1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMBaseRegisterInfo.h"
19 #include "ARMCallingConv.h"
20 #include "ARMConstantPoolValue.h"
21 #include "ARMISelLowering.h"
22 #include "ARMMachineFunctionInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FastISel.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineMemOperand.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/MachineValueType.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/ValueTypes.h"
45 #include "llvm/IR/Argument.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/CallSite.h"
48 #include "llvm/IR/CallingConv.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/GlobalVariable.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/MC/MCInstrDesc.h"
67 #include "llvm/MC/MCRegisterInfo.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Target/TargetInstrInfo.h"
73 #include "llvm/Target/TargetLowering.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include "llvm/Target/TargetOptions.h"
76 #include <cassert>
77 #include <cstdint>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 namespace {
83 
84   // All possible address modes, plus some.
85   typedef struct Address {
86     enum {
87       RegBase,
88       FrameIndexBase
89     } BaseType = RegBase;
90 
91     union {
92       unsigned Reg;
93       int FI;
94     } Base;
95 
96     int Offset = 0;
97 
98     // Innocuous defaults for our address.
99     Address() {
100       Base.Reg = 0;
101     }
102   } Address;
103 
104 class ARMFastISel final : public FastISel {
105   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
106   /// make the right decision when generating code for different targets.
107   const ARMSubtarget *Subtarget;
108   Module &M;
109   const TargetMachine &TM;
110   const TargetInstrInfo &TII;
111   const TargetLowering &TLI;
112   ARMFunctionInfo *AFI;
113 
114   // Convenience variables to avoid some queries.
115   bool isThumb2;
116   LLVMContext *Context;
117 
118   public:
119     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
120                          const TargetLibraryInfo *libInfo)
121         : FastISel(funcInfo, libInfo),
122           Subtarget(
123               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
124           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
125           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
126           TLI(*Subtarget->getTargetLowering()) {
127       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
128       isThumb2 = AFI->isThumbFunction();
129       Context = &funcInfo.Fn->getContext();
130     }
131 
132   private:
133     // Code from FastISel.cpp.
134 
135     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
136                             const TargetRegisterClass *RC,
137                             unsigned Op0, bool Op0IsKill);
138     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
139                              const TargetRegisterClass *RC,
140                              unsigned Op0, bool Op0IsKill,
141                              unsigned Op1, bool Op1IsKill);
142     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
143                              const TargetRegisterClass *RC,
144                              unsigned Op0, bool Op0IsKill,
145                              uint64_t Imm);
146     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
147                             const TargetRegisterClass *RC,
148                             uint64_t Imm);
149 
150     // Backend specific FastISel code.
151 
152     bool fastSelectInstruction(const Instruction *I) override;
153     unsigned fastMaterializeConstant(const Constant *C) override;
154     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
155     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
156                              const LoadInst *LI) override;
157     bool fastLowerArguments() override;
158 
159   #include "ARMGenFastISel.inc"
160 
161     // Instruction selection routines.
162 
163     bool SelectLoad(const Instruction *I);
164     bool SelectStore(const Instruction *I);
165     bool SelectBranch(const Instruction *I);
166     bool SelectIndirectBr(const Instruction *I);
167     bool SelectCmp(const Instruction *I);
168     bool SelectFPExt(const Instruction *I);
169     bool SelectFPTrunc(const Instruction *I);
170     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
171     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
172     bool SelectIToFP(const Instruction *I, bool isSigned);
173     bool SelectFPToI(const Instruction *I, bool isSigned);
174     bool SelectDiv(const Instruction *I, bool isSigned);
175     bool SelectRem(const Instruction *I, bool isSigned);
176     bool SelectCall(const Instruction *I, const char *IntrMemName);
177     bool SelectIntrinsicCall(const IntrinsicInst &I);
178     bool SelectSelect(const Instruction *I);
179     bool SelectRet(const Instruction *I);
180     bool SelectTrunc(const Instruction *I);
181     bool SelectIntExt(const Instruction *I);
182     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
183 
184     // Utility routines.
185 
186     bool isPositionIndependent() const;
187     bool isTypeLegal(Type *Ty, MVT &VT);
188     bool isLoadTypeLegal(Type *Ty, MVT &VT);
189     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
190                     bool isZExt, bool isEquality);
191     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
192                      unsigned Alignment = 0, bool isZExt = true,
193                      bool allocReg = true);
194     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
195                       unsigned Alignment = 0);
196     bool ARMComputeAddress(const Value *Obj, Address &Addr);
197     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
198     bool ARMIsMemCpySmall(uint64_t Len);
199     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
200                                unsigned Alignment);
201     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
202     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
203     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
204     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
205     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
206     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
207     unsigned ARMSelectCallOp(bool UseReg);
208     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
209 
210     const TargetLowering *getTargetLowering() { return &TLI; }
211 
212     // Call handling routines.
213 
214     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
215                                   bool Return,
216                                   bool isVarArg);
217     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
218                          SmallVectorImpl<unsigned> &ArgRegs,
219                          SmallVectorImpl<MVT> &ArgVTs,
220                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
221                          SmallVectorImpl<unsigned> &RegArgs,
222                          CallingConv::ID CC,
223                          unsigned &NumBytes,
224                          bool isVarArg);
225     unsigned getLibcallReg(const Twine &Name);
226     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
227                     const Instruction *I, CallingConv::ID CC,
228                     unsigned &NumBytes, bool isVarArg);
229     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
230 
231     // OptionalDef handling routines.
232 
233     bool isARMNEONPred(const MachineInstr *MI);
234     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
235     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
236     void AddLoadStoreOperands(MVT VT, Address &Addr,
237                               const MachineInstrBuilder &MIB,
238                               MachineMemOperand::Flags Flags, bool useAM3);
239 };
240 
241 } // end anonymous namespace
242 
243 #include "ARMGenCallingConv.inc"
244 
245 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
246 // we don't care about implicit defs here, just places we'll need to add a
247 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
248 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
249   if (!MI->hasOptionalDef())
250     return false;
251 
252   // Look to see if our OptionalDef is defining CPSR or CCR.
253   for (const MachineOperand &MO : MI->operands()) {
254     if (!MO.isReg() || !MO.isDef()) continue;
255     if (MO.getReg() == ARM::CPSR)
256       *CPSR = true;
257   }
258   return true;
259 }
260 
261 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
262   const MCInstrDesc &MCID = MI->getDesc();
263 
264   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
265   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
266        AFI->isThumb2Function())
267     return MI->isPredicable();
268 
269   for (const MCOperandInfo &opInfo : MCID.operands())
270     if (opInfo.isPredicate())
271       return true;
272 
273   return false;
274 }
275 
276 // If the machine is predicable go ahead and add the predicate operands, if
277 // it needs default CC operands add those.
278 // TODO: If we want to support thumb1 then we'll need to deal with optional
279 // CPSR defs that need to be added before the remaining operands. See s_cc_out
280 // for descriptions why.
281 const MachineInstrBuilder &
282 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
283   MachineInstr *MI = &*MIB;
284 
285   // Do we use a predicate? or...
286   // Are we NEON in ARM mode and have a predicate operand? If so, I know
287   // we're not predicable but add it anyways.
288   if (isARMNEONPred(MI))
289     MIB.add(predOps(ARMCC::AL));
290 
291   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
292   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
293   bool CPSR = false;
294   if (DefinesOptionalPredicate(MI, &CPSR))
295     MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
296   return MIB;
297 }
298 
299 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
300                                      const TargetRegisterClass *RC,
301                                      unsigned Op0, bool Op0IsKill) {
302   unsigned ResultReg = createResultReg(RC);
303   const MCInstrDesc &II = TII.get(MachineInstOpcode);
304 
305   // Make sure the input operand is sufficiently constrained to be legal
306   // for this instruction.
307   Op0 = constrainOperandRegClass(II, Op0, 1);
308   if (II.getNumDefs() >= 1) {
309     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
310                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
311   } else {
312     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
313                    .addReg(Op0, Op0IsKill * RegState::Kill));
314     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
315                    TII.get(TargetOpcode::COPY), ResultReg)
316                    .addReg(II.ImplicitDefs[0]));
317   }
318   return ResultReg;
319 }
320 
321 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
322                                       const TargetRegisterClass *RC,
323                                       unsigned Op0, bool Op0IsKill,
324                                       unsigned Op1, bool Op1IsKill) {
325   unsigned ResultReg = createResultReg(RC);
326   const MCInstrDesc &II = TII.get(MachineInstOpcode);
327 
328   // Make sure the input operands are sufficiently constrained to be legal
329   // for this instruction.
330   Op0 = constrainOperandRegClass(II, Op0, 1);
331   Op1 = constrainOperandRegClass(II, Op1, 2);
332 
333   if (II.getNumDefs() >= 1) {
334     AddOptionalDefs(
335         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
336             .addReg(Op0, Op0IsKill * RegState::Kill)
337             .addReg(Op1, Op1IsKill * RegState::Kill));
338   } else {
339     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
340                    .addReg(Op0, Op0IsKill * RegState::Kill)
341                    .addReg(Op1, Op1IsKill * RegState::Kill));
342     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
343                            TII.get(TargetOpcode::COPY), ResultReg)
344                    .addReg(II.ImplicitDefs[0]));
345   }
346   return ResultReg;
347 }
348 
349 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
350                                       const TargetRegisterClass *RC,
351                                       unsigned Op0, bool Op0IsKill,
352                                       uint64_t Imm) {
353   unsigned ResultReg = createResultReg(RC);
354   const MCInstrDesc &II = TII.get(MachineInstOpcode);
355 
356   // Make sure the input operand is sufficiently constrained to be legal
357   // for this instruction.
358   Op0 = constrainOperandRegClass(II, Op0, 1);
359   if (II.getNumDefs() >= 1) {
360     AddOptionalDefs(
361         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
362             .addReg(Op0, Op0IsKill * RegState::Kill)
363             .addImm(Imm));
364   } else {
365     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
366                    .addReg(Op0, Op0IsKill * RegState::Kill)
367                    .addImm(Imm));
368     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
369                            TII.get(TargetOpcode::COPY), ResultReg)
370                    .addReg(II.ImplicitDefs[0]));
371   }
372   return ResultReg;
373 }
374 
375 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
376                                      const TargetRegisterClass *RC,
377                                      uint64_t Imm) {
378   unsigned ResultReg = createResultReg(RC);
379   const MCInstrDesc &II = TII.get(MachineInstOpcode);
380 
381   if (II.getNumDefs() >= 1) {
382     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
383                             ResultReg).addImm(Imm));
384   } else {
385     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
386                    .addImm(Imm));
387     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
388                            TII.get(TargetOpcode::COPY), ResultReg)
389                    .addReg(II.ImplicitDefs[0]));
390   }
391   return ResultReg;
392 }
393 
394 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
395 // checks from the various callers.
396 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
397   if (VT == MVT::f64) return 0;
398 
399   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
400   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
401                           TII.get(ARM::VMOVSR), MoveReg)
402                   .addReg(SrcReg));
403   return MoveReg;
404 }
405 
406 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
407   if (VT == MVT::i64) return 0;
408 
409   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
410   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
411                           TII.get(ARM::VMOVRS), MoveReg)
412                   .addReg(SrcReg));
413   return MoveReg;
414 }
415 
416 // For double width floating point we need to materialize two constants
417 // (the high and the low) into integer registers then use a move to get
418 // the combined constant into an FP reg.
419 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
420   const APFloat Val = CFP->getValueAPF();
421   bool is64bit = VT == MVT::f64;
422 
423   // This checks to see if we can use VFP3 instructions to materialize
424   // a constant, otherwise we have to go through the constant pool.
425   if (TLI.isFPImmLegal(Val, VT)) {
426     int Imm;
427     unsigned Opc;
428     if (is64bit) {
429       Imm = ARM_AM::getFP64Imm(Val);
430       Opc = ARM::FCONSTD;
431     } else {
432       Imm = ARM_AM::getFP32Imm(Val);
433       Opc = ARM::FCONSTS;
434     }
435     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
436     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
437                             TII.get(Opc), DestReg).addImm(Imm));
438     return DestReg;
439   }
440 
441   // Require VFP2 for loading fp constants.
442   if (!Subtarget->hasVFP2()) return false;
443 
444   // MachineConstantPool wants an explicit alignment.
445   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
446   if (Align == 0) {
447     // TODO: Figure out if this is correct.
448     Align = DL.getTypeAllocSize(CFP->getType());
449   }
450   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
451   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
452   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
453 
454   // The extra reg is for addrmode5.
455   AddOptionalDefs(
456       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
457           .addConstantPoolIndex(Idx)
458           .addReg(0));
459   return DestReg;
460 }
461 
462 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
463   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
464     return 0;
465 
466   // If we can do this in a single instruction without a constant pool entry
467   // do so now.
468   const ConstantInt *CI = cast<ConstantInt>(C);
469   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
470     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
471     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
472       &ARM::GPRRegClass;
473     unsigned ImmReg = createResultReg(RC);
474     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
475                             TII.get(Opc), ImmReg)
476                     .addImm(CI->getZExtValue()));
477     return ImmReg;
478   }
479 
480   // Use MVN to emit negative constants.
481   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
482     unsigned Imm = (unsigned)~(CI->getSExtValue());
483     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
484       (ARM_AM::getSOImmVal(Imm) != -1);
485     if (UseImm) {
486       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
487       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
488                                                  &ARM::GPRRegClass;
489       unsigned ImmReg = createResultReg(RC);
490       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
491                               TII.get(Opc), ImmReg)
492                       .addImm(Imm));
493       return ImmReg;
494     }
495   }
496 
497   unsigned ResultReg = 0;
498   if (Subtarget->useMovt(*FuncInfo.MF))
499     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
500 
501   if (ResultReg)
502     return ResultReg;
503 
504   // Load from constant pool.  For now 32-bit only.
505   if (VT != MVT::i32)
506     return 0;
507 
508   // MachineConstantPool wants an explicit alignment.
509   unsigned Align = DL.getPrefTypeAlignment(C->getType());
510   if (Align == 0) {
511     // TODO: Figure out if this is correct.
512     Align = DL.getTypeAllocSize(C->getType());
513   }
514   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
515   ResultReg = createResultReg(TLI.getRegClassFor(VT));
516   if (isThumb2)
517     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
518                             TII.get(ARM::t2LDRpci), ResultReg)
519                       .addConstantPoolIndex(Idx));
520   else {
521     // The extra immediate is for addrmode2.
522     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
523     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
524                             TII.get(ARM::LDRcp), ResultReg)
525                       .addConstantPoolIndex(Idx)
526                       .addImm(0));
527   }
528   return ResultReg;
529 }
530 
531 bool ARMFastISel::isPositionIndependent() const {
532   return TLI.isPositionIndependent();
533 }
534 
535 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
536   // For now 32-bit only.
537   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
538 
539   // ROPI/RWPI not currently supported.
540   if (Subtarget->isROPI() || Subtarget->isRWPI())
541     return 0;
542 
543   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
544   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
545                                            : &ARM::GPRRegClass;
546   unsigned DestReg = createResultReg(RC);
547 
548   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
549   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
550   bool IsThreadLocal = GVar && GVar->isThreadLocal();
551   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
552 
553   bool IsPositionIndependent = isPositionIndependent();
554   // Use movw+movt when possible, it avoids constant pool entries.
555   // Non-darwin targets only support static movt relocations in FastISel.
556   if (Subtarget->useMovt(*FuncInfo.MF) &&
557       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
558     unsigned Opc;
559     unsigned char TF = 0;
560     if (Subtarget->isTargetMachO())
561       TF = ARMII::MO_NONLAZY;
562 
563     if (IsPositionIndependent)
564       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
565     else
566       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
567     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
568                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
569   } else {
570     // MachineConstantPool wants an explicit alignment.
571     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
572     if (Align == 0) {
573       // TODO: Figure out if this is correct.
574       Align = DL.getTypeAllocSize(GV->getType());
575     }
576 
577     if (Subtarget->isTargetELF() && IsPositionIndependent)
578       return ARMLowerPICELF(GV, Align, VT);
579 
580     // Grab index.
581     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
582     unsigned Id = AFI->createPICLabelUId();
583     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
584                                                                 ARMCP::CPValue,
585                                                                 PCAdj);
586     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
587 
588     // Load value.
589     MachineInstrBuilder MIB;
590     if (isThumb2) {
591       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
592       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
593                     DestReg).addConstantPoolIndex(Idx);
594       if (IsPositionIndependent)
595         MIB.addImm(Id);
596       AddOptionalDefs(MIB);
597     } else {
598       // The extra immediate is for addrmode2.
599       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
600       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
601                     TII.get(ARM::LDRcp), DestReg)
602                 .addConstantPoolIndex(Idx)
603                 .addImm(0);
604       AddOptionalDefs(MIB);
605 
606       if (IsPositionIndependent) {
607         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
608         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
609 
610         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
611                                           DbgLoc, TII.get(Opc), NewDestReg)
612                                   .addReg(DestReg)
613                                   .addImm(Id);
614         AddOptionalDefs(MIB);
615         return NewDestReg;
616       }
617     }
618   }
619 
620   if (IsIndirect) {
621     MachineInstrBuilder MIB;
622     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
623     if (isThumb2)
624       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
625                     TII.get(ARM::t2LDRi12), NewDestReg)
626             .addReg(DestReg)
627             .addImm(0);
628     else
629       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
630                     TII.get(ARM::LDRi12), NewDestReg)
631                 .addReg(DestReg)
632                 .addImm(0);
633     DestReg = NewDestReg;
634     AddOptionalDefs(MIB);
635   }
636 
637   return DestReg;
638 }
639 
640 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
641   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
642 
643   // Only handle simple types.
644   if (!CEVT.isSimple()) return 0;
645   MVT VT = CEVT.getSimpleVT();
646 
647   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
648     return ARMMaterializeFP(CFP, VT);
649   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
650     return ARMMaterializeGV(GV, VT);
651   else if (isa<ConstantInt>(C))
652     return ARMMaterializeInt(C, VT);
653 
654   return 0;
655 }
656 
657 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
658 
659 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
660   // Don't handle dynamic allocas.
661   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
662 
663   MVT VT;
664   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
665 
666   DenseMap<const AllocaInst*, int>::iterator SI =
667     FuncInfo.StaticAllocaMap.find(AI);
668 
669   // This will get lowered later into the correct offsets and registers
670   // via rewriteXFrameIndex.
671   if (SI != FuncInfo.StaticAllocaMap.end()) {
672     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
673     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
674     unsigned ResultReg = createResultReg(RC);
675     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
676 
677     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
678                             TII.get(Opc), ResultReg)
679                             .addFrameIndex(SI->second)
680                             .addImm(0));
681     return ResultReg;
682   }
683 
684   return 0;
685 }
686 
687 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
688   EVT evt = TLI.getValueType(DL, Ty, true);
689 
690   // Only handle simple types.
691   if (evt == MVT::Other || !evt.isSimple()) return false;
692   VT = evt.getSimpleVT();
693 
694   // Handle all legal types, i.e. a register that will directly hold this
695   // value.
696   return TLI.isTypeLegal(VT);
697 }
698 
699 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
700   if (isTypeLegal(Ty, VT)) return true;
701 
702   // If this is a type than can be sign or zero-extended to a basic operation
703   // go ahead and accept it now.
704   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
705     return true;
706 
707   return false;
708 }
709 
710 // Computes the address to get to an object.
711 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
712   // Some boilerplate from the X86 FastISel.
713   const User *U = nullptr;
714   unsigned Opcode = Instruction::UserOp1;
715   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
716     // Don't walk into other basic blocks unless the object is an alloca from
717     // another block, otherwise it may not have a virtual register assigned.
718     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
719         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
720       Opcode = I->getOpcode();
721       U = I;
722     }
723   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
724     Opcode = C->getOpcode();
725     U = C;
726   }
727 
728   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
729     if (Ty->getAddressSpace() > 255)
730       // Fast instruction selection doesn't support the special
731       // address spaces.
732       return false;
733 
734   switch (Opcode) {
735     default:
736     break;
737     case Instruction::BitCast:
738       // Look through bitcasts.
739       return ARMComputeAddress(U->getOperand(0), Addr);
740     case Instruction::IntToPtr:
741       // Look past no-op inttoptrs.
742       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
743           TLI.getPointerTy(DL))
744         return ARMComputeAddress(U->getOperand(0), Addr);
745       break;
746     case Instruction::PtrToInt:
747       // Look past no-op ptrtoints.
748       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
749         return ARMComputeAddress(U->getOperand(0), Addr);
750       break;
751     case Instruction::GetElementPtr: {
752       Address SavedAddr = Addr;
753       int TmpOffset = Addr.Offset;
754 
755       // Iterate through the GEP folding the constants into offsets where
756       // we can.
757       gep_type_iterator GTI = gep_type_begin(U);
758       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
759            i != e; ++i, ++GTI) {
760         const Value *Op = *i;
761         if (StructType *STy = GTI.getStructTypeOrNull()) {
762           const StructLayout *SL = DL.getStructLayout(STy);
763           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
764           TmpOffset += SL->getElementOffset(Idx);
765         } else {
766           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
767           while (true) {
768             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
769               // Constant-offset addressing.
770               TmpOffset += CI->getSExtValue() * S;
771               break;
772             }
773             if (canFoldAddIntoGEP(U, Op)) {
774               // A compatible add with a constant operand. Fold the constant.
775               ConstantInt *CI =
776               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
777               TmpOffset += CI->getSExtValue() * S;
778               // Iterate on the other operand.
779               Op = cast<AddOperator>(Op)->getOperand(0);
780               continue;
781             }
782             // Unsupported
783             goto unsupported_gep;
784           }
785         }
786       }
787 
788       // Try to grab the base operand now.
789       Addr.Offset = TmpOffset;
790       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
791 
792       // We failed, restore everything and try the other options.
793       Addr = SavedAddr;
794 
795       unsupported_gep:
796       break;
797     }
798     case Instruction::Alloca: {
799       const AllocaInst *AI = cast<AllocaInst>(Obj);
800       DenseMap<const AllocaInst*, int>::iterator SI =
801         FuncInfo.StaticAllocaMap.find(AI);
802       if (SI != FuncInfo.StaticAllocaMap.end()) {
803         Addr.BaseType = Address::FrameIndexBase;
804         Addr.Base.FI = SI->second;
805         return true;
806       }
807       break;
808     }
809   }
810 
811   // Try to get this in a register if nothing else has worked.
812   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
813   return Addr.Base.Reg != 0;
814 }
815 
816 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
817   bool needsLowering = false;
818   switch (VT.SimpleTy) {
819     default: llvm_unreachable("Unhandled load/store type!");
820     case MVT::i1:
821     case MVT::i8:
822     case MVT::i16:
823     case MVT::i32:
824       if (!useAM3) {
825         // Integer loads/stores handle 12-bit offsets.
826         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
827         // Handle negative offsets.
828         if (needsLowering && isThumb2)
829           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
830                             Addr.Offset > -256);
831       } else {
832         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
833         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
834       }
835       break;
836     case MVT::f32:
837     case MVT::f64:
838       // Floating point operands handle 8-bit offsets.
839       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
840       break;
841   }
842 
843   // If this is a stack pointer and the offset needs to be simplified then
844   // put the alloca address into a register, set the base type back to
845   // register and continue. This should almost never happen.
846   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
847     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
848                                              : &ARM::GPRRegClass;
849     unsigned ResultReg = createResultReg(RC);
850     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
851     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
852                             TII.get(Opc), ResultReg)
853                             .addFrameIndex(Addr.Base.FI)
854                             .addImm(0));
855     Addr.Base.Reg = ResultReg;
856     Addr.BaseType = Address::RegBase;
857   }
858 
859   // Since the offset is too large for the load/store instruction
860   // get the reg+offset into a register.
861   if (needsLowering) {
862     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
863                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
864     Addr.Offset = 0;
865   }
866 }
867 
868 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
869                                        const MachineInstrBuilder &MIB,
870                                        MachineMemOperand::Flags Flags,
871                                        bool useAM3) {
872   // addrmode5 output depends on the selection dag addressing dividing the
873   // offset by 4 that it then later multiplies. Do this here as well.
874   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
875     Addr.Offset /= 4;
876 
877   // Frame base works a bit differently. Handle it separately.
878   if (Addr.BaseType == Address::FrameIndexBase) {
879     int FI = Addr.Base.FI;
880     int Offset = Addr.Offset;
881     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
882         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
883         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
884     // Now add the rest of the operands.
885     MIB.addFrameIndex(FI);
886 
887     // ARM halfword load/stores and signed byte loads need an additional
888     // operand.
889     if (useAM3) {
890       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
891       MIB.addReg(0);
892       MIB.addImm(Imm);
893     } else {
894       MIB.addImm(Addr.Offset);
895     }
896     MIB.addMemOperand(MMO);
897   } else {
898     // Now add the rest of the operands.
899     MIB.addReg(Addr.Base.Reg);
900 
901     // ARM halfword load/stores and signed byte loads need an additional
902     // operand.
903     if (useAM3) {
904       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
905       MIB.addReg(0);
906       MIB.addImm(Imm);
907     } else {
908       MIB.addImm(Addr.Offset);
909     }
910   }
911   AddOptionalDefs(MIB);
912 }
913 
914 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
915                               unsigned Alignment, bool isZExt, bool allocReg) {
916   unsigned Opc;
917   bool useAM3 = false;
918   bool needVMOV = false;
919   const TargetRegisterClass *RC;
920   switch (VT.SimpleTy) {
921     // This is mostly going to be Neon/vector support.
922     default: return false;
923     case MVT::i1:
924     case MVT::i8:
925       if (isThumb2) {
926         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
927           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
928         else
929           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
930       } else {
931         if (isZExt) {
932           Opc = ARM::LDRBi12;
933         } else {
934           Opc = ARM::LDRSB;
935           useAM3 = true;
936         }
937       }
938       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
939       break;
940     case MVT::i16:
941       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
942         return false;
943 
944       if (isThumb2) {
945         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
946           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
947         else
948           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
949       } else {
950         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
951         useAM3 = true;
952       }
953       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
954       break;
955     case MVT::i32:
956       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
957         return false;
958 
959       if (isThumb2) {
960         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
961           Opc = ARM::t2LDRi8;
962         else
963           Opc = ARM::t2LDRi12;
964       } else {
965         Opc = ARM::LDRi12;
966       }
967       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
968       break;
969     case MVT::f32:
970       if (!Subtarget->hasVFP2()) return false;
971       // Unaligned loads need special handling. Floats require word-alignment.
972       if (Alignment && Alignment < 4) {
973         needVMOV = true;
974         VT = MVT::i32;
975         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
976         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
977       } else {
978         Opc = ARM::VLDRS;
979         RC = TLI.getRegClassFor(VT);
980       }
981       break;
982     case MVT::f64:
983       if (!Subtarget->hasVFP2()) return false;
984       // FIXME: Unaligned loads need special handling.  Doublewords require
985       // word-alignment.
986       if (Alignment && Alignment < 4)
987         return false;
988 
989       Opc = ARM::VLDRD;
990       RC = TLI.getRegClassFor(VT);
991       break;
992   }
993   // Simplify this down to something we can handle.
994   ARMSimplifyAddress(Addr, VT, useAM3);
995 
996   // Create the base instruction, then add the operands.
997   if (allocReg)
998     ResultReg = createResultReg(RC);
999   assert(ResultReg > 255 && "Expected an allocated virtual register.");
1000   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1001                                     TII.get(Opc), ResultReg);
1002   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1003 
1004   // If we had an unaligned load of a float we've converted it to an regular
1005   // load.  Now we must move from the GRP to the FP register.
1006   if (needVMOV) {
1007     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1008     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1009                             TII.get(ARM::VMOVSR), MoveReg)
1010                     .addReg(ResultReg));
1011     ResultReg = MoveReg;
1012   }
1013   return true;
1014 }
1015 
1016 bool ARMFastISel::SelectLoad(const Instruction *I) {
1017   // Atomic loads need special handling.
1018   if (cast<LoadInst>(I)->isAtomic())
1019     return false;
1020 
1021   const Value *SV = I->getOperand(0);
1022   if (TLI.supportSwiftError()) {
1023     // Swifterror values can come from either a function parameter with
1024     // swifterror attribute or an alloca with swifterror attribute.
1025     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1026       if (Arg->hasSwiftErrorAttr())
1027         return false;
1028     }
1029 
1030     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1031       if (Alloca->isSwiftError())
1032         return false;
1033     }
1034   }
1035 
1036   // Verify we have a legal type before going any further.
1037   MVT VT;
1038   if (!isLoadTypeLegal(I->getType(), VT))
1039     return false;
1040 
1041   // See if we can handle this address.
1042   Address Addr;
1043   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1044 
1045   unsigned ResultReg;
1046   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1047     return false;
1048   updateValueMap(I, ResultReg);
1049   return true;
1050 }
1051 
1052 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1053                                unsigned Alignment) {
1054   unsigned StrOpc;
1055   bool useAM3 = false;
1056   switch (VT.SimpleTy) {
1057     // This is mostly going to be Neon/vector support.
1058     default: return false;
1059     case MVT::i1: {
1060       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1061                                               : &ARM::GPRRegClass);
1062       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1063       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1064       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1065                               TII.get(Opc), Res)
1066                       .addReg(SrcReg).addImm(1));
1067       SrcReg = Res;
1068       LLVM_FALLTHROUGH;
1069     }
1070     case MVT::i8:
1071       if (isThumb2) {
1072         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1073           StrOpc = ARM::t2STRBi8;
1074         else
1075           StrOpc = ARM::t2STRBi12;
1076       } else {
1077         StrOpc = ARM::STRBi12;
1078       }
1079       break;
1080     case MVT::i16:
1081       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1082         return false;
1083 
1084       if (isThumb2) {
1085         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1086           StrOpc = ARM::t2STRHi8;
1087         else
1088           StrOpc = ARM::t2STRHi12;
1089       } else {
1090         StrOpc = ARM::STRH;
1091         useAM3 = true;
1092       }
1093       break;
1094     case MVT::i32:
1095       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1096         return false;
1097 
1098       if (isThumb2) {
1099         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1100           StrOpc = ARM::t2STRi8;
1101         else
1102           StrOpc = ARM::t2STRi12;
1103       } else {
1104         StrOpc = ARM::STRi12;
1105       }
1106       break;
1107     case MVT::f32:
1108       if (!Subtarget->hasVFP2()) return false;
1109       // Unaligned stores need special handling. Floats require word-alignment.
1110       if (Alignment && Alignment < 4) {
1111         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1112         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1113                                 TII.get(ARM::VMOVRS), MoveReg)
1114                         .addReg(SrcReg));
1115         SrcReg = MoveReg;
1116         VT = MVT::i32;
1117         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1118       } else {
1119         StrOpc = ARM::VSTRS;
1120       }
1121       break;
1122     case MVT::f64:
1123       if (!Subtarget->hasVFP2()) return false;
1124       // FIXME: Unaligned stores need special handling.  Doublewords require
1125       // word-alignment.
1126       if (Alignment && Alignment < 4)
1127           return false;
1128 
1129       StrOpc = ARM::VSTRD;
1130       break;
1131   }
1132   // Simplify this down to something we can handle.
1133   ARMSimplifyAddress(Addr, VT, useAM3);
1134 
1135   // Create the base instruction, then add the operands.
1136   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1137   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1138                                     TII.get(StrOpc))
1139                             .addReg(SrcReg);
1140   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1141   return true;
1142 }
1143 
1144 bool ARMFastISel::SelectStore(const Instruction *I) {
1145   Value *Op0 = I->getOperand(0);
1146   unsigned SrcReg = 0;
1147 
1148   // Atomic stores need special handling.
1149   if (cast<StoreInst>(I)->isAtomic())
1150     return false;
1151 
1152   const Value *PtrV = I->getOperand(1);
1153   if (TLI.supportSwiftError()) {
1154     // Swifterror values can come from either a function parameter with
1155     // swifterror attribute or an alloca with swifterror attribute.
1156     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1157       if (Arg->hasSwiftErrorAttr())
1158         return false;
1159     }
1160 
1161     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1162       if (Alloca->isSwiftError())
1163         return false;
1164     }
1165   }
1166 
1167   // Verify we have a legal type before going any further.
1168   MVT VT;
1169   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1170     return false;
1171 
1172   // Get the value to be stored into a register.
1173   SrcReg = getRegForValue(Op0);
1174   if (SrcReg == 0) return false;
1175 
1176   // See if we can handle this address.
1177   Address Addr;
1178   if (!ARMComputeAddress(I->getOperand(1), Addr))
1179     return false;
1180 
1181   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1182     return false;
1183   return true;
1184 }
1185 
1186 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1187   switch (Pred) {
1188     // Needs two compares...
1189     case CmpInst::FCMP_ONE:
1190     case CmpInst::FCMP_UEQ:
1191     default:
1192       // AL is our "false" for now. The other two need more compares.
1193       return ARMCC::AL;
1194     case CmpInst::ICMP_EQ:
1195     case CmpInst::FCMP_OEQ:
1196       return ARMCC::EQ;
1197     case CmpInst::ICMP_SGT:
1198     case CmpInst::FCMP_OGT:
1199       return ARMCC::GT;
1200     case CmpInst::ICMP_SGE:
1201     case CmpInst::FCMP_OGE:
1202       return ARMCC::GE;
1203     case CmpInst::ICMP_UGT:
1204     case CmpInst::FCMP_UGT:
1205       return ARMCC::HI;
1206     case CmpInst::FCMP_OLT:
1207       return ARMCC::MI;
1208     case CmpInst::ICMP_ULE:
1209     case CmpInst::FCMP_OLE:
1210       return ARMCC::LS;
1211     case CmpInst::FCMP_ORD:
1212       return ARMCC::VC;
1213     case CmpInst::FCMP_UNO:
1214       return ARMCC::VS;
1215     case CmpInst::FCMP_UGE:
1216       return ARMCC::PL;
1217     case CmpInst::ICMP_SLT:
1218     case CmpInst::FCMP_ULT:
1219       return ARMCC::LT;
1220     case CmpInst::ICMP_SLE:
1221     case CmpInst::FCMP_ULE:
1222       return ARMCC::LE;
1223     case CmpInst::FCMP_UNE:
1224     case CmpInst::ICMP_NE:
1225       return ARMCC::NE;
1226     case CmpInst::ICMP_UGE:
1227       return ARMCC::HS;
1228     case CmpInst::ICMP_ULT:
1229       return ARMCC::LO;
1230   }
1231 }
1232 
1233 bool ARMFastISel::SelectBranch(const Instruction *I) {
1234   const BranchInst *BI = cast<BranchInst>(I);
1235   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1236   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1237 
1238   // Simple branch support.
1239 
1240   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1241   // behavior.
1242   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1243     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1244       // Get the compare predicate.
1245       // Try to take advantage of fallthrough opportunities.
1246       CmpInst::Predicate Predicate = CI->getPredicate();
1247       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1248         std::swap(TBB, FBB);
1249         Predicate = CmpInst::getInversePredicate(Predicate);
1250       }
1251 
1252       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1253 
1254       // We may not handle every CC for now.
1255       if (ARMPred == ARMCC::AL) return false;
1256 
1257       // Emit the compare.
1258       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
1259                       CI->isEquality()))
1260         return false;
1261 
1262       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1263       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1264       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1265       finishCondBranch(BI->getParent(), TBB, FBB);
1266       return true;
1267     }
1268   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1269     MVT SourceVT;
1270     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1271         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1272       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1273       unsigned OpReg = getRegForValue(TI->getOperand(0));
1274       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1275       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1276                               TII.get(TstOpc))
1277                       .addReg(OpReg).addImm(1));
1278 
1279       unsigned CCMode = ARMCC::NE;
1280       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1281         std::swap(TBB, FBB);
1282         CCMode = ARMCC::EQ;
1283       }
1284 
1285       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1286       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1287       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1288 
1289       finishCondBranch(BI->getParent(), TBB, FBB);
1290       return true;
1291     }
1292   } else if (const ConstantInt *CI =
1293              dyn_cast<ConstantInt>(BI->getCondition())) {
1294     uint64_t Imm = CI->getZExtValue();
1295     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1296     fastEmitBranch(Target, DbgLoc);
1297     return true;
1298   }
1299 
1300   unsigned CmpReg = getRegForValue(BI->getCondition());
1301   if (CmpReg == 0) return false;
1302 
1303   // We've been divorced from our compare!  Our block was split, and
1304   // now our compare lives in a predecessor block.  We musn't
1305   // re-compare here, as the children of the compare aren't guaranteed
1306   // live across the block boundary (we *could* check for this).
1307   // Regardless, the compare has been done in the predecessor block,
1308   // and it left a value for us in a virtual register.  Ergo, we test
1309   // the one-bit value left in the virtual register.
1310   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1311   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1312   AddOptionalDefs(
1313       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1314           .addReg(CmpReg)
1315           .addImm(1));
1316 
1317   unsigned CCMode = ARMCC::NE;
1318   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1319     std::swap(TBB, FBB);
1320     CCMode = ARMCC::EQ;
1321   }
1322 
1323   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1324   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1325                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1326   finishCondBranch(BI->getParent(), TBB, FBB);
1327   return true;
1328 }
1329 
1330 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1331   unsigned AddrReg = getRegForValue(I->getOperand(0));
1332   if (AddrReg == 0) return false;
1333 
1334   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1335   assert(isThumb2 || Subtarget->hasV4TOps());
1336 
1337   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1338                           TII.get(Opc)).addReg(AddrReg));
1339 
1340   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1341   for (const BasicBlock *SuccBB : IB->successors())
1342     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1343 
1344   return true;
1345 }
1346 
1347 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1348                              bool isZExt, bool isEquality) {
1349   Type *Ty = Src1Value->getType();
1350   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1351   if (!SrcEVT.isSimple()) return false;
1352   MVT SrcVT = SrcEVT.getSimpleVT();
1353 
1354   if (Ty->isFloatTy() && !Subtarget->hasVFP2())
1355     return false;
1356 
1357   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()))
1358     return false;
1359 
1360   // Check to see if the 2nd operand is a constant that we can encode directly
1361   // in the compare.
1362   int Imm = 0;
1363   bool UseImm = false;
1364   bool isNegativeImm = false;
1365   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1366   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1367   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1368     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1369         SrcVT == MVT::i1) {
1370       const APInt &CIVal = ConstInt->getValue();
1371       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1372       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1373       // then a cmn, because there is no way to represent 2147483648 as a
1374       // signed 32-bit int.
1375       if (Imm < 0 && Imm != (int)0x80000000) {
1376         isNegativeImm = true;
1377         Imm = -Imm;
1378       }
1379       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1380         (ARM_AM::getSOImmVal(Imm) != -1);
1381     }
1382   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1383     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1384       if (ConstFP->isZero() && !ConstFP->isNegative())
1385         UseImm = true;
1386   }
1387 
1388   unsigned CmpOpc;
1389   bool isICmp = true;
1390   bool needsExt = false;
1391   switch (SrcVT.SimpleTy) {
1392     default: return false;
1393     // TODO: Verify compares.
1394     case MVT::f32:
1395       isICmp = false;
1396       // Equality comparisons shouldn't raise Invalid on uordered inputs.
1397       if (isEquality)
1398         CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1399       else
1400         CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1401       break;
1402     case MVT::f64:
1403       isICmp = false;
1404       // Equality comparisons shouldn't raise Invalid on uordered inputs.
1405       if (isEquality)
1406         CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1407       else
1408       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1409       break;
1410     case MVT::i1:
1411     case MVT::i8:
1412     case MVT::i16:
1413       needsExt = true;
1414     // Intentional fall-through.
1415     case MVT::i32:
1416       if (isThumb2) {
1417         if (!UseImm)
1418           CmpOpc = ARM::t2CMPrr;
1419         else
1420           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1421       } else {
1422         if (!UseImm)
1423           CmpOpc = ARM::CMPrr;
1424         else
1425           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1426       }
1427       break;
1428   }
1429 
1430   unsigned SrcReg1 = getRegForValue(Src1Value);
1431   if (SrcReg1 == 0) return false;
1432 
1433   unsigned SrcReg2 = 0;
1434   if (!UseImm) {
1435     SrcReg2 = getRegForValue(Src2Value);
1436     if (SrcReg2 == 0) return false;
1437   }
1438 
1439   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1440   if (needsExt) {
1441     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1442     if (SrcReg1 == 0) return false;
1443     if (!UseImm) {
1444       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1445       if (SrcReg2 == 0) return false;
1446     }
1447   }
1448 
1449   const MCInstrDesc &II = TII.get(CmpOpc);
1450   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1451   if (!UseImm) {
1452     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1453     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1454                     .addReg(SrcReg1).addReg(SrcReg2));
1455   } else {
1456     MachineInstrBuilder MIB;
1457     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1458       .addReg(SrcReg1);
1459 
1460     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1461     if (isICmp)
1462       MIB.addImm(Imm);
1463     AddOptionalDefs(MIB);
1464   }
1465 
1466   // For floating point we need to move the result to a comparison register
1467   // that we can then use for branches.
1468   if (Ty->isFloatTy() || Ty->isDoubleTy())
1469     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1470                             TII.get(ARM::FMSTAT)));
1471   return true;
1472 }
1473 
1474 bool ARMFastISel::SelectCmp(const Instruction *I) {
1475   const CmpInst *CI = cast<CmpInst>(I);
1476 
1477   // Get the compare predicate.
1478   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1479 
1480   // We may not handle every CC for now.
1481   if (ARMPred == ARMCC::AL) return false;
1482 
1483   // Emit the compare.
1484   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
1485                   CI->isEquality()))
1486     return false;
1487 
1488   // Now set a register based on the comparison. Explicitly set the predicates
1489   // here.
1490   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1491   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1492                                            : &ARM::GPRRegClass;
1493   unsigned DestReg = createResultReg(RC);
1494   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1495   unsigned ZeroReg = fastMaterializeConstant(Zero);
1496   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1497   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1498           .addReg(ZeroReg).addImm(1)
1499           .addImm(ARMPred).addReg(ARM::CPSR);
1500 
1501   updateValueMap(I, DestReg);
1502   return true;
1503 }
1504 
1505 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1506   // Make sure we have VFP and that we're extending float to double.
1507   if (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()) return false;
1508 
1509   Value *V = I->getOperand(0);
1510   if (!I->getType()->isDoubleTy() ||
1511       !V->getType()->isFloatTy()) return false;
1512 
1513   unsigned Op = getRegForValue(V);
1514   if (Op == 0) return false;
1515 
1516   unsigned Result = createResultReg(&ARM::DPRRegClass);
1517   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1518                           TII.get(ARM::VCVTDS), Result)
1519                   .addReg(Op));
1520   updateValueMap(I, Result);
1521   return true;
1522 }
1523 
1524 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1525   // Make sure we have VFP and that we're truncating double to float.
1526   if (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()) return false;
1527 
1528   Value *V = I->getOperand(0);
1529   if (!(I->getType()->isFloatTy() &&
1530         V->getType()->isDoubleTy())) return false;
1531 
1532   unsigned Op = getRegForValue(V);
1533   if (Op == 0) return false;
1534 
1535   unsigned Result = createResultReg(&ARM::SPRRegClass);
1536   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1537                           TII.get(ARM::VCVTSD), Result)
1538                   .addReg(Op));
1539   updateValueMap(I, Result);
1540   return true;
1541 }
1542 
1543 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1544   // Make sure we have VFP.
1545   if (!Subtarget->hasVFP2()) return false;
1546 
1547   MVT DstVT;
1548   Type *Ty = I->getType();
1549   if (!isTypeLegal(Ty, DstVT))
1550     return false;
1551 
1552   Value *Src = I->getOperand(0);
1553   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1554   if (!SrcEVT.isSimple())
1555     return false;
1556   MVT SrcVT = SrcEVT.getSimpleVT();
1557   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1558     return false;
1559 
1560   unsigned SrcReg = getRegForValue(Src);
1561   if (SrcReg == 0) return false;
1562 
1563   // Handle sign-extension.
1564   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1565     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1566                                        /*isZExt*/!isSigned);
1567     if (SrcReg == 0) return false;
1568   }
1569 
1570   // The conversion routine works on fp-reg to fp-reg and the operand above
1571   // was an integer, move it to the fp registers if possible.
1572   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1573   if (FP == 0) return false;
1574 
1575   unsigned Opc;
1576   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1577   else if (Ty->isDoubleTy() && !Subtarget->isFPOnlySP())
1578     Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1579   else return false;
1580 
1581   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1582   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1583                           TII.get(Opc), ResultReg).addReg(FP));
1584   updateValueMap(I, ResultReg);
1585   return true;
1586 }
1587 
1588 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1589   // Make sure we have VFP.
1590   if (!Subtarget->hasVFP2()) return false;
1591 
1592   MVT DstVT;
1593   Type *RetTy = I->getType();
1594   if (!isTypeLegal(RetTy, DstVT))
1595     return false;
1596 
1597   unsigned Op = getRegForValue(I->getOperand(0));
1598   if (Op == 0) return false;
1599 
1600   unsigned Opc;
1601   Type *OpTy = I->getOperand(0)->getType();
1602   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1603   else if (OpTy->isDoubleTy() && !Subtarget->isFPOnlySP())
1604     Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1605   else return false;
1606 
1607   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1608   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1609   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1610                           TII.get(Opc), ResultReg).addReg(Op));
1611 
1612   // This result needs to be in an integer register, but the conversion only
1613   // takes place in fp-regs.
1614   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1615   if (IntReg == 0) return false;
1616 
1617   updateValueMap(I, IntReg);
1618   return true;
1619 }
1620 
1621 bool ARMFastISel::SelectSelect(const Instruction *I) {
1622   MVT VT;
1623   if (!isTypeLegal(I->getType(), VT))
1624     return false;
1625 
1626   // Things need to be register sized for register moves.
1627   if (VT != MVT::i32) return false;
1628 
1629   unsigned CondReg = getRegForValue(I->getOperand(0));
1630   if (CondReg == 0) return false;
1631   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1632   if (Op1Reg == 0) return false;
1633 
1634   // Check to see if we can use an immediate in the conditional move.
1635   int Imm = 0;
1636   bool UseImm = false;
1637   bool isNegativeImm = false;
1638   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1639     assert(VT == MVT::i32 && "Expecting an i32.");
1640     Imm = (int)ConstInt->getValue().getZExtValue();
1641     if (Imm < 0) {
1642       isNegativeImm = true;
1643       Imm = ~Imm;
1644     }
1645     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1646       (ARM_AM::getSOImmVal(Imm) != -1);
1647   }
1648 
1649   unsigned Op2Reg = 0;
1650   if (!UseImm) {
1651     Op2Reg = getRegForValue(I->getOperand(2));
1652     if (Op2Reg == 0) return false;
1653   }
1654 
1655   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1656   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1657   AddOptionalDefs(
1658       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1659           .addReg(CondReg)
1660           .addImm(1));
1661 
1662   unsigned MovCCOpc;
1663   const TargetRegisterClass *RC;
1664   if (!UseImm) {
1665     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1666     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1667   } else {
1668     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1669     if (!isNegativeImm)
1670       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1671     else
1672       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1673   }
1674   unsigned ResultReg = createResultReg(RC);
1675   if (!UseImm) {
1676     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1677     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1678     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1679             ResultReg)
1680         .addReg(Op2Reg)
1681         .addReg(Op1Reg)
1682         .addImm(ARMCC::NE)
1683         .addReg(ARM::CPSR);
1684   } else {
1685     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1686     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1687             ResultReg)
1688         .addReg(Op1Reg)
1689         .addImm(Imm)
1690         .addImm(ARMCC::EQ)
1691         .addReg(ARM::CPSR);
1692   }
1693   updateValueMap(I, ResultReg);
1694   return true;
1695 }
1696 
1697 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1698   MVT VT;
1699   Type *Ty = I->getType();
1700   if (!isTypeLegal(Ty, VT))
1701     return false;
1702 
1703   // If we have integer div support we should have selected this automagically.
1704   // In case we have a real miss go ahead and return false and we'll pick
1705   // it up later.
1706   if (Subtarget->hasDivideInThumbMode())
1707     return false;
1708 
1709   // Otherwise emit a libcall.
1710   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1711   if (VT == MVT::i8)
1712     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1713   else if (VT == MVT::i16)
1714     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1715   else if (VT == MVT::i32)
1716     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1717   else if (VT == MVT::i64)
1718     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1719   else if (VT == MVT::i128)
1720     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1721   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1722 
1723   return ARMEmitLibcall(I, LC);
1724 }
1725 
1726 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1727   MVT VT;
1728   Type *Ty = I->getType();
1729   if (!isTypeLegal(Ty, VT))
1730     return false;
1731 
1732   // Many ABIs do not provide a libcall for standalone remainder, so we need to
1733   // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1734   // multi-reg returns, we'll have to bail out.
1735   if (!TLI.hasStandaloneRem(VT)) {
1736     return false;
1737   }
1738 
1739   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1740   if (VT == MVT::i8)
1741     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1742   else if (VT == MVT::i16)
1743     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1744   else if (VT == MVT::i32)
1745     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1746   else if (VT == MVT::i64)
1747     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1748   else if (VT == MVT::i128)
1749     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1750   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1751 
1752   return ARMEmitLibcall(I, LC);
1753 }
1754 
1755 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1756   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1757 
1758   // We can get here in the case when we have a binary operation on a non-legal
1759   // type and the target independent selector doesn't know how to handle it.
1760   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1761     return false;
1762 
1763   unsigned Opc;
1764   switch (ISDOpcode) {
1765     default: return false;
1766     case ISD::ADD:
1767       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1768       break;
1769     case ISD::OR:
1770       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1771       break;
1772     case ISD::SUB:
1773       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1774       break;
1775   }
1776 
1777   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1778   if (SrcReg1 == 0) return false;
1779 
1780   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1781   // in the instruction, rather then materializing the value in a register.
1782   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1783   if (SrcReg2 == 0) return false;
1784 
1785   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1786   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1787   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1788   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1789                           TII.get(Opc), ResultReg)
1790                   .addReg(SrcReg1).addReg(SrcReg2));
1791   updateValueMap(I, ResultReg);
1792   return true;
1793 }
1794 
1795 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1796   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1797   if (!FPVT.isSimple()) return false;
1798   MVT VT = FPVT.getSimpleVT();
1799 
1800   // FIXME: Support vector types where possible.
1801   if (VT.isVector())
1802     return false;
1803 
1804   // We can get here in the case when we want to use NEON for our fp
1805   // operations, but can't figure out how to. Just use the vfp instructions
1806   // if we have them.
1807   // FIXME: It'd be nice to use NEON instructions.
1808   Type *Ty = I->getType();
1809   if (Ty->isFloatTy() && !Subtarget->hasVFP2())
1810     return false;
1811   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()))
1812     return false;
1813 
1814   unsigned Opc;
1815   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1816   switch (ISDOpcode) {
1817     default: return false;
1818     case ISD::FADD:
1819       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1820       break;
1821     case ISD::FSUB:
1822       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1823       break;
1824     case ISD::FMUL:
1825       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1826       break;
1827   }
1828   unsigned Op1 = getRegForValue(I->getOperand(0));
1829   if (Op1 == 0) return false;
1830 
1831   unsigned Op2 = getRegForValue(I->getOperand(1));
1832   if (Op2 == 0) return false;
1833 
1834   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1835   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1836                           TII.get(Opc), ResultReg)
1837                   .addReg(Op1).addReg(Op2));
1838   updateValueMap(I, ResultReg);
1839   return true;
1840 }
1841 
1842 // Call Handling Code
1843 
1844 // This is largely taken directly from CCAssignFnForNode
1845 // TODO: We may not support all of this.
1846 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1847                                            bool Return,
1848                                            bool isVarArg) {
1849   switch (CC) {
1850   default:
1851     report_fatal_error("Unsupported calling convention");
1852   case CallingConv::Fast:
1853     if (Subtarget->hasVFP2() && !isVarArg) {
1854       if (!Subtarget->isAAPCS_ABI())
1855         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1856       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1857       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1858     }
1859     LLVM_FALLTHROUGH;
1860   case CallingConv::C:
1861   case CallingConv::CXX_FAST_TLS:
1862     // Use target triple & subtarget features to do actual dispatch.
1863     if (Subtarget->isAAPCS_ABI()) {
1864       if (Subtarget->hasVFP2() &&
1865           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1866         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1867       else
1868         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1869     } else {
1870       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1871     }
1872   case CallingConv::ARM_AAPCS_VFP:
1873   case CallingConv::Swift:
1874     if (!isVarArg)
1875       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1876     // Fall through to soft float variant, variadic functions don't
1877     // use hard floating point ABI.
1878     LLVM_FALLTHROUGH;
1879   case CallingConv::ARM_AAPCS:
1880     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1881   case CallingConv::ARM_APCS:
1882     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1883   case CallingConv::GHC:
1884     if (Return)
1885       report_fatal_error("Can't return in GHC call convention");
1886     else
1887       return CC_ARM_APCS_GHC;
1888   }
1889 }
1890 
1891 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1892                                   SmallVectorImpl<unsigned> &ArgRegs,
1893                                   SmallVectorImpl<MVT> &ArgVTs,
1894                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1895                                   SmallVectorImpl<unsigned> &RegArgs,
1896                                   CallingConv::ID CC,
1897                                   unsigned &NumBytes,
1898                                   bool isVarArg) {
1899   SmallVector<CCValAssign, 16> ArgLocs;
1900   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1901   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1902                              CCAssignFnForCall(CC, false, isVarArg));
1903 
1904   // Check that we can handle all of the arguments. If we can't, then bail out
1905   // now before we add code to the MBB.
1906   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1907     CCValAssign &VA = ArgLocs[i];
1908     MVT ArgVT = ArgVTs[VA.getValNo()];
1909 
1910     // We don't handle NEON/vector parameters yet.
1911     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1912       return false;
1913 
1914     // Now copy/store arg to correct locations.
1915     if (VA.isRegLoc() && !VA.needsCustom()) {
1916       continue;
1917     } else if (VA.needsCustom()) {
1918       // TODO: We need custom lowering for vector (v2f64) args.
1919       if (VA.getLocVT() != MVT::f64 ||
1920           // TODO: Only handle register args for now.
1921           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1922         return false;
1923     } else {
1924       switch (ArgVT.SimpleTy) {
1925       default:
1926         return false;
1927       case MVT::i1:
1928       case MVT::i8:
1929       case MVT::i16:
1930       case MVT::i32:
1931         break;
1932       case MVT::f32:
1933         if (!Subtarget->hasVFP2())
1934           return false;
1935         break;
1936       case MVT::f64:
1937         if (!Subtarget->hasVFP2())
1938           return false;
1939         break;
1940       }
1941     }
1942   }
1943 
1944   // At the point, we are able to handle the call's arguments in fast isel.
1945 
1946   // Get a count of how many bytes are to be pushed on the stack.
1947   NumBytes = CCInfo.getNextStackOffset();
1948 
1949   // Issue CALLSEQ_START
1950   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1951   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1952                           TII.get(AdjStackDown))
1953                   .addImm(NumBytes).addImm(0));
1954 
1955   // Process the args.
1956   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1957     CCValAssign &VA = ArgLocs[i];
1958     const Value *ArgVal = Args[VA.getValNo()];
1959     unsigned Arg = ArgRegs[VA.getValNo()];
1960     MVT ArgVT = ArgVTs[VA.getValNo()];
1961 
1962     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1963            "We don't handle NEON/vector parameters yet.");
1964 
1965     // Handle arg promotion, etc.
1966     switch (VA.getLocInfo()) {
1967       case CCValAssign::Full: break;
1968       case CCValAssign::SExt: {
1969         MVT DestVT = VA.getLocVT();
1970         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1971         assert(Arg != 0 && "Failed to emit a sext");
1972         ArgVT = DestVT;
1973         break;
1974       }
1975       case CCValAssign::AExt:
1976       // Intentional fall-through.  Handle AExt and ZExt.
1977       case CCValAssign::ZExt: {
1978         MVT DestVT = VA.getLocVT();
1979         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1980         assert(Arg != 0 && "Failed to emit a zext");
1981         ArgVT = DestVT;
1982         break;
1983       }
1984       case CCValAssign::BCvt: {
1985         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1986                                  /*TODO: Kill=*/false);
1987         assert(BC != 0 && "Failed to emit a bitcast!");
1988         Arg = BC;
1989         ArgVT = VA.getLocVT();
1990         break;
1991       }
1992       default: llvm_unreachable("Unknown arg promotion!");
1993     }
1994 
1995     // Now copy/store arg to correct locations.
1996     if (VA.isRegLoc() && !VA.needsCustom()) {
1997       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1998               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1999       RegArgs.push_back(VA.getLocReg());
2000     } else if (VA.needsCustom()) {
2001       // TODO: We need custom lowering for vector (v2f64) args.
2002       assert(VA.getLocVT() == MVT::f64 &&
2003              "Custom lowering for v2f64 args not available");
2004 
2005       // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
2006       CCValAssign &NextVA = ArgLocs[++i];
2007 
2008       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2009              "We only handle register args!");
2010 
2011       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2012                               TII.get(ARM::VMOVRRD), VA.getLocReg())
2013                       .addReg(NextVA.getLocReg(), RegState::Define)
2014                       .addReg(Arg));
2015       RegArgs.push_back(VA.getLocReg());
2016       RegArgs.push_back(NextVA.getLocReg());
2017     } else {
2018       assert(VA.isMemLoc());
2019       // Need to store on the stack.
2020 
2021       // Don't emit stores for undef values.
2022       if (isa<UndefValue>(ArgVal))
2023         continue;
2024 
2025       Address Addr;
2026       Addr.BaseType = Address::RegBase;
2027       Addr.Base.Reg = ARM::SP;
2028       Addr.Offset = VA.getLocMemOffset();
2029 
2030       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2031       assert(EmitRet && "Could not emit a store for argument!");
2032     }
2033   }
2034 
2035   return true;
2036 }
2037 
2038 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2039                              const Instruction *I, CallingConv::ID CC,
2040                              unsigned &NumBytes, bool isVarArg) {
2041   // Issue CALLSEQ_END
2042   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2043   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2044                           TII.get(AdjStackUp))
2045                   .addImm(NumBytes).addImm(0));
2046 
2047   // Now the return value.
2048   if (RetVT != MVT::isVoid) {
2049     SmallVector<CCValAssign, 16> RVLocs;
2050     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2051     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2052 
2053     // Copy all of the result registers out of their specified physreg.
2054     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2055       // For this move we copy into two registers and then move into the
2056       // double fp reg we want.
2057       MVT DestVT = RVLocs[0].getValVT();
2058       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2059       unsigned ResultReg = createResultReg(DstRC);
2060       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2061                               TII.get(ARM::VMOVDRR), ResultReg)
2062                       .addReg(RVLocs[0].getLocReg())
2063                       .addReg(RVLocs[1].getLocReg()));
2064 
2065       UsedRegs.push_back(RVLocs[0].getLocReg());
2066       UsedRegs.push_back(RVLocs[1].getLocReg());
2067 
2068       // Finally update the result.
2069       updateValueMap(I, ResultReg);
2070     } else {
2071       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2072       MVT CopyVT = RVLocs[0].getValVT();
2073 
2074       // Special handling for extended integers.
2075       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2076         CopyVT = MVT::i32;
2077 
2078       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2079 
2080       unsigned ResultReg = createResultReg(DstRC);
2081       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2082               TII.get(TargetOpcode::COPY),
2083               ResultReg).addReg(RVLocs[0].getLocReg());
2084       UsedRegs.push_back(RVLocs[0].getLocReg());
2085 
2086       // Finally update the result.
2087       updateValueMap(I, ResultReg);
2088     }
2089   }
2090 
2091   return true;
2092 }
2093 
2094 bool ARMFastISel::SelectRet(const Instruction *I) {
2095   const ReturnInst *Ret = cast<ReturnInst>(I);
2096   const Function &F = *I->getParent()->getParent();
2097 
2098   if (!FuncInfo.CanLowerReturn)
2099     return false;
2100 
2101   if (TLI.supportSwiftError() &&
2102       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2103     return false;
2104 
2105   if (TLI.supportSplitCSR(FuncInfo.MF))
2106     return false;
2107 
2108   // Build a list of return value registers.
2109   SmallVector<unsigned, 4> RetRegs;
2110 
2111   CallingConv::ID CC = F.getCallingConv();
2112   if (Ret->getNumOperands() > 0) {
2113     SmallVector<ISD::OutputArg, 4> Outs;
2114     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2115 
2116     // Analyze operands of the call, assigning locations to each operand.
2117     SmallVector<CCValAssign, 16> ValLocs;
2118     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2119     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2120                                                  F.isVarArg()));
2121 
2122     const Value *RV = Ret->getOperand(0);
2123     unsigned Reg = getRegForValue(RV);
2124     if (Reg == 0)
2125       return false;
2126 
2127     // Only handle a single return value for now.
2128     if (ValLocs.size() != 1)
2129       return false;
2130 
2131     CCValAssign &VA = ValLocs[0];
2132 
2133     // Don't bother handling odd stuff for now.
2134     if (VA.getLocInfo() != CCValAssign::Full)
2135       return false;
2136     // Only handle register returns for now.
2137     if (!VA.isRegLoc())
2138       return false;
2139 
2140     unsigned SrcReg = Reg + VA.getValNo();
2141     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2142     if (!RVEVT.isSimple()) return false;
2143     MVT RVVT = RVEVT.getSimpleVT();
2144     MVT DestVT = VA.getValVT();
2145     // Special handling for extended integers.
2146     if (RVVT != DestVT) {
2147       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2148         return false;
2149 
2150       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2151 
2152       // Perform extension if flagged as either zext or sext.  Otherwise, do
2153       // nothing.
2154       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2155         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2156         if (SrcReg == 0) return false;
2157       }
2158     }
2159 
2160     // Make the copy.
2161     unsigned DstReg = VA.getLocReg();
2162     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2163     // Avoid a cross-class copy. This is very unlikely.
2164     if (!SrcRC->contains(DstReg))
2165       return false;
2166     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2167             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2168 
2169     // Add register to return instruction.
2170     RetRegs.push_back(VA.getLocReg());
2171   }
2172 
2173   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2174                                     TII.get(Subtarget->getReturnOpcode()));
2175   AddOptionalDefs(MIB);
2176   for (unsigned R : RetRegs)
2177     MIB.addReg(R, RegState::Implicit);
2178   return true;
2179 }
2180 
2181 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2182   if (UseReg)
2183     return isThumb2 ? ARM::tBLXr : ARM::BLX;
2184   else
2185     return isThumb2 ? ARM::tBL : ARM::BL;
2186 }
2187 
2188 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2189   // Manually compute the global's type to avoid building it when unnecessary.
2190   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2191   EVT LCREVT = TLI.getValueType(DL, GVTy);
2192   if (!LCREVT.isSimple()) return 0;
2193 
2194   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2195                                        GlobalValue::ExternalLinkage, nullptr,
2196                                        Name);
2197   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2198   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2199 }
2200 
2201 // A quick function that will emit a call for a named libcall in F with the
2202 // vector of passed arguments for the Instruction in I. We can assume that we
2203 // can emit a call for any libcall we can produce. This is an abridged version
2204 // of the full call infrastructure since we won't need to worry about things
2205 // like computed function pointers or strange arguments at call sites.
2206 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2207 // with X86.
2208 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2209   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2210 
2211   // Handle *simple* calls for now.
2212   Type *RetTy = I->getType();
2213   MVT RetVT;
2214   if (RetTy->isVoidTy())
2215     RetVT = MVT::isVoid;
2216   else if (!isTypeLegal(RetTy, RetVT))
2217     return false;
2218 
2219   // Can't handle non-double multi-reg retvals.
2220   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2221     SmallVector<CCValAssign, 16> RVLocs;
2222     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2223     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2224     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2225       return false;
2226   }
2227 
2228   // Set up the argument vectors.
2229   SmallVector<Value*, 8> Args;
2230   SmallVector<unsigned, 8> ArgRegs;
2231   SmallVector<MVT, 8> ArgVTs;
2232   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2233   Args.reserve(I->getNumOperands());
2234   ArgRegs.reserve(I->getNumOperands());
2235   ArgVTs.reserve(I->getNumOperands());
2236   ArgFlags.reserve(I->getNumOperands());
2237   for (Value *Op :  I->operands()) {
2238     unsigned Arg = getRegForValue(Op);
2239     if (Arg == 0) return false;
2240 
2241     Type *ArgTy = Op->getType();
2242     MVT ArgVT;
2243     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2244 
2245     ISD::ArgFlagsTy Flags;
2246     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2247     Flags.setOrigAlign(OriginalAlignment);
2248 
2249     Args.push_back(Op);
2250     ArgRegs.push_back(Arg);
2251     ArgVTs.push_back(ArgVT);
2252     ArgFlags.push_back(Flags);
2253   }
2254 
2255   // Handle the arguments now that we've gotten them.
2256   SmallVector<unsigned, 4> RegArgs;
2257   unsigned NumBytes;
2258   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2259                        RegArgs, CC, NumBytes, false))
2260     return false;
2261 
2262   unsigned CalleeReg = 0;
2263   if (Subtarget->genLongCalls()) {
2264     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2265     if (CalleeReg == 0) return false;
2266   }
2267 
2268   // Issue the call.
2269   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2270   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2271                                     DbgLoc, TII.get(CallOpc));
2272   // BL / BLX don't take a predicate, but tBL / tBLX do.
2273   if (isThumb2)
2274     MIB.add(predOps(ARMCC::AL));
2275   if (Subtarget->genLongCalls())
2276     MIB.addReg(CalleeReg);
2277   else
2278     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2279 
2280   // Add implicit physical register uses to the call.
2281   for (unsigned R : RegArgs)
2282     MIB.addReg(R, RegState::Implicit);
2283 
2284   // Add a register mask with the call-preserved registers.
2285   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2286   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2287 
2288   // Finish off the call including any return values.
2289   SmallVector<unsigned, 4> UsedRegs;
2290   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2291 
2292   // Set all unused physreg defs as dead.
2293   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2294 
2295   return true;
2296 }
2297 
2298 bool ARMFastISel::SelectCall(const Instruction *I,
2299                              const char *IntrMemName = nullptr) {
2300   const CallInst *CI = cast<CallInst>(I);
2301   const Value *Callee = CI->getCalledValue();
2302 
2303   // Can't handle inline asm.
2304   if (isa<InlineAsm>(Callee)) return false;
2305 
2306   // Allow SelectionDAG isel to handle tail calls.
2307   if (CI->isTailCall()) return false;
2308 
2309   // Check the calling convention.
2310   ImmutableCallSite CS(CI);
2311   CallingConv::ID CC = CS.getCallingConv();
2312 
2313   // TODO: Avoid some calling conventions?
2314 
2315   FunctionType *FTy = CS.getFunctionType();
2316   bool isVarArg = FTy->isVarArg();
2317 
2318   // Handle *simple* calls for now.
2319   Type *RetTy = I->getType();
2320   MVT RetVT;
2321   if (RetTy->isVoidTy())
2322     RetVT = MVT::isVoid;
2323   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2324            RetVT != MVT::i8  && RetVT != MVT::i1)
2325     return false;
2326 
2327   // Can't handle non-double multi-reg retvals.
2328   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2329       RetVT != MVT::i16 && RetVT != MVT::i32) {
2330     SmallVector<CCValAssign, 16> RVLocs;
2331     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2332     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2333     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2334       return false;
2335   }
2336 
2337   // Set up the argument vectors.
2338   SmallVector<Value*, 8> Args;
2339   SmallVector<unsigned, 8> ArgRegs;
2340   SmallVector<MVT, 8> ArgVTs;
2341   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2342   unsigned arg_size = CS.arg_size();
2343   Args.reserve(arg_size);
2344   ArgRegs.reserve(arg_size);
2345   ArgVTs.reserve(arg_size);
2346   ArgFlags.reserve(arg_size);
2347   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2348        i != e; ++i) {
2349     // If we're lowering a memory intrinsic instead of a regular call, skip the
2350     // last two arguments, which shouldn't be passed to the underlying function.
2351     if (IntrMemName && e-i <= 2)
2352       break;
2353 
2354     ISD::ArgFlagsTy Flags;
2355     unsigned ArgIdx = i - CS.arg_begin();
2356     if (CS.paramHasAttr(ArgIdx, Attribute::SExt))
2357       Flags.setSExt();
2358     if (CS.paramHasAttr(ArgIdx, Attribute::ZExt))
2359       Flags.setZExt();
2360 
2361     // FIXME: Only handle *easy* calls for now.
2362     if (CS.paramHasAttr(ArgIdx, Attribute::InReg) ||
2363         CS.paramHasAttr(ArgIdx, Attribute::StructRet) ||
2364         CS.paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2365         CS.paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2366         CS.paramHasAttr(ArgIdx, Attribute::Nest) ||
2367         CS.paramHasAttr(ArgIdx, Attribute::ByVal))
2368       return false;
2369 
2370     Type *ArgTy = (*i)->getType();
2371     MVT ArgVT;
2372     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2373         ArgVT != MVT::i1)
2374       return false;
2375 
2376     unsigned Arg = getRegForValue(*i);
2377     if (Arg == 0)
2378       return false;
2379 
2380     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2381     Flags.setOrigAlign(OriginalAlignment);
2382 
2383     Args.push_back(*i);
2384     ArgRegs.push_back(Arg);
2385     ArgVTs.push_back(ArgVT);
2386     ArgFlags.push_back(Flags);
2387   }
2388 
2389   // Handle the arguments now that we've gotten them.
2390   SmallVector<unsigned, 4> RegArgs;
2391   unsigned NumBytes;
2392   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2393                        RegArgs, CC, NumBytes, isVarArg))
2394     return false;
2395 
2396   bool UseReg = false;
2397   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2398   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2399 
2400   unsigned CalleeReg = 0;
2401   if (UseReg) {
2402     if (IntrMemName)
2403       CalleeReg = getLibcallReg(IntrMemName);
2404     else
2405       CalleeReg = getRegForValue(Callee);
2406 
2407     if (CalleeReg == 0) return false;
2408   }
2409 
2410   // Issue the call.
2411   unsigned CallOpc = ARMSelectCallOp(UseReg);
2412   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2413                                     DbgLoc, TII.get(CallOpc));
2414 
2415   // ARM calls don't take a predicate, but tBL / tBLX do.
2416   if(isThumb2)
2417     MIB.add(predOps(ARMCC::AL));
2418   if (UseReg)
2419     MIB.addReg(CalleeReg);
2420   else if (!IntrMemName)
2421     MIB.addGlobalAddress(GV, 0, 0);
2422   else
2423     MIB.addExternalSymbol(IntrMemName, 0);
2424 
2425   // Add implicit physical register uses to the call.
2426   for (unsigned R : RegArgs)
2427     MIB.addReg(R, RegState::Implicit);
2428 
2429   // Add a register mask with the call-preserved registers.
2430   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2431   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2432 
2433   // Finish off the call including any return values.
2434   SmallVector<unsigned, 4> UsedRegs;
2435   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2436     return false;
2437 
2438   // Set all unused physreg defs as dead.
2439   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2440 
2441   return true;
2442 }
2443 
2444 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2445   return Len <= 16;
2446 }
2447 
2448 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2449                                         uint64_t Len, unsigned Alignment) {
2450   // Make sure we don't bloat code by inlining very large memcpy's.
2451   if (!ARMIsMemCpySmall(Len))
2452     return false;
2453 
2454   while (Len) {
2455     MVT VT;
2456     if (!Alignment || Alignment >= 4) {
2457       if (Len >= 4)
2458         VT = MVT::i32;
2459       else if (Len >= 2)
2460         VT = MVT::i16;
2461       else {
2462         assert(Len == 1 && "Expected a length of 1!");
2463         VT = MVT::i8;
2464       }
2465     } else {
2466       // Bound based on alignment.
2467       if (Len >= 2 && Alignment == 2)
2468         VT = MVT::i16;
2469       else {
2470         VT = MVT::i8;
2471       }
2472     }
2473 
2474     bool RV;
2475     unsigned ResultReg;
2476     RV = ARMEmitLoad(VT, ResultReg, Src);
2477     assert(RV && "Should be able to handle this load.");
2478     RV = ARMEmitStore(VT, ResultReg, Dest);
2479     assert(RV && "Should be able to handle this store.");
2480     (void)RV;
2481 
2482     unsigned Size = VT.getSizeInBits()/8;
2483     Len -= Size;
2484     Dest.Offset += Size;
2485     Src.Offset += Size;
2486   }
2487 
2488   return true;
2489 }
2490 
2491 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2492   // FIXME: Handle more intrinsics.
2493   switch (I.getIntrinsicID()) {
2494   default: return false;
2495   case Intrinsic::frameaddress: {
2496     MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2497     MFI.setFrameAddressIsTaken(true);
2498 
2499     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2500     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2501                                              : &ARM::GPRRegClass;
2502 
2503     const ARMBaseRegisterInfo *RegInfo =
2504         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2505     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2506     unsigned SrcReg = FramePtr;
2507 
2508     // Recursively load frame address
2509     // ldr r0 [fp]
2510     // ldr r0 [r0]
2511     // ldr r0 [r0]
2512     // ...
2513     unsigned DestReg;
2514     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2515     while (Depth--) {
2516       DestReg = createResultReg(RC);
2517       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2518                               TII.get(LdrOpc), DestReg)
2519                       .addReg(SrcReg).addImm(0));
2520       SrcReg = DestReg;
2521     }
2522     updateValueMap(&I, SrcReg);
2523     return true;
2524   }
2525   case Intrinsic::memcpy:
2526   case Intrinsic::memmove: {
2527     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2528     // Don't handle volatile.
2529     if (MTI.isVolatile())
2530       return false;
2531 
2532     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2533     // we would emit dead code because we don't currently handle memmoves.
2534     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2535     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2536       // Small memcpy's are common enough that we want to do them without a call
2537       // if possible.
2538       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2539       if (ARMIsMemCpySmall(Len)) {
2540         Address Dest, Src;
2541         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2542             !ARMComputeAddress(MTI.getRawSource(), Src))
2543           return false;
2544         unsigned Alignment = MTI.getAlignment();
2545         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2546           return true;
2547       }
2548     }
2549 
2550     if (!MTI.getLength()->getType()->isIntegerTy(32))
2551       return false;
2552 
2553     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2554       return false;
2555 
2556     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2557     return SelectCall(&I, IntrMemName);
2558   }
2559   case Intrinsic::memset: {
2560     const MemSetInst &MSI = cast<MemSetInst>(I);
2561     // Don't handle volatile.
2562     if (MSI.isVolatile())
2563       return false;
2564 
2565     if (!MSI.getLength()->getType()->isIntegerTy(32))
2566       return false;
2567 
2568     if (MSI.getDestAddressSpace() > 255)
2569       return false;
2570 
2571     return SelectCall(&I, "memset");
2572   }
2573   case Intrinsic::trap: {
2574     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2575       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2576     return true;
2577   }
2578   }
2579 }
2580 
2581 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2582   // The high bits for a type smaller than the register size are assumed to be
2583   // undefined.
2584   Value *Op = I->getOperand(0);
2585 
2586   EVT SrcVT, DestVT;
2587   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2588   DestVT = TLI.getValueType(DL, I->getType(), true);
2589 
2590   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2591     return false;
2592   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2593     return false;
2594 
2595   unsigned SrcReg = getRegForValue(Op);
2596   if (!SrcReg) return false;
2597 
2598   // Because the high bits are undefined, a truncate doesn't generate
2599   // any code.
2600   updateValueMap(I, SrcReg);
2601   return true;
2602 }
2603 
2604 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2605                                     bool isZExt) {
2606   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2607     return 0;
2608   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2609     return 0;
2610 
2611   // Table of which combinations can be emitted as a single instruction,
2612   // and which will require two.
2613   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2614     //            ARM                     Thumb
2615     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2616     //    ext:     s  z      s  z          s  z      s  z
2617     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2618     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2619     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2620   };
2621 
2622   // Target registers for:
2623   //  - For ARM can never be PC.
2624   //  - For 16-bit Thumb are restricted to lower 8 registers.
2625   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2626   static const TargetRegisterClass *RCTbl[2][2] = {
2627     // Instructions: Two                     Single
2628     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2629     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2630   };
2631 
2632   // Table governing the instruction(s) to be emitted.
2633   static const struct InstructionTable {
2634     uint32_t Opc   : 16;
2635     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2636     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2637     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2638   } IT[2][2][3][2] = {
2639     { // Two instructions (first is left shift, second is in this table).
2640       { // ARM                Opc           S  Shift             Imm
2641         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2642         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2643         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2644         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2645         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2646         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2647       },
2648       { // Thumb              Opc           S  Shift             Imm
2649         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2650         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2651         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2652         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2653         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2654         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2655       }
2656     },
2657     { // Single instruction.
2658       { // ARM                Opc           S  Shift             Imm
2659         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2660         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2661         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2662         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2663         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2664         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2665       },
2666       { // Thumb              Opc           S  Shift             Imm
2667         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2668         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2669         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2670         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2671         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2672         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2673       }
2674     }
2675   };
2676 
2677   unsigned SrcBits = SrcVT.getSizeInBits();
2678   unsigned DestBits = DestVT.getSizeInBits();
2679   (void) DestBits;
2680   assert((SrcBits < DestBits) && "can only extend to larger types");
2681   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2682          "other sizes unimplemented");
2683   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2684          "other sizes unimplemented");
2685 
2686   bool hasV6Ops = Subtarget->hasV6Ops();
2687   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2688   assert((Bitness < 3) && "sanity-check table bounds");
2689 
2690   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2691   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2692   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2693   unsigned Opc = ITP->Opc;
2694   assert(ARM::KILL != Opc && "Invalid table entry");
2695   unsigned hasS = ITP->hasS;
2696   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2697   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2698          "only MOVsi has shift operand addressing mode");
2699   unsigned Imm = ITP->Imm;
2700 
2701   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2702   bool setsCPSR = &ARM::tGPRRegClass == RC;
2703   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2704   unsigned ResultReg;
2705   // MOVsi encodes shift and immediate in shift operand addressing mode.
2706   // The following condition has the same value when emitting two
2707   // instruction sequences: both are shifts.
2708   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2709 
2710   // Either one or two instructions are emitted.
2711   // They're always of the form:
2712   //   dst = in OP imm
2713   // CPSR is set only by 16-bit Thumb instructions.
2714   // Predicate, if any, is AL.
2715   // S bit, if available, is always 0.
2716   // When two are emitted the first's result will feed as the second's input,
2717   // that value is then dead.
2718   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2719   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2720     ResultReg = createResultReg(RC);
2721     bool isLsl = (0 == Instr) && !isSingleInstr;
2722     unsigned Opcode = isLsl ? LSLOpc : Opc;
2723     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2724     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2725     bool isKill = 1 == Instr;
2726     MachineInstrBuilder MIB = BuildMI(
2727         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2728     if (setsCPSR)
2729       MIB.addReg(ARM::CPSR, RegState::Define);
2730     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2731     MIB.addReg(SrcReg, isKill * RegState::Kill)
2732         .addImm(ImmEnc)
2733         .add(predOps(ARMCC::AL));
2734     if (hasS)
2735       MIB.add(condCodeOp());
2736     // Second instruction consumes the first's result.
2737     SrcReg = ResultReg;
2738   }
2739 
2740   return ResultReg;
2741 }
2742 
2743 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2744   // On ARM, in general, integer casts don't involve legal types; this code
2745   // handles promotable integers.
2746   Type *DestTy = I->getType();
2747   Value *Src = I->getOperand(0);
2748   Type *SrcTy = Src->getType();
2749 
2750   bool isZExt = isa<ZExtInst>(I);
2751   unsigned SrcReg = getRegForValue(Src);
2752   if (!SrcReg) return false;
2753 
2754   EVT SrcEVT, DestEVT;
2755   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2756   DestEVT = TLI.getValueType(DL, DestTy, true);
2757   if (!SrcEVT.isSimple()) return false;
2758   if (!DestEVT.isSimple()) return false;
2759 
2760   MVT SrcVT = SrcEVT.getSimpleVT();
2761   MVT DestVT = DestEVT.getSimpleVT();
2762   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2763   if (ResultReg == 0) return false;
2764   updateValueMap(I, ResultReg);
2765   return true;
2766 }
2767 
2768 bool ARMFastISel::SelectShift(const Instruction *I,
2769                               ARM_AM::ShiftOpc ShiftTy) {
2770   // We handle thumb2 mode by target independent selector
2771   // or SelectionDAG ISel.
2772   if (isThumb2)
2773     return false;
2774 
2775   // Only handle i32 now.
2776   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2777   if (DestVT != MVT::i32)
2778     return false;
2779 
2780   unsigned Opc = ARM::MOVsr;
2781   unsigned ShiftImm;
2782   Value *Src2Value = I->getOperand(1);
2783   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2784     ShiftImm = CI->getZExtValue();
2785 
2786     // Fall back to selection DAG isel if the shift amount
2787     // is zero or greater than the width of the value type.
2788     if (ShiftImm == 0 || ShiftImm >=32)
2789       return false;
2790 
2791     Opc = ARM::MOVsi;
2792   }
2793 
2794   Value *Src1Value = I->getOperand(0);
2795   unsigned Reg1 = getRegForValue(Src1Value);
2796   if (Reg1 == 0) return false;
2797 
2798   unsigned Reg2 = 0;
2799   if (Opc == ARM::MOVsr) {
2800     Reg2 = getRegForValue(Src2Value);
2801     if (Reg2 == 0) return false;
2802   }
2803 
2804   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2805   if(ResultReg == 0) return false;
2806 
2807   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2808                                     TII.get(Opc), ResultReg)
2809                             .addReg(Reg1);
2810 
2811   if (Opc == ARM::MOVsi)
2812     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2813   else if (Opc == ARM::MOVsr) {
2814     MIB.addReg(Reg2);
2815     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2816   }
2817 
2818   AddOptionalDefs(MIB);
2819   updateValueMap(I, ResultReg);
2820   return true;
2821 }
2822 
2823 // TODO: SoftFP support.
2824 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2825   switch (I->getOpcode()) {
2826     case Instruction::Load:
2827       return SelectLoad(I);
2828     case Instruction::Store:
2829       return SelectStore(I);
2830     case Instruction::Br:
2831       return SelectBranch(I);
2832     case Instruction::IndirectBr:
2833       return SelectIndirectBr(I);
2834     case Instruction::ICmp:
2835     case Instruction::FCmp:
2836       return SelectCmp(I);
2837     case Instruction::FPExt:
2838       return SelectFPExt(I);
2839     case Instruction::FPTrunc:
2840       return SelectFPTrunc(I);
2841     case Instruction::SIToFP:
2842       return SelectIToFP(I, /*isSigned*/ true);
2843     case Instruction::UIToFP:
2844       return SelectIToFP(I, /*isSigned*/ false);
2845     case Instruction::FPToSI:
2846       return SelectFPToI(I, /*isSigned*/ true);
2847     case Instruction::FPToUI:
2848       return SelectFPToI(I, /*isSigned*/ false);
2849     case Instruction::Add:
2850       return SelectBinaryIntOp(I, ISD::ADD);
2851     case Instruction::Or:
2852       return SelectBinaryIntOp(I, ISD::OR);
2853     case Instruction::Sub:
2854       return SelectBinaryIntOp(I, ISD::SUB);
2855     case Instruction::FAdd:
2856       return SelectBinaryFPOp(I, ISD::FADD);
2857     case Instruction::FSub:
2858       return SelectBinaryFPOp(I, ISD::FSUB);
2859     case Instruction::FMul:
2860       return SelectBinaryFPOp(I, ISD::FMUL);
2861     case Instruction::SDiv:
2862       return SelectDiv(I, /*isSigned*/ true);
2863     case Instruction::UDiv:
2864       return SelectDiv(I, /*isSigned*/ false);
2865     case Instruction::SRem:
2866       return SelectRem(I, /*isSigned*/ true);
2867     case Instruction::URem:
2868       return SelectRem(I, /*isSigned*/ false);
2869     case Instruction::Call:
2870       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2871         return SelectIntrinsicCall(*II);
2872       return SelectCall(I);
2873     case Instruction::Select:
2874       return SelectSelect(I);
2875     case Instruction::Ret:
2876       return SelectRet(I);
2877     case Instruction::Trunc:
2878       return SelectTrunc(I);
2879     case Instruction::ZExt:
2880     case Instruction::SExt:
2881       return SelectIntExt(I);
2882     case Instruction::Shl:
2883       return SelectShift(I, ARM_AM::lsl);
2884     case Instruction::LShr:
2885       return SelectShift(I, ARM_AM::lsr);
2886     case Instruction::AShr:
2887       return SelectShift(I, ARM_AM::asr);
2888     default: break;
2889   }
2890   return false;
2891 }
2892 
2893 namespace {
2894 
2895 // This table describes sign- and zero-extend instructions which can be
2896 // folded into a preceding load. All of these extends have an immediate
2897 // (sometimes a mask and sometimes a shift) that's applied after
2898 // extension.
2899 const struct FoldableLoadExtendsStruct {
2900   uint16_t Opc[2];  // ARM, Thumb.
2901   uint8_t ExpectedImm;
2902   uint8_t isZExt     : 1;
2903   uint8_t ExpectedVT : 7;
2904 } FoldableLoadExtends[] = {
2905   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2906   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2907   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2908   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2909   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2910 };
2911 
2912 } // end anonymous namespace
2913 
2914 /// \brief The specified machine instr operand is a vreg, and that
2915 /// vreg is being provided by the specified load instruction.  If possible,
2916 /// try to fold the load as an operand to the instruction, returning true if
2917 /// successful.
2918 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2919                                       const LoadInst *LI) {
2920   // Verify we have a legal type before going any further.
2921   MVT VT;
2922   if (!isLoadTypeLegal(LI->getType(), VT))
2923     return false;
2924 
2925   // Combine load followed by zero- or sign-extend.
2926   // ldrb r1, [r0]       ldrb r1, [r0]
2927   // uxtb r2, r1     =>
2928   // mov  r3, r2         mov  r3, r1
2929   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2930     return false;
2931   const uint64_t Imm = MI->getOperand(2).getImm();
2932 
2933   bool Found = false;
2934   bool isZExt;
2935   for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2936     if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2937         (uint64_t)FLE.ExpectedImm == Imm &&
2938         MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2939       Found = true;
2940       isZExt = FLE.isZExt;
2941     }
2942   }
2943   if (!Found) return false;
2944 
2945   // See if we can handle this address.
2946   Address Addr;
2947   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2948 
2949   unsigned ResultReg = MI->getOperand(0).getReg();
2950   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2951     return false;
2952   MI->eraseFromParent();
2953   return true;
2954 }
2955 
2956 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2957                                      unsigned Align, MVT VT) {
2958   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2959 
2960   LLVMContext *Context = &MF->getFunction()->getContext();
2961   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2962   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2963   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2964       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2965       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2966       /*AddCurrentAddress=*/UseGOT_PREL);
2967 
2968   unsigned ConstAlign =
2969       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2970   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2971 
2972   unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2973   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2974   MachineInstrBuilder MIB =
2975       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2976           .addConstantPoolIndex(Idx);
2977   if (Opc == ARM::LDRcp)
2978     MIB.addImm(0);
2979   MIB.add(predOps(ARMCC::AL));
2980 
2981   // Fix the address by adding pc.
2982   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2983   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2984                                                           : ARM::PICADD;
2985   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2986   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2987             .addReg(TempReg)
2988             .addImm(ARMPCLabelIndex);
2989   if (!Subtarget->isThumb())
2990     MIB.add(predOps(ARMCC::AL));
2991 
2992   if (UseGOT_PREL && Subtarget->isThumb()) {
2993     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2994     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2995                   TII.get(ARM::t2LDRi12), NewDestReg)
2996               .addReg(DestReg)
2997               .addImm(0);
2998     DestReg = NewDestReg;
2999     AddOptionalDefs(MIB);
3000   }
3001   return DestReg;
3002 }
3003 
3004 bool ARMFastISel::fastLowerArguments() {
3005   if (!FuncInfo.CanLowerReturn)
3006     return false;
3007 
3008   const Function *F = FuncInfo.Fn;
3009   if (F->isVarArg())
3010     return false;
3011 
3012   CallingConv::ID CC = F->getCallingConv();
3013   switch (CC) {
3014   default:
3015     return false;
3016   case CallingConv::Fast:
3017   case CallingConv::C:
3018   case CallingConv::ARM_AAPCS_VFP:
3019   case CallingConv::ARM_AAPCS:
3020   case CallingConv::ARM_APCS:
3021   case CallingConv::Swift:
3022     break;
3023   }
3024 
3025   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3026   // which are passed in r0 - r3.
3027   for (const Argument &Arg : F->args()) {
3028     if (Arg.getArgNo() >= 4)
3029       return false;
3030 
3031     if (Arg.hasAttribute(Attribute::InReg) ||
3032         Arg.hasAttribute(Attribute::StructRet) ||
3033         Arg.hasAttribute(Attribute::SwiftSelf) ||
3034         Arg.hasAttribute(Attribute::SwiftError) ||
3035         Arg.hasAttribute(Attribute::ByVal))
3036       return false;
3037 
3038     Type *ArgTy = Arg.getType();
3039     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3040       return false;
3041 
3042     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3043     if (!ArgVT.isSimple()) return false;
3044     switch (ArgVT.getSimpleVT().SimpleTy) {
3045     case MVT::i8:
3046     case MVT::i16:
3047     case MVT::i32:
3048       break;
3049     default:
3050       return false;
3051     }
3052   }
3053 
3054   static const MCPhysReg GPRArgRegs[] = {
3055     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3056   };
3057 
3058   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3059   for (const Argument &Arg : F->args()) {
3060     unsigned ArgNo = Arg.getArgNo();
3061     unsigned SrcReg = GPRArgRegs[ArgNo];
3062     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3063     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3064     // Without this, EmitLiveInCopies may eliminate the livein if its only
3065     // use is a bitcast (which isn't turned into an instruction).
3066     unsigned ResultReg = createResultReg(RC);
3067     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3068             TII.get(TargetOpcode::COPY),
3069             ResultReg).addReg(DstReg, getKillRegState(true));
3070     updateValueMap(&Arg, ResultReg);
3071   }
3072 
3073   return true;
3074 }
3075 
3076 namespace llvm {
3077 
3078   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3079                                 const TargetLibraryInfo *libInfo) {
3080     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3081       return new ARMFastISel(funcInfo, libInfo);
3082 
3083     return nullptr;
3084   }
3085 
3086 } // end namespace llvm
3087