1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMSubtarget.h" 21 #include "ARMTargetMachine.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/GetElementPtrTypeIterator.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 using namespace llvm; 50 51 extern cl::opt<bool> EnableARMLongCalls; 52 53 namespace { 54 55 // All possible address modes, plus some. 56 typedef struct Address { 57 enum { 58 RegBase, 59 FrameIndexBase 60 } BaseType; 61 62 union { 63 unsigned Reg; 64 int FI; 65 } Base; 66 67 int Offset; 68 69 // Innocuous defaults for our address. 70 Address() 71 : BaseType(RegBase), Offset(0) { 72 Base.Reg = 0; 73 } 74 } Address; 75 76 class ARMFastISel : public FastISel { 77 78 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 79 /// make the right decision when generating code for different targets. 80 const ARMSubtarget *Subtarget; 81 const TargetMachine &TM; 82 const TargetInstrInfo &TII; 83 const TargetLowering &TLI; 84 ARMFunctionInfo *AFI; 85 86 // Convenience variables to avoid some queries. 87 bool isThumb2; 88 LLVMContext *Context; 89 90 public: 91 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 92 const TargetLibraryInfo *libInfo) 93 : FastISel(funcInfo, libInfo), 94 TM(funcInfo.MF->getTarget()), 95 TII(*TM.getInstrInfo()), 96 TLI(*TM.getTargetLowering()) { 97 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 98 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 99 isThumb2 = AFI->isThumbFunction(); 100 Context = &funcInfo.Fn->getContext(); 101 } 102 103 // Code from FastISel.cpp. 104 private: 105 unsigned FastEmitInst_(unsigned MachineInstOpcode, 106 const TargetRegisterClass *RC); 107 unsigned FastEmitInst_r(unsigned MachineInstOpcode, 108 const TargetRegisterClass *RC, 109 unsigned Op0, bool Op0IsKill); 110 unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 111 const TargetRegisterClass *RC, 112 unsigned Op0, bool Op0IsKill, 113 unsigned Op1, bool Op1IsKill); 114 unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 unsigned Op1, bool Op1IsKill, 118 unsigned Op2, bool Op2IsKill); 119 unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill, 122 uint64_t Imm); 123 unsigned FastEmitInst_rf(unsigned MachineInstOpcode, 124 const TargetRegisterClass *RC, 125 unsigned Op0, bool Op0IsKill, 126 const ConstantFP *FPImm); 127 unsigned FastEmitInst_rri(unsigned MachineInstOpcode, 128 const TargetRegisterClass *RC, 129 unsigned Op0, bool Op0IsKill, 130 unsigned Op1, bool Op1IsKill, 131 uint64_t Imm); 132 unsigned FastEmitInst_i(unsigned MachineInstOpcode, 133 const TargetRegisterClass *RC, 134 uint64_t Imm); 135 unsigned FastEmitInst_ii(unsigned MachineInstOpcode, 136 const TargetRegisterClass *RC, 137 uint64_t Imm1, uint64_t Imm2); 138 139 unsigned FastEmitInst_extractsubreg(MVT RetVT, 140 unsigned Op0, bool Op0IsKill, 141 uint32_t Idx); 142 143 // Backend specific FastISel code. 144 private: 145 virtual bool TargetSelectInstruction(const Instruction *I); 146 virtual unsigned TargetMaterializeConstant(const Constant *C); 147 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 148 virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 149 const LoadInst *LI); 150 virtual bool FastLowerArguments(); 151 private: 152 #include "ARMGenFastISel.inc" 153 154 // Instruction selection routines. 155 private: 156 bool SelectLoad(const Instruction *I); 157 bool SelectStore(const Instruction *I); 158 bool SelectBranch(const Instruction *I); 159 bool SelectIndirectBr(const Instruction *I); 160 bool SelectCmp(const Instruction *I); 161 bool SelectFPExt(const Instruction *I); 162 bool SelectFPTrunc(const Instruction *I); 163 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 164 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 165 bool SelectIToFP(const Instruction *I, bool isSigned); 166 bool SelectFPToI(const Instruction *I, bool isSigned); 167 bool SelectDiv(const Instruction *I, bool isSigned); 168 bool SelectRem(const Instruction *I, bool isSigned); 169 bool SelectCall(const Instruction *I, const char *IntrMemName); 170 bool SelectIntrinsicCall(const IntrinsicInst &I); 171 bool SelectSelect(const Instruction *I); 172 bool SelectRet(const Instruction *I); 173 bool SelectTrunc(const Instruction *I); 174 bool SelectIntExt(const Instruction *I); 175 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 176 177 // Utility routines. 178 private: 179 unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned OpNum, 180 unsigned Op); 181 bool isTypeLegal(Type *Ty, MVT &VT); 182 bool isLoadTypeLegal(Type *Ty, MVT &VT); 183 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 184 bool isZExt); 185 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 186 unsigned Alignment = 0, bool isZExt = true, 187 bool allocReg = true); 188 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 189 unsigned Alignment = 0); 190 bool ARMComputeAddress(const Value *Obj, Address &Addr); 191 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 192 bool ARMIsMemCpySmall(uint64_t Len); 193 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 194 unsigned Alignment); 195 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 196 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 197 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 198 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 199 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 200 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 201 unsigned ARMSelectCallOp(bool UseReg); 202 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 203 204 // Call handling routines. 205 private: 206 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 207 bool Return, 208 bool isVarArg); 209 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 210 SmallVectorImpl<unsigned> &ArgRegs, 211 SmallVectorImpl<MVT> &ArgVTs, 212 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 213 SmallVectorImpl<unsigned> &RegArgs, 214 CallingConv::ID CC, 215 unsigned &NumBytes, 216 bool isVarArg); 217 unsigned getLibcallReg(const Twine &Name); 218 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 219 const Instruction *I, CallingConv::ID CC, 220 unsigned &NumBytes, bool isVarArg); 221 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 222 223 // OptionalDef handling routines. 224 private: 225 bool isARMNEONPred(const MachineInstr *MI); 226 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 227 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 228 void AddLoadStoreOperands(MVT VT, Address &Addr, 229 const MachineInstrBuilder &MIB, 230 unsigned Flags, bool useAM3); 231 }; 232 233 } // end anonymous namespace 234 235 #include "ARMGenCallingConv.inc" 236 237 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 238 // we don't care about implicit defs here, just places we'll need to add a 239 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 240 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 241 if (!MI->hasOptionalDef()) 242 return false; 243 244 // Look to see if our OptionalDef is defining CPSR or CCR. 245 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 246 const MachineOperand &MO = MI->getOperand(i); 247 if (!MO.isReg() || !MO.isDef()) continue; 248 if (MO.getReg() == ARM::CPSR) 249 *CPSR = true; 250 } 251 return true; 252 } 253 254 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 255 const MCInstrDesc &MCID = MI->getDesc(); 256 257 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 258 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 259 AFI->isThumb2Function()) 260 return MI->isPredicable(); 261 262 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 263 if (MCID.OpInfo[i].isPredicate()) 264 return true; 265 266 return false; 267 } 268 269 // If the machine is predicable go ahead and add the predicate operands, if 270 // it needs default CC operands add those. 271 // TODO: If we want to support thumb1 then we'll need to deal with optional 272 // CPSR defs that need to be added before the remaining operands. See s_cc_out 273 // for descriptions why. 274 const MachineInstrBuilder & 275 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 276 MachineInstr *MI = &*MIB; 277 278 // Do we use a predicate? or... 279 // Are we NEON in ARM mode and have a predicate operand? If so, I know 280 // we're not predicable but add it anyways. 281 if (isARMNEONPred(MI)) 282 AddDefaultPred(MIB); 283 284 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 285 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 286 bool CPSR = false; 287 if (DefinesOptionalPredicate(MI, &CPSR)) { 288 if (CPSR) 289 AddDefaultT1CC(MIB); 290 else 291 AddDefaultCC(MIB); 292 } 293 return MIB; 294 } 295 296 unsigned ARMFastISel::constrainOperandRegClass(const MCInstrDesc &II, 297 unsigned Op, unsigned OpNum) { 298 if (TargetRegisterInfo::isVirtualRegister(Op)) { 299 const TargetRegisterClass *RegClass = 300 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 301 if (!MRI.constrainRegClass(Op, RegClass)) { 302 // If it's not legal to COPY between the register classes, something 303 // has gone very wrong before we got here. 304 unsigned NewOp = createResultReg(RegClass); 305 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 306 TII.get(TargetOpcode::COPY), NewOp).addReg(Op)); 307 return NewOp; 308 } 309 } 310 return Op; 311 } 312 313 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, 314 const TargetRegisterClass* RC) { 315 unsigned ResultReg = createResultReg(RC); 316 const MCInstrDesc &II = TII.get(MachineInstOpcode); 317 318 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)); 319 return ResultReg; 320 } 321 322 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 323 const TargetRegisterClass *RC, 324 unsigned Op0, bool Op0IsKill) { 325 unsigned ResultReg = createResultReg(RC); 326 const MCInstrDesc &II = TII.get(MachineInstOpcode); 327 328 // Make sure the input operand is sufficiently constrained to be legal 329 // for this instruction. 330 Op0 = constrainOperandRegClass(II, Op0, 1); 331 if (II.getNumDefs() >= 1) { 332 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 333 .addReg(Op0, Op0IsKill * RegState::Kill)); 334 } else { 335 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 336 .addReg(Op0, Op0IsKill * RegState::Kill)); 337 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 338 TII.get(TargetOpcode::COPY), ResultReg) 339 .addReg(II.ImplicitDefs[0])); 340 } 341 return ResultReg; 342 } 343 344 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 345 const TargetRegisterClass *RC, 346 unsigned Op0, bool Op0IsKill, 347 unsigned Op1, bool Op1IsKill) { 348 unsigned ResultReg = createResultReg(RC); 349 const MCInstrDesc &II = TII.get(MachineInstOpcode); 350 351 // Make sure the input operands are sufficiently constrained to be legal 352 // for this instruction. 353 Op0 = constrainOperandRegClass(II, Op0, 1); 354 Op1 = constrainOperandRegClass(II, Op1, 2); 355 356 if (II.getNumDefs() >= 1) { 357 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 358 .addReg(Op0, Op0IsKill * RegState::Kill) 359 .addReg(Op1, Op1IsKill * RegState::Kill)); 360 } else { 361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 362 .addReg(Op0, Op0IsKill * RegState::Kill) 363 .addReg(Op1, Op1IsKill * RegState::Kill)); 364 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 365 TII.get(TargetOpcode::COPY), ResultReg) 366 .addReg(II.ImplicitDefs[0])); 367 } 368 return ResultReg; 369 } 370 371 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 372 const TargetRegisterClass *RC, 373 unsigned Op0, bool Op0IsKill, 374 unsigned Op1, bool Op1IsKill, 375 unsigned Op2, bool Op2IsKill) { 376 unsigned ResultReg = createResultReg(RC); 377 const MCInstrDesc &II = TII.get(MachineInstOpcode); 378 379 // Make sure the input operands are sufficiently constrained to be legal 380 // for this instruction. 381 Op0 = constrainOperandRegClass(II, Op0, 1); 382 Op1 = constrainOperandRegClass(II, Op1, 2); 383 Op2 = constrainOperandRegClass(II, Op1, 3); 384 385 if (II.getNumDefs() >= 1) { 386 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 387 .addReg(Op0, Op0IsKill * RegState::Kill) 388 .addReg(Op1, Op1IsKill * RegState::Kill) 389 .addReg(Op2, Op2IsKill * RegState::Kill)); 390 } else { 391 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 392 .addReg(Op0, Op0IsKill * RegState::Kill) 393 .addReg(Op1, Op1IsKill * RegState::Kill) 394 .addReg(Op2, Op2IsKill * RegState::Kill)); 395 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 396 TII.get(TargetOpcode::COPY), ResultReg) 397 .addReg(II.ImplicitDefs[0])); 398 } 399 return ResultReg; 400 } 401 402 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 403 const TargetRegisterClass *RC, 404 unsigned Op0, bool Op0IsKill, 405 uint64_t Imm) { 406 unsigned ResultReg = createResultReg(RC); 407 const MCInstrDesc &II = TII.get(MachineInstOpcode); 408 409 // Make sure the input operand is sufficiently constrained to be legal 410 // for this instruction. 411 Op0 = constrainOperandRegClass(II, Op0, 1); 412 if (II.getNumDefs() >= 1) { 413 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 414 .addReg(Op0, Op0IsKill * RegState::Kill) 415 .addImm(Imm)); 416 } else { 417 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 418 .addReg(Op0, Op0IsKill * RegState::Kill) 419 .addImm(Imm)); 420 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 421 TII.get(TargetOpcode::COPY), ResultReg) 422 .addReg(II.ImplicitDefs[0])); 423 } 424 return ResultReg; 425 } 426 427 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 428 const TargetRegisterClass *RC, 429 unsigned Op0, bool Op0IsKill, 430 const ConstantFP *FPImm) { 431 unsigned ResultReg = createResultReg(RC); 432 const MCInstrDesc &II = TII.get(MachineInstOpcode); 433 434 // Make sure the input operand is sufficiently constrained to be legal 435 // for this instruction. 436 Op0 = constrainOperandRegClass(II, Op0, 1); 437 if (II.getNumDefs() >= 1) { 438 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 439 .addReg(Op0, Op0IsKill * RegState::Kill) 440 .addFPImm(FPImm)); 441 } else { 442 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 443 .addReg(Op0, Op0IsKill * RegState::Kill) 444 .addFPImm(FPImm)); 445 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 446 TII.get(TargetOpcode::COPY), ResultReg) 447 .addReg(II.ImplicitDefs[0])); 448 } 449 return ResultReg; 450 } 451 452 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 453 const TargetRegisterClass *RC, 454 unsigned Op0, bool Op0IsKill, 455 unsigned Op1, bool Op1IsKill, 456 uint64_t Imm) { 457 unsigned ResultReg = createResultReg(RC); 458 const MCInstrDesc &II = TII.get(MachineInstOpcode); 459 460 // Make sure the input operands are sufficiently constrained to be legal 461 // for this instruction. 462 Op0 = constrainOperandRegClass(II, Op0, 1); 463 Op1 = constrainOperandRegClass(II, Op1, 2); 464 if (II.getNumDefs() >= 1) { 465 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 466 .addReg(Op0, Op0IsKill * RegState::Kill) 467 .addReg(Op1, Op1IsKill * RegState::Kill) 468 .addImm(Imm)); 469 } else { 470 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 471 .addReg(Op0, Op0IsKill * RegState::Kill) 472 .addReg(Op1, Op1IsKill * RegState::Kill) 473 .addImm(Imm)); 474 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 475 TII.get(TargetOpcode::COPY), ResultReg) 476 .addReg(II.ImplicitDefs[0])); 477 } 478 return ResultReg; 479 } 480 481 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, 482 const TargetRegisterClass *RC, 483 uint64_t Imm) { 484 unsigned ResultReg = createResultReg(RC); 485 const MCInstrDesc &II = TII.get(MachineInstOpcode); 486 487 if (II.getNumDefs() >= 1) { 488 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 489 .addImm(Imm)); 490 } else { 491 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 492 .addImm(Imm)); 493 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 494 TII.get(TargetOpcode::COPY), ResultReg) 495 .addReg(II.ImplicitDefs[0])); 496 } 497 return ResultReg; 498 } 499 500 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 501 const TargetRegisterClass *RC, 502 uint64_t Imm1, uint64_t Imm2) { 503 unsigned ResultReg = createResultReg(RC); 504 const MCInstrDesc &II = TII.get(MachineInstOpcode); 505 506 if (II.getNumDefs() >= 1) { 507 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 508 .addImm(Imm1).addImm(Imm2)); 509 } else { 510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 511 .addImm(Imm1).addImm(Imm2)); 512 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 513 TII.get(TargetOpcode::COPY), 514 ResultReg) 515 .addReg(II.ImplicitDefs[0])); 516 } 517 return ResultReg; 518 } 519 520 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, 521 unsigned Op0, bool Op0IsKill, 522 uint32_t Idx) { 523 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 524 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 525 "Cannot yet extract from physregs"); 526 527 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 528 DL, TII.get(TargetOpcode::COPY), ResultReg) 529 .addReg(Op0, getKillRegState(Op0IsKill), Idx)); 530 return ResultReg; 531 } 532 533 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 534 // checks from the various callers. 535 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 536 if (VT == MVT::f64) return 0; 537 538 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 539 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 540 TII.get(ARM::VMOVSR), MoveReg) 541 .addReg(SrcReg)); 542 return MoveReg; 543 } 544 545 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 546 if (VT == MVT::i64) return 0; 547 548 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 549 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 550 TII.get(ARM::VMOVRS), MoveReg) 551 .addReg(SrcReg)); 552 return MoveReg; 553 } 554 555 // For double width floating point we need to materialize two constants 556 // (the high and the low) into integer registers then use a move to get 557 // the combined constant into an FP reg. 558 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 559 const APFloat Val = CFP->getValueAPF(); 560 bool is64bit = VT == MVT::f64; 561 562 // This checks to see if we can use VFP3 instructions to materialize 563 // a constant, otherwise we have to go through the constant pool. 564 if (TLI.isFPImmLegal(Val, VT)) { 565 int Imm; 566 unsigned Opc; 567 if (is64bit) { 568 Imm = ARM_AM::getFP64Imm(Val); 569 Opc = ARM::FCONSTD; 570 } else { 571 Imm = ARM_AM::getFP32Imm(Val); 572 Opc = ARM::FCONSTS; 573 } 574 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 575 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 576 DestReg) 577 .addImm(Imm)); 578 return DestReg; 579 } 580 581 // Require VFP2 for loading fp constants. 582 if (!Subtarget->hasVFP2()) return false; 583 584 // MachineConstantPool wants an explicit alignment. 585 unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); 586 if (Align == 0) { 587 // TODO: Figure out if this is correct. 588 Align = TD.getTypeAllocSize(CFP->getType()); 589 } 590 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 591 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 592 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 593 594 // The extra reg is for addrmode5. 595 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 596 DestReg) 597 .addConstantPoolIndex(Idx) 598 .addReg(0)); 599 return DestReg; 600 } 601 602 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 603 604 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 605 return false; 606 607 // If we can do this in a single instruction without a constant pool entry 608 // do so now. 609 const ConstantInt *CI = cast<ConstantInt>(C); 610 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 611 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 612 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 613 &ARM::GPRRegClass; 614 unsigned ImmReg = createResultReg(RC); 615 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 616 TII.get(Opc), ImmReg) 617 .addImm(CI->getZExtValue())); 618 return ImmReg; 619 } 620 621 // Use MVN to emit negative constants. 622 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 623 unsigned Imm = (unsigned)~(CI->getSExtValue()); 624 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 625 (ARM_AM::getSOImmVal(Imm) != -1); 626 if (UseImm) { 627 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 628 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 629 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 630 TII.get(Opc), ImmReg) 631 .addImm(Imm)); 632 return ImmReg; 633 } 634 } 635 636 // Load from constant pool. For now 32-bit only. 637 if (VT != MVT::i32) 638 return false; 639 640 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 641 642 // MachineConstantPool wants an explicit alignment. 643 unsigned Align = TD.getPrefTypeAlignment(C->getType()); 644 if (Align == 0) { 645 // TODO: Figure out if this is correct. 646 Align = TD.getTypeAllocSize(C->getType()); 647 } 648 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 649 650 if (isThumb2) 651 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 652 TII.get(ARM::t2LDRpci), DestReg) 653 .addConstantPoolIndex(Idx)); 654 else 655 // The extra immediate is for addrmode2. 656 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 657 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 658 TII.get(ARM::LDRcp), DestReg) 659 .addConstantPoolIndex(Idx) 660 .addImm(0)); 661 662 return DestReg; 663 } 664 665 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 666 // For now 32-bit only. 667 if (VT != MVT::i32) return 0; 668 669 Reloc::Model RelocM = TM.getRelocationModel(); 670 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 671 const TargetRegisterClass *RC = isThumb2 ? 672 (const TargetRegisterClass*)&ARM::rGPRRegClass : 673 (const TargetRegisterClass*)&ARM::GPRRegClass; 674 unsigned DestReg = createResultReg(RC); 675 676 // FastISel TLS support on non-Darwin is broken, punt to SelectionDAG. 677 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 678 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 679 if (!Subtarget->isTargetDarwin() && IsThreadLocal) return 0; 680 681 // Use movw+movt when possible, it avoids constant pool entries. 682 // Darwin targets don't support movt with Reloc::Static, see 683 // ARMTargetLowering::LowerGlobalAddressDarwin. Other targets only support 684 // static movt relocations. 685 if (Subtarget->useMovt() && 686 Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) { 687 unsigned Opc; 688 switch (RelocM) { 689 case Reloc::PIC_: 690 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 691 break; 692 case Reloc::DynamicNoPIC: 693 Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn; 694 break; 695 default: 696 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 697 break; 698 } 699 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 700 DestReg).addGlobalAddress(GV)); 701 } else { 702 // MachineConstantPool wants an explicit alignment. 703 unsigned Align = TD.getPrefTypeAlignment(GV->getType()); 704 if (Align == 0) { 705 // TODO: Figure out if this is correct. 706 Align = TD.getTypeAllocSize(GV->getType()); 707 } 708 709 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 710 return ARMLowerPICELF(GV, Align, VT); 711 712 // Grab index. 713 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 714 (Subtarget->isThumb() ? 4 : 8); 715 unsigned Id = AFI->createPICLabelUId(); 716 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 717 ARMCP::CPValue, 718 PCAdj); 719 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 720 721 // Load value. 722 MachineInstrBuilder MIB; 723 if (isThumb2) { 724 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 725 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 726 .addConstantPoolIndex(Idx); 727 if (RelocM == Reloc::PIC_) 728 MIB.addImm(Id); 729 AddOptionalDefs(MIB); 730 } else { 731 // The extra immediate is for addrmode2. 732 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 733 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp), 734 DestReg) 735 .addConstantPoolIndex(Idx) 736 .addImm(0); 737 AddOptionalDefs(MIB); 738 739 if (RelocM == Reloc::PIC_) { 740 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 741 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 742 743 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 744 DL, TII.get(Opc), NewDestReg) 745 .addReg(DestReg) 746 .addImm(Id); 747 AddOptionalDefs(MIB); 748 return NewDestReg; 749 } 750 } 751 } 752 753 if (IsIndirect) { 754 MachineInstrBuilder MIB; 755 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 756 if (isThumb2) 757 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 758 TII.get(ARM::t2LDRi12), NewDestReg) 759 .addReg(DestReg) 760 .addImm(0); 761 else 762 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12), 763 NewDestReg) 764 .addReg(DestReg) 765 .addImm(0); 766 DestReg = NewDestReg; 767 AddOptionalDefs(MIB); 768 } 769 770 return DestReg; 771 } 772 773 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { 774 EVT CEVT = TLI.getValueType(C->getType(), true); 775 776 // Only handle simple types. 777 if (!CEVT.isSimple()) return 0; 778 MVT VT = CEVT.getSimpleVT(); 779 780 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 781 return ARMMaterializeFP(CFP, VT); 782 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 783 return ARMMaterializeGV(GV, VT); 784 else if (isa<ConstantInt>(C)) 785 return ARMMaterializeInt(C, VT); 786 787 return 0; 788 } 789 790 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 791 792 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 793 // Don't handle dynamic allocas. 794 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 795 796 MVT VT; 797 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 798 799 DenseMap<const AllocaInst*, int>::iterator SI = 800 FuncInfo.StaticAllocaMap.find(AI); 801 802 // This will get lowered later into the correct offsets and registers 803 // via rewriteXFrameIndex. 804 if (SI != FuncInfo.StaticAllocaMap.end()) { 805 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 806 unsigned ResultReg = createResultReg(RC); 807 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 808 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 809 TII.get(Opc), ResultReg) 810 .addFrameIndex(SI->second) 811 .addImm(0)); 812 return ResultReg; 813 } 814 815 return 0; 816 } 817 818 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 819 EVT evt = TLI.getValueType(Ty, true); 820 821 // Only handle simple types. 822 if (evt == MVT::Other || !evt.isSimple()) return false; 823 VT = evt.getSimpleVT(); 824 825 // Handle all legal types, i.e. a register that will directly hold this 826 // value. 827 return TLI.isTypeLegal(VT); 828 } 829 830 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 831 if (isTypeLegal(Ty, VT)) return true; 832 833 // If this is a type than can be sign or zero-extended to a basic operation 834 // go ahead and accept it now. 835 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 836 return true; 837 838 return false; 839 } 840 841 // Computes the address to get to an object. 842 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 843 // Some boilerplate from the X86 FastISel. 844 const User *U = NULL; 845 unsigned Opcode = Instruction::UserOp1; 846 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 847 // Don't walk into other basic blocks unless the object is an alloca from 848 // another block, otherwise it may not have a virtual register assigned. 849 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 850 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 851 Opcode = I->getOpcode(); 852 U = I; 853 } 854 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 855 Opcode = C->getOpcode(); 856 U = C; 857 } 858 859 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 860 if (Ty->getAddressSpace() > 255) 861 // Fast instruction selection doesn't support the special 862 // address spaces. 863 return false; 864 865 switch (Opcode) { 866 default: 867 break; 868 case Instruction::BitCast: 869 // Look through bitcasts. 870 return ARMComputeAddress(U->getOperand(0), Addr); 871 case Instruction::IntToPtr: 872 // Look past no-op inttoptrs. 873 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 874 return ARMComputeAddress(U->getOperand(0), Addr); 875 break; 876 case Instruction::PtrToInt: 877 // Look past no-op ptrtoints. 878 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 879 return ARMComputeAddress(U->getOperand(0), Addr); 880 break; 881 case Instruction::GetElementPtr: { 882 Address SavedAddr = Addr; 883 int TmpOffset = Addr.Offset; 884 885 // Iterate through the GEP folding the constants into offsets where 886 // we can. 887 gep_type_iterator GTI = gep_type_begin(U); 888 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 889 i != e; ++i, ++GTI) { 890 const Value *Op = *i; 891 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 892 const StructLayout *SL = TD.getStructLayout(STy); 893 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 894 TmpOffset += SL->getElementOffset(Idx); 895 } else { 896 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); 897 for (;;) { 898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 899 // Constant-offset addressing. 900 TmpOffset += CI->getSExtValue() * S; 901 break; 902 } 903 if (isa<AddOperator>(Op) && 904 (!isa<Instruction>(Op) || 905 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()] 906 == FuncInfo.MBB) && 907 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { 908 // An add (in the same block) with a constant operand. Fold the 909 // constant. 910 ConstantInt *CI = 911 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 912 TmpOffset += CI->getSExtValue() * S; 913 // Iterate on the other operand. 914 Op = cast<AddOperator>(Op)->getOperand(0); 915 continue; 916 } 917 // Unsupported 918 goto unsupported_gep; 919 } 920 } 921 } 922 923 // Try to grab the base operand now. 924 Addr.Offset = TmpOffset; 925 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 926 927 // We failed, restore everything and try the other options. 928 Addr = SavedAddr; 929 930 unsupported_gep: 931 break; 932 } 933 case Instruction::Alloca: { 934 const AllocaInst *AI = cast<AllocaInst>(Obj); 935 DenseMap<const AllocaInst*, int>::iterator SI = 936 FuncInfo.StaticAllocaMap.find(AI); 937 if (SI != FuncInfo.StaticAllocaMap.end()) { 938 Addr.BaseType = Address::FrameIndexBase; 939 Addr.Base.FI = SI->second; 940 return true; 941 } 942 break; 943 } 944 } 945 946 // Try to get this in a register if nothing else has worked. 947 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 948 return Addr.Base.Reg != 0; 949 } 950 951 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 952 bool needsLowering = false; 953 switch (VT.SimpleTy) { 954 default: llvm_unreachable("Unhandled load/store type!"); 955 case MVT::i1: 956 case MVT::i8: 957 case MVT::i16: 958 case MVT::i32: 959 if (!useAM3) { 960 // Integer loads/stores handle 12-bit offsets. 961 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 962 // Handle negative offsets. 963 if (needsLowering && isThumb2) 964 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 965 Addr.Offset > -256); 966 } else { 967 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 968 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 969 } 970 break; 971 case MVT::f32: 972 case MVT::f64: 973 // Floating point operands handle 8-bit offsets. 974 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 975 break; 976 } 977 978 // If this is a stack pointer and the offset needs to be simplified then 979 // put the alloca address into a register, set the base type back to 980 // register and continue. This should almost never happen. 981 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 982 const TargetRegisterClass *RC = isThumb2 ? 983 (const TargetRegisterClass*)&ARM::tGPRRegClass : 984 (const TargetRegisterClass*)&ARM::GPRRegClass; 985 unsigned ResultReg = createResultReg(RC); 986 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 987 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 988 TII.get(Opc), ResultReg) 989 .addFrameIndex(Addr.Base.FI) 990 .addImm(0)); 991 Addr.Base.Reg = ResultReg; 992 Addr.BaseType = Address::RegBase; 993 } 994 995 // Since the offset is too large for the load/store instruction 996 // get the reg+offset into a register. 997 if (needsLowering) { 998 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 999 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 1000 Addr.Offset = 0; 1001 } 1002 } 1003 1004 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 1005 const MachineInstrBuilder &MIB, 1006 unsigned Flags, bool useAM3) { 1007 // addrmode5 output depends on the selection dag addressing dividing the 1008 // offset by 4 that it then later multiplies. Do this here as well. 1009 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 1010 Addr.Offset /= 4; 1011 1012 // Frame base works a bit differently. Handle it separately. 1013 if (Addr.BaseType == Address::FrameIndexBase) { 1014 int FI = Addr.Base.FI; 1015 int Offset = Addr.Offset; 1016 MachineMemOperand *MMO = 1017 FuncInfo.MF->getMachineMemOperand( 1018 MachinePointerInfo::getFixedStack(FI, Offset), 1019 Flags, 1020 MFI.getObjectSize(FI), 1021 MFI.getObjectAlignment(FI)); 1022 // Now add the rest of the operands. 1023 MIB.addFrameIndex(FI); 1024 1025 // ARM halfword load/stores and signed byte loads need an additional 1026 // operand. 1027 if (useAM3) { 1028 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 1029 MIB.addReg(0); 1030 MIB.addImm(Imm); 1031 } else { 1032 MIB.addImm(Addr.Offset); 1033 } 1034 MIB.addMemOperand(MMO); 1035 } else { 1036 // Now add the rest of the operands. 1037 MIB.addReg(Addr.Base.Reg); 1038 1039 // ARM halfword load/stores and signed byte loads need an additional 1040 // operand. 1041 if (useAM3) { 1042 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 1043 MIB.addReg(0); 1044 MIB.addImm(Imm); 1045 } else { 1046 MIB.addImm(Addr.Offset); 1047 } 1048 } 1049 AddOptionalDefs(MIB); 1050 } 1051 1052 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 1053 unsigned Alignment, bool isZExt, bool allocReg) { 1054 unsigned Opc; 1055 bool useAM3 = false; 1056 bool needVMOV = false; 1057 const TargetRegisterClass *RC; 1058 switch (VT.SimpleTy) { 1059 // This is mostly going to be Neon/vector support. 1060 default: return false; 1061 case MVT::i1: 1062 case MVT::i8: 1063 if (isThumb2) { 1064 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1065 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 1066 else 1067 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 1068 } else { 1069 if (isZExt) { 1070 Opc = ARM::LDRBi12; 1071 } else { 1072 Opc = ARM::LDRSB; 1073 useAM3 = true; 1074 } 1075 } 1076 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1077 break; 1078 case MVT::i16: 1079 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1080 return false; 1081 1082 if (isThumb2) { 1083 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1084 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 1085 else 1086 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 1087 } else { 1088 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 1089 useAM3 = true; 1090 } 1091 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1092 break; 1093 case MVT::i32: 1094 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1095 return false; 1096 1097 if (isThumb2) { 1098 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1099 Opc = ARM::t2LDRi8; 1100 else 1101 Opc = ARM::t2LDRi12; 1102 } else { 1103 Opc = ARM::LDRi12; 1104 } 1105 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1106 break; 1107 case MVT::f32: 1108 if (!Subtarget->hasVFP2()) return false; 1109 // Unaligned loads need special handling. Floats require word-alignment. 1110 if (Alignment && Alignment < 4) { 1111 needVMOV = true; 1112 VT = MVT::i32; 1113 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1114 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1115 } else { 1116 Opc = ARM::VLDRS; 1117 RC = TLI.getRegClassFor(VT); 1118 } 1119 break; 1120 case MVT::f64: 1121 if (!Subtarget->hasVFP2()) return false; 1122 // FIXME: Unaligned loads need special handling. Doublewords require 1123 // word-alignment. 1124 if (Alignment && Alignment < 4) 1125 return false; 1126 1127 Opc = ARM::VLDRD; 1128 RC = TLI.getRegClassFor(VT); 1129 break; 1130 } 1131 // Simplify this down to something we can handle. 1132 ARMSimplifyAddress(Addr, VT, useAM3); 1133 1134 // Create the base instruction, then add the operands. 1135 if (allocReg) 1136 ResultReg = createResultReg(RC); 1137 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1138 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1139 TII.get(Opc), ResultReg); 1140 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1141 1142 // If we had an unaligned load of a float we've converted it to an regular 1143 // load. Now we must move from the GRP to the FP register. 1144 if (needVMOV) { 1145 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1146 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1147 TII.get(ARM::VMOVSR), MoveReg) 1148 .addReg(ResultReg)); 1149 ResultReg = MoveReg; 1150 } 1151 return true; 1152 } 1153 1154 bool ARMFastISel::SelectLoad(const Instruction *I) { 1155 // Atomic loads need special handling. 1156 if (cast<LoadInst>(I)->isAtomic()) 1157 return false; 1158 1159 // Verify we have a legal type before going any further. 1160 MVT VT; 1161 if (!isLoadTypeLegal(I->getType(), VT)) 1162 return false; 1163 1164 // See if we can handle this address. 1165 Address Addr; 1166 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1167 1168 unsigned ResultReg; 1169 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1170 return false; 1171 UpdateValueMap(I, ResultReg); 1172 return true; 1173 } 1174 1175 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1176 unsigned Alignment) { 1177 unsigned StrOpc; 1178 bool useAM3 = false; 1179 switch (VT.SimpleTy) { 1180 // This is mostly going to be Neon/vector support. 1181 default: return false; 1182 case MVT::i1: { 1183 unsigned Res = createResultReg(isThumb2 ? 1184 (const TargetRegisterClass*)&ARM::tGPRRegClass : 1185 (const TargetRegisterClass*)&ARM::GPRRegClass); 1186 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1187 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1188 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1189 TII.get(Opc), Res) 1190 .addReg(SrcReg).addImm(1)); 1191 SrcReg = Res; 1192 } // Fallthrough here. 1193 case MVT::i8: 1194 if (isThumb2) { 1195 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1196 StrOpc = ARM::t2STRBi8; 1197 else 1198 StrOpc = ARM::t2STRBi12; 1199 } else { 1200 StrOpc = ARM::STRBi12; 1201 } 1202 break; 1203 case MVT::i16: 1204 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1205 return false; 1206 1207 if (isThumb2) { 1208 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1209 StrOpc = ARM::t2STRHi8; 1210 else 1211 StrOpc = ARM::t2STRHi12; 1212 } else { 1213 StrOpc = ARM::STRH; 1214 useAM3 = true; 1215 } 1216 break; 1217 case MVT::i32: 1218 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1219 return false; 1220 1221 if (isThumb2) { 1222 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1223 StrOpc = ARM::t2STRi8; 1224 else 1225 StrOpc = ARM::t2STRi12; 1226 } else { 1227 StrOpc = ARM::STRi12; 1228 } 1229 break; 1230 case MVT::f32: 1231 if (!Subtarget->hasVFP2()) return false; 1232 // Unaligned stores need special handling. Floats require word-alignment. 1233 if (Alignment && Alignment < 4) { 1234 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1235 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1236 TII.get(ARM::VMOVRS), MoveReg) 1237 .addReg(SrcReg)); 1238 SrcReg = MoveReg; 1239 VT = MVT::i32; 1240 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1241 } else { 1242 StrOpc = ARM::VSTRS; 1243 } 1244 break; 1245 case MVT::f64: 1246 if (!Subtarget->hasVFP2()) return false; 1247 // FIXME: Unaligned stores need special handling. Doublewords require 1248 // word-alignment. 1249 if (Alignment && Alignment < 4) 1250 return false; 1251 1252 StrOpc = ARM::VSTRD; 1253 break; 1254 } 1255 // Simplify this down to something we can handle. 1256 ARMSimplifyAddress(Addr, VT, useAM3); 1257 1258 // Create the base instruction, then add the operands. 1259 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1260 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1261 TII.get(StrOpc)) 1262 .addReg(SrcReg); 1263 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1264 return true; 1265 } 1266 1267 bool ARMFastISel::SelectStore(const Instruction *I) { 1268 Value *Op0 = I->getOperand(0); 1269 unsigned SrcReg = 0; 1270 1271 // Atomic stores need special handling. 1272 if (cast<StoreInst>(I)->isAtomic()) 1273 return false; 1274 1275 // Verify we have a legal type before going any further. 1276 MVT VT; 1277 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1278 return false; 1279 1280 // Get the value to be stored into a register. 1281 SrcReg = getRegForValue(Op0); 1282 if (SrcReg == 0) return false; 1283 1284 // See if we can handle this address. 1285 Address Addr; 1286 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1287 return false; 1288 1289 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1290 return false; 1291 return true; 1292 } 1293 1294 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1295 switch (Pred) { 1296 // Needs two compares... 1297 case CmpInst::FCMP_ONE: 1298 case CmpInst::FCMP_UEQ: 1299 default: 1300 // AL is our "false" for now. The other two need more compares. 1301 return ARMCC::AL; 1302 case CmpInst::ICMP_EQ: 1303 case CmpInst::FCMP_OEQ: 1304 return ARMCC::EQ; 1305 case CmpInst::ICMP_SGT: 1306 case CmpInst::FCMP_OGT: 1307 return ARMCC::GT; 1308 case CmpInst::ICMP_SGE: 1309 case CmpInst::FCMP_OGE: 1310 return ARMCC::GE; 1311 case CmpInst::ICMP_UGT: 1312 case CmpInst::FCMP_UGT: 1313 return ARMCC::HI; 1314 case CmpInst::FCMP_OLT: 1315 return ARMCC::MI; 1316 case CmpInst::ICMP_ULE: 1317 case CmpInst::FCMP_OLE: 1318 return ARMCC::LS; 1319 case CmpInst::FCMP_ORD: 1320 return ARMCC::VC; 1321 case CmpInst::FCMP_UNO: 1322 return ARMCC::VS; 1323 case CmpInst::FCMP_UGE: 1324 return ARMCC::PL; 1325 case CmpInst::ICMP_SLT: 1326 case CmpInst::FCMP_ULT: 1327 return ARMCC::LT; 1328 case CmpInst::ICMP_SLE: 1329 case CmpInst::FCMP_ULE: 1330 return ARMCC::LE; 1331 case CmpInst::FCMP_UNE: 1332 case CmpInst::ICMP_NE: 1333 return ARMCC::NE; 1334 case CmpInst::ICMP_UGE: 1335 return ARMCC::HS; 1336 case CmpInst::ICMP_ULT: 1337 return ARMCC::LO; 1338 } 1339 } 1340 1341 bool ARMFastISel::SelectBranch(const Instruction *I) { 1342 const BranchInst *BI = cast<BranchInst>(I); 1343 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1344 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1345 1346 // Simple branch support. 1347 1348 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1349 // behavior. 1350 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1351 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1352 1353 // Get the compare predicate. 1354 // Try to take advantage of fallthrough opportunities. 1355 CmpInst::Predicate Predicate = CI->getPredicate(); 1356 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1357 std::swap(TBB, FBB); 1358 Predicate = CmpInst::getInversePredicate(Predicate); 1359 } 1360 1361 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1362 1363 // We may not handle every CC for now. 1364 if (ARMPred == ARMCC::AL) return false; 1365 1366 // Emit the compare. 1367 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1368 return false; 1369 1370 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1371 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1372 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1373 FastEmitBranch(FBB, DL); 1374 FuncInfo.MBB->addSuccessor(TBB); 1375 return true; 1376 } 1377 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1378 MVT SourceVT; 1379 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1380 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1381 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1382 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1383 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1384 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1385 TII.get(TstOpc)) 1386 .addReg(OpReg).addImm(1)); 1387 1388 unsigned CCMode = ARMCC::NE; 1389 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1390 std::swap(TBB, FBB); 1391 CCMode = ARMCC::EQ; 1392 } 1393 1394 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1395 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1396 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1397 1398 FastEmitBranch(FBB, DL); 1399 FuncInfo.MBB->addSuccessor(TBB); 1400 return true; 1401 } 1402 } else if (const ConstantInt *CI = 1403 dyn_cast<ConstantInt>(BI->getCondition())) { 1404 uint64_t Imm = CI->getZExtValue(); 1405 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1406 FastEmitBranch(Target, DL); 1407 return true; 1408 } 1409 1410 unsigned CmpReg = getRegForValue(BI->getCondition()); 1411 if (CmpReg == 0) return false; 1412 1413 // We've been divorced from our compare! Our block was split, and 1414 // now our compare lives in a predecessor block. We musn't 1415 // re-compare here, as the children of the compare aren't guaranteed 1416 // live across the block boundary (we *could* check for this). 1417 // Regardless, the compare has been done in the predecessor block, 1418 // and it left a value for us in a virtual register. Ergo, we test 1419 // the one-bit value left in the virtual register. 1420 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1421 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1422 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc)) 1423 .addReg(CmpReg).addImm(1)); 1424 1425 unsigned CCMode = ARMCC::NE; 1426 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1427 std::swap(TBB, FBB); 1428 CCMode = ARMCC::EQ; 1429 } 1430 1431 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1432 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1433 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1434 FastEmitBranch(FBB, DL); 1435 FuncInfo.MBB->addSuccessor(TBB); 1436 return true; 1437 } 1438 1439 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1440 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1441 if (AddrReg == 0) return false; 1442 1443 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1444 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) 1445 .addReg(AddrReg)); 1446 1447 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1448 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1449 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1450 1451 return true; 1452 } 1453 1454 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1455 bool isZExt) { 1456 Type *Ty = Src1Value->getType(); 1457 EVT SrcEVT = TLI.getValueType(Ty, true); 1458 if (!SrcEVT.isSimple()) return false; 1459 MVT SrcVT = SrcEVT.getSimpleVT(); 1460 1461 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1462 if (isFloat && !Subtarget->hasVFP2()) 1463 return false; 1464 1465 // Check to see if the 2nd operand is a constant that we can encode directly 1466 // in the compare. 1467 int Imm = 0; 1468 bool UseImm = false; 1469 bool isNegativeImm = false; 1470 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1471 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1472 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1473 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1474 SrcVT == MVT::i1) { 1475 const APInt &CIVal = ConstInt->getValue(); 1476 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1477 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1478 // then a cmn, because there is no way to represent 2147483648 as a 1479 // signed 32-bit int. 1480 if (Imm < 0 && Imm != (int)0x80000000) { 1481 isNegativeImm = true; 1482 Imm = -Imm; 1483 } 1484 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1485 (ARM_AM::getSOImmVal(Imm) != -1); 1486 } 1487 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1488 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1489 if (ConstFP->isZero() && !ConstFP->isNegative()) 1490 UseImm = true; 1491 } 1492 1493 unsigned CmpOpc; 1494 bool isICmp = true; 1495 bool needsExt = false; 1496 switch (SrcVT.SimpleTy) { 1497 default: return false; 1498 // TODO: Verify compares. 1499 case MVT::f32: 1500 isICmp = false; 1501 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1502 break; 1503 case MVT::f64: 1504 isICmp = false; 1505 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1506 break; 1507 case MVT::i1: 1508 case MVT::i8: 1509 case MVT::i16: 1510 needsExt = true; 1511 // Intentional fall-through. 1512 case MVT::i32: 1513 if (isThumb2) { 1514 if (!UseImm) 1515 CmpOpc = ARM::t2CMPrr; 1516 else 1517 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1518 } else { 1519 if (!UseImm) 1520 CmpOpc = ARM::CMPrr; 1521 else 1522 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1523 } 1524 break; 1525 } 1526 1527 unsigned SrcReg1 = getRegForValue(Src1Value); 1528 if (SrcReg1 == 0) return false; 1529 1530 unsigned SrcReg2 = 0; 1531 if (!UseImm) { 1532 SrcReg2 = getRegForValue(Src2Value); 1533 if (SrcReg2 == 0) return false; 1534 } 1535 1536 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1537 if (needsExt) { 1538 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1539 if (SrcReg1 == 0) return false; 1540 if (!UseImm) { 1541 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1542 if (SrcReg2 == 0) return false; 1543 } 1544 } 1545 1546 const MCInstrDesc &II = TII.get(CmpOpc); 1547 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1548 if (!UseImm) { 1549 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1550 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1551 .addReg(SrcReg1).addReg(SrcReg2)); 1552 } else { 1553 MachineInstrBuilder MIB; 1554 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1555 .addReg(SrcReg1); 1556 1557 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1558 if (isICmp) 1559 MIB.addImm(Imm); 1560 AddOptionalDefs(MIB); 1561 } 1562 1563 // For floating point we need to move the result to a comparison register 1564 // that we can then use for branches. 1565 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1566 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1567 TII.get(ARM::FMSTAT))); 1568 return true; 1569 } 1570 1571 bool ARMFastISel::SelectCmp(const Instruction *I) { 1572 const CmpInst *CI = cast<CmpInst>(I); 1573 1574 // Get the compare predicate. 1575 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1576 1577 // We may not handle every CC for now. 1578 if (ARMPred == ARMCC::AL) return false; 1579 1580 // Emit the compare. 1581 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1582 return false; 1583 1584 // Now set a register based on the comparison. Explicitly set the predicates 1585 // here. 1586 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1587 const TargetRegisterClass *RC = isThumb2 ? 1588 (const TargetRegisterClass*)&ARM::rGPRRegClass : 1589 (const TargetRegisterClass*)&ARM::GPRRegClass; 1590 unsigned DestReg = createResultReg(RC); 1591 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1592 unsigned ZeroReg = TargetMaterializeConstant(Zero); 1593 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1594 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg) 1595 .addReg(ZeroReg).addImm(1) 1596 .addImm(ARMPred).addReg(ARM::CPSR); 1597 1598 UpdateValueMap(I, DestReg); 1599 return true; 1600 } 1601 1602 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1603 // Make sure we have VFP and that we're extending float to double. 1604 if (!Subtarget->hasVFP2()) return false; 1605 1606 Value *V = I->getOperand(0); 1607 if (!I->getType()->isDoubleTy() || 1608 !V->getType()->isFloatTy()) return false; 1609 1610 unsigned Op = getRegForValue(V); 1611 if (Op == 0) return false; 1612 1613 unsigned Result = createResultReg(&ARM::DPRRegClass); 1614 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1615 TII.get(ARM::VCVTDS), Result) 1616 .addReg(Op)); 1617 UpdateValueMap(I, Result); 1618 return true; 1619 } 1620 1621 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1622 // Make sure we have VFP and that we're truncating double to float. 1623 if (!Subtarget->hasVFP2()) return false; 1624 1625 Value *V = I->getOperand(0); 1626 if (!(I->getType()->isFloatTy() && 1627 V->getType()->isDoubleTy())) return false; 1628 1629 unsigned Op = getRegForValue(V); 1630 if (Op == 0) return false; 1631 1632 unsigned Result = createResultReg(&ARM::SPRRegClass); 1633 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1634 TII.get(ARM::VCVTSD), Result) 1635 .addReg(Op)); 1636 UpdateValueMap(I, Result); 1637 return true; 1638 } 1639 1640 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1641 // Make sure we have VFP. 1642 if (!Subtarget->hasVFP2()) return false; 1643 1644 MVT DstVT; 1645 Type *Ty = I->getType(); 1646 if (!isTypeLegal(Ty, DstVT)) 1647 return false; 1648 1649 Value *Src = I->getOperand(0); 1650 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 1651 if (!SrcEVT.isSimple()) 1652 return false; 1653 MVT SrcVT = SrcEVT.getSimpleVT(); 1654 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1655 return false; 1656 1657 unsigned SrcReg = getRegForValue(Src); 1658 if (SrcReg == 0) return false; 1659 1660 // Handle sign-extension. 1661 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1662 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1663 /*isZExt*/!isSigned); 1664 if (SrcReg == 0) return false; 1665 } 1666 1667 // The conversion routine works on fp-reg to fp-reg and the operand above 1668 // was an integer, move it to the fp registers if possible. 1669 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1670 if (FP == 0) return false; 1671 1672 unsigned Opc; 1673 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1674 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1675 else return false; 1676 1677 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1678 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1679 ResultReg) 1680 .addReg(FP)); 1681 UpdateValueMap(I, ResultReg); 1682 return true; 1683 } 1684 1685 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1686 // Make sure we have VFP. 1687 if (!Subtarget->hasVFP2()) return false; 1688 1689 MVT DstVT; 1690 Type *RetTy = I->getType(); 1691 if (!isTypeLegal(RetTy, DstVT)) 1692 return false; 1693 1694 unsigned Op = getRegForValue(I->getOperand(0)); 1695 if (Op == 0) return false; 1696 1697 unsigned Opc; 1698 Type *OpTy = I->getOperand(0)->getType(); 1699 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1700 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1701 else return false; 1702 1703 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1704 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1705 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1706 ResultReg) 1707 .addReg(Op)); 1708 1709 // This result needs to be in an integer register, but the conversion only 1710 // takes place in fp-regs. 1711 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1712 if (IntReg == 0) return false; 1713 1714 UpdateValueMap(I, IntReg); 1715 return true; 1716 } 1717 1718 bool ARMFastISel::SelectSelect(const Instruction *I) { 1719 MVT VT; 1720 if (!isTypeLegal(I->getType(), VT)) 1721 return false; 1722 1723 // Things need to be register sized for register moves. 1724 if (VT != MVT::i32) return false; 1725 1726 unsigned CondReg = getRegForValue(I->getOperand(0)); 1727 if (CondReg == 0) return false; 1728 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1729 if (Op1Reg == 0) return false; 1730 1731 // Check to see if we can use an immediate in the conditional move. 1732 int Imm = 0; 1733 bool UseImm = false; 1734 bool isNegativeImm = false; 1735 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1736 assert (VT == MVT::i32 && "Expecting an i32."); 1737 Imm = (int)ConstInt->getValue().getZExtValue(); 1738 if (Imm < 0) { 1739 isNegativeImm = true; 1740 Imm = ~Imm; 1741 } 1742 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1743 (ARM_AM::getSOImmVal(Imm) != -1); 1744 } 1745 1746 unsigned Op2Reg = 0; 1747 if (!UseImm) { 1748 Op2Reg = getRegForValue(I->getOperand(2)); 1749 if (Op2Reg == 0) return false; 1750 } 1751 1752 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 1753 CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0); 1754 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1755 .addReg(CondReg).addImm(0)); 1756 1757 unsigned MovCCOpc; 1758 const TargetRegisterClass *RC; 1759 if (!UseImm) { 1760 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1761 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1762 } else { 1763 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1764 if (!isNegativeImm) 1765 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1766 else 1767 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1768 } 1769 unsigned ResultReg = createResultReg(RC); 1770 if (!UseImm) { 1771 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1772 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1774 .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR); 1775 } else { 1776 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1777 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1778 .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR); 1779 } 1780 UpdateValueMap(I, ResultReg); 1781 return true; 1782 } 1783 1784 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1785 MVT VT; 1786 Type *Ty = I->getType(); 1787 if (!isTypeLegal(Ty, VT)) 1788 return false; 1789 1790 // If we have integer div support we should have selected this automagically. 1791 // In case we have a real miss go ahead and return false and we'll pick 1792 // it up later. 1793 if (Subtarget->hasDivide()) return false; 1794 1795 // Otherwise emit a libcall. 1796 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1797 if (VT == MVT::i8) 1798 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1799 else if (VT == MVT::i16) 1800 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1801 else if (VT == MVT::i32) 1802 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1803 else if (VT == MVT::i64) 1804 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1805 else if (VT == MVT::i128) 1806 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1807 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1808 1809 return ARMEmitLibcall(I, LC); 1810 } 1811 1812 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1813 MVT VT; 1814 Type *Ty = I->getType(); 1815 if (!isTypeLegal(Ty, VT)) 1816 return false; 1817 1818 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1819 if (VT == MVT::i8) 1820 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1821 else if (VT == MVT::i16) 1822 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1823 else if (VT == MVT::i32) 1824 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1825 else if (VT == MVT::i64) 1826 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1827 else if (VT == MVT::i128) 1828 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1829 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1830 1831 return ARMEmitLibcall(I, LC); 1832 } 1833 1834 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1835 EVT DestVT = TLI.getValueType(I->getType(), true); 1836 1837 // We can get here in the case when we have a binary operation on a non-legal 1838 // type and the target independent selector doesn't know how to handle it. 1839 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1840 return false; 1841 1842 unsigned Opc; 1843 switch (ISDOpcode) { 1844 default: return false; 1845 case ISD::ADD: 1846 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1847 break; 1848 case ISD::OR: 1849 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1850 break; 1851 case ISD::SUB: 1852 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1853 break; 1854 } 1855 1856 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1857 if (SrcReg1 == 0) return false; 1858 1859 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1860 // in the instruction, rather then materializing the value in a register. 1861 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1862 if (SrcReg2 == 0) return false; 1863 1864 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1865 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1866 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1867 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1868 TII.get(Opc), ResultReg) 1869 .addReg(SrcReg1).addReg(SrcReg2)); 1870 UpdateValueMap(I, ResultReg); 1871 return true; 1872 } 1873 1874 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1875 EVT FPVT = TLI.getValueType(I->getType(), true); 1876 if (!FPVT.isSimple()) return false; 1877 MVT VT = FPVT.getSimpleVT(); 1878 1879 // We can get here in the case when we want to use NEON for our fp 1880 // operations, but can't figure out how to. Just use the vfp instructions 1881 // if we have them. 1882 // FIXME: It'd be nice to use NEON instructions. 1883 Type *Ty = I->getType(); 1884 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1885 if (isFloat && !Subtarget->hasVFP2()) 1886 return false; 1887 1888 unsigned Opc; 1889 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1890 switch (ISDOpcode) { 1891 default: return false; 1892 case ISD::FADD: 1893 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1894 break; 1895 case ISD::FSUB: 1896 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1897 break; 1898 case ISD::FMUL: 1899 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1900 break; 1901 } 1902 unsigned Op1 = getRegForValue(I->getOperand(0)); 1903 if (Op1 == 0) return false; 1904 1905 unsigned Op2 = getRegForValue(I->getOperand(1)); 1906 if (Op2 == 0) return false; 1907 1908 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1909 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1910 TII.get(Opc), ResultReg) 1911 .addReg(Op1).addReg(Op2)); 1912 UpdateValueMap(I, ResultReg); 1913 return true; 1914 } 1915 1916 // Call Handling Code 1917 1918 // This is largely taken directly from CCAssignFnForNode 1919 // TODO: We may not support all of this. 1920 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1921 bool Return, 1922 bool isVarArg) { 1923 switch (CC) { 1924 default: 1925 llvm_unreachable("Unsupported calling convention"); 1926 case CallingConv::Fast: 1927 if (Subtarget->hasVFP2() && !isVarArg) { 1928 if (!Subtarget->isAAPCS_ABI()) 1929 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1930 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1931 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1932 } 1933 // Fallthrough 1934 case CallingConv::C: 1935 // Use target triple & subtarget features to do actual dispatch. 1936 if (Subtarget->isAAPCS_ABI()) { 1937 if (Subtarget->hasVFP2() && 1938 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1939 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1940 else 1941 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1942 } else 1943 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1944 case CallingConv::ARM_AAPCS_VFP: 1945 if (!isVarArg) 1946 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1947 // Fall through to soft float variant, variadic functions don't 1948 // use hard floating point ABI. 1949 case CallingConv::ARM_AAPCS: 1950 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1951 case CallingConv::ARM_APCS: 1952 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1953 case CallingConv::GHC: 1954 if (Return) 1955 llvm_unreachable("Can't return in GHC call convention"); 1956 else 1957 return CC_ARM_APCS_GHC; 1958 } 1959 } 1960 1961 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1962 SmallVectorImpl<unsigned> &ArgRegs, 1963 SmallVectorImpl<MVT> &ArgVTs, 1964 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1965 SmallVectorImpl<unsigned> &RegArgs, 1966 CallingConv::ID CC, 1967 unsigned &NumBytes, 1968 bool isVarArg) { 1969 SmallVector<CCValAssign, 16> ArgLocs; 1970 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1971 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1972 CCAssignFnForCall(CC, false, isVarArg)); 1973 1974 // Check that we can handle all of the arguments. If we can't, then bail out 1975 // now before we add code to the MBB. 1976 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1977 CCValAssign &VA = ArgLocs[i]; 1978 MVT ArgVT = ArgVTs[VA.getValNo()]; 1979 1980 // We don't handle NEON/vector parameters yet. 1981 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1982 return false; 1983 1984 // Now copy/store arg to correct locations. 1985 if (VA.isRegLoc() && !VA.needsCustom()) { 1986 continue; 1987 } else if (VA.needsCustom()) { 1988 // TODO: We need custom lowering for vector (v2f64) args. 1989 if (VA.getLocVT() != MVT::f64 || 1990 // TODO: Only handle register args for now. 1991 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1992 return false; 1993 } else { 1994 switch (ArgVT.SimpleTy) { 1995 default: 1996 return false; 1997 case MVT::i1: 1998 case MVT::i8: 1999 case MVT::i16: 2000 case MVT::i32: 2001 break; 2002 case MVT::f32: 2003 if (!Subtarget->hasVFP2()) 2004 return false; 2005 break; 2006 case MVT::f64: 2007 if (!Subtarget->hasVFP2()) 2008 return false; 2009 break; 2010 } 2011 } 2012 } 2013 2014 // At the point, we are able to handle the call's arguments in fast isel. 2015 2016 // Get a count of how many bytes are to be pushed on the stack. 2017 NumBytes = CCInfo.getNextStackOffset(); 2018 2019 // Issue CALLSEQ_START 2020 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 2021 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2022 TII.get(AdjStackDown)) 2023 .addImm(NumBytes)); 2024 2025 // Process the args. 2026 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2027 CCValAssign &VA = ArgLocs[i]; 2028 unsigned Arg = ArgRegs[VA.getValNo()]; 2029 MVT ArgVT = ArgVTs[VA.getValNo()]; 2030 2031 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 2032 "We don't handle NEON/vector parameters yet."); 2033 2034 // Handle arg promotion, etc. 2035 switch (VA.getLocInfo()) { 2036 case CCValAssign::Full: break; 2037 case CCValAssign::SExt: { 2038 MVT DestVT = VA.getLocVT(); 2039 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 2040 assert (Arg != 0 && "Failed to emit a sext"); 2041 ArgVT = DestVT; 2042 break; 2043 } 2044 case CCValAssign::AExt: 2045 // Intentional fall-through. Handle AExt and ZExt. 2046 case CCValAssign::ZExt: { 2047 MVT DestVT = VA.getLocVT(); 2048 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 2049 assert (Arg != 0 && "Failed to emit a zext"); 2050 ArgVT = DestVT; 2051 break; 2052 } 2053 case CCValAssign::BCvt: { 2054 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 2055 /*TODO: Kill=*/false); 2056 assert(BC != 0 && "Failed to emit a bitcast!"); 2057 Arg = BC; 2058 ArgVT = VA.getLocVT(); 2059 break; 2060 } 2061 default: llvm_unreachable("Unknown arg promotion!"); 2062 } 2063 2064 // Now copy/store arg to correct locations. 2065 if (VA.isRegLoc() && !VA.needsCustom()) { 2066 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2067 VA.getLocReg()) 2068 .addReg(Arg); 2069 RegArgs.push_back(VA.getLocReg()); 2070 } else if (VA.needsCustom()) { 2071 // TODO: We need custom lowering for vector (v2f64) args. 2072 assert(VA.getLocVT() == MVT::f64 && 2073 "Custom lowering for v2f64 args not available"); 2074 2075 CCValAssign &NextVA = ArgLocs[++i]; 2076 2077 assert(VA.isRegLoc() && NextVA.isRegLoc() && 2078 "We only handle register args!"); 2079 2080 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2081 TII.get(ARM::VMOVRRD), VA.getLocReg()) 2082 .addReg(NextVA.getLocReg(), RegState::Define) 2083 .addReg(Arg)); 2084 RegArgs.push_back(VA.getLocReg()); 2085 RegArgs.push_back(NextVA.getLocReg()); 2086 } else { 2087 assert(VA.isMemLoc()); 2088 // Need to store on the stack. 2089 Address Addr; 2090 Addr.BaseType = Address::RegBase; 2091 Addr.Base.Reg = ARM::SP; 2092 Addr.Offset = VA.getLocMemOffset(); 2093 2094 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2095 assert(EmitRet && "Could not emit a store for argument!"); 2096 } 2097 } 2098 2099 return true; 2100 } 2101 2102 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2103 const Instruction *I, CallingConv::ID CC, 2104 unsigned &NumBytes, bool isVarArg) { 2105 // Issue CALLSEQ_END 2106 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2107 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2108 TII.get(AdjStackUp)) 2109 .addImm(NumBytes).addImm(0)); 2110 2111 // Now the return value. 2112 if (RetVT != MVT::isVoid) { 2113 SmallVector<CCValAssign, 16> RVLocs; 2114 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2115 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2116 2117 // Copy all of the result registers out of their specified physreg. 2118 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2119 // For this move we copy into two registers and then move into the 2120 // double fp reg we want. 2121 MVT DestVT = RVLocs[0].getValVT(); 2122 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2123 unsigned ResultReg = createResultReg(DstRC); 2124 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2125 TII.get(ARM::VMOVDRR), ResultReg) 2126 .addReg(RVLocs[0].getLocReg()) 2127 .addReg(RVLocs[1].getLocReg())); 2128 2129 UsedRegs.push_back(RVLocs[0].getLocReg()); 2130 UsedRegs.push_back(RVLocs[1].getLocReg()); 2131 2132 // Finally update the result. 2133 UpdateValueMap(I, ResultReg); 2134 } else { 2135 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2136 MVT CopyVT = RVLocs[0].getValVT(); 2137 2138 // Special handling for extended integers. 2139 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2140 CopyVT = MVT::i32; 2141 2142 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2143 2144 unsigned ResultReg = createResultReg(DstRC); 2145 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2146 ResultReg).addReg(RVLocs[0].getLocReg()); 2147 UsedRegs.push_back(RVLocs[0].getLocReg()); 2148 2149 // Finally update the result. 2150 UpdateValueMap(I, ResultReg); 2151 } 2152 } 2153 2154 return true; 2155 } 2156 2157 bool ARMFastISel::SelectRet(const Instruction *I) { 2158 const ReturnInst *Ret = cast<ReturnInst>(I); 2159 const Function &F = *I->getParent()->getParent(); 2160 2161 if (!FuncInfo.CanLowerReturn) 2162 return false; 2163 2164 // Build a list of return value registers. 2165 SmallVector<unsigned, 4> RetRegs; 2166 2167 CallingConv::ID CC = F.getCallingConv(); 2168 if (Ret->getNumOperands() > 0) { 2169 SmallVector<ISD::OutputArg, 4> Outs; 2170 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 2171 2172 // Analyze operands of the call, assigning locations to each operand. 2173 SmallVector<CCValAssign, 16> ValLocs; 2174 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext()); 2175 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2176 F.isVarArg())); 2177 2178 const Value *RV = Ret->getOperand(0); 2179 unsigned Reg = getRegForValue(RV); 2180 if (Reg == 0) 2181 return false; 2182 2183 // Only handle a single return value for now. 2184 if (ValLocs.size() != 1) 2185 return false; 2186 2187 CCValAssign &VA = ValLocs[0]; 2188 2189 // Don't bother handling odd stuff for now. 2190 if (VA.getLocInfo() != CCValAssign::Full) 2191 return false; 2192 // Only handle register returns for now. 2193 if (!VA.isRegLoc()) 2194 return false; 2195 2196 unsigned SrcReg = Reg + VA.getValNo(); 2197 EVT RVEVT = TLI.getValueType(RV->getType()); 2198 if (!RVEVT.isSimple()) return false; 2199 MVT RVVT = RVEVT.getSimpleVT(); 2200 MVT DestVT = VA.getValVT(); 2201 // Special handling for extended integers. 2202 if (RVVT != DestVT) { 2203 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2204 return false; 2205 2206 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2207 2208 // Perform extension if flagged as either zext or sext. Otherwise, do 2209 // nothing. 2210 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2211 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2212 if (SrcReg == 0) return false; 2213 } 2214 } 2215 2216 // Make the copy. 2217 unsigned DstReg = VA.getLocReg(); 2218 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2219 // Avoid a cross-class copy. This is very unlikely. 2220 if (!SrcRC->contains(DstReg)) 2221 return false; 2222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2223 DstReg).addReg(SrcReg); 2224 2225 // Add register to return instruction. 2226 RetRegs.push_back(VA.getLocReg()); 2227 } 2228 2229 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2230 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2231 TII.get(RetOpc)); 2232 AddOptionalDefs(MIB); 2233 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2234 MIB.addReg(RetRegs[i], RegState::Implicit); 2235 return true; 2236 } 2237 2238 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2239 if (UseReg) 2240 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2241 else 2242 return isThumb2 ? ARM::tBL : ARM::BL; 2243 } 2244 2245 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2246 // Manually compute the global's type to avoid building it when unnecessary. 2247 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2248 EVT LCREVT = TLI.getValueType(GVTy); 2249 if (!LCREVT.isSimple()) return 0; 2250 2251 GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false, 2252 GlobalValue::ExternalLinkage, 0, Name); 2253 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2254 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2255 } 2256 2257 // A quick function that will emit a call for a named libcall in F with the 2258 // vector of passed arguments for the Instruction in I. We can assume that we 2259 // can emit a call for any libcall we can produce. This is an abridged version 2260 // of the full call infrastructure since we won't need to worry about things 2261 // like computed function pointers or strange arguments at call sites. 2262 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2263 // with X86. 2264 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2265 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2266 2267 // Handle *simple* calls for now. 2268 Type *RetTy = I->getType(); 2269 MVT RetVT; 2270 if (RetTy->isVoidTy()) 2271 RetVT = MVT::isVoid; 2272 else if (!isTypeLegal(RetTy, RetVT)) 2273 return false; 2274 2275 // Can't handle non-double multi-reg retvals. 2276 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2277 SmallVector<CCValAssign, 16> RVLocs; 2278 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); 2279 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2280 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2281 return false; 2282 } 2283 2284 // Set up the argument vectors. 2285 SmallVector<Value*, 8> Args; 2286 SmallVector<unsigned, 8> ArgRegs; 2287 SmallVector<MVT, 8> ArgVTs; 2288 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2289 Args.reserve(I->getNumOperands()); 2290 ArgRegs.reserve(I->getNumOperands()); 2291 ArgVTs.reserve(I->getNumOperands()); 2292 ArgFlags.reserve(I->getNumOperands()); 2293 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2294 Value *Op = I->getOperand(i); 2295 unsigned Arg = getRegForValue(Op); 2296 if (Arg == 0) return false; 2297 2298 Type *ArgTy = Op->getType(); 2299 MVT ArgVT; 2300 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2301 2302 ISD::ArgFlagsTy Flags; 2303 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2304 Flags.setOrigAlign(OriginalAlignment); 2305 2306 Args.push_back(Op); 2307 ArgRegs.push_back(Arg); 2308 ArgVTs.push_back(ArgVT); 2309 ArgFlags.push_back(Flags); 2310 } 2311 2312 // Handle the arguments now that we've gotten them. 2313 SmallVector<unsigned, 4> RegArgs; 2314 unsigned NumBytes; 2315 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2316 RegArgs, CC, NumBytes, false)) 2317 return false; 2318 2319 unsigned CalleeReg = 0; 2320 if (EnableARMLongCalls) { 2321 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2322 if (CalleeReg == 0) return false; 2323 } 2324 2325 // Issue the call. 2326 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls); 2327 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2328 DL, TII.get(CallOpc)); 2329 // BL / BLX don't take a predicate, but tBL / tBLX do. 2330 if (isThumb2) 2331 AddDefaultPred(MIB); 2332 if (EnableARMLongCalls) 2333 MIB.addReg(CalleeReg); 2334 else 2335 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2336 2337 // Add implicit physical register uses to the call. 2338 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2339 MIB.addReg(RegArgs[i], RegState::Implicit); 2340 2341 // Add a register mask with the call-preserved registers. 2342 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2343 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2344 2345 // Finish off the call including any return values. 2346 SmallVector<unsigned, 4> UsedRegs; 2347 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2348 2349 // Set all unused physreg defs as dead. 2350 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2351 2352 return true; 2353 } 2354 2355 bool ARMFastISel::SelectCall(const Instruction *I, 2356 const char *IntrMemName = 0) { 2357 const CallInst *CI = cast<CallInst>(I); 2358 const Value *Callee = CI->getCalledValue(); 2359 2360 // Can't handle inline asm. 2361 if (isa<InlineAsm>(Callee)) return false; 2362 2363 // Allow SelectionDAG isel to handle tail calls. 2364 if (CI->isTailCall()) return false; 2365 2366 // Check the calling convention. 2367 ImmutableCallSite CS(CI); 2368 CallingConv::ID CC = CS.getCallingConv(); 2369 2370 // TODO: Avoid some calling conventions? 2371 2372 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2373 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2374 bool isVarArg = FTy->isVarArg(); 2375 2376 // Handle *simple* calls for now. 2377 Type *RetTy = I->getType(); 2378 MVT RetVT; 2379 if (RetTy->isVoidTy()) 2380 RetVT = MVT::isVoid; 2381 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2382 RetVT != MVT::i8 && RetVT != MVT::i1) 2383 return false; 2384 2385 // Can't handle non-double multi-reg retvals. 2386 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2387 RetVT != MVT::i16 && RetVT != MVT::i32) { 2388 SmallVector<CCValAssign, 16> RVLocs; 2389 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2390 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2391 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2392 return false; 2393 } 2394 2395 // Set up the argument vectors. 2396 SmallVector<Value*, 8> Args; 2397 SmallVector<unsigned, 8> ArgRegs; 2398 SmallVector<MVT, 8> ArgVTs; 2399 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2400 unsigned arg_size = CS.arg_size(); 2401 Args.reserve(arg_size); 2402 ArgRegs.reserve(arg_size); 2403 ArgVTs.reserve(arg_size); 2404 ArgFlags.reserve(arg_size); 2405 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2406 i != e; ++i) { 2407 // If we're lowering a memory intrinsic instead of a regular call, skip the 2408 // last two arguments, which shouldn't be passed to the underlying function. 2409 if (IntrMemName && e-i <= 2) 2410 break; 2411 2412 ISD::ArgFlagsTy Flags; 2413 unsigned AttrInd = i - CS.arg_begin() + 1; 2414 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2415 Flags.setSExt(); 2416 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2417 Flags.setZExt(); 2418 2419 // FIXME: Only handle *easy* calls for now. 2420 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2421 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2422 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2423 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2424 return false; 2425 2426 Type *ArgTy = (*i)->getType(); 2427 MVT ArgVT; 2428 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2429 ArgVT != MVT::i1) 2430 return false; 2431 2432 unsigned Arg = getRegForValue(*i); 2433 if (Arg == 0) 2434 return false; 2435 2436 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2437 Flags.setOrigAlign(OriginalAlignment); 2438 2439 Args.push_back(*i); 2440 ArgRegs.push_back(Arg); 2441 ArgVTs.push_back(ArgVT); 2442 ArgFlags.push_back(Flags); 2443 } 2444 2445 // Handle the arguments now that we've gotten them. 2446 SmallVector<unsigned, 4> RegArgs; 2447 unsigned NumBytes; 2448 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2449 RegArgs, CC, NumBytes, isVarArg)) 2450 return false; 2451 2452 bool UseReg = false; 2453 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2454 if (!GV || EnableARMLongCalls) UseReg = true; 2455 2456 unsigned CalleeReg = 0; 2457 if (UseReg) { 2458 if (IntrMemName) 2459 CalleeReg = getLibcallReg(IntrMemName); 2460 else 2461 CalleeReg = getRegForValue(Callee); 2462 2463 if (CalleeReg == 0) return false; 2464 } 2465 2466 // Issue the call. 2467 unsigned CallOpc = ARMSelectCallOp(UseReg); 2468 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2469 DL, TII.get(CallOpc)); 2470 2471 unsigned char OpFlags = 0; 2472 2473 // Add MO_PLT for global address or external symbol in the PIC relocation 2474 // model. 2475 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 2476 OpFlags = ARMII::MO_PLT; 2477 2478 // ARM calls don't take a predicate, but tBL / tBLX do. 2479 if(isThumb2) 2480 AddDefaultPred(MIB); 2481 if (UseReg) 2482 MIB.addReg(CalleeReg); 2483 else if (!IntrMemName) 2484 MIB.addGlobalAddress(GV, 0, OpFlags); 2485 else 2486 MIB.addExternalSymbol(IntrMemName, OpFlags); 2487 2488 // Add implicit physical register uses to the call. 2489 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2490 MIB.addReg(RegArgs[i], RegState::Implicit); 2491 2492 // Add a register mask with the call-preserved registers. 2493 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2494 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2495 2496 // Finish off the call including any return values. 2497 SmallVector<unsigned, 4> UsedRegs; 2498 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2499 return false; 2500 2501 // Set all unused physreg defs as dead. 2502 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2503 2504 return true; 2505 } 2506 2507 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2508 return Len <= 16; 2509 } 2510 2511 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2512 uint64_t Len, unsigned Alignment) { 2513 // Make sure we don't bloat code by inlining very large memcpy's. 2514 if (!ARMIsMemCpySmall(Len)) 2515 return false; 2516 2517 while (Len) { 2518 MVT VT; 2519 if (!Alignment || Alignment >= 4) { 2520 if (Len >= 4) 2521 VT = MVT::i32; 2522 else if (Len >= 2) 2523 VT = MVT::i16; 2524 else { 2525 assert (Len == 1 && "Expected a length of 1!"); 2526 VT = MVT::i8; 2527 } 2528 } else { 2529 // Bound based on alignment. 2530 if (Len >= 2 && Alignment == 2) 2531 VT = MVT::i16; 2532 else { 2533 VT = MVT::i8; 2534 } 2535 } 2536 2537 bool RV; 2538 unsigned ResultReg; 2539 RV = ARMEmitLoad(VT, ResultReg, Src); 2540 assert (RV == true && "Should be able to handle this load."); 2541 RV = ARMEmitStore(VT, ResultReg, Dest); 2542 assert (RV == true && "Should be able to handle this store."); 2543 (void)RV; 2544 2545 unsigned Size = VT.getSizeInBits()/8; 2546 Len -= Size; 2547 Dest.Offset += Size; 2548 Src.Offset += Size; 2549 } 2550 2551 return true; 2552 } 2553 2554 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2555 // FIXME: Handle more intrinsics. 2556 switch (I.getIntrinsicID()) { 2557 default: return false; 2558 case Intrinsic::frameaddress: { 2559 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2560 MFI->setFrameAddressIsTaken(true); 2561 2562 unsigned LdrOpc; 2563 const TargetRegisterClass *RC; 2564 if (isThumb2) { 2565 LdrOpc = ARM::t2LDRi12; 2566 RC = (const TargetRegisterClass*)&ARM::tGPRRegClass; 2567 } else { 2568 LdrOpc = ARM::LDRi12; 2569 RC = (const TargetRegisterClass*)&ARM::GPRRegClass; 2570 } 2571 2572 const ARMBaseRegisterInfo *RegInfo = 2573 static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo()); 2574 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2575 unsigned SrcReg = FramePtr; 2576 2577 // Recursively load frame address 2578 // ldr r0 [fp] 2579 // ldr r0 [r0] 2580 // ldr r0 [r0] 2581 // ... 2582 unsigned DestReg; 2583 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2584 while (Depth--) { 2585 DestReg = createResultReg(RC); 2586 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2587 TII.get(LdrOpc), DestReg) 2588 .addReg(SrcReg).addImm(0)); 2589 SrcReg = DestReg; 2590 } 2591 UpdateValueMap(&I, SrcReg); 2592 return true; 2593 } 2594 case Intrinsic::memcpy: 2595 case Intrinsic::memmove: { 2596 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2597 // Don't handle volatile. 2598 if (MTI.isVolatile()) 2599 return false; 2600 2601 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2602 // we would emit dead code because we don't currently handle memmoves. 2603 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2604 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2605 // Small memcpy's are common enough that we want to do them without a call 2606 // if possible. 2607 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2608 if (ARMIsMemCpySmall(Len)) { 2609 Address Dest, Src; 2610 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2611 !ARMComputeAddress(MTI.getRawSource(), Src)) 2612 return false; 2613 unsigned Alignment = MTI.getAlignment(); 2614 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2615 return true; 2616 } 2617 } 2618 2619 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2620 return false; 2621 2622 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2623 return false; 2624 2625 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2626 return SelectCall(&I, IntrMemName); 2627 } 2628 case Intrinsic::memset: { 2629 const MemSetInst &MSI = cast<MemSetInst>(I); 2630 // Don't handle volatile. 2631 if (MSI.isVolatile()) 2632 return false; 2633 2634 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2635 return false; 2636 2637 if (MSI.getDestAddressSpace() > 255) 2638 return false; 2639 2640 return SelectCall(&I, "memset"); 2641 } 2642 case Intrinsic::trap: { 2643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get( 2644 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2645 return true; 2646 } 2647 } 2648 } 2649 2650 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2651 // The high bits for a type smaller than the register size are assumed to be 2652 // undefined. 2653 Value *Op = I->getOperand(0); 2654 2655 EVT SrcVT, DestVT; 2656 SrcVT = TLI.getValueType(Op->getType(), true); 2657 DestVT = TLI.getValueType(I->getType(), true); 2658 2659 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2660 return false; 2661 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2662 return false; 2663 2664 unsigned SrcReg = getRegForValue(Op); 2665 if (!SrcReg) return false; 2666 2667 // Because the high bits are undefined, a truncate doesn't generate 2668 // any code. 2669 UpdateValueMap(I, SrcReg); 2670 return true; 2671 } 2672 2673 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2674 bool isZExt) { 2675 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2676 return 0; 2677 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2678 return 0; 2679 2680 // Table of which combinations can be emitted as a single instruction, 2681 // and which will require two. 2682 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2683 // ARM Thumb 2684 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2685 // ext: s z s z s z s z 2686 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2687 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2688 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2689 }; 2690 2691 // Target registers for: 2692 // - For ARM can never be PC. 2693 // - For 16-bit Thumb are restricted to lower 8 registers. 2694 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2695 static const TargetRegisterClass *RCTbl[2][2] = { 2696 // Instructions: Two Single 2697 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2698 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2699 }; 2700 2701 // Table governing the instruction(s) to be emitted. 2702 static const struct InstructionTable { 2703 uint32_t Opc : 16; 2704 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2705 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2706 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2707 } IT[2][2][3][2] = { 2708 { // Two instructions (first is left shift, second is in this table). 2709 { // ARM Opc S Shift Imm 2710 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2711 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2712 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2713 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2714 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2715 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2716 }, 2717 { // Thumb Opc S Shift Imm 2718 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2719 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2720 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2721 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2722 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2723 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2724 } 2725 }, 2726 { // Single instruction. 2727 { // ARM Opc S Shift Imm 2728 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2729 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2730 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2731 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2732 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2733 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2734 }, 2735 { // Thumb Opc S Shift Imm 2736 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2737 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2738 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2739 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2740 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2741 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2742 } 2743 } 2744 }; 2745 2746 unsigned SrcBits = SrcVT.getSizeInBits(); 2747 unsigned DestBits = DestVT.getSizeInBits(); 2748 (void) DestBits; 2749 assert((SrcBits < DestBits) && "can only extend to larger types"); 2750 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2751 "other sizes unimplemented"); 2752 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2753 "other sizes unimplemented"); 2754 2755 bool hasV6Ops = Subtarget->hasV6Ops(); 2756 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2757 assert((Bitness < 3) && "sanity-check table bounds"); 2758 2759 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2760 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2761 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2762 unsigned Opc = ITP->Opc; 2763 assert(ARM::KILL != Opc && "Invalid table entry"); 2764 unsigned hasS = ITP->hasS; 2765 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2766 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2767 "only MOVsi has shift operand addressing mode"); 2768 unsigned Imm = ITP->Imm; 2769 2770 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2771 bool setsCPSR = &ARM::tGPRRegClass == RC; 2772 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2773 unsigned ResultReg; 2774 // MOVsi encodes shift and immediate in shift operand addressing mode. 2775 // The following condition has the same value when emitting two 2776 // instruction sequences: both are shifts. 2777 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2778 2779 // Either one or two instructions are emitted. 2780 // They're always of the form: 2781 // dst = in OP imm 2782 // CPSR is set only by 16-bit Thumb instructions. 2783 // Predicate, if any, is AL. 2784 // S bit, if available, is always 0. 2785 // When two are emitted the first's result will feed as the second's input, 2786 // that value is then dead. 2787 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2788 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2789 ResultReg = createResultReg(RC); 2790 bool isLsl = (0 == Instr) && !isSingleInstr; 2791 unsigned Opcode = isLsl ? LSLOpc : Opc; 2792 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2793 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2794 bool isKill = 1 == Instr; 2795 MachineInstrBuilder MIB = BuildMI( 2796 *FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opcode), ResultReg); 2797 if (setsCPSR) 2798 MIB.addReg(ARM::CPSR, RegState::Define); 2799 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2800 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2801 if (hasS) 2802 AddDefaultCC(MIB); 2803 // Second instruction consumes the first's result. 2804 SrcReg = ResultReg; 2805 } 2806 2807 return ResultReg; 2808 } 2809 2810 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2811 // On ARM, in general, integer casts don't involve legal types; this code 2812 // handles promotable integers. 2813 Type *DestTy = I->getType(); 2814 Value *Src = I->getOperand(0); 2815 Type *SrcTy = Src->getType(); 2816 2817 bool isZExt = isa<ZExtInst>(I); 2818 unsigned SrcReg = getRegForValue(Src); 2819 if (!SrcReg) return false; 2820 2821 EVT SrcEVT, DestEVT; 2822 SrcEVT = TLI.getValueType(SrcTy, true); 2823 DestEVT = TLI.getValueType(DestTy, true); 2824 if (!SrcEVT.isSimple()) return false; 2825 if (!DestEVT.isSimple()) return false; 2826 2827 MVT SrcVT = SrcEVT.getSimpleVT(); 2828 MVT DestVT = DestEVT.getSimpleVT(); 2829 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2830 if (ResultReg == 0) return false; 2831 UpdateValueMap(I, ResultReg); 2832 return true; 2833 } 2834 2835 bool ARMFastISel::SelectShift(const Instruction *I, 2836 ARM_AM::ShiftOpc ShiftTy) { 2837 // We handle thumb2 mode by target independent selector 2838 // or SelectionDAG ISel. 2839 if (isThumb2) 2840 return false; 2841 2842 // Only handle i32 now. 2843 EVT DestVT = TLI.getValueType(I->getType(), true); 2844 if (DestVT != MVT::i32) 2845 return false; 2846 2847 unsigned Opc = ARM::MOVsr; 2848 unsigned ShiftImm; 2849 Value *Src2Value = I->getOperand(1); 2850 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2851 ShiftImm = CI->getZExtValue(); 2852 2853 // Fall back to selection DAG isel if the shift amount 2854 // is zero or greater than the width of the value type. 2855 if (ShiftImm == 0 || ShiftImm >=32) 2856 return false; 2857 2858 Opc = ARM::MOVsi; 2859 } 2860 2861 Value *Src1Value = I->getOperand(0); 2862 unsigned Reg1 = getRegForValue(Src1Value); 2863 if (Reg1 == 0) return false; 2864 2865 unsigned Reg2 = 0; 2866 if (Opc == ARM::MOVsr) { 2867 Reg2 = getRegForValue(Src2Value); 2868 if (Reg2 == 0) return false; 2869 } 2870 2871 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2872 if(ResultReg == 0) return false; 2873 2874 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2875 TII.get(Opc), ResultReg) 2876 .addReg(Reg1); 2877 2878 if (Opc == ARM::MOVsi) 2879 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2880 else if (Opc == ARM::MOVsr) { 2881 MIB.addReg(Reg2); 2882 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2883 } 2884 2885 AddOptionalDefs(MIB); 2886 UpdateValueMap(I, ResultReg); 2887 return true; 2888 } 2889 2890 // TODO: SoftFP support. 2891 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { 2892 2893 switch (I->getOpcode()) { 2894 case Instruction::Load: 2895 return SelectLoad(I); 2896 case Instruction::Store: 2897 return SelectStore(I); 2898 case Instruction::Br: 2899 return SelectBranch(I); 2900 case Instruction::IndirectBr: 2901 return SelectIndirectBr(I); 2902 case Instruction::ICmp: 2903 case Instruction::FCmp: 2904 return SelectCmp(I); 2905 case Instruction::FPExt: 2906 return SelectFPExt(I); 2907 case Instruction::FPTrunc: 2908 return SelectFPTrunc(I); 2909 case Instruction::SIToFP: 2910 return SelectIToFP(I, /*isSigned*/ true); 2911 case Instruction::UIToFP: 2912 return SelectIToFP(I, /*isSigned*/ false); 2913 case Instruction::FPToSI: 2914 return SelectFPToI(I, /*isSigned*/ true); 2915 case Instruction::FPToUI: 2916 return SelectFPToI(I, /*isSigned*/ false); 2917 case Instruction::Add: 2918 return SelectBinaryIntOp(I, ISD::ADD); 2919 case Instruction::Or: 2920 return SelectBinaryIntOp(I, ISD::OR); 2921 case Instruction::Sub: 2922 return SelectBinaryIntOp(I, ISD::SUB); 2923 case Instruction::FAdd: 2924 return SelectBinaryFPOp(I, ISD::FADD); 2925 case Instruction::FSub: 2926 return SelectBinaryFPOp(I, ISD::FSUB); 2927 case Instruction::FMul: 2928 return SelectBinaryFPOp(I, ISD::FMUL); 2929 case Instruction::SDiv: 2930 return SelectDiv(I, /*isSigned*/ true); 2931 case Instruction::UDiv: 2932 return SelectDiv(I, /*isSigned*/ false); 2933 case Instruction::SRem: 2934 return SelectRem(I, /*isSigned*/ true); 2935 case Instruction::URem: 2936 return SelectRem(I, /*isSigned*/ false); 2937 case Instruction::Call: 2938 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2939 return SelectIntrinsicCall(*II); 2940 return SelectCall(I); 2941 case Instruction::Select: 2942 return SelectSelect(I); 2943 case Instruction::Ret: 2944 return SelectRet(I); 2945 case Instruction::Trunc: 2946 return SelectTrunc(I); 2947 case Instruction::ZExt: 2948 case Instruction::SExt: 2949 return SelectIntExt(I); 2950 case Instruction::Shl: 2951 return SelectShift(I, ARM_AM::lsl); 2952 case Instruction::LShr: 2953 return SelectShift(I, ARM_AM::lsr); 2954 case Instruction::AShr: 2955 return SelectShift(I, ARM_AM::asr); 2956 default: break; 2957 } 2958 return false; 2959 } 2960 2961 namespace { 2962 // This table describes sign- and zero-extend instructions which can be 2963 // folded into a preceding load. All of these extends have an immediate 2964 // (sometimes a mask and sometimes a shift) that's applied after 2965 // extension. 2966 const struct FoldableLoadExtendsStruct { 2967 uint16_t Opc[2]; // ARM, Thumb. 2968 uint8_t ExpectedImm; 2969 uint8_t isZExt : 1; 2970 uint8_t ExpectedVT : 7; 2971 } FoldableLoadExtends[] = { 2972 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2973 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2974 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2975 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2976 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2977 }; 2978 } 2979 2980 /// \brief The specified machine instr operand is a vreg, and that 2981 /// vreg is being provided by the specified load instruction. If possible, 2982 /// try to fold the load as an operand to the instruction, returning true if 2983 /// successful. 2984 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2985 const LoadInst *LI) { 2986 // Verify we have a legal type before going any further. 2987 MVT VT; 2988 if (!isLoadTypeLegal(LI->getType(), VT)) 2989 return false; 2990 2991 // Combine load followed by zero- or sign-extend. 2992 // ldrb r1, [r0] ldrb r1, [r0] 2993 // uxtb r2, r1 => 2994 // mov r3, r2 mov r3, r1 2995 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2996 return false; 2997 const uint64_t Imm = MI->getOperand(2).getImm(); 2998 2999 bool Found = false; 3000 bool isZExt; 3001 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 3002 i != e; ++i) { 3003 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 3004 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 3005 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 3006 Found = true; 3007 isZExt = FoldableLoadExtends[i].isZExt; 3008 } 3009 } 3010 if (!Found) return false; 3011 3012 // See if we can handle this address. 3013 Address Addr; 3014 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 3015 3016 unsigned ResultReg = MI->getOperand(0).getReg(); 3017 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 3018 return false; 3019 MI->eraseFromParent(); 3020 return true; 3021 } 3022 3023 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 3024 unsigned Align, MVT VT) { 3025 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 3026 ARMConstantPoolConstant *CPV = 3027 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 3028 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 3029 3030 unsigned Opc; 3031 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 3032 // Load value. 3033 if (isThumb2) { 3034 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 3035 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 3036 TII.get(ARM::t2LDRpci), DestReg1) 3037 .addConstantPoolIndex(Idx)); 3038 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 3039 } else { 3040 // The extra immediate is for addrmode2. 3041 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 3042 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 3043 DL, TII.get(ARM::LDRcp), DestReg1) 3044 .addConstantPoolIndex(Idx).addImm(0)); 3045 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 3046 } 3047 3048 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 3049 if (GlobalBaseReg == 0) { 3050 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 3051 AFI->setGlobalBaseReg(GlobalBaseReg); 3052 } 3053 3054 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 3055 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 3056 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 3057 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 3058 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 3059 DL, TII.get(Opc), DestReg2) 3060 .addReg(DestReg1) 3061 .addReg(GlobalBaseReg); 3062 if (!UseGOTOFF) 3063 MIB.addImm(0); 3064 AddOptionalDefs(MIB); 3065 3066 return DestReg2; 3067 } 3068 3069 bool ARMFastISel::FastLowerArguments() { 3070 if (!FuncInfo.CanLowerReturn) 3071 return false; 3072 3073 const Function *F = FuncInfo.Fn; 3074 if (F->isVarArg()) 3075 return false; 3076 3077 CallingConv::ID CC = F->getCallingConv(); 3078 switch (CC) { 3079 default: 3080 return false; 3081 case CallingConv::Fast: 3082 case CallingConv::C: 3083 case CallingConv::ARM_AAPCS_VFP: 3084 case CallingConv::ARM_AAPCS: 3085 case CallingConv::ARM_APCS: 3086 break; 3087 } 3088 3089 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3090 // which are passed in r0 - r3. 3091 unsigned Idx = 1; 3092 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3093 I != E; ++I, ++Idx) { 3094 if (Idx > 4) 3095 return false; 3096 3097 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3098 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3099 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3100 return false; 3101 3102 Type *ArgTy = I->getType(); 3103 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3104 return false; 3105 3106 EVT ArgVT = TLI.getValueType(ArgTy); 3107 if (!ArgVT.isSimple()) return false; 3108 switch (ArgVT.getSimpleVT().SimpleTy) { 3109 case MVT::i8: 3110 case MVT::i16: 3111 case MVT::i32: 3112 break; 3113 default: 3114 return false; 3115 } 3116 } 3117 3118 3119 static const uint16_t GPRArgRegs[] = { 3120 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3121 }; 3122 3123 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3124 Idx = 0; 3125 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3126 I != E; ++I, ++Idx) { 3127 unsigned SrcReg = GPRArgRegs[Idx]; 3128 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3129 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3130 // Without this, EmitLiveInCopies may eliminate the livein if its only 3131 // use is a bitcast (which isn't turned into an instruction). 3132 unsigned ResultReg = createResultReg(RC); 3133 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 3134 ResultReg).addReg(DstReg, getKillRegState(true)); 3135 UpdateValueMap(I, ResultReg); 3136 } 3137 3138 return true; 3139 } 3140 3141 namespace llvm { 3142 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3143 const TargetLibraryInfo *libInfo) { 3144 const TargetMachine &TM = funcInfo.MF->getTarget(); 3145 3146 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 3147 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 3148 bool UseFastISel = false; 3149 UseFastISel |= Subtarget->isTargetIOS() && !Subtarget->isThumb1Only(); 3150 UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb(); 3151 UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb(); 3152 3153 if (UseFastISel) { 3154 // iOS always has a FP for backtracking, force other targets 3155 // to keep their FP when doing FastISel. The emitted code is 3156 // currently superior, and in cases like test-suite's lencod 3157 // FastISel isn't quite correct when FP is eliminated. 3158 TM.Options.NoFramePointerElim = true; 3159 return new ARMFastISel(funcInfo, libInfo); 3160 } 3161 return 0; 3162 } 3163 } 3164