   // register and continue. This should almost never happen.
897   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
898     TargetRegisterClass *RC = isThumb2 ? ARM::tGPRRegisterClass :
899                               ARM::GPRRegisterClass;
900     unsigned ResultReg = createResultReg(RC);
901     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
902     AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
903                             TII.get(Opc), ResultReg)
904                             .addFrameIndex(Addr.Base.FI)
905                             .addImm(0));
906     Addr.Base.Reg = ResultReg;
907     Addr.BaseType = Address::RegBase;
908   }
909 
910   // Since the offset is too large for the load/store instruction
911   // get the reg+offset into a register.
912   if (needsLowering) {
913     Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
914                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
915     Addr.Offset = 0;
916   }
917 }
918 
919 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
920                                        const MachineInstrBuilder &MIB,
921                                        unsigned Flags, bool useAM3) {
922   // addrmode5 output depends on the selection dag addressing dividing the
923   // offset by 4 that it then later multiplies. Do this here as well.
924   if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
925       VT.getSimpleVT().SimpleTy == MVT::f64)
926     Addr.Offset /= 4;
927 
928   // Frame base works a bit differently. Handle it separately.
929   if (Addr.BaseType == Address::FrameIndexBase) {
930     int FI = Addr.Base.FI;
931     int Offset = Addr.Offset;
932     MachineMemOperand *MMO =
933           FuncInfo.MF->getMachineMemOperand(
934                                   MachinePointerInfo::getFixedStack(FI, Offset),
935                                   Flags,
936                                   MFI.getObjectSize(FI),
937                                   MFI.getObjectAlignment(FI));
938     // Now add the rest of the operands.
939     MIB.addFrameIndex(FI);
940 
941     // ARM halfword load/stores and signed byte loads need an additional
942     // operand.
943     if (useAM3) {
944       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
945       MIB.addReg(0);
946       MIB.addImm(Imm);
947     } else {
948       MIB.addImm(Addr.Offset);
949     }
950     MIB.addMemOperand(MMO);
951   } else {
952     // Now add the rest of the operands.
953     MIB.addReg(Addr.Base.Reg);
954 
955     // ARM halfword load/stores and signed byte loads need an additional
956     // operand.
957     if (useAM3) {
958       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
959       MIB.addReg(0);
960       MIB.addImm(Imm);
961     } else {
962       MIB.addImm(Addr.Offset);
963     }
964   }
965   AddOptionalDefs(MIB);
966 }
967 
968 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr,
969                               bool isZExt = true, bool allocReg = true) {
970   assert(VT.isSimple() && "Non-simple types are invalid here!");
971   unsigned Opc;
972   bool useAM3 = false;
973   TargetRegisterClass *RC;
974   switch (VT.getSimpleVT().SimpleTy) {
975     // This is mostly going to be Neon/vector support.
976     default: return false;
977     case MVT::i1:
978     case MVT::i8:
979       if (isThumb2) {
980         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
981           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
982         else
983           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
984       } else {
985         if (isZExt) {
986           Opc = ARM::LDRBi12;
987         } else {
988           Opc = ARM::LDRSB;
989           useAM3 = true;
990         }
991       }
992       RC = ARM::GPRRegisterClass;
993       break;
994     case MVT::i16:
995       if (isThumb2) {
996         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
997           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
998         else
999           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
1000       } else {
1001         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
1002         useAM3 = true;
1003       }
1004       RC = ARM::GPRRegisterClass;
1005       break;
1006     case MVT::i32:
1007       if (isThumb2) {
1008         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1009           Opc = ARM::t2LDRi8;
1010         else
1011           Opc = ARM::t2LDRi12;
1012       } else {
1013         Opc = ARM::LDRi12;
1014       }
1015       RC = ARM::GPRRegisterClass;
1016       break;
1017     case MVT::f32:
1018       Opc = ARM::VLDRS;
1019       RC = TLI.getRegClassFor(VT);
1020       break;
1021     case MVT::f64:
1022       Opc = ARM::VLDRD;
1023       RC = TLI.getRegClassFor(VT);
1024       break;
1025   }
1026   // Simplify this down to something we can handle.
1027   ARMSimplifyAddress(Addr, VT, useAM3);
1028 
1029   // Create the base instruction, then add the operands.
1030   if (allocReg)
1031     ResultReg = createResultReg(RC);
1032   assert (ResultReg > 255 && "Expected an allocated virtual register.");
1033   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1034                                     TII.get(Opc), ResultReg);
1035   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1036   return true;
1037 }
1038 
1039 bool ARMFastISel::SelectLoad(const Instruction *I) {
1040   // Atomic loads need special handling.
1041   if (cast<LoadInst>(I)->isAtomic())
1042     return false;
1043 
1044   // Verify we have a legal type before going any further.
1045   MVT VT;
1046   if (!isLoadTypeLegal(I->getType(), VT))
1047     return false;
1048 
1049   // See if we can handle this address.
1050   Address Addr;
1051   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1052 
1053   unsigned ResultReg;
1054   if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
1055   UpdateValueMap(I, ResultReg);
1056   return true;
1057 }
1058 
1059 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr,
1060                                unsigned Alignment) {
1061   unsigned StrOpc;
1062   bool useAM3 = false;
1063   switch (VT.getSimpleVT().SimpleTy) {
1064     // This is mostly going to be Neon/vector support.
1065     default: return false;
1066     case MVT::i1: {
1067       unsigned Res = createResultReg(isThumb2 ? ARM::tGPRRegisterClass :
1068                                                ARM::GPRRegisterClass);
1069       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1070       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1071                               TII.get(Opc), Res)
1072                       .addReg(SrcReg).addImm(1));
1073       SrcReg = Res;
1074     } // Fallthrough here.
1075     case MVT::i8:
1076       if (isThumb2) {
1077         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1078           StrOpc = ARM::t2STRBi8;
1079         else
1080           StrOpc = ARM::t2STRBi12;
1081       } else {
1082         StrOpc = ARM::STRBi12;
1083       }
1084       break;
1085     case MVT::i16:
1086       if (isThumb2) {
1087         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1088           StrOpc = ARM::t2STRHi8;
1089         else
1090           StrOpc = ARM::t2STRHi12;
1091       } else {
1092         StrOpc = ARM::STRH;
1093         useAM3 = true;
1094       }
1095       break;
1096     case MVT::i32:
1097       if (isThumb2) {
1098         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1099           StrOpc = ARM::t2STRi8;
1100         else
1101           StrOpc = ARM::t2STRi12;
1102       } else {
1103         StrOpc = ARM::STRi12;
1104       }
1105       break;
1106     case MVT::f32:
1107       if (!Subtarget->hasVFP2()) return false;
1108       StrOpc = ARM::VSTRS;
1109       // Unaligned stores need special handling. Floats require word-alignment.
1110       if (Alignment && Alignment < 4) {
1111         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1112         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1113                                 TII.get(ARM::VMOVRS), MoveReg)
1114                         .addReg(SrcReg));
1115         SrcReg = MoveReg;
1116         VT = MVT::i32;
1117         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1118       }
1119       break;
1120     case MVT::f64:
1121       if (!Subtarget->hasVFP2()) return false;
1122       // FIXME: Unaligned stores need special handling.  Doublewords require
1123       // word-alignment.
1124       if (Alignment && Alignment < 4) {
1125           return false;
1126       }
1127       StrOpc = ARM::VSTRD;
1128       break;
1129   }
1130   // Simplify this down to something we can handle.
1131   ARMSimplifyAddress(Addr, VT, useAM3);
1132 
1133   // Create the base instruction, then add the operands.
1134   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1135                                     TII.get(StrOpc))
1136                             .addReg(SrcReg);
1137   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1138   return true;
1139 }
1140 
1141 bool ARMFastISel::SelectStore(const Instruction *I) {
1142   Value *Op0 = I->getOperand(0);
1143   unsigned SrcReg = 0;
1144 
1145   // Atomic stores need special handling.
1146   if (cast<StoreInst>(I)->isAtomic())
1147     return false;
1148 
1149   // Verify we have a legal type before going any further.
1150   MVT VT;
1151   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1152     return false;
1153 
1154   // Get the value to be stored into a register.
1155   SrcReg = getRegForValue(Op0);
1156   if (SrcReg == 0) return false;
1157 
1158   // See if we can handle this address.
1159   Address Addr;
1160   if (!ARMComputeAddress(I->getOperand(1), Addr))
1161     return false;
1162 
1163   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1164     return false;
1165   return true;
1166 }
1167 
1168 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1169   switch (Pred) {
1170     // Needs two compares...
1171     case CmpInst::FCMP_ONE:
1172     case CmpInst::FCMP_UEQ:
1173     default:
1174       // AL is our "false" for now. The other two need more compares.
1175       return ARMCC::AL;
1176     case CmpInst::ICMP_EQ:
1177     case CmpInst::FCMP_OEQ:
1178       return ARMCC::EQ;
1179     case CmpInst::ICMP_SGT:
1180     case CmpInst::FCMP_OGT:
1181       return ARMCC::GT;
1182     case CmpInst::ICMP_SGE:
1183     case CmpInst::FCMP_OGE:
1184       return ARMCC::GE;
1185     case CmpInst::ICMP_UGT:
1186     case CmpInst::FCMP_UGT:
1187       return ARMCC::HI;
1188     case CmpInst::FCMP_OLT:
1189       return ARMCC::MI;
1190     case CmpInst::ICMP_ULE:
1191     case CmpInst::FCMP_OLE:
1192       return ARMCC::LS;
1193     case CmpInst::FCMP_ORD:
1194       return ARMCC::VC;
1195     case CmpInst::FCMP_UNO:
1196       return ARMCC::VS;
1197     case CmpInst::FCMP_UGE:
1198       return ARMCC::PL;
1199     case CmpInst::ICMP_SLT:
1200     case CmpInst::FCMP_ULT:
1201       return ARMCC::LT;
1202     case CmpInst::ICMP_SLE:
1203     case CmpInst::FCMP_ULE:
1204       return ARMCC::LE;
1205     case CmpInst::FCMP_UNE:
1206     case CmpInst::ICMP_NE:
1207       return ARMCC::NE;
1208     case CmpInst::ICMP_UGE:
1209       return ARMCC::HS;
1210     case CmpInst::ICMP_ULT:
1211       return ARMCC::LO;
1212   }
1213 }
1214 
1215 bool ARMFastISel::SelectBranch(const Instruction *I) {
1216   const BranchInst *BI = cast<BranchInst>(I);
1217   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1218   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1219 
1220   // Simple branch support.
1221 
1222   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1223   // behavior.
1224   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1225     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1226 
1227       // Get the compare predicate.
1228       // Try to take advantage of fallthrough opportunities.
1229       CmpInst::Predicate Predicate = CI->getPredicate();
1230       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1231         std::swap(TBB, FBB);
1232         Predicate = CmpInst::getInversePredicate(Predicate);
1233       }
1234 
1235       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1236 
1237       // We may not handle every CC for now.
1238       if (ARMPred == ARMCC::AL) return false;
1239 
1240       // Emit the compare.
1241       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1242         return false;
1243 
1244       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1245       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1246       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1247       FastEmitBranch(FBB, DL);
1248       FuncInfo.MBB->addSuccessor(TBB);
1249       return true;
1250     }
1251   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1252     MVT SourceVT;
1253     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1254         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1255       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1256       unsigned OpReg = getRegForValue(TI->getOperand(0));
1257       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1258                               TII.get(TstOpc))
1259                       .addReg(OpReg).addImm(1));
1260 
1261       unsigned CCMode = ARMCC::NE;
1262       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1263         std::swap(TBB, FBB);
1264         CCMode = ARMCC::EQ;
1265       }
1266 
1267       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1268       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1269       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1270 
1271       FastEmitBranch(FBB, DL);
1272       FuncInfo.MBB->addSuccessor(TBB);
1273       return true;
1274     }
1275   } else if (const ConstantInt *CI =
1276              dyn_cast<ConstantInt>(BI->getCondition())) {
1277     uint64_t Imm = CI->getZExtValue();
1278     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1279     FastEmitBranch(Target, DL);
1280     return true;
1281   }
1282 
1283   unsigned CmpReg = getRegForValue(BI->getCondition());
1284   if (CmpReg == 0) return false;
1285 
1286   // We've been divorced from our compare!  Our block was split, and
1287   // now our compare lives in a predecessor block.  We musn't
1288   // re-compare here, as the children of the compare aren't guaranteed
1289   // live across the block boundary (we *could* check for this).
1290   // Regardless, the compare has been done in the predecessor block,
1291   // and it left a value for us in a virtual register.  Ergo, we test
1292   // the one-bit value left in the virtual register.
1293   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1294   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1295                   .addReg(CmpReg).addImm(1));
1296 
1297   unsigned CCMode = ARMCC::NE;
1298   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1299     std::swap(TBB, FBB);
1300     CCMode = ARMCC::EQ;
1301   }
1302 
1303   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1304   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1305                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1306   FastEmitBranch(FBB, DL);
1307   FuncInfo.MBB->addSuccessor(TBB);
1308   return true;
1309 }
1310 
1311 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1312                              bool isZExt) {
1313   Type *Ty = Src1Value->getType();
1314   EVT SrcVT = TLI.getValueType(Ty, true);
1315   if (!SrcVT.isSimple()) return false;
1316 
1317   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1318   if (isFloat && !Subtarget->hasVFP2())
1319     return false;
1320 
1321   // Check to see if the 2nd operand is a constant that we can encode directly
1322   // in the compare.
1323   int Imm = 0;
1324   bool UseImm = false;
1325   bool isNegativeImm = false;
1326   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1327   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1328   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1329     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1330         SrcVT == MVT::i1) {
1331       const APInt &CIVal = ConstInt->getValue();
1332       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1333       if (Imm < 0) {
1334         isNegativeImm = true;
1335         Imm = -Imm;
1336       }
1337       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1338         (ARM_AM::getSOImmVal(Imm) != -1);
1339     }
1340   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1341     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1342       if (ConstFP->isZero() && !ConstFP->isNegative())
1343         UseImm = true;
1344   }
1345 
1346   unsigned CmpOpc;
1347   bool isICmp = true;
1348   bool needsExt = false;
1349   switch (SrcVT.getSimpleVT().SimpleTy) {
1350     default: return false;
1351     // TODO: Verify compares.
1352     case MVT::f32:
1353       isICmp = false;
1354       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1355       break;
1356     case MVT::f64:
1357       isICmp = false;
1358       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1359       break;
1360     case MVT::i1:
1361     case MVT::i8:
1362     case MVT::i16:
1363       needsExt = true;
1364     // Intentional fall-through.
1365     case MVT::i32:
1366       if (isThumb2) {
1367         if (!UseImm)
1368           CmpOpc = ARM::t2CMPrr;
1369         else
1370           CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri;
1371       } else {
1372         if (!UseImm)
1373           CmpOpc = ARM::CMPrr;
1374         else
1375           CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri;
1376       }
1377       break;
1378   }
1379 
1380   unsigned SrcReg1 = getRegForValue(Src1Value);
1381   if (SrcReg1 == 0) return false;
1382 
1383   unsigned SrcReg2 = 0;
1384   if (!UseImm) {
1385     SrcReg2 = getRegForValue(Src2Value);
1386     if (SrcReg2 == 0) return false;
1387   }
1388 
1389   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1390   if (needsExt) {
1391     unsigned ResultReg;
1392     ResultReg = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1393     if (ResultReg == 0) return false;
1394     SrcReg1 = ResultReg;
1395     if (!UseImm) {
1396       ResultReg = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1397       if (ResultReg == 0) return false;
1398       SrcReg2 = ResultReg;
1399     }
1400   }
1401 
1402   if (!UseImm) {
1403     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1404                             TII.get(CmpOpc))
1405                     .addReg(SrcReg1).addReg(SrcReg2));
1406   } else {
1407     MachineInstrBuilder MIB;
1408     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1409       .addReg(SrcReg1);
1410 
1411     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1412     if (isICmp)
1413       MIB.addImm(Imm);
1414     AddOptionalDefs(MIB);
1415   }
1416 
1417   // For floating point we need to move the result to a comparison register
1418   // that we can then use for branches.
1419   if (Ty->isFloatTy() || Ty->isDoubleTy())
1420     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1421                             TII.get(ARM::FMSTAT)));
1422   return true;
1423 }
1424 
1425 bool ARMFastISel::SelectCmp(const Instruction *I) {
1426   const CmpInst *CI = cast<CmpInst>(I);
1427   Type *Ty = CI->getOperand(0)->getType();
1428 
1429   // Get the compare predicate.
1430   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1431 
1432   // We may not handle every CC for now.
1433   if (ARMPred == ARMCC::AL) return false;
1434 
1435   // Emit the compare.
1436   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1437     return false;
1438 
1439   // Now set a register based on the comparison. Explicitly set the predicates
1440   // here.
1441   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1442   TargetRegisterClass *RC = isThumb2 ? ARM::rGPRRegisterClass
1443                                     : ARM::GPRRegisterClass;
1444   unsigned DestReg = createResultReg(RC);
1445   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1446   unsigned ZeroReg = TargetMaterializeConstant(Zero);
1447   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1448   unsigned CondReg = isFloat ? ARM::FPSCR : ARM::CPSR;
1449   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1450           .addReg(ZeroReg).addImm(1)
1451           .addImm(ARMPred).addReg(CondReg);
1452 
1453   UpdateValueMap(I, DestReg);
1454   return true;
1455 }
1456 
1457 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1458   // Make sure we have VFP and that we're extending float to double.
1459   if (!Subtarget->hasVFP2()) return false;
1460 
1461   Value *V = I->getOperand(0);
1462   if (!I->getType()->isDoubleTy() ||
1463       !V->getType()->isFloatTy()) return false;
1464 
1465   unsigned Op = getRegForValue(V);
1466   if (Op == 0) return false;
1467 
1468   unsigned Result = createResultReg(ARM::DPRRegisterClass);
1469   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1470                           TII.get(ARM::VCVTDS), Result)
1471                   .addReg(Op));
1472   UpdateValueMap(I, Result);
1473   return true;
1474 }
1475 
1476 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1477   // Make sure we have VFP and that we're truncating double to float.
1478   if (!Subtarget->hasVFP2()) return false;
1479 
1480   Value *V = I->getOperand(0);
1481   if (!(I->getType()->isFloatTy() &&
1482         V->getType()->isDoubleTy())) return false;
1483 
1484   unsigned Op = getRegForValue(V);
1485   if (Op == 0) return false;
1486 
1487   unsigned Result = createResultReg(ARM::SPRRegisterClass);
1488   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1489                           TII.get(ARM::VCVTSD), Result)
1490                   .addReg(Op));
1491   UpdateValueMap(I, Result);
1492   return true;
1493 }
1494 
1495 bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1496   // Make sure we have VFP.
1497   if (!Subtarget->hasVFP2()) return false;
1498 
1499   MVT DstVT;
1500   Type *Ty = I->getType();
1501   if (!isTypeLegal(Ty, DstVT))
1502     return false;
1503 
1504   Value *Src = I->getOperand(0);
1505   EVT SrcVT = TLI.getValueType(Src->getType(), true);
1506   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1507     return false;
1508 
1509   unsigned SrcReg = getRegForValue(Src);
1510   if (SrcReg == 0) return false;
1511 
1512   // Handle sign-extension.
1513   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1514     EVT DestVT = MVT::i32;
1515     unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, /*isZExt*/ false);
1516     if (ResultReg == 0) return false;
1517     SrcReg = ResultReg;
1518   }
1519 
1520   // The conversion routine works on fp-reg to fp-reg and the operand above
1521   // was an integer, move it to the fp registers if possible.
1522   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1523   if (FP == 0) return false;
1524 
1525   unsigned Opc;
1526   if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1527   else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1528   else return false;
1529 
1530   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1531   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1532                           ResultReg)
1533                   .addReg(FP));
1534   UpdateValueMap(I, ResultReg);
1535   return true;
1536 }
1537 
1538 bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1539   // Make sure we have VFP.
1540   if (!Subtarget->hasVFP2()) return false;
1541 
1542   MVT DstVT;
1543   Type *RetTy = I->getType();
1544   if (!isTypeLegal(RetTy, DstVT))
1545     return false;
1546 
1547   unsigned Op = getRegForValue(I->getOperand(0));
1548   if (Op == 0) return false;
1549 
1550   unsigned Opc;
1551   Type *OpTy = I->getOperand(0)->getType();
1552   if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1553   else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1554   else return false;
1555 
1556   // f64->s32 or f32->s32 both need an intermediate f32 reg.
1557   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1558   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1559                           ResultReg)
1560                   .addReg(Op));
1561 
1562   // This result needs to be in an integer register, but the conversion only
1563   // takes place in fp-regs.
1564   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1565   if (IntReg == 0) return false;
1566 
1567   UpdateValueMap(I, IntReg);
1568   return true;
1569 }
1570 
1571 bool ARMFastISel::SelectSelect(const Instruction *I) {
1572   MVT VT;
1573   if (!isTypeLegal(I->getType(), VT))
1574     return false;
1575 
1576   // Things need to be register sized for register moves.
1577   if (VT != MVT::i32) return false;
1578   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1579 
1580   unsigned CondReg = getRegForValue(I->getOperand(0));
1581   if (CondReg == 0) return false;
1582   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1583   if (Op1Reg == 0) return false;
1584 
1585   // Check to see if we can use an immediate in the conditional move.
1586   int Imm = 0;
1587   bool UseImm = false;
1588   bool isNegativeImm = false;
1589   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1590     assert (VT == MVT::i32 && "Expecting an i32.");
1591     Imm = (int)ConstInt->getValue().getZExtValue();
1592     if (Imm < 0) {
1593       isNegativeImm = true;
1594       Imm = ~Imm;
1595     }
1596     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1597       (ARM_AM::getSOImmVal(Imm) != -1);
1598   }
1599 
1600   unsigned Op2Reg = 0;
1601   if (!UseImm) {
1602     Op2Reg = getRegForValue(I->getOperand(2));
1603     if (Op2Reg == 0) return false;
1604   }
1605 
1606   unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri;
1607   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1608                   .addReg(CondReg).addImm(0));
1609 
1610   unsigned MovCCOpc;
1611   if (!UseImm) {
1612     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1613   } else {
1614     if (!isNegativeImm) {
1615       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1616     } else {
1617       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1618     }
1619   }
1620   unsigned ResultReg = createResultReg(RC);
1621   if (!UseImm)
1622     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1623     .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR);
1624   else
1625     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1626     .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR);
1627   UpdateValueMap(I, ResultReg);
1628   return true;
1629 }
1630 
1631 bool ARMFastISel::SelectSDiv(const Instruction *I) {
1632   MVT VT;
1633   Type *Ty = I->getType();
1634   if (!isTypeLegal(Ty, VT))
1635     return false;
1636 
1637   // If we have integer div support we should have selected this automagically.
1638   // In case we have a real miss go ahead and return false and we'll pick
1639   // it up later.
1640   if (Subtarget->hasDivide()) return false;
1641 
1642   // Otherwise emit a libcall.
1643   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1644   if (VT == MVT::i8)
1645     LC = RTLIB::SDIV_I8;
1646   else if (VT == MVT::i16)
1647     LC = RTLIB::SDIV_I16;
1648   else if (VT == MVT::i32)
1649     LC = RTLIB::SDIV_I32;
1650   else if (VT == MVT::i64)
1651     LC = RTLIB::SDIV_I64;
1652   else if (VT == MVT::i128)
1653     LC = RTLIB::SDIV_I128;
1654   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1655 
1656   return ARMEmitLibcall(I, LC);
1657 }
1658 
1659 bool ARMFastISel::SelectSRem(const Instruction *I) {
1660   MVT VT;
1661   Type *Ty = I->getType();
1662   if (!isTypeLegal(Ty, VT))
1663     return false;
1664 
1665   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1666   if (VT == MVT::i8)
1667     LC = RTLIB::SREM_I8;
1668   else if (VT == MVT::i16)
1669     LC = RTLIB::SREM_I16;
1670   else if (VT == MVT::i32)
1671     LC = RTLIB::SREM_I32;
1672   else if (VT == MVT::i64)
1673     LC = RTLIB::SREM_I64;
1674   else if (VT == MVT::i128)
1675     LC = RTLIB::SREM_I128;
1676   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1677 
1678   return ARMEmitLibcall(I, LC);
1679 }
1680 
1681 bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1682   EVT VT  = TLI.getValueType(I->getType(), true);
1683 
1684   // We can get here in the case when we want to use NEON for our fp
1685   // operations, but can't figure out how to. Just use the vfp instructions
1686   // if we have them.
1687   // FIXME: It'd be nice to use NEON instructions.
1688   Type *Ty = I->getType();
1689   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1690   if (isFloat && !Subtarget->hasVFP2())
1691     return false;
1692 
1693   unsigned Opc;
1694   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1695   switch (ISDOpcode) {
1696     default: return false;
1697     case ISD::FADD:
1698       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1699       break;
1700     case ISD::FSUB:
1701       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1702       break;
1703     case ISD::FMUL:
1704       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1705       break;
1706   }
1707   unsigned Op1 = getRegForValue(I->getOperand(0));
1708   if (Op1 == 0) return false;
1709 
1710   unsigned Op2 = getRegForValue(I->getOperand(1));
1711   if (Op2 == 0) return false;
1712 
1713   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1714   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1715                           TII.get(Opc), ResultReg)
1716                   .addReg(Op1).addReg(Op2));
1717   UpdateValueMap(I, ResultReg);
1718   return true;
1719 }
1720 
1721 // Call Handling Code
1722 
1723 // This is largely taken directly from CCAssignFnForNode - we don't support
1724 // varargs in FastISel so that part has been removed.
1725 // TODO: We may not support all of this.
1726 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1727   switch (CC) {
1728   default:
1729     llvm_unreachable("Unsupported calling convention");
1730   case CallingConv::Fast:
1731     // Ignore fastcc. Silence compiler warnings.
1732     (void)RetFastCC_ARM_APCS;
1733     (void)FastCC_ARM_APCS;
1734     // Fallthrough
1735   case CallingConv::C:
1736     // Use target triple & subtarget features to do actual dispatch.
1737     if (Subtarget->isAAPCS_ABI()) {
1738       if (Subtarget->hasVFP2() &&
1739           TM.Options.FloatABIType == FloatABI::Hard)
1740         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1741       else
1742         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1743     } else
1744         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1745   case CallingConv::ARM_AAPCS_VFP:
1746     return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1747   case CallingConv::ARM_AAPCS:
1748     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1749   case CallingConv::ARM_APCS:
1750     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1751   }
1752 }
1753 
1754 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1755                                   SmallVectorImpl<unsigned> &ArgRegs,
1756                                   SmallVectorImpl<MVT> &ArgVTs,
1757                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1758                                   SmallVectorImpl<unsigned> &RegArgs,
1759                                   CallingConv::ID CC,
1760                                   unsigned &NumBytes) {
1761   SmallVector<CCValAssign, 16> ArgLocs;
1762   CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context);
1763   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1764 
1765   // Get a count of how many bytes are to be pushed on the stack.
1766   NumBytes = CCInfo.getNextStackOffset();
1767 
1768   // Issue CALLSEQ_START
1769   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1770   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1771                           TII.get(AdjStackDown))
1772                   .addImm(NumBytes));
1773 
1774   // Process the args.
1775   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1776     CCValAssign &VA = ArgLocs[i];
1777     unsigned Arg = ArgRegs[VA.getValNo()];
1778     MVT ArgVT = ArgVTs[VA.getValNo()];
1779 
1780     // We don't handle NEON/vector parameters yet.
1781     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1782       return false;
1783 
1784     // Handle arg promotion, etc.
1785     switch (VA.getLocInfo()) {
1786       case CCValAssign::Full: break;
1787       case CCValAssign::SExt: {
1788         MVT DestVT = VA.getLocVT();
1789         unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1790                                            /*isZExt*/false);
1791         assert (ResultReg != 0 && "Failed to emit a sext");
1792         Arg = ResultReg;
1793         ArgVT = DestVT;
1794         break;
1795       }
1796       case CCValAssign::AExt:
1797         // Intentional fall-through.  Handle AExt and ZExt.
1798       case CCValAssign::ZExt: {
1799         MVT DestVT = VA.getLocVT();
1800         unsigned ResultReg = ARMEmitIntExt(ArgVT, Arg, DestVT,
1801                                            /*isZExt*/true);
1802         assert (ResultReg != 0 && "Failed to emit a sext");
1803         Arg = ResultReg;
1804         ArgVT = DestVT;
1805         break;
1806       }
1807       case CCValAssign::BCvt: {
1808         unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1809                                  /*TODO: Kill=*/false);
1810         assert(BC != 0 && "Failed to emit a bitcast!");
1811         Arg = BC;
1812         ArgVT = VA.getLocVT();
1813         break;
1814       }
1815       default: llvm_unreachable("Unknown arg promotion!");
1816     }
1817 
1818     // Now copy/store arg to correct locations.
1819     if (VA.isRegLoc() && !VA.needsCustom()) {
1820       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1821               VA.getLocReg())
1822         .addReg(Arg);
1823       RegArgs.push_back(VA.getLocReg());
1824     } else if (VA.needsCustom()) {
1825       // TODO: We need custom lowering for vector (v2f64) args.
1826       if (VA.getLocVT() != MVT::f64) return false;
1827 
1828       CCValAssign &NextVA = ArgLocs[++i];
1829 
1830       // TODO: Only handle register args for now.
1831       if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1832 
1833       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1834                               TII.get(ARM::VMOVRRD), VA.getLocReg())
1835                       .addReg(NextVA.getLocReg(), RegState::Define)
1836                       .addReg(Arg));
1837       RegArgs.push_back(VA.getLocReg());
1838       RegArgs.push_back(NextVA.getLocReg());
1839     } else {
1840       assert(VA.isMemLoc());
1841       // Need to store on the stack.
1842       Address Addr;
1843       Addr.BaseType = Address::RegBase;
1844       Addr.Base.Reg = ARM::SP;
1845       Addr.Offset = VA.getLocMemOffset();
1846 
1847       if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1848     }
1849   }
1850   return true;
1851 }
1852 
1853 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1854                              const Instruction *I, CallingConv::ID CC,
1855                              unsigned &NumBytes) {
1856   // Issue CALLSEQ_END
1857   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
1858   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1859                           TII.get(AdjStackUp))
1860                   .addImm(NumBytes).addImm(0));
1861 
1862   // Now the return value.
1863   if (RetVT != MVT::isVoid) {
1864     SmallVector<CCValAssign, 16> RVLocs;
1865     CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context);
1866     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1867 
1868     // Copy all of the result registers out of their specified physreg.
1869     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1870       // For this move we copy into two registers and then move into the
1871       // double fp reg we want.
1872       EVT DestVT = RVLocs[0].getValVT();
1873       TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1874       unsigned ResultReg = createResultReg(DstRC);
1875       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1876                               TII.get(ARM::VMOVDRR), ResultReg)
1877                       .addReg(RVLocs[0].getLocReg())
1878                       .addReg(RVLocs[1].getLocReg()));
1879 
1880       UsedRegs.push_back(RVLocs[0].getLocReg());
1881       UsedRegs.push_back(RVLocs[1].getLocReg());
1882 
1883       // Finally update the result.
1884       UpdateValueMap(I, ResultReg);
1885     } else {
1886       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1887       EVT CopyVT = RVLocs[0].getValVT();
1888 
1889       // Special handling for extended integers.
1890       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1891         CopyVT = MVT::i32;
1892 
1893       TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1894 
1895       unsigned ResultReg = createResultReg(DstRC);
1896       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1897               ResultReg).addReg(RVLocs[0].getLocReg());
1898       UsedRegs.push_back(RVLocs[0].getLocReg());
1899 
1900       // Finally update the result.
1901       UpdateValueMap(I, ResultReg);
1902     }
1903   }
1904 
1905   return true;
1906 }
1907 
1908 bool ARMFastISel::SelectRet(const Instruction *I) {
1909   const ReturnInst *Ret = cast<ReturnInst>(I);
1910   const Function &F = *I->getParent()->getParent();
1911 
1912   if (!FuncInfo.CanLowerReturn)
1913     return false;
1914 
1915   if (F.isVarArg())
1916     return false;
1917 
1918   CallingConv::ID CC = F.getCallingConv();
1919   if (Ret->getNumOperands() > 0) {
1920     SmallVector<ISD::OutputArg, 4> Outs;
1921     GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1922                   Outs, TLI);
1923 
1924     // Analyze operands of the call, assigning locations to each operand.
1925     SmallVector<CCValAssign, 16> ValLocs;
1926     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext());
1927     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1928 
1929     const Value *RV = Ret->getOperand(0);
1930     unsigned Reg = getRegForValue(RV);
1931     if (Reg == 0)
1932       return false;
1933 
1934     // Only handle a single return value for now.
1935     if (ValLocs.size() != 1)
1936       return false;
1937 
1938     CCValAssign &VA = ValLocs[0];
1939 
1940     // Don't bother handling odd stuff for now.
1941     if (VA.getLocInfo() != CCValAssign::Full)
1942       return false;
1943     // Only handle register returns for now.
1944     if (!VA.isRegLoc())
1945       return false;
1946 
1947     unsigned SrcReg = Reg + VA.getValNo();
1948     EVT RVVT = TLI.getValueType(RV->getType());
1949     EVT DestVT = VA.getValVT();
1950     // Special handling for extended integers.
1951     if (RVVT != DestVT) {
1952       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1953         return false;
1954 
1955       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1956         return false;
1957 
1958       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
1959 
1960       bool isZExt = Outs[0].Flags.isZExt();
1961       unsigned ResultReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, isZExt);
1962       if (ResultReg == 0) return false;
1963       SrcReg = ResultReg;
1964     }
1965 
1966     // Make the copy.
1967     unsigned DstReg = VA.getLocReg();
1968     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1969     // Avoid a cross-class copy. This is very unlikely.
1970     if (!SrcRC->contains(DstReg))
1971       return false;
1972     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1973             DstReg).addReg(SrcReg);
1974 
1975     // Mark the register as live out of the function.
1976     MRI.addLiveOut(VA.getLocReg());
1977   }
1978 
1979   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
1980   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1981                           TII.get(RetOpc)));
1982   return true;
1983 }
1984 
1985 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1986 
1987   // Darwin needs the r9 versions of the opcodes.
1988   bool isDarwin = Subtarget->isTargetDarwin();
1989   if (isThumb2) {
1990     return isDarwin ? ARM::tBLr9 : ARM::tBL;
1991   } else  {
1992     return isDarwin ? ARM::BLr9 : ARM::BL;
1993   }
1994 }
1995 
1996 // A quick function that will emit a call for a named libcall in F with the
1997 // vector of passed arguments for the Instruction in I. We can assume that we
1998 // can emit a call for any libcall we can produce. This is an abridged version
1999 // of the full call infrastructure since we won't need to worry about things
2000 // like computed function pointers or strange arguments at call sites.
2001 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2002 // with X86.
2003 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2004   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2005 
2006   // Handle *simple* calls for now.
2007   Type *RetTy = I->getType();
2008   MVT RetVT;
2009   if (RetTy->isVoidTy())
2010     RetVT = MVT::isVoid;
2011   else if (!isTypeLegal(RetTy, RetVT))
2012     return false;
2013 
2014   // TODO: For now if we have long calls specified we don't handle the call.
2015   if (EnableARMLongCalls) return false;
2016 
2017   // Set up the argument vectors.
2018   SmallVector<Value*, 8> Args;
2019   SmallVector<unsigned, 8> ArgRegs;
2020   SmallVector<MVT, 8> ArgVTs;
2021   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2022   Args.reserve(I->getNumOperands());
2023   ArgRegs.reserve(I->getNumOperands());
2024   ArgVTs.reserve(I->getNumOperands());
2025   ArgFlags.reserve(I->getNumOperands());
2026   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2027     Value *Op = I->getOperand(i);
2028     unsigned Arg = getRegForValue(Op);
2029     if (Arg == 0) return false;
2030 
2031     Type *ArgTy = Op->getType();
2032     MVT ArgVT;
2033     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2034 
2035     ISD::ArgFlagsTy Flags;
2036     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2037     Flags.setOrigAlign(OriginalAlignment);
2038 
2039     Args.push_back(Op);
2040     ArgRegs.push_back(Arg);
2041     ArgVTs.push_back(ArgVT);
2042     ArgFlags.push_back(Flags);
2043   }
2044 
2045   // Handle the arguments now that we've gotten them.
2046   SmallVector<unsigned, 4> RegArgs;
2047   unsigned NumBytes;
2048   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2049     return false;
2050 
2051   // Issue the call, BLr9 for darwin, BL otherwise.
2052   // TODO: Turn this into the table of arm call ops.
2053   MachineInstrBuilder MIB;
2054   unsigned CallOpc = ARMSelectCallOp(NULL);
2055   if(isThumb2)
2056     // Explicitly adding the predicate here.
2057     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2058                          TII.get(CallOpc)))
2059                          .addExternalSymbol(TLI.getLibcallName(Call));
2060   else
2061     // Explicitly adding the predicate here.
2062     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2063                          TII.get(CallOpc))
2064           .addExternalSymbol(TLI.getLibcallName(Call)));
2065 
2066   // Add implicit physical register uses to the call.
2067   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2068     MIB.addReg(RegArgs[i]);
2069 
2070   // Finish off the call including any return values.
2071   SmallVector<unsigned, 4> UsedRegs;
2072   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2073 
2074   // Set all unused physreg defs as dead.
2075   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2076 
2077   return true;
2078 }
2079 
2080 bool ARMFastISel::SelectCall(const Instruction *I,
2081                              const char *IntrMemName = 0) {
2082   const CallInst *CI = cast<CallInst>(I);
2083   const Value *Callee = CI->getCalledValue();
2084 
2085   // Can't handle inline asm.
2086   if (isa<InlineAsm>(Callee)) return false;
2087 
2088   // Only handle global variable Callees.
2089   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2090   if (!GV)
2091     return false;
2092 
2093   // Check the calling convention.
2094   ImmutableCallSite CS(CI);
2095   CallingConv::ID CC = CS.getCallingConv();
2096 
2097   // TODO: Avoid some calling conventions?
2098 
2099   // Let SDISel handle vararg functions.
2100   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
2101   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2102   if (FTy->isVarArg())
2103     return false;
2104 
2105   // Handle *simple* calls for now.
2106   Type *RetTy = I->getType();
2107   MVT RetVT;
2108   if (RetTy->isVoidTy())
2109     RetVT = MVT::isVoid;
2110   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2111            RetVT != MVT::i8  && RetVT != MVT::i1)
2112     return false;
2113 
2114   // TODO: For now if we have long calls specified we don't handle the call.
2115   if (EnableARMLongCalls) return false;
2116 
2117   // Set up the argument vectors.
2118   SmallVector<Value*, 8> Args;
2119   SmallVector<unsigned, 8> ArgRegs;
2120   SmallVector<MVT, 8> ArgVTs;
2121   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2122   Args.reserve(CS.arg_size());
2123   ArgRegs.reserve(CS.arg_size());
2124   ArgVTs.reserve(CS.arg_size());
2125   ArgFlags.reserve(CS.arg_size());
2126   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2127        i != e; ++i) {
2128     // If we're lowering a memory intrinsic instead of a regular call, skip the
2129     // last two arguments, which shouldn't be passed to the underlying function.
2130     if (IntrMemName && e-i <= 2)
2131       break;
2132 
2133     ISD::ArgFlagsTy Flags;
2134     unsigned AttrInd = i - CS.arg_begin() + 1;
2135     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2136       Flags.setSExt();
2137     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2138       Flags.setZExt();
2139 
2140     // FIXME: Only handle *easy* calls for now.
2141     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2142         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2143         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2144         CS.paramHasAttr(AttrInd, Attribute::ByVal))
2145       return false;
2146 
2147     Type *ArgTy = (*i)->getType();
2148     MVT ArgVT;
2149     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2150         ArgVT != MVT::i1)
2151       return false;
2152 
2153     unsigned Arg = getRegForValue(*i);
2154     if (Arg == 0)
2155       return false;
2156 
2157     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
2158     Flags.setOrigAlign(OriginalAlignment);
2159 
2160     Args.push_back(*i);
2161     ArgRegs.push_back(Arg);
2162     ArgVTs.push_back(ArgVT);
2163     ArgFlags.push_back(Flags);
2164   }
2165 
2166   // Handle the arguments now that we've gotten them.
2167   SmallVector<unsigned, 4> RegArgs;
2168   unsigned NumBytes;
2169   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
2170     return false;
2171 
2172   // Issue the call, BLr9 for darwin, BL otherwise.
2173   // TODO: Turn this into the table of arm call ops.
2174   MachineInstrBuilder MIB;
2175   unsigned CallOpc = ARMSelectCallOp(GV);
2176   // Explicitly adding the predicate here.
2177   if(isThumb2) {
2178     // Explicitly adding the predicate here.
2179     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2180                                  TII.get(CallOpc)));
2181     if (!IntrMemName)
2182       MIB.addGlobalAddress(GV, 0, 0);
2183     else
2184       MIB.addExternalSymbol(IntrMemName, 0);
2185   } else {
2186     if (!IntrMemName)
2187       // Explicitly adding the predicate here.
2188       MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2189                                    TII.get(CallOpc))
2190             .addGlobalAddress(GV, 0, 0));
2191     else
2192       MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
2193                                    TII.get(CallOpc))
2194             .addExternalSymbol(IntrMemName, 0));
2195   }
2196 
2197   // Add implicit physical register uses to the call.
2198   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2199     MIB.addReg(RegArgs[i]);
2200 
2201   // Finish off the call including any return values.
2202   SmallVector<unsigned, 4> UsedRegs;
2203   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
2204 
2205   // Set all unused physreg defs as dead.
2206   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2207 
2208   return true;
2209 }
2210 
2211 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2212   return Len <= 16;
2213 }
2214 
2215 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len) {
2216   // Make sure we don't bloat code by inlining very large memcpy's.
2217   if (!ARMIsMemCpySmall(Len))
2218     return false;
2219 
2220   // We don't care about alignment here since we just emit integer accesses.
2221   while (Len) {
2222     MVT VT;
2223     if (Len >= 4)
2224       VT = MVT::i32;
2225     else if (Len >= 2)
2226       VT = MVT::i16;
2227     else {
2228       assert(Len == 1);
2229       VT = MVT::i8;
2230     }
2231 
2232     bool RV;
2233     unsigned ResultReg;
2234     RV = ARMEmitLoad(VT, ResultReg, Src);
2235     assert (RV = true && "Should be able to handle this load.");
2236     RV = ARMEmitStore(VT, ResultReg, Dest);
2237     assert (RV = true && "Should be able to handle this store.");
2238 
2239     unsigned Size = VT.getSizeInBits()/8;
2240     Len -= Size;
2241     Dest.Offset += Size;
2242     Src.Offset += Size;
2243   }
2244 
2245   return true;
2246 }
2247 
2248 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2249   // FIXME: Handle more intrinsics.
2250   switch (I.getIntrinsicID()) {
2251   default: return false;
2252   case Intrinsic::memcpy:
2253   case Intrinsic::memmove: {
2254     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2255     // Don't handle volatile.
2256     if (MTI.isVolatile())
2257       return false;
2258 
2259     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2260     // we would emit dead code because we don't currently handle memmoves.
2261     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2262     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2263       // Small memcpy's are common enough that we want to do them without a call
2264       // if possible.
2265       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2266       if (ARMIsMemCpySmall(Len)) {
2267         Address Dest, Src;
2268         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2269             !ARMComputeAddress(MTI.getRawSource(), Src))
2270           return false;
2271         if (ARMTryEmitSmallMemCpy(Dest, Src, Len))
2272           return true;
2273       }
2274     }
2275 
2276     if (!MTI.getLength()->getType()->isIntegerTy(32))
2277       return false;
2278 
2279     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2280       return false;
2281 
2282     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2283     return SelectCall(&I, IntrMemName);
2284   }
2285   case Intrinsic::memset: {
2286     const MemSetInst &MSI = cast<MemSetInst>(I);
2287     // Don't handle volatile.
2288     if (MSI.isVolatile())
2289       return false;
2290 
2291     if (!MSI.getLength()->getType()->isIntegerTy(32))
2292       return false;
2293 
2294     if (MSI.getDestAddressSpace() > 255)
2295       return false;
2296 
2297     return SelectCall(&I, "memset");
2298   }
2299   }
2300   return false;
2301 }
2302 
2303 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2304   // The high bits for a type smaller than the register size are assumed to be
2305   // undefined.
2306   Value *Op = I->getOperand(0);
2307 
2308   EVT SrcVT, DestVT;
2309   SrcVT = TLI.getValueType(Op->getType(), true);
2310   DestVT = TLI.getValueType(I->getType(), true);
2311 
2312   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2313     return false;
2314   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2315     return false;
2316 
2317   unsigned SrcReg = getRegForValue(Op);
2318   if (!SrcReg) return false;
2319 
2320   // Because the high bits are undefined, a truncate doesn't generate
2321   // any code.
2322   UpdateValueMap(I, SrcReg);
2323   return true;
2324 }
2325 
2326 unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT,
2327                                     bool isZExt) {
2328   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2329     return 0;
2330 
2331   unsigned Opc;
2332   bool isBoolZext = false;
2333   if (!SrcVT.isSimple()) return 0;
2334   switch (SrcVT.getSimpleVT().SimpleTy) {
2335   default: return 0;
2336   case MVT::i16:
2337     if (!Subtarget->hasV6Ops()) return 0;
2338     if (isZExt)
2339       Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH;
2340     else
2341       Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
2342     break;
2343   case MVT::i8:
2344     if (!Subtarget->hasV6Ops()) return 0;
2345     if (isZExt)
2346       Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB;
2347     else
2348       Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
2349     break;
2350   case MVT::i1:
2351     if (isZExt) {
2352       Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
2353       isBoolZext = true;
2354       break;
2355     }
2356     return 0;
2357   }
2358 
2359   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2360   MachineInstrBuilder MIB;
2361   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
2362         .addReg(SrcReg);
2363   if (isBoolZext)
2364     MIB.addImm(1);
2365   else
2366     MIB.addImm(0);
2367   AddOptionalDefs(MIB);
2368   return ResultReg;
2369 }
2370 
2371 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2372   // On ARM, in general, integer casts don't involve legal types; this code
2373   // handles promotable integers.
2374   Type *DestTy = I->getType();
2375   Value *Src = I->getOperand(0);
2376   Type *SrcTy = Src->getType();
2377 
2378   EVT SrcVT, DestVT;
2379   SrcVT = TLI.getValueType(SrcTy, true);
2380   DestVT = TLI.getValueType(DestTy, true);
2381 
2382   bool isZExt = isa<ZExtInst>(I);
2383   unsigned SrcReg = getRegForValue(Src);
2384   if (!SrcReg) return false;
2385 
2386   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2387   if (ResultReg == 0) return false;
2388   UpdateValueMap(I, ResultReg);
2389   return true;
2390 }
2391 
2392 // TODO: SoftFP support.
2393 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2394 
2395   switch (I->getOpcode()) {
2396     case Instruction::Load:
2397       return SelectLoad(I);
2398     case Instruction::Store:
2399       return SelectStore(I);
2400     case Instruction::Br:
2401       return SelectBranch(I);
2402     case Instruction::ICmp:
2403     case Instruction::FCmp:
2404       return SelectCmp(I);
2405     case Instruction::FPExt:
2406       return SelectFPExt(I);
2407     case Instruction::FPTrunc:
2408       return SelectFPTrunc(I);
2409     case Instruction::SIToFP:
2410       return SelectSIToFP(I);
2411     case Instruction::FPToSI:
2412       return SelectFPToSI(I);
2413     case Instruction::FAdd:
2414       return SelectBinaryOp(I, ISD::FADD);
2415     case Instruction::FSub:
2416       return SelectBinaryOp(I, ISD::FSUB);
2417     case Instruction::FMul:
2418       return SelectBinaryOp(I, ISD::FMUL);
2419     case Instruction::SDiv:
2420       return SelectSDiv(I);
2421     case Instruction::SRem:
2422       return SelectSRem(I);
2423     case Instruction::Call:
2424       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2425         return SelectIntrinsicCall(*II);
2426       return SelectCall(I);
2427     case Instruction::Select:
2428       return SelectSelect(I);
2429     case Instruction::Ret:
2430       return SelectRet(I);
2431     case Instruction::Trunc:
2432       return SelectTrunc(I);
2433     case Instruction::ZExt:
2434     case Instruction::SExt:
2435       return SelectIntExt(I);
2436     default: break;
2437   }
2438   return false;
2439 }
2440 
2441 /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
2442 /// vreg is being provided by the specified load instruction.  If possible,
2443 /// try to fold the load as an operand to the instruction, returning true if
2444 /// successful.
2445 bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
2446                                 const LoadInst *LI) {
2447   // Verify we have a legal type before going any further.
2448   MVT VT;
2449   if (!isLoadTypeLegal(LI->getType(), VT))
2450     return false;
2451 
2452   // Combine load followed by zero- or sign-extend.
2453   // ldrb r1, [r0]       ldrb r1, [r0]
2454   // uxtb r2, r1     =>
2455   // mov  r3, r2         mov  r3, r1
2456   bool isZExt = true;
2457   switch(MI->getOpcode()) {
2458     default: return false;
2459     case ARM::SXTH:
2460     case ARM::t2SXTH:
2461       isZExt = false;
2462     case ARM::UXTH:
2463     case ARM::t2UXTH:
2464       if (VT != MVT::i16)
2465         return false;
2466     break;
2467     case ARM::SXTB:
2468     case ARM::t2SXTB:
2469       isZExt = false;
2470     case ARM::UXTB:
2471     case ARM::t2UXTB:
2472       if (VT != MVT::i8)
2473         return false;
2474     break;
2475   }
2476   // See if we can handle this address.
2477   Address Addr;
2478   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2479 
2480   unsigned ResultReg = MI->getOperand(0).getReg();
2481   if (!ARMEmitLoad(VT, ResultReg, Addr, isZExt, false))
2482     return false;
2483   MI->eraseFromParent();
2484   return true;
2485 }
2486 
2487 namespace llvm {
2488   llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2489     // Completely untested on non-darwin.
2490     const TargetMachine &TM = funcInfo.MF->getTarget();
2491 
2492     // Darwin and thumb1 only for now.
2493     const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2494     if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2495         !DisableARMFastISel)
2496       return new ARMFastISel(funcInfo);
2497     return 0;
2498   }
2499 }
2500