1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the ARM-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // ARMGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "MCTargetDesc/ARMBaseInfo.h" 25 #include "Utils/ARMBaseInfo.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/CodeGen/CallingConvLower.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/RuntimeLibcalls.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetOpcodes.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/ValueTypes.h" 49 #include "llvm/IR/Argument.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/MC/MCRegisterInfo.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MachineValueType.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Target/TargetMachine.h" 78 #include "llvm/Target/TargetOptions.h" 79 #include <cassert> 80 #include <cstdint> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 // All possible address modes, plus some. 88 struct Address { 89 enum { 90 RegBase, 91 FrameIndexBase 92 } BaseType = RegBase; 93 94 union { 95 unsigned Reg; 96 int FI; 97 } Base; 98 99 int Offset = 0; 100 101 // Innocuous defaults for our address. 102 Address() { 103 Base.Reg = 0; 104 } 105 }; 106 107 class ARMFastISel final : public FastISel { 108 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 109 /// make the right decision when generating code for different targets. 110 const ARMSubtarget *Subtarget; 111 Module &M; 112 const TargetMachine &TM; 113 const TargetInstrInfo &TII; 114 const TargetLowering &TLI; 115 ARMFunctionInfo *AFI; 116 117 // Convenience variables to avoid some queries. 118 bool isThumb2; 119 LLVMContext *Context; 120 121 public: 122 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 123 const TargetLibraryInfo *libInfo) 124 : FastISel(funcInfo, libInfo), 125 Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()), 126 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 127 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 128 TLI(*Subtarget->getTargetLowering()) { 129 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 130 isThumb2 = AFI->isThumbFunction(); 131 Context = &funcInfo.Fn->getContext(); 132 } 133 134 private: 135 // Code from FastISel.cpp. 136 137 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 138 const TargetRegisterClass *RC, unsigned Op0); 139 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 140 const TargetRegisterClass *RC, 141 unsigned Op0, unsigned Op1); 142 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 143 const TargetRegisterClass *RC, 144 unsigned Op0, uint64_t Imm); 145 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 146 const TargetRegisterClass *RC, 147 uint64_t Imm); 148 149 // Backend specific FastISel code. 150 151 bool fastSelectInstruction(const Instruction *I) override; 152 unsigned fastMaterializeConstant(const Constant *C) override; 153 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 154 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 155 const LoadInst *LI) override; 156 bool fastLowerArguments() override; 157 158 #include "ARMGenFastISel.inc" 159 160 // Instruction selection routines. 161 162 bool SelectLoad(const Instruction *I); 163 bool SelectStore(const Instruction *I); 164 bool SelectBranch(const Instruction *I); 165 bool SelectIndirectBr(const Instruction *I); 166 bool SelectCmp(const Instruction *I); 167 bool SelectFPExt(const Instruction *I); 168 bool SelectFPTrunc(const Instruction *I); 169 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 170 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 171 bool SelectIToFP(const Instruction *I, bool isSigned); 172 bool SelectFPToI(const Instruction *I, bool isSigned); 173 bool SelectDiv(const Instruction *I, bool isSigned); 174 bool SelectRem(const Instruction *I, bool isSigned); 175 bool SelectCall(const Instruction *I, const char *IntrMemName); 176 bool SelectIntrinsicCall(const IntrinsicInst &I); 177 bool SelectSelect(const Instruction *I); 178 bool SelectRet(const Instruction *I); 179 bool SelectTrunc(const Instruction *I); 180 bool SelectIntExt(const Instruction *I); 181 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 182 183 // Utility routines. 184 185 bool isPositionIndependent() const; 186 bool isTypeLegal(Type *Ty, MVT &VT); 187 bool isLoadTypeLegal(Type *Ty, MVT &VT); 188 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 189 bool isZExt); 190 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 191 MaybeAlign Alignment = None, bool isZExt = true, 192 bool allocReg = true); 193 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 194 MaybeAlign Alignment = None); 195 bool ARMComputeAddress(const Value *Obj, Address &Addr); 196 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 197 bool ARMIsMemCpySmall(uint64_t Len); 198 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 199 unsigned Alignment); 200 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 201 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 202 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 203 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 204 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 205 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 206 unsigned ARMSelectCallOp(bool UseReg); 207 unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT); 208 209 const TargetLowering *getTargetLowering() { return &TLI; } 210 211 // Call handling routines. 212 213 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 214 bool Return, 215 bool isVarArg); 216 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 217 SmallVectorImpl<Register> &ArgRegs, 218 SmallVectorImpl<MVT> &ArgVTs, 219 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 220 SmallVectorImpl<Register> &RegArgs, 221 CallingConv::ID CC, 222 unsigned &NumBytes, 223 bool isVarArg); 224 unsigned getLibcallReg(const Twine &Name); 225 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 226 const Instruction *I, CallingConv::ID CC, 227 unsigned &NumBytes, bool isVarArg); 228 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 229 230 // OptionalDef handling routines. 231 232 bool isARMNEONPred(const MachineInstr *MI); 233 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 234 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 235 void AddLoadStoreOperands(MVT VT, Address &Addr, 236 const MachineInstrBuilder &MIB, 237 MachineMemOperand::Flags Flags, bool useAM3); 238 }; 239 240 } // end anonymous namespace 241 242 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 243 // we don't care about implicit defs here, just places we'll need to add a 244 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 245 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 246 if (!MI->hasOptionalDef()) 247 return false; 248 249 // Look to see if our OptionalDef is defining CPSR or CCR. 250 for (const MachineOperand &MO : MI->operands()) { 251 if (!MO.isReg() || !MO.isDef()) continue; 252 if (MO.getReg() == ARM::CPSR) 253 *CPSR = true; 254 } 255 return true; 256 } 257 258 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 259 const MCInstrDesc &MCID = MI->getDesc(); 260 261 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 262 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 263 AFI->isThumb2Function()) 264 return MI->isPredicable(); 265 266 for (const MCOperandInfo &opInfo : MCID.operands()) 267 if (opInfo.isPredicate()) 268 return true; 269 270 return false; 271 } 272 273 // If the machine is predicable go ahead and add the predicate operands, if 274 // it needs default CC operands add those. 275 // TODO: If we want to support thumb1 then we'll need to deal with optional 276 // CPSR defs that need to be added before the remaining operands. See s_cc_out 277 // for descriptions why. 278 const MachineInstrBuilder & 279 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 280 MachineInstr *MI = &*MIB; 281 282 // Do we use a predicate? or... 283 // Are we NEON in ARM mode and have a predicate operand? If so, I know 284 // we're not predicable but add it anyways. 285 if (isARMNEONPred(MI)) 286 MIB.add(predOps(ARMCC::AL)); 287 288 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 289 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 290 bool CPSR = false; 291 if (DefinesOptionalPredicate(MI, &CPSR)) 292 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); 293 return MIB; 294 } 295 296 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 297 const TargetRegisterClass *RC, 298 unsigned Op0) { 299 Register ResultReg = createResultReg(RC); 300 const MCInstrDesc &II = TII.get(MachineInstOpcode); 301 302 // Make sure the input operand is sufficiently constrained to be legal 303 // for this instruction. 304 Op0 = constrainOperandRegClass(II, Op0, 1); 305 if (II.getNumDefs() >= 1) { 306 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 307 ResultReg).addReg(Op0)); 308 } else { 309 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 310 .addReg(Op0)); 311 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 312 TII.get(TargetOpcode::COPY), ResultReg) 313 .addReg(II.ImplicitDefs[0])); 314 } 315 return ResultReg; 316 } 317 318 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 319 const TargetRegisterClass *RC, 320 unsigned Op0, unsigned Op1) { 321 Register ResultReg = createResultReg(RC); 322 const MCInstrDesc &II = TII.get(MachineInstOpcode); 323 324 // Make sure the input operands are sufficiently constrained to be legal 325 // for this instruction. 326 Op0 = constrainOperandRegClass(II, Op0, 1); 327 Op1 = constrainOperandRegClass(II, Op1, 2); 328 329 if (II.getNumDefs() >= 1) { 330 AddOptionalDefs( 331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 332 .addReg(Op0) 333 .addReg(Op1)); 334 } else { 335 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 336 .addReg(Op0) 337 .addReg(Op1)); 338 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 339 TII.get(TargetOpcode::COPY), ResultReg) 340 .addReg(II.ImplicitDefs[0])); 341 } 342 return ResultReg; 343 } 344 345 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 346 const TargetRegisterClass *RC, 347 unsigned Op0, uint64_t Imm) { 348 Register ResultReg = createResultReg(RC); 349 const MCInstrDesc &II = TII.get(MachineInstOpcode); 350 351 // Make sure the input operand is sufficiently constrained to be legal 352 // for this instruction. 353 Op0 = constrainOperandRegClass(II, Op0, 1); 354 if (II.getNumDefs() >= 1) { 355 AddOptionalDefs( 356 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 357 .addReg(Op0) 358 .addImm(Imm)); 359 } else { 360 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 361 .addReg(Op0) 362 .addImm(Imm)); 363 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 364 TII.get(TargetOpcode::COPY), ResultReg) 365 .addReg(II.ImplicitDefs[0])); 366 } 367 return ResultReg; 368 } 369 370 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 371 const TargetRegisterClass *RC, 372 uint64_t Imm) { 373 Register ResultReg = createResultReg(RC); 374 const MCInstrDesc &II = TII.get(MachineInstOpcode); 375 376 if (II.getNumDefs() >= 1) { 377 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 378 ResultReg).addImm(Imm)); 379 } else { 380 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 381 .addImm(Imm)); 382 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 383 TII.get(TargetOpcode::COPY), ResultReg) 384 .addReg(II.ImplicitDefs[0])); 385 } 386 return ResultReg; 387 } 388 389 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 390 // checks from the various callers. 391 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 392 if (VT == MVT::f64) return 0; 393 394 Register MoveReg = createResultReg(TLI.getRegClassFor(VT)); 395 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 396 TII.get(ARM::VMOVSR), MoveReg) 397 .addReg(SrcReg)); 398 return MoveReg; 399 } 400 401 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 402 if (VT == MVT::i64) return 0; 403 404 Register MoveReg = createResultReg(TLI.getRegClassFor(VT)); 405 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 406 TII.get(ARM::VMOVRS), MoveReg) 407 .addReg(SrcReg)); 408 return MoveReg; 409 } 410 411 // For double width floating point we need to materialize two constants 412 // (the high and the low) into integer registers then use a move to get 413 // the combined constant into an FP reg. 414 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 415 const APFloat Val = CFP->getValueAPF(); 416 bool is64bit = VT == MVT::f64; 417 418 // This checks to see if we can use VFP3 instructions to materialize 419 // a constant, otherwise we have to go through the constant pool. 420 if (TLI.isFPImmLegal(Val, VT)) { 421 int Imm; 422 unsigned Opc; 423 if (is64bit) { 424 Imm = ARM_AM::getFP64Imm(Val); 425 Opc = ARM::FCONSTD; 426 } else { 427 Imm = ARM_AM::getFP32Imm(Val); 428 Opc = ARM::FCONSTS; 429 } 430 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 431 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 432 TII.get(Opc), DestReg).addImm(Imm)); 433 return DestReg; 434 } 435 436 // Require VFP2 for loading fp constants. 437 if (!Subtarget->hasVFP2Base()) return false; 438 439 // MachineConstantPool wants an explicit alignment. 440 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 441 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 442 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 443 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 444 445 // The extra reg is for addrmode5. 446 AddOptionalDefs( 447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 448 .addConstantPoolIndex(Idx) 449 .addReg(0)); 450 return DestReg; 451 } 452 453 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 454 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 455 return 0; 456 457 // If we can do this in a single instruction without a constant pool entry 458 // do so now. 459 const ConstantInt *CI = cast<ConstantInt>(C); 460 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 461 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 462 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 463 &ARM::GPRRegClass; 464 Register ImmReg = createResultReg(RC); 465 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 466 TII.get(Opc), ImmReg) 467 .addImm(CI->getZExtValue())); 468 return ImmReg; 469 } 470 471 // Use MVN to emit negative constants. 472 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 473 unsigned Imm = (unsigned)~(CI->getSExtValue()); 474 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 475 (ARM_AM::getSOImmVal(Imm) != -1); 476 if (UseImm) { 477 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 478 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 479 &ARM::GPRRegClass; 480 Register ImmReg = createResultReg(RC); 481 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 482 TII.get(Opc), ImmReg) 483 .addImm(Imm)); 484 return ImmReg; 485 } 486 } 487 488 unsigned ResultReg = 0; 489 if (Subtarget->useMovt()) 490 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 491 492 if (ResultReg) 493 return ResultReg; 494 495 // Load from constant pool. For now 32-bit only. 496 if (VT != MVT::i32) 497 return 0; 498 499 // MachineConstantPool wants an explicit alignment. 500 Align Alignment = DL.getPrefTypeAlign(C->getType()); 501 unsigned Idx = MCP.getConstantPoolIndex(C, Alignment); 502 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 503 if (isThumb2) 504 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 505 TII.get(ARM::t2LDRpci), ResultReg) 506 .addConstantPoolIndex(Idx)); 507 else { 508 // The extra immediate is for addrmode2. 509 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 511 TII.get(ARM::LDRcp), ResultReg) 512 .addConstantPoolIndex(Idx) 513 .addImm(0)); 514 } 515 return ResultReg; 516 } 517 518 bool ARMFastISel::isPositionIndependent() const { 519 return TLI.isPositionIndependent(); 520 } 521 522 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 523 // For now 32-bit only. 524 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 525 526 // ROPI/RWPI not currently supported. 527 if (Subtarget->isROPI() || Subtarget->isRWPI()) 528 return 0; 529 530 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 531 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 532 : &ARM::GPRRegClass; 533 Register DestReg = createResultReg(RC); 534 535 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 536 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 537 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 538 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 539 540 bool IsPositionIndependent = isPositionIndependent(); 541 // Use movw+movt when possible, it avoids constant pool entries. 542 // Non-darwin targets only support static movt relocations in FastISel. 543 if (Subtarget->useMovt() && 544 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 545 unsigned Opc; 546 unsigned char TF = 0; 547 if (Subtarget->isTargetMachO()) 548 TF = ARMII::MO_NONLAZY; 549 550 if (IsPositionIndependent) 551 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 552 else 553 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 554 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 555 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 556 } else { 557 // MachineConstantPool wants an explicit alignment. 558 Align Alignment = DL.getPrefTypeAlign(GV->getType()); 559 560 if (Subtarget->isTargetELF() && IsPositionIndependent) 561 return ARMLowerPICELF(GV, VT); 562 563 // Grab index. 564 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 565 unsigned Id = AFI->createPICLabelUId(); 566 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 567 ARMCP::CPValue, 568 PCAdj); 569 unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment); 570 571 // Load value. 572 MachineInstrBuilder MIB; 573 if (isThumb2) { 574 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 575 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 576 DestReg).addConstantPoolIndex(Idx); 577 if (IsPositionIndependent) 578 MIB.addImm(Id); 579 AddOptionalDefs(MIB); 580 } else { 581 // The extra immediate is for addrmode2. 582 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 583 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 584 TII.get(ARM::LDRcp), DestReg) 585 .addConstantPoolIndex(Idx) 586 .addImm(0); 587 AddOptionalDefs(MIB); 588 589 if (IsPositionIndependent) { 590 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 591 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 592 593 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 594 DbgLoc, TII.get(Opc), NewDestReg) 595 .addReg(DestReg) 596 .addImm(Id); 597 AddOptionalDefs(MIB); 598 return NewDestReg; 599 } 600 } 601 } 602 603 if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) || 604 (Subtarget->isTargetMachO() && IsIndirect) || 605 Subtarget->genLongCalls()) { 606 MachineInstrBuilder MIB; 607 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 608 if (isThumb2) 609 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 610 TII.get(ARM::t2LDRi12), NewDestReg) 611 .addReg(DestReg) 612 .addImm(0); 613 else 614 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 615 TII.get(ARM::LDRi12), NewDestReg) 616 .addReg(DestReg) 617 .addImm(0); 618 DestReg = NewDestReg; 619 AddOptionalDefs(MIB); 620 } 621 622 return DestReg; 623 } 624 625 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 626 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 627 628 // Only handle simple types. 629 if (!CEVT.isSimple()) return 0; 630 MVT VT = CEVT.getSimpleVT(); 631 632 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 633 return ARMMaterializeFP(CFP, VT); 634 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 635 return ARMMaterializeGV(GV, VT); 636 else if (isa<ConstantInt>(C)) 637 return ARMMaterializeInt(C, VT); 638 639 return 0; 640 } 641 642 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 643 644 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 645 // Don't handle dynamic allocas. 646 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 647 648 MVT VT; 649 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 650 651 DenseMap<const AllocaInst*, int>::iterator SI = 652 FuncInfo.StaticAllocaMap.find(AI); 653 654 // This will get lowered later into the correct offsets and registers 655 // via rewriteXFrameIndex. 656 if (SI != FuncInfo.StaticAllocaMap.end()) { 657 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 658 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 659 Register ResultReg = createResultReg(RC); 660 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 661 662 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 663 TII.get(Opc), ResultReg) 664 .addFrameIndex(SI->second) 665 .addImm(0)); 666 return ResultReg; 667 } 668 669 return 0; 670 } 671 672 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 673 EVT evt = TLI.getValueType(DL, Ty, true); 674 675 // Only handle simple types. 676 if (evt == MVT::Other || !evt.isSimple()) return false; 677 VT = evt.getSimpleVT(); 678 679 // Handle all legal types, i.e. a register that will directly hold this 680 // value. 681 return TLI.isTypeLegal(VT); 682 } 683 684 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 685 if (isTypeLegal(Ty, VT)) return true; 686 687 // If this is a type than can be sign or zero-extended to a basic operation 688 // go ahead and accept it now. 689 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 690 return true; 691 692 return false; 693 } 694 695 // Computes the address to get to an object. 696 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 697 // Some boilerplate from the X86 FastISel. 698 const User *U = nullptr; 699 unsigned Opcode = Instruction::UserOp1; 700 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 701 // Don't walk into other basic blocks unless the object is an alloca from 702 // another block, otherwise it may not have a virtual register assigned. 703 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 704 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 705 Opcode = I->getOpcode(); 706 U = I; 707 } 708 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 709 Opcode = C->getOpcode(); 710 U = C; 711 } 712 713 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 714 if (Ty->getAddressSpace() > 255) 715 // Fast instruction selection doesn't support the special 716 // address spaces. 717 return false; 718 719 switch (Opcode) { 720 default: 721 break; 722 case Instruction::BitCast: 723 // Look through bitcasts. 724 return ARMComputeAddress(U->getOperand(0), Addr); 725 case Instruction::IntToPtr: 726 // Look past no-op inttoptrs. 727 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 728 TLI.getPointerTy(DL)) 729 return ARMComputeAddress(U->getOperand(0), Addr); 730 break; 731 case Instruction::PtrToInt: 732 // Look past no-op ptrtoints. 733 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 734 return ARMComputeAddress(U->getOperand(0), Addr); 735 break; 736 case Instruction::GetElementPtr: { 737 Address SavedAddr = Addr; 738 int TmpOffset = Addr.Offset; 739 740 // Iterate through the GEP folding the constants into offsets where 741 // we can. 742 gep_type_iterator GTI = gep_type_begin(U); 743 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 744 i != e; ++i, ++GTI) { 745 const Value *Op = *i; 746 if (StructType *STy = GTI.getStructTypeOrNull()) { 747 const StructLayout *SL = DL.getStructLayout(STy); 748 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 749 TmpOffset += SL->getElementOffset(Idx); 750 } else { 751 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 752 while (true) { 753 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 754 // Constant-offset addressing. 755 TmpOffset += CI->getSExtValue() * S; 756 break; 757 } 758 if (canFoldAddIntoGEP(U, Op)) { 759 // A compatible add with a constant operand. Fold the constant. 760 ConstantInt *CI = 761 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 762 TmpOffset += CI->getSExtValue() * S; 763 // Iterate on the other operand. 764 Op = cast<AddOperator>(Op)->getOperand(0); 765 continue; 766 } 767 // Unsupported 768 goto unsupported_gep; 769 } 770 } 771 } 772 773 // Try to grab the base operand now. 774 Addr.Offset = TmpOffset; 775 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 776 777 // We failed, restore everything and try the other options. 778 Addr = SavedAddr; 779 780 unsupported_gep: 781 break; 782 } 783 case Instruction::Alloca: { 784 const AllocaInst *AI = cast<AllocaInst>(Obj); 785 DenseMap<const AllocaInst*, int>::iterator SI = 786 FuncInfo.StaticAllocaMap.find(AI); 787 if (SI != FuncInfo.StaticAllocaMap.end()) { 788 Addr.BaseType = Address::FrameIndexBase; 789 Addr.Base.FI = SI->second; 790 return true; 791 } 792 break; 793 } 794 } 795 796 // Try to get this in a register if nothing else has worked. 797 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 798 return Addr.Base.Reg != 0; 799 } 800 801 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 802 bool needsLowering = false; 803 switch (VT.SimpleTy) { 804 default: llvm_unreachable("Unhandled load/store type!"); 805 case MVT::i1: 806 case MVT::i8: 807 case MVT::i16: 808 case MVT::i32: 809 if (!useAM3) { 810 // Integer loads/stores handle 12-bit offsets. 811 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 812 // Handle negative offsets. 813 if (needsLowering && isThumb2) 814 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 815 Addr.Offset > -256); 816 } else { 817 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 818 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 819 } 820 break; 821 case MVT::f32: 822 case MVT::f64: 823 // Floating point operands handle 8-bit offsets. 824 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 825 break; 826 } 827 828 // If this is a stack pointer and the offset needs to be simplified then 829 // put the alloca address into a register, set the base type back to 830 // register and continue. This should almost never happen. 831 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 832 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 833 : &ARM::GPRRegClass; 834 Register ResultReg = createResultReg(RC); 835 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 836 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 837 TII.get(Opc), ResultReg) 838 .addFrameIndex(Addr.Base.FI) 839 .addImm(0)); 840 Addr.Base.Reg = ResultReg; 841 Addr.BaseType = Address::RegBase; 842 } 843 844 // Since the offset is too large for the load/store instruction 845 // get the reg+offset into a register. 846 if (needsLowering) { 847 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 848 Addr.Offset, MVT::i32); 849 Addr.Offset = 0; 850 } 851 } 852 853 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 854 const MachineInstrBuilder &MIB, 855 MachineMemOperand::Flags Flags, 856 bool useAM3) { 857 // addrmode5 output depends on the selection dag addressing dividing the 858 // offset by 4 that it then later multiplies. Do this here as well. 859 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 860 Addr.Offset /= 4; 861 862 // Frame base works a bit differently. Handle it separately. 863 if (Addr.BaseType == Address::FrameIndexBase) { 864 int FI = Addr.Base.FI; 865 int Offset = Addr.Offset; 866 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 867 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 868 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 869 // Now add the rest of the operands. 870 MIB.addFrameIndex(FI); 871 872 // ARM halfword load/stores and signed byte loads need an additional 873 // operand. 874 if (useAM3) { 875 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 876 MIB.addReg(0); 877 MIB.addImm(Imm); 878 } else { 879 MIB.addImm(Addr.Offset); 880 } 881 MIB.addMemOperand(MMO); 882 } else { 883 // Now add the rest of the operands. 884 MIB.addReg(Addr.Base.Reg); 885 886 // ARM halfword load/stores and signed byte loads need an additional 887 // operand. 888 if (useAM3) { 889 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 890 MIB.addReg(0); 891 MIB.addImm(Imm); 892 } else { 893 MIB.addImm(Addr.Offset); 894 } 895 } 896 AddOptionalDefs(MIB); 897 } 898 899 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 900 MaybeAlign Alignment, bool isZExt, 901 bool allocReg) { 902 unsigned Opc; 903 bool useAM3 = false; 904 bool needVMOV = false; 905 const TargetRegisterClass *RC; 906 switch (VT.SimpleTy) { 907 // This is mostly going to be Neon/vector support. 908 default: return false; 909 case MVT::i1: 910 case MVT::i8: 911 if (isThumb2) { 912 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 913 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 914 else 915 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 916 } else { 917 if (isZExt) { 918 Opc = ARM::LDRBi12; 919 } else { 920 Opc = ARM::LDRSB; 921 useAM3 = true; 922 } 923 } 924 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 925 break; 926 case MVT::i16: 927 if (Alignment && *Alignment < Align(2) && 928 !Subtarget->allowsUnalignedMem()) 929 return false; 930 931 if (isThumb2) { 932 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 933 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 934 else 935 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 936 } else { 937 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 938 useAM3 = true; 939 } 940 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 941 break; 942 case MVT::i32: 943 if (Alignment && *Alignment < Align(4) && 944 !Subtarget->allowsUnalignedMem()) 945 return false; 946 947 if (isThumb2) { 948 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 949 Opc = ARM::t2LDRi8; 950 else 951 Opc = ARM::t2LDRi12; 952 } else { 953 Opc = ARM::LDRi12; 954 } 955 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 956 break; 957 case MVT::f32: 958 if (!Subtarget->hasVFP2Base()) return false; 959 // Unaligned loads need special handling. Floats require word-alignment. 960 if (Alignment && *Alignment < Align(4)) { 961 needVMOV = true; 962 VT = MVT::i32; 963 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 964 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 965 } else { 966 Opc = ARM::VLDRS; 967 RC = TLI.getRegClassFor(VT); 968 } 969 break; 970 case MVT::f64: 971 // Can load and store double precision even without FeatureFP64 972 if (!Subtarget->hasVFP2Base()) return false; 973 // FIXME: Unaligned loads need special handling. Doublewords require 974 // word-alignment. 975 if (Alignment && *Alignment < Align(4)) 976 return false; 977 978 Opc = ARM::VLDRD; 979 RC = TLI.getRegClassFor(VT); 980 break; 981 } 982 // Simplify this down to something we can handle. 983 ARMSimplifyAddress(Addr, VT, useAM3); 984 985 // Create the base instruction, then add the operands. 986 if (allocReg) 987 ResultReg = createResultReg(RC); 988 assert(ResultReg > 255 && "Expected an allocated virtual register."); 989 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 990 TII.get(Opc), ResultReg); 991 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 992 993 // If we had an unaligned load of a float we've converted it to an regular 994 // load. Now we must move from the GRP to the FP register. 995 if (needVMOV) { 996 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 997 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 998 TII.get(ARM::VMOVSR), MoveReg) 999 .addReg(ResultReg)); 1000 ResultReg = MoveReg; 1001 } 1002 return true; 1003 } 1004 1005 bool ARMFastISel::SelectLoad(const Instruction *I) { 1006 // Atomic loads need special handling. 1007 if (cast<LoadInst>(I)->isAtomic()) 1008 return false; 1009 1010 const Value *SV = I->getOperand(0); 1011 if (TLI.supportSwiftError()) { 1012 // Swifterror values can come from either a function parameter with 1013 // swifterror attribute or an alloca with swifterror attribute. 1014 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1015 if (Arg->hasSwiftErrorAttr()) 1016 return false; 1017 } 1018 1019 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1020 if (Alloca->isSwiftError()) 1021 return false; 1022 } 1023 } 1024 1025 // Verify we have a legal type before going any further. 1026 MVT VT; 1027 if (!isLoadTypeLegal(I->getType(), VT)) 1028 return false; 1029 1030 // See if we can handle this address. 1031 Address Addr; 1032 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1033 1034 Register ResultReg; 1035 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlign())) 1036 return false; 1037 updateValueMap(I, ResultReg); 1038 return true; 1039 } 1040 1041 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1042 MaybeAlign Alignment) { 1043 unsigned StrOpc; 1044 bool useAM3 = false; 1045 switch (VT.SimpleTy) { 1046 // This is mostly going to be Neon/vector support. 1047 default: return false; 1048 case MVT::i1: { 1049 Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1050 : &ARM::GPRRegClass); 1051 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1052 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1053 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1054 TII.get(Opc), Res) 1055 .addReg(SrcReg).addImm(1)); 1056 SrcReg = Res; 1057 LLVM_FALLTHROUGH; 1058 } 1059 case MVT::i8: 1060 if (isThumb2) { 1061 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1062 StrOpc = ARM::t2STRBi8; 1063 else 1064 StrOpc = ARM::t2STRBi12; 1065 } else { 1066 StrOpc = ARM::STRBi12; 1067 } 1068 break; 1069 case MVT::i16: 1070 if (Alignment && *Alignment < Align(2) && 1071 !Subtarget->allowsUnalignedMem()) 1072 return false; 1073 1074 if (isThumb2) { 1075 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1076 StrOpc = ARM::t2STRHi8; 1077 else 1078 StrOpc = ARM::t2STRHi12; 1079 } else { 1080 StrOpc = ARM::STRH; 1081 useAM3 = true; 1082 } 1083 break; 1084 case MVT::i32: 1085 if (Alignment && *Alignment < Align(4) && 1086 !Subtarget->allowsUnalignedMem()) 1087 return false; 1088 1089 if (isThumb2) { 1090 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1091 StrOpc = ARM::t2STRi8; 1092 else 1093 StrOpc = ARM::t2STRi12; 1094 } else { 1095 StrOpc = ARM::STRi12; 1096 } 1097 break; 1098 case MVT::f32: 1099 if (!Subtarget->hasVFP2Base()) return false; 1100 // Unaligned stores need special handling. Floats require word-alignment. 1101 if (Alignment && *Alignment < Align(4)) { 1102 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1103 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1104 TII.get(ARM::VMOVRS), MoveReg) 1105 .addReg(SrcReg)); 1106 SrcReg = MoveReg; 1107 VT = MVT::i32; 1108 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1109 } else { 1110 StrOpc = ARM::VSTRS; 1111 } 1112 break; 1113 case MVT::f64: 1114 // Can load and store double precision even without FeatureFP64 1115 if (!Subtarget->hasVFP2Base()) return false; 1116 // FIXME: Unaligned stores need special handling. Doublewords require 1117 // word-alignment. 1118 if (Alignment && *Alignment < Align(4)) 1119 return false; 1120 1121 StrOpc = ARM::VSTRD; 1122 break; 1123 } 1124 // Simplify this down to something we can handle. 1125 ARMSimplifyAddress(Addr, VT, useAM3); 1126 1127 // Create the base instruction, then add the operands. 1128 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1129 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1130 TII.get(StrOpc)) 1131 .addReg(SrcReg); 1132 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1133 return true; 1134 } 1135 1136 bool ARMFastISel::SelectStore(const Instruction *I) { 1137 Value *Op0 = I->getOperand(0); 1138 unsigned SrcReg = 0; 1139 1140 // Atomic stores need special handling. 1141 if (cast<StoreInst>(I)->isAtomic()) 1142 return false; 1143 1144 const Value *PtrV = I->getOperand(1); 1145 if (TLI.supportSwiftError()) { 1146 // Swifterror values can come from either a function parameter with 1147 // swifterror attribute or an alloca with swifterror attribute. 1148 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1149 if (Arg->hasSwiftErrorAttr()) 1150 return false; 1151 } 1152 1153 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1154 if (Alloca->isSwiftError()) 1155 return false; 1156 } 1157 } 1158 1159 // Verify we have a legal type before going any further. 1160 MVT VT; 1161 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1162 return false; 1163 1164 // Get the value to be stored into a register. 1165 SrcReg = getRegForValue(Op0); 1166 if (SrcReg == 0) return false; 1167 1168 // See if we can handle this address. 1169 Address Addr; 1170 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1171 return false; 1172 1173 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlign())) 1174 return false; 1175 return true; 1176 } 1177 1178 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1179 switch (Pred) { 1180 // Needs two compares... 1181 case CmpInst::FCMP_ONE: 1182 case CmpInst::FCMP_UEQ: 1183 default: 1184 // AL is our "false" for now. The other two need more compares. 1185 return ARMCC::AL; 1186 case CmpInst::ICMP_EQ: 1187 case CmpInst::FCMP_OEQ: 1188 return ARMCC::EQ; 1189 case CmpInst::ICMP_SGT: 1190 case CmpInst::FCMP_OGT: 1191 return ARMCC::GT; 1192 case CmpInst::ICMP_SGE: 1193 case CmpInst::FCMP_OGE: 1194 return ARMCC::GE; 1195 case CmpInst::ICMP_UGT: 1196 case CmpInst::FCMP_UGT: 1197 return ARMCC::HI; 1198 case CmpInst::FCMP_OLT: 1199 return ARMCC::MI; 1200 case CmpInst::ICMP_ULE: 1201 case CmpInst::FCMP_OLE: 1202 return ARMCC::LS; 1203 case CmpInst::FCMP_ORD: 1204 return ARMCC::VC; 1205 case CmpInst::FCMP_UNO: 1206 return ARMCC::VS; 1207 case CmpInst::FCMP_UGE: 1208 return ARMCC::PL; 1209 case CmpInst::ICMP_SLT: 1210 case CmpInst::FCMP_ULT: 1211 return ARMCC::LT; 1212 case CmpInst::ICMP_SLE: 1213 case CmpInst::FCMP_ULE: 1214 return ARMCC::LE; 1215 case CmpInst::FCMP_UNE: 1216 case CmpInst::ICMP_NE: 1217 return ARMCC::NE; 1218 case CmpInst::ICMP_UGE: 1219 return ARMCC::HS; 1220 case CmpInst::ICMP_ULT: 1221 return ARMCC::LO; 1222 } 1223 } 1224 1225 bool ARMFastISel::SelectBranch(const Instruction *I) { 1226 const BranchInst *BI = cast<BranchInst>(I); 1227 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1228 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1229 1230 // Simple branch support. 1231 1232 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1233 // behavior. 1234 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1235 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1236 // Get the compare predicate. 1237 // Try to take advantage of fallthrough opportunities. 1238 CmpInst::Predicate Predicate = CI->getPredicate(); 1239 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1240 std::swap(TBB, FBB); 1241 Predicate = CmpInst::getInversePredicate(Predicate); 1242 } 1243 1244 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1245 1246 // We may not handle every CC for now. 1247 if (ARMPred == ARMCC::AL) return false; 1248 1249 // Emit the compare. 1250 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1251 return false; 1252 1253 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1254 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1255 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1256 finishCondBranch(BI->getParent(), TBB, FBB); 1257 return true; 1258 } 1259 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1260 MVT SourceVT; 1261 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1262 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1263 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1264 Register OpReg = getRegForValue(TI->getOperand(0)); 1265 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1266 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1267 TII.get(TstOpc)) 1268 .addReg(OpReg).addImm(1)); 1269 1270 unsigned CCMode = ARMCC::NE; 1271 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1272 std::swap(TBB, FBB); 1273 CCMode = ARMCC::EQ; 1274 } 1275 1276 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1277 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1278 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1279 1280 finishCondBranch(BI->getParent(), TBB, FBB); 1281 return true; 1282 } 1283 } else if (const ConstantInt *CI = 1284 dyn_cast<ConstantInt>(BI->getCondition())) { 1285 uint64_t Imm = CI->getZExtValue(); 1286 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1287 fastEmitBranch(Target, DbgLoc); 1288 return true; 1289 } 1290 1291 Register CmpReg = getRegForValue(BI->getCondition()); 1292 if (CmpReg == 0) return false; 1293 1294 // We've been divorced from our compare! Our block was split, and 1295 // now our compare lives in a predecessor block. We musn't 1296 // re-compare here, as the children of the compare aren't guaranteed 1297 // live across the block boundary (we *could* check for this). 1298 // Regardless, the compare has been done in the predecessor block, 1299 // and it left a value for us in a virtual register. Ergo, we test 1300 // the one-bit value left in the virtual register. 1301 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1302 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1303 AddOptionalDefs( 1304 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1305 .addReg(CmpReg) 1306 .addImm(1)); 1307 1308 unsigned CCMode = ARMCC::NE; 1309 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1310 std::swap(TBB, FBB); 1311 CCMode = ARMCC::EQ; 1312 } 1313 1314 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1315 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1316 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1317 finishCondBranch(BI->getParent(), TBB, FBB); 1318 return true; 1319 } 1320 1321 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1322 Register AddrReg = getRegForValue(I->getOperand(0)); 1323 if (AddrReg == 0) return false; 1324 1325 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1326 assert(isThumb2 || Subtarget->hasV4TOps()); 1327 1328 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1329 TII.get(Opc)).addReg(AddrReg)); 1330 1331 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1332 for (const BasicBlock *SuccBB : IB->successors()) 1333 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1334 1335 return true; 1336 } 1337 1338 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1339 bool isZExt) { 1340 Type *Ty = Src1Value->getType(); 1341 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1342 if (!SrcEVT.isSimple()) return false; 1343 MVT SrcVT = SrcEVT.getSimpleVT(); 1344 1345 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1346 return false; 1347 1348 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1349 return false; 1350 1351 // Check to see if the 2nd operand is a constant that we can encode directly 1352 // in the compare. 1353 int Imm = 0; 1354 bool UseImm = false; 1355 bool isNegativeImm = false; 1356 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1357 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1358 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1359 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1360 SrcVT == MVT::i1) { 1361 const APInt &CIVal = ConstInt->getValue(); 1362 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1363 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1364 // then a cmn, because there is no way to represent 2147483648 as a 1365 // signed 32-bit int. 1366 if (Imm < 0 && Imm != (int)0x80000000) { 1367 isNegativeImm = true; 1368 Imm = -Imm; 1369 } 1370 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1371 (ARM_AM::getSOImmVal(Imm) != -1); 1372 } 1373 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1374 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1375 if (ConstFP->isZero() && !ConstFP->isNegative()) 1376 UseImm = true; 1377 } 1378 1379 unsigned CmpOpc; 1380 bool isICmp = true; 1381 bool needsExt = false; 1382 switch (SrcVT.SimpleTy) { 1383 default: return false; 1384 // TODO: Verify compares. 1385 case MVT::f32: 1386 isICmp = false; 1387 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; 1388 break; 1389 case MVT::f64: 1390 isICmp = false; 1391 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; 1392 break; 1393 case MVT::i1: 1394 case MVT::i8: 1395 case MVT::i16: 1396 needsExt = true; 1397 LLVM_FALLTHROUGH; 1398 case MVT::i32: 1399 if (isThumb2) { 1400 if (!UseImm) 1401 CmpOpc = ARM::t2CMPrr; 1402 else 1403 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1404 } else { 1405 if (!UseImm) 1406 CmpOpc = ARM::CMPrr; 1407 else 1408 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1409 } 1410 break; 1411 } 1412 1413 Register SrcReg1 = getRegForValue(Src1Value); 1414 if (SrcReg1 == 0) return false; 1415 1416 unsigned SrcReg2 = 0; 1417 if (!UseImm) { 1418 SrcReg2 = getRegForValue(Src2Value); 1419 if (SrcReg2 == 0) return false; 1420 } 1421 1422 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1423 if (needsExt) { 1424 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1425 if (SrcReg1 == 0) return false; 1426 if (!UseImm) { 1427 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1428 if (SrcReg2 == 0) return false; 1429 } 1430 } 1431 1432 const MCInstrDesc &II = TII.get(CmpOpc); 1433 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1434 if (!UseImm) { 1435 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1436 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1437 .addReg(SrcReg1).addReg(SrcReg2)); 1438 } else { 1439 MachineInstrBuilder MIB; 1440 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1441 .addReg(SrcReg1); 1442 1443 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1444 if (isICmp) 1445 MIB.addImm(Imm); 1446 AddOptionalDefs(MIB); 1447 } 1448 1449 // For floating point we need to move the result to a comparison register 1450 // that we can then use for branches. 1451 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1452 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1453 TII.get(ARM::FMSTAT))); 1454 return true; 1455 } 1456 1457 bool ARMFastISel::SelectCmp(const Instruction *I) { 1458 const CmpInst *CI = cast<CmpInst>(I); 1459 1460 // Get the compare predicate. 1461 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1462 1463 // We may not handle every CC for now. 1464 if (ARMPred == ARMCC::AL) return false; 1465 1466 // Emit the compare. 1467 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1468 return false; 1469 1470 // Now set a register based on the comparison. Explicitly set the predicates 1471 // here. 1472 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1473 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1474 : &ARM::GPRRegClass; 1475 Register DestReg = createResultReg(RC); 1476 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1477 unsigned ZeroReg = fastMaterializeConstant(Zero); 1478 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1479 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1480 .addReg(ZeroReg).addImm(1) 1481 .addImm(ARMPred).addReg(ARM::CPSR); 1482 1483 updateValueMap(I, DestReg); 1484 return true; 1485 } 1486 1487 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1488 // Make sure we have VFP and that we're extending float to double. 1489 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1490 1491 Value *V = I->getOperand(0); 1492 if (!I->getType()->isDoubleTy() || 1493 !V->getType()->isFloatTy()) return false; 1494 1495 Register Op = getRegForValue(V); 1496 if (Op == 0) return false; 1497 1498 Register Result = createResultReg(&ARM::DPRRegClass); 1499 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1500 TII.get(ARM::VCVTDS), Result) 1501 .addReg(Op)); 1502 updateValueMap(I, Result); 1503 return true; 1504 } 1505 1506 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1507 // Make sure we have VFP and that we're truncating double to float. 1508 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1509 1510 Value *V = I->getOperand(0); 1511 if (!(I->getType()->isFloatTy() && 1512 V->getType()->isDoubleTy())) return false; 1513 1514 Register Op = getRegForValue(V); 1515 if (Op == 0) return false; 1516 1517 Register Result = createResultReg(&ARM::SPRRegClass); 1518 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1519 TII.get(ARM::VCVTSD), Result) 1520 .addReg(Op)); 1521 updateValueMap(I, Result); 1522 return true; 1523 } 1524 1525 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1526 // Make sure we have VFP. 1527 if (!Subtarget->hasVFP2Base()) return false; 1528 1529 MVT DstVT; 1530 Type *Ty = I->getType(); 1531 if (!isTypeLegal(Ty, DstVT)) 1532 return false; 1533 1534 Value *Src = I->getOperand(0); 1535 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1536 if (!SrcEVT.isSimple()) 1537 return false; 1538 MVT SrcVT = SrcEVT.getSimpleVT(); 1539 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1540 return false; 1541 1542 Register SrcReg = getRegForValue(Src); 1543 if (SrcReg == 0) return false; 1544 1545 // Handle sign-extension. 1546 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1547 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1548 /*isZExt*/!isSigned); 1549 if (SrcReg == 0) return false; 1550 } 1551 1552 // The conversion routine works on fp-reg to fp-reg and the operand above 1553 // was an integer, move it to the fp registers if possible. 1554 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1555 if (FP == 0) return false; 1556 1557 unsigned Opc; 1558 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1559 else if (Ty->isDoubleTy() && Subtarget->hasFP64()) 1560 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1561 else return false; 1562 1563 Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1564 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1565 TII.get(Opc), ResultReg).addReg(FP)); 1566 updateValueMap(I, ResultReg); 1567 return true; 1568 } 1569 1570 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1571 // Make sure we have VFP. 1572 if (!Subtarget->hasVFP2Base()) return false; 1573 1574 MVT DstVT; 1575 Type *RetTy = I->getType(); 1576 if (!isTypeLegal(RetTy, DstVT)) 1577 return false; 1578 1579 Register Op = getRegForValue(I->getOperand(0)); 1580 if (Op == 0) return false; 1581 1582 unsigned Opc; 1583 Type *OpTy = I->getOperand(0)->getType(); 1584 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1585 else if (OpTy->isDoubleTy() && Subtarget->hasFP64()) 1586 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1587 else return false; 1588 1589 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1590 Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1591 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1592 TII.get(Opc), ResultReg).addReg(Op)); 1593 1594 // This result needs to be in an integer register, but the conversion only 1595 // takes place in fp-regs. 1596 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1597 if (IntReg == 0) return false; 1598 1599 updateValueMap(I, IntReg); 1600 return true; 1601 } 1602 1603 bool ARMFastISel::SelectSelect(const Instruction *I) { 1604 MVT VT; 1605 if (!isTypeLegal(I->getType(), VT)) 1606 return false; 1607 1608 // Things need to be register sized for register moves. 1609 if (VT != MVT::i32) return false; 1610 1611 Register CondReg = getRegForValue(I->getOperand(0)); 1612 if (CondReg == 0) return false; 1613 Register Op1Reg = getRegForValue(I->getOperand(1)); 1614 if (Op1Reg == 0) return false; 1615 1616 // Check to see if we can use an immediate in the conditional move. 1617 int Imm = 0; 1618 bool UseImm = false; 1619 bool isNegativeImm = false; 1620 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1621 assert(VT == MVT::i32 && "Expecting an i32."); 1622 Imm = (int)ConstInt->getValue().getZExtValue(); 1623 if (Imm < 0) { 1624 isNegativeImm = true; 1625 Imm = ~Imm; 1626 } 1627 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1628 (ARM_AM::getSOImmVal(Imm) != -1); 1629 } 1630 1631 unsigned Op2Reg = 0; 1632 if (!UseImm) { 1633 Op2Reg = getRegForValue(I->getOperand(2)); 1634 if (Op2Reg == 0) return false; 1635 } 1636 1637 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1638 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1639 AddOptionalDefs( 1640 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1641 .addReg(CondReg) 1642 .addImm(1)); 1643 1644 unsigned MovCCOpc; 1645 const TargetRegisterClass *RC; 1646 if (!UseImm) { 1647 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1648 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1649 } else { 1650 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1651 if (!isNegativeImm) 1652 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1653 else 1654 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1655 } 1656 Register ResultReg = createResultReg(RC); 1657 if (!UseImm) { 1658 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1659 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1660 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1661 ResultReg) 1662 .addReg(Op2Reg) 1663 .addReg(Op1Reg) 1664 .addImm(ARMCC::NE) 1665 .addReg(ARM::CPSR); 1666 } else { 1667 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1668 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1669 ResultReg) 1670 .addReg(Op1Reg) 1671 .addImm(Imm) 1672 .addImm(ARMCC::EQ) 1673 .addReg(ARM::CPSR); 1674 } 1675 updateValueMap(I, ResultReg); 1676 return true; 1677 } 1678 1679 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1680 MVT VT; 1681 Type *Ty = I->getType(); 1682 if (!isTypeLegal(Ty, VT)) 1683 return false; 1684 1685 // If we have integer div support we should have selected this automagically. 1686 // In case we have a real miss go ahead and return false and we'll pick 1687 // it up later. 1688 if (Subtarget->hasDivideInThumbMode()) 1689 return false; 1690 1691 // Otherwise emit a libcall. 1692 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1693 if (VT == MVT::i8) 1694 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1695 else if (VT == MVT::i16) 1696 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1697 else if (VT == MVT::i32) 1698 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1699 else if (VT == MVT::i64) 1700 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1701 else if (VT == MVT::i128) 1702 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1703 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1704 1705 return ARMEmitLibcall(I, LC); 1706 } 1707 1708 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1709 MVT VT; 1710 Type *Ty = I->getType(); 1711 if (!isTypeLegal(Ty, VT)) 1712 return false; 1713 1714 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1715 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1716 // multi-reg returns, we'll have to bail out. 1717 if (!TLI.hasStandaloneRem(VT)) { 1718 return false; 1719 } 1720 1721 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1722 if (VT == MVT::i8) 1723 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1724 else if (VT == MVT::i16) 1725 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1726 else if (VT == MVT::i32) 1727 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1728 else if (VT == MVT::i64) 1729 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1730 else if (VT == MVT::i128) 1731 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1732 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1733 1734 return ARMEmitLibcall(I, LC); 1735 } 1736 1737 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1738 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1739 1740 // We can get here in the case when we have a binary operation on a non-legal 1741 // type and the target independent selector doesn't know how to handle it. 1742 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1743 return false; 1744 1745 unsigned Opc; 1746 switch (ISDOpcode) { 1747 default: return false; 1748 case ISD::ADD: 1749 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1750 break; 1751 case ISD::OR: 1752 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1753 break; 1754 case ISD::SUB: 1755 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1756 break; 1757 } 1758 1759 Register SrcReg1 = getRegForValue(I->getOperand(0)); 1760 if (SrcReg1 == 0) return false; 1761 1762 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1763 // in the instruction, rather then materializing the value in a register. 1764 Register SrcReg2 = getRegForValue(I->getOperand(1)); 1765 if (SrcReg2 == 0) return false; 1766 1767 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1768 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1769 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1770 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1771 TII.get(Opc), ResultReg) 1772 .addReg(SrcReg1).addReg(SrcReg2)); 1773 updateValueMap(I, ResultReg); 1774 return true; 1775 } 1776 1777 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1778 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1779 if (!FPVT.isSimple()) return false; 1780 MVT VT = FPVT.getSimpleVT(); 1781 1782 // FIXME: Support vector types where possible. 1783 if (VT.isVector()) 1784 return false; 1785 1786 // We can get here in the case when we want to use NEON for our fp 1787 // operations, but can't figure out how to. Just use the vfp instructions 1788 // if we have them. 1789 // FIXME: It'd be nice to use NEON instructions. 1790 Type *Ty = I->getType(); 1791 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1792 return false; 1793 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1794 return false; 1795 1796 unsigned Opc; 1797 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1798 switch (ISDOpcode) { 1799 default: return false; 1800 case ISD::FADD: 1801 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1802 break; 1803 case ISD::FSUB: 1804 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1805 break; 1806 case ISD::FMUL: 1807 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1808 break; 1809 } 1810 Register Op1 = getRegForValue(I->getOperand(0)); 1811 if (Op1 == 0) return false; 1812 1813 Register Op2 = getRegForValue(I->getOperand(1)); 1814 if (Op2 == 0) return false; 1815 1816 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1817 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1818 TII.get(Opc), ResultReg) 1819 .addReg(Op1).addReg(Op2)); 1820 updateValueMap(I, ResultReg); 1821 return true; 1822 } 1823 1824 // Call Handling Code 1825 1826 // This is largely taken directly from CCAssignFnForNode 1827 // TODO: We may not support all of this. 1828 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1829 bool Return, 1830 bool isVarArg) { 1831 switch (CC) { 1832 default: 1833 report_fatal_error("Unsupported calling convention"); 1834 case CallingConv::Fast: 1835 if (Subtarget->hasVFP2Base() && !isVarArg) { 1836 if (!Subtarget->isAAPCS_ABI()) 1837 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1838 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1839 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1840 } 1841 LLVM_FALLTHROUGH; 1842 case CallingConv::C: 1843 case CallingConv::CXX_FAST_TLS: 1844 // Use target triple & subtarget features to do actual dispatch. 1845 if (Subtarget->isAAPCS_ABI()) { 1846 if (Subtarget->hasVFP2Base() && 1847 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1848 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1849 else 1850 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1851 } else { 1852 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1853 } 1854 case CallingConv::ARM_AAPCS_VFP: 1855 case CallingConv::Swift: 1856 case CallingConv::SwiftTail: 1857 if (!isVarArg) 1858 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1859 // Fall through to soft float variant, variadic functions don't 1860 // use hard floating point ABI. 1861 LLVM_FALLTHROUGH; 1862 case CallingConv::ARM_AAPCS: 1863 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1864 case CallingConv::ARM_APCS: 1865 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1866 case CallingConv::GHC: 1867 if (Return) 1868 report_fatal_error("Can't return in GHC call convention"); 1869 else 1870 return CC_ARM_APCS_GHC; 1871 case CallingConv::CFGuard_Check: 1872 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); 1873 } 1874 } 1875 1876 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1877 SmallVectorImpl<Register> &ArgRegs, 1878 SmallVectorImpl<MVT> &ArgVTs, 1879 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1880 SmallVectorImpl<Register> &RegArgs, 1881 CallingConv::ID CC, 1882 unsigned &NumBytes, 1883 bool isVarArg) { 1884 SmallVector<CCValAssign, 16> ArgLocs; 1885 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1886 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1887 CCAssignFnForCall(CC, false, isVarArg)); 1888 1889 // Check that we can handle all of the arguments. If we can't, then bail out 1890 // now before we add code to the MBB. 1891 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1892 CCValAssign &VA = ArgLocs[i]; 1893 MVT ArgVT = ArgVTs[VA.getValNo()]; 1894 1895 // We don't handle NEON/vector parameters yet. 1896 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1897 return false; 1898 1899 // Now copy/store arg to correct locations. 1900 if (VA.isRegLoc() && !VA.needsCustom()) { 1901 continue; 1902 } else if (VA.needsCustom()) { 1903 // TODO: We need custom lowering for vector (v2f64) args. 1904 if (VA.getLocVT() != MVT::f64 || 1905 // TODO: Only handle register args for now. 1906 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1907 return false; 1908 } else { 1909 switch (ArgVT.SimpleTy) { 1910 default: 1911 return false; 1912 case MVT::i1: 1913 case MVT::i8: 1914 case MVT::i16: 1915 case MVT::i32: 1916 break; 1917 case MVT::f32: 1918 if (!Subtarget->hasVFP2Base()) 1919 return false; 1920 break; 1921 case MVT::f64: 1922 if (!Subtarget->hasVFP2Base()) 1923 return false; 1924 break; 1925 } 1926 } 1927 } 1928 1929 // At the point, we are able to handle the call's arguments in fast isel. 1930 1931 // Get a count of how many bytes are to be pushed on the stack. 1932 NumBytes = CCInfo.getNextStackOffset(); 1933 1934 // Issue CALLSEQ_START 1935 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1936 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1937 TII.get(AdjStackDown)) 1938 .addImm(NumBytes).addImm(0)); 1939 1940 // Process the args. 1941 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1942 CCValAssign &VA = ArgLocs[i]; 1943 const Value *ArgVal = Args[VA.getValNo()]; 1944 Register Arg = ArgRegs[VA.getValNo()]; 1945 MVT ArgVT = ArgVTs[VA.getValNo()]; 1946 1947 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1948 "We don't handle NEON/vector parameters yet."); 1949 1950 // Handle arg promotion, etc. 1951 switch (VA.getLocInfo()) { 1952 case CCValAssign::Full: break; 1953 case CCValAssign::SExt: { 1954 MVT DestVT = VA.getLocVT(); 1955 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1956 assert(Arg != 0 && "Failed to emit a sext"); 1957 ArgVT = DestVT; 1958 break; 1959 } 1960 case CCValAssign::AExt: 1961 // Intentional fall-through. Handle AExt and ZExt. 1962 case CCValAssign::ZExt: { 1963 MVT DestVT = VA.getLocVT(); 1964 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1965 assert(Arg != 0 && "Failed to emit a zext"); 1966 ArgVT = DestVT; 1967 break; 1968 } 1969 case CCValAssign::BCvt: { 1970 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg); 1971 assert(BC != 0 && "Failed to emit a bitcast!"); 1972 Arg = BC; 1973 ArgVT = VA.getLocVT(); 1974 break; 1975 } 1976 default: llvm_unreachable("Unknown arg promotion!"); 1977 } 1978 1979 // Now copy/store arg to correct locations. 1980 if (VA.isRegLoc() && !VA.needsCustom()) { 1981 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1982 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1983 RegArgs.push_back(VA.getLocReg()); 1984 } else if (VA.needsCustom()) { 1985 // TODO: We need custom lowering for vector (v2f64) args. 1986 assert(VA.getLocVT() == MVT::f64 && 1987 "Custom lowering for v2f64 args not available"); 1988 1989 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() 1990 CCValAssign &NextVA = ArgLocs[++i]; 1991 1992 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1993 "We only handle register args!"); 1994 1995 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1996 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1997 .addReg(NextVA.getLocReg(), RegState::Define) 1998 .addReg(Arg)); 1999 RegArgs.push_back(VA.getLocReg()); 2000 RegArgs.push_back(NextVA.getLocReg()); 2001 } else { 2002 assert(VA.isMemLoc()); 2003 // Need to store on the stack. 2004 2005 // Don't emit stores for undef values. 2006 if (isa<UndefValue>(ArgVal)) 2007 continue; 2008 2009 Address Addr; 2010 Addr.BaseType = Address::RegBase; 2011 Addr.Base.Reg = ARM::SP; 2012 Addr.Offset = VA.getLocMemOffset(); 2013 2014 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2015 assert(EmitRet && "Could not emit a store for argument!"); 2016 } 2017 } 2018 2019 return true; 2020 } 2021 2022 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 2023 const Instruction *I, CallingConv::ID CC, 2024 unsigned &NumBytes, bool isVarArg) { 2025 // Issue CALLSEQ_END 2026 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2027 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2028 TII.get(AdjStackUp)) 2029 .addImm(NumBytes).addImm(-1ULL)); 2030 2031 // Now the return value. 2032 if (RetVT != MVT::isVoid) { 2033 SmallVector<CCValAssign, 16> RVLocs; 2034 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2035 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2036 2037 // Copy all of the result registers out of their specified physreg. 2038 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2039 // For this move we copy into two registers and then move into the 2040 // double fp reg we want. 2041 MVT DestVT = RVLocs[0].getValVT(); 2042 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2043 Register ResultReg = createResultReg(DstRC); 2044 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2045 TII.get(ARM::VMOVDRR), ResultReg) 2046 .addReg(RVLocs[0].getLocReg()) 2047 .addReg(RVLocs[1].getLocReg())); 2048 2049 UsedRegs.push_back(RVLocs[0].getLocReg()); 2050 UsedRegs.push_back(RVLocs[1].getLocReg()); 2051 2052 // Finally update the result. 2053 updateValueMap(I, ResultReg); 2054 } else { 2055 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2056 MVT CopyVT = RVLocs[0].getValVT(); 2057 2058 // Special handling for extended integers. 2059 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2060 CopyVT = MVT::i32; 2061 2062 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2063 2064 Register ResultReg = createResultReg(DstRC); 2065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2066 TII.get(TargetOpcode::COPY), 2067 ResultReg).addReg(RVLocs[0].getLocReg()); 2068 UsedRegs.push_back(RVLocs[0].getLocReg()); 2069 2070 // Finally update the result. 2071 updateValueMap(I, ResultReg); 2072 } 2073 } 2074 2075 return true; 2076 } 2077 2078 bool ARMFastISel::SelectRet(const Instruction *I) { 2079 const ReturnInst *Ret = cast<ReturnInst>(I); 2080 const Function &F = *I->getParent()->getParent(); 2081 const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry"); 2082 2083 if (!FuncInfo.CanLowerReturn) 2084 return false; 2085 2086 if (TLI.supportSwiftError() && 2087 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2088 return false; 2089 2090 if (TLI.supportSplitCSR(FuncInfo.MF)) 2091 return false; 2092 2093 // Build a list of return value registers. 2094 SmallVector<unsigned, 4> RetRegs; 2095 2096 CallingConv::ID CC = F.getCallingConv(); 2097 if (Ret->getNumOperands() > 0) { 2098 SmallVector<ISD::OutputArg, 4> Outs; 2099 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2100 2101 // Analyze operands of the call, assigning locations to each operand. 2102 SmallVector<CCValAssign, 16> ValLocs; 2103 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2104 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2105 F.isVarArg())); 2106 2107 const Value *RV = Ret->getOperand(0); 2108 Register Reg = getRegForValue(RV); 2109 if (Reg == 0) 2110 return false; 2111 2112 // Only handle a single return value for now. 2113 if (ValLocs.size() != 1) 2114 return false; 2115 2116 CCValAssign &VA = ValLocs[0]; 2117 2118 // Don't bother handling odd stuff for now. 2119 if (VA.getLocInfo() != CCValAssign::Full) 2120 return false; 2121 // Only handle register returns for now. 2122 if (!VA.isRegLoc()) 2123 return false; 2124 2125 unsigned SrcReg = Reg + VA.getValNo(); 2126 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2127 if (!RVEVT.isSimple()) return false; 2128 MVT RVVT = RVEVT.getSimpleVT(); 2129 MVT DestVT = VA.getValVT(); 2130 // Special handling for extended integers. 2131 if (RVVT != DestVT) { 2132 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2133 return false; 2134 2135 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2136 2137 // Perform extension if flagged as either zext or sext. Otherwise, do 2138 // nothing. 2139 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2140 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2141 if (SrcReg == 0) return false; 2142 } 2143 } 2144 2145 // Make the copy. 2146 Register DstReg = VA.getLocReg(); 2147 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2148 // Avoid a cross-class copy. This is very unlikely. 2149 if (!SrcRC->contains(DstReg)) 2150 return false; 2151 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2152 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2153 2154 // Add register to return instruction. 2155 RetRegs.push_back(VA.getLocReg()); 2156 } 2157 2158 unsigned RetOpc; 2159 if (IsCmseNSEntry) 2160 if (isThumb2) 2161 RetOpc = ARM::tBXNS_RET; 2162 else 2163 llvm_unreachable("CMSE not valid for non-Thumb targets"); 2164 else 2165 RetOpc = Subtarget->getReturnOpcode(); 2166 2167 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2168 TII.get(RetOpc)); 2169 AddOptionalDefs(MIB); 2170 for (unsigned R : RetRegs) 2171 MIB.addReg(R, RegState::Implicit); 2172 return true; 2173 } 2174 2175 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2176 if (UseReg) 2177 return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF); 2178 else 2179 return isThumb2 ? ARM::tBL : ARM::BL; 2180 } 2181 2182 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2183 // Manually compute the global's type to avoid building it when unnecessary. 2184 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2185 EVT LCREVT = TLI.getValueType(DL, GVTy); 2186 if (!LCREVT.isSimple()) return 0; 2187 2188 GlobalValue *GV = M.getNamedGlobal(Name.str()); 2189 if (!GV) 2190 GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2191 GlobalValue::ExternalLinkage, nullptr, Name); 2192 2193 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2194 } 2195 2196 // A quick function that will emit a call for a named libcall in F with the 2197 // vector of passed arguments for the Instruction in I. We can assume that we 2198 // can emit a call for any libcall we can produce. This is an abridged version 2199 // of the full call infrastructure since we won't need to worry about things 2200 // like computed function pointers or strange arguments at call sites. 2201 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2202 // with X86. 2203 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2204 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2205 2206 // Handle *simple* calls for now. 2207 Type *RetTy = I->getType(); 2208 MVT RetVT; 2209 if (RetTy->isVoidTy()) 2210 RetVT = MVT::isVoid; 2211 else if (!isTypeLegal(RetTy, RetVT)) 2212 return false; 2213 2214 // Can't handle non-double multi-reg retvals. 2215 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2216 SmallVector<CCValAssign, 16> RVLocs; 2217 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2218 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2219 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2220 return false; 2221 } 2222 2223 // Set up the argument vectors. 2224 SmallVector<Value*, 8> Args; 2225 SmallVector<Register, 8> ArgRegs; 2226 SmallVector<MVT, 8> ArgVTs; 2227 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2228 Args.reserve(I->getNumOperands()); 2229 ArgRegs.reserve(I->getNumOperands()); 2230 ArgVTs.reserve(I->getNumOperands()); 2231 ArgFlags.reserve(I->getNumOperands()); 2232 for (Value *Op : I->operands()) { 2233 Register Arg = getRegForValue(Op); 2234 if (Arg == 0) return false; 2235 2236 Type *ArgTy = Op->getType(); 2237 MVT ArgVT; 2238 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2239 2240 ISD::ArgFlagsTy Flags; 2241 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2242 2243 Args.push_back(Op); 2244 ArgRegs.push_back(Arg); 2245 ArgVTs.push_back(ArgVT); 2246 ArgFlags.push_back(Flags); 2247 } 2248 2249 // Handle the arguments now that we've gotten them. 2250 SmallVector<Register, 4> RegArgs; 2251 unsigned NumBytes; 2252 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2253 RegArgs, CC, NumBytes, false)) 2254 return false; 2255 2256 Register CalleeReg; 2257 if (Subtarget->genLongCalls()) { 2258 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2259 if (CalleeReg == 0) return false; 2260 } 2261 2262 // Issue the call. 2263 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2264 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2265 DbgLoc, TII.get(CallOpc)); 2266 // BL / BLX don't take a predicate, but tBL / tBLX do. 2267 if (isThumb2) 2268 MIB.add(predOps(ARMCC::AL)); 2269 if (Subtarget->genLongCalls()) { 2270 CalleeReg = 2271 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2272 MIB.addReg(CalleeReg); 2273 } else 2274 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2275 2276 // Add implicit physical register uses to the call. 2277 for (Register R : RegArgs) 2278 MIB.addReg(R, RegState::Implicit); 2279 2280 // Add a register mask with the call-preserved registers. 2281 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2282 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2283 2284 // Finish off the call including any return values. 2285 SmallVector<Register, 4> UsedRegs; 2286 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2287 2288 // Set all unused physreg defs as dead. 2289 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2290 2291 return true; 2292 } 2293 2294 bool ARMFastISel::SelectCall(const Instruction *I, 2295 const char *IntrMemName = nullptr) { 2296 const CallInst *CI = cast<CallInst>(I); 2297 const Value *Callee = CI->getCalledOperand(); 2298 2299 // Can't handle inline asm. 2300 if (isa<InlineAsm>(Callee)) return false; 2301 2302 // Allow SelectionDAG isel to handle tail calls. 2303 if (CI->isTailCall()) return false; 2304 2305 // Check the calling convention. 2306 CallingConv::ID CC = CI->getCallingConv(); 2307 2308 // TODO: Avoid some calling conventions? 2309 2310 FunctionType *FTy = CI->getFunctionType(); 2311 bool isVarArg = FTy->isVarArg(); 2312 2313 // Handle *simple* calls for now. 2314 Type *RetTy = I->getType(); 2315 MVT RetVT; 2316 if (RetTy->isVoidTy()) 2317 RetVT = MVT::isVoid; 2318 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2319 RetVT != MVT::i8 && RetVT != MVT::i1) 2320 return false; 2321 2322 // Can't handle non-double multi-reg retvals. 2323 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2324 RetVT != MVT::i16 && RetVT != MVT::i32) { 2325 SmallVector<CCValAssign, 16> RVLocs; 2326 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2327 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2328 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2329 return false; 2330 } 2331 2332 // Set up the argument vectors. 2333 SmallVector<Value*, 8> Args; 2334 SmallVector<Register, 8> ArgRegs; 2335 SmallVector<MVT, 8> ArgVTs; 2336 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2337 unsigned arg_size = CI->arg_size(); 2338 Args.reserve(arg_size); 2339 ArgRegs.reserve(arg_size); 2340 ArgVTs.reserve(arg_size); 2341 ArgFlags.reserve(arg_size); 2342 for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) { 2343 // If we're lowering a memory intrinsic instead of a regular call, skip the 2344 // last argument, which shouldn't be passed to the underlying function. 2345 if (IntrMemName && ArgE - ArgI <= 1) 2346 break; 2347 2348 ISD::ArgFlagsTy Flags; 2349 unsigned ArgIdx = ArgI - CI->arg_begin(); 2350 if (CI->paramHasAttr(ArgIdx, Attribute::SExt)) 2351 Flags.setSExt(); 2352 if (CI->paramHasAttr(ArgIdx, Attribute::ZExt)) 2353 Flags.setZExt(); 2354 2355 // FIXME: Only handle *easy* calls for now. 2356 if (CI->paramHasAttr(ArgIdx, Attribute::InReg) || 2357 CI->paramHasAttr(ArgIdx, Attribute::StructRet) || 2358 CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) || 2359 CI->paramHasAttr(ArgIdx, Attribute::SwiftError) || 2360 CI->paramHasAttr(ArgIdx, Attribute::Nest) || 2361 CI->paramHasAttr(ArgIdx, Attribute::ByVal)) 2362 return false; 2363 2364 Type *ArgTy = (*ArgI)->getType(); 2365 MVT ArgVT; 2366 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2367 ArgVT != MVT::i1) 2368 return false; 2369 2370 Register Arg = getRegForValue(*ArgI); 2371 if (!Arg.isValid()) 2372 return false; 2373 2374 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2375 2376 Args.push_back(*ArgI); 2377 ArgRegs.push_back(Arg); 2378 ArgVTs.push_back(ArgVT); 2379 ArgFlags.push_back(Flags); 2380 } 2381 2382 // Handle the arguments now that we've gotten them. 2383 SmallVector<Register, 4> RegArgs; 2384 unsigned NumBytes; 2385 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2386 RegArgs, CC, NumBytes, isVarArg)) 2387 return false; 2388 2389 bool UseReg = false; 2390 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2391 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2392 2393 Register CalleeReg; 2394 if (UseReg) { 2395 if (IntrMemName) 2396 CalleeReg = getLibcallReg(IntrMemName); 2397 else 2398 CalleeReg = getRegForValue(Callee); 2399 2400 if (CalleeReg == 0) return false; 2401 } 2402 2403 // Issue the call. 2404 unsigned CallOpc = ARMSelectCallOp(UseReg); 2405 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2406 DbgLoc, TII.get(CallOpc)); 2407 2408 // ARM calls don't take a predicate, but tBL / tBLX do. 2409 if(isThumb2) 2410 MIB.add(predOps(ARMCC::AL)); 2411 if (UseReg) { 2412 CalleeReg = 2413 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2414 MIB.addReg(CalleeReg); 2415 } else if (!IntrMemName) 2416 MIB.addGlobalAddress(GV, 0, 0); 2417 else 2418 MIB.addExternalSymbol(IntrMemName, 0); 2419 2420 // Add implicit physical register uses to the call. 2421 for (Register R : RegArgs) 2422 MIB.addReg(R, RegState::Implicit); 2423 2424 // Add a register mask with the call-preserved registers. 2425 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2426 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2427 2428 // Finish off the call including any return values. 2429 SmallVector<Register, 4> UsedRegs; 2430 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2431 return false; 2432 2433 // Set all unused physreg defs as dead. 2434 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2435 2436 return true; 2437 } 2438 2439 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2440 return Len <= 16; 2441 } 2442 2443 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2444 uint64_t Len, unsigned Alignment) { 2445 // Make sure we don't bloat code by inlining very large memcpy's. 2446 if (!ARMIsMemCpySmall(Len)) 2447 return false; 2448 2449 while (Len) { 2450 MVT VT; 2451 if (!Alignment || Alignment >= 4) { 2452 if (Len >= 4) 2453 VT = MVT::i32; 2454 else if (Len >= 2) 2455 VT = MVT::i16; 2456 else { 2457 assert(Len == 1 && "Expected a length of 1!"); 2458 VT = MVT::i8; 2459 } 2460 } else { 2461 // Bound based on alignment. 2462 if (Len >= 2 && Alignment == 2) 2463 VT = MVT::i16; 2464 else { 2465 VT = MVT::i8; 2466 } 2467 } 2468 2469 bool RV; 2470 Register ResultReg; 2471 RV = ARMEmitLoad(VT, ResultReg, Src); 2472 assert(RV && "Should be able to handle this load."); 2473 RV = ARMEmitStore(VT, ResultReg, Dest); 2474 assert(RV && "Should be able to handle this store."); 2475 (void)RV; 2476 2477 unsigned Size = VT.getSizeInBits()/8; 2478 Len -= Size; 2479 Dest.Offset += Size; 2480 Src.Offset += Size; 2481 } 2482 2483 return true; 2484 } 2485 2486 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2487 // FIXME: Handle more intrinsics. 2488 switch (I.getIntrinsicID()) { 2489 default: return false; 2490 case Intrinsic::frameaddress: { 2491 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 2492 MFI.setFrameAddressIsTaken(true); 2493 2494 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2495 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2496 : &ARM::GPRRegClass; 2497 2498 const ARMBaseRegisterInfo *RegInfo = 2499 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2500 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2501 unsigned SrcReg = FramePtr; 2502 2503 // Recursively load frame address 2504 // ldr r0 [fp] 2505 // ldr r0 [r0] 2506 // ldr r0 [r0] 2507 // ... 2508 unsigned DestReg; 2509 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2510 while (Depth--) { 2511 DestReg = createResultReg(RC); 2512 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2513 TII.get(LdrOpc), DestReg) 2514 .addReg(SrcReg).addImm(0)); 2515 SrcReg = DestReg; 2516 } 2517 updateValueMap(&I, SrcReg); 2518 return true; 2519 } 2520 case Intrinsic::memcpy: 2521 case Intrinsic::memmove: { 2522 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2523 // Don't handle volatile. 2524 if (MTI.isVolatile()) 2525 return false; 2526 2527 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2528 // we would emit dead code because we don't currently handle memmoves. 2529 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2530 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2531 // Small memcpy's are common enough that we want to do them without a call 2532 // if possible. 2533 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2534 if (ARMIsMemCpySmall(Len)) { 2535 Address Dest, Src; 2536 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2537 !ARMComputeAddress(MTI.getRawSource(), Src)) 2538 return false; 2539 unsigned Alignment = MinAlign(MTI.getDestAlignment(), 2540 MTI.getSourceAlignment()); 2541 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2542 return true; 2543 } 2544 } 2545 2546 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2547 return false; 2548 2549 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2550 return false; 2551 2552 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2553 return SelectCall(&I, IntrMemName); 2554 } 2555 case Intrinsic::memset: { 2556 const MemSetInst &MSI = cast<MemSetInst>(I); 2557 // Don't handle volatile. 2558 if (MSI.isVolatile()) 2559 return false; 2560 2561 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2562 return false; 2563 2564 if (MSI.getDestAddressSpace() > 255) 2565 return false; 2566 2567 return SelectCall(&I, "memset"); 2568 } 2569 case Intrinsic::trap: { 2570 unsigned Opcode; 2571 if (Subtarget->isThumb()) 2572 Opcode = ARM::tTRAP; 2573 else 2574 Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 2575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode)); 2576 return true; 2577 } 2578 } 2579 } 2580 2581 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2582 // The high bits for a type smaller than the register size are assumed to be 2583 // undefined. 2584 Value *Op = I->getOperand(0); 2585 2586 EVT SrcVT, DestVT; 2587 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2588 DestVT = TLI.getValueType(DL, I->getType(), true); 2589 2590 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2591 return false; 2592 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2593 return false; 2594 2595 Register SrcReg = getRegForValue(Op); 2596 if (!SrcReg) return false; 2597 2598 // Because the high bits are undefined, a truncate doesn't generate 2599 // any code. 2600 updateValueMap(I, SrcReg); 2601 return true; 2602 } 2603 2604 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2605 bool isZExt) { 2606 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2607 return 0; 2608 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2609 return 0; 2610 2611 // Table of which combinations can be emitted as a single instruction, 2612 // and which will require two. 2613 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2614 // ARM Thumb 2615 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2616 // ext: s z s z s z s z 2617 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2618 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2619 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2620 }; 2621 2622 // Target registers for: 2623 // - For ARM can never be PC. 2624 // - For 16-bit Thumb are restricted to lower 8 registers. 2625 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2626 static const TargetRegisterClass *RCTbl[2][2] = { 2627 // Instructions: Two Single 2628 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2629 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2630 }; 2631 2632 // Table governing the instruction(s) to be emitted. 2633 static const struct InstructionTable { 2634 uint32_t Opc : 16; 2635 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2636 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2637 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2638 } IT[2][2][3][2] = { 2639 { // Two instructions (first is left shift, second is in this table). 2640 { // ARM Opc S Shift Imm 2641 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2642 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2643 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2644 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2645 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2646 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2647 }, 2648 { // Thumb Opc S Shift Imm 2649 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2650 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2651 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2652 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2653 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2654 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2655 } 2656 }, 2657 { // Single instruction. 2658 { // ARM Opc S Shift Imm 2659 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2660 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2661 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2662 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2663 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2664 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2665 }, 2666 { // Thumb Opc S Shift Imm 2667 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2668 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2669 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2670 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2671 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2672 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2673 } 2674 } 2675 }; 2676 2677 unsigned SrcBits = SrcVT.getSizeInBits(); 2678 unsigned DestBits = DestVT.getSizeInBits(); 2679 (void) DestBits; 2680 assert((SrcBits < DestBits) && "can only extend to larger types"); 2681 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2682 "other sizes unimplemented"); 2683 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2684 "other sizes unimplemented"); 2685 2686 bool hasV6Ops = Subtarget->hasV6Ops(); 2687 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2688 assert((Bitness < 3) && "sanity-check table bounds"); 2689 2690 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2691 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2692 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2693 unsigned Opc = ITP->Opc; 2694 assert(ARM::KILL != Opc && "Invalid table entry"); 2695 unsigned hasS = ITP->hasS; 2696 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2697 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2698 "only MOVsi has shift operand addressing mode"); 2699 unsigned Imm = ITP->Imm; 2700 2701 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2702 bool setsCPSR = &ARM::tGPRRegClass == RC; 2703 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2704 unsigned ResultReg; 2705 // MOVsi encodes shift and immediate in shift operand addressing mode. 2706 // The following condition has the same value when emitting two 2707 // instruction sequences: both are shifts. 2708 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2709 2710 // Either one or two instructions are emitted. 2711 // They're always of the form: 2712 // dst = in OP imm 2713 // CPSR is set only by 16-bit Thumb instructions. 2714 // Predicate, if any, is AL. 2715 // S bit, if available, is always 0. 2716 // When two are emitted the first's result will feed as the second's input, 2717 // that value is then dead. 2718 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2719 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2720 ResultReg = createResultReg(RC); 2721 bool isLsl = (0 == Instr) && !isSingleInstr; 2722 unsigned Opcode = isLsl ? LSLOpc : Opc; 2723 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2724 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2725 bool isKill = 1 == Instr; 2726 MachineInstrBuilder MIB = BuildMI( 2727 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2728 if (setsCPSR) 2729 MIB.addReg(ARM::CPSR, RegState::Define); 2730 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2731 MIB.addReg(SrcReg, isKill * RegState::Kill) 2732 .addImm(ImmEnc) 2733 .add(predOps(ARMCC::AL)); 2734 if (hasS) 2735 MIB.add(condCodeOp()); 2736 // Second instruction consumes the first's result. 2737 SrcReg = ResultReg; 2738 } 2739 2740 return ResultReg; 2741 } 2742 2743 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2744 // On ARM, in general, integer casts don't involve legal types; this code 2745 // handles promotable integers. 2746 Type *DestTy = I->getType(); 2747 Value *Src = I->getOperand(0); 2748 Type *SrcTy = Src->getType(); 2749 2750 bool isZExt = isa<ZExtInst>(I); 2751 Register SrcReg = getRegForValue(Src); 2752 if (!SrcReg) return false; 2753 2754 EVT SrcEVT, DestEVT; 2755 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2756 DestEVT = TLI.getValueType(DL, DestTy, true); 2757 if (!SrcEVT.isSimple()) return false; 2758 if (!DestEVT.isSimple()) return false; 2759 2760 MVT SrcVT = SrcEVT.getSimpleVT(); 2761 MVT DestVT = DestEVT.getSimpleVT(); 2762 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2763 if (ResultReg == 0) return false; 2764 updateValueMap(I, ResultReg); 2765 return true; 2766 } 2767 2768 bool ARMFastISel::SelectShift(const Instruction *I, 2769 ARM_AM::ShiftOpc ShiftTy) { 2770 // We handle thumb2 mode by target independent selector 2771 // or SelectionDAG ISel. 2772 if (isThumb2) 2773 return false; 2774 2775 // Only handle i32 now. 2776 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2777 if (DestVT != MVT::i32) 2778 return false; 2779 2780 unsigned Opc = ARM::MOVsr; 2781 unsigned ShiftImm; 2782 Value *Src2Value = I->getOperand(1); 2783 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2784 ShiftImm = CI->getZExtValue(); 2785 2786 // Fall back to selection DAG isel if the shift amount 2787 // is zero or greater than the width of the value type. 2788 if (ShiftImm == 0 || ShiftImm >=32) 2789 return false; 2790 2791 Opc = ARM::MOVsi; 2792 } 2793 2794 Value *Src1Value = I->getOperand(0); 2795 Register Reg1 = getRegForValue(Src1Value); 2796 if (Reg1 == 0) return false; 2797 2798 unsigned Reg2 = 0; 2799 if (Opc == ARM::MOVsr) { 2800 Reg2 = getRegForValue(Src2Value); 2801 if (Reg2 == 0) return false; 2802 } 2803 2804 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2805 if(ResultReg == 0) return false; 2806 2807 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2808 TII.get(Opc), ResultReg) 2809 .addReg(Reg1); 2810 2811 if (Opc == ARM::MOVsi) 2812 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2813 else if (Opc == ARM::MOVsr) { 2814 MIB.addReg(Reg2); 2815 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2816 } 2817 2818 AddOptionalDefs(MIB); 2819 updateValueMap(I, ResultReg); 2820 return true; 2821 } 2822 2823 // TODO: SoftFP support. 2824 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2825 switch (I->getOpcode()) { 2826 case Instruction::Load: 2827 return SelectLoad(I); 2828 case Instruction::Store: 2829 return SelectStore(I); 2830 case Instruction::Br: 2831 return SelectBranch(I); 2832 case Instruction::IndirectBr: 2833 return SelectIndirectBr(I); 2834 case Instruction::ICmp: 2835 case Instruction::FCmp: 2836 return SelectCmp(I); 2837 case Instruction::FPExt: 2838 return SelectFPExt(I); 2839 case Instruction::FPTrunc: 2840 return SelectFPTrunc(I); 2841 case Instruction::SIToFP: 2842 return SelectIToFP(I, /*isSigned*/ true); 2843 case Instruction::UIToFP: 2844 return SelectIToFP(I, /*isSigned*/ false); 2845 case Instruction::FPToSI: 2846 return SelectFPToI(I, /*isSigned*/ true); 2847 case Instruction::FPToUI: 2848 return SelectFPToI(I, /*isSigned*/ false); 2849 case Instruction::Add: 2850 return SelectBinaryIntOp(I, ISD::ADD); 2851 case Instruction::Or: 2852 return SelectBinaryIntOp(I, ISD::OR); 2853 case Instruction::Sub: 2854 return SelectBinaryIntOp(I, ISD::SUB); 2855 case Instruction::FAdd: 2856 return SelectBinaryFPOp(I, ISD::FADD); 2857 case Instruction::FSub: 2858 return SelectBinaryFPOp(I, ISD::FSUB); 2859 case Instruction::FMul: 2860 return SelectBinaryFPOp(I, ISD::FMUL); 2861 case Instruction::SDiv: 2862 return SelectDiv(I, /*isSigned*/ true); 2863 case Instruction::UDiv: 2864 return SelectDiv(I, /*isSigned*/ false); 2865 case Instruction::SRem: 2866 return SelectRem(I, /*isSigned*/ true); 2867 case Instruction::URem: 2868 return SelectRem(I, /*isSigned*/ false); 2869 case Instruction::Call: 2870 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2871 return SelectIntrinsicCall(*II); 2872 return SelectCall(I); 2873 case Instruction::Select: 2874 return SelectSelect(I); 2875 case Instruction::Ret: 2876 return SelectRet(I); 2877 case Instruction::Trunc: 2878 return SelectTrunc(I); 2879 case Instruction::ZExt: 2880 case Instruction::SExt: 2881 return SelectIntExt(I); 2882 case Instruction::Shl: 2883 return SelectShift(I, ARM_AM::lsl); 2884 case Instruction::LShr: 2885 return SelectShift(I, ARM_AM::lsr); 2886 case Instruction::AShr: 2887 return SelectShift(I, ARM_AM::asr); 2888 default: break; 2889 } 2890 return false; 2891 } 2892 2893 // This table describes sign- and zero-extend instructions which can be 2894 // folded into a preceding load. All of these extends have an immediate 2895 // (sometimes a mask and sometimes a shift) that's applied after 2896 // extension. 2897 static const struct FoldableLoadExtendsStruct { 2898 uint16_t Opc[2]; // ARM, Thumb. 2899 uint8_t ExpectedImm; 2900 uint8_t isZExt : 1; 2901 uint8_t ExpectedVT : 7; 2902 } FoldableLoadExtends[] = { 2903 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2904 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2905 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2906 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2907 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2908 }; 2909 2910 /// The specified machine instr operand is a vreg, and that 2911 /// vreg is being provided by the specified load instruction. If possible, 2912 /// try to fold the load as an operand to the instruction, returning true if 2913 /// successful. 2914 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2915 const LoadInst *LI) { 2916 // Verify we have a legal type before going any further. 2917 MVT VT; 2918 if (!isLoadTypeLegal(LI->getType(), VT)) 2919 return false; 2920 2921 // Combine load followed by zero- or sign-extend. 2922 // ldrb r1, [r0] ldrb r1, [r0] 2923 // uxtb r2, r1 => 2924 // mov r3, r2 mov r3, r1 2925 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2926 return false; 2927 const uint64_t Imm = MI->getOperand(2).getImm(); 2928 2929 bool Found = false; 2930 bool isZExt; 2931 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) { 2932 if (FLE.Opc[isThumb2] == MI->getOpcode() && 2933 (uint64_t)FLE.ExpectedImm == Imm && 2934 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) { 2935 Found = true; 2936 isZExt = FLE.isZExt; 2937 } 2938 } 2939 if (!Found) return false; 2940 2941 // See if we can handle this address. 2942 Address Addr; 2943 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2944 2945 Register ResultReg = MI->getOperand(0).getReg(); 2946 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlign(), isZExt, false)) 2947 return false; 2948 MachineBasicBlock::iterator I(MI); 2949 removeDeadCode(I, std::next(I)); 2950 return true; 2951 } 2952 2953 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) { 2954 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 2955 2956 LLVMContext *Context = &MF->getFunction().getContext(); 2957 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2958 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2959 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2960 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2961 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2962 /*AddCurrentAddress=*/UseGOT_PREL); 2963 2964 Align ConstAlign = 2965 MF->getDataLayout().getPrefTypeAlign(Type::getInt32PtrTy(*Context)); 2966 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2967 MachineMemOperand *CPMMO = 2968 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), 2969 MachineMemOperand::MOLoad, 4, Align(4)); 2970 2971 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2972 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2973 MachineInstrBuilder MIB = 2974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) 2975 .addConstantPoolIndex(Idx) 2976 .addMemOperand(CPMMO); 2977 if (Opc == ARM::LDRcp) 2978 MIB.addImm(0); 2979 MIB.add(predOps(ARMCC::AL)); 2980 2981 // Fix the address by adding pc. 2982 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 2983 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2984 : ARM::PICADD; 2985 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2986 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2987 .addReg(TempReg) 2988 .addImm(ARMPCLabelIndex); 2989 2990 if (!Subtarget->isThumb()) 2991 MIB.add(predOps(ARMCC::AL)); 2992 2993 if (UseGOT_PREL && Subtarget->isThumb()) { 2994 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2995 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2996 TII.get(ARM::t2LDRi12), NewDestReg) 2997 .addReg(DestReg) 2998 .addImm(0); 2999 DestReg = NewDestReg; 3000 AddOptionalDefs(MIB); 3001 } 3002 return DestReg; 3003 } 3004 3005 bool ARMFastISel::fastLowerArguments() { 3006 if (!FuncInfo.CanLowerReturn) 3007 return false; 3008 3009 const Function *F = FuncInfo.Fn; 3010 if (F->isVarArg()) 3011 return false; 3012 3013 CallingConv::ID CC = F->getCallingConv(); 3014 switch (CC) { 3015 default: 3016 return false; 3017 case CallingConv::Fast: 3018 case CallingConv::C: 3019 case CallingConv::ARM_AAPCS_VFP: 3020 case CallingConv::ARM_AAPCS: 3021 case CallingConv::ARM_APCS: 3022 case CallingConv::Swift: 3023 case CallingConv::SwiftTail: 3024 break; 3025 } 3026 3027 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3028 // which are passed in r0 - r3. 3029 for (const Argument &Arg : F->args()) { 3030 if (Arg.getArgNo() >= 4) 3031 return false; 3032 3033 if (Arg.hasAttribute(Attribute::InReg) || 3034 Arg.hasAttribute(Attribute::StructRet) || 3035 Arg.hasAttribute(Attribute::SwiftSelf) || 3036 Arg.hasAttribute(Attribute::SwiftError) || 3037 Arg.hasAttribute(Attribute::ByVal)) 3038 return false; 3039 3040 Type *ArgTy = Arg.getType(); 3041 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3042 return false; 3043 3044 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3045 if (!ArgVT.isSimple()) return false; 3046 switch (ArgVT.getSimpleVT().SimpleTy) { 3047 case MVT::i8: 3048 case MVT::i16: 3049 case MVT::i32: 3050 break; 3051 default: 3052 return false; 3053 } 3054 } 3055 3056 static const MCPhysReg GPRArgRegs[] = { 3057 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3058 }; 3059 3060 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3061 for (const Argument &Arg : F->args()) { 3062 unsigned ArgNo = Arg.getArgNo(); 3063 unsigned SrcReg = GPRArgRegs[ArgNo]; 3064 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3065 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3066 // Without this, EmitLiveInCopies may eliminate the livein if its only 3067 // use is a bitcast (which isn't turned into an instruction). 3068 Register ResultReg = createResultReg(RC); 3069 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3070 TII.get(TargetOpcode::COPY), 3071 ResultReg).addReg(DstReg, getKillRegState(true)); 3072 updateValueMap(&Arg, ResultReg); 3073 } 3074 3075 return true; 3076 } 3077 3078 namespace llvm { 3079 3080 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3081 const TargetLibraryInfo *libInfo) { 3082 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3083 return new ARMFastISel(funcInfo, libInfo); 3084 3085 return nullptr; 3086 } 3087 3088 } // end namespace llvm 3089