1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 using namespace llvm; 51 52 namespace { 53 54 // All possible address modes, plus some. 55 typedef struct Address { 56 enum { 57 RegBase, 58 FrameIndexBase 59 } BaseType; 60 61 union { 62 unsigned Reg; 63 int FI; 64 } Base; 65 66 int Offset; 67 68 // Innocuous defaults for our address. 69 Address() 70 : BaseType(RegBase), Offset(0) { 71 Base.Reg = 0; 72 } 73 } Address; 74 75 class ARMFastISel final : public FastISel { 76 77 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 78 /// make the right decision when generating code for different targets. 79 const ARMSubtarget *Subtarget; 80 Module &M; 81 const TargetMachine &TM; 82 const TargetInstrInfo &TII; 83 const TargetLowering &TLI; 84 ARMFunctionInfo *AFI; 85 86 // Convenience variables to avoid some queries. 87 bool isThumb2; 88 LLVMContext *Context; 89 90 public: 91 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 92 const TargetLibraryInfo *libInfo) 93 : FastISel(funcInfo, libInfo), 94 Subtarget( 95 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 96 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 97 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 98 TLI(*Subtarget->getTargetLowering()) { 99 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 100 isThumb2 = AFI->isThumbFunction(); 101 Context = &funcInfo.Fn->getContext(); 102 } 103 104 // Code from FastISel.cpp. 105 private: 106 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 107 const TargetRegisterClass *RC, 108 unsigned Op0, bool Op0IsKill); 109 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 110 const TargetRegisterClass *RC, 111 unsigned Op0, bool Op0IsKill, 112 unsigned Op1, bool Op1IsKill); 113 unsigned fastEmitInst_rrr(unsigned MachineInstOpcode, 114 const TargetRegisterClass *RC, 115 unsigned Op0, bool Op0IsKill, 116 unsigned Op1, bool Op1IsKill, 117 unsigned Op2, bool Op2IsKill); 118 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill, 121 uint64_t Imm); 122 unsigned fastEmitInst_rri(unsigned MachineInstOpcode, 123 const TargetRegisterClass *RC, 124 unsigned Op0, bool Op0IsKill, 125 unsigned Op1, bool Op1IsKill, 126 uint64_t Imm); 127 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 128 const TargetRegisterClass *RC, 129 uint64_t Imm); 130 131 // Backend specific FastISel code. 132 private: 133 bool fastSelectInstruction(const Instruction *I) override; 134 unsigned fastMaterializeConstant(const Constant *C) override; 135 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 136 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 137 const LoadInst *LI) override; 138 bool fastLowerArguments() override; 139 private: 140 #include "ARMGenFastISel.inc" 141 142 // Instruction selection routines. 143 private: 144 bool SelectLoad(const Instruction *I); 145 bool SelectStore(const Instruction *I); 146 bool SelectBranch(const Instruction *I); 147 bool SelectIndirectBr(const Instruction *I); 148 bool SelectCmp(const Instruction *I); 149 bool SelectFPExt(const Instruction *I); 150 bool SelectFPTrunc(const Instruction *I); 151 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 152 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 153 bool SelectIToFP(const Instruction *I, bool isSigned); 154 bool SelectFPToI(const Instruction *I, bool isSigned); 155 bool SelectDiv(const Instruction *I, bool isSigned); 156 bool SelectRem(const Instruction *I, bool isSigned); 157 bool SelectCall(const Instruction *I, const char *IntrMemName); 158 bool SelectIntrinsicCall(const IntrinsicInst &I); 159 bool SelectSelect(const Instruction *I); 160 bool SelectRet(const Instruction *I); 161 bool SelectTrunc(const Instruction *I); 162 bool SelectIntExt(const Instruction *I); 163 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 164 165 // Utility routines. 166 private: 167 bool isTypeLegal(Type *Ty, MVT &VT); 168 bool isLoadTypeLegal(Type *Ty, MVT &VT); 169 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 170 bool isZExt); 171 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 172 unsigned Alignment = 0, bool isZExt = true, 173 bool allocReg = true); 174 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 175 unsigned Alignment = 0); 176 bool ARMComputeAddress(const Value *Obj, Address &Addr); 177 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 178 bool ARMIsMemCpySmall(uint64_t Len); 179 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 180 unsigned Alignment); 181 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 182 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 183 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 184 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 185 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 186 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 187 unsigned ARMSelectCallOp(bool UseReg); 188 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 189 190 const TargetLowering *getTargetLowering() { return &TLI; } 191 192 // Call handling routines. 193 private: 194 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 195 bool Return, 196 bool isVarArg); 197 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 198 SmallVectorImpl<unsigned> &ArgRegs, 199 SmallVectorImpl<MVT> &ArgVTs, 200 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 201 SmallVectorImpl<unsigned> &RegArgs, 202 CallingConv::ID CC, 203 unsigned &NumBytes, 204 bool isVarArg); 205 unsigned getLibcallReg(const Twine &Name); 206 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 207 const Instruction *I, CallingConv::ID CC, 208 unsigned &NumBytes, bool isVarArg); 209 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 210 211 // OptionalDef handling routines. 212 private: 213 bool isARMNEONPred(const MachineInstr *MI); 214 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 215 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 216 void AddLoadStoreOperands(MVT VT, Address &Addr, 217 const MachineInstrBuilder &MIB, 218 unsigned Flags, bool useAM3); 219 }; 220 221 } // end anonymous namespace 222 223 #include "ARMGenCallingConv.inc" 224 225 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 226 // we don't care about implicit defs here, just places we'll need to add a 227 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 228 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 229 if (!MI->hasOptionalDef()) 230 return false; 231 232 // Look to see if our OptionalDef is defining CPSR or CCR. 233 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 234 const MachineOperand &MO = MI->getOperand(i); 235 if (!MO.isReg() || !MO.isDef()) continue; 236 if (MO.getReg() == ARM::CPSR) 237 *CPSR = true; 238 } 239 return true; 240 } 241 242 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 243 const MCInstrDesc &MCID = MI->getDesc(); 244 245 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 246 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 247 AFI->isThumb2Function()) 248 return MI->isPredicable(); 249 250 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 251 if (MCID.OpInfo[i].isPredicate()) 252 return true; 253 254 return false; 255 } 256 257 // If the machine is predicable go ahead and add the predicate operands, if 258 // it needs default CC operands add those. 259 // TODO: If we want to support thumb1 then we'll need to deal with optional 260 // CPSR defs that need to be added before the remaining operands. See s_cc_out 261 // for descriptions why. 262 const MachineInstrBuilder & 263 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 264 MachineInstr *MI = &*MIB; 265 266 // Do we use a predicate? or... 267 // Are we NEON in ARM mode and have a predicate operand? If so, I know 268 // we're not predicable but add it anyways. 269 if (isARMNEONPred(MI)) 270 AddDefaultPred(MIB); 271 272 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 273 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 274 bool CPSR = false; 275 if (DefinesOptionalPredicate(MI, &CPSR)) { 276 if (CPSR) 277 AddDefaultT1CC(MIB); 278 else 279 AddDefaultCC(MIB); 280 } 281 return MIB; 282 } 283 284 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 285 const TargetRegisterClass *RC, 286 unsigned Op0, bool Op0IsKill) { 287 unsigned ResultReg = createResultReg(RC); 288 const MCInstrDesc &II = TII.get(MachineInstOpcode); 289 290 // Make sure the input operand is sufficiently constrained to be legal 291 // for this instruction. 292 Op0 = constrainOperandRegClass(II, Op0, 1); 293 if (II.getNumDefs() >= 1) { 294 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 295 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 296 } else { 297 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 298 .addReg(Op0, Op0IsKill * RegState::Kill)); 299 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 300 TII.get(TargetOpcode::COPY), ResultReg) 301 .addReg(II.ImplicitDefs[0])); 302 } 303 return ResultReg; 304 } 305 306 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 307 const TargetRegisterClass *RC, 308 unsigned Op0, bool Op0IsKill, 309 unsigned Op1, bool Op1IsKill) { 310 unsigned ResultReg = createResultReg(RC); 311 const MCInstrDesc &II = TII.get(MachineInstOpcode); 312 313 // Make sure the input operands are sufficiently constrained to be legal 314 // for this instruction. 315 Op0 = constrainOperandRegClass(II, Op0, 1); 316 Op1 = constrainOperandRegClass(II, Op1, 2); 317 318 if (II.getNumDefs() >= 1) { 319 AddOptionalDefs( 320 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 321 .addReg(Op0, Op0IsKill * RegState::Kill) 322 .addReg(Op1, Op1IsKill * RegState::Kill)); 323 } else { 324 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 325 .addReg(Op0, Op0IsKill * RegState::Kill) 326 .addReg(Op1, Op1IsKill * RegState::Kill)); 327 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 328 TII.get(TargetOpcode::COPY), ResultReg) 329 .addReg(II.ImplicitDefs[0])); 330 } 331 return ResultReg; 332 } 333 334 unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 335 const TargetRegisterClass *RC, 336 unsigned Op0, bool Op0IsKill, 337 unsigned Op1, bool Op1IsKill, 338 unsigned Op2, bool Op2IsKill) { 339 unsigned ResultReg = createResultReg(RC); 340 const MCInstrDesc &II = TII.get(MachineInstOpcode); 341 342 // Make sure the input operands are sufficiently constrained to be legal 343 // for this instruction. 344 Op0 = constrainOperandRegClass(II, Op0, 1); 345 Op1 = constrainOperandRegClass(II, Op1, 2); 346 Op2 = constrainOperandRegClass(II, Op1, 3); 347 348 if (II.getNumDefs() >= 1) { 349 AddOptionalDefs( 350 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 351 .addReg(Op0, Op0IsKill * RegState::Kill) 352 .addReg(Op1, Op1IsKill * RegState::Kill) 353 .addReg(Op2, Op2IsKill * RegState::Kill)); 354 } else { 355 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 356 .addReg(Op0, Op0IsKill * RegState::Kill) 357 .addReg(Op1, Op1IsKill * RegState::Kill) 358 .addReg(Op2, Op2IsKill * RegState::Kill)); 359 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 360 TII.get(TargetOpcode::COPY), ResultReg) 361 .addReg(II.ImplicitDefs[0])); 362 } 363 return ResultReg; 364 } 365 366 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 367 const TargetRegisterClass *RC, 368 unsigned Op0, bool Op0IsKill, 369 uint64_t Imm) { 370 unsigned ResultReg = createResultReg(RC); 371 const MCInstrDesc &II = TII.get(MachineInstOpcode); 372 373 // Make sure the input operand is sufficiently constrained to be legal 374 // for this instruction. 375 Op0 = constrainOperandRegClass(II, Op0, 1); 376 if (II.getNumDefs() >= 1) { 377 AddOptionalDefs( 378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 379 .addReg(Op0, Op0IsKill * RegState::Kill) 380 .addImm(Imm)); 381 } else { 382 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 383 .addReg(Op0, Op0IsKill * RegState::Kill) 384 .addImm(Imm)); 385 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 386 TII.get(TargetOpcode::COPY), ResultReg) 387 .addReg(II.ImplicitDefs[0])); 388 } 389 return ResultReg; 390 } 391 392 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 393 const TargetRegisterClass *RC, 394 unsigned Op0, bool Op0IsKill, 395 unsigned Op1, bool Op1IsKill, 396 uint64_t Imm) { 397 unsigned ResultReg = createResultReg(RC); 398 const MCInstrDesc &II = TII.get(MachineInstOpcode); 399 400 // Make sure the input operands are sufficiently constrained to be legal 401 // for this instruction. 402 Op0 = constrainOperandRegClass(II, Op0, 1); 403 Op1 = constrainOperandRegClass(II, Op1, 2); 404 if (II.getNumDefs() >= 1) { 405 AddOptionalDefs( 406 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 407 .addReg(Op0, Op0IsKill * RegState::Kill) 408 .addReg(Op1, Op1IsKill * RegState::Kill) 409 .addImm(Imm)); 410 } else { 411 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 412 .addReg(Op0, Op0IsKill * RegState::Kill) 413 .addReg(Op1, Op1IsKill * RegState::Kill) 414 .addImm(Imm)); 415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 416 TII.get(TargetOpcode::COPY), ResultReg) 417 .addReg(II.ImplicitDefs[0])); 418 } 419 return ResultReg; 420 } 421 422 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 423 const TargetRegisterClass *RC, 424 uint64_t Imm) { 425 unsigned ResultReg = createResultReg(RC); 426 const MCInstrDesc &II = TII.get(MachineInstOpcode); 427 428 if (II.getNumDefs() >= 1) { 429 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 430 ResultReg).addImm(Imm)); 431 } else { 432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 433 .addImm(Imm)); 434 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 435 TII.get(TargetOpcode::COPY), ResultReg) 436 .addReg(II.ImplicitDefs[0])); 437 } 438 return ResultReg; 439 } 440 441 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 442 // checks from the various callers. 443 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 444 if (VT == MVT::f64) return 0; 445 446 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 447 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 448 TII.get(ARM::VMOVSR), MoveReg) 449 .addReg(SrcReg)); 450 return MoveReg; 451 } 452 453 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 454 if (VT == MVT::i64) return 0; 455 456 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 457 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 458 TII.get(ARM::VMOVRS), MoveReg) 459 .addReg(SrcReg)); 460 return MoveReg; 461 } 462 463 // For double width floating point we need to materialize two constants 464 // (the high and the low) into integer registers then use a move to get 465 // the combined constant into an FP reg. 466 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 467 const APFloat Val = CFP->getValueAPF(); 468 bool is64bit = VT == MVT::f64; 469 470 // This checks to see if we can use VFP3 instructions to materialize 471 // a constant, otherwise we have to go through the constant pool. 472 if (TLI.isFPImmLegal(Val, VT)) { 473 int Imm; 474 unsigned Opc; 475 if (is64bit) { 476 Imm = ARM_AM::getFP64Imm(Val); 477 Opc = ARM::FCONSTD; 478 } else { 479 Imm = ARM_AM::getFP32Imm(Val); 480 Opc = ARM::FCONSTS; 481 } 482 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 483 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 484 TII.get(Opc), DestReg).addImm(Imm)); 485 return DestReg; 486 } 487 488 // Require VFP2 for loading fp constants. 489 if (!Subtarget->hasVFP2()) return false; 490 491 // MachineConstantPool wants an explicit alignment. 492 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 493 if (Align == 0) { 494 // TODO: Figure out if this is correct. 495 Align = DL.getTypeAllocSize(CFP->getType()); 496 } 497 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 498 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 499 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 500 501 // The extra reg is for addrmode5. 502 AddOptionalDefs( 503 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 504 .addConstantPoolIndex(Idx) 505 .addReg(0)); 506 return DestReg; 507 } 508 509 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 510 511 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 512 return 0; 513 514 // If we can do this in a single instruction without a constant pool entry 515 // do so now. 516 const ConstantInt *CI = cast<ConstantInt>(C); 517 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 518 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 519 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 520 &ARM::GPRRegClass; 521 unsigned ImmReg = createResultReg(RC); 522 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 523 TII.get(Opc), ImmReg) 524 .addImm(CI->getZExtValue())); 525 return ImmReg; 526 } 527 528 // Use MVN to emit negative constants. 529 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 530 unsigned Imm = (unsigned)~(CI->getSExtValue()); 531 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 532 (ARM_AM::getSOImmVal(Imm) != -1); 533 if (UseImm) { 534 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 535 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 536 &ARM::GPRRegClass; 537 unsigned ImmReg = createResultReg(RC); 538 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 539 TII.get(Opc), ImmReg) 540 .addImm(Imm)); 541 return ImmReg; 542 } 543 } 544 545 unsigned ResultReg = 0; 546 if (Subtarget->useMovt(*FuncInfo.MF)) 547 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 548 549 if (ResultReg) 550 return ResultReg; 551 552 // Load from constant pool. For now 32-bit only. 553 if (VT != MVT::i32) 554 return 0; 555 556 // MachineConstantPool wants an explicit alignment. 557 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 558 if (Align == 0) { 559 // TODO: Figure out if this is correct. 560 Align = DL.getTypeAllocSize(C->getType()); 561 } 562 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 563 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 564 if (isThumb2) 565 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 566 TII.get(ARM::t2LDRpci), ResultReg) 567 .addConstantPoolIndex(Idx)); 568 else { 569 // The extra immediate is for addrmode2. 570 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 571 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 572 TII.get(ARM::LDRcp), ResultReg) 573 .addConstantPoolIndex(Idx) 574 .addImm(0)); 575 } 576 return ResultReg; 577 } 578 579 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 580 // For now 32-bit only. 581 if (VT != MVT::i32) return 0; 582 583 Reloc::Model RelocM = TM.getRelocationModel(); 584 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 585 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 586 : &ARM::GPRRegClass; 587 unsigned DestReg = createResultReg(RC); 588 589 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 590 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 591 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 592 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 593 594 // Use movw+movt when possible, it avoids constant pool entries. 595 // Non-darwin targets only support static movt relocations in FastISel. 596 if (Subtarget->useMovt(*FuncInfo.MF) && 597 (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) { 598 unsigned Opc; 599 unsigned char TF = 0; 600 if (Subtarget->isTargetMachO()) 601 TF = ARMII::MO_NONLAZY; 602 603 switch (RelocM) { 604 case Reloc::PIC_: 605 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 606 break; 607 default: 608 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 609 break; 610 } 611 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 612 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 613 } else { 614 // MachineConstantPool wants an explicit alignment. 615 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 616 if (Align == 0) { 617 // TODO: Figure out if this is correct. 618 Align = DL.getTypeAllocSize(GV->getType()); 619 } 620 621 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 622 return ARMLowerPICELF(GV, Align, VT); 623 624 // Grab index. 625 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 626 (Subtarget->isThumb() ? 4 : 8); 627 unsigned Id = AFI->createPICLabelUId(); 628 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 629 ARMCP::CPValue, 630 PCAdj); 631 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 632 633 // Load value. 634 MachineInstrBuilder MIB; 635 if (isThumb2) { 636 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 637 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 638 DestReg).addConstantPoolIndex(Idx); 639 if (RelocM == Reloc::PIC_) 640 MIB.addImm(Id); 641 AddOptionalDefs(MIB); 642 } else { 643 // The extra immediate is for addrmode2. 644 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 645 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 646 TII.get(ARM::LDRcp), DestReg) 647 .addConstantPoolIndex(Idx) 648 .addImm(0); 649 AddOptionalDefs(MIB); 650 651 if (RelocM == Reloc::PIC_) { 652 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 653 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 654 655 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 656 DbgLoc, TII.get(Opc), NewDestReg) 657 .addReg(DestReg) 658 .addImm(Id); 659 AddOptionalDefs(MIB); 660 return NewDestReg; 661 } 662 } 663 } 664 665 if (IsIndirect) { 666 MachineInstrBuilder MIB; 667 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 668 if (isThumb2) 669 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 670 TII.get(ARM::t2LDRi12), NewDestReg) 671 .addReg(DestReg) 672 .addImm(0); 673 else 674 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 675 TII.get(ARM::LDRi12), NewDestReg) 676 .addReg(DestReg) 677 .addImm(0); 678 DestReg = NewDestReg; 679 AddOptionalDefs(MIB); 680 } 681 682 return DestReg; 683 } 684 685 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 686 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 687 688 // Only handle simple types. 689 if (!CEVT.isSimple()) return 0; 690 MVT VT = CEVT.getSimpleVT(); 691 692 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 693 return ARMMaterializeFP(CFP, VT); 694 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 695 return ARMMaterializeGV(GV, VT); 696 else if (isa<ConstantInt>(C)) 697 return ARMMaterializeInt(C, VT); 698 699 return 0; 700 } 701 702 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 703 704 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 705 // Don't handle dynamic allocas. 706 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 707 708 MVT VT; 709 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 710 711 DenseMap<const AllocaInst*, int>::iterator SI = 712 FuncInfo.StaticAllocaMap.find(AI); 713 714 // This will get lowered later into the correct offsets and registers 715 // via rewriteXFrameIndex. 716 if (SI != FuncInfo.StaticAllocaMap.end()) { 717 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 718 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 719 unsigned ResultReg = createResultReg(RC); 720 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 721 722 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 723 TII.get(Opc), ResultReg) 724 .addFrameIndex(SI->second) 725 .addImm(0)); 726 return ResultReg; 727 } 728 729 return 0; 730 } 731 732 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 733 EVT evt = TLI.getValueType(DL, Ty, true); 734 735 // Only handle simple types. 736 if (evt == MVT::Other || !evt.isSimple()) return false; 737 VT = evt.getSimpleVT(); 738 739 // Handle all legal types, i.e. a register that will directly hold this 740 // value. 741 return TLI.isTypeLegal(VT); 742 } 743 744 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 745 if (isTypeLegal(Ty, VT)) return true; 746 747 // If this is a type than can be sign or zero-extended to a basic operation 748 // go ahead and accept it now. 749 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 750 return true; 751 752 return false; 753 } 754 755 // Computes the address to get to an object. 756 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 757 // Some boilerplate from the X86 FastISel. 758 const User *U = nullptr; 759 unsigned Opcode = Instruction::UserOp1; 760 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 761 // Don't walk into other basic blocks unless the object is an alloca from 762 // another block, otherwise it may not have a virtual register assigned. 763 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 764 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 765 Opcode = I->getOpcode(); 766 U = I; 767 } 768 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 769 Opcode = C->getOpcode(); 770 U = C; 771 } 772 773 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 774 if (Ty->getAddressSpace() > 255) 775 // Fast instruction selection doesn't support the special 776 // address spaces. 777 return false; 778 779 switch (Opcode) { 780 default: 781 break; 782 case Instruction::BitCast: 783 // Look through bitcasts. 784 return ARMComputeAddress(U->getOperand(0), Addr); 785 case Instruction::IntToPtr: 786 // Look past no-op inttoptrs. 787 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 788 TLI.getPointerTy(DL)) 789 return ARMComputeAddress(U->getOperand(0), Addr); 790 break; 791 case Instruction::PtrToInt: 792 // Look past no-op ptrtoints. 793 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 794 return ARMComputeAddress(U->getOperand(0), Addr); 795 break; 796 case Instruction::GetElementPtr: { 797 Address SavedAddr = Addr; 798 int TmpOffset = Addr.Offset; 799 800 // Iterate through the GEP folding the constants into offsets where 801 // we can. 802 gep_type_iterator GTI = gep_type_begin(U); 803 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 804 i != e; ++i, ++GTI) { 805 const Value *Op = *i; 806 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 807 const StructLayout *SL = DL.getStructLayout(STy); 808 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 809 TmpOffset += SL->getElementOffset(Idx); 810 } else { 811 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 812 for (;;) { 813 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 814 // Constant-offset addressing. 815 TmpOffset += CI->getSExtValue() * S; 816 break; 817 } 818 if (canFoldAddIntoGEP(U, Op)) { 819 // A compatible add with a constant operand. Fold the constant. 820 ConstantInt *CI = 821 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 822 TmpOffset += CI->getSExtValue() * S; 823 // Iterate on the other operand. 824 Op = cast<AddOperator>(Op)->getOperand(0); 825 continue; 826 } 827 // Unsupported 828 goto unsupported_gep; 829 } 830 } 831 } 832 833 // Try to grab the base operand now. 834 Addr.Offset = TmpOffset; 835 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 836 837 // We failed, restore everything and try the other options. 838 Addr = SavedAddr; 839 840 unsupported_gep: 841 break; 842 } 843 case Instruction::Alloca: { 844 const AllocaInst *AI = cast<AllocaInst>(Obj); 845 DenseMap<const AllocaInst*, int>::iterator SI = 846 FuncInfo.StaticAllocaMap.find(AI); 847 if (SI != FuncInfo.StaticAllocaMap.end()) { 848 Addr.BaseType = Address::FrameIndexBase; 849 Addr.Base.FI = SI->second; 850 return true; 851 } 852 break; 853 } 854 } 855 856 // Try to get this in a register if nothing else has worked. 857 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 858 return Addr.Base.Reg != 0; 859 } 860 861 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 862 bool needsLowering = false; 863 switch (VT.SimpleTy) { 864 default: llvm_unreachable("Unhandled load/store type!"); 865 case MVT::i1: 866 case MVT::i8: 867 case MVT::i16: 868 case MVT::i32: 869 if (!useAM3) { 870 // Integer loads/stores handle 12-bit offsets. 871 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 872 // Handle negative offsets. 873 if (needsLowering && isThumb2) 874 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 875 Addr.Offset > -256); 876 } else { 877 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 878 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 879 } 880 break; 881 case MVT::f32: 882 case MVT::f64: 883 // Floating point operands handle 8-bit offsets. 884 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 885 break; 886 } 887 888 // If this is a stack pointer and the offset needs to be simplified then 889 // put the alloca address into a register, set the base type back to 890 // register and continue. This should almost never happen. 891 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 892 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 893 : &ARM::GPRRegClass; 894 unsigned ResultReg = createResultReg(RC); 895 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 896 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 897 TII.get(Opc), ResultReg) 898 .addFrameIndex(Addr.Base.FI) 899 .addImm(0)); 900 Addr.Base.Reg = ResultReg; 901 Addr.BaseType = Address::RegBase; 902 } 903 904 // Since the offset is too large for the load/store instruction 905 // get the reg+offset into a register. 906 if (needsLowering) { 907 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 908 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 909 Addr.Offset = 0; 910 } 911 } 912 913 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 914 const MachineInstrBuilder &MIB, 915 unsigned Flags, bool useAM3) { 916 // addrmode5 output depends on the selection dag addressing dividing the 917 // offset by 4 that it then later multiplies. Do this here as well. 918 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 919 Addr.Offset /= 4; 920 921 // Frame base works a bit differently. Handle it separately. 922 if (Addr.BaseType == Address::FrameIndexBase) { 923 int FI = Addr.Base.FI; 924 int Offset = Addr.Offset; 925 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 926 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 927 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); 928 // Now add the rest of the operands. 929 MIB.addFrameIndex(FI); 930 931 // ARM halfword load/stores and signed byte loads need an additional 932 // operand. 933 if (useAM3) { 934 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 935 MIB.addReg(0); 936 MIB.addImm(Imm); 937 } else { 938 MIB.addImm(Addr.Offset); 939 } 940 MIB.addMemOperand(MMO); 941 } else { 942 // Now add the rest of the operands. 943 MIB.addReg(Addr.Base.Reg); 944 945 // ARM halfword load/stores and signed byte loads need an additional 946 // operand. 947 if (useAM3) { 948 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 949 MIB.addReg(0); 950 MIB.addImm(Imm); 951 } else { 952 MIB.addImm(Addr.Offset); 953 } 954 } 955 AddOptionalDefs(MIB); 956 } 957 958 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 959 unsigned Alignment, bool isZExt, bool allocReg) { 960 unsigned Opc; 961 bool useAM3 = false; 962 bool needVMOV = false; 963 const TargetRegisterClass *RC; 964 switch (VT.SimpleTy) { 965 // This is mostly going to be Neon/vector support. 966 default: return false; 967 case MVT::i1: 968 case MVT::i8: 969 if (isThumb2) { 970 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 971 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 972 else 973 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 974 } else { 975 if (isZExt) { 976 Opc = ARM::LDRBi12; 977 } else { 978 Opc = ARM::LDRSB; 979 useAM3 = true; 980 } 981 } 982 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 983 break; 984 case MVT::i16: 985 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 986 return false; 987 988 if (isThumb2) { 989 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 990 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 991 else 992 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 993 } else { 994 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 995 useAM3 = true; 996 } 997 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 998 break; 999 case MVT::i32: 1000 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1001 return false; 1002 1003 if (isThumb2) { 1004 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1005 Opc = ARM::t2LDRi8; 1006 else 1007 Opc = ARM::t2LDRi12; 1008 } else { 1009 Opc = ARM::LDRi12; 1010 } 1011 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1012 break; 1013 case MVT::f32: 1014 if (!Subtarget->hasVFP2()) return false; 1015 // Unaligned loads need special handling. Floats require word-alignment. 1016 if (Alignment && Alignment < 4) { 1017 needVMOV = true; 1018 VT = MVT::i32; 1019 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1020 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1021 } else { 1022 Opc = ARM::VLDRS; 1023 RC = TLI.getRegClassFor(VT); 1024 } 1025 break; 1026 case MVT::f64: 1027 if (!Subtarget->hasVFP2()) return false; 1028 // FIXME: Unaligned loads need special handling. Doublewords require 1029 // word-alignment. 1030 if (Alignment && Alignment < 4) 1031 return false; 1032 1033 Opc = ARM::VLDRD; 1034 RC = TLI.getRegClassFor(VT); 1035 break; 1036 } 1037 // Simplify this down to something we can handle. 1038 ARMSimplifyAddress(Addr, VT, useAM3); 1039 1040 // Create the base instruction, then add the operands. 1041 if (allocReg) 1042 ResultReg = createResultReg(RC); 1043 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1044 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1045 TII.get(Opc), ResultReg); 1046 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1047 1048 // If we had an unaligned load of a float we've converted it to an regular 1049 // load. Now we must move from the GRP to the FP register. 1050 if (needVMOV) { 1051 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1052 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1053 TII.get(ARM::VMOVSR), MoveReg) 1054 .addReg(ResultReg)); 1055 ResultReg = MoveReg; 1056 } 1057 return true; 1058 } 1059 1060 bool ARMFastISel::SelectLoad(const Instruction *I) { 1061 // Atomic loads need special handling. 1062 if (cast<LoadInst>(I)->isAtomic()) 1063 return false; 1064 1065 // Verify we have a legal type before going any further. 1066 MVT VT; 1067 if (!isLoadTypeLegal(I->getType(), VT)) 1068 return false; 1069 1070 // See if we can handle this address. 1071 Address Addr; 1072 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1073 1074 unsigned ResultReg; 1075 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1076 return false; 1077 updateValueMap(I, ResultReg); 1078 return true; 1079 } 1080 1081 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1082 unsigned Alignment) { 1083 unsigned StrOpc; 1084 bool useAM3 = false; 1085 switch (VT.SimpleTy) { 1086 // This is mostly going to be Neon/vector support. 1087 default: return false; 1088 case MVT::i1: { 1089 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1090 : &ARM::GPRRegClass); 1091 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1092 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1093 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1094 TII.get(Opc), Res) 1095 .addReg(SrcReg).addImm(1)); 1096 SrcReg = Res; 1097 } // Fallthrough here. 1098 case MVT::i8: 1099 if (isThumb2) { 1100 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1101 StrOpc = ARM::t2STRBi8; 1102 else 1103 StrOpc = ARM::t2STRBi12; 1104 } else { 1105 StrOpc = ARM::STRBi12; 1106 } 1107 break; 1108 case MVT::i16: 1109 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1110 return false; 1111 1112 if (isThumb2) { 1113 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1114 StrOpc = ARM::t2STRHi8; 1115 else 1116 StrOpc = ARM::t2STRHi12; 1117 } else { 1118 StrOpc = ARM::STRH; 1119 useAM3 = true; 1120 } 1121 break; 1122 case MVT::i32: 1123 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1124 return false; 1125 1126 if (isThumb2) { 1127 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1128 StrOpc = ARM::t2STRi8; 1129 else 1130 StrOpc = ARM::t2STRi12; 1131 } else { 1132 StrOpc = ARM::STRi12; 1133 } 1134 break; 1135 case MVT::f32: 1136 if (!Subtarget->hasVFP2()) return false; 1137 // Unaligned stores need special handling. Floats require word-alignment. 1138 if (Alignment && Alignment < 4) { 1139 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1140 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1141 TII.get(ARM::VMOVRS), MoveReg) 1142 .addReg(SrcReg)); 1143 SrcReg = MoveReg; 1144 VT = MVT::i32; 1145 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1146 } else { 1147 StrOpc = ARM::VSTRS; 1148 } 1149 break; 1150 case MVT::f64: 1151 if (!Subtarget->hasVFP2()) return false; 1152 // FIXME: Unaligned stores need special handling. Doublewords require 1153 // word-alignment. 1154 if (Alignment && Alignment < 4) 1155 return false; 1156 1157 StrOpc = ARM::VSTRD; 1158 break; 1159 } 1160 // Simplify this down to something we can handle. 1161 ARMSimplifyAddress(Addr, VT, useAM3); 1162 1163 // Create the base instruction, then add the operands. 1164 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1165 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1166 TII.get(StrOpc)) 1167 .addReg(SrcReg); 1168 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1169 return true; 1170 } 1171 1172 bool ARMFastISel::SelectStore(const Instruction *I) { 1173 Value *Op0 = I->getOperand(0); 1174 unsigned SrcReg = 0; 1175 1176 // Atomic stores need special handling. 1177 if (cast<StoreInst>(I)->isAtomic()) 1178 return false; 1179 1180 // Verify we have a legal type before going any further. 1181 MVT VT; 1182 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1183 return false; 1184 1185 // Get the value to be stored into a register. 1186 SrcReg = getRegForValue(Op0); 1187 if (SrcReg == 0) return false; 1188 1189 // See if we can handle this address. 1190 Address Addr; 1191 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1192 return false; 1193 1194 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1195 return false; 1196 return true; 1197 } 1198 1199 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1200 switch (Pred) { 1201 // Needs two compares... 1202 case CmpInst::FCMP_ONE: 1203 case CmpInst::FCMP_UEQ: 1204 default: 1205 // AL is our "false" for now. The other two need more compares. 1206 return ARMCC::AL; 1207 case CmpInst::ICMP_EQ: 1208 case CmpInst::FCMP_OEQ: 1209 return ARMCC::EQ; 1210 case CmpInst::ICMP_SGT: 1211 case CmpInst::FCMP_OGT: 1212 return ARMCC::GT; 1213 case CmpInst::ICMP_SGE: 1214 case CmpInst::FCMP_OGE: 1215 return ARMCC::GE; 1216 case CmpInst::ICMP_UGT: 1217 case CmpInst::FCMP_UGT: 1218 return ARMCC::HI; 1219 case CmpInst::FCMP_OLT: 1220 return ARMCC::MI; 1221 case CmpInst::ICMP_ULE: 1222 case CmpInst::FCMP_OLE: 1223 return ARMCC::LS; 1224 case CmpInst::FCMP_ORD: 1225 return ARMCC::VC; 1226 case CmpInst::FCMP_UNO: 1227 return ARMCC::VS; 1228 case CmpInst::FCMP_UGE: 1229 return ARMCC::PL; 1230 case CmpInst::ICMP_SLT: 1231 case CmpInst::FCMP_ULT: 1232 return ARMCC::LT; 1233 case CmpInst::ICMP_SLE: 1234 case CmpInst::FCMP_ULE: 1235 return ARMCC::LE; 1236 case CmpInst::FCMP_UNE: 1237 case CmpInst::ICMP_NE: 1238 return ARMCC::NE; 1239 case CmpInst::ICMP_UGE: 1240 return ARMCC::HS; 1241 case CmpInst::ICMP_ULT: 1242 return ARMCC::LO; 1243 } 1244 } 1245 1246 bool ARMFastISel::SelectBranch(const Instruction *I) { 1247 const BranchInst *BI = cast<BranchInst>(I); 1248 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1249 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1250 1251 // Simple branch support. 1252 1253 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1254 // behavior. 1255 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1256 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1257 1258 // Get the compare predicate. 1259 // Try to take advantage of fallthrough opportunities. 1260 CmpInst::Predicate Predicate = CI->getPredicate(); 1261 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1262 std::swap(TBB, FBB); 1263 Predicate = CmpInst::getInversePredicate(Predicate); 1264 } 1265 1266 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1267 1268 // We may not handle every CC for now. 1269 if (ARMPred == ARMCC::AL) return false; 1270 1271 // Emit the compare. 1272 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1273 return false; 1274 1275 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1277 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1278 fastEmitBranch(FBB, DbgLoc); 1279 FuncInfo.MBB->addSuccessor(TBB); 1280 return true; 1281 } 1282 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1283 MVT SourceVT; 1284 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1285 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1286 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1287 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1288 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1289 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1290 TII.get(TstOpc)) 1291 .addReg(OpReg).addImm(1)); 1292 1293 unsigned CCMode = ARMCC::NE; 1294 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1295 std::swap(TBB, FBB); 1296 CCMode = ARMCC::EQ; 1297 } 1298 1299 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1301 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1302 1303 fastEmitBranch(FBB, DbgLoc); 1304 FuncInfo.MBB->addSuccessor(TBB); 1305 return true; 1306 } 1307 } else if (const ConstantInt *CI = 1308 dyn_cast<ConstantInt>(BI->getCondition())) { 1309 uint64_t Imm = CI->getZExtValue(); 1310 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1311 fastEmitBranch(Target, DbgLoc); 1312 return true; 1313 } 1314 1315 unsigned CmpReg = getRegForValue(BI->getCondition()); 1316 if (CmpReg == 0) return false; 1317 1318 // We've been divorced from our compare! Our block was split, and 1319 // now our compare lives in a predecessor block. We musn't 1320 // re-compare here, as the children of the compare aren't guaranteed 1321 // live across the block boundary (we *could* check for this). 1322 // Regardless, the compare has been done in the predecessor block, 1323 // and it left a value for us in a virtual register. Ergo, we test 1324 // the one-bit value left in the virtual register. 1325 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1326 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1327 AddOptionalDefs( 1328 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1329 .addReg(CmpReg) 1330 .addImm(1)); 1331 1332 unsigned CCMode = ARMCC::NE; 1333 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1334 std::swap(TBB, FBB); 1335 CCMode = ARMCC::EQ; 1336 } 1337 1338 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1339 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1340 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1341 fastEmitBranch(FBB, DbgLoc); 1342 FuncInfo.MBB->addSuccessor(TBB); 1343 return true; 1344 } 1345 1346 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1347 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1348 if (AddrReg == 0) return false; 1349 1350 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1351 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1352 TII.get(Opc)).addReg(AddrReg)); 1353 1354 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1355 for (const BasicBlock *SuccBB : IB->successors()) 1356 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1357 1358 return true; 1359 } 1360 1361 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1362 bool isZExt) { 1363 Type *Ty = Src1Value->getType(); 1364 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1365 if (!SrcEVT.isSimple()) return false; 1366 MVT SrcVT = SrcEVT.getSimpleVT(); 1367 1368 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1369 if (isFloat && !Subtarget->hasVFP2()) 1370 return false; 1371 1372 // Check to see if the 2nd operand is a constant that we can encode directly 1373 // in the compare. 1374 int Imm = 0; 1375 bool UseImm = false; 1376 bool isNegativeImm = false; 1377 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1378 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1379 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1380 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1381 SrcVT == MVT::i1) { 1382 const APInt &CIVal = ConstInt->getValue(); 1383 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1384 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1385 // then a cmn, because there is no way to represent 2147483648 as a 1386 // signed 32-bit int. 1387 if (Imm < 0 && Imm != (int)0x80000000) { 1388 isNegativeImm = true; 1389 Imm = -Imm; 1390 } 1391 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1392 (ARM_AM::getSOImmVal(Imm) != -1); 1393 } 1394 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1395 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1396 if (ConstFP->isZero() && !ConstFP->isNegative()) 1397 UseImm = true; 1398 } 1399 1400 unsigned CmpOpc; 1401 bool isICmp = true; 1402 bool needsExt = false; 1403 switch (SrcVT.SimpleTy) { 1404 default: return false; 1405 // TODO: Verify compares. 1406 case MVT::f32: 1407 isICmp = false; 1408 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1409 break; 1410 case MVT::f64: 1411 isICmp = false; 1412 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1413 break; 1414 case MVT::i1: 1415 case MVT::i8: 1416 case MVT::i16: 1417 needsExt = true; 1418 // Intentional fall-through. 1419 case MVT::i32: 1420 if (isThumb2) { 1421 if (!UseImm) 1422 CmpOpc = ARM::t2CMPrr; 1423 else 1424 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1425 } else { 1426 if (!UseImm) 1427 CmpOpc = ARM::CMPrr; 1428 else 1429 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1430 } 1431 break; 1432 } 1433 1434 unsigned SrcReg1 = getRegForValue(Src1Value); 1435 if (SrcReg1 == 0) return false; 1436 1437 unsigned SrcReg2 = 0; 1438 if (!UseImm) { 1439 SrcReg2 = getRegForValue(Src2Value); 1440 if (SrcReg2 == 0) return false; 1441 } 1442 1443 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1444 if (needsExt) { 1445 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1446 if (SrcReg1 == 0) return false; 1447 if (!UseImm) { 1448 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1449 if (SrcReg2 == 0) return false; 1450 } 1451 } 1452 1453 const MCInstrDesc &II = TII.get(CmpOpc); 1454 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1455 if (!UseImm) { 1456 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1457 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1458 .addReg(SrcReg1).addReg(SrcReg2)); 1459 } else { 1460 MachineInstrBuilder MIB; 1461 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1462 .addReg(SrcReg1); 1463 1464 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1465 if (isICmp) 1466 MIB.addImm(Imm); 1467 AddOptionalDefs(MIB); 1468 } 1469 1470 // For floating point we need to move the result to a comparison register 1471 // that we can then use for branches. 1472 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1473 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1474 TII.get(ARM::FMSTAT))); 1475 return true; 1476 } 1477 1478 bool ARMFastISel::SelectCmp(const Instruction *I) { 1479 const CmpInst *CI = cast<CmpInst>(I); 1480 1481 // Get the compare predicate. 1482 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1483 1484 // We may not handle every CC for now. 1485 if (ARMPred == ARMCC::AL) return false; 1486 1487 // Emit the compare. 1488 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1489 return false; 1490 1491 // Now set a register based on the comparison. Explicitly set the predicates 1492 // here. 1493 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1494 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1495 : &ARM::GPRRegClass; 1496 unsigned DestReg = createResultReg(RC); 1497 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1498 unsigned ZeroReg = fastMaterializeConstant(Zero); 1499 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1500 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1501 .addReg(ZeroReg).addImm(1) 1502 .addImm(ARMPred).addReg(ARM::CPSR); 1503 1504 updateValueMap(I, DestReg); 1505 return true; 1506 } 1507 1508 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1509 // Make sure we have VFP and that we're extending float to double. 1510 if (!Subtarget->hasVFP2()) return false; 1511 1512 Value *V = I->getOperand(0); 1513 if (!I->getType()->isDoubleTy() || 1514 !V->getType()->isFloatTy()) return false; 1515 1516 unsigned Op = getRegForValue(V); 1517 if (Op == 0) return false; 1518 1519 unsigned Result = createResultReg(&ARM::DPRRegClass); 1520 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1521 TII.get(ARM::VCVTDS), Result) 1522 .addReg(Op)); 1523 updateValueMap(I, Result); 1524 return true; 1525 } 1526 1527 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1528 // Make sure we have VFP and that we're truncating double to float. 1529 if (!Subtarget->hasVFP2()) return false; 1530 1531 Value *V = I->getOperand(0); 1532 if (!(I->getType()->isFloatTy() && 1533 V->getType()->isDoubleTy())) return false; 1534 1535 unsigned Op = getRegForValue(V); 1536 if (Op == 0) return false; 1537 1538 unsigned Result = createResultReg(&ARM::SPRRegClass); 1539 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1540 TII.get(ARM::VCVTSD), Result) 1541 .addReg(Op)); 1542 updateValueMap(I, Result); 1543 return true; 1544 } 1545 1546 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1547 // Make sure we have VFP. 1548 if (!Subtarget->hasVFP2()) return false; 1549 1550 MVT DstVT; 1551 Type *Ty = I->getType(); 1552 if (!isTypeLegal(Ty, DstVT)) 1553 return false; 1554 1555 Value *Src = I->getOperand(0); 1556 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1557 if (!SrcEVT.isSimple()) 1558 return false; 1559 MVT SrcVT = SrcEVT.getSimpleVT(); 1560 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1561 return false; 1562 1563 unsigned SrcReg = getRegForValue(Src); 1564 if (SrcReg == 0) return false; 1565 1566 // Handle sign-extension. 1567 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1568 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1569 /*isZExt*/!isSigned); 1570 if (SrcReg == 0) return false; 1571 } 1572 1573 // The conversion routine works on fp-reg to fp-reg and the operand above 1574 // was an integer, move it to the fp registers if possible. 1575 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1576 if (FP == 0) return false; 1577 1578 unsigned Opc; 1579 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1580 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1581 else return false; 1582 1583 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1584 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1585 TII.get(Opc), ResultReg).addReg(FP)); 1586 updateValueMap(I, ResultReg); 1587 return true; 1588 } 1589 1590 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1591 // Make sure we have VFP. 1592 if (!Subtarget->hasVFP2()) return false; 1593 1594 MVT DstVT; 1595 Type *RetTy = I->getType(); 1596 if (!isTypeLegal(RetTy, DstVT)) 1597 return false; 1598 1599 unsigned Op = getRegForValue(I->getOperand(0)); 1600 if (Op == 0) return false; 1601 1602 unsigned Opc; 1603 Type *OpTy = I->getOperand(0)->getType(); 1604 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1605 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1606 else return false; 1607 1608 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1609 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1610 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1611 TII.get(Opc), ResultReg).addReg(Op)); 1612 1613 // This result needs to be in an integer register, but the conversion only 1614 // takes place in fp-regs. 1615 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1616 if (IntReg == 0) return false; 1617 1618 updateValueMap(I, IntReg); 1619 return true; 1620 } 1621 1622 bool ARMFastISel::SelectSelect(const Instruction *I) { 1623 MVT VT; 1624 if (!isTypeLegal(I->getType(), VT)) 1625 return false; 1626 1627 // Things need to be register sized for register moves. 1628 if (VT != MVT::i32) return false; 1629 1630 unsigned CondReg = getRegForValue(I->getOperand(0)); 1631 if (CondReg == 0) return false; 1632 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1633 if (Op1Reg == 0) return false; 1634 1635 // Check to see if we can use an immediate in the conditional move. 1636 int Imm = 0; 1637 bool UseImm = false; 1638 bool isNegativeImm = false; 1639 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1640 assert (VT == MVT::i32 && "Expecting an i32."); 1641 Imm = (int)ConstInt->getValue().getZExtValue(); 1642 if (Imm < 0) { 1643 isNegativeImm = true; 1644 Imm = ~Imm; 1645 } 1646 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1647 (ARM_AM::getSOImmVal(Imm) != -1); 1648 } 1649 1650 unsigned Op2Reg = 0; 1651 if (!UseImm) { 1652 Op2Reg = getRegForValue(I->getOperand(2)); 1653 if (Op2Reg == 0) return false; 1654 } 1655 1656 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1657 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1658 AddOptionalDefs( 1659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1660 .addReg(CondReg) 1661 .addImm(1)); 1662 1663 unsigned MovCCOpc; 1664 const TargetRegisterClass *RC; 1665 if (!UseImm) { 1666 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1667 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1668 } else { 1669 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1670 if (!isNegativeImm) 1671 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1672 else 1673 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1674 } 1675 unsigned ResultReg = createResultReg(RC); 1676 if (!UseImm) { 1677 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1678 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1680 ResultReg) 1681 .addReg(Op2Reg) 1682 .addReg(Op1Reg) 1683 .addImm(ARMCC::NE) 1684 .addReg(ARM::CPSR); 1685 } else { 1686 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1687 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1688 ResultReg) 1689 .addReg(Op1Reg) 1690 .addImm(Imm) 1691 .addImm(ARMCC::EQ) 1692 .addReg(ARM::CPSR); 1693 } 1694 updateValueMap(I, ResultReg); 1695 return true; 1696 } 1697 1698 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1699 MVT VT; 1700 Type *Ty = I->getType(); 1701 if (!isTypeLegal(Ty, VT)) 1702 return false; 1703 1704 // If we have integer div support we should have selected this automagically. 1705 // In case we have a real miss go ahead and return false and we'll pick 1706 // it up later. 1707 if (Subtarget->hasDivide()) return false; 1708 1709 // Otherwise emit a libcall. 1710 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1711 if (VT == MVT::i8) 1712 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1713 else if (VT == MVT::i16) 1714 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1715 else if (VT == MVT::i32) 1716 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1717 else if (VT == MVT::i64) 1718 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1719 else if (VT == MVT::i128) 1720 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1721 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1722 1723 return ARMEmitLibcall(I, LC); 1724 } 1725 1726 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1727 MVT VT; 1728 Type *Ty = I->getType(); 1729 if (!isTypeLegal(Ty, VT)) 1730 return false; 1731 1732 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1733 if (VT == MVT::i8) 1734 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1735 else if (VT == MVT::i16) 1736 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1737 else if (VT == MVT::i32) 1738 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1739 else if (VT == MVT::i64) 1740 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1741 else if (VT == MVT::i128) 1742 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1743 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1744 1745 return ARMEmitLibcall(I, LC); 1746 } 1747 1748 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1749 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1750 1751 // We can get here in the case when we have a binary operation on a non-legal 1752 // type and the target independent selector doesn't know how to handle it. 1753 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1754 return false; 1755 1756 unsigned Opc; 1757 switch (ISDOpcode) { 1758 default: return false; 1759 case ISD::ADD: 1760 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1761 break; 1762 case ISD::OR: 1763 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1764 break; 1765 case ISD::SUB: 1766 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1767 break; 1768 } 1769 1770 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1771 if (SrcReg1 == 0) return false; 1772 1773 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1774 // in the instruction, rather then materializing the value in a register. 1775 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1776 if (SrcReg2 == 0) return false; 1777 1778 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1779 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1780 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1781 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1782 TII.get(Opc), ResultReg) 1783 .addReg(SrcReg1).addReg(SrcReg2)); 1784 updateValueMap(I, ResultReg); 1785 return true; 1786 } 1787 1788 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1789 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1790 if (!FPVT.isSimple()) return false; 1791 MVT VT = FPVT.getSimpleVT(); 1792 1793 // FIXME: Support vector types where possible. 1794 if (VT.isVector()) 1795 return false; 1796 1797 // We can get here in the case when we want to use NEON for our fp 1798 // operations, but can't figure out how to. Just use the vfp instructions 1799 // if we have them. 1800 // FIXME: It'd be nice to use NEON instructions. 1801 Type *Ty = I->getType(); 1802 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1803 if (isFloat && !Subtarget->hasVFP2()) 1804 return false; 1805 1806 unsigned Opc; 1807 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1808 switch (ISDOpcode) { 1809 default: return false; 1810 case ISD::FADD: 1811 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1812 break; 1813 case ISD::FSUB: 1814 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1815 break; 1816 case ISD::FMUL: 1817 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1818 break; 1819 } 1820 unsigned Op1 = getRegForValue(I->getOperand(0)); 1821 if (Op1 == 0) return false; 1822 1823 unsigned Op2 = getRegForValue(I->getOperand(1)); 1824 if (Op2 == 0) return false; 1825 1826 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1827 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1828 TII.get(Opc), ResultReg) 1829 .addReg(Op1).addReg(Op2)); 1830 updateValueMap(I, ResultReg); 1831 return true; 1832 } 1833 1834 // Call Handling Code 1835 1836 // This is largely taken directly from CCAssignFnForNode 1837 // TODO: We may not support all of this. 1838 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1839 bool Return, 1840 bool isVarArg) { 1841 switch (CC) { 1842 default: 1843 llvm_unreachable("Unsupported calling convention"); 1844 case CallingConv::Fast: 1845 if (Subtarget->hasVFP2() && !isVarArg) { 1846 if (!Subtarget->isAAPCS_ABI()) 1847 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1848 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1849 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1850 } 1851 // Fallthrough 1852 case CallingConv::C: 1853 // Use target triple & subtarget features to do actual dispatch. 1854 if (Subtarget->isAAPCS_ABI()) { 1855 if (Subtarget->hasVFP2() && 1856 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1857 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1858 else 1859 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1860 } else 1861 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1862 case CallingConv::ARM_AAPCS_VFP: 1863 if (!isVarArg) 1864 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1865 // Fall through to soft float variant, variadic functions don't 1866 // use hard floating point ABI. 1867 case CallingConv::ARM_AAPCS: 1868 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1869 case CallingConv::ARM_APCS: 1870 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1871 case CallingConv::GHC: 1872 if (Return) 1873 llvm_unreachable("Can't return in GHC call convention"); 1874 else 1875 return CC_ARM_APCS_GHC; 1876 } 1877 } 1878 1879 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1880 SmallVectorImpl<unsigned> &ArgRegs, 1881 SmallVectorImpl<MVT> &ArgVTs, 1882 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1883 SmallVectorImpl<unsigned> &RegArgs, 1884 CallingConv::ID CC, 1885 unsigned &NumBytes, 1886 bool isVarArg) { 1887 SmallVector<CCValAssign, 16> ArgLocs; 1888 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1889 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1890 CCAssignFnForCall(CC, false, isVarArg)); 1891 1892 // Check that we can handle all of the arguments. If we can't, then bail out 1893 // now before we add code to the MBB. 1894 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1895 CCValAssign &VA = ArgLocs[i]; 1896 MVT ArgVT = ArgVTs[VA.getValNo()]; 1897 1898 // We don't handle NEON/vector parameters yet. 1899 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1900 return false; 1901 1902 // Now copy/store arg to correct locations. 1903 if (VA.isRegLoc() && !VA.needsCustom()) { 1904 continue; 1905 } else if (VA.needsCustom()) { 1906 // TODO: We need custom lowering for vector (v2f64) args. 1907 if (VA.getLocVT() != MVT::f64 || 1908 // TODO: Only handle register args for now. 1909 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1910 return false; 1911 } else { 1912 switch (ArgVT.SimpleTy) { 1913 default: 1914 return false; 1915 case MVT::i1: 1916 case MVT::i8: 1917 case MVT::i16: 1918 case MVT::i32: 1919 break; 1920 case MVT::f32: 1921 if (!Subtarget->hasVFP2()) 1922 return false; 1923 break; 1924 case MVT::f64: 1925 if (!Subtarget->hasVFP2()) 1926 return false; 1927 break; 1928 } 1929 } 1930 } 1931 1932 // At the point, we are able to handle the call's arguments in fast isel. 1933 1934 // Get a count of how many bytes are to be pushed on the stack. 1935 NumBytes = CCInfo.getNextStackOffset(); 1936 1937 // Issue CALLSEQ_START 1938 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1939 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1940 TII.get(AdjStackDown)) 1941 .addImm(NumBytes)); 1942 1943 // Process the args. 1944 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1945 CCValAssign &VA = ArgLocs[i]; 1946 const Value *ArgVal = Args[VA.getValNo()]; 1947 unsigned Arg = ArgRegs[VA.getValNo()]; 1948 MVT ArgVT = ArgVTs[VA.getValNo()]; 1949 1950 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1951 "We don't handle NEON/vector parameters yet."); 1952 1953 // Handle arg promotion, etc. 1954 switch (VA.getLocInfo()) { 1955 case CCValAssign::Full: break; 1956 case CCValAssign::SExt: { 1957 MVT DestVT = VA.getLocVT(); 1958 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1959 assert (Arg != 0 && "Failed to emit a sext"); 1960 ArgVT = DestVT; 1961 break; 1962 } 1963 case CCValAssign::AExt: 1964 // Intentional fall-through. Handle AExt and ZExt. 1965 case CCValAssign::ZExt: { 1966 MVT DestVT = VA.getLocVT(); 1967 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1968 assert (Arg != 0 && "Failed to emit a zext"); 1969 ArgVT = DestVT; 1970 break; 1971 } 1972 case CCValAssign::BCvt: { 1973 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1974 /*TODO: Kill=*/false); 1975 assert(BC != 0 && "Failed to emit a bitcast!"); 1976 Arg = BC; 1977 ArgVT = VA.getLocVT(); 1978 break; 1979 } 1980 default: llvm_unreachable("Unknown arg promotion!"); 1981 } 1982 1983 // Now copy/store arg to correct locations. 1984 if (VA.isRegLoc() && !VA.needsCustom()) { 1985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1986 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1987 RegArgs.push_back(VA.getLocReg()); 1988 } else if (VA.needsCustom()) { 1989 // TODO: We need custom lowering for vector (v2f64) args. 1990 assert(VA.getLocVT() == MVT::f64 && 1991 "Custom lowering for v2f64 args not available"); 1992 1993 CCValAssign &NextVA = ArgLocs[++i]; 1994 1995 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1996 "We only handle register args!"); 1997 1998 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1999 TII.get(ARM::VMOVRRD), VA.getLocReg()) 2000 .addReg(NextVA.getLocReg(), RegState::Define) 2001 .addReg(Arg)); 2002 RegArgs.push_back(VA.getLocReg()); 2003 RegArgs.push_back(NextVA.getLocReg()); 2004 } else { 2005 assert(VA.isMemLoc()); 2006 // Need to store on the stack. 2007 2008 // Don't emit stores for undef values. 2009 if (isa<UndefValue>(ArgVal)) 2010 continue; 2011 2012 Address Addr; 2013 Addr.BaseType = Address::RegBase; 2014 Addr.Base.Reg = ARM::SP; 2015 Addr.Offset = VA.getLocMemOffset(); 2016 2017 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2018 assert(EmitRet && "Could not emit a store for argument!"); 2019 } 2020 } 2021 2022 return true; 2023 } 2024 2025 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2026 const Instruction *I, CallingConv::ID CC, 2027 unsigned &NumBytes, bool isVarArg) { 2028 // Issue CALLSEQ_END 2029 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2030 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2031 TII.get(AdjStackUp)) 2032 .addImm(NumBytes).addImm(0)); 2033 2034 // Now the return value. 2035 if (RetVT != MVT::isVoid) { 2036 SmallVector<CCValAssign, 16> RVLocs; 2037 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2038 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2039 2040 // Copy all of the result registers out of their specified physreg. 2041 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2042 // For this move we copy into two registers and then move into the 2043 // double fp reg we want. 2044 MVT DestVT = RVLocs[0].getValVT(); 2045 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2046 unsigned ResultReg = createResultReg(DstRC); 2047 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2048 TII.get(ARM::VMOVDRR), ResultReg) 2049 .addReg(RVLocs[0].getLocReg()) 2050 .addReg(RVLocs[1].getLocReg())); 2051 2052 UsedRegs.push_back(RVLocs[0].getLocReg()); 2053 UsedRegs.push_back(RVLocs[1].getLocReg()); 2054 2055 // Finally update the result. 2056 updateValueMap(I, ResultReg); 2057 } else { 2058 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2059 MVT CopyVT = RVLocs[0].getValVT(); 2060 2061 // Special handling for extended integers. 2062 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2063 CopyVT = MVT::i32; 2064 2065 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2066 2067 unsigned ResultReg = createResultReg(DstRC); 2068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2069 TII.get(TargetOpcode::COPY), 2070 ResultReg).addReg(RVLocs[0].getLocReg()); 2071 UsedRegs.push_back(RVLocs[0].getLocReg()); 2072 2073 // Finally update the result. 2074 updateValueMap(I, ResultReg); 2075 } 2076 } 2077 2078 return true; 2079 } 2080 2081 bool ARMFastISel::SelectRet(const Instruction *I) { 2082 const ReturnInst *Ret = cast<ReturnInst>(I); 2083 const Function &F = *I->getParent()->getParent(); 2084 2085 if (!FuncInfo.CanLowerReturn) 2086 return false; 2087 2088 // Build a list of return value registers. 2089 SmallVector<unsigned, 4> RetRegs; 2090 2091 CallingConv::ID CC = F.getCallingConv(); 2092 if (Ret->getNumOperands() > 0) { 2093 SmallVector<ISD::OutputArg, 4> Outs; 2094 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2095 2096 // Analyze operands of the call, assigning locations to each operand. 2097 SmallVector<CCValAssign, 16> ValLocs; 2098 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2099 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2100 F.isVarArg())); 2101 2102 const Value *RV = Ret->getOperand(0); 2103 unsigned Reg = getRegForValue(RV); 2104 if (Reg == 0) 2105 return false; 2106 2107 // Only handle a single return value for now. 2108 if (ValLocs.size() != 1) 2109 return false; 2110 2111 CCValAssign &VA = ValLocs[0]; 2112 2113 // Don't bother handling odd stuff for now. 2114 if (VA.getLocInfo() != CCValAssign::Full) 2115 return false; 2116 // Only handle register returns for now. 2117 if (!VA.isRegLoc()) 2118 return false; 2119 2120 unsigned SrcReg = Reg + VA.getValNo(); 2121 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2122 if (!RVEVT.isSimple()) return false; 2123 MVT RVVT = RVEVT.getSimpleVT(); 2124 MVT DestVT = VA.getValVT(); 2125 // Special handling for extended integers. 2126 if (RVVT != DestVT) { 2127 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2128 return false; 2129 2130 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2131 2132 // Perform extension if flagged as either zext or sext. Otherwise, do 2133 // nothing. 2134 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2135 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2136 if (SrcReg == 0) return false; 2137 } 2138 } 2139 2140 // Make the copy. 2141 unsigned DstReg = VA.getLocReg(); 2142 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2143 // Avoid a cross-class copy. This is very unlikely. 2144 if (!SrcRC->contains(DstReg)) 2145 return false; 2146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2147 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2148 2149 // Add register to return instruction. 2150 RetRegs.push_back(VA.getLocReg()); 2151 } 2152 2153 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2154 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2155 TII.get(RetOpc)); 2156 AddOptionalDefs(MIB); 2157 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2158 MIB.addReg(RetRegs[i], RegState::Implicit); 2159 return true; 2160 } 2161 2162 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2163 if (UseReg) 2164 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2165 else 2166 return isThumb2 ? ARM::tBL : ARM::BL; 2167 } 2168 2169 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2170 // Manually compute the global's type to avoid building it when unnecessary. 2171 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2172 EVT LCREVT = TLI.getValueType(DL, GVTy); 2173 if (!LCREVT.isSimple()) return 0; 2174 2175 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2176 GlobalValue::ExternalLinkage, nullptr, 2177 Name); 2178 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2179 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2180 } 2181 2182 // A quick function that will emit a call for a named libcall in F with the 2183 // vector of passed arguments for the Instruction in I. We can assume that we 2184 // can emit a call for any libcall we can produce. This is an abridged version 2185 // of the full call infrastructure since we won't need to worry about things 2186 // like computed function pointers or strange arguments at call sites. 2187 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2188 // with X86. 2189 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2190 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2191 2192 // Handle *simple* calls for now. 2193 Type *RetTy = I->getType(); 2194 MVT RetVT; 2195 if (RetTy->isVoidTy()) 2196 RetVT = MVT::isVoid; 2197 else if (!isTypeLegal(RetTy, RetVT)) 2198 return false; 2199 2200 // Can't handle non-double multi-reg retvals. 2201 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2202 SmallVector<CCValAssign, 16> RVLocs; 2203 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2204 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2205 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2206 return false; 2207 } 2208 2209 // Set up the argument vectors. 2210 SmallVector<Value*, 8> Args; 2211 SmallVector<unsigned, 8> ArgRegs; 2212 SmallVector<MVT, 8> ArgVTs; 2213 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2214 Args.reserve(I->getNumOperands()); 2215 ArgRegs.reserve(I->getNumOperands()); 2216 ArgVTs.reserve(I->getNumOperands()); 2217 ArgFlags.reserve(I->getNumOperands()); 2218 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2219 Value *Op = I->getOperand(i); 2220 unsigned Arg = getRegForValue(Op); 2221 if (Arg == 0) return false; 2222 2223 Type *ArgTy = Op->getType(); 2224 MVT ArgVT; 2225 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2226 2227 ISD::ArgFlagsTy Flags; 2228 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2229 Flags.setOrigAlign(OriginalAlignment); 2230 2231 Args.push_back(Op); 2232 ArgRegs.push_back(Arg); 2233 ArgVTs.push_back(ArgVT); 2234 ArgFlags.push_back(Flags); 2235 } 2236 2237 // Handle the arguments now that we've gotten them. 2238 SmallVector<unsigned, 4> RegArgs; 2239 unsigned NumBytes; 2240 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2241 RegArgs, CC, NumBytes, false)) 2242 return false; 2243 2244 unsigned CalleeReg = 0; 2245 if (Subtarget->genLongCalls()) { 2246 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2247 if (CalleeReg == 0) return false; 2248 } 2249 2250 // Issue the call. 2251 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2252 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2253 DbgLoc, TII.get(CallOpc)); 2254 // BL / BLX don't take a predicate, but tBL / tBLX do. 2255 if (isThumb2) 2256 AddDefaultPred(MIB); 2257 if (Subtarget->genLongCalls()) 2258 MIB.addReg(CalleeReg); 2259 else 2260 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2261 2262 // Add implicit physical register uses to the call. 2263 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2264 MIB.addReg(RegArgs[i], RegState::Implicit); 2265 2266 // Add a register mask with the call-preserved registers. 2267 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2268 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2269 2270 // Finish off the call including any return values. 2271 SmallVector<unsigned, 4> UsedRegs; 2272 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2273 2274 // Set all unused physreg defs as dead. 2275 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2276 2277 return true; 2278 } 2279 2280 bool ARMFastISel::SelectCall(const Instruction *I, 2281 const char *IntrMemName = nullptr) { 2282 const CallInst *CI = cast<CallInst>(I); 2283 const Value *Callee = CI->getCalledValue(); 2284 2285 // Can't handle inline asm. 2286 if (isa<InlineAsm>(Callee)) return false; 2287 2288 // Allow SelectionDAG isel to handle tail calls. 2289 if (CI->isTailCall()) return false; 2290 2291 // Check the calling convention. 2292 ImmutableCallSite CS(CI); 2293 CallingConv::ID CC = CS.getCallingConv(); 2294 2295 // TODO: Avoid some calling conventions? 2296 2297 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2298 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2299 bool isVarArg = FTy->isVarArg(); 2300 2301 // Handle *simple* calls for now. 2302 Type *RetTy = I->getType(); 2303 MVT RetVT; 2304 if (RetTy->isVoidTy()) 2305 RetVT = MVT::isVoid; 2306 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2307 RetVT != MVT::i8 && RetVT != MVT::i1) 2308 return false; 2309 2310 // Can't handle non-double multi-reg retvals. 2311 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2312 RetVT != MVT::i16 && RetVT != MVT::i32) { 2313 SmallVector<CCValAssign, 16> RVLocs; 2314 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2315 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2316 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2317 return false; 2318 } 2319 2320 // Set up the argument vectors. 2321 SmallVector<Value*, 8> Args; 2322 SmallVector<unsigned, 8> ArgRegs; 2323 SmallVector<MVT, 8> ArgVTs; 2324 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2325 unsigned arg_size = CS.arg_size(); 2326 Args.reserve(arg_size); 2327 ArgRegs.reserve(arg_size); 2328 ArgVTs.reserve(arg_size); 2329 ArgFlags.reserve(arg_size); 2330 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2331 i != e; ++i) { 2332 // If we're lowering a memory intrinsic instead of a regular call, skip the 2333 // last two arguments, which shouldn't be passed to the underlying function. 2334 if (IntrMemName && e-i <= 2) 2335 break; 2336 2337 ISD::ArgFlagsTy Flags; 2338 unsigned AttrInd = i - CS.arg_begin() + 1; 2339 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2340 Flags.setSExt(); 2341 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2342 Flags.setZExt(); 2343 2344 // FIXME: Only handle *easy* calls for now. 2345 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2346 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2347 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2348 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2349 return false; 2350 2351 Type *ArgTy = (*i)->getType(); 2352 MVT ArgVT; 2353 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2354 ArgVT != MVT::i1) 2355 return false; 2356 2357 unsigned Arg = getRegForValue(*i); 2358 if (Arg == 0) 2359 return false; 2360 2361 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2362 Flags.setOrigAlign(OriginalAlignment); 2363 2364 Args.push_back(*i); 2365 ArgRegs.push_back(Arg); 2366 ArgVTs.push_back(ArgVT); 2367 ArgFlags.push_back(Flags); 2368 } 2369 2370 // Handle the arguments now that we've gotten them. 2371 SmallVector<unsigned, 4> RegArgs; 2372 unsigned NumBytes; 2373 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2374 RegArgs, CC, NumBytes, isVarArg)) 2375 return false; 2376 2377 bool UseReg = false; 2378 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2379 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2380 2381 unsigned CalleeReg = 0; 2382 if (UseReg) { 2383 if (IntrMemName) 2384 CalleeReg = getLibcallReg(IntrMemName); 2385 else 2386 CalleeReg = getRegForValue(Callee); 2387 2388 if (CalleeReg == 0) return false; 2389 } 2390 2391 // Issue the call. 2392 unsigned CallOpc = ARMSelectCallOp(UseReg); 2393 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2394 DbgLoc, TII.get(CallOpc)); 2395 2396 unsigned char OpFlags = 0; 2397 2398 // Add MO_PLT for global address or external symbol in the PIC relocation 2399 // model. 2400 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 2401 OpFlags = ARMII::MO_PLT; 2402 2403 // ARM calls don't take a predicate, but tBL / tBLX do. 2404 if(isThumb2) 2405 AddDefaultPred(MIB); 2406 if (UseReg) 2407 MIB.addReg(CalleeReg); 2408 else if (!IntrMemName) 2409 MIB.addGlobalAddress(GV, 0, OpFlags); 2410 else 2411 MIB.addExternalSymbol(IntrMemName, OpFlags); 2412 2413 // Add implicit physical register uses to the call. 2414 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2415 MIB.addReg(RegArgs[i], RegState::Implicit); 2416 2417 // Add a register mask with the call-preserved registers. 2418 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2419 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2420 2421 // Finish off the call including any return values. 2422 SmallVector<unsigned, 4> UsedRegs; 2423 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2424 return false; 2425 2426 // Set all unused physreg defs as dead. 2427 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2428 2429 return true; 2430 } 2431 2432 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2433 return Len <= 16; 2434 } 2435 2436 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2437 uint64_t Len, unsigned Alignment) { 2438 // Make sure we don't bloat code by inlining very large memcpy's. 2439 if (!ARMIsMemCpySmall(Len)) 2440 return false; 2441 2442 while (Len) { 2443 MVT VT; 2444 if (!Alignment || Alignment >= 4) { 2445 if (Len >= 4) 2446 VT = MVT::i32; 2447 else if (Len >= 2) 2448 VT = MVT::i16; 2449 else { 2450 assert (Len == 1 && "Expected a length of 1!"); 2451 VT = MVT::i8; 2452 } 2453 } else { 2454 // Bound based on alignment. 2455 if (Len >= 2 && Alignment == 2) 2456 VT = MVT::i16; 2457 else { 2458 VT = MVT::i8; 2459 } 2460 } 2461 2462 bool RV; 2463 unsigned ResultReg; 2464 RV = ARMEmitLoad(VT, ResultReg, Src); 2465 assert (RV == true && "Should be able to handle this load."); 2466 RV = ARMEmitStore(VT, ResultReg, Dest); 2467 assert (RV == true && "Should be able to handle this store."); 2468 (void)RV; 2469 2470 unsigned Size = VT.getSizeInBits()/8; 2471 Len -= Size; 2472 Dest.Offset += Size; 2473 Src.Offset += Size; 2474 } 2475 2476 return true; 2477 } 2478 2479 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2480 // FIXME: Handle more intrinsics. 2481 switch (I.getIntrinsicID()) { 2482 default: return false; 2483 case Intrinsic::frameaddress: { 2484 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2485 MFI->setFrameAddressIsTaken(true); 2486 2487 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2488 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2489 : &ARM::GPRRegClass; 2490 2491 const ARMBaseRegisterInfo *RegInfo = 2492 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2493 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2494 unsigned SrcReg = FramePtr; 2495 2496 // Recursively load frame address 2497 // ldr r0 [fp] 2498 // ldr r0 [r0] 2499 // ldr r0 [r0] 2500 // ... 2501 unsigned DestReg; 2502 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2503 while (Depth--) { 2504 DestReg = createResultReg(RC); 2505 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2506 TII.get(LdrOpc), DestReg) 2507 .addReg(SrcReg).addImm(0)); 2508 SrcReg = DestReg; 2509 } 2510 updateValueMap(&I, SrcReg); 2511 return true; 2512 } 2513 case Intrinsic::memcpy: 2514 case Intrinsic::memmove: { 2515 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2516 // Don't handle volatile. 2517 if (MTI.isVolatile()) 2518 return false; 2519 2520 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2521 // we would emit dead code because we don't currently handle memmoves. 2522 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2523 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2524 // Small memcpy's are common enough that we want to do them without a call 2525 // if possible. 2526 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2527 if (ARMIsMemCpySmall(Len)) { 2528 Address Dest, Src; 2529 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2530 !ARMComputeAddress(MTI.getRawSource(), Src)) 2531 return false; 2532 unsigned Alignment = MTI.getAlignment(); 2533 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2534 return true; 2535 } 2536 } 2537 2538 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2539 return false; 2540 2541 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2542 return false; 2543 2544 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2545 return SelectCall(&I, IntrMemName); 2546 } 2547 case Intrinsic::memset: { 2548 const MemSetInst &MSI = cast<MemSetInst>(I); 2549 // Don't handle volatile. 2550 if (MSI.isVolatile()) 2551 return false; 2552 2553 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2554 return false; 2555 2556 if (MSI.getDestAddressSpace() > 255) 2557 return false; 2558 2559 return SelectCall(&I, "memset"); 2560 } 2561 case Intrinsic::trap: { 2562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2563 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2564 return true; 2565 } 2566 } 2567 } 2568 2569 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2570 // The high bits for a type smaller than the register size are assumed to be 2571 // undefined. 2572 Value *Op = I->getOperand(0); 2573 2574 EVT SrcVT, DestVT; 2575 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2576 DestVT = TLI.getValueType(DL, I->getType(), true); 2577 2578 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2579 return false; 2580 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2581 return false; 2582 2583 unsigned SrcReg = getRegForValue(Op); 2584 if (!SrcReg) return false; 2585 2586 // Because the high bits are undefined, a truncate doesn't generate 2587 // any code. 2588 updateValueMap(I, SrcReg); 2589 return true; 2590 } 2591 2592 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2593 bool isZExt) { 2594 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2595 return 0; 2596 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2597 return 0; 2598 2599 // Table of which combinations can be emitted as a single instruction, 2600 // and which will require two. 2601 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2602 // ARM Thumb 2603 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2604 // ext: s z s z s z s z 2605 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2606 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2607 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2608 }; 2609 2610 // Target registers for: 2611 // - For ARM can never be PC. 2612 // - For 16-bit Thumb are restricted to lower 8 registers. 2613 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2614 static const TargetRegisterClass *RCTbl[2][2] = { 2615 // Instructions: Two Single 2616 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2617 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2618 }; 2619 2620 // Table governing the instruction(s) to be emitted. 2621 static const struct InstructionTable { 2622 uint32_t Opc : 16; 2623 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2624 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2625 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2626 } IT[2][2][3][2] = { 2627 { // Two instructions (first is left shift, second is in this table). 2628 { // ARM Opc S Shift Imm 2629 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2630 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2631 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2632 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2633 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2634 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2635 }, 2636 { // Thumb Opc S Shift Imm 2637 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2638 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2639 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2640 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2641 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2642 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2643 } 2644 }, 2645 { // Single instruction. 2646 { // ARM Opc S Shift Imm 2647 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2648 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2649 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2650 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2651 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2652 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2653 }, 2654 { // Thumb Opc S Shift Imm 2655 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2656 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2657 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2658 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2659 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2660 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2661 } 2662 } 2663 }; 2664 2665 unsigned SrcBits = SrcVT.getSizeInBits(); 2666 unsigned DestBits = DestVT.getSizeInBits(); 2667 (void) DestBits; 2668 assert((SrcBits < DestBits) && "can only extend to larger types"); 2669 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2670 "other sizes unimplemented"); 2671 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2672 "other sizes unimplemented"); 2673 2674 bool hasV6Ops = Subtarget->hasV6Ops(); 2675 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2676 assert((Bitness < 3) && "sanity-check table bounds"); 2677 2678 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2679 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2680 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2681 unsigned Opc = ITP->Opc; 2682 assert(ARM::KILL != Opc && "Invalid table entry"); 2683 unsigned hasS = ITP->hasS; 2684 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2685 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2686 "only MOVsi has shift operand addressing mode"); 2687 unsigned Imm = ITP->Imm; 2688 2689 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2690 bool setsCPSR = &ARM::tGPRRegClass == RC; 2691 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2692 unsigned ResultReg; 2693 // MOVsi encodes shift and immediate in shift operand addressing mode. 2694 // The following condition has the same value when emitting two 2695 // instruction sequences: both are shifts. 2696 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2697 2698 // Either one or two instructions are emitted. 2699 // They're always of the form: 2700 // dst = in OP imm 2701 // CPSR is set only by 16-bit Thumb instructions. 2702 // Predicate, if any, is AL. 2703 // S bit, if available, is always 0. 2704 // When two are emitted the first's result will feed as the second's input, 2705 // that value is then dead. 2706 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2707 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2708 ResultReg = createResultReg(RC); 2709 bool isLsl = (0 == Instr) && !isSingleInstr; 2710 unsigned Opcode = isLsl ? LSLOpc : Opc; 2711 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2712 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2713 bool isKill = 1 == Instr; 2714 MachineInstrBuilder MIB = BuildMI( 2715 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2716 if (setsCPSR) 2717 MIB.addReg(ARM::CPSR, RegState::Define); 2718 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2719 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2720 if (hasS) 2721 AddDefaultCC(MIB); 2722 // Second instruction consumes the first's result. 2723 SrcReg = ResultReg; 2724 } 2725 2726 return ResultReg; 2727 } 2728 2729 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2730 // On ARM, in general, integer casts don't involve legal types; this code 2731 // handles promotable integers. 2732 Type *DestTy = I->getType(); 2733 Value *Src = I->getOperand(0); 2734 Type *SrcTy = Src->getType(); 2735 2736 bool isZExt = isa<ZExtInst>(I); 2737 unsigned SrcReg = getRegForValue(Src); 2738 if (!SrcReg) return false; 2739 2740 EVT SrcEVT, DestEVT; 2741 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2742 DestEVT = TLI.getValueType(DL, DestTy, true); 2743 if (!SrcEVT.isSimple()) return false; 2744 if (!DestEVT.isSimple()) return false; 2745 2746 MVT SrcVT = SrcEVT.getSimpleVT(); 2747 MVT DestVT = DestEVT.getSimpleVT(); 2748 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2749 if (ResultReg == 0) return false; 2750 updateValueMap(I, ResultReg); 2751 return true; 2752 } 2753 2754 bool ARMFastISel::SelectShift(const Instruction *I, 2755 ARM_AM::ShiftOpc ShiftTy) { 2756 // We handle thumb2 mode by target independent selector 2757 // or SelectionDAG ISel. 2758 if (isThumb2) 2759 return false; 2760 2761 // Only handle i32 now. 2762 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2763 if (DestVT != MVT::i32) 2764 return false; 2765 2766 unsigned Opc = ARM::MOVsr; 2767 unsigned ShiftImm; 2768 Value *Src2Value = I->getOperand(1); 2769 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2770 ShiftImm = CI->getZExtValue(); 2771 2772 // Fall back to selection DAG isel if the shift amount 2773 // is zero or greater than the width of the value type. 2774 if (ShiftImm == 0 || ShiftImm >=32) 2775 return false; 2776 2777 Opc = ARM::MOVsi; 2778 } 2779 2780 Value *Src1Value = I->getOperand(0); 2781 unsigned Reg1 = getRegForValue(Src1Value); 2782 if (Reg1 == 0) return false; 2783 2784 unsigned Reg2 = 0; 2785 if (Opc == ARM::MOVsr) { 2786 Reg2 = getRegForValue(Src2Value); 2787 if (Reg2 == 0) return false; 2788 } 2789 2790 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2791 if(ResultReg == 0) return false; 2792 2793 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2794 TII.get(Opc), ResultReg) 2795 .addReg(Reg1); 2796 2797 if (Opc == ARM::MOVsi) 2798 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2799 else if (Opc == ARM::MOVsr) { 2800 MIB.addReg(Reg2); 2801 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2802 } 2803 2804 AddOptionalDefs(MIB); 2805 updateValueMap(I, ResultReg); 2806 return true; 2807 } 2808 2809 // TODO: SoftFP support. 2810 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2811 2812 switch (I->getOpcode()) { 2813 case Instruction::Load: 2814 return SelectLoad(I); 2815 case Instruction::Store: 2816 return SelectStore(I); 2817 case Instruction::Br: 2818 return SelectBranch(I); 2819 case Instruction::IndirectBr: 2820 return SelectIndirectBr(I); 2821 case Instruction::ICmp: 2822 case Instruction::FCmp: 2823 return SelectCmp(I); 2824 case Instruction::FPExt: 2825 return SelectFPExt(I); 2826 case Instruction::FPTrunc: 2827 return SelectFPTrunc(I); 2828 case Instruction::SIToFP: 2829 return SelectIToFP(I, /*isSigned*/ true); 2830 case Instruction::UIToFP: 2831 return SelectIToFP(I, /*isSigned*/ false); 2832 case Instruction::FPToSI: 2833 return SelectFPToI(I, /*isSigned*/ true); 2834 case Instruction::FPToUI: 2835 return SelectFPToI(I, /*isSigned*/ false); 2836 case Instruction::Add: 2837 return SelectBinaryIntOp(I, ISD::ADD); 2838 case Instruction::Or: 2839 return SelectBinaryIntOp(I, ISD::OR); 2840 case Instruction::Sub: 2841 return SelectBinaryIntOp(I, ISD::SUB); 2842 case Instruction::FAdd: 2843 return SelectBinaryFPOp(I, ISD::FADD); 2844 case Instruction::FSub: 2845 return SelectBinaryFPOp(I, ISD::FSUB); 2846 case Instruction::FMul: 2847 return SelectBinaryFPOp(I, ISD::FMUL); 2848 case Instruction::SDiv: 2849 return SelectDiv(I, /*isSigned*/ true); 2850 case Instruction::UDiv: 2851 return SelectDiv(I, /*isSigned*/ false); 2852 case Instruction::SRem: 2853 return SelectRem(I, /*isSigned*/ true); 2854 case Instruction::URem: 2855 return SelectRem(I, /*isSigned*/ false); 2856 case Instruction::Call: 2857 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2858 return SelectIntrinsicCall(*II); 2859 return SelectCall(I); 2860 case Instruction::Select: 2861 return SelectSelect(I); 2862 case Instruction::Ret: 2863 return SelectRet(I); 2864 case Instruction::Trunc: 2865 return SelectTrunc(I); 2866 case Instruction::ZExt: 2867 case Instruction::SExt: 2868 return SelectIntExt(I); 2869 case Instruction::Shl: 2870 return SelectShift(I, ARM_AM::lsl); 2871 case Instruction::LShr: 2872 return SelectShift(I, ARM_AM::lsr); 2873 case Instruction::AShr: 2874 return SelectShift(I, ARM_AM::asr); 2875 default: break; 2876 } 2877 return false; 2878 } 2879 2880 namespace { 2881 // This table describes sign- and zero-extend instructions which can be 2882 // folded into a preceding load. All of these extends have an immediate 2883 // (sometimes a mask and sometimes a shift) that's applied after 2884 // extension. 2885 const struct FoldableLoadExtendsStruct { 2886 uint16_t Opc[2]; // ARM, Thumb. 2887 uint8_t ExpectedImm; 2888 uint8_t isZExt : 1; 2889 uint8_t ExpectedVT : 7; 2890 } FoldableLoadExtends[] = { 2891 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2892 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2893 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2894 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2895 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2896 }; 2897 } 2898 2899 /// \brief The specified machine instr operand is a vreg, and that 2900 /// vreg is being provided by the specified load instruction. If possible, 2901 /// try to fold the load as an operand to the instruction, returning true if 2902 /// successful. 2903 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2904 const LoadInst *LI) { 2905 // Verify we have a legal type before going any further. 2906 MVT VT; 2907 if (!isLoadTypeLegal(LI->getType(), VT)) 2908 return false; 2909 2910 // Combine load followed by zero- or sign-extend. 2911 // ldrb r1, [r0] ldrb r1, [r0] 2912 // uxtb r2, r1 => 2913 // mov r3, r2 mov r3, r1 2914 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2915 return false; 2916 const uint64_t Imm = MI->getOperand(2).getImm(); 2917 2918 bool Found = false; 2919 bool isZExt; 2920 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2921 i != e; ++i) { 2922 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 2923 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 2924 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 2925 Found = true; 2926 isZExt = FoldableLoadExtends[i].isZExt; 2927 } 2928 } 2929 if (!Found) return false; 2930 2931 // See if we can handle this address. 2932 Address Addr; 2933 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2934 2935 unsigned ResultReg = MI->getOperand(0).getReg(); 2936 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2937 return false; 2938 MI->eraseFromParent(); 2939 return true; 2940 } 2941 2942 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2943 unsigned Align, MVT VT) { 2944 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 2945 ARMConstantPoolConstant *CPV = 2946 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 2947 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 2948 2949 unsigned Opc; 2950 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 2951 // Load value. 2952 if (isThumb2) { 2953 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 2954 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2955 TII.get(ARM::t2LDRpci), DestReg1) 2956 .addConstantPoolIndex(Idx)); 2957 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 2958 } else { 2959 // The extra immediate is for addrmode2. 2960 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 2961 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2962 DbgLoc, TII.get(ARM::LDRcp), DestReg1) 2963 .addConstantPoolIndex(Idx).addImm(0)); 2964 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 2965 } 2966 2967 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 2968 if (GlobalBaseReg == 0) { 2969 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 2970 AFI->setGlobalBaseReg(GlobalBaseReg); 2971 } 2972 2973 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 2974 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 2975 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 2976 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 2977 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2978 DbgLoc, TII.get(Opc), DestReg2) 2979 .addReg(DestReg1) 2980 .addReg(GlobalBaseReg); 2981 if (!UseGOTOFF) 2982 MIB.addImm(0); 2983 AddOptionalDefs(MIB); 2984 2985 return DestReg2; 2986 } 2987 2988 bool ARMFastISel::fastLowerArguments() { 2989 if (!FuncInfo.CanLowerReturn) 2990 return false; 2991 2992 const Function *F = FuncInfo.Fn; 2993 if (F->isVarArg()) 2994 return false; 2995 2996 CallingConv::ID CC = F->getCallingConv(); 2997 switch (CC) { 2998 default: 2999 return false; 3000 case CallingConv::Fast: 3001 case CallingConv::C: 3002 case CallingConv::ARM_AAPCS_VFP: 3003 case CallingConv::ARM_AAPCS: 3004 case CallingConv::ARM_APCS: 3005 break; 3006 } 3007 3008 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3009 // which are passed in r0 - r3. 3010 unsigned Idx = 1; 3011 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3012 I != E; ++I, ++Idx) { 3013 if (Idx > 4) 3014 return false; 3015 3016 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3017 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3018 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3019 return false; 3020 3021 Type *ArgTy = I->getType(); 3022 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3023 return false; 3024 3025 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3026 if (!ArgVT.isSimple()) return false; 3027 switch (ArgVT.getSimpleVT().SimpleTy) { 3028 case MVT::i8: 3029 case MVT::i16: 3030 case MVT::i32: 3031 break; 3032 default: 3033 return false; 3034 } 3035 } 3036 3037 3038 static const uint16_t GPRArgRegs[] = { 3039 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3040 }; 3041 3042 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3043 Idx = 0; 3044 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3045 I != E; ++I, ++Idx) { 3046 unsigned SrcReg = GPRArgRegs[Idx]; 3047 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3048 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3049 // Without this, EmitLiveInCopies may eliminate the livein if its only 3050 // use is a bitcast (which isn't turned into an instruction). 3051 unsigned ResultReg = createResultReg(RC); 3052 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3053 TII.get(TargetOpcode::COPY), 3054 ResultReg).addReg(DstReg, getKillRegState(true)); 3055 updateValueMap(I, ResultReg); 3056 } 3057 3058 return true; 3059 } 3060 3061 namespace llvm { 3062 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3063 const TargetLibraryInfo *libInfo) { 3064 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3065 return new ARMFastISel(funcInfo, libInfo); 3066 3067 return nullptr; 3068 } 3069 } 3070