1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMSubtarget.h" 21 #include "ARMTargetMachine.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/GetElementPtrTypeIterator.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 using namespace llvm; 50 51 extern cl::opt<bool> EnableARMLongCalls; 52 53 namespace { 54 55 // All possible address modes, plus some. 56 typedef struct Address { 57 enum { 58 RegBase, 59 FrameIndexBase 60 } BaseType; 61 62 union { 63 unsigned Reg; 64 int FI; 65 } Base; 66 67 int Offset; 68 69 // Innocuous defaults for our address. 70 Address() 71 : BaseType(RegBase), Offset(0) { 72 Base.Reg = 0; 73 } 74 } Address; 75 76 class ARMFastISel : public FastISel { 77 78 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 79 /// make the right decision when generating code for different targets. 80 const ARMSubtarget *Subtarget; 81 const TargetMachine &TM; 82 const TargetInstrInfo &TII; 83 const TargetLowering &TLI; 84 ARMFunctionInfo *AFI; 85 86 // Convenience variables to avoid some queries. 87 bool isThumb2; 88 LLVMContext *Context; 89 90 public: 91 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 92 const TargetLibraryInfo *libInfo) 93 : FastISel(funcInfo, libInfo), 94 TM(funcInfo.MF->getTarget()), 95 TII(*TM.getInstrInfo()), 96 TLI(*TM.getTargetLowering()) { 97 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 98 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 99 isThumb2 = AFI->isThumbFunction(); 100 Context = &funcInfo.Fn->getContext(); 101 } 102 103 // Code from FastISel.cpp. 104 private: 105 unsigned FastEmitInst_(unsigned MachineInstOpcode, 106 const TargetRegisterClass *RC); 107 unsigned FastEmitInst_r(unsigned MachineInstOpcode, 108 const TargetRegisterClass *RC, 109 unsigned Op0, bool Op0IsKill); 110 unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 111 const TargetRegisterClass *RC, 112 unsigned Op0, bool Op0IsKill, 113 unsigned Op1, bool Op1IsKill); 114 unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, 115 const TargetRegisterClass *RC, 116 unsigned Op0, bool Op0IsKill, 117 unsigned Op1, bool Op1IsKill, 118 unsigned Op2, bool Op2IsKill); 119 unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 120 const TargetRegisterClass *RC, 121 unsigned Op0, bool Op0IsKill, 122 uint64_t Imm); 123 unsigned FastEmitInst_rf(unsigned MachineInstOpcode, 124 const TargetRegisterClass *RC, 125 unsigned Op0, bool Op0IsKill, 126 const ConstantFP *FPImm); 127 unsigned FastEmitInst_rri(unsigned MachineInstOpcode, 128 const TargetRegisterClass *RC, 129 unsigned Op0, bool Op0IsKill, 130 unsigned Op1, bool Op1IsKill, 131 uint64_t Imm); 132 unsigned FastEmitInst_i(unsigned MachineInstOpcode, 133 const TargetRegisterClass *RC, 134 uint64_t Imm); 135 unsigned FastEmitInst_ii(unsigned MachineInstOpcode, 136 const TargetRegisterClass *RC, 137 uint64_t Imm1, uint64_t Imm2); 138 139 unsigned FastEmitInst_extractsubreg(MVT RetVT, 140 unsigned Op0, bool Op0IsKill, 141 uint32_t Idx); 142 143 // Backend specific FastISel code. 144 private: 145 virtual bool TargetSelectInstruction(const Instruction *I); 146 virtual unsigned TargetMaterializeConstant(const Constant *C); 147 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 148 virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 149 const LoadInst *LI); 150 virtual bool FastLowerArguments(); 151 private: 152 #include "ARMGenFastISel.inc" 153 154 // Instruction selection routines. 155 private: 156 bool SelectLoad(const Instruction *I); 157 bool SelectStore(const Instruction *I); 158 bool SelectBranch(const Instruction *I); 159 bool SelectIndirectBr(const Instruction *I); 160 bool SelectCmp(const Instruction *I); 161 bool SelectFPExt(const Instruction *I); 162 bool SelectFPTrunc(const Instruction *I); 163 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 164 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 165 bool SelectIToFP(const Instruction *I, bool isSigned); 166 bool SelectFPToI(const Instruction *I, bool isSigned); 167 bool SelectDiv(const Instruction *I, bool isSigned); 168 bool SelectRem(const Instruction *I, bool isSigned); 169 bool SelectCall(const Instruction *I, const char *IntrMemName); 170 bool SelectIntrinsicCall(const IntrinsicInst &I); 171 bool SelectSelect(const Instruction *I); 172 bool SelectRet(const Instruction *I); 173 bool SelectTrunc(const Instruction *I); 174 bool SelectIntExt(const Instruction *I); 175 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 176 177 // Utility routines. 178 private: 179 unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned OpNum, 180 unsigned Op); 181 bool isTypeLegal(Type *Ty, MVT &VT); 182 bool isLoadTypeLegal(Type *Ty, MVT &VT); 183 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 184 bool isZExt); 185 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 186 unsigned Alignment = 0, bool isZExt = true, 187 bool allocReg = true); 188 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 189 unsigned Alignment = 0); 190 bool ARMComputeAddress(const Value *Obj, Address &Addr); 191 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 192 bool ARMIsMemCpySmall(uint64_t Len); 193 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 194 unsigned Alignment); 195 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 196 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 197 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 198 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 199 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 200 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 201 unsigned ARMSelectCallOp(bool UseReg); 202 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 203 204 // Call handling routines. 205 private: 206 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 207 bool Return, 208 bool isVarArg); 209 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 210 SmallVectorImpl<unsigned> &ArgRegs, 211 SmallVectorImpl<MVT> &ArgVTs, 212 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 213 SmallVectorImpl<unsigned> &RegArgs, 214 CallingConv::ID CC, 215 unsigned &NumBytes, 216 bool isVarArg); 217 unsigned getLibcallReg(const Twine &Name); 218 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 219 const Instruction *I, CallingConv::ID CC, 220 unsigned &NumBytes, bool isVarArg); 221 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 222 223 // OptionalDef handling routines. 224 private: 225 bool isARMNEONPred(const MachineInstr *MI); 226 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 227 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 228 void AddLoadStoreOperands(MVT VT, Address &Addr, 229 const MachineInstrBuilder &MIB, 230 unsigned Flags, bool useAM3); 231 }; 232 233 } // end anonymous namespace 234 235 #include "ARMGenCallingConv.inc" 236 237 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 238 // we don't care about implicit defs here, just places we'll need to add a 239 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 240 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 241 if (!MI->hasOptionalDef()) 242 return false; 243 244 // Look to see if our OptionalDef is defining CPSR or CCR. 245 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 246 const MachineOperand &MO = MI->getOperand(i); 247 if (!MO.isReg() || !MO.isDef()) continue; 248 if (MO.getReg() == ARM::CPSR) 249 *CPSR = true; 250 } 251 return true; 252 } 253 254 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 255 const MCInstrDesc &MCID = MI->getDesc(); 256 257 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 258 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 259 AFI->isThumb2Function()) 260 return MI->isPredicable(); 261 262 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 263 if (MCID.OpInfo[i].isPredicate()) 264 return true; 265 266 return false; 267 } 268 269 // If the machine is predicable go ahead and add the predicate operands, if 270 // it needs default CC operands add those. 271 // TODO: If we want to support thumb1 then we'll need to deal with optional 272 // CPSR defs that need to be added before the remaining operands. See s_cc_out 273 // for descriptions why. 274 const MachineInstrBuilder & 275 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 276 MachineInstr *MI = &*MIB; 277 278 // Do we use a predicate? or... 279 // Are we NEON in ARM mode and have a predicate operand? If so, I know 280 // we're not predicable but add it anyways. 281 if (isARMNEONPred(MI)) 282 AddDefaultPred(MIB); 283 284 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 285 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 286 bool CPSR = false; 287 if (DefinesOptionalPredicate(MI, &CPSR)) { 288 if (CPSR) 289 AddDefaultT1CC(MIB); 290 else 291 AddDefaultCC(MIB); 292 } 293 return MIB; 294 } 295 296 unsigned ARMFastISel::constrainOperandRegClass(const MCInstrDesc &II, 297 unsigned Op, unsigned OpNum) { 298 if (TargetRegisterInfo::isVirtualRegister(Op)) { 299 const TargetRegisterClass *RegClass = 300 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 301 if (!MRI.constrainRegClass(Op, RegClass)) { 302 // If it's not legal to COPY between the register classes, something 303 // has gone very wrong before we got here. 304 unsigned NewOp = createResultReg(RegClass); 305 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 306 TII.get(TargetOpcode::COPY), NewOp).addReg(Op)); 307 return NewOp; 308 } 309 } 310 return Op; 311 } 312 313 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, 314 const TargetRegisterClass* RC) { 315 unsigned ResultReg = createResultReg(RC); 316 const MCInstrDesc &II = TII.get(MachineInstOpcode); 317 318 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)); 319 return ResultReg; 320 } 321 322 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 323 const TargetRegisterClass *RC, 324 unsigned Op0, bool Op0IsKill) { 325 unsigned ResultReg = createResultReg(RC); 326 const MCInstrDesc &II = TII.get(MachineInstOpcode); 327 328 // Make sure the input operand is sufficiently constrained to be legal 329 // for this instruction. 330 Op0 = constrainOperandRegClass(II, Op0, 1); 331 if (II.getNumDefs() >= 1) { 332 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 333 .addReg(Op0, Op0IsKill * RegState::Kill)); 334 } else { 335 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 336 .addReg(Op0, Op0IsKill * RegState::Kill)); 337 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 338 TII.get(TargetOpcode::COPY), ResultReg) 339 .addReg(II.ImplicitDefs[0])); 340 } 341 return ResultReg; 342 } 343 344 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 345 const TargetRegisterClass *RC, 346 unsigned Op0, bool Op0IsKill, 347 unsigned Op1, bool Op1IsKill) { 348 unsigned ResultReg = createResultReg(RC); 349 const MCInstrDesc &II = TII.get(MachineInstOpcode); 350 351 // Make sure the input operands are sufficiently constrained to be legal 352 // for this instruction. 353 Op0 = constrainOperandRegClass(II, Op0, 1); 354 Op1 = constrainOperandRegClass(II, Op1, 2); 355 356 if (II.getNumDefs() >= 1) { 357 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 358 .addReg(Op0, Op0IsKill * RegState::Kill) 359 .addReg(Op1, Op1IsKill * RegState::Kill)); 360 } else { 361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 362 .addReg(Op0, Op0IsKill * RegState::Kill) 363 .addReg(Op1, Op1IsKill * RegState::Kill)); 364 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 365 TII.get(TargetOpcode::COPY), ResultReg) 366 .addReg(II.ImplicitDefs[0])); 367 } 368 return ResultReg; 369 } 370 371 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 372 const TargetRegisterClass *RC, 373 unsigned Op0, bool Op0IsKill, 374 unsigned Op1, bool Op1IsKill, 375 unsigned Op2, bool Op2IsKill) { 376 unsigned ResultReg = createResultReg(RC); 377 const MCInstrDesc &II = TII.get(MachineInstOpcode); 378 379 // Make sure the input operands are sufficiently constrained to be legal 380 // for this instruction. 381 Op0 = constrainOperandRegClass(II, Op0, 1); 382 Op1 = constrainOperandRegClass(II, Op1, 2); 383 Op2 = constrainOperandRegClass(II, Op1, 3); 384 385 if (II.getNumDefs() >= 1) { 386 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 387 .addReg(Op0, Op0IsKill * RegState::Kill) 388 .addReg(Op1, Op1IsKill * RegState::Kill) 389 .addReg(Op2, Op2IsKill * RegState::Kill)); 390 } else { 391 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 392 .addReg(Op0, Op0IsKill * RegState::Kill) 393 .addReg(Op1, Op1IsKill * RegState::Kill) 394 .addReg(Op2, Op2IsKill * RegState::Kill)); 395 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 396 TII.get(TargetOpcode::COPY), ResultReg) 397 .addReg(II.ImplicitDefs[0])); 398 } 399 return ResultReg; 400 } 401 402 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 403 const TargetRegisterClass *RC, 404 unsigned Op0, bool Op0IsKill, 405 uint64_t Imm) { 406 unsigned ResultReg = createResultReg(RC); 407 const MCInstrDesc &II = TII.get(MachineInstOpcode); 408 409 // Make sure the input operand is sufficiently constrained to be legal 410 // for this instruction. 411 Op0 = constrainOperandRegClass(II, Op0, 1); 412 if (II.getNumDefs() >= 1) { 413 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 414 .addReg(Op0, Op0IsKill * RegState::Kill) 415 .addImm(Imm)); 416 } else { 417 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 418 .addReg(Op0, Op0IsKill * RegState::Kill) 419 .addImm(Imm)); 420 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 421 TII.get(TargetOpcode::COPY), ResultReg) 422 .addReg(II.ImplicitDefs[0])); 423 } 424 return ResultReg; 425 } 426 427 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 428 const TargetRegisterClass *RC, 429 unsigned Op0, bool Op0IsKill, 430 const ConstantFP *FPImm) { 431 unsigned ResultReg = createResultReg(RC); 432 const MCInstrDesc &II = TII.get(MachineInstOpcode); 433 434 // Make sure the input operand is sufficiently constrained to be legal 435 // for this instruction. 436 Op0 = constrainOperandRegClass(II, Op0, 1); 437 if (II.getNumDefs() >= 1) { 438 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 439 .addReg(Op0, Op0IsKill * RegState::Kill) 440 .addFPImm(FPImm)); 441 } else { 442 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 443 .addReg(Op0, Op0IsKill * RegState::Kill) 444 .addFPImm(FPImm)); 445 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 446 TII.get(TargetOpcode::COPY), ResultReg) 447 .addReg(II.ImplicitDefs[0])); 448 } 449 return ResultReg; 450 } 451 452 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 453 const TargetRegisterClass *RC, 454 unsigned Op0, bool Op0IsKill, 455 unsigned Op1, bool Op1IsKill, 456 uint64_t Imm) { 457 unsigned ResultReg = createResultReg(RC); 458 const MCInstrDesc &II = TII.get(MachineInstOpcode); 459 460 // Make sure the input operands are sufficiently constrained to be legal 461 // for this instruction. 462 Op0 = constrainOperandRegClass(II, Op0, 1); 463 Op1 = constrainOperandRegClass(II, Op1, 2); 464 if (II.getNumDefs() >= 1) { 465 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 466 .addReg(Op0, Op0IsKill * RegState::Kill) 467 .addReg(Op1, Op1IsKill * RegState::Kill) 468 .addImm(Imm)); 469 } else { 470 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 471 .addReg(Op0, Op0IsKill * RegState::Kill) 472 .addReg(Op1, Op1IsKill * RegState::Kill) 473 .addImm(Imm)); 474 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 475 TII.get(TargetOpcode::COPY), ResultReg) 476 .addReg(II.ImplicitDefs[0])); 477 } 478 return ResultReg; 479 } 480 481 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, 482 const TargetRegisterClass *RC, 483 uint64_t Imm) { 484 unsigned ResultReg = createResultReg(RC); 485 const MCInstrDesc &II = TII.get(MachineInstOpcode); 486 487 if (II.getNumDefs() >= 1) { 488 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 489 .addImm(Imm)); 490 } else { 491 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 492 .addImm(Imm)); 493 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 494 TII.get(TargetOpcode::COPY), ResultReg) 495 .addReg(II.ImplicitDefs[0])); 496 } 497 return ResultReg; 498 } 499 500 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 501 const TargetRegisterClass *RC, 502 uint64_t Imm1, uint64_t Imm2) { 503 unsigned ResultReg = createResultReg(RC); 504 const MCInstrDesc &II = TII.get(MachineInstOpcode); 505 506 if (II.getNumDefs() >= 1) { 507 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 508 .addImm(Imm1).addImm(Imm2)); 509 } else { 510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 511 .addImm(Imm1).addImm(Imm2)); 512 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 513 TII.get(TargetOpcode::COPY), 514 ResultReg) 515 .addReg(II.ImplicitDefs[0])); 516 } 517 return ResultReg; 518 } 519 520 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, 521 unsigned Op0, bool Op0IsKill, 522 uint32_t Idx) { 523 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 524 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 525 "Cannot yet extract from physregs"); 526 527 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 528 DL, TII.get(TargetOpcode::COPY), ResultReg) 529 .addReg(Op0, getKillRegState(Op0IsKill), Idx)); 530 return ResultReg; 531 } 532 533 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 534 // checks from the various callers. 535 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 536 if (VT == MVT::f64) return 0; 537 538 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 539 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 540 TII.get(ARM::VMOVSR), MoveReg) 541 .addReg(SrcReg)); 542 return MoveReg; 543 } 544 545 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 546 if (VT == MVT::i64) return 0; 547 548 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 549 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 550 TII.get(ARM::VMOVRS), MoveReg) 551 .addReg(SrcReg)); 552 return MoveReg; 553 } 554 555 // For double width floating point we need to materialize two constants 556 // (the high and the low) into integer registers then use a move to get 557 // the combined constant into an FP reg. 558 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 559 const APFloat Val = CFP->getValueAPF(); 560 bool is64bit = VT == MVT::f64; 561 562 // This checks to see if we can use VFP3 instructions to materialize 563 // a constant, otherwise we have to go through the constant pool. 564 if (TLI.isFPImmLegal(Val, VT)) { 565 int Imm; 566 unsigned Opc; 567 if (is64bit) { 568 Imm = ARM_AM::getFP64Imm(Val); 569 Opc = ARM::FCONSTD; 570 } else { 571 Imm = ARM_AM::getFP32Imm(Val); 572 Opc = ARM::FCONSTS; 573 } 574 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 575 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 576 DestReg) 577 .addImm(Imm)); 578 return DestReg; 579 } 580 581 // Require VFP2 for loading fp constants. 582 if (!Subtarget->hasVFP2()) return false; 583 584 // MachineConstantPool wants an explicit alignment. 585 unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); 586 if (Align == 0) { 587 // TODO: Figure out if this is correct. 588 Align = TD.getTypeAllocSize(CFP->getType()); 589 } 590 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 591 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 592 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 593 594 // The extra reg is for addrmode5. 595 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 596 DestReg) 597 .addConstantPoolIndex(Idx) 598 .addReg(0)); 599 return DestReg; 600 } 601 602 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 603 604 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 605 return false; 606 607 // If we can do this in a single instruction without a constant pool entry 608 // do so now. 609 const ConstantInt *CI = cast<ConstantInt>(C); 610 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 611 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 612 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 613 &ARM::GPRRegClass; 614 unsigned ImmReg = createResultReg(RC); 615 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 616 TII.get(Opc), ImmReg) 617 .addImm(CI->getZExtValue())); 618 return ImmReg; 619 } 620 621 // Use MVN to emit negative constants. 622 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 623 unsigned Imm = (unsigned)~(CI->getSExtValue()); 624 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 625 (ARM_AM::getSOImmVal(Imm) != -1); 626 if (UseImm) { 627 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 628 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 629 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 630 TII.get(Opc), ImmReg) 631 .addImm(Imm)); 632 return ImmReg; 633 } 634 } 635 636 // Load from constant pool. For now 32-bit only. 637 if (VT != MVT::i32) 638 return false; 639 640 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 641 642 // MachineConstantPool wants an explicit alignment. 643 unsigned Align = TD.getPrefTypeAlignment(C->getType()); 644 if (Align == 0) { 645 // TODO: Figure out if this is correct. 646 Align = TD.getTypeAllocSize(C->getType()); 647 } 648 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 649 650 if (isThumb2) 651 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 652 TII.get(ARM::t2LDRpci), DestReg) 653 .addConstantPoolIndex(Idx)); 654 else 655 // The extra immediate is for addrmode2. 656 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 657 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 658 TII.get(ARM::LDRcp), DestReg) 659 .addConstantPoolIndex(Idx) 660 .addImm(0)); 661 662 return DestReg; 663 } 664 665 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 666 // For now 32-bit only. 667 if (VT != MVT::i32) return 0; 668 669 Reloc::Model RelocM = TM.getRelocationModel(); 670 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 671 const TargetRegisterClass *RC = isThumb2 ? 672 (const TargetRegisterClass*)&ARM::rGPRRegClass : 673 (const TargetRegisterClass*)&ARM::GPRRegClass; 674 unsigned DestReg = createResultReg(RC); 675 676 // FastISel TLS support on non-Darwin is broken, punt to SelectionDAG. 677 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 678 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 679 if (!Subtarget->isTargetDarwin() && IsThreadLocal) return 0; 680 681 // Use movw+movt when possible, it avoids constant pool entries. 682 // Non-darwin targets only support static movt relocations in FastISel. 683 if (Subtarget->useMovt() && 684 (Subtarget->isTargetDarwin() || RelocM == Reloc::Static)) { 685 unsigned Opc; 686 unsigned char TF = 0; 687 if (Subtarget->isTargetDarwin()) 688 TF = ARMII::MO_NONLAZY; 689 690 switch (RelocM) { 691 case Reloc::PIC_: 692 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 693 break; 694 default: 695 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 696 break; 697 } 698 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 699 DestReg).addGlobalAddress(GV, 0, TF)); 700 } else { 701 // MachineConstantPool wants an explicit alignment. 702 unsigned Align = TD.getPrefTypeAlignment(GV->getType()); 703 if (Align == 0) { 704 // TODO: Figure out if this is correct. 705 Align = TD.getTypeAllocSize(GV->getType()); 706 } 707 708 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 709 return ARMLowerPICELF(GV, Align, VT); 710 711 // Grab index. 712 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 713 (Subtarget->isThumb() ? 4 : 8); 714 unsigned Id = AFI->createPICLabelUId(); 715 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 716 ARMCP::CPValue, 717 PCAdj); 718 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 719 720 // Load value. 721 MachineInstrBuilder MIB; 722 if (isThumb2) { 723 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 724 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 725 .addConstantPoolIndex(Idx); 726 if (RelocM == Reloc::PIC_) 727 MIB.addImm(Id); 728 AddOptionalDefs(MIB); 729 } else { 730 // The extra immediate is for addrmode2. 731 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 732 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp), 733 DestReg) 734 .addConstantPoolIndex(Idx) 735 .addImm(0); 736 AddOptionalDefs(MIB); 737 738 if (RelocM == Reloc::PIC_) { 739 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 740 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 741 742 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 743 DL, TII.get(Opc), NewDestReg) 744 .addReg(DestReg) 745 .addImm(Id); 746 AddOptionalDefs(MIB); 747 return NewDestReg; 748 } 749 } 750 } 751 752 if (IsIndirect) { 753 MachineInstrBuilder MIB; 754 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 755 if (isThumb2) 756 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 757 TII.get(ARM::t2LDRi12), NewDestReg) 758 .addReg(DestReg) 759 .addImm(0); 760 else 761 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12), 762 NewDestReg) 763 .addReg(DestReg) 764 .addImm(0); 765 DestReg = NewDestReg; 766 AddOptionalDefs(MIB); 767 } 768 769 return DestReg; 770 } 771 772 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { 773 EVT CEVT = TLI.getValueType(C->getType(), true); 774 775 // Only handle simple types. 776 if (!CEVT.isSimple()) return 0; 777 MVT VT = CEVT.getSimpleVT(); 778 779 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 780 return ARMMaterializeFP(CFP, VT); 781 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 782 return ARMMaterializeGV(GV, VT); 783 else if (isa<ConstantInt>(C)) 784 return ARMMaterializeInt(C, VT); 785 786 return 0; 787 } 788 789 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 790 791 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 792 // Don't handle dynamic allocas. 793 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 794 795 MVT VT; 796 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 797 798 DenseMap<const AllocaInst*, int>::iterator SI = 799 FuncInfo.StaticAllocaMap.find(AI); 800 801 // This will get lowered later into the correct offsets and registers 802 // via rewriteXFrameIndex. 803 if (SI != FuncInfo.StaticAllocaMap.end()) { 804 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 805 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 806 unsigned ResultReg = createResultReg(RC); 807 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 808 809 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 810 TII.get(Opc), ResultReg) 811 .addFrameIndex(SI->second) 812 .addImm(0)); 813 return ResultReg; 814 } 815 816 return 0; 817 } 818 819 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 820 EVT evt = TLI.getValueType(Ty, true); 821 822 // Only handle simple types. 823 if (evt == MVT::Other || !evt.isSimple()) return false; 824 VT = evt.getSimpleVT(); 825 826 // Handle all legal types, i.e. a register that will directly hold this 827 // value. 828 return TLI.isTypeLegal(VT); 829 } 830 831 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 832 if (isTypeLegal(Ty, VT)) return true; 833 834 // If this is a type than can be sign or zero-extended to a basic operation 835 // go ahead and accept it now. 836 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 837 return true; 838 839 return false; 840 } 841 842 // Computes the address to get to an object. 843 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 844 // Some boilerplate from the X86 FastISel. 845 const User *U = NULL; 846 unsigned Opcode = Instruction::UserOp1; 847 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 848 // Don't walk into other basic blocks unless the object is an alloca from 849 // another block, otherwise it may not have a virtual register assigned. 850 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 851 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 852 Opcode = I->getOpcode(); 853 U = I; 854 } 855 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 856 Opcode = C->getOpcode(); 857 U = C; 858 } 859 860 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 861 if (Ty->getAddressSpace() > 255) 862 // Fast instruction selection doesn't support the special 863 // address spaces. 864 return false; 865 866 switch (Opcode) { 867 default: 868 break; 869 case Instruction::BitCast: 870 // Look through bitcasts. 871 return ARMComputeAddress(U->getOperand(0), Addr); 872 case Instruction::IntToPtr: 873 // Look past no-op inttoptrs. 874 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 875 return ARMComputeAddress(U->getOperand(0), Addr); 876 break; 877 case Instruction::PtrToInt: 878 // Look past no-op ptrtoints. 879 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 880 return ARMComputeAddress(U->getOperand(0), Addr); 881 break; 882 case Instruction::GetElementPtr: { 883 Address SavedAddr = Addr; 884 int TmpOffset = Addr.Offset; 885 886 // Iterate through the GEP folding the constants into offsets where 887 // we can. 888 gep_type_iterator GTI = gep_type_begin(U); 889 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 890 i != e; ++i, ++GTI) { 891 const Value *Op = *i; 892 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 893 const StructLayout *SL = TD.getStructLayout(STy); 894 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 895 TmpOffset += SL->getElementOffset(Idx); 896 } else { 897 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); 898 for (;;) { 899 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 900 // Constant-offset addressing. 901 TmpOffset += CI->getSExtValue() * S; 902 break; 903 } 904 if (canFoldAddIntoGEP(U, Op)) { 905 // A compatible add with a constant operand. Fold the constant. 906 ConstantInt *CI = 907 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 908 TmpOffset += CI->getSExtValue() * S; 909 // Iterate on the other operand. 910 Op = cast<AddOperator>(Op)->getOperand(0); 911 continue; 912 } 913 // Unsupported 914 goto unsupported_gep; 915 } 916 } 917 } 918 919 // Try to grab the base operand now. 920 Addr.Offset = TmpOffset; 921 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 922 923 // We failed, restore everything and try the other options. 924 Addr = SavedAddr; 925 926 unsupported_gep: 927 break; 928 } 929 case Instruction::Alloca: { 930 const AllocaInst *AI = cast<AllocaInst>(Obj); 931 DenseMap<const AllocaInst*, int>::iterator SI = 932 FuncInfo.StaticAllocaMap.find(AI); 933 if (SI != FuncInfo.StaticAllocaMap.end()) { 934 Addr.BaseType = Address::FrameIndexBase; 935 Addr.Base.FI = SI->second; 936 return true; 937 } 938 break; 939 } 940 } 941 942 // Try to get this in a register if nothing else has worked. 943 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 944 return Addr.Base.Reg != 0; 945 } 946 947 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 948 bool needsLowering = false; 949 switch (VT.SimpleTy) { 950 default: llvm_unreachable("Unhandled load/store type!"); 951 case MVT::i1: 952 case MVT::i8: 953 case MVT::i16: 954 case MVT::i32: 955 if (!useAM3) { 956 // Integer loads/stores handle 12-bit offsets. 957 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 958 // Handle negative offsets. 959 if (needsLowering && isThumb2) 960 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 961 Addr.Offset > -256); 962 } else { 963 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 964 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 965 } 966 break; 967 case MVT::f32: 968 case MVT::f64: 969 // Floating point operands handle 8-bit offsets. 970 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 971 break; 972 } 973 974 // If this is a stack pointer and the offset needs to be simplified then 975 // put the alloca address into a register, set the base type back to 976 // register and continue. This should almost never happen. 977 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 978 const TargetRegisterClass *RC = isThumb2 ? 979 (const TargetRegisterClass*)&ARM::tGPRRegClass : 980 (const TargetRegisterClass*)&ARM::GPRRegClass; 981 unsigned ResultReg = createResultReg(RC); 982 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 983 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 984 TII.get(Opc), ResultReg) 985 .addFrameIndex(Addr.Base.FI) 986 .addImm(0)); 987 Addr.Base.Reg = ResultReg; 988 Addr.BaseType = Address::RegBase; 989 } 990 991 // Since the offset is too large for the load/store instruction 992 // get the reg+offset into a register. 993 if (needsLowering) { 994 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 995 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 996 Addr.Offset = 0; 997 } 998 } 999 1000 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 1001 const MachineInstrBuilder &MIB, 1002 unsigned Flags, bool useAM3) { 1003 // addrmode5 output depends on the selection dag addressing dividing the 1004 // offset by 4 that it then later multiplies. Do this here as well. 1005 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 1006 Addr.Offset /= 4; 1007 1008 // Frame base works a bit differently. Handle it separately. 1009 if (Addr.BaseType == Address::FrameIndexBase) { 1010 int FI = Addr.Base.FI; 1011 int Offset = Addr.Offset; 1012 MachineMemOperand *MMO = 1013 FuncInfo.MF->getMachineMemOperand( 1014 MachinePointerInfo::getFixedStack(FI, Offset), 1015 Flags, 1016 MFI.getObjectSize(FI), 1017 MFI.getObjectAlignment(FI)); 1018 // Now add the rest of the operands. 1019 MIB.addFrameIndex(FI); 1020 1021 // ARM halfword load/stores and signed byte loads need an additional 1022 // operand. 1023 if (useAM3) { 1024 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 1025 MIB.addReg(0); 1026 MIB.addImm(Imm); 1027 } else { 1028 MIB.addImm(Addr.Offset); 1029 } 1030 MIB.addMemOperand(MMO); 1031 } else { 1032 // Now add the rest of the operands. 1033 MIB.addReg(Addr.Base.Reg); 1034 1035 // ARM halfword load/stores and signed byte loads need an additional 1036 // operand. 1037 if (useAM3) { 1038 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 1039 MIB.addReg(0); 1040 MIB.addImm(Imm); 1041 } else { 1042 MIB.addImm(Addr.Offset); 1043 } 1044 } 1045 AddOptionalDefs(MIB); 1046 } 1047 1048 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 1049 unsigned Alignment, bool isZExt, bool allocReg) { 1050 unsigned Opc; 1051 bool useAM3 = false; 1052 bool needVMOV = false; 1053 const TargetRegisterClass *RC; 1054 switch (VT.SimpleTy) { 1055 // This is mostly going to be Neon/vector support. 1056 default: return false; 1057 case MVT::i1: 1058 case MVT::i8: 1059 if (isThumb2) { 1060 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1061 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 1062 else 1063 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 1064 } else { 1065 if (isZExt) { 1066 Opc = ARM::LDRBi12; 1067 } else { 1068 Opc = ARM::LDRSB; 1069 useAM3 = true; 1070 } 1071 } 1072 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1073 break; 1074 case MVT::i16: 1075 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1076 return false; 1077 1078 if (isThumb2) { 1079 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1080 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 1081 else 1082 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 1083 } else { 1084 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 1085 useAM3 = true; 1086 } 1087 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1088 break; 1089 case MVT::i32: 1090 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1091 return false; 1092 1093 if (isThumb2) { 1094 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1095 Opc = ARM::t2LDRi8; 1096 else 1097 Opc = ARM::t2LDRi12; 1098 } else { 1099 Opc = ARM::LDRi12; 1100 } 1101 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1102 break; 1103 case MVT::f32: 1104 if (!Subtarget->hasVFP2()) return false; 1105 // Unaligned loads need special handling. Floats require word-alignment. 1106 if (Alignment && Alignment < 4) { 1107 needVMOV = true; 1108 VT = MVT::i32; 1109 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1110 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1111 } else { 1112 Opc = ARM::VLDRS; 1113 RC = TLI.getRegClassFor(VT); 1114 } 1115 break; 1116 case MVT::f64: 1117 if (!Subtarget->hasVFP2()) return false; 1118 // FIXME: Unaligned loads need special handling. Doublewords require 1119 // word-alignment. 1120 if (Alignment && Alignment < 4) 1121 return false; 1122 1123 Opc = ARM::VLDRD; 1124 RC = TLI.getRegClassFor(VT); 1125 break; 1126 } 1127 // Simplify this down to something we can handle. 1128 ARMSimplifyAddress(Addr, VT, useAM3); 1129 1130 // Create the base instruction, then add the operands. 1131 if (allocReg) 1132 ResultReg = createResultReg(RC); 1133 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1134 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1135 TII.get(Opc), ResultReg); 1136 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1137 1138 // If we had an unaligned load of a float we've converted it to an regular 1139 // load. Now we must move from the GRP to the FP register. 1140 if (needVMOV) { 1141 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1142 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1143 TII.get(ARM::VMOVSR), MoveReg) 1144 .addReg(ResultReg)); 1145 ResultReg = MoveReg; 1146 } 1147 return true; 1148 } 1149 1150 bool ARMFastISel::SelectLoad(const Instruction *I) { 1151 // Atomic loads need special handling. 1152 if (cast<LoadInst>(I)->isAtomic()) 1153 return false; 1154 1155 // Verify we have a legal type before going any further. 1156 MVT VT; 1157 if (!isLoadTypeLegal(I->getType(), VT)) 1158 return false; 1159 1160 // See if we can handle this address. 1161 Address Addr; 1162 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1163 1164 unsigned ResultReg; 1165 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1166 return false; 1167 UpdateValueMap(I, ResultReg); 1168 return true; 1169 } 1170 1171 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1172 unsigned Alignment) { 1173 unsigned StrOpc; 1174 bool useAM3 = false; 1175 switch (VT.SimpleTy) { 1176 // This is mostly going to be Neon/vector support. 1177 default: return false; 1178 case MVT::i1: { 1179 unsigned Res = createResultReg(isThumb2 ? 1180 (const TargetRegisterClass*)&ARM::tGPRRegClass : 1181 (const TargetRegisterClass*)&ARM::GPRRegClass); 1182 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1183 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1184 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1185 TII.get(Opc), Res) 1186 .addReg(SrcReg).addImm(1)); 1187 SrcReg = Res; 1188 } // Fallthrough here. 1189 case MVT::i8: 1190 if (isThumb2) { 1191 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1192 StrOpc = ARM::t2STRBi8; 1193 else 1194 StrOpc = ARM::t2STRBi12; 1195 } else { 1196 StrOpc = ARM::STRBi12; 1197 } 1198 break; 1199 case MVT::i16: 1200 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1201 return false; 1202 1203 if (isThumb2) { 1204 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1205 StrOpc = ARM::t2STRHi8; 1206 else 1207 StrOpc = ARM::t2STRHi12; 1208 } else { 1209 StrOpc = ARM::STRH; 1210 useAM3 = true; 1211 } 1212 break; 1213 case MVT::i32: 1214 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1215 return false; 1216 1217 if (isThumb2) { 1218 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1219 StrOpc = ARM::t2STRi8; 1220 else 1221 StrOpc = ARM::t2STRi12; 1222 } else { 1223 StrOpc = ARM::STRi12; 1224 } 1225 break; 1226 case MVT::f32: 1227 if (!Subtarget->hasVFP2()) return false; 1228 // Unaligned stores need special handling. Floats require word-alignment. 1229 if (Alignment && Alignment < 4) { 1230 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1231 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1232 TII.get(ARM::VMOVRS), MoveReg) 1233 .addReg(SrcReg)); 1234 SrcReg = MoveReg; 1235 VT = MVT::i32; 1236 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1237 } else { 1238 StrOpc = ARM::VSTRS; 1239 } 1240 break; 1241 case MVT::f64: 1242 if (!Subtarget->hasVFP2()) return false; 1243 // FIXME: Unaligned stores need special handling. Doublewords require 1244 // word-alignment. 1245 if (Alignment && Alignment < 4) 1246 return false; 1247 1248 StrOpc = ARM::VSTRD; 1249 break; 1250 } 1251 // Simplify this down to something we can handle. 1252 ARMSimplifyAddress(Addr, VT, useAM3); 1253 1254 // Create the base instruction, then add the operands. 1255 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1256 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1257 TII.get(StrOpc)) 1258 .addReg(SrcReg); 1259 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1260 return true; 1261 } 1262 1263 bool ARMFastISel::SelectStore(const Instruction *I) { 1264 Value *Op0 = I->getOperand(0); 1265 unsigned SrcReg = 0; 1266 1267 // Atomic stores need special handling. 1268 if (cast<StoreInst>(I)->isAtomic()) 1269 return false; 1270 1271 // Verify we have a legal type before going any further. 1272 MVT VT; 1273 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1274 return false; 1275 1276 // Get the value to be stored into a register. 1277 SrcReg = getRegForValue(Op0); 1278 if (SrcReg == 0) return false; 1279 1280 // See if we can handle this address. 1281 Address Addr; 1282 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1283 return false; 1284 1285 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1286 return false; 1287 return true; 1288 } 1289 1290 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1291 switch (Pred) { 1292 // Needs two compares... 1293 case CmpInst::FCMP_ONE: 1294 case CmpInst::FCMP_UEQ: 1295 default: 1296 // AL is our "false" for now. The other two need more compares. 1297 return ARMCC::AL; 1298 case CmpInst::ICMP_EQ: 1299 case CmpInst::FCMP_OEQ: 1300 return ARMCC::EQ; 1301 case CmpInst::ICMP_SGT: 1302 case CmpInst::FCMP_OGT: 1303 return ARMCC::GT; 1304 case CmpInst::ICMP_SGE: 1305 case CmpInst::FCMP_OGE: 1306 return ARMCC::GE; 1307 case CmpInst::ICMP_UGT: 1308 case CmpInst::FCMP_UGT: 1309 return ARMCC::HI; 1310 case CmpInst::FCMP_OLT: 1311 return ARMCC::MI; 1312 case CmpInst::ICMP_ULE: 1313 case CmpInst::FCMP_OLE: 1314 return ARMCC::LS; 1315 case CmpInst::FCMP_ORD: 1316 return ARMCC::VC; 1317 case CmpInst::FCMP_UNO: 1318 return ARMCC::VS; 1319 case CmpInst::FCMP_UGE: 1320 return ARMCC::PL; 1321 case CmpInst::ICMP_SLT: 1322 case CmpInst::FCMP_ULT: 1323 return ARMCC::LT; 1324 case CmpInst::ICMP_SLE: 1325 case CmpInst::FCMP_ULE: 1326 return ARMCC::LE; 1327 case CmpInst::FCMP_UNE: 1328 case CmpInst::ICMP_NE: 1329 return ARMCC::NE; 1330 case CmpInst::ICMP_UGE: 1331 return ARMCC::HS; 1332 case CmpInst::ICMP_ULT: 1333 return ARMCC::LO; 1334 } 1335 } 1336 1337 bool ARMFastISel::SelectBranch(const Instruction *I) { 1338 const BranchInst *BI = cast<BranchInst>(I); 1339 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1340 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1341 1342 // Simple branch support. 1343 1344 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1345 // behavior. 1346 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1347 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1348 1349 // Get the compare predicate. 1350 // Try to take advantage of fallthrough opportunities. 1351 CmpInst::Predicate Predicate = CI->getPredicate(); 1352 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1353 std::swap(TBB, FBB); 1354 Predicate = CmpInst::getInversePredicate(Predicate); 1355 } 1356 1357 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1358 1359 // We may not handle every CC for now. 1360 if (ARMPred == ARMCC::AL) return false; 1361 1362 // Emit the compare. 1363 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1364 return false; 1365 1366 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1367 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1368 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1369 FastEmitBranch(FBB, DL); 1370 FuncInfo.MBB->addSuccessor(TBB); 1371 return true; 1372 } 1373 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1374 MVT SourceVT; 1375 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1376 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1377 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1378 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1379 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1380 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1381 TII.get(TstOpc)) 1382 .addReg(OpReg).addImm(1)); 1383 1384 unsigned CCMode = ARMCC::NE; 1385 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1386 std::swap(TBB, FBB); 1387 CCMode = ARMCC::EQ; 1388 } 1389 1390 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1391 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1392 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1393 1394 FastEmitBranch(FBB, DL); 1395 FuncInfo.MBB->addSuccessor(TBB); 1396 return true; 1397 } 1398 } else if (const ConstantInt *CI = 1399 dyn_cast<ConstantInt>(BI->getCondition())) { 1400 uint64_t Imm = CI->getZExtValue(); 1401 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1402 FastEmitBranch(Target, DL); 1403 return true; 1404 } 1405 1406 unsigned CmpReg = getRegForValue(BI->getCondition()); 1407 if (CmpReg == 0) return false; 1408 1409 // We've been divorced from our compare! Our block was split, and 1410 // now our compare lives in a predecessor block. We musn't 1411 // re-compare here, as the children of the compare aren't guaranteed 1412 // live across the block boundary (we *could* check for this). 1413 // Regardless, the compare has been done in the predecessor block, 1414 // and it left a value for us in a virtual register. Ergo, we test 1415 // the one-bit value left in the virtual register. 1416 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1417 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1418 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc)) 1419 .addReg(CmpReg).addImm(1)); 1420 1421 unsigned CCMode = ARMCC::NE; 1422 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1423 std::swap(TBB, FBB); 1424 CCMode = ARMCC::EQ; 1425 } 1426 1427 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1429 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1430 FastEmitBranch(FBB, DL); 1431 FuncInfo.MBB->addSuccessor(TBB); 1432 return true; 1433 } 1434 1435 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1436 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1437 if (AddrReg == 0) return false; 1438 1439 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1440 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) 1441 .addReg(AddrReg)); 1442 1443 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1444 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1445 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1446 1447 return true; 1448 } 1449 1450 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1451 bool isZExt) { 1452 Type *Ty = Src1Value->getType(); 1453 EVT SrcEVT = TLI.getValueType(Ty, true); 1454 if (!SrcEVT.isSimple()) return false; 1455 MVT SrcVT = SrcEVT.getSimpleVT(); 1456 1457 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1458 if (isFloat && !Subtarget->hasVFP2()) 1459 return false; 1460 1461 // Check to see if the 2nd operand is a constant that we can encode directly 1462 // in the compare. 1463 int Imm = 0; 1464 bool UseImm = false; 1465 bool isNegativeImm = false; 1466 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1467 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1468 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1469 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1470 SrcVT == MVT::i1) { 1471 const APInt &CIVal = ConstInt->getValue(); 1472 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1473 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1474 // then a cmn, because there is no way to represent 2147483648 as a 1475 // signed 32-bit int. 1476 if (Imm < 0 && Imm != (int)0x80000000) { 1477 isNegativeImm = true; 1478 Imm = -Imm; 1479 } 1480 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1481 (ARM_AM::getSOImmVal(Imm) != -1); 1482 } 1483 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1484 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1485 if (ConstFP->isZero() && !ConstFP->isNegative()) 1486 UseImm = true; 1487 } 1488 1489 unsigned CmpOpc; 1490 bool isICmp = true; 1491 bool needsExt = false; 1492 switch (SrcVT.SimpleTy) { 1493 default: return false; 1494 // TODO: Verify compares. 1495 case MVT::f32: 1496 isICmp = false; 1497 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1498 break; 1499 case MVT::f64: 1500 isICmp = false; 1501 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1502 break; 1503 case MVT::i1: 1504 case MVT::i8: 1505 case MVT::i16: 1506 needsExt = true; 1507 // Intentional fall-through. 1508 case MVT::i32: 1509 if (isThumb2) { 1510 if (!UseImm) 1511 CmpOpc = ARM::t2CMPrr; 1512 else 1513 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1514 } else { 1515 if (!UseImm) 1516 CmpOpc = ARM::CMPrr; 1517 else 1518 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1519 } 1520 break; 1521 } 1522 1523 unsigned SrcReg1 = getRegForValue(Src1Value); 1524 if (SrcReg1 == 0) return false; 1525 1526 unsigned SrcReg2 = 0; 1527 if (!UseImm) { 1528 SrcReg2 = getRegForValue(Src2Value); 1529 if (SrcReg2 == 0) return false; 1530 } 1531 1532 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1533 if (needsExt) { 1534 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1535 if (SrcReg1 == 0) return false; 1536 if (!UseImm) { 1537 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1538 if (SrcReg2 == 0) return false; 1539 } 1540 } 1541 1542 const MCInstrDesc &II = TII.get(CmpOpc); 1543 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1544 if (!UseImm) { 1545 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1546 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1547 .addReg(SrcReg1).addReg(SrcReg2)); 1548 } else { 1549 MachineInstrBuilder MIB; 1550 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1551 .addReg(SrcReg1); 1552 1553 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1554 if (isICmp) 1555 MIB.addImm(Imm); 1556 AddOptionalDefs(MIB); 1557 } 1558 1559 // For floating point we need to move the result to a comparison register 1560 // that we can then use for branches. 1561 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1562 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1563 TII.get(ARM::FMSTAT))); 1564 return true; 1565 } 1566 1567 bool ARMFastISel::SelectCmp(const Instruction *I) { 1568 const CmpInst *CI = cast<CmpInst>(I); 1569 1570 // Get the compare predicate. 1571 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1572 1573 // We may not handle every CC for now. 1574 if (ARMPred == ARMCC::AL) return false; 1575 1576 // Emit the compare. 1577 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1578 return false; 1579 1580 // Now set a register based on the comparison. Explicitly set the predicates 1581 // here. 1582 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1583 const TargetRegisterClass *RC = isThumb2 ? 1584 (const TargetRegisterClass*)&ARM::rGPRRegClass : 1585 (const TargetRegisterClass*)&ARM::GPRRegClass; 1586 unsigned DestReg = createResultReg(RC); 1587 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1588 unsigned ZeroReg = TargetMaterializeConstant(Zero); 1589 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1590 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg) 1591 .addReg(ZeroReg).addImm(1) 1592 .addImm(ARMPred).addReg(ARM::CPSR); 1593 1594 UpdateValueMap(I, DestReg); 1595 return true; 1596 } 1597 1598 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1599 // Make sure we have VFP and that we're extending float to double. 1600 if (!Subtarget->hasVFP2()) return false; 1601 1602 Value *V = I->getOperand(0); 1603 if (!I->getType()->isDoubleTy() || 1604 !V->getType()->isFloatTy()) return false; 1605 1606 unsigned Op = getRegForValue(V); 1607 if (Op == 0) return false; 1608 1609 unsigned Result = createResultReg(&ARM::DPRRegClass); 1610 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1611 TII.get(ARM::VCVTDS), Result) 1612 .addReg(Op)); 1613 UpdateValueMap(I, Result); 1614 return true; 1615 } 1616 1617 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1618 // Make sure we have VFP and that we're truncating double to float. 1619 if (!Subtarget->hasVFP2()) return false; 1620 1621 Value *V = I->getOperand(0); 1622 if (!(I->getType()->isFloatTy() && 1623 V->getType()->isDoubleTy())) return false; 1624 1625 unsigned Op = getRegForValue(V); 1626 if (Op == 0) return false; 1627 1628 unsigned Result = createResultReg(&ARM::SPRRegClass); 1629 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1630 TII.get(ARM::VCVTSD), Result) 1631 .addReg(Op)); 1632 UpdateValueMap(I, Result); 1633 return true; 1634 } 1635 1636 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1637 // Make sure we have VFP. 1638 if (!Subtarget->hasVFP2()) return false; 1639 1640 MVT DstVT; 1641 Type *Ty = I->getType(); 1642 if (!isTypeLegal(Ty, DstVT)) 1643 return false; 1644 1645 Value *Src = I->getOperand(0); 1646 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 1647 if (!SrcEVT.isSimple()) 1648 return false; 1649 MVT SrcVT = SrcEVT.getSimpleVT(); 1650 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1651 return false; 1652 1653 unsigned SrcReg = getRegForValue(Src); 1654 if (SrcReg == 0) return false; 1655 1656 // Handle sign-extension. 1657 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1658 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1659 /*isZExt*/!isSigned); 1660 if (SrcReg == 0) return false; 1661 } 1662 1663 // The conversion routine works on fp-reg to fp-reg and the operand above 1664 // was an integer, move it to the fp registers if possible. 1665 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1666 if (FP == 0) return false; 1667 1668 unsigned Opc; 1669 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1670 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1671 else return false; 1672 1673 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1674 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1675 ResultReg) 1676 .addReg(FP)); 1677 UpdateValueMap(I, ResultReg); 1678 return true; 1679 } 1680 1681 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1682 // Make sure we have VFP. 1683 if (!Subtarget->hasVFP2()) return false; 1684 1685 MVT DstVT; 1686 Type *RetTy = I->getType(); 1687 if (!isTypeLegal(RetTy, DstVT)) 1688 return false; 1689 1690 unsigned Op = getRegForValue(I->getOperand(0)); 1691 if (Op == 0) return false; 1692 1693 unsigned Opc; 1694 Type *OpTy = I->getOperand(0)->getType(); 1695 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1696 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1697 else return false; 1698 1699 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1700 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1701 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1702 ResultReg) 1703 .addReg(Op)); 1704 1705 // This result needs to be in an integer register, but the conversion only 1706 // takes place in fp-regs. 1707 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1708 if (IntReg == 0) return false; 1709 1710 UpdateValueMap(I, IntReg); 1711 return true; 1712 } 1713 1714 bool ARMFastISel::SelectSelect(const Instruction *I) { 1715 MVT VT; 1716 if (!isTypeLegal(I->getType(), VT)) 1717 return false; 1718 1719 // Things need to be register sized for register moves. 1720 if (VT != MVT::i32) return false; 1721 1722 unsigned CondReg = getRegForValue(I->getOperand(0)); 1723 if (CondReg == 0) return false; 1724 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1725 if (Op1Reg == 0) return false; 1726 1727 // Check to see if we can use an immediate in the conditional move. 1728 int Imm = 0; 1729 bool UseImm = false; 1730 bool isNegativeImm = false; 1731 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1732 assert (VT == MVT::i32 && "Expecting an i32."); 1733 Imm = (int)ConstInt->getValue().getZExtValue(); 1734 if (Imm < 0) { 1735 isNegativeImm = true; 1736 Imm = ~Imm; 1737 } 1738 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1739 (ARM_AM::getSOImmVal(Imm) != -1); 1740 } 1741 1742 unsigned Op2Reg = 0; 1743 if (!UseImm) { 1744 Op2Reg = getRegForValue(I->getOperand(2)); 1745 if (Op2Reg == 0) return false; 1746 } 1747 1748 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 1749 CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0); 1750 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1751 .addReg(CondReg).addImm(0)); 1752 1753 unsigned MovCCOpc; 1754 const TargetRegisterClass *RC; 1755 if (!UseImm) { 1756 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1757 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1758 } else { 1759 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1760 if (!isNegativeImm) 1761 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1762 else 1763 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1764 } 1765 unsigned ResultReg = createResultReg(RC); 1766 if (!UseImm) { 1767 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1768 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1769 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1770 .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR); 1771 } else { 1772 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1774 .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR); 1775 } 1776 UpdateValueMap(I, ResultReg); 1777 return true; 1778 } 1779 1780 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1781 MVT VT; 1782 Type *Ty = I->getType(); 1783 if (!isTypeLegal(Ty, VT)) 1784 return false; 1785 1786 // If we have integer div support we should have selected this automagically. 1787 // In case we have a real miss go ahead and return false and we'll pick 1788 // it up later. 1789 if (Subtarget->hasDivide()) return false; 1790 1791 // Otherwise emit a libcall. 1792 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1793 if (VT == MVT::i8) 1794 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1795 else if (VT == MVT::i16) 1796 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1797 else if (VT == MVT::i32) 1798 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1799 else if (VT == MVT::i64) 1800 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1801 else if (VT == MVT::i128) 1802 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1803 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1804 1805 return ARMEmitLibcall(I, LC); 1806 } 1807 1808 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1809 MVT VT; 1810 Type *Ty = I->getType(); 1811 if (!isTypeLegal(Ty, VT)) 1812 return false; 1813 1814 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1815 if (VT == MVT::i8) 1816 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1817 else if (VT == MVT::i16) 1818 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1819 else if (VT == MVT::i32) 1820 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1821 else if (VT == MVT::i64) 1822 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1823 else if (VT == MVT::i128) 1824 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1825 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1826 1827 return ARMEmitLibcall(I, LC); 1828 } 1829 1830 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1831 EVT DestVT = TLI.getValueType(I->getType(), true); 1832 1833 // We can get here in the case when we have a binary operation on a non-legal 1834 // type and the target independent selector doesn't know how to handle it. 1835 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1836 return false; 1837 1838 unsigned Opc; 1839 switch (ISDOpcode) { 1840 default: return false; 1841 case ISD::ADD: 1842 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1843 break; 1844 case ISD::OR: 1845 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1846 break; 1847 case ISD::SUB: 1848 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1849 break; 1850 } 1851 1852 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1853 if (SrcReg1 == 0) return false; 1854 1855 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1856 // in the instruction, rather then materializing the value in a register. 1857 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1858 if (SrcReg2 == 0) return false; 1859 1860 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1861 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1862 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1863 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1864 TII.get(Opc), ResultReg) 1865 .addReg(SrcReg1).addReg(SrcReg2)); 1866 UpdateValueMap(I, ResultReg); 1867 return true; 1868 } 1869 1870 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1871 EVT FPVT = TLI.getValueType(I->getType(), true); 1872 if (!FPVT.isSimple()) return false; 1873 MVT VT = FPVT.getSimpleVT(); 1874 1875 // We can get here in the case when we want to use NEON for our fp 1876 // operations, but can't figure out how to. Just use the vfp instructions 1877 // if we have them. 1878 // FIXME: It'd be nice to use NEON instructions. 1879 Type *Ty = I->getType(); 1880 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1881 if (isFloat && !Subtarget->hasVFP2()) 1882 return false; 1883 1884 unsigned Opc; 1885 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1886 switch (ISDOpcode) { 1887 default: return false; 1888 case ISD::FADD: 1889 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1890 break; 1891 case ISD::FSUB: 1892 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1893 break; 1894 case ISD::FMUL: 1895 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1896 break; 1897 } 1898 unsigned Op1 = getRegForValue(I->getOperand(0)); 1899 if (Op1 == 0) return false; 1900 1901 unsigned Op2 = getRegForValue(I->getOperand(1)); 1902 if (Op2 == 0) return false; 1903 1904 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1905 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1906 TII.get(Opc), ResultReg) 1907 .addReg(Op1).addReg(Op2)); 1908 UpdateValueMap(I, ResultReg); 1909 return true; 1910 } 1911 1912 // Call Handling Code 1913 1914 // This is largely taken directly from CCAssignFnForNode 1915 // TODO: We may not support all of this. 1916 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1917 bool Return, 1918 bool isVarArg) { 1919 switch (CC) { 1920 default: 1921 llvm_unreachable("Unsupported calling convention"); 1922 case CallingConv::Fast: 1923 if (Subtarget->hasVFP2() && !isVarArg) { 1924 if (!Subtarget->isAAPCS_ABI()) 1925 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1926 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1927 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1928 } 1929 // Fallthrough 1930 case CallingConv::C: 1931 // Use target triple & subtarget features to do actual dispatch. 1932 if (Subtarget->isAAPCS_ABI()) { 1933 if (Subtarget->hasVFP2() && 1934 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1935 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1936 else 1937 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1938 } else 1939 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1940 case CallingConv::ARM_AAPCS_VFP: 1941 if (!isVarArg) 1942 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1943 // Fall through to soft float variant, variadic functions don't 1944 // use hard floating point ABI. 1945 case CallingConv::ARM_AAPCS: 1946 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1947 case CallingConv::ARM_APCS: 1948 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1949 case CallingConv::GHC: 1950 if (Return) 1951 llvm_unreachable("Can't return in GHC call convention"); 1952 else 1953 return CC_ARM_APCS_GHC; 1954 } 1955 } 1956 1957 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1958 SmallVectorImpl<unsigned> &ArgRegs, 1959 SmallVectorImpl<MVT> &ArgVTs, 1960 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1961 SmallVectorImpl<unsigned> &RegArgs, 1962 CallingConv::ID CC, 1963 unsigned &NumBytes, 1964 bool isVarArg) { 1965 SmallVector<CCValAssign, 16> ArgLocs; 1966 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1967 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1968 CCAssignFnForCall(CC, false, isVarArg)); 1969 1970 // Check that we can handle all of the arguments. If we can't, then bail out 1971 // now before we add code to the MBB. 1972 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1973 CCValAssign &VA = ArgLocs[i]; 1974 MVT ArgVT = ArgVTs[VA.getValNo()]; 1975 1976 // We don't handle NEON/vector parameters yet. 1977 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1978 return false; 1979 1980 // Now copy/store arg to correct locations. 1981 if (VA.isRegLoc() && !VA.needsCustom()) { 1982 continue; 1983 } else if (VA.needsCustom()) { 1984 // TODO: We need custom lowering for vector (v2f64) args. 1985 if (VA.getLocVT() != MVT::f64 || 1986 // TODO: Only handle register args for now. 1987 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1988 return false; 1989 } else { 1990 switch (ArgVT.SimpleTy) { 1991 default: 1992 return false; 1993 case MVT::i1: 1994 case MVT::i8: 1995 case MVT::i16: 1996 case MVT::i32: 1997 break; 1998 case MVT::f32: 1999 if (!Subtarget->hasVFP2()) 2000 return false; 2001 break; 2002 case MVT::f64: 2003 if (!Subtarget->hasVFP2()) 2004 return false; 2005 break; 2006 } 2007 } 2008 } 2009 2010 // At the point, we are able to handle the call's arguments in fast isel. 2011 2012 // Get a count of how many bytes are to be pushed on the stack. 2013 NumBytes = CCInfo.getNextStackOffset(); 2014 2015 // Issue CALLSEQ_START 2016 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 2017 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2018 TII.get(AdjStackDown)) 2019 .addImm(NumBytes)); 2020 2021 // Process the args. 2022 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2023 CCValAssign &VA = ArgLocs[i]; 2024 unsigned Arg = ArgRegs[VA.getValNo()]; 2025 MVT ArgVT = ArgVTs[VA.getValNo()]; 2026 2027 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 2028 "We don't handle NEON/vector parameters yet."); 2029 2030 // Handle arg promotion, etc. 2031 switch (VA.getLocInfo()) { 2032 case CCValAssign::Full: break; 2033 case CCValAssign::SExt: { 2034 MVT DestVT = VA.getLocVT(); 2035 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 2036 assert (Arg != 0 && "Failed to emit a sext"); 2037 ArgVT = DestVT; 2038 break; 2039 } 2040 case CCValAssign::AExt: 2041 // Intentional fall-through. Handle AExt and ZExt. 2042 case CCValAssign::ZExt: { 2043 MVT DestVT = VA.getLocVT(); 2044 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 2045 assert (Arg != 0 && "Failed to emit a zext"); 2046 ArgVT = DestVT; 2047 break; 2048 } 2049 case CCValAssign::BCvt: { 2050 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 2051 /*TODO: Kill=*/false); 2052 assert(BC != 0 && "Failed to emit a bitcast!"); 2053 Arg = BC; 2054 ArgVT = VA.getLocVT(); 2055 break; 2056 } 2057 default: llvm_unreachable("Unknown arg promotion!"); 2058 } 2059 2060 // Now copy/store arg to correct locations. 2061 if (VA.isRegLoc() && !VA.needsCustom()) { 2062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2063 VA.getLocReg()) 2064 .addReg(Arg); 2065 RegArgs.push_back(VA.getLocReg()); 2066 } else if (VA.needsCustom()) { 2067 // TODO: We need custom lowering for vector (v2f64) args. 2068 assert(VA.getLocVT() == MVT::f64 && 2069 "Custom lowering for v2f64 args not available"); 2070 2071 CCValAssign &NextVA = ArgLocs[++i]; 2072 2073 assert(VA.isRegLoc() && NextVA.isRegLoc() && 2074 "We only handle register args!"); 2075 2076 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2077 TII.get(ARM::VMOVRRD), VA.getLocReg()) 2078 .addReg(NextVA.getLocReg(), RegState::Define) 2079 .addReg(Arg)); 2080 RegArgs.push_back(VA.getLocReg()); 2081 RegArgs.push_back(NextVA.getLocReg()); 2082 } else { 2083 assert(VA.isMemLoc()); 2084 // Need to store on the stack. 2085 Address Addr; 2086 Addr.BaseType = Address::RegBase; 2087 Addr.Base.Reg = ARM::SP; 2088 Addr.Offset = VA.getLocMemOffset(); 2089 2090 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2091 assert(EmitRet && "Could not emit a store for argument!"); 2092 } 2093 } 2094 2095 return true; 2096 } 2097 2098 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2099 const Instruction *I, CallingConv::ID CC, 2100 unsigned &NumBytes, bool isVarArg) { 2101 // Issue CALLSEQ_END 2102 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2103 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2104 TII.get(AdjStackUp)) 2105 .addImm(NumBytes).addImm(0)); 2106 2107 // Now the return value. 2108 if (RetVT != MVT::isVoid) { 2109 SmallVector<CCValAssign, 16> RVLocs; 2110 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2111 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2112 2113 // Copy all of the result registers out of their specified physreg. 2114 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2115 // For this move we copy into two registers and then move into the 2116 // double fp reg we want. 2117 MVT DestVT = RVLocs[0].getValVT(); 2118 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2119 unsigned ResultReg = createResultReg(DstRC); 2120 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2121 TII.get(ARM::VMOVDRR), ResultReg) 2122 .addReg(RVLocs[0].getLocReg()) 2123 .addReg(RVLocs[1].getLocReg())); 2124 2125 UsedRegs.push_back(RVLocs[0].getLocReg()); 2126 UsedRegs.push_back(RVLocs[1].getLocReg()); 2127 2128 // Finally update the result. 2129 UpdateValueMap(I, ResultReg); 2130 } else { 2131 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2132 MVT CopyVT = RVLocs[0].getValVT(); 2133 2134 // Special handling for extended integers. 2135 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2136 CopyVT = MVT::i32; 2137 2138 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2139 2140 unsigned ResultReg = createResultReg(DstRC); 2141 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2142 ResultReg).addReg(RVLocs[0].getLocReg()); 2143 UsedRegs.push_back(RVLocs[0].getLocReg()); 2144 2145 // Finally update the result. 2146 UpdateValueMap(I, ResultReg); 2147 } 2148 } 2149 2150 return true; 2151 } 2152 2153 bool ARMFastISel::SelectRet(const Instruction *I) { 2154 const ReturnInst *Ret = cast<ReturnInst>(I); 2155 const Function &F = *I->getParent()->getParent(); 2156 2157 if (!FuncInfo.CanLowerReturn) 2158 return false; 2159 2160 // Build a list of return value registers. 2161 SmallVector<unsigned, 4> RetRegs; 2162 2163 CallingConv::ID CC = F.getCallingConv(); 2164 if (Ret->getNumOperands() > 0) { 2165 SmallVector<ISD::OutputArg, 4> Outs; 2166 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 2167 2168 // Analyze operands of the call, assigning locations to each operand. 2169 SmallVector<CCValAssign, 16> ValLocs; 2170 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext()); 2171 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2172 F.isVarArg())); 2173 2174 const Value *RV = Ret->getOperand(0); 2175 unsigned Reg = getRegForValue(RV); 2176 if (Reg == 0) 2177 return false; 2178 2179 // Only handle a single return value for now. 2180 if (ValLocs.size() != 1) 2181 return false; 2182 2183 CCValAssign &VA = ValLocs[0]; 2184 2185 // Don't bother handling odd stuff for now. 2186 if (VA.getLocInfo() != CCValAssign::Full) 2187 return false; 2188 // Only handle register returns for now. 2189 if (!VA.isRegLoc()) 2190 return false; 2191 2192 unsigned SrcReg = Reg + VA.getValNo(); 2193 EVT RVEVT = TLI.getValueType(RV->getType()); 2194 if (!RVEVT.isSimple()) return false; 2195 MVT RVVT = RVEVT.getSimpleVT(); 2196 MVT DestVT = VA.getValVT(); 2197 // Special handling for extended integers. 2198 if (RVVT != DestVT) { 2199 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2200 return false; 2201 2202 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2203 2204 // Perform extension if flagged as either zext or sext. Otherwise, do 2205 // nothing. 2206 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2207 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2208 if (SrcReg == 0) return false; 2209 } 2210 } 2211 2212 // Make the copy. 2213 unsigned DstReg = VA.getLocReg(); 2214 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2215 // Avoid a cross-class copy. This is very unlikely. 2216 if (!SrcRC->contains(DstReg)) 2217 return false; 2218 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2219 DstReg).addReg(SrcReg); 2220 2221 // Add register to return instruction. 2222 RetRegs.push_back(VA.getLocReg()); 2223 } 2224 2225 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2226 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2227 TII.get(RetOpc)); 2228 AddOptionalDefs(MIB); 2229 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2230 MIB.addReg(RetRegs[i], RegState::Implicit); 2231 return true; 2232 } 2233 2234 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2235 if (UseReg) 2236 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2237 else 2238 return isThumb2 ? ARM::tBL : ARM::BL; 2239 } 2240 2241 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2242 // Manually compute the global's type to avoid building it when unnecessary. 2243 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2244 EVT LCREVT = TLI.getValueType(GVTy); 2245 if (!LCREVT.isSimple()) return 0; 2246 2247 GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false, 2248 GlobalValue::ExternalLinkage, 0, Name); 2249 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2250 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2251 } 2252 2253 // A quick function that will emit a call for a named libcall in F with the 2254 // vector of passed arguments for the Instruction in I. We can assume that we 2255 // can emit a call for any libcall we can produce. This is an abridged version 2256 // of the full call infrastructure since we won't need to worry about things 2257 // like computed function pointers or strange arguments at call sites. 2258 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2259 // with X86. 2260 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2261 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2262 2263 // Handle *simple* calls for now. 2264 Type *RetTy = I->getType(); 2265 MVT RetVT; 2266 if (RetTy->isVoidTy()) 2267 RetVT = MVT::isVoid; 2268 else if (!isTypeLegal(RetTy, RetVT)) 2269 return false; 2270 2271 // Can't handle non-double multi-reg retvals. 2272 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2273 SmallVector<CCValAssign, 16> RVLocs; 2274 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); 2275 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2276 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2277 return false; 2278 } 2279 2280 // Set up the argument vectors. 2281 SmallVector<Value*, 8> Args; 2282 SmallVector<unsigned, 8> ArgRegs; 2283 SmallVector<MVT, 8> ArgVTs; 2284 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2285 Args.reserve(I->getNumOperands()); 2286 ArgRegs.reserve(I->getNumOperands()); 2287 ArgVTs.reserve(I->getNumOperands()); 2288 ArgFlags.reserve(I->getNumOperands()); 2289 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2290 Value *Op = I->getOperand(i); 2291 unsigned Arg = getRegForValue(Op); 2292 if (Arg == 0) return false; 2293 2294 Type *ArgTy = Op->getType(); 2295 MVT ArgVT; 2296 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2297 2298 ISD::ArgFlagsTy Flags; 2299 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2300 Flags.setOrigAlign(OriginalAlignment); 2301 2302 Args.push_back(Op); 2303 ArgRegs.push_back(Arg); 2304 ArgVTs.push_back(ArgVT); 2305 ArgFlags.push_back(Flags); 2306 } 2307 2308 // Handle the arguments now that we've gotten them. 2309 SmallVector<unsigned, 4> RegArgs; 2310 unsigned NumBytes; 2311 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2312 RegArgs, CC, NumBytes, false)) 2313 return false; 2314 2315 unsigned CalleeReg = 0; 2316 if (EnableARMLongCalls) { 2317 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2318 if (CalleeReg == 0) return false; 2319 } 2320 2321 // Issue the call. 2322 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls); 2323 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2324 DL, TII.get(CallOpc)); 2325 // BL / BLX don't take a predicate, but tBL / tBLX do. 2326 if (isThumb2) 2327 AddDefaultPred(MIB); 2328 if (EnableARMLongCalls) 2329 MIB.addReg(CalleeReg); 2330 else 2331 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2332 2333 // Add implicit physical register uses to the call. 2334 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2335 MIB.addReg(RegArgs[i], RegState::Implicit); 2336 2337 // Add a register mask with the call-preserved registers. 2338 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2339 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2340 2341 // Finish off the call including any return values. 2342 SmallVector<unsigned, 4> UsedRegs; 2343 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2344 2345 // Set all unused physreg defs as dead. 2346 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2347 2348 return true; 2349 } 2350 2351 bool ARMFastISel::SelectCall(const Instruction *I, 2352 const char *IntrMemName = 0) { 2353 const CallInst *CI = cast<CallInst>(I); 2354 const Value *Callee = CI->getCalledValue(); 2355 2356 // Can't handle inline asm. 2357 if (isa<InlineAsm>(Callee)) return false; 2358 2359 // Allow SelectionDAG isel to handle tail calls. 2360 if (CI->isTailCall()) return false; 2361 2362 // Check the calling convention. 2363 ImmutableCallSite CS(CI); 2364 CallingConv::ID CC = CS.getCallingConv(); 2365 2366 // TODO: Avoid some calling conventions? 2367 2368 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2369 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2370 bool isVarArg = FTy->isVarArg(); 2371 2372 // Handle *simple* calls for now. 2373 Type *RetTy = I->getType(); 2374 MVT RetVT; 2375 if (RetTy->isVoidTy()) 2376 RetVT = MVT::isVoid; 2377 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2378 RetVT != MVT::i8 && RetVT != MVT::i1) 2379 return false; 2380 2381 // Can't handle non-double multi-reg retvals. 2382 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2383 RetVT != MVT::i16 && RetVT != MVT::i32) { 2384 SmallVector<CCValAssign, 16> RVLocs; 2385 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2386 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2387 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2388 return false; 2389 } 2390 2391 // Set up the argument vectors. 2392 SmallVector<Value*, 8> Args; 2393 SmallVector<unsigned, 8> ArgRegs; 2394 SmallVector<MVT, 8> ArgVTs; 2395 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2396 unsigned arg_size = CS.arg_size(); 2397 Args.reserve(arg_size); 2398 ArgRegs.reserve(arg_size); 2399 ArgVTs.reserve(arg_size); 2400 ArgFlags.reserve(arg_size); 2401 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2402 i != e; ++i) { 2403 // If we're lowering a memory intrinsic instead of a regular call, skip the 2404 // last two arguments, which shouldn't be passed to the underlying function. 2405 if (IntrMemName && e-i <= 2) 2406 break; 2407 2408 ISD::ArgFlagsTy Flags; 2409 unsigned AttrInd = i - CS.arg_begin() + 1; 2410 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2411 Flags.setSExt(); 2412 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2413 Flags.setZExt(); 2414 2415 // FIXME: Only handle *easy* calls for now. 2416 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2417 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2418 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2419 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2420 return false; 2421 2422 Type *ArgTy = (*i)->getType(); 2423 MVT ArgVT; 2424 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2425 ArgVT != MVT::i1) 2426 return false; 2427 2428 unsigned Arg = getRegForValue(*i); 2429 if (Arg == 0) 2430 return false; 2431 2432 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2433 Flags.setOrigAlign(OriginalAlignment); 2434 2435 Args.push_back(*i); 2436 ArgRegs.push_back(Arg); 2437 ArgVTs.push_back(ArgVT); 2438 ArgFlags.push_back(Flags); 2439 } 2440 2441 // Handle the arguments now that we've gotten them. 2442 SmallVector<unsigned, 4> RegArgs; 2443 unsigned NumBytes; 2444 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2445 RegArgs, CC, NumBytes, isVarArg)) 2446 return false; 2447 2448 bool UseReg = false; 2449 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2450 if (!GV || EnableARMLongCalls) UseReg = true; 2451 2452 unsigned CalleeReg = 0; 2453 if (UseReg) { 2454 if (IntrMemName) 2455 CalleeReg = getLibcallReg(IntrMemName); 2456 else 2457 CalleeReg = getRegForValue(Callee); 2458 2459 if (CalleeReg == 0) return false; 2460 } 2461 2462 // Issue the call. 2463 unsigned CallOpc = ARMSelectCallOp(UseReg); 2464 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2465 DL, TII.get(CallOpc)); 2466 2467 unsigned char OpFlags = 0; 2468 2469 // Add MO_PLT for global address or external symbol in the PIC relocation 2470 // model. 2471 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 2472 OpFlags = ARMII::MO_PLT; 2473 2474 // ARM calls don't take a predicate, but tBL / tBLX do. 2475 if(isThumb2) 2476 AddDefaultPred(MIB); 2477 if (UseReg) 2478 MIB.addReg(CalleeReg); 2479 else if (!IntrMemName) 2480 MIB.addGlobalAddress(GV, 0, OpFlags); 2481 else 2482 MIB.addExternalSymbol(IntrMemName, OpFlags); 2483 2484 // Add implicit physical register uses to the call. 2485 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2486 MIB.addReg(RegArgs[i], RegState::Implicit); 2487 2488 // Add a register mask with the call-preserved registers. 2489 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2490 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2491 2492 // Finish off the call including any return values. 2493 SmallVector<unsigned, 4> UsedRegs; 2494 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2495 return false; 2496 2497 // Set all unused physreg defs as dead. 2498 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2499 2500 return true; 2501 } 2502 2503 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2504 return Len <= 16; 2505 } 2506 2507 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2508 uint64_t Len, unsigned Alignment) { 2509 // Make sure we don't bloat code by inlining very large memcpy's. 2510 if (!ARMIsMemCpySmall(Len)) 2511 return false; 2512 2513 while (Len) { 2514 MVT VT; 2515 if (!Alignment || Alignment >= 4) { 2516 if (Len >= 4) 2517 VT = MVT::i32; 2518 else if (Len >= 2) 2519 VT = MVT::i16; 2520 else { 2521 assert (Len == 1 && "Expected a length of 1!"); 2522 VT = MVT::i8; 2523 } 2524 } else { 2525 // Bound based on alignment. 2526 if (Len >= 2 && Alignment == 2) 2527 VT = MVT::i16; 2528 else { 2529 VT = MVT::i8; 2530 } 2531 } 2532 2533 bool RV; 2534 unsigned ResultReg; 2535 RV = ARMEmitLoad(VT, ResultReg, Src); 2536 assert (RV == true && "Should be able to handle this load."); 2537 RV = ARMEmitStore(VT, ResultReg, Dest); 2538 assert (RV == true && "Should be able to handle this store."); 2539 (void)RV; 2540 2541 unsigned Size = VT.getSizeInBits()/8; 2542 Len -= Size; 2543 Dest.Offset += Size; 2544 Src.Offset += Size; 2545 } 2546 2547 return true; 2548 } 2549 2550 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2551 // FIXME: Handle more intrinsics. 2552 switch (I.getIntrinsicID()) { 2553 default: return false; 2554 case Intrinsic::frameaddress: { 2555 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2556 MFI->setFrameAddressIsTaken(true); 2557 2558 unsigned LdrOpc; 2559 const TargetRegisterClass *RC; 2560 if (isThumb2) { 2561 LdrOpc = ARM::t2LDRi12; 2562 RC = (const TargetRegisterClass*)&ARM::tGPRRegClass; 2563 } else { 2564 LdrOpc = ARM::LDRi12; 2565 RC = (const TargetRegisterClass*)&ARM::GPRRegClass; 2566 } 2567 2568 const ARMBaseRegisterInfo *RegInfo = 2569 static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo()); 2570 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2571 unsigned SrcReg = FramePtr; 2572 2573 // Recursively load frame address 2574 // ldr r0 [fp] 2575 // ldr r0 [r0] 2576 // ldr r0 [r0] 2577 // ... 2578 unsigned DestReg; 2579 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2580 while (Depth--) { 2581 DestReg = createResultReg(RC); 2582 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2583 TII.get(LdrOpc), DestReg) 2584 .addReg(SrcReg).addImm(0)); 2585 SrcReg = DestReg; 2586 } 2587 UpdateValueMap(&I, SrcReg); 2588 return true; 2589 } 2590 case Intrinsic::memcpy: 2591 case Intrinsic::memmove: { 2592 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2593 // Don't handle volatile. 2594 if (MTI.isVolatile()) 2595 return false; 2596 2597 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2598 // we would emit dead code because we don't currently handle memmoves. 2599 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2600 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2601 // Small memcpy's are common enough that we want to do them without a call 2602 // if possible. 2603 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2604 if (ARMIsMemCpySmall(Len)) { 2605 Address Dest, Src; 2606 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2607 !ARMComputeAddress(MTI.getRawSource(), Src)) 2608 return false; 2609 unsigned Alignment = MTI.getAlignment(); 2610 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2611 return true; 2612 } 2613 } 2614 2615 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2616 return false; 2617 2618 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2619 return false; 2620 2621 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2622 return SelectCall(&I, IntrMemName); 2623 } 2624 case Intrinsic::memset: { 2625 const MemSetInst &MSI = cast<MemSetInst>(I); 2626 // Don't handle volatile. 2627 if (MSI.isVolatile()) 2628 return false; 2629 2630 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2631 return false; 2632 2633 if (MSI.getDestAddressSpace() > 255) 2634 return false; 2635 2636 return SelectCall(&I, "memset"); 2637 } 2638 case Intrinsic::trap: { 2639 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get( 2640 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2641 return true; 2642 } 2643 } 2644 } 2645 2646 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2647 // The high bits for a type smaller than the register size are assumed to be 2648 // undefined. 2649 Value *Op = I->getOperand(0); 2650 2651 EVT SrcVT, DestVT; 2652 SrcVT = TLI.getValueType(Op->getType(), true); 2653 DestVT = TLI.getValueType(I->getType(), true); 2654 2655 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2656 return false; 2657 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2658 return false; 2659 2660 unsigned SrcReg = getRegForValue(Op); 2661 if (!SrcReg) return false; 2662 2663 // Because the high bits are undefined, a truncate doesn't generate 2664 // any code. 2665 UpdateValueMap(I, SrcReg); 2666 return true; 2667 } 2668 2669 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2670 bool isZExt) { 2671 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2672 return 0; 2673 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2674 return 0; 2675 2676 // Table of which combinations can be emitted as a single instruction, 2677 // and which will require two. 2678 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2679 // ARM Thumb 2680 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2681 // ext: s z s z s z s z 2682 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2683 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2684 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2685 }; 2686 2687 // Target registers for: 2688 // - For ARM can never be PC. 2689 // - For 16-bit Thumb are restricted to lower 8 registers. 2690 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2691 static const TargetRegisterClass *RCTbl[2][2] = { 2692 // Instructions: Two Single 2693 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2694 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2695 }; 2696 2697 // Table governing the instruction(s) to be emitted. 2698 static const struct InstructionTable { 2699 uint32_t Opc : 16; 2700 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2701 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2702 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2703 } IT[2][2][3][2] = { 2704 { // Two instructions (first is left shift, second is in this table). 2705 { // ARM Opc S Shift Imm 2706 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2707 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2708 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2709 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2710 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2711 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2712 }, 2713 { // Thumb Opc S Shift Imm 2714 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2715 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2716 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2717 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2718 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2719 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2720 } 2721 }, 2722 { // Single instruction. 2723 { // ARM Opc S Shift Imm 2724 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2725 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2726 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2727 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2728 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2729 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2730 }, 2731 { // Thumb Opc S Shift Imm 2732 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2733 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2734 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2735 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2736 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2737 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2738 } 2739 } 2740 }; 2741 2742 unsigned SrcBits = SrcVT.getSizeInBits(); 2743 unsigned DestBits = DestVT.getSizeInBits(); 2744 (void) DestBits; 2745 assert((SrcBits < DestBits) && "can only extend to larger types"); 2746 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2747 "other sizes unimplemented"); 2748 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2749 "other sizes unimplemented"); 2750 2751 bool hasV6Ops = Subtarget->hasV6Ops(); 2752 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2753 assert((Bitness < 3) && "sanity-check table bounds"); 2754 2755 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2756 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2757 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2758 unsigned Opc = ITP->Opc; 2759 assert(ARM::KILL != Opc && "Invalid table entry"); 2760 unsigned hasS = ITP->hasS; 2761 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2762 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2763 "only MOVsi has shift operand addressing mode"); 2764 unsigned Imm = ITP->Imm; 2765 2766 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2767 bool setsCPSR = &ARM::tGPRRegClass == RC; 2768 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2769 unsigned ResultReg; 2770 // MOVsi encodes shift and immediate in shift operand addressing mode. 2771 // The following condition has the same value when emitting two 2772 // instruction sequences: both are shifts. 2773 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2774 2775 // Either one or two instructions are emitted. 2776 // They're always of the form: 2777 // dst = in OP imm 2778 // CPSR is set only by 16-bit Thumb instructions. 2779 // Predicate, if any, is AL. 2780 // S bit, if available, is always 0. 2781 // When two are emitted the first's result will feed as the second's input, 2782 // that value is then dead. 2783 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2784 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2785 ResultReg = createResultReg(RC); 2786 bool isLsl = (0 == Instr) && !isSingleInstr; 2787 unsigned Opcode = isLsl ? LSLOpc : Opc; 2788 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2789 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2790 bool isKill = 1 == Instr; 2791 MachineInstrBuilder MIB = BuildMI( 2792 *FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opcode), ResultReg); 2793 if (setsCPSR) 2794 MIB.addReg(ARM::CPSR, RegState::Define); 2795 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2796 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2797 if (hasS) 2798 AddDefaultCC(MIB); 2799 // Second instruction consumes the first's result. 2800 SrcReg = ResultReg; 2801 } 2802 2803 return ResultReg; 2804 } 2805 2806 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2807 // On ARM, in general, integer casts don't involve legal types; this code 2808 // handles promotable integers. 2809 Type *DestTy = I->getType(); 2810 Value *Src = I->getOperand(0); 2811 Type *SrcTy = Src->getType(); 2812 2813 bool isZExt = isa<ZExtInst>(I); 2814 unsigned SrcReg = getRegForValue(Src); 2815 if (!SrcReg) return false; 2816 2817 EVT SrcEVT, DestEVT; 2818 SrcEVT = TLI.getValueType(SrcTy, true); 2819 DestEVT = TLI.getValueType(DestTy, true); 2820 if (!SrcEVT.isSimple()) return false; 2821 if (!DestEVT.isSimple()) return false; 2822 2823 MVT SrcVT = SrcEVT.getSimpleVT(); 2824 MVT DestVT = DestEVT.getSimpleVT(); 2825 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2826 if (ResultReg == 0) return false; 2827 UpdateValueMap(I, ResultReg); 2828 return true; 2829 } 2830 2831 bool ARMFastISel::SelectShift(const Instruction *I, 2832 ARM_AM::ShiftOpc ShiftTy) { 2833 // We handle thumb2 mode by target independent selector 2834 // or SelectionDAG ISel. 2835 if (isThumb2) 2836 return false; 2837 2838 // Only handle i32 now. 2839 EVT DestVT = TLI.getValueType(I->getType(), true); 2840 if (DestVT != MVT::i32) 2841 return false; 2842 2843 unsigned Opc = ARM::MOVsr; 2844 unsigned ShiftImm; 2845 Value *Src2Value = I->getOperand(1); 2846 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2847 ShiftImm = CI->getZExtValue(); 2848 2849 // Fall back to selection DAG isel if the shift amount 2850 // is zero or greater than the width of the value type. 2851 if (ShiftImm == 0 || ShiftImm >=32) 2852 return false; 2853 2854 Opc = ARM::MOVsi; 2855 } 2856 2857 Value *Src1Value = I->getOperand(0); 2858 unsigned Reg1 = getRegForValue(Src1Value); 2859 if (Reg1 == 0) return false; 2860 2861 unsigned Reg2 = 0; 2862 if (Opc == ARM::MOVsr) { 2863 Reg2 = getRegForValue(Src2Value); 2864 if (Reg2 == 0) return false; 2865 } 2866 2867 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2868 if(ResultReg == 0) return false; 2869 2870 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2871 TII.get(Opc), ResultReg) 2872 .addReg(Reg1); 2873 2874 if (Opc == ARM::MOVsi) 2875 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2876 else if (Opc == ARM::MOVsr) { 2877 MIB.addReg(Reg2); 2878 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2879 } 2880 2881 AddOptionalDefs(MIB); 2882 UpdateValueMap(I, ResultReg); 2883 return true; 2884 } 2885 2886 // TODO: SoftFP support. 2887 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { 2888 2889 switch (I->getOpcode()) { 2890 case Instruction::Load: 2891 return SelectLoad(I); 2892 case Instruction::Store: 2893 return SelectStore(I); 2894 case Instruction::Br: 2895 return SelectBranch(I); 2896 case Instruction::IndirectBr: 2897 return SelectIndirectBr(I); 2898 case Instruction::ICmp: 2899 case Instruction::FCmp: 2900 return SelectCmp(I); 2901 case Instruction::FPExt: 2902 return SelectFPExt(I); 2903 case Instruction::FPTrunc: 2904 return SelectFPTrunc(I); 2905 case Instruction::SIToFP: 2906 return SelectIToFP(I, /*isSigned*/ true); 2907 case Instruction::UIToFP: 2908 return SelectIToFP(I, /*isSigned*/ false); 2909 case Instruction::FPToSI: 2910 return SelectFPToI(I, /*isSigned*/ true); 2911 case Instruction::FPToUI: 2912 return SelectFPToI(I, /*isSigned*/ false); 2913 case Instruction::Add: 2914 return SelectBinaryIntOp(I, ISD::ADD); 2915 case Instruction::Or: 2916 return SelectBinaryIntOp(I, ISD::OR); 2917 case Instruction::Sub: 2918 return SelectBinaryIntOp(I, ISD::SUB); 2919 case Instruction::FAdd: 2920 return SelectBinaryFPOp(I, ISD::FADD); 2921 case Instruction::FSub: 2922 return SelectBinaryFPOp(I, ISD::FSUB); 2923 case Instruction::FMul: 2924 return SelectBinaryFPOp(I, ISD::FMUL); 2925 case Instruction::SDiv: 2926 return SelectDiv(I, /*isSigned*/ true); 2927 case Instruction::UDiv: 2928 return SelectDiv(I, /*isSigned*/ false); 2929 case Instruction::SRem: 2930 return SelectRem(I, /*isSigned*/ true); 2931 case Instruction::URem: 2932 return SelectRem(I, /*isSigned*/ false); 2933 case Instruction::Call: 2934 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2935 return SelectIntrinsicCall(*II); 2936 return SelectCall(I); 2937 case Instruction::Select: 2938 return SelectSelect(I); 2939 case Instruction::Ret: 2940 return SelectRet(I); 2941 case Instruction::Trunc: 2942 return SelectTrunc(I); 2943 case Instruction::ZExt: 2944 case Instruction::SExt: 2945 return SelectIntExt(I); 2946 case Instruction::Shl: 2947 return SelectShift(I, ARM_AM::lsl); 2948 case Instruction::LShr: 2949 return SelectShift(I, ARM_AM::lsr); 2950 case Instruction::AShr: 2951 return SelectShift(I, ARM_AM::asr); 2952 default: break; 2953 } 2954 return false; 2955 } 2956 2957 namespace { 2958 // This table describes sign- and zero-extend instructions which can be 2959 // folded into a preceding load. All of these extends have an immediate 2960 // (sometimes a mask and sometimes a shift) that's applied after 2961 // extension. 2962 const struct FoldableLoadExtendsStruct { 2963 uint16_t Opc[2]; // ARM, Thumb. 2964 uint8_t ExpectedImm; 2965 uint8_t isZExt : 1; 2966 uint8_t ExpectedVT : 7; 2967 } FoldableLoadExtends[] = { 2968 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2969 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2970 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2971 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2972 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2973 }; 2974 } 2975 2976 /// \brief The specified machine instr operand is a vreg, and that 2977 /// vreg is being provided by the specified load instruction. If possible, 2978 /// try to fold the load as an operand to the instruction, returning true if 2979 /// successful. 2980 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2981 const LoadInst *LI) { 2982 // Verify we have a legal type before going any further. 2983 MVT VT; 2984 if (!isLoadTypeLegal(LI->getType(), VT)) 2985 return false; 2986 2987 // Combine load followed by zero- or sign-extend. 2988 // ldrb r1, [r0] ldrb r1, [r0] 2989 // uxtb r2, r1 => 2990 // mov r3, r2 mov r3, r1 2991 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2992 return false; 2993 const uint64_t Imm = MI->getOperand(2).getImm(); 2994 2995 bool Found = false; 2996 bool isZExt; 2997 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2998 i != e; ++i) { 2999 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 3000 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 3001 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 3002 Found = true; 3003 isZExt = FoldableLoadExtends[i].isZExt; 3004 } 3005 } 3006 if (!Found) return false; 3007 3008 // See if we can handle this address. 3009 Address Addr; 3010 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 3011 3012 unsigned ResultReg = MI->getOperand(0).getReg(); 3013 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 3014 return false; 3015 MI->eraseFromParent(); 3016 return true; 3017 } 3018 3019 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 3020 unsigned Align, MVT VT) { 3021 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 3022 ARMConstantPoolConstant *CPV = 3023 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 3024 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 3025 3026 unsigned Opc; 3027 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 3028 // Load value. 3029 if (isThumb2) { 3030 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 3031 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 3032 TII.get(ARM::t2LDRpci), DestReg1) 3033 .addConstantPoolIndex(Idx)); 3034 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 3035 } else { 3036 // The extra immediate is for addrmode2. 3037 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 3038 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 3039 DL, TII.get(ARM::LDRcp), DestReg1) 3040 .addConstantPoolIndex(Idx).addImm(0)); 3041 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 3042 } 3043 3044 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 3045 if (GlobalBaseReg == 0) { 3046 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 3047 AFI->setGlobalBaseReg(GlobalBaseReg); 3048 } 3049 3050 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 3051 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 3052 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 3053 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 3054 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 3055 DL, TII.get(Opc), DestReg2) 3056 .addReg(DestReg1) 3057 .addReg(GlobalBaseReg); 3058 if (!UseGOTOFF) 3059 MIB.addImm(0); 3060 AddOptionalDefs(MIB); 3061 3062 return DestReg2; 3063 } 3064 3065 bool ARMFastISel::FastLowerArguments() { 3066 if (!FuncInfo.CanLowerReturn) 3067 return false; 3068 3069 const Function *F = FuncInfo.Fn; 3070 if (F->isVarArg()) 3071 return false; 3072 3073 CallingConv::ID CC = F->getCallingConv(); 3074 switch (CC) { 3075 default: 3076 return false; 3077 case CallingConv::Fast: 3078 case CallingConv::C: 3079 case CallingConv::ARM_AAPCS_VFP: 3080 case CallingConv::ARM_AAPCS: 3081 case CallingConv::ARM_APCS: 3082 break; 3083 } 3084 3085 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3086 // which are passed in r0 - r3. 3087 unsigned Idx = 1; 3088 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3089 I != E; ++I, ++Idx) { 3090 if (Idx > 4) 3091 return false; 3092 3093 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3094 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3095 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3096 return false; 3097 3098 Type *ArgTy = I->getType(); 3099 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3100 return false; 3101 3102 EVT ArgVT = TLI.getValueType(ArgTy); 3103 if (!ArgVT.isSimple()) return false; 3104 switch (ArgVT.getSimpleVT().SimpleTy) { 3105 case MVT::i8: 3106 case MVT::i16: 3107 case MVT::i32: 3108 break; 3109 default: 3110 return false; 3111 } 3112 } 3113 3114 3115 static const uint16_t GPRArgRegs[] = { 3116 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3117 }; 3118 3119 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3120 Idx = 0; 3121 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3122 I != E; ++I, ++Idx) { 3123 unsigned SrcReg = GPRArgRegs[Idx]; 3124 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3125 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3126 // Without this, EmitLiveInCopies may eliminate the livein if its only 3127 // use is a bitcast (which isn't turned into an instruction). 3128 unsigned ResultReg = createResultReg(RC); 3129 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 3130 ResultReg).addReg(DstReg, getKillRegState(true)); 3131 UpdateValueMap(I, ResultReg); 3132 } 3133 3134 return true; 3135 } 3136 3137 namespace llvm { 3138 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3139 const TargetLibraryInfo *libInfo) { 3140 const TargetMachine &TM = funcInfo.MF->getTarget(); 3141 3142 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 3143 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 3144 bool UseFastISel = false; 3145 UseFastISel |= Subtarget->isTargetIOS() && !Subtarget->isThumb1Only(); 3146 UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb(); 3147 UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb(); 3148 3149 if (UseFastISel) { 3150 // iOS always has a FP for backtracking, force other targets 3151 // to keep their FP when doing FastISel. The emitted code is 3152 // currently superior, and in cases like test-suite's lencod 3153 // FastISel isn't quite correct when FP is eliminated. 3154 TM.Options.NoFramePointerElim = true; 3155 return new ARMFastISel(funcInfo, libInfo); 3156 } 3157 return 0; 3158 } 3159 } 3160