1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCRegisterInfo.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MachineValueType.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cstdint>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 namespace {
86 
87   // All possible address modes, plus some.
88   struct Address {
89     enum {
90       RegBase,
91       FrameIndexBase
92     } BaseType = RegBase;
93 
94     union {
95       unsigned Reg;
96       int FI;
97     } Base;
98 
99     int Offset = 0;
100 
101     // Innocuous defaults for our address.
102     Address() {
103       Base.Reg = 0;
104     }
105   };
106 
107 class ARMFastISel final : public FastISel {
108   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
109   /// make the right decision when generating code for different targets.
110   const ARMSubtarget *Subtarget;
111   Module &M;
112   const TargetMachine &TM;
113   const TargetInstrInfo &TII;
114   const TargetLowering &TLI;
115   ARMFunctionInfo *AFI;
116 
117   // Convenience variables to avoid some queries.
118   bool isThumb2;
119   LLVMContext *Context;
120 
121   public:
122     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
123                          const TargetLibraryInfo *libInfo)
124         : FastISel(funcInfo, libInfo),
125           Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()),
126           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
127           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
128           TLI(*Subtarget->getTargetLowering()) {
129       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
130       isThumb2 = AFI->isThumbFunction();
131       Context = &funcInfo.Fn->getContext();
132     }
133 
134   private:
135     // Code from FastISel.cpp.
136 
137     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
138                             const TargetRegisterClass *RC, unsigned Op0);
139     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
140                              const TargetRegisterClass *RC,
141                              unsigned Op0, unsigned Op1);
142     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
143                              const TargetRegisterClass *RC,
144                              unsigned Op0, uint64_t Imm);
145     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
146                             const TargetRegisterClass *RC,
147                             uint64_t Imm);
148 
149     // Backend specific FastISel code.
150 
151     bool fastSelectInstruction(const Instruction *I) override;
152     unsigned fastMaterializeConstant(const Constant *C) override;
153     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
154     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
155                              const LoadInst *LI) override;
156     bool fastLowerArguments() override;
157 
158 #include "ARMGenFastISel.inc"
159 
160     // Instruction selection routines.
161 
162     bool SelectLoad(const Instruction *I);
163     bool SelectStore(const Instruction *I);
164     bool SelectBranch(const Instruction *I);
165     bool SelectIndirectBr(const Instruction *I);
166     bool SelectCmp(const Instruction *I);
167     bool SelectFPExt(const Instruction *I);
168     bool SelectFPTrunc(const Instruction *I);
169     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
170     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
171     bool SelectIToFP(const Instruction *I, bool isSigned);
172     bool SelectFPToI(const Instruction *I, bool isSigned);
173     bool SelectDiv(const Instruction *I, bool isSigned);
174     bool SelectRem(const Instruction *I, bool isSigned);
175     bool SelectCall(const Instruction *I, const char *IntrMemName);
176     bool SelectIntrinsicCall(const IntrinsicInst &I);
177     bool SelectSelect(const Instruction *I);
178     bool SelectRet(const Instruction *I);
179     bool SelectTrunc(const Instruction *I);
180     bool SelectIntExt(const Instruction *I);
181     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
182 
183     // Utility routines.
184 
185     bool isPositionIndependent() const;
186     bool isTypeLegal(Type *Ty, MVT &VT);
187     bool isLoadTypeLegal(Type *Ty, MVT &VT);
188     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
189                     bool isZExt);
190     bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
191                      unsigned Alignment = 0, bool isZExt = true,
192                      bool allocReg = true);
193     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
194                       unsigned Alignment = 0);
195     bool ARMComputeAddress(const Value *Obj, Address &Addr);
196     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
197     bool ARMIsMemCpySmall(uint64_t Len);
198     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
199                                unsigned Alignment);
200     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
201     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
202     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
203     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
204     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
205     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
206     unsigned ARMSelectCallOp(bool UseReg);
207     unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);
208 
209     const TargetLowering *getTargetLowering() { return &TLI; }
210 
211     // Call handling routines.
212 
213     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
214                                   bool Return,
215                                   bool isVarArg);
216     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
217                          SmallVectorImpl<Register> &ArgRegs,
218                          SmallVectorImpl<MVT> &ArgVTs,
219                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
220                          SmallVectorImpl<Register> &RegArgs,
221                          CallingConv::ID CC,
222                          unsigned &NumBytes,
223                          bool isVarArg);
224     unsigned getLibcallReg(const Twine &Name);
225     bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
226                     const Instruction *I, CallingConv::ID CC,
227                     unsigned &NumBytes, bool isVarArg);
228     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
229 
230     // OptionalDef handling routines.
231 
232     bool isARMNEONPred(const MachineInstr *MI);
233     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
234     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
235     void AddLoadStoreOperands(MVT VT, Address &Addr,
236                               const MachineInstrBuilder &MIB,
237                               MachineMemOperand::Flags Flags, bool useAM3);
238 };
239 
240 } // end anonymous namespace
241 
242 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
243 // we don't care about implicit defs here, just places we'll need to add a
244 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
245 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
246   if (!MI->hasOptionalDef())
247     return false;
248 
249   // Look to see if our OptionalDef is defining CPSR or CCR.
250   for (const MachineOperand &MO : MI->operands()) {
251     if (!MO.isReg() || !MO.isDef()) continue;
252     if (MO.getReg() == ARM::CPSR)
253       *CPSR = true;
254   }
255   return true;
256 }
257 
258 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
259   const MCInstrDesc &MCID = MI->getDesc();
260 
261   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
262   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
263        AFI->isThumb2Function())
264     return MI->isPredicable();
265 
266   for (const MCOperandInfo &opInfo : MCID.operands())
267     if (opInfo.isPredicate())
268       return true;
269 
270   return false;
271 }
272 
273 // If the machine is predicable go ahead and add the predicate operands, if
274 // it needs default CC operands add those.
275 // TODO: If we want to support thumb1 then we'll need to deal with optional
276 // CPSR defs that need to be added before the remaining operands. See s_cc_out
277 // for descriptions why.
278 const MachineInstrBuilder &
279 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
280   MachineInstr *MI = &*MIB;
281 
282   // Do we use a predicate? or...
283   // Are we NEON in ARM mode and have a predicate operand? If so, I know
284   // we're not predicable but add it anyways.
285   if (isARMNEONPred(MI))
286     MIB.add(predOps(ARMCC::AL));
287 
288   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
289   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
290   bool CPSR = false;
291   if (DefinesOptionalPredicate(MI, &CPSR))
292     MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
293   return MIB;
294 }
295 
296 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
297                                      const TargetRegisterClass *RC,
298                                      unsigned Op0) {
299   Register ResultReg = createResultReg(RC);
300   const MCInstrDesc &II = TII.get(MachineInstOpcode);
301 
302   // Make sure the input operand is sufficiently constrained to be legal
303   // for this instruction.
304   Op0 = constrainOperandRegClass(II, Op0, 1);
305   if (II.getNumDefs() >= 1) {
306     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
307                             ResultReg).addReg(Op0));
308   } else {
309     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
310                    .addReg(Op0));
311     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
312                    TII.get(TargetOpcode::COPY), ResultReg)
313                    .addReg(II.ImplicitDefs[0]));
314   }
315   return ResultReg;
316 }
317 
318 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
319                                       const TargetRegisterClass *RC,
320                                       unsigned Op0, unsigned Op1) {
321   Register ResultReg = createResultReg(RC);
322   const MCInstrDesc &II = TII.get(MachineInstOpcode);
323 
324   // Make sure the input operands are sufficiently constrained to be legal
325   // for this instruction.
326   Op0 = constrainOperandRegClass(II, Op0, 1);
327   Op1 = constrainOperandRegClass(II, Op1, 2);
328 
329   if (II.getNumDefs() >= 1) {
330     AddOptionalDefs(
331         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
332             .addReg(Op0)
333             .addReg(Op1));
334   } else {
335     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
336                    .addReg(Op0)
337                    .addReg(Op1));
338     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
339                            TII.get(TargetOpcode::COPY), ResultReg)
340                    .addReg(II.ImplicitDefs[0]));
341   }
342   return ResultReg;
343 }
344 
345 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
346                                       const TargetRegisterClass *RC,
347                                       unsigned Op0, uint64_t Imm) {
348   Register ResultReg = createResultReg(RC);
349   const MCInstrDesc &II = TII.get(MachineInstOpcode);
350 
351   // Make sure the input operand is sufficiently constrained to be legal
352   // for this instruction.
353   Op0 = constrainOperandRegClass(II, Op0, 1);
354   if (II.getNumDefs() >= 1) {
355     AddOptionalDefs(
356         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
357             .addReg(Op0)
358             .addImm(Imm));
359   } else {
360     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
361                    .addReg(Op0)
362                    .addImm(Imm));
363     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
364                            TII.get(TargetOpcode::COPY), ResultReg)
365                    .addReg(II.ImplicitDefs[0]));
366   }
367   return ResultReg;
368 }
369 
370 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
371                                      const TargetRegisterClass *RC,
372                                      uint64_t Imm) {
373   Register ResultReg = createResultReg(RC);
374   const MCInstrDesc &II = TII.get(MachineInstOpcode);
375 
376   if (II.getNumDefs() >= 1) {
377     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
378                             ResultReg).addImm(Imm));
379   } else {
380     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
381                    .addImm(Imm));
382     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
383                            TII.get(TargetOpcode::COPY), ResultReg)
384                    .addReg(II.ImplicitDefs[0]));
385   }
386   return ResultReg;
387 }
388 
389 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
390 // checks from the various callers.
391 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
392   if (VT == MVT::f64) return 0;
393 
394   Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
395   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
396                           TII.get(ARM::VMOVSR), MoveReg)
397                   .addReg(SrcReg));
398   return MoveReg;
399 }
400 
401 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
402   if (VT == MVT::i64) return 0;
403 
404   Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
405   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
406                           TII.get(ARM::VMOVRS), MoveReg)
407                   .addReg(SrcReg));
408   return MoveReg;
409 }
410 
411 // For double width floating point we need to materialize two constants
412 // (the high and the low) into integer registers then use a move to get
413 // the combined constant into an FP reg.
414 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
415   const APFloat Val = CFP->getValueAPF();
416   bool is64bit = VT == MVT::f64;
417 
418   // This checks to see if we can use VFP3 instructions to materialize
419   // a constant, otherwise we have to go through the constant pool.
420   if (TLI.isFPImmLegal(Val, VT)) {
421     int Imm;
422     unsigned Opc;
423     if (is64bit) {
424       Imm = ARM_AM::getFP64Imm(Val);
425       Opc = ARM::FCONSTD;
426     } else {
427       Imm = ARM_AM::getFP32Imm(Val);
428       Opc = ARM::FCONSTS;
429     }
430     Register DestReg = createResultReg(TLI.getRegClassFor(VT));
431     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
432                             TII.get(Opc), DestReg).addImm(Imm));
433     return DestReg;
434   }
435 
436   // Require VFP2 for loading fp constants.
437   if (!Subtarget->hasVFP2Base()) return false;
438 
439   // MachineConstantPool wants an explicit alignment.
440   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
441   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
442   Register DestReg = createResultReg(TLI.getRegClassFor(VT));
443   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
444 
445   // The extra reg is for addrmode5.
446   AddOptionalDefs(
447       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
448           .addConstantPoolIndex(Idx)
449           .addReg(0));
450   return DestReg;
451 }
452 
453 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
454   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
455     return 0;
456 
457   // If we can do this in a single instruction without a constant pool entry
458   // do so now.
459   const ConstantInt *CI = cast<ConstantInt>(C);
460   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
461     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
462     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
463       &ARM::GPRRegClass;
464     Register ImmReg = createResultReg(RC);
465     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
466                             TII.get(Opc), ImmReg)
467                     .addImm(CI->getZExtValue()));
468     return ImmReg;
469   }
470 
471   // Use MVN to emit negative constants.
472   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
473     unsigned Imm = (unsigned)~(CI->getSExtValue());
474     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
475       (ARM_AM::getSOImmVal(Imm) != -1);
476     if (UseImm) {
477       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
478       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
479                                                  &ARM::GPRRegClass;
480       Register ImmReg = createResultReg(RC);
481       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
482                               TII.get(Opc), ImmReg)
483                       .addImm(Imm));
484       return ImmReg;
485     }
486   }
487 
488   unsigned ResultReg = 0;
489   if (Subtarget->useMovt())
490     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
491 
492   if (ResultReg)
493     return ResultReg;
494 
495   // Load from constant pool.  For now 32-bit only.
496   if (VT != MVT::i32)
497     return 0;
498 
499   // MachineConstantPool wants an explicit alignment.
500   Align Alignment = DL.getPrefTypeAlign(C->getType());
501   unsigned Idx = MCP.getConstantPoolIndex(C, Alignment);
502   ResultReg = createResultReg(TLI.getRegClassFor(VT));
503   if (isThumb2)
504     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
505                             TII.get(ARM::t2LDRpci), ResultReg)
506                       .addConstantPoolIndex(Idx));
507   else {
508     // The extra immediate is for addrmode2.
509     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
510     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
511                             TII.get(ARM::LDRcp), ResultReg)
512                       .addConstantPoolIndex(Idx)
513                       .addImm(0));
514   }
515   return ResultReg;
516 }
517 
518 bool ARMFastISel::isPositionIndependent() const {
519   return TLI.isPositionIndependent();
520 }
521 
522 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
523   // For now 32-bit only.
524   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
525 
526   // ROPI/RWPI not currently supported.
527   if (Subtarget->isROPI() || Subtarget->isRWPI())
528     return 0;
529 
530   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
531   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
532                                            : &ARM::GPRRegClass;
533   Register DestReg = createResultReg(RC);
534 
535   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
536   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
537   bool IsThreadLocal = GVar && GVar->isThreadLocal();
538   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
539 
540   bool IsPositionIndependent = isPositionIndependent();
541   // Use movw+movt when possible, it avoids constant pool entries.
542   // Non-darwin targets only support static movt relocations in FastISel.
543   if (Subtarget->useMovt() &&
544       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
545     unsigned Opc;
546     unsigned char TF = 0;
547     if (Subtarget->isTargetMachO())
548       TF = ARMII::MO_NONLAZY;
549 
550     if (IsPositionIndependent)
551       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
552     else
553       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
554     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
555                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
556   } else {
557     // MachineConstantPool wants an explicit alignment.
558     Align Alignment = DL.getPrefTypeAlign(GV->getType());
559 
560     if (Subtarget->isTargetELF() && IsPositionIndependent)
561       return ARMLowerPICELF(GV, VT);
562 
563     // Grab index.
564     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
565     unsigned Id = AFI->createPICLabelUId();
566     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
567                                                                 ARMCP::CPValue,
568                                                                 PCAdj);
569     unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment);
570 
571     // Load value.
572     MachineInstrBuilder MIB;
573     if (isThumb2) {
574       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
575       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
576                     DestReg).addConstantPoolIndex(Idx);
577       if (IsPositionIndependent)
578         MIB.addImm(Id);
579       AddOptionalDefs(MIB);
580     } else {
581       // The extra immediate is for addrmode2.
582       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
583       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
584                     TII.get(ARM::LDRcp), DestReg)
585                 .addConstantPoolIndex(Idx)
586                 .addImm(0);
587       AddOptionalDefs(MIB);
588 
589       if (IsPositionIndependent) {
590         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
591         Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
592 
593         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
594                                           DbgLoc, TII.get(Opc), NewDestReg)
595                                   .addReg(DestReg)
596                                   .addImm(Id);
597         AddOptionalDefs(MIB);
598         return NewDestReg;
599       }
600     }
601   }
602 
603   if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) ||
604       (Subtarget->isTargetMachO() && IsIndirect) ||
605       Subtarget->genLongCalls()) {
606     MachineInstrBuilder MIB;
607     Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
608     if (isThumb2)
609       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
610                     TII.get(ARM::t2LDRi12), NewDestReg)
611             .addReg(DestReg)
612             .addImm(0);
613     else
614       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
615                     TII.get(ARM::LDRi12), NewDestReg)
616                 .addReg(DestReg)
617                 .addImm(0);
618     DestReg = NewDestReg;
619     AddOptionalDefs(MIB);
620   }
621 
622   return DestReg;
623 }
624 
625 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
626   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
627 
628   // Only handle simple types.
629   if (!CEVT.isSimple()) return 0;
630   MVT VT = CEVT.getSimpleVT();
631 
632   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
633     return ARMMaterializeFP(CFP, VT);
634   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
635     return ARMMaterializeGV(GV, VT);
636   else if (isa<ConstantInt>(C))
637     return ARMMaterializeInt(C, VT);
638 
639   return 0;
640 }
641 
642 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
643 
644 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
645   // Don't handle dynamic allocas.
646   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
647 
648   MVT VT;
649   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
650 
651   DenseMap<const AllocaInst*, int>::iterator SI =
652     FuncInfo.StaticAllocaMap.find(AI);
653 
654   // This will get lowered later into the correct offsets and registers
655   // via rewriteXFrameIndex.
656   if (SI != FuncInfo.StaticAllocaMap.end()) {
657     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
658     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
659     Register ResultReg = createResultReg(RC);
660     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
661 
662     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
663                             TII.get(Opc), ResultReg)
664                             .addFrameIndex(SI->second)
665                             .addImm(0));
666     return ResultReg;
667   }
668 
669   return 0;
670 }
671 
672 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
673   EVT evt = TLI.getValueType(DL, Ty, true);
674 
675   // Only handle simple types.
676   if (evt == MVT::Other || !evt.isSimple()) return false;
677   VT = evt.getSimpleVT();
678 
679   // Handle all legal types, i.e. a register that will directly hold this
680   // value.
681   return TLI.isTypeLegal(VT);
682 }
683 
684 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
685   if (isTypeLegal(Ty, VT)) return true;
686 
687   // If this is a type than can be sign or zero-extended to a basic operation
688   // go ahead and accept it now.
689   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
690     return true;
691 
692   return false;
693 }
694 
695 // Computes the address to get to an object.
696 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
697   // Some boilerplate from the X86 FastISel.
698   const User *U = nullptr;
699   unsigned Opcode = Instruction::UserOp1;
700   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
701     // Don't walk into other basic blocks unless the object is an alloca from
702     // another block, otherwise it may not have a virtual register assigned.
703     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
704         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
705       Opcode = I->getOpcode();
706       U = I;
707     }
708   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
709     Opcode = C->getOpcode();
710     U = C;
711   }
712 
713   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
714     if (Ty->getAddressSpace() > 255)
715       // Fast instruction selection doesn't support the special
716       // address spaces.
717       return false;
718 
719   switch (Opcode) {
720     default:
721     break;
722     case Instruction::BitCast:
723       // Look through bitcasts.
724       return ARMComputeAddress(U->getOperand(0), Addr);
725     case Instruction::IntToPtr:
726       // Look past no-op inttoptrs.
727       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
728           TLI.getPointerTy(DL))
729         return ARMComputeAddress(U->getOperand(0), Addr);
730       break;
731     case Instruction::PtrToInt:
732       // Look past no-op ptrtoints.
733       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
734         return ARMComputeAddress(U->getOperand(0), Addr);
735       break;
736     case Instruction::GetElementPtr: {
737       Address SavedAddr = Addr;
738       int TmpOffset = Addr.Offset;
739 
740       // Iterate through the GEP folding the constants into offsets where
741       // we can.
742       gep_type_iterator GTI = gep_type_begin(U);
743       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
744            i != e; ++i, ++GTI) {
745         const Value *Op = *i;
746         if (StructType *STy = GTI.getStructTypeOrNull()) {
747           const StructLayout *SL = DL.getStructLayout(STy);
748           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
749           TmpOffset += SL->getElementOffset(Idx);
750         } else {
751           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
752           while (true) {
753             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
754               // Constant-offset addressing.
755               TmpOffset += CI->getSExtValue() * S;
756               break;
757             }
758             if (canFoldAddIntoGEP(U, Op)) {
759               // A compatible add with a constant operand. Fold the constant.
760               ConstantInt *CI =
761               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
762               TmpOffset += CI->getSExtValue() * S;
763               // Iterate on the other operand.
764               Op = cast<AddOperator>(Op)->getOperand(0);
765               continue;
766             }
767             // Unsupported
768             goto unsupported_gep;
769           }
770         }
771       }
772 
773       // Try to grab the base operand now.
774       Addr.Offset = TmpOffset;
775       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
776 
777       // We failed, restore everything and try the other options.
778       Addr = SavedAddr;
779 
780       unsupported_gep:
781       break;
782     }
783     case Instruction::Alloca: {
784       const AllocaInst *AI = cast<AllocaInst>(Obj);
785       DenseMap<const AllocaInst*, int>::iterator SI =
786         FuncInfo.StaticAllocaMap.find(AI);
787       if (SI != FuncInfo.StaticAllocaMap.end()) {
788         Addr.BaseType = Address::FrameIndexBase;
789         Addr.Base.FI = SI->second;
790         return true;
791       }
792       break;
793     }
794   }
795 
796   // Try to get this in a register if nothing else has worked.
797   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
798   return Addr.Base.Reg != 0;
799 }
800 
801 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
802   bool needsLowering = false;
803   switch (VT.SimpleTy) {
804     default: llvm_unreachable("Unhandled load/store type!");
805     case MVT::i1:
806     case MVT::i8:
807     case MVT::i16:
808     case MVT::i32:
809       if (!useAM3) {
810         // Integer loads/stores handle 12-bit offsets.
811         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
812         // Handle negative offsets.
813         if (needsLowering && isThumb2)
814           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
815                             Addr.Offset > -256);
816       } else {
817         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
818         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
819       }
820       break;
821     case MVT::f32:
822     case MVT::f64:
823       // Floating point operands handle 8-bit offsets.
824       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
825       break;
826   }
827 
828   // If this is a stack pointer and the offset needs to be simplified then
829   // put the alloca address into a register, set the base type back to
830   // register and continue. This should almost never happen.
831   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
832     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
833                                              : &ARM::GPRRegClass;
834     Register ResultReg = createResultReg(RC);
835     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
836     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
837                             TII.get(Opc), ResultReg)
838                             .addFrameIndex(Addr.Base.FI)
839                             .addImm(0));
840     Addr.Base.Reg = ResultReg;
841     Addr.BaseType = Address::RegBase;
842   }
843 
844   // Since the offset is too large for the load/store instruction
845   // get the reg+offset into a register.
846   if (needsLowering) {
847     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
848                                  Addr.Offset, MVT::i32);
849     Addr.Offset = 0;
850   }
851 }
852 
853 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
854                                        const MachineInstrBuilder &MIB,
855                                        MachineMemOperand::Flags Flags,
856                                        bool useAM3) {
857   // addrmode5 output depends on the selection dag addressing dividing the
858   // offset by 4 that it then later multiplies. Do this here as well.
859   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
860     Addr.Offset /= 4;
861 
862   // Frame base works a bit differently. Handle it separately.
863   if (Addr.BaseType == Address::FrameIndexBase) {
864     int FI = Addr.Base.FI;
865     int Offset = Addr.Offset;
866     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
867         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
868         MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
869     // Now add the rest of the operands.
870     MIB.addFrameIndex(FI);
871 
872     // ARM halfword load/stores and signed byte loads need an additional
873     // operand.
874     if (useAM3) {
875       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
876       MIB.addReg(0);
877       MIB.addImm(Imm);
878     } else {
879       MIB.addImm(Addr.Offset);
880     }
881     MIB.addMemOperand(MMO);
882   } else {
883     // Now add the rest of the operands.
884     MIB.addReg(Addr.Base.Reg);
885 
886     // ARM halfword load/stores and signed byte loads need an additional
887     // operand.
888     if (useAM3) {
889       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
890       MIB.addReg(0);
891       MIB.addImm(Imm);
892     } else {
893       MIB.addImm(Addr.Offset);
894     }
895   }
896   AddOptionalDefs(MIB);
897 }
898 
899 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
900                               unsigned Alignment, bool isZExt, bool allocReg) {
901   unsigned Opc;
902   bool useAM3 = false;
903   bool needVMOV = false;
904   const TargetRegisterClass *RC;
905   switch (VT.SimpleTy) {
906     // This is mostly going to be Neon/vector support.
907     default: return false;
908     case MVT::i1:
909     case MVT::i8:
910       if (isThumb2) {
911         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
912           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
913         else
914           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
915       } else {
916         if (isZExt) {
917           Opc = ARM::LDRBi12;
918         } else {
919           Opc = ARM::LDRSB;
920           useAM3 = true;
921         }
922       }
923       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
924       break;
925     case MVT::i16:
926       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
927         return false;
928 
929       if (isThumb2) {
930         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
931           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
932         else
933           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
934       } else {
935         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
936         useAM3 = true;
937       }
938       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
939       break;
940     case MVT::i32:
941       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
942         return false;
943 
944       if (isThumb2) {
945         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
946           Opc = ARM::t2LDRi8;
947         else
948           Opc = ARM::t2LDRi12;
949       } else {
950         Opc = ARM::LDRi12;
951       }
952       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
953       break;
954     case MVT::f32:
955       if (!Subtarget->hasVFP2Base()) return false;
956       // Unaligned loads need special handling. Floats require word-alignment.
957       if (Alignment && Alignment < 4) {
958         needVMOV = true;
959         VT = MVT::i32;
960         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
961         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
962       } else {
963         Opc = ARM::VLDRS;
964         RC = TLI.getRegClassFor(VT);
965       }
966       break;
967     case MVT::f64:
968       // Can load and store double precision even without FeatureFP64
969       if (!Subtarget->hasVFP2Base()) return false;
970       // FIXME: Unaligned loads need special handling.  Doublewords require
971       // word-alignment.
972       if (Alignment && Alignment < 4)
973         return false;
974 
975       Opc = ARM::VLDRD;
976       RC = TLI.getRegClassFor(VT);
977       break;
978   }
979   // Simplify this down to something we can handle.
980   ARMSimplifyAddress(Addr, VT, useAM3);
981 
982   // Create the base instruction, then add the operands.
983   if (allocReg)
984     ResultReg = createResultReg(RC);
985   assert(ResultReg > 255 && "Expected an allocated virtual register.");
986   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
987                                     TII.get(Opc), ResultReg);
988   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
989 
990   // If we had an unaligned load of a float we've converted it to an regular
991   // load.  Now we must move from the GRP to the FP register.
992   if (needVMOV) {
993     Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
994     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
995                             TII.get(ARM::VMOVSR), MoveReg)
996                     .addReg(ResultReg));
997     ResultReg = MoveReg;
998   }
999   return true;
1000 }
1001 
1002 bool ARMFastISel::SelectLoad(const Instruction *I) {
1003   // Atomic loads need special handling.
1004   if (cast<LoadInst>(I)->isAtomic())
1005     return false;
1006 
1007   const Value *SV = I->getOperand(0);
1008   if (TLI.supportSwiftError()) {
1009     // Swifterror values can come from either a function parameter with
1010     // swifterror attribute or an alloca with swifterror attribute.
1011     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1012       if (Arg->hasSwiftErrorAttr())
1013         return false;
1014     }
1015 
1016     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1017       if (Alloca->isSwiftError())
1018         return false;
1019     }
1020   }
1021 
1022   // Verify we have a legal type before going any further.
1023   MVT VT;
1024   if (!isLoadTypeLegal(I->getType(), VT))
1025     return false;
1026 
1027   // See if we can handle this address.
1028   Address Addr;
1029   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1030 
1031   Register ResultReg;
1032   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1033     return false;
1034   updateValueMap(I, ResultReg);
1035   return true;
1036 }
1037 
1038 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1039                                unsigned Alignment) {
1040   unsigned StrOpc;
1041   bool useAM3 = false;
1042   switch (VT.SimpleTy) {
1043     // This is mostly going to be Neon/vector support.
1044     default: return false;
1045     case MVT::i1: {
1046       Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1047                                               : &ARM::GPRRegClass);
1048       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1049       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1050       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1051                               TII.get(Opc), Res)
1052                       .addReg(SrcReg).addImm(1));
1053       SrcReg = Res;
1054       LLVM_FALLTHROUGH;
1055     }
1056     case MVT::i8:
1057       if (isThumb2) {
1058         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1059           StrOpc = ARM::t2STRBi8;
1060         else
1061           StrOpc = ARM::t2STRBi12;
1062       } else {
1063         StrOpc = ARM::STRBi12;
1064       }
1065       break;
1066     case MVT::i16:
1067       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1068         return false;
1069 
1070       if (isThumb2) {
1071         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1072           StrOpc = ARM::t2STRHi8;
1073         else
1074           StrOpc = ARM::t2STRHi12;
1075       } else {
1076         StrOpc = ARM::STRH;
1077         useAM3 = true;
1078       }
1079       break;
1080     case MVT::i32:
1081       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1082         return false;
1083 
1084       if (isThumb2) {
1085         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1086           StrOpc = ARM::t2STRi8;
1087         else
1088           StrOpc = ARM::t2STRi12;
1089       } else {
1090         StrOpc = ARM::STRi12;
1091       }
1092       break;
1093     case MVT::f32:
1094       if (!Subtarget->hasVFP2Base()) return false;
1095       // Unaligned stores need special handling. Floats require word-alignment.
1096       if (Alignment && Alignment < 4) {
1097         Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1098         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1099                                 TII.get(ARM::VMOVRS), MoveReg)
1100                         .addReg(SrcReg));
1101         SrcReg = MoveReg;
1102         VT = MVT::i32;
1103         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1104       } else {
1105         StrOpc = ARM::VSTRS;
1106       }
1107       break;
1108     case MVT::f64:
1109       // Can load and store double precision even without FeatureFP64
1110       if (!Subtarget->hasVFP2Base()) return false;
1111       // FIXME: Unaligned stores need special handling.  Doublewords require
1112       // word-alignment.
1113       if (Alignment && Alignment < 4)
1114           return false;
1115 
1116       StrOpc = ARM::VSTRD;
1117       break;
1118   }
1119   // Simplify this down to something we can handle.
1120   ARMSimplifyAddress(Addr, VT, useAM3);
1121 
1122   // Create the base instruction, then add the operands.
1123   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1124   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1125                                     TII.get(StrOpc))
1126                             .addReg(SrcReg);
1127   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1128   return true;
1129 }
1130 
1131 bool ARMFastISel::SelectStore(const Instruction *I) {
1132   Value *Op0 = I->getOperand(0);
1133   unsigned SrcReg = 0;
1134 
1135   // Atomic stores need special handling.
1136   if (cast<StoreInst>(I)->isAtomic())
1137     return false;
1138 
1139   const Value *PtrV = I->getOperand(1);
1140   if (TLI.supportSwiftError()) {
1141     // Swifterror values can come from either a function parameter with
1142     // swifterror attribute or an alloca with swifterror attribute.
1143     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1144       if (Arg->hasSwiftErrorAttr())
1145         return false;
1146     }
1147 
1148     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1149       if (Alloca->isSwiftError())
1150         return false;
1151     }
1152   }
1153 
1154   // Verify we have a legal type before going any further.
1155   MVT VT;
1156   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1157     return false;
1158 
1159   // Get the value to be stored into a register.
1160   SrcReg = getRegForValue(Op0);
1161   if (SrcReg == 0) return false;
1162 
1163   // See if we can handle this address.
1164   Address Addr;
1165   if (!ARMComputeAddress(I->getOperand(1), Addr))
1166     return false;
1167 
1168   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1169     return false;
1170   return true;
1171 }
1172 
1173 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1174   switch (Pred) {
1175     // Needs two compares...
1176     case CmpInst::FCMP_ONE:
1177     case CmpInst::FCMP_UEQ:
1178     default:
1179       // AL is our "false" for now. The other two need more compares.
1180       return ARMCC::AL;
1181     case CmpInst::ICMP_EQ:
1182     case CmpInst::FCMP_OEQ:
1183       return ARMCC::EQ;
1184     case CmpInst::ICMP_SGT:
1185     case CmpInst::FCMP_OGT:
1186       return ARMCC::GT;
1187     case CmpInst::ICMP_SGE:
1188     case CmpInst::FCMP_OGE:
1189       return ARMCC::GE;
1190     case CmpInst::ICMP_UGT:
1191     case CmpInst::FCMP_UGT:
1192       return ARMCC::HI;
1193     case CmpInst::FCMP_OLT:
1194       return ARMCC::MI;
1195     case CmpInst::ICMP_ULE:
1196     case CmpInst::FCMP_OLE:
1197       return ARMCC::LS;
1198     case CmpInst::FCMP_ORD:
1199       return ARMCC::VC;
1200     case CmpInst::FCMP_UNO:
1201       return ARMCC::VS;
1202     case CmpInst::FCMP_UGE:
1203       return ARMCC::PL;
1204     case CmpInst::ICMP_SLT:
1205     case CmpInst::FCMP_ULT:
1206       return ARMCC::LT;
1207     case CmpInst::ICMP_SLE:
1208     case CmpInst::FCMP_ULE:
1209       return ARMCC::LE;
1210     case CmpInst::FCMP_UNE:
1211     case CmpInst::ICMP_NE:
1212       return ARMCC::NE;
1213     case CmpInst::ICMP_UGE:
1214       return ARMCC::HS;
1215     case CmpInst::ICMP_ULT:
1216       return ARMCC::LO;
1217   }
1218 }
1219 
1220 bool ARMFastISel::SelectBranch(const Instruction *I) {
1221   const BranchInst *BI = cast<BranchInst>(I);
1222   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1223   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1224 
1225   // Simple branch support.
1226 
1227   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1228   // behavior.
1229   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1230     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1231       // Get the compare predicate.
1232       // Try to take advantage of fallthrough opportunities.
1233       CmpInst::Predicate Predicate = CI->getPredicate();
1234       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1235         std::swap(TBB, FBB);
1236         Predicate = CmpInst::getInversePredicate(Predicate);
1237       }
1238 
1239       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1240 
1241       // We may not handle every CC for now.
1242       if (ARMPred == ARMCC::AL) return false;
1243 
1244       // Emit the compare.
1245       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1246         return false;
1247 
1248       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1249       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1250       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1251       finishCondBranch(BI->getParent(), TBB, FBB);
1252       return true;
1253     }
1254   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1255     MVT SourceVT;
1256     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1257         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1258       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1259       Register OpReg = getRegForValue(TI->getOperand(0));
1260       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1261       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1262                               TII.get(TstOpc))
1263                       .addReg(OpReg).addImm(1));
1264 
1265       unsigned CCMode = ARMCC::NE;
1266       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1267         std::swap(TBB, FBB);
1268         CCMode = ARMCC::EQ;
1269       }
1270 
1271       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1272       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1273       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1274 
1275       finishCondBranch(BI->getParent(), TBB, FBB);
1276       return true;
1277     }
1278   } else if (const ConstantInt *CI =
1279              dyn_cast<ConstantInt>(BI->getCondition())) {
1280     uint64_t Imm = CI->getZExtValue();
1281     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1282     fastEmitBranch(Target, DbgLoc);
1283     return true;
1284   }
1285 
1286   Register CmpReg = getRegForValue(BI->getCondition());
1287   if (CmpReg == 0) return false;
1288 
1289   // We've been divorced from our compare!  Our block was split, and
1290   // now our compare lives in a predecessor block.  We musn't
1291   // re-compare here, as the children of the compare aren't guaranteed
1292   // live across the block boundary (we *could* check for this).
1293   // Regardless, the compare has been done in the predecessor block,
1294   // and it left a value for us in a virtual register.  Ergo, we test
1295   // the one-bit value left in the virtual register.
1296   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1297   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1298   AddOptionalDefs(
1299       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1300           .addReg(CmpReg)
1301           .addImm(1));
1302 
1303   unsigned CCMode = ARMCC::NE;
1304   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1305     std::swap(TBB, FBB);
1306     CCMode = ARMCC::EQ;
1307   }
1308 
1309   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1310   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1311                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1312   finishCondBranch(BI->getParent(), TBB, FBB);
1313   return true;
1314 }
1315 
1316 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1317   Register AddrReg = getRegForValue(I->getOperand(0));
1318   if (AddrReg == 0) return false;
1319 
1320   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1321   assert(isThumb2 || Subtarget->hasV4TOps());
1322 
1323   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1324                           TII.get(Opc)).addReg(AddrReg));
1325 
1326   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1327   for (const BasicBlock *SuccBB : IB->successors())
1328     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1329 
1330   return true;
1331 }
1332 
1333 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1334                              bool isZExt) {
1335   Type *Ty = Src1Value->getType();
1336   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1337   if (!SrcEVT.isSimple()) return false;
1338   MVT SrcVT = SrcEVT.getSimpleVT();
1339 
1340   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1341     return false;
1342 
1343   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1344     return false;
1345 
1346   // Check to see if the 2nd operand is a constant that we can encode directly
1347   // in the compare.
1348   int Imm = 0;
1349   bool UseImm = false;
1350   bool isNegativeImm = false;
1351   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1352   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1353   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1354     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1355         SrcVT == MVT::i1) {
1356       const APInt &CIVal = ConstInt->getValue();
1357       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1358       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1359       // then a cmn, because there is no way to represent 2147483648 as a
1360       // signed 32-bit int.
1361       if (Imm < 0 && Imm != (int)0x80000000) {
1362         isNegativeImm = true;
1363         Imm = -Imm;
1364       }
1365       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1366         (ARM_AM::getSOImmVal(Imm) != -1);
1367     }
1368   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1369     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1370       if (ConstFP->isZero() && !ConstFP->isNegative())
1371         UseImm = true;
1372   }
1373 
1374   unsigned CmpOpc;
1375   bool isICmp = true;
1376   bool needsExt = false;
1377   switch (SrcVT.SimpleTy) {
1378     default: return false;
1379     // TODO: Verify compares.
1380     case MVT::f32:
1381       isICmp = false;
1382       CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1383       break;
1384     case MVT::f64:
1385       isICmp = false;
1386       CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1387       break;
1388     case MVT::i1:
1389     case MVT::i8:
1390     case MVT::i16:
1391       needsExt = true;
1392       LLVM_FALLTHROUGH;
1393     case MVT::i32:
1394       if (isThumb2) {
1395         if (!UseImm)
1396           CmpOpc = ARM::t2CMPrr;
1397         else
1398           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1399       } else {
1400         if (!UseImm)
1401           CmpOpc = ARM::CMPrr;
1402         else
1403           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1404       }
1405       break;
1406   }
1407 
1408   Register SrcReg1 = getRegForValue(Src1Value);
1409   if (SrcReg1 == 0) return false;
1410 
1411   unsigned SrcReg2 = 0;
1412   if (!UseImm) {
1413     SrcReg2 = getRegForValue(Src2Value);
1414     if (SrcReg2 == 0) return false;
1415   }
1416 
1417   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1418   if (needsExt) {
1419     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1420     if (SrcReg1 == 0) return false;
1421     if (!UseImm) {
1422       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1423       if (SrcReg2 == 0) return false;
1424     }
1425   }
1426 
1427   const MCInstrDesc &II = TII.get(CmpOpc);
1428   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1429   if (!UseImm) {
1430     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1431     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1432                     .addReg(SrcReg1).addReg(SrcReg2));
1433   } else {
1434     MachineInstrBuilder MIB;
1435     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1436       .addReg(SrcReg1);
1437 
1438     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1439     if (isICmp)
1440       MIB.addImm(Imm);
1441     AddOptionalDefs(MIB);
1442   }
1443 
1444   // For floating point we need to move the result to a comparison register
1445   // that we can then use for branches.
1446   if (Ty->isFloatTy() || Ty->isDoubleTy())
1447     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1448                             TII.get(ARM::FMSTAT)));
1449   return true;
1450 }
1451 
1452 bool ARMFastISel::SelectCmp(const Instruction *I) {
1453   const CmpInst *CI = cast<CmpInst>(I);
1454 
1455   // Get the compare predicate.
1456   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1457 
1458   // We may not handle every CC for now.
1459   if (ARMPred == ARMCC::AL) return false;
1460 
1461   // Emit the compare.
1462   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1463     return false;
1464 
1465   // Now set a register based on the comparison. Explicitly set the predicates
1466   // here.
1467   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1468   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1469                                            : &ARM::GPRRegClass;
1470   Register DestReg = createResultReg(RC);
1471   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1472   unsigned ZeroReg = fastMaterializeConstant(Zero);
1473   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1474   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1475           .addReg(ZeroReg).addImm(1)
1476           .addImm(ARMPred).addReg(ARM::CPSR);
1477 
1478   updateValueMap(I, DestReg);
1479   return true;
1480 }
1481 
1482 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1483   // Make sure we have VFP and that we're extending float to double.
1484   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1485 
1486   Value *V = I->getOperand(0);
1487   if (!I->getType()->isDoubleTy() ||
1488       !V->getType()->isFloatTy()) return false;
1489 
1490   Register Op = getRegForValue(V);
1491   if (Op == 0) return false;
1492 
1493   Register Result = createResultReg(&ARM::DPRRegClass);
1494   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1495                           TII.get(ARM::VCVTDS), Result)
1496                   .addReg(Op));
1497   updateValueMap(I, Result);
1498   return true;
1499 }
1500 
1501 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1502   // Make sure we have VFP and that we're truncating double to float.
1503   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1504 
1505   Value *V = I->getOperand(0);
1506   if (!(I->getType()->isFloatTy() &&
1507         V->getType()->isDoubleTy())) return false;
1508 
1509   Register Op = getRegForValue(V);
1510   if (Op == 0) return false;
1511 
1512   Register Result = createResultReg(&ARM::SPRRegClass);
1513   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1514                           TII.get(ARM::VCVTSD), Result)
1515                   .addReg(Op));
1516   updateValueMap(I, Result);
1517   return true;
1518 }
1519 
1520 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1521   // Make sure we have VFP.
1522   if (!Subtarget->hasVFP2Base()) return false;
1523 
1524   MVT DstVT;
1525   Type *Ty = I->getType();
1526   if (!isTypeLegal(Ty, DstVT))
1527     return false;
1528 
1529   Value *Src = I->getOperand(0);
1530   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1531   if (!SrcEVT.isSimple())
1532     return false;
1533   MVT SrcVT = SrcEVT.getSimpleVT();
1534   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1535     return false;
1536 
1537   Register SrcReg = getRegForValue(Src);
1538   if (SrcReg == 0) return false;
1539 
1540   // Handle sign-extension.
1541   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1542     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1543                                        /*isZExt*/!isSigned);
1544     if (SrcReg == 0) return false;
1545   }
1546 
1547   // The conversion routine works on fp-reg to fp-reg and the operand above
1548   // was an integer, move it to the fp registers if possible.
1549   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1550   if (FP == 0) return false;
1551 
1552   unsigned Opc;
1553   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1554   else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1555     Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1556   else return false;
1557 
1558   Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1559   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1560                           TII.get(Opc), ResultReg).addReg(FP));
1561   updateValueMap(I, ResultReg);
1562   return true;
1563 }
1564 
1565 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1566   // Make sure we have VFP.
1567   if (!Subtarget->hasVFP2Base()) return false;
1568 
1569   MVT DstVT;
1570   Type *RetTy = I->getType();
1571   if (!isTypeLegal(RetTy, DstVT))
1572     return false;
1573 
1574   Register Op = getRegForValue(I->getOperand(0));
1575   if (Op == 0) return false;
1576 
1577   unsigned Opc;
1578   Type *OpTy = I->getOperand(0)->getType();
1579   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1580   else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1581     Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1582   else return false;
1583 
1584   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1585   Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1586   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1587                           TII.get(Opc), ResultReg).addReg(Op));
1588 
1589   // This result needs to be in an integer register, but the conversion only
1590   // takes place in fp-regs.
1591   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1592   if (IntReg == 0) return false;
1593 
1594   updateValueMap(I, IntReg);
1595   return true;
1596 }
1597 
1598 bool ARMFastISel::SelectSelect(const Instruction *I) {
1599   MVT VT;
1600   if (!isTypeLegal(I->getType(), VT))
1601     return false;
1602 
1603   // Things need to be register sized for register moves.
1604   if (VT != MVT::i32) return false;
1605 
1606   Register CondReg = getRegForValue(I->getOperand(0));
1607   if (CondReg == 0) return false;
1608   Register Op1Reg = getRegForValue(I->getOperand(1));
1609   if (Op1Reg == 0) return false;
1610 
1611   // Check to see if we can use an immediate in the conditional move.
1612   int Imm = 0;
1613   bool UseImm = false;
1614   bool isNegativeImm = false;
1615   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1616     assert(VT == MVT::i32 && "Expecting an i32.");
1617     Imm = (int)ConstInt->getValue().getZExtValue();
1618     if (Imm < 0) {
1619       isNegativeImm = true;
1620       Imm = ~Imm;
1621     }
1622     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1623       (ARM_AM::getSOImmVal(Imm) != -1);
1624   }
1625 
1626   unsigned Op2Reg = 0;
1627   if (!UseImm) {
1628     Op2Reg = getRegForValue(I->getOperand(2));
1629     if (Op2Reg == 0) return false;
1630   }
1631 
1632   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1633   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1634   AddOptionalDefs(
1635       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1636           .addReg(CondReg)
1637           .addImm(1));
1638 
1639   unsigned MovCCOpc;
1640   const TargetRegisterClass *RC;
1641   if (!UseImm) {
1642     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1643     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1644   } else {
1645     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1646     if (!isNegativeImm)
1647       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1648     else
1649       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1650   }
1651   Register ResultReg = createResultReg(RC);
1652   if (!UseImm) {
1653     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1654     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1655     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1656             ResultReg)
1657         .addReg(Op2Reg)
1658         .addReg(Op1Reg)
1659         .addImm(ARMCC::NE)
1660         .addReg(ARM::CPSR);
1661   } else {
1662     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1663     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1664             ResultReg)
1665         .addReg(Op1Reg)
1666         .addImm(Imm)
1667         .addImm(ARMCC::EQ)
1668         .addReg(ARM::CPSR);
1669   }
1670   updateValueMap(I, ResultReg);
1671   return true;
1672 }
1673 
1674 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1675   MVT VT;
1676   Type *Ty = I->getType();
1677   if (!isTypeLegal(Ty, VT))
1678     return false;
1679 
1680   // If we have integer div support we should have selected this automagically.
1681   // In case we have a real miss go ahead and return false and we'll pick
1682   // it up later.
1683   if (Subtarget->hasDivideInThumbMode())
1684     return false;
1685 
1686   // Otherwise emit a libcall.
1687   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1688   if (VT == MVT::i8)
1689     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1690   else if (VT == MVT::i16)
1691     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1692   else if (VT == MVT::i32)
1693     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1694   else if (VT == MVT::i64)
1695     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1696   else if (VT == MVT::i128)
1697     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1698   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1699 
1700   return ARMEmitLibcall(I, LC);
1701 }
1702 
1703 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1704   MVT VT;
1705   Type *Ty = I->getType();
1706   if (!isTypeLegal(Ty, VT))
1707     return false;
1708 
1709   // Many ABIs do not provide a libcall for standalone remainder, so we need to
1710   // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1711   // multi-reg returns, we'll have to bail out.
1712   if (!TLI.hasStandaloneRem(VT)) {
1713     return false;
1714   }
1715 
1716   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1717   if (VT == MVT::i8)
1718     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1719   else if (VT == MVT::i16)
1720     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1721   else if (VT == MVT::i32)
1722     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1723   else if (VT == MVT::i64)
1724     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1725   else if (VT == MVT::i128)
1726     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1727   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1728 
1729   return ARMEmitLibcall(I, LC);
1730 }
1731 
1732 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1733   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1734 
1735   // We can get here in the case when we have a binary operation on a non-legal
1736   // type and the target independent selector doesn't know how to handle it.
1737   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1738     return false;
1739 
1740   unsigned Opc;
1741   switch (ISDOpcode) {
1742     default: return false;
1743     case ISD::ADD:
1744       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1745       break;
1746     case ISD::OR:
1747       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1748       break;
1749     case ISD::SUB:
1750       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1751       break;
1752   }
1753 
1754   Register SrcReg1 = getRegForValue(I->getOperand(0));
1755   if (SrcReg1 == 0) return false;
1756 
1757   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1758   // in the instruction, rather then materializing the value in a register.
1759   Register SrcReg2 = getRegForValue(I->getOperand(1));
1760   if (SrcReg2 == 0) return false;
1761 
1762   Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1763   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1764   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1765   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1766                           TII.get(Opc), ResultReg)
1767                   .addReg(SrcReg1).addReg(SrcReg2));
1768   updateValueMap(I, ResultReg);
1769   return true;
1770 }
1771 
1772 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1773   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1774   if (!FPVT.isSimple()) return false;
1775   MVT VT = FPVT.getSimpleVT();
1776 
1777   // FIXME: Support vector types where possible.
1778   if (VT.isVector())
1779     return false;
1780 
1781   // We can get here in the case when we want to use NEON for our fp
1782   // operations, but can't figure out how to. Just use the vfp instructions
1783   // if we have them.
1784   // FIXME: It'd be nice to use NEON instructions.
1785   Type *Ty = I->getType();
1786   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1787     return false;
1788   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1789     return false;
1790 
1791   unsigned Opc;
1792   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1793   switch (ISDOpcode) {
1794     default: return false;
1795     case ISD::FADD:
1796       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1797       break;
1798     case ISD::FSUB:
1799       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1800       break;
1801     case ISD::FMUL:
1802       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1803       break;
1804   }
1805   Register Op1 = getRegForValue(I->getOperand(0));
1806   if (Op1 == 0) return false;
1807 
1808   Register Op2 = getRegForValue(I->getOperand(1));
1809   if (Op2 == 0) return false;
1810 
1811   Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1812   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1813                           TII.get(Opc), ResultReg)
1814                   .addReg(Op1).addReg(Op2));
1815   updateValueMap(I, ResultReg);
1816   return true;
1817 }
1818 
1819 // Call Handling Code
1820 
1821 // This is largely taken directly from CCAssignFnForNode
1822 // TODO: We may not support all of this.
1823 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1824                                            bool Return,
1825                                            bool isVarArg) {
1826   switch (CC) {
1827   default:
1828     report_fatal_error("Unsupported calling convention");
1829   case CallingConv::Fast:
1830     if (Subtarget->hasVFP2Base() && !isVarArg) {
1831       if (!Subtarget->isAAPCS_ABI())
1832         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1833       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1834       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1835     }
1836     LLVM_FALLTHROUGH;
1837   case CallingConv::C:
1838   case CallingConv::CXX_FAST_TLS:
1839     // Use target triple & subtarget features to do actual dispatch.
1840     if (Subtarget->isAAPCS_ABI()) {
1841       if (Subtarget->hasVFP2Base() &&
1842           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1843         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1844       else
1845         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1846     } else {
1847       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1848     }
1849   case CallingConv::ARM_AAPCS_VFP:
1850   case CallingConv::Swift:
1851   case CallingConv::SwiftTail:
1852     if (!isVarArg)
1853       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1854     // Fall through to soft float variant, variadic functions don't
1855     // use hard floating point ABI.
1856     LLVM_FALLTHROUGH;
1857   case CallingConv::ARM_AAPCS:
1858     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1859   case CallingConv::ARM_APCS:
1860     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1861   case CallingConv::GHC:
1862     if (Return)
1863       report_fatal_error("Can't return in GHC call convention");
1864     else
1865       return CC_ARM_APCS_GHC;
1866   case CallingConv::CFGuard_Check:
1867     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1868   }
1869 }
1870 
1871 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1872                                   SmallVectorImpl<Register> &ArgRegs,
1873                                   SmallVectorImpl<MVT> &ArgVTs,
1874                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1875                                   SmallVectorImpl<Register> &RegArgs,
1876                                   CallingConv::ID CC,
1877                                   unsigned &NumBytes,
1878                                   bool isVarArg) {
1879   SmallVector<CCValAssign, 16> ArgLocs;
1880   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1881   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1882                              CCAssignFnForCall(CC, false, isVarArg));
1883 
1884   // Check that we can handle all of the arguments. If we can't, then bail out
1885   // now before we add code to the MBB.
1886   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1887     CCValAssign &VA = ArgLocs[i];
1888     MVT ArgVT = ArgVTs[VA.getValNo()];
1889 
1890     // We don't handle NEON/vector parameters yet.
1891     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1892       return false;
1893 
1894     // Now copy/store arg to correct locations.
1895     if (VA.isRegLoc() && !VA.needsCustom()) {
1896       continue;
1897     } else if (VA.needsCustom()) {
1898       // TODO: We need custom lowering for vector (v2f64) args.
1899       if (VA.getLocVT() != MVT::f64 ||
1900           // TODO: Only handle register args for now.
1901           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1902         return false;
1903     } else {
1904       switch (ArgVT.SimpleTy) {
1905       default:
1906         return false;
1907       case MVT::i1:
1908       case MVT::i8:
1909       case MVT::i16:
1910       case MVT::i32:
1911         break;
1912       case MVT::f32:
1913         if (!Subtarget->hasVFP2Base())
1914           return false;
1915         break;
1916       case MVT::f64:
1917         if (!Subtarget->hasVFP2Base())
1918           return false;
1919         break;
1920       }
1921     }
1922   }
1923 
1924   // At the point, we are able to handle the call's arguments in fast isel.
1925 
1926   // Get a count of how many bytes are to be pushed on the stack.
1927   NumBytes = CCInfo.getNextStackOffset();
1928 
1929   // Issue CALLSEQ_START
1930   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1931   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1932                           TII.get(AdjStackDown))
1933                   .addImm(NumBytes).addImm(0));
1934 
1935   // Process the args.
1936   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1937     CCValAssign &VA = ArgLocs[i];
1938     const Value *ArgVal = Args[VA.getValNo()];
1939     Register Arg = ArgRegs[VA.getValNo()];
1940     MVT ArgVT = ArgVTs[VA.getValNo()];
1941 
1942     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1943            "We don't handle NEON/vector parameters yet.");
1944 
1945     // Handle arg promotion, etc.
1946     switch (VA.getLocInfo()) {
1947       case CCValAssign::Full: break;
1948       case CCValAssign::SExt: {
1949         MVT DestVT = VA.getLocVT();
1950         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1951         assert(Arg != 0 && "Failed to emit a sext");
1952         ArgVT = DestVT;
1953         break;
1954       }
1955       case CCValAssign::AExt:
1956       // Intentional fall-through.  Handle AExt and ZExt.
1957       case CCValAssign::ZExt: {
1958         MVT DestVT = VA.getLocVT();
1959         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1960         assert(Arg != 0 && "Failed to emit a zext");
1961         ArgVT = DestVT;
1962         break;
1963       }
1964       case CCValAssign::BCvt: {
1965         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg);
1966         assert(BC != 0 && "Failed to emit a bitcast!");
1967         Arg = BC;
1968         ArgVT = VA.getLocVT();
1969         break;
1970       }
1971       default: llvm_unreachable("Unknown arg promotion!");
1972     }
1973 
1974     // Now copy/store arg to correct locations.
1975     if (VA.isRegLoc() && !VA.needsCustom()) {
1976       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1977               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1978       RegArgs.push_back(VA.getLocReg());
1979     } else if (VA.needsCustom()) {
1980       // TODO: We need custom lowering for vector (v2f64) args.
1981       assert(VA.getLocVT() == MVT::f64 &&
1982              "Custom lowering for v2f64 args not available");
1983 
1984       // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
1985       CCValAssign &NextVA = ArgLocs[++i];
1986 
1987       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1988              "We only handle register args!");
1989 
1990       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1991                               TII.get(ARM::VMOVRRD), VA.getLocReg())
1992                       .addReg(NextVA.getLocReg(), RegState::Define)
1993                       .addReg(Arg));
1994       RegArgs.push_back(VA.getLocReg());
1995       RegArgs.push_back(NextVA.getLocReg());
1996     } else {
1997       assert(VA.isMemLoc());
1998       // Need to store on the stack.
1999 
2000       // Don't emit stores for undef values.
2001       if (isa<UndefValue>(ArgVal))
2002         continue;
2003 
2004       Address Addr;
2005       Addr.BaseType = Address::RegBase;
2006       Addr.Base.Reg = ARM::SP;
2007       Addr.Offset = VA.getLocMemOffset();
2008 
2009       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2010       assert(EmitRet && "Could not emit a store for argument!");
2011     }
2012   }
2013 
2014   return true;
2015 }
2016 
2017 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2018                              const Instruction *I, CallingConv::ID CC,
2019                              unsigned &NumBytes, bool isVarArg) {
2020   // Issue CALLSEQ_END
2021   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2022   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2023                           TII.get(AdjStackUp))
2024                   .addImm(NumBytes).addImm(-1ULL));
2025 
2026   // Now the return value.
2027   if (RetVT != MVT::isVoid) {
2028     SmallVector<CCValAssign, 16> RVLocs;
2029     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2030     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2031 
2032     // Copy all of the result registers out of their specified physreg.
2033     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2034       // For this move we copy into two registers and then move into the
2035       // double fp reg we want.
2036       MVT DestVT = RVLocs[0].getValVT();
2037       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2038       Register ResultReg = createResultReg(DstRC);
2039       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2040                               TII.get(ARM::VMOVDRR), ResultReg)
2041                       .addReg(RVLocs[0].getLocReg())
2042                       .addReg(RVLocs[1].getLocReg()));
2043 
2044       UsedRegs.push_back(RVLocs[0].getLocReg());
2045       UsedRegs.push_back(RVLocs[1].getLocReg());
2046 
2047       // Finally update the result.
2048       updateValueMap(I, ResultReg);
2049     } else {
2050       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2051       MVT CopyVT = RVLocs[0].getValVT();
2052 
2053       // Special handling for extended integers.
2054       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2055         CopyVT = MVT::i32;
2056 
2057       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2058 
2059       Register ResultReg = createResultReg(DstRC);
2060       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2061               TII.get(TargetOpcode::COPY),
2062               ResultReg).addReg(RVLocs[0].getLocReg());
2063       UsedRegs.push_back(RVLocs[0].getLocReg());
2064 
2065       // Finally update the result.
2066       updateValueMap(I, ResultReg);
2067     }
2068   }
2069 
2070   return true;
2071 }
2072 
2073 bool ARMFastISel::SelectRet(const Instruction *I) {
2074   const ReturnInst *Ret = cast<ReturnInst>(I);
2075   const Function &F = *I->getParent()->getParent();
2076   const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry");
2077 
2078   if (!FuncInfo.CanLowerReturn)
2079     return false;
2080 
2081   if (TLI.supportSwiftError() &&
2082       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2083     return false;
2084 
2085   if (TLI.supportSplitCSR(FuncInfo.MF))
2086     return false;
2087 
2088   // Build a list of return value registers.
2089   SmallVector<unsigned, 4> RetRegs;
2090 
2091   CallingConv::ID CC = F.getCallingConv();
2092   if (Ret->getNumOperands() > 0) {
2093     SmallVector<ISD::OutputArg, 4> Outs;
2094     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2095 
2096     // Analyze operands of the call, assigning locations to each operand.
2097     SmallVector<CCValAssign, 16> ValLocs;
2098     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2099     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2100                                                  F.isVarArg()));
2101 
2102     const Value *RV = Ret->getOperand(0);
2103     Register Reg = getRegForValue(RV);
2104     if (Reg == 0)
2105       return false;
2106 
2107     // Only handle a single return value for now.
2108     if (ValLocs.size() != 1)
2109       return false;
2110 
2111     CCValAssign &VA = ValLocs[0];
2112 
2113     // Don't bother handling odd stuff for now.
2114     if (VA.getLocInfo() != CCValAssign::Full)
2115       return false;
2116     // Only handle register returns for now.
2117     if (!VA.isRegLoc())
2118       return false;
2119 
2120     unsigned SrcReg = Reg + VA.getValNo();
2121     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2122     if (!RVEVT.isSimple()) return false;
2123     MVT RVVT = RVEVT.getSimpleVT();
2124     MVT DestVT = VA.getValVT();
2125     // Special handling for extended integers.
2126     if (RVVT != DestVT) {
2127       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2128         return false;
2129 
2130       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2131 
2132       // Perform extension if flagged as either zext or sext.  Otherwise, do
2133       // nothing.
2134       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2135         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2136         if (SrcReg == 0) return false;
2137       }
2138     }
2139 
2140     // Make the copy.
2141     Register DstReg = VA.getLocReg();
2142     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2143     // Avoid a cross-class copy. This is very unlikely.
2144     if (!SrcRC->contains(DstReg))
2145       return false;
2146     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2147             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2148 
2149     // Add register to return instruction.
2150     RetRegs.push_back(VA.getLocReg());
2151   }
2152 
2153   unsigned RetOpc;
2154   if (IsCmseNSEntry)
2155     if (isThumb2)
2156       RetOpc = ARM::tBXNS_RET;
2157     else
2158       llvm_unreachable("CMSE not valid for non-Thumb targets");
2159   else
2160     RetOpc = Subtarget->getReturnOpcode();
2161 
2162   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2163                                     TII.get(RetOpc));
2164   AddOptionalDefs(MIB);
2165   for (unsigned R : RetRegs)
2166     MIB.addReg(R, RegState::Implicit);
2167   return true;
2168 }
2169 
2170 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2171   if (UseReg)
2172     return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF);
2173   else
2174     return isThumb2 ? ARM::tBL : ARM::BL;
2175 }
2176 
2177 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2178   // Manually compute the global's type to avoid building it when unnecessary.
2179   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2180   EVT LCREVT = TLI.getValueType(DL, GVTy);
2181   if (!LCREVT.isSimple()) return 0;
2182 
2183   GlobalValue *GV = M.getNamedGlobal(Name.str());
2184   if (!GV)
2185     GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2186                             GlobalValue::ExternalLinkage, nullptr, Name);
2187 
2188   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2189 }
2190 
2191 // A quick function that will emit a call for a named libcall in F with the
2192 // vector of passed arguments for the Instruction in I. We can assume that we
2193 // can emit a call for any libcall we can produce. This is an abridged version
2194 // of the full call infrastructure since we won't need to worry about things
2195 // like computed function pointers or strange arguments at call sites.
2196 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2197 // with X86.
2198 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2199   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2200 
2201   // Handle *simple* calls for now.
2202   Type *RetTy = I->getType();
2203   MVT RetVT;
2204   if (RetTy->isVoidTy())
2205     RetVT = MVT::isVoid;
2206   else if (!isTypeLegal(RetTy, RetVT))
2207     return false;
2208 
2209   // Can't handle non-double multi-reg retvals.
2210   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2211     SmallVector<CCValAssign, 16> RVLocs;
2212     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2213     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2214     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2215       return false;
2216   }
2217 
2218   // Set up the argument vectors.
2219   SmallVector<Value*, 8> Args;
2220   SmallVector<Register, 8> ArgRegs;
2221   SmallVector<MVT, 8> ArgVTs;
2222   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2223   Args.reserve(I->getNumOperands());
2224   ArgRegs.reserve(I->getNumOperands());
2225   ArgVTs.reserve(I->getNumOperands());
2226   ArgFlags.reserve(I->getNumOperands());
2227   for (Value *Op :  I->operands()) {
2228     Register Arg = getRegForValue(Op);
2229     if (Arg == 0) return false;
2230 
2231     Type *ArgTy = Op->getType();
2232     MVT ArgVT;
2233     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2234 
2235     ISD::ArgFlagsTy Flags;
2236     Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2237 
2238     Args.push_back(Op);
2239     ArgRegs.push_back(Arg);
2240     ArgVTs.push_back(ArgVT);
2241     ArgFlags.push_back(Flags);
2242   }
2243 
2244   // Handle the arguments now that we've gotten them.
2245   SmallVector<Register, 4> RegArgs;
2246   unsigned NumBytes;
2247   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2248                        RegArgs, CC, NumBytes, false))
2249     return false;
2250 
2251   Register CalleeReg;
2252   if (Subtarget->genLongCalls()) {
2253     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2254     if (CalleeReg == 0) return false;
2255   }
2256 
2257   // Issue the call.
2258   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2259   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2260                                     DbgLoc, TII.get(CallOpc));
2261   // BL / BLX don't take a predicate, but tBL / tBLX do.
2262   if (isThumb2)
2263     MIB.add(predOps(ARMCC::AL));
2264   if (Subtarget->genLongCalls()) {
2265     CalleeReg =
2266         constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2267     MIB.addReg(CalleeReg);
2268   } else
2269     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2270 
2271   // Add implicit physical register uses to the call.
2272   for (Register R : RegArgs)
2273     MIB.addReg(R, RegState::Implicit);
2274 
2275   // Add a register mask with the call-preserved registers.
2276   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2277   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2278 
2279   // Finish off the call including any return values.
2280   SmallVector<Register, 4> UsedRegs;
2281   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2282 
2283   // Set all unused physreg defs as dead.
2284   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2285 
2286   return true;
2287 }
2288 
2289 bool ARMFastISel::SelectCall(const Instruction *I,
2290                              const char *IntrMemName = nullptr) {
2291   const CallInst *CI = cast<CallInst>(I);
2292   const Value *Callee = CI->getCalledOperand();
2293 
2294   // Can't handle inline asm.
2295   if (isa<InlineAsm>(Callee)) return false;
2296 
2297   // Allow SelectionDAG isel to handle tail calls.
2298   if (CI->isTailCall()) return false;
2299 
2300   // Check the calling convention.
2301   CallingConv::ID CC = CI->getCallingConv();
2302 
2303   // TODO: Avoid some calling conventions?
2304 
2305   FunctionType *FTy = CI->getFunctionType();
2306   bool isVarArg = FTy->isVarArg();
2307 
2308   // Handle *simple* calls for now.
2309   Type *RetTy = I->getType();
2310   MVT RetVT;
2311   if (RetTy->isVoidTy())
2312     RetVT = MVT::isVoid;
2313   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2314            RetVT != MVT::i8  && RetVT != MVT::i1)
2315     return false;
2316 
2317   // Can't handle non-double multi-reg retvals.
2318   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2319       RetVT != MVT::i16 && RetVT != MVT::i32) {
2320     SmallVector<CCValAssign, 16> RVLocs;
2321     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2322     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2323     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2324       return false;
2325   }
2326 
2327   // Set up the argument vectors.
2328   SmallVector<Value*, 8> Args;
2329   SmallVector<Register, 8> ArgRegs;
2330   SmallVector<MVT, 8> ArgVTs;
2331   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2332   unsigned arg_size = CI->arg_size();
2333   Args.reserve(arg_size);
2334   ArgRegs.reserve(arg_size);
2335   ArgVTs.reserve(arg_size);
2336   ArgFlags.reserve(arg_size);
2337   for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) {
2338     // If we're lowering a memory intrinsic instead of a regular call, skip the
2339     // last argument, which shouldn't be passed to the underlying function.
2340     if (IntrMemName && ArgE - ArgI <= 1)
2341       break;
2342 
2343     ISD::ArgFlagsTy Flags;
2344     unsigned ArgIdx = ArgI - CI->arg_begin();
2345     if (CI->paramHasAttr(ArgIdx, Attribute::SExt))
2346       Flags.setSExt();
2347     if (CI->paramHasAttr(ArgIdx, Attribute::ZExt))
2348       Flags.setZExt();
2349 
2350     // FIXME: Only handle *easy* calls for now.
2351     if (CI->paramHasAttr(ArgIdx, Attribute::InReg) ||
2352         CI->paramHasAttr(ArgIdx, Attribute::StructRet) ||
2353         CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2354         CI->paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2355         CI->paramHasAttr(ArgIdx, Attribute::Nest) ||
2356         CI->paramHasAttr(ArgIdx, Attribute::ByVal))
2357       return false;
2358 
2359     Type *ArgTy = (*ArgI)->getType();
2360     MVT ArgVT;
2361     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2362         ArgVT != MVT::i1)
2363       return false;
2364 
2365     Register Arg = getRegForValue(*ArgI);
2366     if (!Arg.isValid())
2367       return false;
2368 
2369     Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2370 
2371     Args.push_back(*ArgI);
2372     ArgRegs.push_back(Arg);
2373     ArgVTs.push_back(ArgVT);
2374     ArgFlags.push_back(Flags);
2375   }
2376 
2377   // Handle the arguments now that we've gotten them.
2378   SmallVector<Register, 4> RegArgs;
2379   unsigned NumBytes;
2380   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2381                        RegArgs, CC, NumBytes, isVarArg))
2382     return false;
2383 
2384   bool UseReg = false;
2385   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2386   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2387 
2388   Register CalleeReg;
2389   if (UseReg) {
2390     if (IntrMemName)
2391       CalleeReg = getLibcallReg(IntrMemName);
2392     else
2393       CalleeReg = getRegForValue(Callee);
2394 
2395     if (CalleeReg == 0) return false;
2396   }
2397 
2398   // Issue the call.
2399   unsigned CallOpc = ARMSelectCallOp(UseReg);
2400   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2401                                     DbgLoc, TII.get(CallOpc));
2402 
2403   // ARM calls don't take a predicate, but tBL / tBLX do.
2404   if(isThumb2)
2405     MIB.add(predOps(ARMCC::AL));
2406   if (UseReg) {
2407     CalleeReg =
2408         constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2409     MIB.addReg(CalleeReg);
2410   } else if (!IntrMemName)
2411     MIB.addGlobalAddress(GV, 0, 0);
2412   else
2413     MIB.addExternalSymbol(IntrMemName, 0);
2414 
2415   // Add implicit physical register uses to the call.
2416   for (Register R : RegArgs)
2417     MIB.addReg(R, RegState::Implicit);
2418 
2419   // Add a register mask with the call-preserved registers.
2420   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2421   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2422 
2423   // Finish off the call including any return values.
2424   SmallVector<Register, 4> UsedRegs;
2425   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2426     return false;
2427 
2428   // Set all unused physreg defs as dead.
2429   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2430 
2431   return true;
2432 }
2433 
2434 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2435   return Len <= 16;
2436 }
2437 
2438 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2439                                         uint64_t Len, unsigned Alignment) {
2440   // Make sure we don't bloat code by inlining very large memcpy's.
2441   if (!ARMIsMemCpySmall(Len))
2442     return false;
2443 
2444   while (Len) {
2445     MVT VT;
2446     if (!Alignment || Alignment >= 4) {
2447       if (Len >= 4)
2448         VT = MVT::i32;
2449       else if (Len >= 2)
2450         VT = MVT::i16;
2451       else {
2452         assert(Len == 1 && "Expected a length of 1!");
2453         VT = MVT::i8;
2454       }
2455     } else {
2456       // Bound based on alignment.
2457       if (Len >= 2 && Alignment == 2)
2458         VT = MVT::i16;
2459       else {
2460         VT = MVT::i8;
2461       }
2462     }
2463 
2464     bool RV;
2465     Register ResultReg;
2466     RV = ARMEmitLoad(VT, ResultReg, Src);
2467     assert(RV && "Should be able to handle this load.");
2468     RV = ARMEmitStore(VT, ResultReg, Dest);
2469     assert(RV && "Should be able to handle this store.");
2470     (void)RV;
2471 
2472     unsigned Size = VT.getSizeInBits()/8;
2473     Len -= Size;
2474     Dest.Offset += Size;
2475     Src.Offset += Size;
2476   }
2477 
2478   return true;
2479 }
2480 
2481 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2482   // FIXME: Handle more intrinsics.
2483   switch (I.getIntrinsicID()) {
2484   default: return false;
2485   case Intrinsic::frameaddress: {
2486     MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2487     MFI.setFrameAddressIsTaken(true);
2488 
2489     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2490     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2491                                              : &ARM::GPRRegClass;
2492 
2493     const ARMBaseRegisterInfo *RegInfo =
2494         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2495     Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2496     unsigned SrcReg = FramePtr;
2497 
2498     // Recursively load frame address
2499     // ldr r0 [fp]
2500     // ldr r0 [r0]
2501     // ldr r0 [r0]
2502     // ...
2503     unsigned DestReg;
2504     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2505     while (Depth--) {
2506       DestReg = createResultReg(RC);
2507       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2508                               TII.get(LdrOpc), DestReg)
2509                       .addReg(SrcReg).addImm(0));
2510       SrcReg = DestReg;
2511     }
2512     updateValueMap(&I, SrcReg);
2513     return true;
2514   }
2515   case Intrinsic::memcpy:
2516   case Intrinsic::memmove: {
2517     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2518     // Don't handle volatile.
2519     if (MTI.isVolatile())
2520       return false;
2521 
2522     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2523     // we would emit dead code because we don't currently handle memmoves.
2524     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2525     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2526       // Small memcpy's are common enough that we want to do them without a call
2527       // if possible.
2528       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2529       if (ARMIsMemCpySmall(Len)) {
2530         Address Dest, Src;
2531         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2532             !ARMComputeAddress(MTI.getRawSource(), Src))
2533           return false;
2534         unsigned Alignment = MinAlign(MTI.getDestAlignment(),
2535                                       MTI.getSourceAlignment());
2536         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2537           return true;
2538       }
2539     }
2540 
2541     if (!MTI.getLength()->getType()->isIntegerTy(32))
2542       return false;
2543 
2544     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2545       return false;
2546 
2547     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2548     return SelectCall(&I, IntrMemName);
2549   }
2550   case Intrinsic::memset: {
2551     const MemSetInst &MSI = cast<MemSetInst>(I);
2552     // Don't handle volatile.
2553     if (MSI.isVolatile())
2554       return false;
2555 
2556     if (!MSI.getLength()->getType()->isIntegerTy(32))
2557       return false;
2558 
2559     if (MSI.getDestAddressSpace() > 255)
2560       return false;
2561 
2562     return SelectCall(&I, "memset");
2563   }
2564   case Intrinsic::trap: {
2565     unsigned Opcode;
2566     if (Subtarget->isThumb())
2567       Opcode = ARM::tTRAP;
2568     else
2569       Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
2570     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode));
2571     return true;
2572   }
2573   }
2574 }
2575 
2576 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2577   // The high bits for a type smaller than the register size are assumed to be
2578   // undefined.
2579   Value *Op = I->getOperand(0);
2580 
2581   EVT SrcVT, DestVT;
2582   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2583   DestVT = TLI.getValueType(DL, I->getType(), true);
2584 
2585   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2586     return false;
2587   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2588     return false;
2589 
2590   Register SrcReg = getRegForValue(Op);
2591   if (!SrcReg) return false;
2592 
2593   // Because the high bits are undefined, a truncate doesn't generate
2594   // any code.
2595   updateValueMap(I, SrcReg);
2596   return true;
2597 }
2598 
2599 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2600                                     bool isZExt) {
2601   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2602     return 0;
2603   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2604     return 0;
2605 
2606   // Table of which combinations can be emitted as a single instruction,
2607   // and which will require two.
2608   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2609     //            ARM                     Thumb
2610     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2611     //    ext:     s  z      s  z          s  z      s  z
2612     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2613     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2614     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2615   };
2616 
2617   // Target registers for:
2618   //  - For ARM can never be PC.
2619   //  - For 16-bit Thumb are restricted to lower 8 registers.
2620   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2621   static const TargetRegisterClass *RCTbl[2][2] = {
2622     // Instructions: Two                     Single
2623     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2624     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2625   };
2626 
2627   // Table governing the instruction(s) to be emitted.
2628   static const struct InstructionTable {
2629     uint32_t Opc   : 16;
2630     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2631     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2632     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2633   } IT[2][2][3][2] = {
2634     { // Two instructions (first is left shift, second is in this table).
2635       { // ARM                Opc           S  Shift             Imm
2636         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2637         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2638         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2639         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2640         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2641         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2642       },
2643       { // Thumb              Opc           S  Shift             Imm
2644         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2645         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2646         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2647         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2648         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2649         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2650       }
2651     },
2652     { // Single instruction.
2653       { // ARM                Opc           S  Shift             Imm
2654         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2655         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2656         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2657         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2658         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2659         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2660       },
2661       { // Thumb              Opc           S  Shift             Imm
2662         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2663         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2664         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2665         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2666         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2667         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2668       }
2669     }
2670   };
2671 
2672   unsigned SrcBits = SrcVT.getSizeInBits();
2673   unsigned DestBits = DestVT.getSizeInBits();
2674   (void) DestBits;
2675   assert((SrcBits < DestBits) && "can only extend to larger types");
2676   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2677          "other sizes unimplemented");
2678   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2679          "other sizes unimplemented");
2680 
2681   bool hasV6Ops = Subtarget->hasV6Ops();
2682   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2683   assert((Bitness < 3) && "sanity-check table bounds");
2684 
2685   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2686   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2687   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2688   unsigned Opc = ITP->Opc;
2689   assert(ARM::KILL != Opc && "Invalid table entry");
2690   unsigned hasS = ITP->hasS;
2691   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2692   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2693          "only MOVsi has shift operand addressing mode");
2694   unsigned Imm = ITP->Imm;
2695 
2696   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2697   bool setsCPSR = &ARM::tGPRRegClass == RC;
2698   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2699   unsigned ResultReg;
2700   // MOVsi encodes shift and immediate in shift operand addressing mode.
2701   // The following condition has the same value when emitting two
2702   // instruction sequences: both are shifts.
2703   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2704 
2705   // Either one or two instructions are emitted.
2706   // They're always of the form:
2707   //   dst = in OP imm
2708   // CPSR is set only by 16-bit Thumb instructions.
2709   // Predicate, if any, is AL.
2710   // S bit, if available, is always 0.
2711   // When two are emitted the first's result will feed as the second's input,
2712   // that value is then dead.
2713   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2714   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2715     ResultReg = createResultReg(RC);
2716     bool isLsl = (0 == Instr) && !isSingleInstr;
2717     unsigned Opcode = isLsl ? LSLOpc : Opc;
2718     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2719     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2720     bool isKill = 1 == Instr;
2721     MachineInstrBuilder MIB = BuildMI(
2722         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2723     if (setsCPSR)
2724       MIB.addReg(ARM::CPSR, RegState::Define);
2725     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2726     MIB.addReg(SrcReg, isKill * RegState::Kill)
2727         .addImm(ImmEnc)
2728         .add(predOps(ARMCC::AL));
2729     if (hasS)
2730       MIB.add(condCodeOp());
2731     // Second instruction consumes the first's result.
2732     SrcReg = ResultReg;
2733   }
2734 
2735   return ResultReg;
2736 }
2737 
2738 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2739   // On ARM, in general, integer casts don't involve legal types; this code
2740   // handles promotable integers.
2741   Type *DestTy = I->getType();
2742   Value *Src = I->getOperand(0);
2743   Type *SrcTy = Src->getType();
2744 
2745   bool isZExt = isa<ZExtInst>(I);
2746   Register SrcReg = getRegForValue(Src);
2747   if (!SrcReg) return false;
2748 
2749   EVT SrcEVT, DestEVT;
2750   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2751   DestEVT = TLI.getValueType(DL, DestTy, true);
2752   if (!SrcEVT.isSimple()) return false;
2753   if (!DestEVT.isSimple()) return false;
2754 
2755   MVT SrcVT = SrcEVT.getSimpleVT();
2756   MVT DestVT = DestEVT.getSimpleVT();
2757   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2758   if (ResultReg == 0) return false;
2759   updateValueMap(I, ResultReg);
2760   return true;
2761 }
2762 
2763 bool ARMFastISel::SelectShift(const Instruction *I,
2764                               ARM_AM::ShiftOpc ShiftTy) {
2765   // We handle thumb2 mode by target independent selector
2766   // or SelectionDAG ISel.
2767   if (isThumb2)
2768     return false;
2769 
2770   // Only handle i32 now.
2771   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2772   if (DestVT != MVT::i32)
2773     return false;
2774 
2775   unsigned Opc = ARM::MOVsr;
2776   unsigned ShiftImm;
2777   Value *Src2Value = I->getOperand(1);
2778   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2779     ShiftImm = CI->getZExtValue();
2780 
2781     // Fall back to selection DAG isel if the shift amount
2782     // is zero or greater than the width of the value type.
2783     if (ShiftImm == 0 || ShiftImm >=32)
2784       return false;
2785 
2786     Opc = ARM::MOVsi;
2787   }
2788 
2789   Value *Src1Value = I->getOperand(0);
2790   Register Reg1 = getRegForValue(Src1Value);
2791   if (Reg1 == 0) return false;
2792 
2793   unsigned Reg2 = 0;
2794   if (Opc == ARM::MOVsr) {
2795     Reg2 = getRegForValue(Src2Value);
2796     if (Reg2 == 0) return false;
2797   }
2798 
2799   Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2800   if(ResultReg == 0) return false;
2801 
2802   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2803                                     TII.get(Opc), ResultReg)
2804                             .addReg(Reg1);
2805 
2806   if (Opc == ARM::MOVsi)
2807     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2808   else if (Opc == ARM::MOVsr) {
2809     MIB.addReg(Reg2);
2810     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2811   }
2812 
2813   AddOptionalDefs(MIB);
2814   updateValueMap(I, ResultReg);
2815   return true;
2816 }
2817 
2818 // TODO: SoftFP support.
2819 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2820   switch (I->getOpcode()) {
2821     case Instruction::Load:
2822       return SelectLoad(I);
2823     case Instruction::Store:
2824       return SelectStore(I);
2825     case Instruction::Br:
2826       return SelectBranch(I);
2827     case Instruction::IndirectBr:
2828       return SelectIndirectBr(I);
2829     case Instruction::ICmp:
2830     case Instruction::FCmp:
2831       return SelectCmp(I);
2832     case Instruction::FPExt:
2833       return SelectFPExt(I);
2834     case Instruction::FPTrunc:
2835       return SelectFPTrunc(I);
2836     case Instruction::SIToFP:
2837       return SelectIToFP(I, /*isSigned*/ true);
2838     case Instruction::UIToFP:
2839       return SelectIToFP(I, /*isSigned*/ false);
2840     case Instruction::FPToSI:
2841       return SelectFPToI(I, /*isSigned*/ true);
2842     case Instruction::FPToUI:
2843       return SelectFPToI(I, /*isSigned*/ false);
2844     case Instruction::Add:
2845       return SelectBinaryIntOp(I, ISD::ADD);
2846     case Instruction::Or:
2847       return SelectBinaryIntOp(I, ISD::OR);
2848     case Instruction::Sub:
2849       return SelectBinaryIntOp(I, ISD::SUB);
2850     case Instruction::FAdd:
2851       return SelectBinaryFPOp(I, ISD::FADD);
2852     case Instruction::FSub:
2853       return SelectBinaryFPOp(I, ISD::FSUB);
2854     case Instruction::FMul:
2855       return SelectBinaryFPOp(I, ISD::FMUL);
2856     case Instruction::SDiv:
2857       return SelectDiv(I, /*isSigned*/ true);
2858     case Instruction::UDiv:
2859       return SelectDiv(I, /*isSigned*/ false);
2860     case Instruction::SRem:
2861       return SelectRem(I, /*isSigned*/ true);
2862     case Instruction::URem:
2863       return SelectRem(I, /*isSigned*/ false);
2864     case Instruction::Call:
2865       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2866         return SelectIntrinsicCall(*II);
2867       return SelectCall(I);
2868     case Instruction::Select:
2869       return SelectSelect(I);
2870     case Instruction::Ret:
2871       return SelectRet(I);
2872     case Instruction::Trunc:
2873       return SelectTrunc(I);
2874     case Instruction::ZExt:
2875     case Instruction::SExt:
2876       return SelectIntExt(I);
2877     case Instruction::Shl:
2878       return SelectShift(I, ARM_AM::lsl);
2879     case Instruction::LShr:
2880       return SelectShift(I, ARM_AM::lsr);
2881     case Instruction::AShr:
2882       return SelectShift(I, ARM_AM::asr);
2883     default: break;
2884   }
2885   return false;
2886 }
2887 
2888 // This table describes sign- and zero-extend instructions which can be
2889 // folded into a preceding load. All of these extends have an immediate
2890 // (sometimes a mask and sometimes a shift) that's applied after
2891 // extension.
2892 static const struct FoldableLoadExtendsStruct {
2893   uint16_t Opc[2];  // ARM, Thumb.
2894   uint8_t ExpectedImm;
2895   uint8_t isZExt     : 1;
2896   uint8_t ExpectedVT : 7;
2897 } FoldableLoadExtends[] = {
2898   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2899   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2900   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2901   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2902   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2903 };
2904 
2905 /// The specified machine instr operand is a vreg, and that
2906 /// vreg is being provided by the specified load instruction.  If possible,
2907 /// try to fold the load as an operand to the instruction, returning true if
2908 /// successful.
2909 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2910                                       const LoadInst *LI) {
2911   // Verify we have a legal type before going any further.
2912   MVT VT;
2913   if (!isLoadTypeLegal(LI->getType(), VT))
2914     return false;
2915 
2916   // Combine load followed by zero- or sign-extend.
2917   // ldrb r1, [r0]       ldrb r1, [r0]
2918   // uxtb r2, r1     =>
2919   // mov  r3, r2         mov  r3, r1
2920   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2921     return false;
2922   const uint64_t Imm = MI->getOperand(2).getImm();
2923 
2924   bool Found = false;
2925   bool isZExt;
2926   for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2927     if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2928         (uint64_t)FLE.ExpectedImm == Imm &&
2929         MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2930       Found = true;
2931       isZExt = FLE.isZExt;
2932     }
2933   }
2934   if (!Found) return false;
2935 
2936   // See if we can handle this address.
2937   Address Addr;
2938   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2939 
2940   Register ResultReg = MI->getOperand(0).getReg();
2941   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2942     return false;
2943   MachineBasicBlock::iterator I(MI);
2944   removeDeadCode(I, std::next(I));
2945   return true;
2946 }
2947 
2948 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
2949   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2950 
2951   LLVMContext *Context = &MF->getFunction().getContext();
2952   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2953   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2954   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2955       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2956       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2957       /*AddCurrentAddress=*/UseGOT_PREL);
2958 
2959   Align ConstAlign =
2960       MF->getDataLayout().getPrefTypeAlign(Type::getInt32PtrTy(*Context));
2961   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2962   MachineMemOperand *CPMMO =
2963       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2964                                MachineMemOperand::MOLoad, 4, Align(4));
2965 
2966   Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2967   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2968   MachineInstrBuilder MIB =
2969       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2970           .addConstantPoolIndex(Idx)
2971           .addMemOperand(CPMMO);
2972   if (Opc == ARM::LDRcp)
2973     MIB.addImm(0);
2974   MIB.add(predOps(ARMCC::AL));
2975 
2976   // Fix the address by adding pc.
2977   Register DestReg = createResultReg(TLI.getRegClassFor(VT));
2978   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2979                                                           : ARM::PICADD;
2980   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2981   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2982             .addReg(TempReg)
2983             .addImm(ARMPCLabelIndex);
2984 
2985   if (!Subtarget->isThumb())
2986     MIB.add(predOps(ARMCC::AL));
2987 
2988   if (UseGOT_PREL && Subtarget->isThumb()) {
2989     Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2990     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2991                   TII.get(ARM::t2LDRi12), NewDestReg)
2992               .addReg(DestReg)
2993               .addImm(0);
2994     DestReg = NewDestReg;
2995     AddOptionalDefs(MIB);
2996   }
2997   return DestReg;
2998 }
2999 
3000 bool ARMFastISel::fastLowerArguments() {
3001   if (!FuncInfo.CanLowerReturn)
3002     return false;
3003 
3004   const Function *F = FuncInfo.Fn;
3005   if (F->isVarArg())
3006     return false;
3007 
3008   CallingConv::ID CC = F->getCallingConv();
3009   switch (CC) {
3010   default:
3011     return false;
3012   case CallingConv::Fast:
3013   case CallingConv::C:
3014   case CallingConv::ARM_AAPCS_VFP:
3015   case CallingConv::ARM_AAPCS:
3016   case CallingConv::ARM_APCS:
3017   case CallingConv::Swift:
3018   case CallingConv::SwiftTail:
3019     break;
3020   }
3021 
3022   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3023   // which are passed in r0 - r3.
3024   for (const Argument &Arg : F->args()) {
3025     if (Arg.getArgNo() >= 4)
3026       return false;
3027 
3028     if (Arg.hasAttribute(Attribute::InReg) ||
3029         Arg.hasAttribute(Attribute::StructRet) ||
3030         Arg.hasAttribute(Attribute::SwiftSelf) ||
3031         Arg.hasAttribute(Attribute::SwiftError) ||
3032         Arg.hasAttribute(Attribute::ByVal))
3033       return false;
3034 
3035     Type *ArgTy = Arg.getType();
3036     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3037       return false;
3038 
3039     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3040     if (!ArgVT.isSimple()) return false;
3041     switch (ArgVT.getSimpleVT().SimpleTy) {
3042     case MVT::i8:
3043     case MVT::i16:
3044     case MVT::i32:
3045       break;
3046     default:
3047       return false;
3048     }
3049   }
3050 
3051   static const MCPhysReg GPRArgRegs[] = {
3052     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3053   };
3054 
3055   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3056   for (const Argument &Arg : F->args()) {
3057     unsigned ArgNo = Arg.getArgNo();
3058     unsigned SrcReg = GPRArgRegs[ArgNo];
3059     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3060     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3061     // Without this, EmitLiveInCopies may eliminate the livein if its only
3062     // use is a bitcast (which isn't turned into an instruction).
3063     Register ResultReg = createResultReg(RC);
3064     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3065             TII.get(TargetOpcode::COPY),
3066             ResultReg).addReg(DstReg, getKillRegState(true));
3067     updateValueMap(&Arg, ResultReg);
3068   }
3069 
3070   return true;
3071 }
3072 
3073 namespace llvm {
3074 
3075   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3076                                 const TargetLibraryInfo *libInfo) {
3077     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3078       return new ARMFastISel(funcInfo, libInfo);
3079 
3080     return nullptr;
3081   }
3082 
3083 } // end namespace llvm
3084