1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 using namespace llvm;
50 
51 namespace {
52 
53   // All possible address modes, plus some.
54   typedef struct Address {
55     enum {
56       RegBase,
57       FrameIndexBase
58     } BaseType;
59 
60     union {
61       unsigned Reg;
62       int FI;
63     } Base;
64 
65     int Offset;
66 
67     // Innocuous defaults for our address.
68     Address()
69      : BaseType(RegBase), Offset(0) {
70        Base.Reg = 0;
71      }
72   } Address;
73 
74 class ARMFastISel final : public FastISel {
75 
76   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
77   /// make the right decision when generating code for different targets.
78   const ARMSubtarget *Subtarget;
79   Module &M;
80   const TargetMachine &TM;
81   const TargetInstrInfo &TII;
82   const TargetLowering &TLI;
83   ARMFunctionInfo *AFI;
84 
85   // Convenience variables to avoid some queries.
86   bool isThumb2;
87   LLVMContext *Context;
88 
89   public:
90     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
91                          const TargetLibraryInfo *libInfo)
92         : FastISel(funcInfo, libInfo),
93           Subtarget(
94               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
95           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
96           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
97           TLI(*Subtarget->getTargetLowering()) {
98       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
99       isThumb2 = AFI->isThumbFunction();
100       Context = &funcInfo.Fn->getContext();
101     }
102 
103     // Code from FastISel.cpp.
104   private:
105     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
106                             const TargetRegisterClass *RC,
107                             unsigned Op0, bool Op0IsKill);
108     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
109                              const TargetRegisterClass *RC,
110                              unsigned Op0, bool Op0IsKill,
111                              unsigned Op1, bool Op1IsKill);
112     unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
113                               const TargetRegisterClass *RC,
114                               unsigned Op0, bool Op0IsKill,
115                               unsigned Op1, bool Op1IsKill,
116                               unsigned Op2, bool Op2IsKill);
117     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
118                              const TargetRegisterClass *RC,
119                              unsigned Op0, bool Op0IsKill,
120                              uint64_t Imm);
121     unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
122                               const TargetRegisterClass *RC,
123                               unsigned Op0, bool Op0IsKill,
124                               unsigned Op1, bool Op1IsKill,
125                               uint64_t Imm);
126     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
127                             const TargetRegisterClass *RC,
128                             uint64_t Imm);
129 
130     // Backend specific FastISel code.
131   private:
132     bool fastSelectInstruction(const Instruction *I) override;
133     unsigned fastMaterializeConstant(const Constant *C) override;
134     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
135     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
136                              const LoadInst *LI) override;
137     bool fastLowerArguments() override;
138   private:
139   #include "ARMGenFastISel.inc"
140 
141     // Instruction selection routines.
142   private:
143     bool SelectLoad(const Instruction *I);
144     bool SelectStore(const Instruction *I);
145     bool SelectBranch(const Instruction *I);
146     bool SelectIndirectBr(const Instruction *I);
147     bool SelectCmp(const Instruction *I);
148     bool SelectFPExt(const Instruction *I);
149     bool SelectFPTrunc(const Instruction *I);
150     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
151     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
152     bool SelectIToFP(const Instruction *I, bool isSigned);
153     bool SelectFPToI(const Instruction *I, bool isSigned);
154     bool SelectDiv(const Instruction *I, bool isSigned);
155     bool SelectRem(const Instruction *I, bool isSigned);
156     bool SelectCall(const Instruction *I, const char *IntrMemName);
157     bool SelectIntrinsicCall(const IntrinsicInst &I);
158     bool SelectSelect(const Instruction *I);
159     bool SelectRet(const Instruction *I);
160     bool SelectTrunc(const Instruction *I);
161     bool SelectIntExt(const Instruction *I);
162     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
163 
164     // Utility routines.
165   private:
166     bool isTypeLegal(Type *Ty, MVT &VT);
167     bool isLoadTypeLegal(Type *Ty, MVT &VT);
168     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
169                     bool isZExt);
170     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
171                      unsigned Alignment = 0, bool isZExt = true,
172                      bool allocReg = true);
173     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
174                       unsigned Alignment = 0);
175     bool ARMComputeAddress(const Value *Obj, Address &Addr);
176     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
177     bool ARMIsMemCpySmall(uint64_t Len);
178     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
179                                unsigned Alignment);
180     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
181     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
182     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
183     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
184     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
185     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
186     unsigned ARMSelectCallOp(bool UseReg);
187     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
188 
189     const TargetLowering *getTargetLowering() { return &TLI; }
190 
191     // Call handling routines.
192   private:
193     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
194                                   bool Return,
195                                   bool isVarArg);
196     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
197                          SmallVectorImpl<unsigned> &ArgRegs,
198                          SmallVectorImpl<MVT> &ArgVTs,
199                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
200                          SmallVectorImpl<unsigned> &RegArgs,
201                          CallingConv::ID CC,
202                          unsigned &NumBytes,
203                          bool isVarArg);
204     unsigned getLibcallReg(const Twine &Name);
205     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
206                     const Instruction *I, CallingConv::ID CC,
207                     unsigned &NumBytes, bool isVarArg);
208     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
209 
210     // OptionalDef handling routines.
211   private:
212     bool isARMNEONPred(const MachineInstr *MI);
213     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
214     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
215     void AddLoadStoreOperands(MVT VT, Address &Addr,
216                               const MachineInstrBuilder &MIB,
217                               unsigned Flags, bool useAM3);
218 };
219 
220 } // end anonymous namespace
221 
222 #include "ARMGenCallingConv.inc"
223 
224 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
225 // we don't care about implicit defs here, just places we'll need to add a
226 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
227 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
228   if (!MI->hasOptionalDef())
229     return false;
230 
231   // Look to see if our OptionalDef is defining CPSR or CCR.
232   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
233     const MachineOperand &MO = MI->getOperand(i);
234     if (!MO.isReg() || !MO.isDef()) continue;
235     if (MO.getReg() == ARM::CPSR)
236       *CPSR = true;
237   }
238   return true;
239 }
240 
241 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
242   const MCInstrDesc &MCID = MI->getDesc();
243 
244   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
245   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
246        AFI->isThumb2Function())
247     return MI->isPredicable();
248 
249   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
250     if (MCID.OpInfo[i].isPredicate())
251       return true;
252 
253   return false;
254 }
255 
256 // If the machine is predicable go ahead and add the predicate operands, if
257 // it needs default CC operands add those.
258 // TODO: If we want to support thumb1 then we'll need to deal with optional
259 // CPSR defs that need to be added before the remaining operands. See s_cc_out
260 // for descriptions why.
261 const MachineInstrBuilder &
262 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
263   MachineInstr *MI = &*MIB;
264 
265   // Do we use a predicate? or...
266   // Are we NEON in ARM mode and have a predicate operand? If so, I know
267   // we're not predicable but add it anyways.
268   if (isARMNEONPred(MI))
269     AddDefaultPred(MIB);
270 
271   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
272   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
273   bool CPSR = false;
274   if (DefinesOptionalPredicate(MI, &CPSR)) {
275     if (CPSR)
276       AddDefaultT1CC(MIB);
277     else
278       AddDefaultCC(MIB);
279   }
280   return MIB;
281 }
282 
283 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
284                                      const TargetRegisterClass *RC,
285                                      unsigned Op0, bool Op0IsKill) {
286   unsigned ResultReg = createResultReg(RC);
287   const MCInstrDesc &II = TII.get(MachineInstOpcode);
288 
289   // Make sure the input operand is sufficiently constrained to be legal
290   // for this instruction.
291   Op0 = constrainOperandRegClass(II, Op0, 1);
292   if (II.getNumDefs() >= 1) {
293     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
294                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
295   } else {
296     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
297                    .addReg(Op0, Op0IsKill * RegState::Kill));
298     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
299                    TII.get(TargetOpcode::COPY), ResultReg)
300                    .addReg(II.ImplicitDefs[0]));
301   }
302   return ResultReg;
303 }
304 
305 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
306                                       const TargetRegisterClass *RC,
307                                       unsigned Op0, bool Op0IsKill,
308                                       unsigned Op1, bool Op1IsKill) {
309   unsigned ResultReg = createResultReg(RC);
310   const MCInstrDesc &II = TII.get(MachineInstOpcode);
311 
312   // Make sure the input operands are sufficiently constrained to be legal
313   // for this instruction.
314   Op0 = constrainOperandRegClass(II, Op0, 1);
315   Op1 = constrainOperandRegClass(II, Op1, 2);
316 
317   if (II.getNumDefs() >= 1) {
318     AddOptionalDefs(
319         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
320             .addReg(Op0, Op0IsKill * RegState::Kill)
321             .addReg(Op1, Op1IsKill * RegState::Kill));
322   } else {
323     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
324                    .addReg(Op0, Op0IsKill * RegState::Kill)
325                    .addReg(Op1, Op1IsKill * RegState::Kill));
326     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
327                            TII.get(TargetOpcode::COPY), ResultReg)
328                    .addReg(II.ImplicitDefs[0]));
329   }
330   return ResultReg;
331 }
332 
333 unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
334                                        const TargetRegisterClass *RC,
335                                        unsigned Op0, bool Op0IsKill,
336                                        unsigned Op1, bool Op1IsKill,
337                                        unsigned Op2, bool Op2IsKill) {
338   unsigned ResultReg = createResultReg(RC);
339   const MCInstrDesc &II = TII.get(MachineInstOpcode);
340 
341   // Make sure the input operands are sufficiently constrained to be legal
342   // for this instruction.
343   Op0 = constrainOperandRegClass(II, Op0, 1);
344   Op1 = constrainOperandRegClass(II, Op1, 2);
345   Op2 = constrainOperandRegClass(II, Op1, 3);
346 
347   if (II.getNumDefs() >= 1) {
348     AddOptionalDefs(
349         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
350             .addReg(Op0, Op0IsKill * RegState::Kill)
351             .addReg(Op1, Op1IsKill * RegState::Kill)
352             .addReg(Op2, Op2IsKill * RegState::Kill));
353   } else {
354     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
355                    .addReg(Op0, Op0IsKill * RegState::Kill)
356                    .addReg(Op1, Op1IsKill * RegState::Kill)
357                    .addReg(Op2, Op2IsKill * RegState::Kill));
358     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
359                            TII.get(TargetOpcode::COPY), ResultReg)
360                    .addReg(II.ImplicitDefs[0]));
361   }
362   return ResultReg;
363 }
364 
365 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
366                                       const TargetRegisterClass *RC,
367                                       unsigned Op0, bool Op0IsKill,
368                                       uint64_t Imm) {
369   unsigned ResultReg = createResultReg(RC);
370   const MCInstrDesc &II = TII.get(MachineInstOpcode);
371 
372   // Make sure the input operand is sufficiently constrained to be legal
373   // for this instruction.
374   Op0 = constrainOperandRegClass(II, Op0, 1);
375   if (II.getNumDefs() >= 1) {
376     AddOptionalDefs(
377         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
378             .addReg(Op0, Op0IsKill * RegState::Kill)
379             .addImm(Imm));
380   } else {
381     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
382                    .addReg(Op0, Op0IsKill * RegState::Kill)
383                    .addImm(Imm));
384     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
385                            TII.get(TargetOpcode::COPY), ResultReg)
386                    .addReg(II.ImplicitDefs[0]));
387   }
388   return ResultReg;
389 }
390 
391 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
392                                        const TargetRegisterClass *RC,
393                                        unsigned Op0, bool Op0IsKill,
394                                        unsigned Op1, bool Op1IsKill,
395                                        uint64_t Imm) {
396   unsigned ResultReg = createResultReg(RC);
397   const MCInstrDesc &II = TII.get(MachineInstOpcode);
398 
399   // Make sure the input operands are sufficiently constrained to be legal
400   // for this instruction.
401   Op0 = constrainOperandRegClass(II, Op0, 1);
402   Op1 = constrainOperandRegClass(II, Op1, 2);
403   if (II.getNumDefs() >= 1) {
404     AddOptionalDefs(
405         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
406             .addReg(Op0, Op0IsKill * RegState::Kill)
407             .addReg(Op1, Op1IsKill * RegState::Kill)
408             .addImm(Imm));
409   } else {
410     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
411                    .addReg(Op0, Op0IsKill * RegState::Kill)
412                    .addReg(Op1, Op1IsKill * RegState::Kill)
413                    .addImm(Imm));
414     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
415                            TII.get(TargetOpcode::COPY), ResultReg)
416                    .addReg(II.ImplicitDefs[0]));
417   }
418   return ResultReg;
419 }
420 
421 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
422                                      const TargetRegisterClass *RC,
423                                      uint64_t Imm) {
424   unsigned ResultReg = createResultReg(RC);
425   const MCInstrDesc &II = TII.get(MachineInstOpcode);
426 
427   if (II.getNumDefs() >= 1) {
428     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
429                             ResultReg).addImm(Imm));
430   } else {
431     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
432                    .addImm(Imm));
433     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
434                            TII.get(TargetOpcode::COPY), ResultReg)
435                    .addReg(II.ImplicitDefs[0]));
436   }
437   return ResultReg;
438 }
439 
440 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
441 // checks from the various callers.
442 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
443   if (VT == MVT::f64) return 0;
444 
445   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
446   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
447                           TII.get(ARM::VMOVSR), MoveReg)
448                   .addReg(SrcReg));
449   return MoveReg;
450 }
451 
452 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
453   if (VT == MVT::i64) return 0;
454 
455   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
456   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
457                           TII.get(ARM::VMOVRS), MoveReg)
458                   .addReg(SrcReg));
459   return MoveReg;
460 }
461 
462 // For double width floating point we need to materialize two constants
463 // (the high and the low) into integer registers then use a move to get
464 // the combined constant into an FP reg.
465 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
466   const APFloat Val = CFP->getValueAPF();
467   bool is64bit = VT == MVT::f64;
468 
469   // This checks to see if we can use VFP3 instructions to materialize
470   // a constant, otherwise we have to go through the constant pool.
471   if (TLI.isFPImmLegal(Val, VT)) {
472     int Imm;
473     unsigned Opc;
474     if (is64bit) {
475       Imm = ARM_AM::getFP64Imm(Val);
476       Opc = ARM::FCONSTD;
477     } else {
478       Imm = ARM_AM::getFP32Imm(Val);
479       Opc = ARM::FCONSTS;
480     }
481     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
482     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
483                             TII.get(Opc), DestReg).addImm(Imm));
484     return DestReg;
485   }
486 
487   // Require VFP2 for loading fp constants.
488   if (!Subtarget->hasVFP2()) return false;
489 
490   // MachineConstantPool wants an explicit alignment.
491   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
492   if (Align == 0) {
493     // TODO: Figure out if this is correct.
494     Align = DL.getTypeAllocSize(CFP->getType());
495   }
496   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
497   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
498   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
499 
500   // The extra reg is for addrmode5.
501   AddOptionalDefs(
502       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
503           .addConstantPoolIndex(Idx)
504           .addReg(0));
505   return DestReg;
506 }
507 
508 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
509 
510   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
511     return 0;
512 
513   // If we can do this in a single instruction without a constant pool entry
514   // do so now.
515   const ConstantInt *CI = cast<ConstantInt>(C);
516   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
517     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
518     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
519       &ARM::GPRRegClass;
520     unsigned ImmReg = createResultReg(RC);
521     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
522                             TII.get(Opc), ImmReg)
523                     .addImm(CI->getZExtValue()));
524     return ImmReg;
525   }
526 
527   // Use MVN to emit negative constants.
528   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
529     unsigned Imm = (unsigned)~(CI->getSExtValue());
530     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
531       (ARM_AM::getSOImmVal(Imm) != -1);
532     if (UseImm) {
533       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
534       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
535                                                  &ARM::GPRRegClass;
536       unsigned ImmReg = createResultReg(RC);
537       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
538                               TII.get(Opc), ImmReg)
539                       .addImm(Imm));
540       return ImmReg;
541     }
542   }
543 
544   unsigned ResultReg = 0;
545   if (Subtarget->useMovt(*FuncInfo.MF))
546     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
547 
548   if (ResultReg)
549     return ResultReg;
550 
551   // Load from constant pool.  For now 32-bit only.
552   if (VT != MVT::i32)
553     return 0;
554 
555   // MachineConstantPool wants an explicit alignment.
556   unsigned Align = DL.getPrefTypeAlignment(C->getType());
557   if (Align == 0) {
558     // TODO: Figure out if this is correct.
559     Align = DL.getTypeAllocSize(C->getType());
560   }
561   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
562   ResultReg = createResultReg(TLI.getRegClassFor(VT));
563   if (isThumb2)
564     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
565                             TII.get(ARM::t2LDRpci), ResultReg)
566                       .addConstantPoolIndex(Idx));
567   else {
568     // The extra immediate is for addrmode2.
569     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
570     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
571                             TII.get(ARM::LDRcp), ResultReg)
572                       .addConstantPoolIndex(Idx)
573                       .addImm(0));
574   }
575   return ResultReg;
576 }
577 
578 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
579   // For now 32-bit only.
580   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
581 
582   Reloc::Model RelocM = TM.getRelocationModel();
583   bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
584   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
585                                            : &ARM::GPRRegClass;
586   unsigned DestReg = createResultReg(RC);
587 
588   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
589   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
590   bool IsThreadLocal = GVar && GVar->isThreadLocal();
591   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
592 
593   // Use movw+movt when possible, it avoids constant pool entries.
594   // Non-darwin targets only support static movt relocations in FastISel.
595   if (Subtarget->useMovt(*FuncInfo.MF) &&
596       (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) {
597     unsigned Opc;
598     unsigned char TF = 0;
599     if (Subtarget->isTargetMachO())
600       TF = ARMII::MO_NONLAZY;
601 
602     switch (RelocM) {
603     case Reloc::PIC_:
604       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
605       break;
606     default:
607       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
608       break;
609     }
610     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
611                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
612   } else {
613     // MachineConstantPool wants an explicit alignment.
614     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
615     if (Align == 0) {
616       // TODO: Figure out if this is correct.
617       Align = DL.getTypeAllocSize(GV->getType());
618     }
619 
620     if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
621       return ARMLowerPICELF(GV, Align, VT);
622 
623     // Grab index.
624     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
625       (Subtarget->isThumb() ? 4 : 8);
626     unsigned Id = AFI->createPICLabelUId();
627     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
628                                                                 ARMCP::CPValue,
629                                                                 PCAdj);
630     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
631 
632     // Load value.
633     MachineInstrBuilder MIB;
634     if (isThumb2) {
635       unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
636       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
637                     DestReg).addConstantPoolIndex(Idx);
638       if (RelocM == Reloc::PIC_)
639         MIB.addImm(Id);
640       AddOptionalDefs(MIB);
641     } else {
642       // The extra immediate is for addrmode2.
643       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
644       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
645                     TII.get(ARM::LDRcp), DestReg)
646                 .addConstantPoolIndex(Idx)
647                 .addImm(0);
648       AddOptionalDefs(MIB);
649 
650       if (RelocM == Reloc::PIC_) {
651         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
652         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
653 
654         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
655                                           DbgLoc, TII.get(Opc), NewDestReg)
656                                   .addReg(DestReg)
657                                   .addImm(Id);
658         AddOptionalDefs(MIB);
659         return NewDestReg;
660       }
661     }
662   }
663 
664   if (IsIndirect) {
665     MachineInstrBuilder MIB;
666     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
667     if (isThumb2)
668       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
669                     TII.get(ARM::t2LDRi12), NewDestReg)
670             .addReg(DestReg)
671             .addImm(0);
672     else
673       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
674                     TII.get(ARM::LDRi12), NewDestReg)
675                 .addReg(DestReg)
676                 .addImm(0);
677     DestReg = NewDestReg;
678     AddOptionalDefs(MIB);
679   }
680 
681   return DestReg;
682 }
683 
684 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
685   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
686 
687   // Only handle simple types.
688   if (!CEVT.isSimple()) return 0;
689   MVT VT = CEVT.getSimpleVT();
690 
691   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
692     return ARMMaterializeFP(CFP, VT);
693   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
694     return ARMMaterializeGV(GV, VT);
695   else if (isa<ConstantInt>(C))
696     return ARMMaterializeInt(C, VT);
697 
698   return 0;
699 }
700 
701 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
702 
703 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
704   // Don't handle dynamic allocas.
705   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
706 
707   MVT VT;
708   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
709 
710   DenseMap<const AllocaInst*, int>::iterator SI =
711     FuncInfo.StaticAllocaMap.find(AI);
712 
713   // This will get lowered later into the correct offsets and registers
714   // via rewriteXFrameIndex.
715   if (SI != FuncInfo.StaticAllocaMap.end()) {
716     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
717     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
718     unsigned ResultReg = createResultReg(RC);
719     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
720 
721     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
722                             TII.get(Opc), ResultReg)
723                             .addFrameIndex(SI->second)
724                             .addImm(0));
725     return ResultReg;
726   }
727 
728   return 0;
729 }
730 
731 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
732   EVT evt = TLI.getValueType(DL, Ty, true);
733 
734   // Only handle simple types.
735   if (evt == MVT::Other || !evt.isSimple()) return false;
736   VT = evt.getSimpleVT();
737 
738   // Handle all legal types, i.e. a register that will directly hold this
739   // value.
740   return TLI.isTypeLegal(VT);
741 }
742 
743 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
744   if (isTypeLegal(Ty, VT)) return true;
745 
746   // If this is a type than can be sign or zero-extended to a basic operation
747   // go ahead and accept it now.
748   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
749     return true;
750 
751   return false;
752 }
753 
754 // Computes the address to get to an object.
755 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
756   // Some boilerplate from the X86 FastISel.
757   const User *U = nullptr;
758   unsigned Opcode = Instruction::UserOp1;
759   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
760     // Don't walk into other basic blocks unless the object is an alloca from
761     // another block, otherwise it may not have a virtual register assigned.
762     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
763         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
764       Opcode = I->getOpcode();
765       U = I;
766     }
767   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
768     Opcode = C->getOpcode();
769     U = C;
770   }
771 
772   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
773     if (Ty->getAddressSpace() > 255)
774       // Fast instruction selection doesn't support the special
775       // address spaces.
776       return false;
777 
778   switch (Opcode) {
779     default:
780     break;
781     case Instruction::BitCast:
782       // Look through bitcasts.
783       return ARMComputeAddress(U->getOperand(0), Addr);
784     case Instruction::IntToPtr:
785       // Look past no-op inttoptrs.
786       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
787           TLI.getPointerTy(DL))
788         return ARMComputeAddress(U->getOperand(0), Addr);
789       break;
790     case Instruction::PtrToInt:
791       // Look past no-op ptrtoints.
792       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
793         return ARMComputeAddress(U->getOperand(0), Addr);
794       break;
795     case Instruction::GetElementPtr: {
796       Address SavedAddr = Addr;
797       int TmpOffset = Addr.Offset;
798 
799       // Iterate through the GEP folding the constants into offsets where
800       // we can.
801       gep_type_iterator GTI = gep_type_begin(U);
802       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
803            i != e; ++i, ++GTI) {
804         const Value *Op = *i;
805         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
806           const StructLayout *SL = DL.getStructLayout(STy);
807           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
808           TmpOffset += SL->getElementOffset(Idx);
809         } else {
810           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
811           for (;;) {
812             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
813               // Constant-offset addressing.
814               TmpOffset += CI->getSExtValue() * S;
815               break;
816             }
817             if (canFoldAddIntoGEP(U, Op)) {
818               // A compatible add with a constant operand. Fold the constant.
819               ConstantInt *CI =
820               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
821               TmpOffset += CI->getSExtValue() * S;
822               // Iterate on the other operand.
823               Op = cast<AddOperator>(Op)->getOperand(0);
824               continue;
825             }
826             // Unsupported
827             goto unsupported_gep;
828           }
829         }
830       }
831 
832       // Try to grab the base operand now.
833       Addr.Offset = TmpOffset;
834       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
835 
836       // We failed, restore everything and try the other options.
837       Addr = SavedAddr;
838 
839       unsupported_gep:
840       break;
841     }
842     case Instruction::Alloca: {
843       const AllocaInst *AI = cast<AllocaInst>(Obj);
844       DenseMap<const AllocaInst*, int>::iterator SI =
845         FuncInfo.StaticAllocaMap.find(AI);
846       if (SI != FuncInfo.StaticAllocaMap.end()) {
847         Addr.BaseType = Address::FrameIndexBase;
848         Addr.Base.FI = SI->second;
849         return true;
850       }
851       break;
852     }
853   }
854 
855   // Try to get this in a register if nothing else has worked.
856   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
857   return Addr.Base.Reg != 0;
858 }
859 
860 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
861   bool needsLowering = false;
862   switch (VT.SimpleTy) {
863     default: llvm_unreachable("Unhandled load/store type!");
864     case MVT::i1:
865     case MVT::i8:
866     case MVT::i16:
867     case MVT::i32:
868       if (!useAM3) {
869         // Integer loads/stores handle 12-bit offsets.
870         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
871         // Handle negative offsets.
872         if (needsLowering && isThumb2)
873           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
874                             Addr.Offset > -256);
875       } else {
876         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
877         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
878       }
879       break;
880     case MVT::f32:
881     case MVT::f64:
882       // Floating point operands handle 8-bit offsets.
883       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
884       break;
885   }
886 
887   // If this is a stack pointer and the offset needs to be simplified then
888   // put the alloca address into a register, set the base type back to
889   // register and continue. This should almost never happen.
890   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
891     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
892                                              : &ARM::GPRRegClass;
893     unsigned ResultReg = createResultReg(RC);
894     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
895     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
896                             TII.get(Opc), ResultReg)
897                             .addFrameIndex(Addr.Base.FI)
898                             .addImm(0));
899     Addr.Base.Reg = ResultReg;
900     Addr.BaseType = Address::RegBase;
901   }
902 
903   // Since the offset is too large for the load/store instruction
904   // get the reg+offset into a register.
905   if (needsLowering) {
906     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
907                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
908     Addr.Offset = 0;
909   }
910 }
911 
912 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
913                                        const MachineInstrBuilder &MIB,
914                                        unsigned Flags, bool useAM3) {
915   // addrmode5 output depends on the selection dag addressing dividing the
916   // offset by 4 that it then later multiplies. Do this here as well.
917   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
918     Addr.Offset /= 4;
919 
920   // Frame base works a bit differently. Handle it separately.
921   if (Addr.BaseType == Address::FrameIndexBase) {
922     int FI = Addr.Base.FI;
923     int Offset = Addr.Offset;
924     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
925         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
926         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
927     // Now add the rest of the operands.
928     MIB.addFrameIndex(FI);
929 
930     // ARM halfword load/stores and signed byte loads need an additional
931     // operand.
932     if (useAM3) {
933       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
934       MIB.addReg(0);
935       MIB.addImm(Imm);
936     } else {
937       MIB.addImm(Addr.Offset);
938     }
939     MIB.addMemOperand(MMO);
940   } else {
941     // Now add the rest of the operands.
942     MIB.addReg(Addr.Base.Reg);
943 
944     // ARM halfword load/stores and signed byte loads need an additional
945     // operand.
946     if (useAM3) {
947       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
948       MIB.addReg(0);
949       MIB.addImm(Imm);
950     } else {
951       MIB.addImm(Addr.Offset);
952     }
953   }
954   AddOptionalDefs(MIB);
955 }
956 
957 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
958                               unsigned Alignment, bool isZExt, bool allocReg) {
959   unsigned Opc;
960   bool useAM3 = false;
961   bool needVMOV = false;
962   const TargetRegisterClass *RC;
963   switch (VT.SimpleTy) {
964     // This is mostly going to be Neon/vector support.
965     default: return false;
966     case MVT::i1:
967     case MVT::i8:
968       if (isThumb2) {
969         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
970           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
971         else
972           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
973       } else {
974         if (isZExt) {
975           Opc = ARM::LDRBi12;
976         } else {
977           Opc = ARM::LDRSB;
978           useAM3 = true;
979         }
980       }
981       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
982       break;
983     case MVT::i16:
984       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
985         return false;
986 
987       if (isThumb2) {
988         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
989           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
990         else
991           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
992       } else {
993         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
994         useAM3 = true;
995       }
996       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
997       break;
998     case MVT::i32:
999       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1000         return false;
1001 
1002       if (isThumb2) {
1003         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1004           Opc = ARM::t2LDRi8;
1005         else
1006           Opc = ARM::t2LDRi12;
1007       } else {
1008         Opc = ARM::LDRi12;
1009       }
1010       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1011       break;
1012     case MVT::f32:
1013       if (!Subtarget->hasVFP2()) return false;
1014       // Unaligned loads need special handling. Floats require word-alignment.
1015       if (Alignment && Alignment < 4) {
1016         needVMOV = true;
1017         VT = MVT::i32;
1018         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1019         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1020       } else {
1021         Opc = ARM::VLDRS;
1022         RC = TLI.getRegClassFor(VT);
1023       }
1024       break;
1025     case MVT::f64:
1026       if (!Subtarget->hasVFP2()) return false;
1027       // FIXME: Unaligned loads need special handling.  Doublewords require
1028       // word-alignment.
1029       if (Alignment && Alignment < 4)
1030         return false;
1031 
1032       Opc = ARM::VLDRD;
1033       RC = TLI.getRegClassFor(VT);
1034       break;
1035   }
1036   // Simplify this down to something we can handle.
1037   ARMSimplifyAddress(Addr, VT, useAM3);
1038 
1039   // Create the base instruction, then add the operands.
1040   if (allocReg)
1041     ResultReg = createResultReg(RC);
1042   assert (ResultReg > 255 && "Expected an allocated virtual register.");
1043   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1044                                     TII.get(Opc), ResultReg);
1045   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1046 
1047   // If we had an unaligned load of a float we've converted it to an regular
1048   // load.  Now we must move from the GRP to the FP register.
1049   if (needVMOV) {
1050     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1051     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1052                             TII.get(ARM::VMOVSR), MoveReg)
1053                     .addReg(ResultReg));
1054     ResultReg = MoveReg;
1055   }
1056   return true;
1057 }
1058 
1059 bool ARMFastISel::SelectLoad(const Instruction *I) {
1060   // Atomic loads need special handling.
1061   if (cast<LoadInst>(I)->isAtomic())
1062     return false;
1063 
1064   const Value *SV = I->getOperand(0);
1065   if (TLI.supportSwiftError()) {
1066     // Swifterror values can come from either a function parameter with
1067     // swifterror attribute or an alloca with swifterror attribute.
1068     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1069       if (Arg->hasSwiftErrorAttr())
1070         return false;
1071     }
1072 
1073     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1074       if (Alloca->isSwiftError())
1075         return false;
1076     }
1077   }
1078 
1079   // Verify we have a legal type before going any further.
1080   MVT VT;
1081   if (!isLoadTypeLegal(I->getType(), VT))
1082     return false;
1083 
1084   // See if we can handle this address.
1085   Address Addr;
1086   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1087 
1088   unsigned ResultReg;
1089   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1090     return false;
1091   updateValueMap(I, ResultReg);
1092   return true;
1093 }
1094 
1095 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1096                                unsigned Alignment) {
1097   unsigned StrOpc;
1098   bool useAM3 = false;
1099   switch (VT.SimpleTy) {
1100     // This is mostly going to be Neon/vector support.
1101     default: return false;
1102     case MVT::i1: {
1103       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1104                                               : &ARM::GPRRegClass);
1105       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1106       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1107       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1108                               TII.get(Opc), Res)
1109                       .addReg(SrcReg).addImm(1));
1110       SrcReg = Res;
1111     } // Fallthrough here.
1112     case MVT::i8:
1113       if (isThumb2) {
1114         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1115           StrOpc = ARM::t2STRBi8;
1116         else
1117           StrOpc = ARM::t2STRBi12;
1118       } else {
1119         StrOpc = ARM::STRBi12;
1120       }
1121       break;
1122     case MVT::i16:
1123       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1124         return false;
1125 
1126       if (isThumb2) {
1127         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1128           StrOpc = ARM::t2STRHi8;
1129         else
1130           StrOpc = ARM::t2STRHi12;
1131       } else {
1132         StrOpc = ARM::STRH;
1133         useAM3 = true;
1134       }
1135       break;
1136     case MVT::i32:
1137       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1138         return false;
1139 
1140       if (isThumb2) {
1141         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1142           StrOpc = ARM::t2STRi8;
1143         else
1144           StrOpc = ARM::t2STRi12;
1145       } else {
1146         StrOpc = ARM::STRi12;
1147       }
1148       break;
1149     case MVT::f32:
1150       if (!Subtarget->hasVFP2()) return false;
1151       // Unaligned stores need special handling. Floats require word-alignment.
1152       if (Alignment && Alignment < 4) {
1153         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1154         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1155                                 TII.get(ARM::VMOVRS), MoveReg)
1156                         .addReg(SrcReg));
1157         SrcReg = MoveReg;
1158         VT = MVT::i32;
1159         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1160       } else {
1161         StrOpc = ARM::VSTRS;
1162       }
1163       break;
1164     case MVT::f64:
1165       if (!Subtarget->hasVFP2()) return false;
1166       // FIXME: Unaligned stores need special handling.  Doublewords require
1167       // word-alignment.
1168       if (Alignment && Alignment < 4)
1169           return false;
1170 
1171       StrOpc = ARM::VSTRD;
1172       break;
1173   }
1174   // Simplify this down to something we can handle.
1175   ARMSimplifyAddress(Addr, VT, useAM3);
1176 
1177   // Create the base instruction, then add the operands.
1178   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1179   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1180                                     TII.get(StrOpc))
1181                             .addReg(SrcReg);
1182   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1183   return true;
1184 }
1185 
1186 bool ARMFastISel::SelectStore(const Instruction *I) {
1187   Value *Op0 = I->getOperand(0);
1188   unsigned SrcReg = 0;
1189 
1190   // Atomic stores need special handling.
1191   if (cast<StoreInst>(I)->isAtomic())
1192     return false;
1193 
1194   const Value *PtrV = I->getOperand(1);
1195   if (TLI.supportSwiftError()) {
1196     // Swifterror values can come from either a function parameter with
1197     // swifterror attribute or an alloca with swifterror attribute.
1198     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1199       if (Arg->hasSwiftErrorAttr())
1200         return false;
1201     }
1202 
1203     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1204       if (Alloca->isSwiftError())
1205         return false;
1206     }
1207   }
1208 
1209   // Verify we have a legal type before going any further.
1210   MVT VT;
1211   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1212     return false;
1213 
1214   // Get the value to be stored into a register.
1215   SrcReg = getRegForValue(Op0);
1216   if (SrcReg == 0) return false;
1217 
1218   // See if we can handle this address.
1219   Address Addr;
1220   if (!ARMComputeAddress(I->getOperand(1), Addr))
1221     return false;
1222 
1223   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1224     return false;
1225   return true;
1226 }
1227 
1228 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1229   switch (Pred) {
1230     // Needs two compares...
1231     case CmpInst::FCMP_ONE:
1232     case CmpInst::FCMP_UEQ:
1233     default:
1234       // AL is our "false" for now. The other two need more compares.
1235       return ARMCC::AL;
1236     case CmpInst::ICMP_EQ:
1237     case CmpInst::FCMP_OEQ:
1238       return ARMCC::EQ;
1239     case CmpInst::ICMP_SGT:
1240     case CmpInst::FCMP_OGT:
1241       return ARMCC::GT;
1242     case CmpInst::ICMP_SGE:
1243     case CmpInst::FCMP_OGE:
1244       return ARMCC::GE;
1245     case CmpInst::ICMP_UGT:
1246     case CmpInst::FCMP_UGT:
1247       return ARMCC::HI;
1248     case CmpInst::FCMP_OLT:
1249       return ARMCC::MI;
1250     case CmpInst::ICMP_ULE:
1251     case CmpInst::FCMP_OLE:
1252       return ARMCC::LS;
1253     case CmpInst::FCMP_ORD:
1254       return ARMCC::VC;
1255     case CmpInst::FCMP_UNO:
1256       return ARMCC::VS;
1257     case CmpInst::FCMP_UGE:
1258       return ARMCC::PL;
1259     case CmpInst::ICMP_SLT:
1260     case CmpInst::FCMP_ULT:
1261       return ARMCC::LT;
1262     case CmpInst::ICMP_SLE:
1263     case CmpInst::FCMP_ULE:
1264       return ARMCC::LE;
1265     case CmpInst::FCMP_UNE:
1266     case CmpInst::ICMP_NE:
1267       return ARMCC::NE;
1268     case CmpInst::ICMP_UGE:
1269       return ARMCC::HS;
1270     case CmpInst::ICMP_ULT:
1271       return ARMCC::LO;
1272   }
1273 }
1274 
1275 bool ARMFastISel::SelectBranch(const Instruction *I) {
1276   const BranchInst *BI = cast<BranchInst>(I);
1277   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1278   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1279 
1280   // Simple branch support.
1281 
1282   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1283   // behavior.
1284   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1285     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1286 
1287       // Get the compare predicate.
1288       // Try to take advantage of fallthrough opportunities.
1289       CmpInst::Predicate Predicate = CI->getPredicate();
1290       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1291         std::swap(TBB, FBB);
1292         Predicate = CmpInst::getInversePredicate(Predicate);
1293       }
1294 
1295       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1296 
1297       // We may not handle every CC for now.
1298       if (ARMPred == ARMCC::AL) return false;
1299 
1300       // Emit the compare.
1301       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1302         return false;
1303 
1304       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1305       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1306       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1307       finishCondBranch(BI->getParent(), TBB, FBB);
1308       return true;
1309     }
1310   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1311     MVT SourceVT;
1312     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1313         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1314       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1315       unsigned OpReg = getRegForValue(TI->getOperand(0));
1316       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1317       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1318                               TII.get(TstOpc))
1319                       .addReg(OpReg).addImm(1));
1320 
1321       unsigned CCMode = ARMCC::NE;
1322       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1323         std::swap(TBB, FBB);
1324         CCMode = ARMCC::EQ;
1325       }
1326 
1327       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1328       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1329       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1330 
1331       finishCondBranch(BI->getParent(), TBB, FBB);
1332       return true;
1333     }
1334   } else if (const ConstantInt *CI =
1335              dyn_cast<ConstantInt>(BI->getCondition())) {
1336     uint64_t Imm = CI->getZExtValue();
1337     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1338     fastEmitBranch(Target, DbgLoc);
1339     return true;
1340   }
1341 
1342   unsigned CmpReg = getRegForValue(BI->getCondition());
1343   if (CmpReg == 0) return false;
1344 
1345   // We've been divorced from our compare!  Our block was split, and
1346   // now our compare lives in a predecessor block.  We musn't
1347   // re-compare here, as the children of the compare aren't guaranteed
1348   // live across the block boundary (we *could* check for this).
1349   // Regardless, the compare has been done in the predecessor block,
1350   // and it left a value for us in a virtual register.  Ergo, we test
1351   // the one-bit value left in the virtual register.
1352   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1353   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1354   AddOptionalDefs(
1355       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1356           .addReg(CmpReg)
1357           .addImm(1));
1358 
1359   unsigned CCMode = ARMCC::NE;
1360   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1361     std::swap(TBB, FBB);
1362     CCMode = ARMCC::EQ;
1363   }
1364 
1365   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1366   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1367                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1368   finishCondBranch(BI->getParent(), TBB, FBB);
1369   return true;
1370 }
1371 
1372 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1373   unsigned AddrReg = getRegForValue(I->getOperand(0));
1374   if (AddrReg == 0) return false;
1375 
1376   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1377   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1378                           TII.get(Opc)).addReg(AddrReg));
1379 
1380   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1381   for (const BasicBlock *SuccBB : IB->successors())
1382     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1383 
1384   return true;
1385 }
1386 
1387 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1388                              bool isZExt) {
1389   Type *Ty = Src1Value->getType();
1390   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1391   if (!SrcEVT.isSimple()) return false;
1392   MVT SrcVT = SrcEVT.getSimpleVT();
1393 
1394   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1395   if (isFloat && !Subtarget->hasVFP2())
1396     return false;
1397 
1398   // Check to see if the 2nd operand is a constant that we can encode directly
1399   // in the compare.
1400   int Imm = 0;
1401   bool UseImm = false;
1402   bool isNegativeImm = false;
1403   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1404   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1405   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1406     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1407         SrcVT == MVT::i1) {
1408       const APInt &CIVal = ConstInt->getValue();
1409       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1410       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1411       // then a cmn, because there is no way to represent 2147483648 as a
1412       // signed 32-bit int.
1413       if (Imm < 0 && Imm != (int)0x80000000) {
1414         isNegativeImm = true;
1415         Imm = -Imm;
1416       }
1417       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1418         (ARM_AM::getSOImmVal(Imm) != -1);
1419     }
1420   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1421     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1422       if (ConstFP->isZero() && !ConstFP->isNegative())
1423         UseImm = true;
1424   }
1425 
1426   unsigned CmpOpc;
1427   bool isICmp = true;
1428   bool needsExt = false;
1429   switch (SrcVT.SimpleTy) {
1430     default: return false;
1431     // TODO: Verify compares.
1432     case MVT::f32:
1433       isICmp = false;
1434       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1435       break;
1436     case MVT::f64:
1437       isICmp = false;
1438       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1439       break;
1440     case MVT::i1:
1441     case MVT::i8:
1442     case MVT::i16:
1443       needsExt = true;
1444     // Intentional fall-through.
1445     case MVT::i32:
1446       if (isThumb2) {
1447         if (!UseImm)
1448           CmpOpc = ARM::t2CMPrr;
1449         else
1450           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1451       } else {
1452         if (!UseImm)
1453           CmpOpc = ARM::CMPrr;
1454         else
1455           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1456       }
1457       break;
1458   }
1459 
1460   unsigned SrcReg1 = getRegForValue(Src1Value);
1461   if (SrcReg1 == 0) return false;
1462 
1463   unsigned SrcReg2 = 0;
1464   if (!UseImm) {
1465     SrcReg2 = getRegForValue(Src2Value);
1466     if (SrcReg2 == 0) return false;
1467   }
1468 
1469   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1470   if (needsExt) {
1471     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1472     if (SrcReg1 == 0) return false;
1473     if (!UseImm) {
1474       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1475       if (SrcReg2 == 0) return false;
1476     }
1477   }
1478 
1479   const MCInstrDesc &II = TII.get(CmpOpc);
1480   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1481   if (!UseImm) {
1482     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1483     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1484                     .addReg(SrcReg1).addReg(SrcReg2));
1485   } else {
1486     MachineInstrBuilder MIB;
1487     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1488       .addReg(SrcReg1);
1489 
1490     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1491     if (isICmp)
1492       MIB.addImm(Imm);
1493     AddOptionalDefs(MIB);
1494   }
1495 
1496   // For floating point we need to move the result to a comparison register
1497   // that we can then use for branches.
1498   if (Ty->isFloatTy() || Ty->isDoubleTy())
1499     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1500                             TII.get(ARM::FMSTAT)));
1501   return true;
1502 }
1503 
1504 bool ARMFastISel::SelectCmp(const Instruction *I) {
1505   const CmpInst *CI = cast<CmpInst>(I);
1506 
1507   // Get the compare predicate.
1508   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1509 
1510   // We may not handle every CC for now.
1511   if (ARMPred == ARMCC::AL) return false;
1512 
1513   // Emit the compare.
1514   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1515     return false;
1516 
1517   // Now set a register based on the comparison. Explicitly set the predicates
1518   // here.
1519   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1520   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1521                                            : &ARM::GPRRegClass;
1522   unsigned DestReg = createResultReg(RC);
1523   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1524   unsigned ZeroReg = fastMaterializeConstant(Zero);
1525   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1526   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1527           .addReg(ZeroReg).addImm(1)
1528           .addImm(ARMPred).addReg(ARM::CPSR);
1529 
1530   updateValueMap(I, DestReg);
1531   return true;
1532 }
1533 
1534 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1535   // Make sure we have VFP and that we're extending float to double.
1536   if (!Subtarget->hasVFP2()) return false;
1537 
1538   Value *V = I->getOperand(0);
1539   if (!I->getType()->isDoubleTy() ||
1540       !V->getType()->isFloatTy()) return false;
1541 
1542   unsigned Op = getRegForValue(V);
1543   if (Op == 0) return false;
1544 
1545   unsigned Result = createResultReg(&ARM::DPRRegClass);
1546   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1547                           TII.get(ARM::VCVTDS), Result)
1548                   .addReg(Op));
1549   updateValueMap(I, Result);
1550   return true;
1551 }
1552 
1553 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1554   // Make sure we have VFP and that we're truncating double to float.
1555   if (!Subtarget->hasVFP2()) return false;
1556 
1557   Value *V = I->getOperand(0);
1558   if (!(I->getType()->isFloatTy() &&
1559         V->getType()->isDoubleTy())) return false;
1560 
1561   unsigned Op = getRegForValue(V);
1562   if (Op == 0) return false;
1563 
1564   unsigned Result = createResultReg(&ARM::SPRRegClass);
1565   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1566                           TII.get(ARM::VCVTSD), Result)
1567                   .addReg(Op));
1568   updateValueMap(I, Result);
1569   return true;
1570 }
1571 
1572 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1573   // Make sure we have VFP.
1574   if (!Subtarget->hasVFP2()) return false;
1575 
1576   MVT DstVT;
1577   Type *Ty = I->getType();
1578   if (!isTypeLegal(Ty, DstVT))
1579     return false;
1580 
1581   Value *Src = I->getOperand(0);
1582   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1583   if (!SrcEVT.isSimple())
1584     return false;
1585   MVT SrcVT = SrcEVT.getSimpleVT();
1586   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1587     return false;
1588 
1589   unsigned SrcReg = getRegForValue(Src);
1590   if (SrcReg == 0) return false;
1591 
1592   // Handle sign-extension.
1593   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1594     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1595                                        /*isZExt*/!isSigned);
1596     if (SrcReg == 0) return false;
1597   }
1598 
1599   // The conversion routine works on fp-reg to fp-reg and the operand above
1600   // was an integer, move it to the fp registers if possible.
1601   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1602   if (FP == 0) return false;
1603 
1604   unsigned Opc;
1605   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1606   else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1607   else return false;
1608 
1609   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1610   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1611                           TII.get(Opc), ResultReg).addReg(FP));
1612   updateValueMap(I, ResultReg);
1613   return true;
1614 }
1615 
1616 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1617   // Make sure we have VFP.
1618   if (!Subtarget->hasVFP2()) return false;
1619 
1620   MVT DstVT;
1621   Type *RetTy = I->getType();
1622   if (!isTypeLegal(RetTy, DstVT))
1623     return false;
1624 
1625   unsigned Op = getRegForValue(I->getOperand(0));
1626   if (Op == 0) return false;
1627 
1628   unsigned Opc;
1629   Type *OpTy = I->getOperand(0)->getType();
1630   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1631   else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1632   else return false;
1633 
1634   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1635   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1636   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1637                           TII.get(Opc), ResultReg).addReg(Op));
1638 
1639   // This result needs to be in an integer register, but the conversion only
1640   // takes place in fp-regs.
1641   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1642   if (IntReg == 0) return false;
1643 
1644   updateValueMap(I, IntReg);
1645   return true;
1646 }
1647 
1648 bool ARMFastISel::SelectSelect(const Instruction *I) {
1649   MVT VT;
1650   if (!isTypeLegal(I->getType(), VT))
1651     return false;
1652 
1653   // Things need to be register sized for register moves.
1654   if (VT != MVT::i32) return false;
1655 
1656   unsigned CondReg = getRegForValue(I->getOperand(0));
1657   if (CondReg == 0) return false;
1658   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1659   if (Op1Reg == 0) return false;
1660 
1661   // Check to see if we can use an immediate in the conditional move.
1662   int Imm = 0;
1663   bool UseImm = false;
1664   bool isNegativeImm = false;
1665   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1666     assert (VT == MVT::i32 && "Expecting an i32.");
1667     Imm = (int)ConstInt->getValue().getZExtValue();
1668     if (Imm < 0) {
1669       isNegativeImm = true;
1670       Imm = ~Imm;
1671     }
1672     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1673       (ARM_AM::getSOImmVal(Imm) != -1);
1674   }
1675 
1676   unsigned Op2Reg = 0;
1677   if (!UseImm) {
1678     Op2Reg = getRegForValue(I->getOperand(2));
1679     if (Op2Reg == 0) return false;
1680   }
1681 
1682   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1683   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1684   AddOptionalDefs(
1685       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1686           .addReg(CondReg)
1687           .addImm(1));
1688 
1689   unsigned MovCCOpc;
1690   const TargetRegisterClass *RC;
1691   if (!UseImm) {
1692     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1693     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1694   } else {
1695     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1696     if (!isNegativeImm)
1697       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1698     else
1699       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1700   }
1701   unsigned ResultReg = createResultReg(RC);
1702   if (!UseImm) {
1703     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1704     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1705     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1706             ResultReg)
1707         .addReg(Op2Reg)
1708         .addReg(Op1Reg)
1709         .addImm(ARMCC::NE)
1710         .addReg(ARM::CPSR);
1711   } else {
1712     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1713     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1714             ResultReg)
1715         .addReg(Op1Reg)
1716         .addImm(Imm)
1717         .addImm(ARMCC::EQ)
1718         .addReg(ARM::CPSR);
1719   }
1720   updateValueMap(I, ResultReg);
1721   return true;
1722 }
1723 
1724 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1725   MVT VT;
1726   Type *Ty = I->getType();
1727   if (!isTypeLegal(Ty, VT))
1728     return false;
1729 
1730   // If we have integer div support we should have selected this automagically.
1731   // In case we have a real miss go ahead and return false and we'll pick
1732   // it up later.
1733   if (Subtarget->hasDivide()) return false;
1734 
1735   // Otherwise emit a libcall.
1736   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1737   if (VT == MVT::i8)
1738     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1739   else if (VT == MVT::i16)
1740     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1741   else if (VT == MVT::i32)
1742     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1743   else if (VT == MVT::i64)
1744     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1745   else if (VT == MVT::i128)
1746     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1747   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1748 
1749   return ARMEmitLibcall(I, LC);
1750 }
1751 
1752 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1753   MVT VT;
1754   Type *Ty = I->getType();
1755   if (!isTypeLegal(Ty, VT))
1756     return false;
1757 
1758   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1759   if (VT == MVT::i8)
1760     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1761   else if (VT == MVT::i16)
1762     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1763   else if (VT == MVT::i32)
1764     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1765   else if (VT == MVT::i64)
1766     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1767   else if (VT == MVT::i128)
1768     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1769   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1770 
1771   return ARMEmitLibcall(I, LC);
1772 }
1773 
1774 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1775   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1776 
1777   // We can get here in the case when we have a binary operation on a non-legal
1778   // type and the target independent selector doesn't know how to handle it.
1779   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1780     return false;
1781 
1782   unsigned Opc;
1783   switch (ISDOpcode) {
1784     default: return false;
1785     case ISD::ADD:
1786       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1787       break;
1788     case ISD::OR:
1789       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1790       break;
1791     case ISD::SUB:
1792       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1793       break;
1794   }
1795 
1796   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1797   if (SrcReg1 == 0) return false;
1798 
1799   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1800   // in the instruction, rather then materializing the value in a register.
1801   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1802   if (SrcReg2 == 0) return false;
1803 
1804   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1805   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1806   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1807   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1808                           TII.get(Opc), ResultReg)
1809                   .addReg(SrcReg1).addReg(SrcReg2));
1810   updateValueMap(I, ResultReg);
1811   return true;
1812 }
1813 
1814 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1815   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1816   if (!FPVT.isSimple()) return false;
1817   MVT VT = FPVT.getSimpleVT();
1818 
1819   // FIXME: Support vector types where possible.
1820   if (VT.isVector())
1821     return false;
1822 
1823   // We can get here in the case when we want to use NEON for our fp
1824   // operations, but can't figure out how to. Just use the vfp instructions
1825   // if we have them.
1826   // FIXME: It'd be nice to use NEON instructions.
1827   Type *Ty = I->getType();
1828   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1829   if (isFloat && !Subtarget->hasVFP2())
1830     return false;
1831 
1832   unsigned Opc;
1833   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1834   switch (ISDOpcode) {
1835     default: return false;
1836     case ISD::FADD:
1837       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1838       break;
1839     case ISD::FSUB:
1840       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1841       break;
1842     case ISD::FMUL:
1843       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1844       break;
1845   }
1846   unsigned Op1 = getRegForValue(I->getOperand(0));
1847   if (Op1 == 0) return false;
1848 
1849   unsigned Op2 = getRegForValue(I->getOperand(1));
1850   if (Op2 == 0) return false;
1851 
1852   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1853   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1854                           TII.get(Opc), ResultReg)
1855                   .addReg(Op1).addReg(Op2));
1856   updateValueMap(I, ResultReg);
1857   return true;
1858 }
1859 
1860 // Call Handling Code
1861 
1862 // This is largely taken directly from CCAssignFnForNode
1863 // TODO: We may not support all of this.
1864 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1865                                            bool Return,
1866                                            bool isVarArg) {
1867   switch (CC) {
1868   default:
1869     llvm_unreachable("Unsupported calling convention");
1870   case CallingConv::Fast:
1871     if (Subtarget->hasVFP2() && !isVarArg) {
1872       if (!Subtarget->isAAPCS_ABI())
1873         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1874       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1875       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1876     }
1877     // Fallthrough
1878   case CallingConv::C:
1879   case CallingConv::CXX_FAST_TLS:
1880     // Use target triple & subtarget features to do actual dispatch.
1881     if (Subtarget->isAAPCS_ABI()) {
1882       if (Subtarget->hasVFP2() &&
1883           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1884         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1885       else
1886         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1887     } else {
1888       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1889     }
1890   case CallingConv::ARM_AAPCS_VFP:
1891   case CallingConv::Swift:
1892     if (!isVarArg)
1893       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1894     // Fall through to soft float variant, variadic functions don't
1895     // use hard floating point ABI.
1896   case CallingConv::ARM_AAPCS:
1897     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1898   case CallingConv::ARM_APCS:
1899     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1900   case CallingConv::GHC:
1901     if (Return)
1902       llvm_unreachable("Can't return in GHC call convention");
1903     else
1904       return CC_ARM_APCS_GHC;
1905   }
1906 }
1907 
1908 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1909                                   SmallVectorImpl<unsigned> &ArgRegs,
1910                                   SmallVectorImpl<MVT> &ArgVTs,
1911                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1912                                   SmallVectorImpl<unsigned> &RegArgs,
1913                                   CallingConv::ID CC,
1914                                   unsigned &NumBytes,
1915                                   bool isVarArg) {
1916   SmallVector<CCValAssign, 16> ArgLocs;
1917   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1918   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1919                              CCAssignFnForCall(CC, false, isVarArg));
1920 
1921   // Check that we can handle all of the arguments. If we can't, then bail out
1922   // now before we add code to the MBB.
1923   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1924     CCValAssign &VA = ArgLocs[i];
1925     MVT ArgVT = ArgVTs[VA.getValNo()];
1926 
1927     // We don't handle NEON/vector parameters yet.
1928     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1929       return false;
1930 
1931     // Now copy/store arg to correct locations.
1932     if (VA.isRegLoc() && !VA.needsCustom()) {
1933       continue;
1934     } else if (VA.needsCustom()) {
1935       // TODO: We need custom lowering for vector (v2f64) args.
1936       if (VA.getLocVT() != MVT::f64 ||
1937           // TODO: Only handle register args for now.
1938           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1939         return false;
1940     } else {
1941       switch (ArgVT.SimpleTy) {
1942       default:
1943         return false;
1944       case MVT::i1:
1945       case MVT::i8:
1946       case MVT::i16:
1947       case MVT::i32:
1948         break;
1949       case MVT::f32:
1950         if (!Subtarget->hasVFP2())
1951           return false;
1952         break;
1953       case MVT::f64:
1954         if (!Subtarget->hasVFP2())
1955           return false;
1956         break;
1957       }
1958     }
1959   }
1960 
1961   // At the point, we are able to handle the call's arguments in fast isel.
1962 
1963   // Get a count of how many bytes are to be pushed on the stack.
1964   NumBytes = CCInfo.getNextStackOffset();
1965 
1966   // Issue CALLSEQ_START
1967   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1968   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1969                           TII.get(AdjStackDown))
1970                   .addImm(NumBytes));
1971 
1972   // Process the args.
1973   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1974     CCValAssign &VA = ArgLocs[i];
1975     const Value *ArgVal = Args[VA.getValNo()];
1976     unsigned Arg = ArgRegs[VA.getValNo()];
1977     MVT ArgVT = ArgVTs[VA.getValNo()];
1978 
1979     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1980            "We don't handle NEON/vector parameters yet.");
1981 
1982     // Handle arg promotion, etc.
1983     switch (VA.getLocInfo()) {
1984       case CCValAssign::Full: break;
1985       case CCValAssign::SExt: {
1986         MVT DestVT = VA.getLocVT();
1987         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1988         assert (Arg != 0 && "Failed to emit a sext");
1989         ArgVT = DestVT;
1990         break;
1991       }
1992       case CCValAssign::AExt:
1993         // Intentional fall-through.  Handle AExt and ZExt.
1994       case CCValAssign::ZExt: {
1995         MVT DestVT = VA.getLocVT();
1996         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1997         assert (Arg != 0 && "Failed to emit a zext");
1998         ArgVT = DestVT;
1999         break;
2000       }
2001       case CCValAssign::BCvt: {
2002         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
2003                                  /*TODO: Kill=*/false);
2004         assert(BC != 0 && "Failed to emit a bitcast!");
2005         Arg = BC;
2006         ArgVT = VA.getLocVT();
2007         break;
2008       }
2009       default: llvm_unreachable("Unknown arg promotion!");
2010     }
2011 
2012     // Now copy/store arg to correct locations.
2013     if (VA.isRegLoc() && !VA.needsCustom()) {
2014       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2015               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
2016       RegArgs.push_back(VA.getLocReg());
2017     } else if (VA.needsCustom()) {
2018       // TODO: We need custom lowering for vector (v2f64) args.
2019       assert(VA.getLocVT() == MVT::f64 &&
2020              "Custom lowering for v2f64 args not available");
2021 
2022       CCValAssign &NextVA = ArgLocs[++i];
2023 
2024       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2025              "We only handle register args!");
2026 
2027       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2028                               TII.get(ARM::VMOVRRD), VA.getLocReg())
2029                       .addReg(NextVA.getLocReg(), RegState::Define)
2030                       .addReg(Arg));
2031       RegArgs.push_back(VA.getLocReg());
2032       RegArgs.push_back(NextVA.getLocReg());
2033     } else {
2034       assert(VA.isMemLoc());
2035       // Need to store on the stack.
2036 
2037       // Don't emit stores for undef values.
2038       if (isa<UndefValue>(ArgVal))
2039         continue;
2040 
2041       Address Addr;
2042       Addr.BaseType = Address::RegBase;
2043       Addr.Base.Reg = ARM::SP;
2044       Addr.Offset = VA.getLocMemOffset();
2045 
2046       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2047       assert(EmitRet && "Could not emit a store for argument!");
2048     }
2049   }
2050 
2051   return true;
2052 }
2053 
2054 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2055                              const Instruction *I, CallingConv::ID CC,
2056                              unsigned &NumBytes, bool isVarArg) {
2057   // Issue CALLSEQ_END
2058   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2059   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2060                           TII.get(AdjStackUp))
2061                   .addImm(NumBytes).addImm(0));
2062 
2063   // Now the return value.
2064   if (RetVT != MVT::isVoid) {
2065     SmallVector<CCValAssign, 16> RVLocs;
2066     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2067     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2068 
2069     // Copy all of the result registers out of their specified physreg.
2070     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2071       // For this move we copy into two registers and then move into the
2072       // double fp reg we want.
2073       MVT DestVT = RVLocs[0].getValVT();
2074       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2075       unsigned ResultReg = createResultReg(DstRC);
2076       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2077                               TII.get(ARM::VMOVDRR), ResultReg)
2078                       .addReg(RVLocs[0].getLocReg())
2079                       .addReg(RVLocs[1].getLocReg()));
2080 
2081       UsedRegs.push_back(RVLocs[0].getLocReg());
2082       UsedRegs.push_back(RVLocs[1].getLocReg());
2083 
2084       // Finally update the result.
2085       updateValueMap(I, ResultReg);
2086     } else {
2087       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2088       MVT CopyVT = RVLocs[0].getValVT();
2089 
2090       // Special handling for extended integers.
2091       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2092         CopyVT = MVT::i32;
2093 
2094       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2095 
2096       unsigned ResultReg = createResultReg(DstRC);
2097       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2098               TII.get(TargetOpcode::COPY),
2099               ResultReg).addReg(RVLocs[0].getLocReg());
2100       UsedRegs.push_back(RVLocs[0].getLocReg());
2101 
2102       // Finally update the result.
2103       updateValueMap(I, ResultReg);
2104     }
2105   }
2106 
2107   return true;
2108 }
2109 
2110 bool ARMFastISel::SelectRet(const Instruction *I) {
2111   const ReturnInst *Ret = cast<ReturnInst>(I);
2112   const Function &F = *I->getParent()->getParent();
2113 
2114   if (!FuncInfo.CanLowerReturn)
2115     return false;
2116 
2117   if (TLI.supportSwiftError() &&
2118       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2119     return false;
2120 
2121   if (TLI.supportSplitCSR(FuncInfo.MF))
2122     return false;
2123 
2124   // Build a list of return value registers.
2125   SmallVector<unsigned, 4> RetRegs;
2126 
2127   CallingConv::ID CC = F.getCallingConv();
2128   if (Ret->getNumOperands() > 0) {
2129     SmallVector<ISD::OutputArg, 4> Outs;
2130     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2131 
2132     // Analyze operands of the call, assigning locations to each operand.
2133     SmallVector<CCValAssign, 16> ValLocs;
2134     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2135     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2136                                                  F.isVarArg()));
2137 
2138     const Value *RV = Ret->getOperand(0);
2139     unsigned Reg = getRegForValue(RV);
2140     if (Reg == 0)
2141       return false;
2142 
2143     // Only handle a single return value for now.
2144     if (ValLocs.size() != 1)
2145       return false;
2146 
2147     CCValAssign &VA = ValLocs[0];
2148 
2149     // Don't bother handling odd stuff for now.
2150     if (VA.getLocInfo() != CCValAssign::Full)
2151       return false;
2152     // Only handle register returns for now.
2153     if (!VA.isRegLoc())
2154       return false;
2155 
2156     unsigned SrcReg = Reg + VA.getValNo();
2157     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2158     if (!RVEVT.isSimple()) return false;
2159     MVT RVVT = RVEVT.getSimpleVT();
2160     MVT DestVT = VA.getValVT();
2161     // Special handling for extended integers.
2162     if (RVVT != DestVT) {
2163       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2164         return false;
2165 
2166       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2167 
2168       // Perform extension if flagged as either zext or sext.  Otherwise, do
2169       // nothing.
2170       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2171         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2172         if (SrcReg == 0) return false;
2173       }
2174     }
2175 
2176     // Make the copy.
2177     unsigned DstReg = VA.getLocReg();
2178     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2179     // Avoid a cross-class copy. This is very unlikely.
2180     if (!SrcRC->contains(DstReg))
2181       return false;
2182     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2183             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2184 
2185     // Add register to return instruction.
2186     RetRegs.push_back(VA.getLocReg());
2187   }
2188 
2189   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2190   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2191                                     TII.get(RetOpc));
2192   AddOptionalDefs(MIB);
2193   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2194     MIB.addReg(RetRegs[i], RegState::Implicit);
2195   return true;
2196 }
2197 
2198 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2199   if (UseReg)
2200     return isThumb2 ? ARM::tBLXr : ARM::BLX;
2201   else
2202     return isThumb2 ? ARM::tBL : ARM::BL;
2203 }
2204 
2205 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2206   // Manually compute the global's type to avoid building it when unnecessary.
2207   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2208   EVT LCREVT = TLI.getValueType(DL, GVTy);
2209   if (!LCREVT.isSimple()) return 0;
2210 
2211   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2212                                        GlobalValue::ExternalLinkage, nullptr,
2213                                        Name);
2214   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2215   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2216 }
2217 
2218 // A quick function that will emit a call for a named libcall in F with the
2219 // vector of passed arguments for the Instruction in I. We can assume that we
2220 // can emit a call for any libcall we can produce. This is an abridged version
2221 // of the full call infrastructure since we won't need to worry about things
2222 // like computed function pointers or strange arguments at call sites.
2223 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2224 // with X86.
2225 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2226   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2227 
2228   // Handle *simple* calls for now.
2229   Type *RetTy = I->getType();
2230   MVT RetVT;
2231   if (RetTy->isVoidTy())
2232     RetVT = MVT::isVoid;
2233   else if (!isTypeLegal(RetTy, RetVT))
2234     return false;
2235 
2236   // Can't handle non-double multi-reg retvals.
2237   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2238     SmallVector<CCValAssign, 16> RVLocs;
2239     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2240     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2241     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2242       return false;
2243   }
2244 
2245   // Set up the argument vectors.
2246   SmallVector<Value*, 8> Args;
2247   SmallVector<unsigned, 8> ArgRegs;
2248   SmallVector<MVT, 8> ArgVTs;
2249   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2250   Args.reserve(I->getNumOperands());
2251   ArgRegs.reserve(I->getNumOperands());
2252   ArgVTs.reserve(I->getNumOperands());
2253   ArgFlags.reserve(I->getNumOperands());
2254   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2255     Value *Op = I->getOperand(i);
2256     unsigned Arg = getRegForValue(Op);
2257     if (Arg == 0) return false;
2258 
2259     Type *ArgTy = Op->getType();
2260     MVT ArgVT;
2261     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2262 
2263     ISD::ArgFlagsTy Flags;
2264     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2265     Flags.setOrigAlign(OriginalAlignment);
2266 
2267     Args.push_back(Op);
2268     ArgRegs.push_back(Arg);
2269     ArgVTs.push_back(ArgVT);
2270     ArgFlags.push_back(Flags);
2271   }
2272 
2273   // Handle the arguments now that we've gotten them.
2274   SmallVector<unsigned, 4> RegArgs;
2275   unsigned NumBytes;
2276   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2277                        RegArgs, CC, NumBytes, false))
2278     return false;
2279 
2280   unsigned CalleeReg = 0;
2281   if (Subtarget->genLongCalls()) {
2282     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2283     if (CalleeReg == 0) return false;
2284   }
2285 
2286   // Issue the call.
2287   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2288   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2289                                     DbgLoc, TII.get(CallOpc));
2290   // BL / BLX don't take a predicate, but tBL / tBLX do.
2291   if (isThumb2)
2292     AddDefaultPred(MIB);
2293   if (Subtarget->genLongCalls())
2294     MIB.addReg(CalleeReg);
2295   else
2296     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2297 
2298   // Add implicit physical register uses to the call.
2299   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2300     MIB.addReg(RegArgs[i], RegState::Implicit);
2301 
2302   // Add a register mask with the call-preserved registers.
2303   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2304   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2305 
2306   // Finish off the call including any return values.
2307   SmallVector<unsigned, 4> UsedRegs;
2308   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2309 
2310   // Set all unused physreg defs as dead.
2311   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2312 
2313   return true;
2314 }
2315 
2316 bool ARMFastISel::SelectCall(const Instruction *I,
2317                              const char *IntrMemName = nullptr) {
2318   const CallInst *CI = cast<CallInst>(I);
2319   const Value *Callee = CI->getCalledValue();
2320 
2321   // Can't handle inline asm.
2322   if (isa<InlineAsm>(Callee)) return false;
2323 
2324   // Allow SelectionDAG isel to handle tail calls.
2325   if (CI->isTailCall()) return false;
2326 
2327   // Check the calling convention.
2328   ImmutableCallSite CS(CI);
2329   CallingConv::ID CC = CS.getCallingConv();
2330 
2331   // TODO: Avoid some calling conventions?
2332 
2333   FunctionType *FTy = CS.getFunctionType();
2334   bool isVarArg = FTy->isVarArg();
2335 
2336   // Handle *simple* calls for now.
2337   Type *RetTy = I->getType();
2338   MVT RetVT;
2339   if (RetTy->isVoidTy())
2340     RetVT = MVT::isVoid;
2341   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2342            RetVT != MVT::i8  && RetVT != MVT::i1)
2343     return false;
2344 
2345   // Can't handle non-double multi-reg retvals.
2346   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2347       RetVT != MVT::i16 && RetVT != MVT::i32) {
2348     SmallVector<CCValAssign, 16> RVLocs;
2349     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2350     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2351     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2352       return false;
2353   }
2354 
2355   // Set up the argument vectors.
2356   SmallVector<Value*, 8> Args;
2357   SmallVector<unsigned, 8> ArgRegs;
2358   SmallVector<MVT, 8> ArgVTs;
2359   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2360   unsigned arg_size = CS.arg_size();
2361   Args.reserve(arg_size);
2362   ArgRegs.reserve(arg_size);
2363   ArgVTs.reserve(arg_size);
2364   ArgFlags.reserve(arg_size);
2365   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2366        i != e; ++i) {
2367     // If we're lowering a memory intrinsic instead of a regular call, skip the
2368     // last two arguments, which shouldn't be passed to the underlying function.
2369     if (IntrMemName && e-i <= 2)
2370       break;
2371 
2372     ISD::ArgFlagsTy Flags;
2373     unsigned AttrInd = i - CS.arg_begin() + 1;
2374     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2375       Flags.setSExt();
2376     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2377       Flags.setZExt();
2378 
2379     // FIXME: Only handle *easy* calls for now.
2380     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2381         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2382         CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) ||
2383         CS.paramHasAttr(AttrInd, Attribute::SwiftError) ||
2384         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2385         CS.paramHasAttr(AttrInd, Attribute::ByVal))
2386       return false;
2387 
2388     Type *ArgTy = (*i)->getType();
2389     MVT ArgVT;
2390     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2391         ArgVT != MVT::i1)
2392       return false;
2393 
2394     unsigned Arg = getRegForValue(*i);
2395     if (Arg == 0)
2396       return false;
2397 
2398     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2399     Flags.setOrigAlign(OriginalAlignment);
2400 
2401     Args.push_back(*i);
2402     ArgRegs.push_back(Arg);
2403     ArgVTs.push_back(ArgVT);
2404     ArgFlags.push_back(Flags);
2405   }
2406 
2407   // Handle the arguments now that we've gotten them.
2408   SmallVector<unsigned, 4> RegArgs;
2409   unsigned NumBytes;
2410   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2411                        RegArgs, CC, NumBytes, isVarArg))
2412     return false;
2413 
2414   bool UseReg = false;
2415   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2416   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2417 
2418   unsigned CalleeReg = 0;
2419   if (UseReg) {
2420     if (IntrMemName)
2421       CalleeReg = getLibcallReg(IntrMemName);
2422     else
2423       CalleeReg = getRegForValue(Callee);
2424 
2425     if (CalleeReg == 0) return false;
2426   }
2427 
2428   // Issue the call.
2429   unsigned CallOpc = ARMSelectCallOp(UseReg);
2430   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2431                                     DbgLoc, TII.get(CallOpc));
2432 
2433   unsigned char OpFlags = 0;
2434 
2435   // Add MO_PLT for global address or external symbol in the PIC relocation
2436   // model.
2437   if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
2438     OpFlags = ARMII::MO_PLT;
2439 
2440   // ARM calls don't take a predicate, but tBL / tBLX do.
2441   if(isThumb2)
2442     AddDefaultPred(MIB);
2443   if (UseReg)
2444     MIB.addReg(CalleeReg);
2445   else if (!IntrMemName)
2446     MIB.addGlobalAddress(GV, 0, OpFlags);
2447   else
2448     MIB.addExternalSymbol(IntrMemName, OpFlags);
2449 
2450   // Add implicit physical register uses to the call.
2451   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2452     MIB.addReg(RegArgs[i], RegState::Implicit);
2453 
2454   // Add a register mask with the call-preserved registers.
2455   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2456   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2457 
2458   // Finish off the call including any return values.
2459   SmallVector<unsigned, 4> UsedRegs;
2460   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2461     return false;
2462 
2463   // Set all unused physreg defs as dead.
2464   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2465 
2466   return true;
2467 }
2468 
2469 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2470   return Len <= 16;
2471 }
2472 
2473 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2474                                         uint64_t Len, unsigned Alignment) {
2475   // Make sure we don't bloat code by inlining very large memcpy's.
2476   if (!ARMIsMemCpySmall(Len))
2477     return false;
2478 
2479   while (Len) {
2480     MVT VT;
2481     if (!Alignment || Alignment >= 4) {
2482       if (Len >= 4)
2483         VT = MVT::i32;
2484       else if (Len >= 2)
2485         VT = MVT::i16;
2486       else {
2487         assert (Len == 1 && "Expected a length of 1!");
2488         VT = MVT::i8;
2489       }
2490     } else {
2491       // Bound based on alignment.
2492       if (Len >= 2 && Alignment == 2)
2493         VT = MVT::i16;
2494       else {
2495         VT = MVT::i8;
2496       }
2497     }
2498 
2499     bool RV;
2500     unsigned ResultReg;
2501     RV = ARMEmitLoad(VT, ResultReg, Src);
2502     assert (RV == true && "Should be able to handle this load.");
2503     RV = ARMEmitStore(VT, ResultReg, Dest);
2504     assert (RV == true && "Should be able to handle this store.");
2505     (void)RV;
2506 
2507     unsigned Size = VT.getSizeInBits()/8;
2508     Len -= Size;
2509     Dest.Offset += Size;
2510     Src.Offset += Size;
2511   }
2512 
2513   return true;
2514 }
2515 
2516 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2517   // FIXME: Handle more intrinsics.
2518   switch (I.getIntrinsicID()) {
2519   default: return false;
2520   case Intrinsic::frameaddress: {
2521     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2522     MFI->setFrameAddressIsTaken(true);
2523 
2524     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2525     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2526                                              : &ARM::GPRRegClass;
2527 
2528     const ARMBaseRegisterInfo *RegInfo =
2529         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2530     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2531     unsigned SrcReg = FramePtr;
2532 
2533     // Recursively load frame address
2534     // ldr r0 [fp]
2535     // ldr r0 [r0]
2536     // ldr r0 [r0]
2537     // ...
2538     unsigned DestReg;
2539     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2540     while (Depth--) {
2541       DestReg = createResultReg(RC);
2542       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2543                               TII.get(LdrOpc), DestReg)
2544                       .addReg(SrcReg).addImm(0));
2545       SrcReg = DestReg;
2546     }
2547     updateValueMap(&I, SrcReg);
2548     return true;
2549   }
2550   case Intrinsic::memcpy:
2551   case Intrinsic::memmove: {
2552     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2553     // Don't handle volatile.
2554     if (MTI.isVolatile())
2555       return false;
2556 
2557     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2558     // we would emit dead code because we don't currently handle memmoves.
2559     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2560     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2561       // Small memcpy's are common enough that we want to do them without a call
2562       // if possible.
2563       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2564       if (ARMIsMemCpySmall(Len)) {
2565         Address Dest, Src;
2566         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2567             !ARMComputeAddress(MTI.getRawSource(), Src))
2568           return false;
2569         unsigned Alignment = MTI.getAlignment();
2570         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2571           return true;
2572       }
2573     }
2574 
2575     if (!MTI.getLength()->getType()->isIntegerTy(32))
2576       return false;
2577 
2578     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2579       return false;
2580 
2581     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2582     return SelectCall(&I, IntrMemName);
2583   }
2584   case Intrinsic::memset: {
2585     const MemSetInst &MSI = cast<MemSetInst>(I);
2586     // Don't handle volatile.
2587     if (MSI.isVolatile())
2588       return false;
2589 
2590     if (!MSI.getLength()->getType()->isIntegerTy(32))
2591       return false;
2592 
2593     if (MSI.getDestAddressSpace() > 255)
2594       return false;
2595 
2596     return SelectCall(&I, "memset");
2597   }
2598   case Intrinsic::trap: {
2599     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2600       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2601     return true;
2602   }
2603   }
2604 }
2605 
2606 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2607   // The high bits for a type smaller than the register size are assumed to be
2608   // undefined.
2609   Value *Op = I->getOperand(0);
2610 
2611   EVT SrcVT, DestVT;
2612   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2613   DestVT = TLI.getValueType(DL, I->getType(), true);
2614 
2615   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2616     return false;
2617   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2618     return false;
2619 
2620   unsigned SrcReg = getRegForValue(Op);
2621   if (!SrcReg) return false;
2622 
2623   // Because the high bits are undefined, a truncate doesn't generate
2624   // any code.
2625   updateValueMap(I, SrcReg);
2626   return true;
2627 }
2628 
2629 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2630                                     bool isZExt) {
2631   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2632     return 0;
2633   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2634     return 0;
2635 
2636   // Table of which combinations can be emitted as a single instruction,
2637   // and which will require two.
2638   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2639     //            ARM                     Thumb
2640     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2641     //    ext:     s  z      s  z          s  z      s  z
2642     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2643     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2644     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2645   };
2646 
2647   // Target registers for:
2648   //  - For ARM can never be PC.
2649   //  - For 16-bit Thumb are restricted to lower 8 registers.
2650   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2651   static const TargetRegisterClass *RCTbl[2][2] = {
2652     // Instructions: Two                     Single
2653     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2654     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2655   };
2656 
2657   // Table governing the instruction(s) to be emitted.
2658   static const struct InstructionTable {
2659     uint32_t Opc   : 16;
2660     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2661     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2662     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2663   } IT[2][2][3][2] = {
2664     { // Two instructions (first is left shift, second is in this table).
2665       { // ARM                Opc           S  Shift             Imm
2666         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2667         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2668         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2669         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2670         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2671         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2672       },
2673       { // Thumb              Opc           S  Shift             Imm
2674         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2675         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2676         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2677         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2678         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2679         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2680       }
2681     },
2682     { // Single instruction.
2683       { // ARM                Opc           S  Shift             Imm
2684         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2685         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2686         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2687         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2688         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2689         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2690       },
2691       { // Thumb              Opc           S  Shift             Imm
2692         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2693         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2694         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2695         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2696         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2697         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2698       }
2699     }
2700   };
2701 
2702   unsigned SrcBits = SrcVT.getSizeInBits();
2703   unsigned DestBits = DestVT.getSizeInBits();
2704   (void) DestBits;
2705   assert((SrcBits < DestBits) && "can only extend to larger types");
2706   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2707          "other sizes unimplemented");
2708   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2709          "other sizes unimplemented");
2710 
2711   bool hasV6Ops = Subtarget->hasV6Ops();
2712   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2713   assert((Bitness < 3) && "sanity-check table bounds");
2714 
2715   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2716   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2717   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2718   unsigned Opc = ITP->Opc;
2719   assert(ARM::KILL != Opc && "Invalid table entry");
2720   unsigned hasS = ITP->hasS;
2721   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2722   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2723          "only MOVsi has shift operand addressing mode");
2724   unsigned Imm = ITP->Imm;
2725 
2726   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2727   bool setsCPSR = &ARM::tGPRRegClass == RC;
2728   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2729   unsigned ResultReg;
2730   // MOVsi encodes shift and immediate in shift operand addressing mode.
2731   // The following condition has the same value when emitting two
2732   // instruction sequences: both are shifts.
2733   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2734 
2735   // Either one or two instructions are emitted.
2736   // They're always of the form:
2737   //   dst = in OP imm
2738   // CPSR is set only by 16-bit Thumb instructions.
2739   // Predicate, if any, is AL.
2740   // S bit, if available, is always 0.
2741   // When two are emitted the first's result will feed as the second's input,
2742   // that value is then dead.
2743   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2744   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2745     ResultReg = createResultReg(RC);
2746     bool isLsl = (0 == Instr) && !isSingleInstr;
2747     unsigned Opcode = isLsl ? LSLOpc : Opc;
2748     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2749     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2750     bool isKill = 1 == Instr;
2751     MachineInstrBuilder MIB = BuildMI(
2752         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2753     if (setsCPSR)
2754       MIB.addReg(ARM::CPSR, RegState::Define);
2755     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2756     AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2757     if (hasS)
2758       AddDefaultCC(MIB);
2759     // Second instruction consumes the first's result.
2760     SrcReg = ResultReg;
2761   }
2762 
2763   return ResultReg;
2764 }
2765 
2766 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2767   // On ARM, in general, integer casts don't involve legal types; this code
2768   // handles promotable integers.
2769   Type *DestTy = I->getType();
2770   Value *Src = I->getOperand(0);
2771   Type *SrcTy = Src->getType();
2772 
2773   bool isZExt = isa<ZExtInst>(I);
2774   unsigned SrcReg = getRegForValue(Src);
2775   if (!SrcReg) return false;
2776 
2777   EVT SrcEVT, DestEVT;
2778   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2779   DestEVT = TLI.getValueType(DL, DestTy, true);
2780   if (!SrcEVT.isSimple()) return false;
2781   if (!DestEVT.isSimple()) return false;
2782 
2783   MVT SrcVT = SrcEVT.getSimpleVT();
2784   MVT DestVT = DestEVT.getSimpleVT();
2785   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2786   if (ResultReg == 0) return false;
2787   updateValueMap(I, ResultReg);
2788   return true;
2789 }
2790 
2791 bool ARMFastISel::SelectShift(const Instruction *I,
2792                               ARM_AM::ShiftOpc ShiftTy) {
2793   // We handle thumb2 mode by target independent selector
2794   // or SelectionDAG ISel.
2795   if (isThumb2)
2796     return false;
2797 
2798   // Only handle i32 now.
2799   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2800   if (DestVT != MVT::i32)
2801     return false;
2802 
2803   unsigned Opc = ARM::MOVsr;
2804   unsigned ShiftImm;
2805   Value *Src2Value = I->getOperand(1);
2806   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2807     ShiftImm = CI->getZExtValue();
2808 
2809     // Fall back to selection DAG isel if the shift amount
2810     // is zero or greater than the width of the value type.
2811     if (ShiftImm == 0 || ShiftImm >=32)
2812       return false;
2813 
2814     Opc = ARM::MOVsi;
2815   }
2816 
2817   Value *Src1Value = I->getOperand(0);
2818   unsigned Reg1 = getRegForValue(Src1Value);
2819   if (Reg1 == 0) return false;
2820 
2821   unsigned Reg2 = 0;
2822   if (Opc == ARM::MOVsr) {
2823     Reg2 = getRegForValue(Src2Value);
2824     if (Reg2 == 0) return false;
2825   }
2826 
2827   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2828   if(ResultReg == 0) return false;
2829 
2830   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2831                                     TII.get(Opc), ResultReg)
2832                             .addReg(Reg1);
2833 
2834   if (Opc == ARM::MOVsi)
2835     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2836   else if (Opc == ARM::MOVsr) {
2837     MIB.addReg(Reg2);
2838     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2839   }
2840 
2841   AddOptionalDefs(MIB);
2842   updateValueMap(I, ResultReg);
2843   return true;
2844 }
2845 
2846 // TODO: SoftFP support.
2847 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2848 
2849   switch (I->getOpcode()) {
2850     case Instruction::Load:
2851       return SelectLoad(I);
2852     case Instruction::Store:
2853       return SelectStore(I);
2854     case Instruction::Br:
2855       return SelectBranch(I);
2856     case Instruction::IndirectBr:
2857       return SelectIndirectBr(I);
2858     case Instruction::ICmp:
2859     case Instruction::FCmp:
2860       return SelectCmp(I);
2861     case Instruction::FPExt:
2862       return SelectFPExt(I);
2863     case Instruction::FPTrunc:
2864       return SelectFPTrunc(I);
2865     case Instruction::SIToFP:
2866       return SelectIToFP(I, /*isSigned*/ true);
2867     case Instruction::UIToFP:
2868       return SelectIToFP(I, /*isSigned*/ false);
2869     case Instruction::FPToSI:
2870       return SelectFPToI(I, /*isSigned*/ true);
2871     case Instruction::FPToUI:
2872       return SelectFPToI(I, /*isSigned*/ false);
2873     case Instruction::Add:
2874       return SelectBinaryIntOp(I, ISD::ADD);
2875     case Instruction::Or:
2876       return SelectBinaryIntOp(I, ISD::OR);
2877     case Instruction::Sub:
2878       return SelectBinaryIntOp(I, ISD::SUB);
2879     case Instruction::FAdd:
2880       return SelectBinaryFPOp(I, ISD::FADD);
2881     case Instruction::FSub:
2882       return SelectBinaryFPOp(I, ISD::FSUB);
2883     case Instruction::FMul:
2884       return SelectBinaryFPOp(I, ISD::FMUL);
2885     case Instruction::SDiv:
2886       return SelectDiv(I, /*isSigned*/ true);
2887     case Instruction::UDiv:
2888       return SelectDiv(I, /*isSigned*/ false);
2889     case Instruction::SRem:
2890       return SelectRem(I, /*isSigned*/ true);
2891     case Instruction::URem:
2892       return SelectRem(I, /*isSigned*/ false);
2893     case Instruction::Call:
2894       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2895         return SelectIntrinsicCall(*II);
2896       return SelectCall(I);
2897     case Instruction::Select:
2898       return SelectSelect(I);
2899     case Instruction::Ret:
2900       return SelectRet(I);
2901     case Instruction::Trunc:
2902       return SelectTrunc(I);
2903     case Instruction::ZExt:
2904     case Instruction::SExt:
2905       return SelectIntExt(I);
2906     case Instruction::Shl:
2907       return SelectShift(I, ARM_AM::lsl);
2908     case Instruction::LShr:
2909       return SelectShift(I, ARM_AM::lsr);
2910     case Instruction::AShr:
2911       return SelectShift(I, ARM_AM::asr);
2912     default: break;
2913   }
2914   return false;
2915 }
2916 
2917 namespace {
2918 // This table describes sign- and zero-extend instructions which can be
2919 // folded into a preceding load. All of these extends have an immediate
2920 // (sometimes a mask and sometimes a shift) that's applied after
2921 // extension.
2922 const struct FoldableLoadExtendsStruct {
2923   uint16_t Opc[2];  // ARM, Thumb.
2924   uint8_t ExpectedImm;
2925   uint8_t isZExt     : 1;
2926   uint8_t ExpectedVT : 7;
2927 } FoldableLoadExtends[] = {
2928   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2929   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2930   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2931   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2932   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2933 };
2934 }
2935 
2936 /// \brief The specified machine instr operand is a vreg, and that
2937 /// vreg is being provided by the specified load instruction.  If possible,
2938 /// try to fold the load as an operand to the instruction, returning true if
2939 /// successful.
2940 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2941                                       const LoadInst *LI) {
2942   // Verify we have a legal type before going any further.
2943   MVT VT;
2944   if (!isLoadTypeLegal(LI->getType(), VT))
2945     return false;
2946 
2947   // Combine load followed by zero- or sign-extend.
2948   // ldrb r1, [r0]       ldrb r1, [r0]
2949   // uxtb r2, r1     =>
2950   // mov  r3, r2         mov  r3, r1
2951   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2952     return false;
2953   const uint64_t Imm = MI->getOperand(2).getImm();
2954 
2955   bool Found = false;
2956   bool isZExt;
2957   for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2958        i != e; ++i) {
2959     if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2960         (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
2961         MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
2962       Found = true;
2963       isZExt = FoldableLoadExtends[i].isZExt;
2964     }
2965   }
2966   if (!Found) return false;
2967 
2968   // See if we can handle this address.
2969   Address Addr;
2970   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2971 
2972   unsigned ResultReg = MI->getOperand(0).getReg();
2973   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2974     return false;
2975   MI->eraseFromParent();
2976   return true;
2977 }
2978 
2979 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2980                                      unsigned Align, MVT VT) {
2981   bool UseGOT_PREL =
2982       !(GV->hasHiddenVisibility() || GV->hasLocalLinkage());
2983 
2984   LLVMContext *Context = &MF->getFunction()->getContext();
2985   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2986   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2987   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2988       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2989       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2990       /*AddCurrentAddress=*/UseGOT_PREL);
2991 
2992   unsigned ConstAlign =
2993       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2994   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2995 
2996   unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2997   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2998   MachineInstrBuilder MIB =
2999       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
3000           .addConstantPoolIndex(Idx);
3001   if (Opc == ARM::LDRcp)
3002     MIB.addImm(0);
3003   AddDefaultPred(MIB);
3004 
3005   // Fix the address by adding pc.
3006   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
3007   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
3008                                                           : ARM::PICADD;
3009   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
3010   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
3011             .addReg(TempReg)
3012             .addImm(ARMPCLabelIndex);
3013   if (!Subtarget->isThumb())
3014     AddDefaultPred(MIB);
3015 
3016   if (UseGOT_PREL && Subtarget->isThumb()) {
3017     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
3018     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3019                   TII.get(ARM::t2LDRi12), NewDestReg)
3020               .addReg(DestReg)
3021               .addImm(0);
3022     DestReg = NewDestReg;
3023     AddOptionalDefs(MIB);
3024   }
3025   return DestReg;
3026 }
3027 
3028 bool ARMFastISel::fastLowerArguments() {
3029   if (!FuncInfo.CanLowerReturn)
3030     return false;
3031 
3032   const Function *F = FuncInfo.Fn;
3033   if (F->isVarArg())
3034     return false;
3035 
3036   CallingConv::ID CC = F->getCallingConv();
3037   switch (CC) {
3038   default:
3039     return false;
3040   case CallingConv::Fast:
3041   case CallingConv::C:
3042   case CallingConv::ARM_AAPCS_VFP:
3043   case CallingConv::ARM_AAPCS:
3044   case CallingConv::ARM_APCS:
3045   case CallingConv::Swift:
3046     break;
3047   }
3048 
3049   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3050   // which are passed in r0 - r3.
3051   unsigned Idx = 1;
3052   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3053        I != E; ++I, ++Idx) {
3054     if (Idx > 4)
3055       return false;
3056 
3057     if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3058         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
3059         F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
3060         F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
3061         F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
3062       return false;
3063 
3064     Type *ArgTy = I->getType();
3065     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3066       return false;
3067 
3068     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3069     if (!ArgVT.isSimple()) return false;
3070     switch (ArgVT.getSimpleVT().SimpleTy) {
3071     case MVT::i8:
3072     case MVT::i16:
3073     case MVT::i32:
3074       break;
3075     default:
3076       return false;
3077     }
3078   }
3079 
3080 
3081   static const MCPhysReg GPRArgRegs[] = {
3082     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3083   };
3084 
3085   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3086   Idx = 0;
3087   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3088        I != E; ++I, ++Idx) {
3089     unsigned SrcReg = GPRArgRegs[Idx];
3090     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3091     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3092     // Without this, EmitLiveInCopies may eliminate the livein if its only
3093     // use is a bitcast (which isn't turned into an instruction).
3094     unsigned ResultReg = createResultReg(RC);
3095     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3096             TII.get(TargetOpcode::COPY),
3097             ResultReg).addReg(DstReg, getKillRegState(true));
3098     updateValueMap(&*I, ResultReg);
3099   }
3100 
3101   return true;
3102 }
3103 
3104 namespace llvm {
3105   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3106                                 const TargetLibraryInfo *libInfo) {
3107     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3108       return new ARMFastISel(funcInfo, libInfo);
3109 
3110     return nullptr;
3111   }
3112 }
3113