1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 using namespace llvm; 49 50 namespace { 51 52 // All possible address modes, plus some. 53 typedef struct Address { 54 enum { 55 RegBase, 56 FrameIndexBase 57 } BaseType; 58 59 union { 60 unsigned Reg; 61 int FI; 62 } Base; 63 64 int Offset; 65 66 // Innocuous defaults for our address. 67 Address() 68 : BaseType(RegBase), Offset(0) { 69 Base.Reg = 0; 70 } 71 } Address; 72 73 class ARMFastISel final : public FastISel { 74 75 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 76 /// make the right decision when generating code for different targets. 77 const ARMSubtarget *Subtarget; 78 Module &M; 79 const TargetMachine &TM; 80 const TargetInstrInfo &TII; 81 const TargetLowering &TLI; 82 ARMFunctionInfo *AFI; 83 84 // Convenience variables to avoid some queries. 85 bool isThumb2; 86 LLVMContext *Context; 87 88 public: 89 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 90 const TargetLibraryInfo *libInfo) 91 : FastISel(funcInfo, libInfo), 92 Subtarget( 93 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 94 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 95 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 96 TLI(*Subtarget->getTargetLowering()) { 97 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 98 isThumb2 = AFI->isThumbFunction(); 99 Context = &funcInfo.Fn->getContext(); 100 } 101 102 // Code from FastISel.cpp. 103 private: 104 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 105 const TargetRegisterClass *RC, 106 unsigned Op0, bool Op0IsKill); 107 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 108 const TargetRegisterClass *RC, 109 unsigned Op0, bool Op0IsKill, 110 unsigned Op1, bool Op1IsKill); 111 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 112 const TargetRegisterClass *RC, 113 unsigned Op0, bool Op0IsKill, 114 uint64_t Imm); 115 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 uint64_t Imm); 118 119 // Backend specific FastISel code. 120 private: 121 bool fastSelectInstruction(const Instruction *I) override; 122 unsigned fastMaterializeConstant(const Constant *C) override; 123 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 124 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 125 const LoadInst *LI) override; 126 bool fastLowerArguments() override; 127 private: 128 #include "ARMGenFastISel.inc" 129 130 // Instruction selection routines. 131 private: 132 bool SelectLoad(const Instruction *I); 133 bool SelectStore(const Instruction *I); 134 bool SelectBranch(const Instruction *I); 135 bool SelectIndirectBr(const Instruction *I); 136 bool SelectCmp(const Instruction *I); 137 bool SelectFPExt(const Instruction *I); 138 bool SelectFPTrunc(const Instruction *I); 139 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 140 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 141 bool SelectIToFP(const Instruction *I, bool isSigned); 142 bool SelectFPToI(const Instruction *I, bool isSigned); 143 bool SelectDiv(const Instruction *I, bool isSigned); 144 bool SelectRem(const Instruction *I, bool isSigned); 145 bool SelectCall(const Instruction *I, const char *IntrMemName); 146 bool SelectIntrinsicCall(const IntrinsicInst &I); 147 bool SelectSelect(const Instruction *I); 148 bool SelectRet(const Instruction *I); 149 bool SelectTrunc(const Instruction *I); 150 bool SelectIntExt(const Instruction *I); 151 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 152 153 // Utility routines. 154 private: 155 bool isPositionIndependent() const; 156 bool isTypeLegal(Type *Ty, MVT &VT); 157 bool isLoadTypeLegal(Type *Ty, MVT &VT); 158 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 159 bool isZExt); 160 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 161 unsigned Alignment = 0, bool isZExt = true, 162 bool allocReg = true); 163 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 164 unsigned Alignment = 0); 165 bool ARMComputeAddress(const Value *Obj, Address &Addr); 166 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 167 bool ARMIsMemCpySmall(uint64_t Len); 168 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 169 unsigned Alignment); 170 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 171 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 172 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 173 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 174 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 175 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 176 unsigned ARMSelectCallOp(bool UseReg); 177 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 178 179 const TargetLowering *getTargetLowering() { return &TLI; } 180 181 // Call handling routines. 182 private: 183 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 184 bool Return, 185 bool isVarArg); 186 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 187 SmallVectorImpl<unsigned> &ArgRegs, 188 SmallVectorImpl<MVT> &ArgVTs, 189 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 190 SmallVectorImpl<unsigned> &RegArgs, 191 CallingConv::ID CC, 192 unsigned &NumBytes, 193 bool isVarArg); 194 unsigned getLibcallReg(const Twine &Name); 195 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 196 const Instruction *I, CallingConv::ID CC, 197 unsigned &NumBytes, bool isVarArg); 198 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 199 200 // OptionalDef handling routines. 201 private: 202 bool isARMNEONPred(const MachineInstr *MI); 203 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 204 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 205 void AddLoadStoreOperands(MVT VT, Address &Addr, 206 const MachineInstrBuilder &MIB, 207 MachineMemOperand::Flags Flags, bool useAM3); 208 }; 209 210 } // end anonymous namespace 211 212 #include "ARMGenCallingConv.inc" 213 214 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 215 // we don't care about implicit defs here, just places we'll need to add a 216 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 217 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 218 if (!MI->hasOptionalDef()) 219 return false; 220 221 // Look to see if our OptionalDef is defining CPSR or CCR. 222 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 223 const MachineOperand &MO = MI->getOperand(i); 224 if (!MO.isReg() || !MO.isDef()) continue; 225 if (MO.getReg() == ARM::CPSR) 226 *CPSR = true; 227 } 228 return true; 229 } 230 231 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 232 const MCInstrDesc &MCID = MI->getDesc(); 233 234 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 235 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 236 AFI->isThumb2Function()) 237 return MI->isPredicable(); 238 239 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 240 if (MCID.OpInfo[i].isPredicate()) 241 return true; 242 243 return false; 244 } 245 246 // If the machine is predicable go ahead and add the predicate operands, if 247 // it needs default CC operands add those. 248 // TODO: If we want to support thumb1 then we'll need to deal with optional 249 // CPSR defs that need to be added before the remaining operands. See s_cc_out 250 // for descriptions why. 251 const MachineInstrBuilder & 252 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 253 MachineInstr *MI = &*MIB; 254 255 // Do we use a predicate? or... 256 // Are we NEON in ARM mode and have a predicate operand? If so, I know 257 // we're not predicable but add it anyways. 258 if (isARMNEONPred(MI)) 259 MIB.add(predOps(ARMCC::AL)); 260 261 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 262 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 263 bool CPSR = false; 264 if (DefinesOptionalPredicate(MI, &CPSR)) 265 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); 266 return MIB; 267 } 268 269 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 270 const TargetRegisterClass *RC, 271 unsigned Op0, bool Op0IsKill) { 272 unsigned ResultReg = createResultReg(RC); 273 const MCInstrDesc &II = TII.get(MachineInstOpcode); 274 275 // Make sure the input operand is sufficiently constrained to be legal 276 // for this instruction. 277 Op0 = constrainOperandRegClass(II, Op0, 1); 278 if (II.getNumDefs() >= 1) { 279 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 280 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 281 } else { 282 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 283 .addReg(Op0, Op0IsKill * RegState::Kill)); 284 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 285 TII.get(TargetOpcode::COPY), ResultReg) 286 .addReg(II.ImplicitDefs[0])); 287 } 288 return ResultReg; 289 } 290 291 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 292 const TargetRegisterClass *RC, 293 unsigned Op0, bool Op0IsKill, 294 unsigned Op1, bool Op1IsKill) { 295 unsigned ResultReg = createResultReg(RC); 296 const MCInstrDesc &II = TII.get(MachineInstOpcode); 297 298 // Make sure the input operands are sufficiently constrained to be legal 299 // for this instruction. 300 Op0 = constrainOperandRegClass(II, Op0, 1); 301 Op1 = constrainOperandRegClass(II, Op1, 2); 302 303 if (II.getNumDefs() >= 1) { 304 AddOptionalDefs( 305 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 306 .addReg(Op0, Op0IsKill * RegState::Kill) 307 .addReg(Op1, Op1IsKill * RegState::Kill)); 308 } else { 309 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 310 .addReg(Op0, Op0IsKill * RegState::Kill) 311 .addReg(Op1, Op1IsKill * RegState::Kill)); 312 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 313 TII.get(TargetOpcode::COPY), ResultReg) 314 .addReg(II.ImplicitDefs[0])); 315 } 316 return ResultReg; 317 } 318 319 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 320 const TargetRegisterClass *RC, 321 unsigned Op0, bool Op0IsKill, 322 uint64_t Imm) { 323 unsigned ResultReg = createResultReg(RC); 324 const MCInstrDesc &II = TII.get(MachineInstOpcode); 325 326 // Make sure the input operand is sufficiently constrained to be legal 327 // for this instruction. 328 Op0 = constrainOperandRegClass(II, Op0, 1); 329 if (II.getNumDefs() >= 1) { 330 AddOptionalDefs( 331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 332 .addReg(Op0, Op0IsKill * RegState::Kill) 333 .addImm(Imm)); 334 } else { 335 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 336 .addReg(Op0, Op0IsKill * RegState::Kill) 337 .addImm(Imm)); 338 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 339 TII.get(TargetOpcode::COPY), ResultReg) 340 .addReg(II.ImplicitDefs[0])); 341 } 342 return ResultReg; 343 } 344 345 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 346 const TargetRegisterClass *RC, 347 uint64_t Imm) { 348 unsigned ResultReg = createResultReg(RC); 349 const MCInstrDesc &II = TII.get(MachineInstOpcode); 350 351 if (II.getNumDefs() >= 1) { 352 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 353 ResultReg).addImm(Imm)); 354 } else { 355 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 356 .addImm(Imm)); 357 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 358 TII.get(TargetOpcode::COPY), ResultReg) 359 .addReg(II.ImplicitDefs[0])); 360 } 361 return ResultReg; 362 } 363 364 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 365 // checks from the various callers. 366 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 367 if (VT == MVT::f64) return 0; 368 369 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 370 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 371 TII.get(ARM::VMOVSR), MoveReg) 372 .addReg(SrcReg)); 373 return MoveReg; 374 } 375 376 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 377 if (VT == MVT::i64) return 0; 378 379 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 380 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 381 TII.get(ARM::VMOVRS), MoveReg) 382 .addReg(SrcReg)); 383 return MoveReg; 384 } 385 386 // For double width floating point we need to materialize two constants 387 // (the high and the low) into integer registers then use a move to get 388 // the combined constant into an FP reg. 389 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 390 const APFloat Val = CFP->getValueAPF(); 391 bool is64bit = VT == MVT::f64; 392 393 // This checks to see if we can use VFP3 instructions to materialize 394 // a constant, otherwise we have to go through the constant pool. 395 if (TLI.isFPImmLegal(Val, VT)) { 396 int Imm; 397 unsigned Opc; 398 if (is64bit) { 399 Imm = ARM_AM::getFP64Imm(Val); 400 Opc = ARM::FCONSTD; 401 } else { 402 Imm = ARM_AM::getFP32Imm(Val); 403 Opc = ARM::FCONSTS; 404 } 405 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 406 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 407 TII.get(Opc), DestReg).addImm(Imm)); 408 return DestReg; 409 } 410 411 // Require VFP2 for loading fp constants. 412 if (!Subtarget->hasVFP2()) return false; 413 414 // MachineConstantPool wants an explicit alignment. 415 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 416 if (Align == 0) { 417 // TODO: Figure out if this is correct. 418 Align = DL.getTypeAllocSize(CFP->getType()); 419 } 420 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 421 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 422 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 423 424 // The extra reg is for addrmode5. 425 AddOptionalDefs( 426 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 427 .addConstantPoolIndex(Idx) 428 .addReg(0)); 429 return DestReg; 430 } 431 432 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 433 434 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 435 return 0; 436 437 // If we can do this in a single instruction without a constant pool entry 438 // do so now. 439 const ConstantInt *CI = cast<ConstantInt>(C); 440 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 441 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 442 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 443 &ARM::GPRRegClass; 444 unsigned ImmReg = createResultReg(RC); 445 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 446 TII.get(Opc), ImmReg) 447 .addImm(CI->getZExtValue())); 448 return ImmReg; 449 } 450 451 // Use MVN to emit negative constants. 452 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 453 unsigned Imm = (unsigned)~(CI->getSExtValue()); 454 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 455 (ARM_AM::getSOImmVal(Imm) != -1); 456 if (UseImm) { 457 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 458 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 459 &ARM::GPRRegClass; 460 unsigned ImmReg = createResultReg(RC); 461 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 462 TII.get(Opc), ImmReg) 463 .addImm(Imm)); 464 return ImmReg; 465 } 466 } 467 468 unsigned ResultReg = 0; 469 if (Subtarget->useMovt(*FuncInfo.MF)) 470 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 471 472 if (ResultReg) 473 return ResultReg; 474 475 // Load from constant pool. For now 32-bit only. 476 if (VT != MVT::i32) 477 return 0; 478 479 // MachineConstantPool wants an explicit alignment. 480 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 481 if (Align == 0) { 482 // TODO: Figure out if this is correct. 483 Align = DL.getTypeAllocSize(C->getType()); 484 } 485 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 486 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 487 if (isThumb2) 488 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 489 TII.get(ARM::t2LDRpci), ResultReg) 490 .addConstantPoolIndex(Idx)); 491 else { 492 // The extra immediate is for addrmode2. 493 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 494 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 495 TII.get(ARM::LDRcp), ResultReg) 496 .addConstantPoolIndex(Idx) 497 .addImm(0)); 498 } 499 return ResultReg; 500 } 501 502 bool ARMFastISel::isPositionIndependent() const { 503 return TLI.isPositionIndependent(); 504 } 505 506 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 507 // For now 32-bit only. 508 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 509 510 // ROPI/RWPI not currently supported. 511 if (Subtarget->isROPI() || Subtarget->isRWPI()) 512 return 0; 513 514 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 515 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 516 : &ARM::GPRRegClass; 517 unsigned DestReg = createResultReg(RC); 518 519 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 520 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 521 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 522 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 523 524 bool IsPositionIndependent = isPositionIndependent(); 525 // Use movw+movt when possible, it avoids constant pool entries. 526 // Non-darwin targets only support static movt relocations in FastISel. 527 if (Subtarget->useMovt(*FuncInfo.MF) && 528 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 529 unsigned Opc; 530 unsigned char TF = 0; 531 if (Subtarget->isTargetMachO()) 532 TF = ARMII::MO_NONLAZY; 533 534 if (IsPositionIndependent) 535 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 536 else 537 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 538 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 539 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 540 } else { 541 // MachineConstantPool wants an explicit alignment. 542 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 543 if (Align == 0) { 544 // TODO: Figure out if this is correct. 545 Align = DL.getTypeAllocSize(GV->getType()); 546 } 547 548 if (Subtarget->isTargetELF() && IsPositionIndependent) 549 return ARMLowerPICELF(GV, Align, VT); 550 551 // Grab index. 552 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 553 unsigned Id = AFI->createPICLabelUId(); 554 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 555 ARMCP::CPValue, 556 PCAdj); 557 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 558 559 // Load value. 560 MachineInstrBuilder MIB; 561 if (isThumb2) { 562 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 563 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 564 DestReg).addConstantPoolIndex(Idx); 565 if (IsPositionIndependent) 566 MIB.addImm(Id); 567 AddOptionalDefs(MIB); 568 } else { 569 // The extra immediate is for addrmode2. 570 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 571 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 572 TII.get(ARM::LDRcp), DestReg) 573 .addConstantPoolIndex(Idx) 574 .addImm(0); 575 AddOptionalDefs(MIB); 576 577 if (IsPositionIndependent) { 578 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 579 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 580 581 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 582 DbgLoc, TII.get(Opc), NewDestReg) 583 .addReg(DestReg) 584 .addImm(Id); 585 AddOptionalDefs(MIB); 586 return NewDestReg; 587 } 588 } 589 } 590 591 if (IsIndirect) { 592 MachineInstrBuilder MIB; 593 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 594 if (isThumb2) 595 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 596 TII.get(ARM::t2LDRi12), NewDestReg) 597 .addReg(DestReg) 598 .addImm(0); 599 else 600 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 601 TII.get(ARM::LDRi12), NewDestReg) 602 .addReg(DestReg) 603 .addImm(0); 604 DestReg = NewDestReg; 605 AddOptionalDefs(MIB); 606 } 607 608 return DestReg; 609 } 610 611 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 612 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 613 614 // Only handle simple types. 615 if (!CEVT.isSimple()) return 0; 616 MVT VT = CEVT.getSimpleVT(); 617 618 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 619 return ARMMaterializeFP(CFP, VT); 620 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 621 return ARMMaterializeGV(GV, VT); 622 else if (isa<ConstantInt>(C)) 623 return ARMMaterializeInt(C, VT); 624 625 return 0; 626 } 627 628 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 629 630 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 631 // Don't handle dynamic allocas. 632 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 633 634 MVT VT; 635 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 636 637 DenseMap<const AllocaInst*, int>::iterator SI = 638 FuncInfo.StaticAllocaMap.find(AI); 639 640 // This will get lowered later into the correct offsets and registers 641 // via rewriteXFrameIndex. 642 if (SI != FuncInfo.StaticAllocaMap.end()) { 643 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 644 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 645 unsigned ResultReg = createResultReg(RC); 646 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 647 648 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 649 TII.get(Opc), ResultReg) 650 .addFrameIndex(SI->second) 651 .addImm(0)); 652 return ResultReg; 653 } 654 655 return 0; 656 } 657 658 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 659 EVT evt = TLI.getValueType(DL, Ty, true); 660 661 // Only handle simple types. 662 if (evt == MVT::Other || !evt.isSimple()) return false; 663 VT = evt.getSimpleVT(); 664 665 // Handle all legal types, i.e. a register that will directly hold this 666 // value. 667 return TLI.isTypeLegal(VT); 668 } 669 670 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 671 if (isTypeLegal(Ty, VT)) return true; 672 673 // If this is a type than can be sign or zero-extended to a basic operation 674 // go ahead and accept it now. 675 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 676 return true; 677 678 return false; 679 } 680 681 // Computes the address to get to an object. 682 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 683 // Some boilerplate from the X86 FastISel. 684 const User *U = nullptr; 685 unsigned Opcode = Instruction::UserOp1; 686 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 687 // Don't walk into other basic blocks unless the object is an alloca from 688 // another block, otherwise it may not have a virtual register assigned. 689 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 690 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 691 Opcode = I->getOpcode(); 692 U = I; 693 } 694 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 695 Opcode = C->getOpcode(); 696 U = C; 697 } 698 699 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 700 if (Ty->getAddressSpace() > 255) 701 // Fast instruction selection doesn't support the special 702 // address spaces. 703 return false; 704 705 switch (Opcode) { 706 default: 707 break; 708 case Instruction::BitCast: 709 // Look through bitcasts. 710 return ARMComputeAddress(U->getOperand(0), Addr); 711 case Instruction::IntToPtr: 712 // Look past no-op inttoptrs. 713 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 714 TLI.getPointerTy(DL)) 715 return ARMComputeAddress(U->getOperand(0), Addr); 716 break; 717 case Instruction::PtrToInt: 718 // Look past no-op ptrtoints. 719 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 720 return ARMComputeAddress(U->getOperand(0), Addr); 721 break; 722 case Instruction::GetElementPtr: { 723 Address SavedAddr = Addr; 724 int TmpOffset = Addr.Offset; 725 726 // Iterate through the GEP folding the constants into offsets where 727 // we can. 728 gep_type_iterator GTI = gep_type_begin(U); 729 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 730 i != e; ++i, ++GTI) { 731 const Value *Op = *i; 732 if (StructType *STy = GTI.getStructTypeOrNull()) { 733 const StructLayout *SL = DL.getStructLayout(STy); 734 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 735 TmpOffset += SL->getElementOffset(Idx); 736 } else { 737 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 738 for (;;) { 739 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 740 // Constant-offset addressing. 741 TmpOffset += CI->getSExtValue() * S; 742 break; 743 } 744 if (canFoldAddIntoGEP(U, Op)) { 745 // A compatible add with a constant operand. Fold the constant. 746 ConstantInt *CI = 747 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 748 TmpOffset += CI->getSExtValue() * S; 749 // Iterate on the other operand. 750 Op = cast<AddOperator>(Op)->getOperand(0); 751 continue; 752 } 753 // Unsupported 754 goto unsupported_gep; 755 } 756 } 757 } 758 759 // Try to grab the base operand now. 760 Addr.Offset = TmpOffset; 761 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 762 763 // We failed, restore everything and try the other options. 764 Addr = SavedAddr; 765 766 unsupported_gep: 767 break; 768 } 769 case Instruction::Alloca: { 770 const AllocaInst *AI = cast<AllocaInst>(Obj); 771 DenseMap<const AllocaInst*, int>::iterator SI = 772 FuncInfo.StaticAllocaMap.find(AI); 773 if (SI != FuncInfo.StaticAllocaMap.end()) { 774 Addr.BaseType = Address::FrameIndexBase; 775 Addr.Base.FI = SI->second; 776 return true; 777 } 778 break; 779 } 780 } 781 782 // Try to get this in a register if nothing else has worked. 783 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 784 return Addr.Base.Reg != 0; 785 } 786 787 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 788 bool needsLowering = false; 789 switch (VT.SimpleTy) { 790 default: llvm_unreachable("Unhandled load/store type!"); 791 case MVT::i1: 792 case MVT::i8: 793 case MVT::i16: 794 case MVT::i32: 795 if (!useAM3) { 796 // Integer loads/stores handle 12-bit offsets. 797 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 798 // Handle negative offsets. 799 if (needsLowering && isThumb2) 800 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 801 Addr.Offset > -256); 802 } else { 803 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 804 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 805 } 806 break; 807 case MVT::f32: 808 case MVT::f64: 809 // Floating point operands handle 8-bit offsets. 810 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 811 break; 812 } 813 814 // If this is a stack pointer and the offset needs to be simplified then 815 // put the alloca address into a register, set the base type back to 816 // register and continue. This should almost never happen. 817 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 818 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 819 : &ARM::GPRRegClass; 820 unsigned ResultReg = createResultReg(RC); 821 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 822 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 823 TII.get(Opc), ResultReg) 824 .addFrameIndex(Addr.Base.FI) 825 .addImm(0)); 826 Addr.Base.Reg = ResultReg; 827 Addr.BaseType = Address::RegBase; 828 } 829 830 // Since the offset is too large for the load/store instruction 831 // get the reg+offset into a register. 832 if (needsLowering) { 833 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 834 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 835 Addr.Offset = 0; 836 } 837 } 838 839 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 840 const MachineInstrBuilder &MIB, 841 MachineMemOperand::Flags Flags, 842 bool useAM3) { 843 // addrmode5 output depends on the selection dag addressing dividing the 844 // offset by 4 that it then later multiplies. Do this here as well. 845 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 846 Addr.Offset /= 4; 847 848 // Frame base works a bit differently. Handle it separately. 849 if (Addr.BaseType == Address::FrameIndexBase) { 850 int FI = Addr.Base.FI; 851 int Offset = Addr.Offset; 852 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 853 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 854 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); 855 // Now add the rest of the operands. 856 MIB.addFrameIndex(FI); 857 858 // ARM halfword load/stores and signed byte loads need an additional 859 // operand. 860 if (useAM3) { 861 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 862 MIB.addReg(0); 863 MIB.addImm(Imm); 864 } else { 865 MIB.addImm(Addr.Offset); 866 } 867 MIB.addMemOperand(MMO); 868 } else { 869 // Now add the rest of the operands. 870 MIB.addReg(Addr.Base.Reg); 871 872 // ARM halfword load/stores and signed byte loads need an additional 873 // operand. 874 if (useAM3) { 875 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 876 MIB.addReg(0); 877 MIB.addImm(Imm); 878 } else { 879 MIB.addImm(Addr.Offset); 880 } 881 } 882 AddOptionalDefs(MIB); 883 } 884 885 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 886 unsigned Alignment, bool isZExt, bool allocReg) { 887 unsigned Opc; 888 bool useAM3 = false; 889 bool needVMOV = false; 890 const TargetRegisterClass *RC; 891 switch (VT.SimpleTy) { 892 // This is mostly going to be Neon/vector support. 893 default: return false; 894 case MVT::i1: 895 case MVT::i8: 896 if (isThumb2) { 897 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 898 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 899 else 900 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 901 } else { 902 if (isZExt) { 903 Opc = ARM::LDRBi12; 904 } else { 905 Opc = ARM::LDRSB; 906 useAM3 = true; 907 } 908 } 909 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 910 break; 911 case MVT::i16: 912 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 913 return false; 914 915 if (isThumb2) { 916 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 917 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 918 else 919 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 920 } else { 921 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 922 useAM3 = true; 923 } 924 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 925 break; 926 case MVT::i32: 927 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 928 return false; 929 930 if (isThumb2) { 931 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 932 Opc = ARM::t2LDRi8; 933 else 934 Opc = ARM::t2LDRi12; 935 } else { 936 Opc = ARM::LDRi12; 937 } 938 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 939 break; 940 case MVT::f32: 941 if (!Subtarget->hasVFP2()) return false; 942 // Unaligned loads need special handling. Floats require word-alignment. 943 if (Alignment && Alignment < 4) { 944 needVMOV = true; 945 VT = MVT::i32; 946 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 947 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 948 } else { 949 Opc = ARM::VLDRS; 950 RC = TLI.getRegClassFor(VT); 951 } 952 break; 953 case MVT::f64: 954 if (!Subtarget->hasVFP2()) return false; 955 // FIXME: Unaligned loads need special handling. Doublewords require 956 // word-alignment. 957 if (Alignment && Alignment < 4) 958 return false; 959 960 Opc = ARM::VLDRD; 961 RC = TLI.getRegClassFor(VT); 962 break; 963 } 964 // Simplify this down to something we can handle. 965 ARMSimplifyAddress(Addr, VT, useAM3); 966 967 // Create the base instruction, then add the operands. 968 if (allocReg) 969 ResultReg = createResultReg(RC); 970 assert (ResultReg > 255 && "Expected an allocated virtual register."); 971 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 972 TII.get(Opc), ResultReg); 973 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 974 975 // If we had an unaligned load of a float we've converted it to an regular 976 // load. Now we must move from the GRP to the FP register. 977 if (needVMOV) { 978 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 979 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 980 TII.get(ARM::VMOVSR), MoveReg) 981 .addReg(ResultReg)); 982 ResultReg = MoveReg; 983 } 984 return true; 985 } 986 987 bool ARMFastISel::SelectLoad(const Instruction *I) { 988 // Atomic loads need special handling. 989 if (cast<LoadInst>(I)->isAtomic()) 990 return false; 991 992 const Value *SV = I->getOperand(0); 993 if (TLI.supportSwiftError()) { 994 // Swifterror values can come from either a function parameter with 995 // swifterror attribute or an alloca with swifterror attribute. 996 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 997 if (Arg->hasSwiftErrorAttr()) 998 return false; 999 } 1000 1001 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1002 if (Alloca->isSwiftError()) 1003 return false; 1004 } 1005 } 1006 1007 // Verify we have a legal type before going any further. 1008 MVT VT; 1009 if (!isLoadTypeLegal(I->getType(), VT)) 1010 return false; 1011 1012 // See if we can handle this address. 1013 Address Addr; 1014 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1015 1016 unsigned ResultReg; 1017 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1018 return false; 1019 updateValueMap(I, ResultReg); 1020 return true; 1021 } 1022 1023 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1024 unsigned Alignment) { 1025 unsigned StrOpc; 1026 bool useAM3 = false; 1027 switch (VT.SimpleTy) { 1028 // This is mostly going to be Neon/vector support. 1029 default: return false; 1030 case MVT::i1: { 1031 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1032 : &ARM::GPRRegClass); 1033 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1034 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1035 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1036 TII.get(Opc), Res) 1037 .addReg(SrcReg).addImm(1)); 1038 SrcReg = Res; 1039 LLVM_FALLTHROUGH; 1040 } 1041 case MVT::i8: 1042 if (isThumb2) { 1043 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1044 StrOpc = ARM::t2STRBi8; 1045 else 1046 StrOpc = ARM::t2STRBi12; 1047 } else { 1048 StrOpc = ARM::STRBi12; 1049 } 1050 break; 1051 case MVT::i16: 1052 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1053 return false; 1054 1055 if (isThumb2) { 1056 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1057 StrOpc = ARM::t2STRHi8; 1058 else 1059 StrOpc = ARM::t2STRHi12; 1060 } else { 1061 StrOpc = ARM::STRH; 1062 useAM3 = true; 1063 } 1064 break; 1065 case MVT::i32: 1066 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1067 return false; 1068 1069 if (isThumb2) { 1070 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1071 StrOpc = ARM::t2STRi8; 1072 else 1073 StrOpc = ARM::t2STRi12; 1074 } else { 1075 StrOpc = ARM::STRi12; 1076 } 1077 break; 1078 case MVT::f32: 1079 if (!Subtarget->hasVFP2()) return false; 1080 // Unaligned stores need special handling. Floats require word-alignment. 1081 if (Alignment && Alignment < 4) { 1082 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1083 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1084 TII.get(ARM::VMOVRS), MoveReg) 1085 .addReg(SrcReg)); 1086 SrcReg = MoveReg; 1087 VT = MVT::i32; 1088 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1089 } else { 1090 StrOpc = ARM::VSTRS; 1091 } 1092 break; 1093 case MVT::f64: 1094 if (!Subtarget->hasVFP2()) return false; 1095 // FIXME: Unaligned stores need special handling. Doublewords require 1096 // word-alignment. 1097 if (Alignment && Alignment < 4) 1098 return false; 1099 1100 StrOpc = ARM::VSTRD; 1101 break; 1102 } 1103 // Simplify this down to something we can handle. 1104 ARMSimplifyAddress(Addr, VT, useAM3); 1105 1106 // Create the base instruction, then add the operands. 1107 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1108 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1109 TII.get(StrOpc)) 1110 .addReg(SrcReg); 1111 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1112 return true; 1113 } 1114 1115 bool ARMFastISel::SelectStore(const Instruction *I) { 1116 Value *Op0 = I->getOperand(0); 1117 unsigned SrcReg = 0; 1118 1119 // Atomic stores need special handling. 1120 if (cast<StoreInst>(I)->isAtomic()) 1121 return false; 1122 1123 const Value *PtrV = I->getOperand(1); 1124 if (TLI.supportSwiftError()) { 1125 // Swifterror values can come from either a function parameter with 1126 // swifterror attribute or an alloca with swifterror attribute. 1127 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1128 if (Arg->hasSwiftErrorAttr()) 1129 return false; 1130 } 1131 1132 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1133 if (Alloca->isSwiftError()) 1134 return false; 1135 } 1136 } 1137 1138 // Verify we have a legal type before going any further. 1139 MVT VT; 1140 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1141 return false; 1142 1143 // Get the value to be stored into a register. 1144 SrcReg = getRegForValue(Op0); 1145 if (SrcReg == 0) return false; 1146 1147 // See if we can handle this address. 1148 Address Addr; 1149 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1150 return false; 1151 1152 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1153 return false; 1154 return true; 1155 } 1156 1157 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1158 switch (Pred) { 1159 // Needs two compares... 1160 case CmpInst::FCMP_ONE: 1161 case CmpInst::FCMP_UEQ: 1162 default: 1163 // AL is our "false" for now. The other two need more compares. 1164 return ARMCC::AL; 1165 case CmpInst::ICMP_EQ: 1166 case CmpInst::FCMP_OEQ: 1167 return ARMCC::EQ; 1168 case CmpInst::ICMP_SGT: 1169 case CmpInst::FCMP_OGT: 1170 return ARMCC::GT; 1171 case CmpInst::ICMP_SGE: 1172 case CmpInst::FCMP_OGE: 1173 return ARMCC::GE; 1174 case CmpInst::ICMP_UGT: 1175 case CmpInst::FCMP_UGT: 1176 return ARMCC::HI; 1177 case CmpInst::FCMP_OLT: 1178 return ARMCC::MI; 1179 case CmpInst::ICMP_ULE: 1180 case CmpInst::FCMP_OLE: 1181 return ARMCC::LS; 1182 case CmpInst::FCMP_ORD: 1183 return ARMCC::VC; 1184 case CmpInst::FCMP_UNO: 1185 return ARMCC::VS; 1186 case CmpInst::FCMP_UGE: 1187 return ARMCC::PL; 1188 case CmpInst::ICMP_SLT: 1189 case CmpInst::FCMP_ULT: 1190 return ARMCC::LT; 1191 case CmpInst::ICMP_SLE: 1192 case CmpInst::FCMP_ULE: 1193 return ARMCC::LE; 1194 case CmpInst::FCMP_UNE: 1195 case CmpInst::ICMP_NE: 1196 return ARMCC::NE; 1197 case CmpInst::ICMP_UGE: 1198 return ARMCC::HS; 1199 case CmpInst::ICMP_ULT: 1200 return ARMCC::LO; 1201 } 1202 } 1203 1204 bool ARMFastISel::SelectBranch(const Instruction *I) { 1205 const BranchInst *BI = cast<BranchInst>(I); 1206 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1207 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1208 1209 // Simple branch support. 1210 1211 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1212 // behavior. 1213 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1214 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1215 1216 // Get the compare predicate. 1217 // Try to take advantage of fallthrough opportunities. 1218 CmpInst::Predicate Predicate = CI->getPredicate(); 1219 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1220 std::swap(TBB, FBB); 1221 Predicate = CmpInst::getInversePredicate(Predicate); 1222 } 1223 1224 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1225 1226 // We may not handle every CC for now. 1227 if (ARMPred == ARMCC::AL) return false; 1228 1229 // Emit the compare. 1230 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1231 return false; 1232 1233 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1235 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1236 finishCondBranch(BI->getParent(), TBB, FBB); 1237 return true; 1238 } 1239 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1240 MVT SourceVT; 1241 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1242 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1243 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1244 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1245 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1246 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1247 TII.get(TstOpc)) 1248 .addReg(OpReg).addImm(1)); 1249 1250 unsigned CCMode = ARMCC::NE; 1251 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1252 std::swap(TBB, FBB); 1253 CCMode = ARMCC::EQ; 1254 } 1255 1256 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1258 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1259 1260 finishCondBranch(BI->getParent(), TBB, FBB); 1261 return true; 1262 } 1263 } else if (const ConstantInt *CI = 1264 dyn_cast<ConstantInt>(BI->getCondition())) { 1265 uint64_t Imm = CI->getZExtValue(); 1266 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1267 fastEmitBranch(Target, DbgLoc); 1268 return true; 1269 } 1270 1271 unsigned CmpReg = getRegForValue(BI->getCondition()); 1272 if (CmpReg == 0) return false; 1273 1274 // We've been divorced from our compare! Our block was split, and 1275 // now our compare lives in a predecessor block. We musn't 1276 // re-compare here, as the children of the compare aren't guaranteed 1277 // live across the block boundary (we *could* check for this). 1278 // Regardless, the compare has been done in the predecessor block, 1279 // and it left a value for us in a virtual register. Ergo, we test 1280 // the one-bit value left in the virtual register. 1281 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1282 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1283 AddOptionalDefs( 1284 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1285 .addReg(CmpReg) 1286 .addImm(1)); 1287 1288 unsigned CCMode = ARMCC::NE; 1289 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1290 std::swap(TBB, FBB); 1291 CCMode = ARMCC::EQ; 1292 } 1293 1294 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1295 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1296 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1297 finishCondBranch(BI->getParent(), TBB, FBB); 1298 return true; 1299 } 1300 1301 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1302 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1303 if (AddrReg == 0) return false; 1304 1305 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1306 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1307 TII.get(Opc)).addReg(AddrReg)); 1308 1309 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1310 for (const BasicBlock *SuccBB : IB->successors()) 1311 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1312 1313 return true; 1314 } 1315 1316 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1317 bool isZExt) { 1318 Type *Ty = Src1Value->getType(); 1319 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1320 if (!SrcEVT.isSimple()) return false; 1321 MVT SrcVT = SrcEVT.getSimpleVT(); 1322 1323 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1324 if (isFloat && !Subtarget->hasVFP2()) 1325 return false; 1326 1327 // Check to see if the 2nd operand is a constant that we can encode directly 1328 // in the compare. 1329 int Imm = 0; 1330 bool UseImm = false; 1331 bool isNegativeImm = false; 1332 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1333 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1334 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1335 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1336 SrcVT == MVT::i1) { 1337 const APInt &CIVal = ConstInt->getValue(); 1338 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1339 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1340 // then a cmn, because there is no way to represent 2147483648 as a 1341 // signed 32-bit int. 1342 if (Imm < 0 && Imm != (int)0x80000000) { 1343 isNegativeImm = true; 1344 Imm = -Imm; 1345 } 1346 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1347 (ARM_AM::getSOImmVal(Imm) != -1); 1348 } 1349 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1350 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1351 if (ConstFP->isZero() && !ConstFP->isNegative()) 1352 UseImm = true; 1353 } 1354 1355 unsigned CmpOpc; 1356 bool isICmp = true; 1357 bool needsExt = false; 1358 switch (SrcVT.SimpleTy) { 1359 default: return false; 1360 // TODO: Verify compares. 1361 case MVT::f32: 1362 isICmp = false; 1363 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1364 break; 1365 case MVT::f64: 1366 isICmp = false; 1367 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1368 break; 1369 case MVT::i1: 1370 case MVT::i8: 1371 case MVT::i16: 1372 needsExt = true; 1373 // Intentional fall-through. 1374 case MVT::i32: 1375 if (isThumb2) { 1376 if (!UseImm) 1377 CmpOpc = ARM::t2CMPrr; 1378 else 1379 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1380 } else { 1381 if (!UseImm) 1382 CmpOpc = ARM::CMPrr; 1383 else 1384 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1385 } 1386 break; 1387 } 1388 1389 unsigned SrcReg1 = getRegForValue(Src1Value); 1390 if (SrcReg1 == 0) return false; 1391 1392 unsigned SrcReg2 = 0; 1393 if (!UseImm) { 1394 SrcReg2 = getRegForValue(Src2Value); 1395 if (SrcReg2 == 0) return false; 1396 } 1397 1398 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1399 if (needsExt) { 1400 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1401 if (SrcReg1 == 0) return false; 1402 if (!UseImm) { 1403 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1404 if (SrcReg2 == 0) return false; 1405 } 1406 } 1407 1408 const MCInstrDesc &II = TII.get(CmpOpc); 1409 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1410 if (!UseImm) { 1411 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1412 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1413 .addReg(SrcReg1).addReg(SrcReg2)); 1414 } else { 1415 MachineInstrBuilder MIB; 1416 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1417 .addReg(SrcReg1); 1418 1419 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1420 if (isICmp) 1421 MIB.addImm(Imm); 1422 AddOptionalDefs(MIB); 1423 } 1424 1425 // For floating point we need to move the result to a comparison register 1426 // that we can then use for branches. 1427 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1428 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1429 TII.get(ARM::FMSTAT))); 1430 return true; 1431 } 1432 1433 bool ARMFastISel::SelectCmp(const Instruction *I) { 1434 const CmpInst *CI = cast<CmpInst>(I); 1435 1436 // Get the compare predicate. 1437 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1438 1439 // We may not handle every CC for now. 1440 if (ARMPred == ARMCC::AL) return false; 1441 1442 // Emit the compare. 1443 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1444 return false; 1445 1446 // Now set a register based on the comparison. Explicitly set the predicates 1447 // here. 1448 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1449 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1450 : &ARM::GPRRegClass; 1451 unsigned DestReg = createResultReg(RC); 1452 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1453 unsigned ZeroReg = fastMaterializeConstant(Zero); 1454 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1455 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1456 .addReg(ZeroReg).addImm(1) 1457 .addImm(ARMPred).addReg(ARM::CPSR); 1458 1459 updateValueMap(I, DestReg); 1460 return true; 1461 } 1462 1463 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1464 // Make sure we have VFP and that we're extending float to double. 1465 if (!Subtarget->hasVFP2()) return false; 1466 1467 Value *V = I->getOperand(0); 1468 if (!I->getType()->isDoubleTy() || 1469 !V->getType()->isFloatTy()) return false; 1470 1471 unsigned Op = getRegForValue(V); 1472 if (Op == 0) return false; 1473 1474 unsigned Result = createResultReg(&ARM::DPRRegClass); 1475 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1476 TII.get(ARM::VCVTDS), Result) 1477 .addReg(Op)); 1478 updateValueMap(I, Result); 1479 return true; 1480 } 1481 1482 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1483 // Make sure we have VFP and that we're truncating double to float. 1484 if (!Subtarget->hasVFP2()) return false; 1485 1486 Value *V = I->getOperand(0); 1487 if (!(I->getType()->isFloatTy() && 1488 V->getType()->isDoubleTy())) return false; 1489 1490 unsigned Op = getRegForValue(V); 1491 if (Op == 0) return false; 1492 1493 unsigned Result = createResultReg(&ARM::SPRRegClass); 1494 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1495 TII.get(ARM::VCVTSD), Result) 1496 .addReg(Op)); 1497 updateValueMap(I, Result); 1498 return true; 1499 } 1500 1501 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1502 // Make sure we have VFP. 1503 if (!Subtarget->hasVFP2()) return false; 1504 1505 MVT DstVT; 1506 Type *Ty = I->getType(); 1507 if (!isTypeLegal(Ty, DstVT)) 1508 return false; 1509 1510 Value *Src = I->getOperand(0); 1511 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1512 if (!SrcEVT.isSimple()) 1513 return false; 1514 MVT SrcVT = SrcEVT.getSimpleVT(); 1515 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1516 return false; 1517 1518 unsigned SrcReg = getRegForValue(Src); 1519 if (SrcReg == 0) return false; 1520 1521 // Handle sign-extension. 1522 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1523 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1524 /*isZExt*/!isSigned); 1525 if (SrcReg == 0) return false; 1526 } 1527 1528 // The conversion routine works on fp-reg to fp-reg and the operand above 1529 // was an integer, move it to the fp registers if possible. 1530 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1531 if (FP == 0) return false; 1532 1533 unsigned Opc; 1534 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1535 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1536 else return false; 1537 1538 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1539 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1540 TII.get(Opc), ResultReg).addReg(FP)); 1541 updateValueMap(I, ResultReg); 1542 return true; 1543 } 1544 1545 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1546 // Make sure we have VFP. 1547 if (!Subtarget->hasVFP2()) return false; 1548 1549 MVT DstVT; 1550 Type *RetTy = I->getType(); 1551 if (!isTypeLegal(RetTy, DstVT)) 1552 return false; 1553 1554 unsigned Op = getRegForValue(I->getOperand(0)); 1555 if (Op == 0) return false; 1556 1557 unsigned Opc; 1558 Type *OpTy = I->getOperand(0)->getType(); 1559 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1560 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1561 else return false; 1562 1563 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1564 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1565 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1566 TII.get(Opc), ResultReg).addReg(Op)); 1567 1568 // This result needs to be in an integer register, but the conversion only 1569 // takes place in fp-regs. 1570 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1571 if (IntReg == 0) return false; 1572 1573 updateValueMap(I, IntReg); 1574 return true; 1575 } 1576 1577 bool ARMFastISel::SelectSelect(const Instruction *I) { 1578 MVT VT; 1579 if (!isTypeLegal(I->getType(), VT)) 1580 return false; 1581 1582 // Things need to be register sized for register moves. 1583 if (VT != MVT::i32) return false; 1584 1585 unsigned CondReg = getRegForValue(I->getOperand(0)); 1586 if (CondReg == 0) return false; 1587 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1588 if (Op1Reg == 0) return false; 1589 1590 // Check to see if we can use an immediate in the conditional move. 1591 int Imm = 0; 1592 bool UseImm = false; 1593 bool isNegativeImm = false; 1594 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1595 assert (VT == MVT::i32 && "Expecting an i32."); 1596 Imm = (int)ConstInt->getValue().getZExtValue(); 1597 if (Imm < 0) { 1598 isNegativeImm = true; 1599 Imm = ~Imm; 1600 } 1601 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1602 (ARM_AM::getSOImmVal(Imm) != -1); 1603 } 1604 1605 unsigned Op2Reg = 0; 1606 if (!UseImm) { 1607 Op2Reg = getRegForValue(I->getOperand(2)); 1608 if (Op2Reg == 0) return false; 1609 } 1610 1611 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1612 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1613 AddOptionalDefs( 1614 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1615 .addReg(CondReg) 1616 .addImm(1)); 1617 1618 unsigned MovCCOpc; 1619 const TargetRegisterClass *RC; 1620 if (!UseImm) { 1621 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1622 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1623 } else { 1624 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1625 if (!isNegativeImm) 1626 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1627 else 1628 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1629 } 1630 unsigned ResultReg = createResultReg(RC); 1631 if (!UseImm) { 1632 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1633 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1634 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1635 ResultReg) 1636 .addReg(Op2Reg) 1637 .addReg(Op1Reg) 1638 .addImm(ARMCC::NE) 1639 .addReg(ARM::CPSR); 1640 } else { 1641 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1642 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1643 ResultReg) 1644 .addReg(Op1Reg) 1645 .addImm(Imm) 1646 .addImm(ARMCC::EQ) 1647 .addReg(ARM::CPSR); 1648 } 1649 updateValueMap(I, ResultReg); 1650 return true; 1651 } 1652 1653 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1654 MVT VT; 1655 Type *Ty = I->getType(); 1656 if (!isTypeLegal(Ty, VT)) 1657 return false; 1658 1659 // If we have integer div support we should have selected this automagically. 1660 // In case we have a real miss go ahead and return false and we'll pick 1661 // it up later. 1662 if (Subtarget->hasDivide()) return false; 1663 1664 // Otherwise emit a libcall. 1665 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1666 if (VT == MVT::i8) 1667 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1668 else if (VT == MVT::i16) 1669 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1670 else if (VT == MVT::i32) 1671 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1672 else if (VT == MVT::i64) 1673 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1674 else if (VT == MVT::i128) 1675 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1676 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1677 1678 return ARMEmitLibcall(I, LC); 1679 } 1680 1681 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1682 MVT VT; 1683 Type *Ty = I->getType(); 1684 if (!isTypeLegal(Ty, VT)) 1685 return false; 1686 1687 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1688 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1689 // multi-reg returns, we'll have to bail out. 1690 if (!TLI.hasStandaloneRem(VT)) { 1691 return false; 1692 } 1693 1694 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1695 if (VT == MVT::i8) 1696 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1697 else if (VT == MVT::i16) 1698 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1699 else if (VT == MVT::i32) 1700 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1701 else if (VT == MVT::i64) 1702 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1703 else if (VT == MVT::i128) 1704 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1705 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1706 1707 return ARMEmitLibcall(I, LC); 1708 } 1709 1710 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1711 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1712 1713 // We can get here in the case when we have a binary operation on a non-legal 1714 // type and the target independent selector doesn't know how to handle it. 1715 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1716 return false; 1717 1718 unsigned Opc; 1719 switch (ISDOpcode) { 1720 default: return false; 1721 case ISD::ADD: 1722 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1723 break; 1724 case ISD::OR: 1725 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1726 break; 1727 case ISD::SUB: 1728 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1729 break; 1730 } 1731 1732 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1733 if (SrcReg1 == 0) return false; 1734 1735 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1736 // in the instruction, rather then materializing the value in a register. 1737 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1738 if (SrcReg2 == 0) return false; 1739 1740 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1741 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1742 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1743 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1744 TII.get(Opc), ResultReg) 1745 .addReg(SrcReg1).addReg(SrcReg2)); 1746 updateValueMap(I, ResultReg); 1747 return true; 1748 } 1749 1750 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1751 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1752 if (!FPVT.isSimple()) return false; 1753 MVT VT = FPVT.getSimpleVT(); 1754 1755 // FIXME: Support vector types where possible. 1756 if (VT.isVector()) 1757 return false; 1758 1759 // We can get here in the case when we want to use NEON for our fp 1760 // operations, but can't figure out how to. Just use the vfp instructions 1761 // if we have them. 1762 // FIXME: It'd be nice to use NEON instructions. 1763 Type *Ty = I->getType(); 1764 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1765 if (isFloat && !Subtarget->hasVFP2()) 1766 return false; 1767 1768 unsigned Opc; 1769 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1770 switch (ISDOpcode) { 1771 default: return false; 1772 case ISD::FADD: 1773 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1774 break; 1775 case ISD::FSUB: 1776 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1777 break; 1778 case ISD::FMUL: 1779 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1780 break; 1781 } 1782 unsigned Op1 = getRegForValue(I->getOperand(0)); 1783 if (Op1 == 0) return false; 1784 1785 unsigned Op2 = getRegForValue(I->getOperand(1)); 1786 if (Op2 == 0) return false; 1787 1788 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1789 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1790 TII.get(Opc), ResultReg) 1791 .addReg(Op1).addReg(Op2)); 1792 updateValueMap(I, ResultReg); 1793 return true; 1794 } 1795 1796 // Call Handling Code 1797 1798 // This is largely taken directly from CCAssignFnForNode 1799 // TODO: We may not support all of this. 1800 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1801 bool Return, 1802 bool isVarArg) { 1803 switch (CC) { 1804 default: 1805 llvm_unreachable("Unsupported calling convention"); 1806 case CallingConv::Fast: 1807 if (Subtarget->hasVFP2() && !isVarArg) { 1808 if (!Subtarget->isAAPCS_ABI()) 1809 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1810 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1811 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1812 } 1813 LLVM_FALLTHROUGH; 1814 case CallingConv::C: 1815 case CallingConv::CXX_FAST_TLS: 1816 // Use target triple & subtarget features to do actual dispatch. 1817 if (Subtarget->isAAPCS_ABI()) { 1818 if (Subtarget->hasVFP2() && 1819 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1820 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1821 else 1822 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1823 } else { 1824 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1825 } 1826 case CallingConv::ARM_AAPCS_VFP: 1827 case CallingConv::Swift: 1828 if (!isVarArg) 1829 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1830 // Fall through to soft float variant, variadic functions don't 1831 // use hard floating point ABI. 1832 LLVM_FALLTHROUGH; 1833 case CallingConv::ARM_AAPCS: 1834 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1835 case CallingConv::ARM_APCS: 1836 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1837 case CallingConv::GHC: 1838 if (Return) 1839 llvm_unreachable("Can't return in GHC call convention"); 1840 else 1841 return CC_ARM_APCS_GHC; 1842 } 1843 } 1844 1845 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1846 SmallVectorImpl<unsigned> &ArgRegs, 1847 SmallVectorImpl<MVT> &ArgVTs, 1848 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1849 SmallVectorImpl<unsigned> &RegArgs, 1850 CallingConv::ID CC, 1851 unsigned &NumBytes, 1852 bool isVarArg) { 1853 SmallVector<CCValAssign, 16> ArgLocs; 1854 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1855 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1856 CCAssignFnForCall(CC, false, isVarArg)); 1857 1858 // Check that we can handle all of the arguments. If we can't, then bail out 1859 // now before we add code to the MBB. 1860 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1861 CCValAssign &VA = ArgLocs[i]; 1862 MVT ArgVT = ArgVTs[VA.getValNo()]; 1863 1864 // We don't handle NEON/vector parameters yet. 1865 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1866 return false; 1867 1868 // Now copy/store arg to correct locations. 1869 if (VA.isRegLoc() && !VA.needsCustom()) { 1870 continue; 1871 } else if (VA.needsCustom()) { 1872 // TODO: We need custom lowering for vector (v2f64) args. 1873 if (VA.getLocVT() != MVT::f64 || 1874 // TODO: Only handle register args for now. 1875 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1876 return false; 1877 } else { 1878 switch (ArgVT.SimpleTy) { 1879 default: 1880 return false; 1881 case MVT::i1: 1882 case MVT::i8: 1883 case MVT::i16: 1884 case MVT::i32: 1885 break; 1886 case MVT::f32: 1887 if (!Subtarget->hasVFP2()) 1888 return false; 1889 break; 1890 case MVT::f64: 1891 if (!Subtarget->hasVFP2()) 1892 return false; 1893 break; 1894 } 1895 } 1896 } 1897 1898 // At the point, we are able to handle the call's arguments in fast isel. 1899 1900 // Get a count of how many bytes are to be pushed on the stack. 1901 NumBytes = CCInfo.getNextStackOffset(); 1902 1903 // Issue CALLSEQ_START 1904 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1905 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1906 TII.get(AdjStackDown)) 1907 .addImm(NumBytes)); 1908 1909 // Process the args. 1910 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1911 CCValAssign &VA = ArgLocs[i]; 1912 const Value *ArgVal = Args[VA.getValNo()]; 1913 unsigned Arg = ArgRegs[VA.getValNo()]; 1914 MVT ArgVT = ArgVTs[VA.getValNo()]; 1915 1916 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1917 "We don't handle NEON/vector parameters yet."); 1918 1919 // Handle arg promotion, etc. 1920 switch (VA.getLocInfo()) { 1921 case CCValAssign::Full: break; 1922 case CCValAssign::SExt: { 1923 MVT DestVT = VA.getLocVT(); 1924 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1925 assert (Arg != 0 && "Failed to emit a sext"); 1926 ArgVT = DestVT; 1927 break; 1928 } 1929 case CCValAssign::AExt: 1930 // Intentional fall-through. Handle AExt and ZExt. 1931 case CCValAssign::ZExt: { 1932 MVT DestVT = VA.getLocVT(); 1933 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1934 assert (Arg != 0 && "Failed to emit a zext"); 1935 ArgVT = DestVT; 1936 break; 1937 } 1938 case CCValAssign::BCvt: { 1939 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1940 /*TODO: Kill=*/false); 1941 assert(BC != 0 && "Failed to emit a bitcast!"); 1942 Arg = BC; 1943 ArgVT = VA.getLocVT(); 1944 break; 1945 } 1946 default: llvm_unreachable("Unknown arg promotion!"); 1947 } 1948 1949 // Now copy/store arg to correct locations. 1950 if (VA.isRegLoc() && !VA.needsCustom()) { 1951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1952 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1953 RegArgs.push_back(VA.getLocReg()); 1954 } else if (VA.needsCustom()) { 1955 // TODO: We need custom lowering for vector (v2f64) args. 1956 assert(VA.getLocVT() == MVT::f64 && 1957 "Custom lowering for v2f64 args not available"); 1958 1959 CCValAssign &NextVA = ArgLocs[++i]; 1960 1961 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1962 "We only handle register args!"); 1963 1964 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1965 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1966 .addReg(NextVA.getLocReg(), RegState::Define) 1967 .addReg(Arg)); 1968 RegArgs.push_back(VA.getLocReg()); 1969 RegArgs.push_back(NextVA.getLocReg()); 1970 } else { 1971 assert(VA.isMemLoc()); 1972 // Need to store on the stack. 1973 1974 // Don't emit stores for undef values. 1975 if (isa<UndefValue>(ArgVal)) 1976 continue; 1977 1978 Address Addr; 1979 Addr.BaseType = Address::RegBase; 1980 Addr.Base.Reg = ARM::SP; 1981 Addr.Offset = VA.getLocMemOffset(); 1982 1983 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 1984 assert(EmitRet && "Could not emit a store for argument!"); 1985 } 1986 } 1987 1988 return true; 1989 } 1990 1991 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 1992 const Instruction *I, CallingConv::ID CC, 1993 unsigned &NumBytes, bool isVarArg) { 1994 // Issue CALLSEQ_END 1995 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 1996 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1997 TII.get(AdjStackUp)) 1998 .addImm(NumBytes).addImm(0)); 1999 2000 // Now the return value. 2001 if (RetVT != MVT::isVoid) { 2002 SmallVector<CCValAssign, 16> RVLocs; 2003 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2004 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2005 2006 // Copy all of the result registers out of their specified physreg. 2007 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2008 // For this move we copy into two registers and then move into the 2009 // double fp reg we want. 2010 MVT DestVT = RVLocs[0].getValVT(); 2011 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2012 unsigned ResultReg = createResultReg(DstRC); 2013 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2014 TII.get(ARM::VMOVDRR), ResultReg) 2015 .addReg(RVLocs[0].getLocReg()) 2016 .addReg(RVLocs[1].getLocReg())); 2017 2018 UsedRegs.push_back(RVLocs[0].getLocReg()); 2019 UsedRegs.push_back(RVLocs[1].getLocReg()); 2020 2021 // Finally update the result. 2022 updateValueMap(I, ResultReg); 2023 } else { 2024 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2025 MVT CopyVT = RVLocs[0].getValVT(); 2026 2027 // Special handling for extended integers. 2028 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2029 CopyVT = MVT::i32; 2030 2031 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2032 2033 unsigned ResultReg = createResultReg(DstRC); 2034 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2035 TII.get(TargetOpcode::COPY), 2036 ResultReg).addReg(RVLocs[0].getLocReg()); 2037 UsedRegs.push_back(RVLocs[0].getLocReg()); 2038 2039 // Finally update the result. 2040 updateValueMap(I, ResultReg); 2041 } 2042 } 2043 2044 return true; 2045 } 2046 2047 bool ARMFastISel::SelectRet(const Instruction *I) { 2048 const ReturnInst *Ret = cast<ReturnInst>(I); 2049 const Function &F = *I->getParent()->getParent(); 2050 2051 if (!FuncInfo.CanLowerReturn) 2052 return false; 2053 2054 if (TLI.supportSwiftError() && 2055 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2056 return false; 2057 2058 if (TLI.supportSplitCSR(FuncInfo.MF)) 2059 return false; 2060 2061 // Build a list of return value registers. 2062 SmallVector<unsigned, 4> RetRegs; 2063 2064 CallingConv::ID CC = F.getCallingConv(); 2065 if (Ret->getNumOperands() > 0) { 2066 SmallVector<ISD::OutputArg, 4> Outs; 2067 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2068 2069 // Analyze operands of the call, assigning locations to each operand. 2070 SmallVector<CCValAssign, 16> ValLocs; 2071 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2072 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2073 F.isVarArg())); 2074 2075 const Value *RV = Ret->getOperand(0); 2076 unsigned Reg = getRegForValue(RV); 2077 if (Reg == 0) 2078 return false; 2079 2080 // Only handle a single return value for now. 2081 if (ValLocs.size() != 1) 2082 return false; 2083 2084 CCValAssign &VA = ValLocs[0]; 2085 2086 // Don't bother handling odd stuff for now. 2087 if (VA.getLocInfo() != CCValAssign::Full) 2088 return false; 2089 // Only handle register returns for now. 2090 if (!VA.isRegLoc()) 2091 return false; 2092 2093 unsigned SrcReg = Reg + VA.getValNo(); 2094 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2095 if (!RVEVT.isSimple()) return false; 2096 MVT RVVT = RVEVT.getSimpleVT(); 2097 MVT DestVT = VA.getValVT(); 2098 // Special handling for extended integers. 2099 if (RVVT != DestVT) { 2100 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2101 return false; 2102 2103 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2104 2105 // Perform extension if flagged as either zext or sext. Otherwise, do 2106 // nothing. 2107 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2108 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2109 if (SrcReg == 0) return false; 2110 } 2111 } 2112 2113 // Make the copy. 2114 unsigned DstReg = VA.getLocReg(); 2115 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2116 // Avoid a cross-class copy. This is very unlikely. 2117 if (!SrcRC->contains(DstReg)) 2118 return false; 2119 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2120 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2121 2122 // Add register to return instruction. 2123 RetRegs.push_back(VA.getLocReg()); 2124 } 2125 2126 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2127 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2128 TII.get(RetOpc)); 2129 AddOptionalDefs(MIB); 2130 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2131 MIB.addReg(RetRegs[i], RegState::Implicit); 2132 return true; 2133 } 2134 2135 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2136 if (UseReg) 2137 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2138 else 2139 return isThumb2 ? ARM::tBL : ARM::BL; 2140 } 2141 2142 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2143 // Manually compute the global's type to avoid building it when unnecessary. 2144 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2145 EVT LCREVT = TLI.getValueType(DL, GVTy); 2146 if (!LCREVT.isSimple()) return 0; 2147 2148 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2149 GlobalValue::ExternalLinkage, nullptr, 2150 Name); 2151 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2152 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2153 } 2154 2155 // A quick function that will emit a call for a named libcall in F with the 2156 // vector of passed arguments for the Instruction in I. We can assume that we 2157 // can emit a call for any libcall we can produce. This is an abridged version 2158 // of the full call infrastructure since we won't need to worry about things 2159 // like computed function pointers or strange arguments at call sites. 2160 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2161 // with X86. 2162 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2163 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2164 2165 // Handle *simple* calls for now. 2166 Type *RetTy = I->getType(); 2167 MVT RetVT; 2168 if (RetTy->isVoidTy()) 2169 RetVT = MVT::isVoid; 2170 else if (!isTypeLegal(RetTy, RetVT)) 2171 return false; 2172 2173 // Can't handle non-double multi-reg retvals. 2174 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2175 SmallVector<CCValAssign, 16> RVLocs; 2176 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2177 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2178 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2179 return false; 2180 } 2181 2182 // Set up the argument vectors. 2183 SmallVector<Value*, 8> Args; 2184 SmallVector<unsigned, 8> ArgRegs; 2185 SmallVector<MVT, 8> ArgVTs; 2186 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2187 Args.reserve(I->getNumOperands()); 2188 ArgRegs.reserve(I->getNumOperands()); 2189 ArgVTs.reserve(I->getNumOperands()); 2190 ArgFlags.reserve(I->getNumOperands()); 2191 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2192 Value *Op = I->getOperand(i); 2193 unsigned Arg = getRegForValue(Op); 2194 if (Arg == 0) return false; 2195 2196 Type *ArgTy = Op->getType(); 2197 MVT ArgVT; 2198 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2199 2200 ISD::ArgFlagsTy Flags; 2201 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2202 Flags.setOrigAlign(OriginalAlignment); 2203 2204 Args.push_back(Op); 2205 ArgRegs.push_back(Arg); 2206 ArgVTs.push_back(ArgVT); 2207 ArgFlags.push_back(Flags); 2208 } 2209 2210 // Handle the arguments now that we've gotten them. 2211 SmallVector<unsigned, 4> RegArgs; 2212 unsigned NumBytes; 2213 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2214 RegArgs, CC, NumBytes, false)) 2215 return false; 2216 2217 unsigned CalleeReg = 0; 2218 if (Subtarget->genLongCalls()) { 2219 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2220 if (CalleeReg == 0) return false; 2221 } 2222 2223 // Issue the call. 2224 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2225 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2226 DbgLoc, TII.get(CallOpc)); 2227 // BL / BLX don't take a predicate, but tBL / tBLX do. 2228 if (isThumb2) 2229 MIB.add(predOps(ARMCC::AL)); 2230 if (Subtarget->genLongCalls()) 2231 MIB.addReg(CalleeReg); 2232 else 2233 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2234 2235 // Add implicit physical register uses to the call. 2236 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2237 MIB.addReg(RegArgs[i], RegState::Implicit); 2238 2239 // Add a register mask with the call-preserved registers. 2240 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2241 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2242 2243 // Finish off the call including any return values. 2244 SmallVector<unsigned, 4> UsedRegs; 2245 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2246 2247 // Set all unused physreg defs as dead. 2248 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2249 2250 return true; 2251 } 2252 2253 bool ARMFastISel::SelectCall(const Instruction *I, 2254 const char *IntrMemName = nullptr) { 2255 const CallInst *CI = cast<CallInst>(I); 2256 const Value *Callee = CI->getCalledValue(); 2257 2258 // Can't handle inline asm. 2259 if (isa<InlineAsm>(Callee)) return false; 2260 2261 // Allow SelectionDAG isel to handle tail calls. 2262 if (CI->isTailCall()) return false; 2263 2264 // Check the calling convention. 2265 ImmutableCallSite CS(CI); 2266 CallingConv::ID CC = CS.getCallingConv(); 2267 2268 // TODO: Avoid some calling conventions? 2269 2270 FunctionType *FTy = CS.getFunctionType(); 2271 bool isVarArg = FTy->isVarArg(); 2272 2273 // Handle *simple* calls for now. 2274 Type *RetTy = I->getType(); 2275 MVT RetVT; 2276 if (RetTy->isVoidTy()) 2277 RetVT = MVT::isVoid; 2278 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2279 RetVT != MVT::i8 && RetVT != MVT::i1) 2280 return false; 2281 2282 // Can't handle non-double multi-reg retvals. 2283 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2284 RetVT != MVT::i16 && RetVT != MVT::i32) { 2285 SmallVector<CCValAssign, 16> RVLocs; 2286 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2287 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2288 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2289 return false; 2290 } 2291 2292 // Set up the argument vectors. 2293 SmallVector<Value*, 8> Args; 2294 SmallVector<unsigned, 8> ArgRegs; 2295 SmallVector<MVT, 8> ArgVTs; 2296 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2297 unsigned arg_size = CS.arg_size(); 2298 Args.reserve(arg_size); 2299 ArgRegs.reserve(arg_size); 2300 ArgVTs.reserve(arg_size); 2301 ArgFlags.reserve(arg_size); 2302 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2303 i != e; ++i) { 2304 // If we're lowering a memory intrinsic instead of a regular call, skip the 2305 // last two arguments, which shouldn't be passed to the underlying function. 2306 if (IntrMemName && e-i <= 2) 2307 break; 2308 2309 ISD::ArgFlagsTy Flags; 2310 unsigned AttrInd = i - CS.arg_begin() + 1; 2311 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2312 Flags.setSExt(); 2313 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2314 Flags.setZExt(); 2315 2316 // FIXME: Only handle *easy* calls for now. 2317 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2318 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2319 CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) || 2320 CS.paramHasAttr(AttrInd, Attribute::SwiftError) || 2321 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2322 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2323 return false; 2324 2325 Type *ArgTy = (*i)->getType(); 2326 MVT ArgVT; 2327 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2328 ArgVT != MVT::i1) 2329 return false; 2330 2331 unsigned Arg = getRegForValue(*i); 2332 if (Arg == 0) 2333 return false; 2334 2335 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2336 Flags.setOrigAlign(OriginalAlignment); 2337 2338 Args.push_back(*i); 2339 ArgRegs.push_back(Arg); 2340 ArgVTs.push_back(ArgVT); 2341 ArgFlags.push_back(Flags); 2342 } 2343 2344 // Handle the arguments now that we've gotten them. 2345 SmallVector<unsigned, 4> RegArgs; 2346 unsigned NumBytes; 2347 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2348 RegArgs, CC, NumBytes, isVarArg)) 2349 return false; 2350 2351 bool UseReg = false; 2352 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2353 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2354 2355 unsigned CalleeReg = 0; 2356 if (UseReg) { 2357 if (IntrMemName) 2358 CalleeReg = getLibcallReg(IntrMemName); 2359 else 2360 CalleeReg = getRegForValue(Callee); 2361 2362 if (CalleeReg == 0) return false; 2363 } 2364 2365 // Issue the call. 2366 unsigned CallOpc = ARMSelectCallOp(UseReg); 2367 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2368 DbgLoc, TII.get(CallOpc)); 2369 2370 // ARM calls don't take a predicate, but tBL / tBLX do. 2371 if(isThumb2) 2372 MIB.add(predOps(ARMCC::AL)); 2373 if (UseReg) 2374 MIB.addReg(CalleeReg); 2375 else if (!IntrMemName) 2376 MIB.addGlobalAddress(GV, 0, 0); 2377 else 2378 MIB.addExternalSymbol(IntrMemName, 0); 2379 2380 // Add implicit physical register uses to the call. 2381 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2382 MIB.addReg(RegArgs[i], RegState::Implicit); 2383 2384 // Add a register mask with the call-preserved registers. 2385 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2386 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2387 2388 // Finish off the call including any return values. 2389 SmallVector<unsigned, 4> UsedRegs; 2390 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2391 return false; 2392 2393 // Set all unused physreg defs as dead. 2394 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2395 2396 return true; 2397 } 2398 2399 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2400 return Len <= 16; 2401 } 2402 2403 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2404 uint64_t Len, unsigned Alignment) { 2405 // Make sure we don't bloat code by inlining very large memcpy's. 2406 if (!ARMIsMemCpySmall(Len)) 2407 return false; 2408 2409 while (Len) { 2410 MVT VT; 2411 if (!Alignment || Alignment >= 4) { 2412 if (Len >= 4) 2413 VT = MVT::i32; 2414 else if (Len >= 2) 2415 VT = MVT::i16; 2416 else { 2417 assert (Len == 1 && "Expected a length of 1!"); 2418 VT = MVT::i8; 2419 } 2420 } else { 2421 // Bound based on alignment. 2422 if (Len >= 2 && Alignment == 2) 2423 VT = MVT::i16; 2424 else { 2425 VT = MVT::i8; 2426 } 2427 } 2428 2429 bool RV; 2430 unsigned ResultReg; 2431 RV = ARMEmitLoad(VT, ResultReg, Src); 2432 assert (RV == true && "Should be able to handle this load."); 2433 RV = ARMEmitStore(VT, ResultReg, Dest); 2434 assert (RV == true && "Should be able to handle this store."); 2435 (void)RV; 2436 2437 unsigned Size = VT.getSizeInBits()/8; 2438 Len -= Size; 2439 Dest.Offset += Size; 2440 Src.Offset += Size; 2441 } 2442 2443 return true; 2444 } 2445 2446 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2447 // FIXME: Handle more intrinsics. 2448 switch (I.getIntrinsicID()) { 2449 default: return false; 2450 case Intrinsic::frameaddress: { 2451 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 2452 MFI.setFrameAddressIsTaken(true); 2453 2454 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2455 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2456 : &ARM::GPRRegClass; 2457 2458 const ARMBaseRegisterInfo *RegInfo = 2459 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2460 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2461 unsigned SrcReg = FramePtr; 2462 2463 // Recursively load frame address 2464 // ldr r0 [fp] 2465 // ldr r0 [r0] 2466 // ldr r0 [r0] 2467 // ... 2468 unsigned DestReg; 2469 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2470 while (Depth--) { 2471 DestReg = createResultReg(RC); 2472 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2473 TII.get(LdrOpc), DestReg) 2474 .addReg(SrcReg).addImm(0)); 2475 SrcReg = DestReg; 2476 } 2477 updateValueMap(&I, SrcReg); 2478 return true; 2479 } 2480 case Intrinsic::memcpy: 2481 case Intrinsic::memmove: { 2482 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2483 // Don't handle volatile. 2484 if (MTI.isVolatile()) 2485 return false; 2486 2487 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2488 // we would emit dead code because we don't currently handle memmoves. 2489 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2490 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2491 // Small memcpy's are common enough that we want to do them without a call 2492 // if possible. 2493 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2494 if (ARMIsMemCpySmall(Len)) { 2495 Address Dest, Src; 2496 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2497 !ARMComputeAddress(MTI.getRawSource(), Src)) 2498 return false; 2499 unsigned Alignment = MTI.getAlignment(); 2500 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2501 return true; 2502 } 2503 } 2504 2505 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2506 return false; 2507 2508 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2509 return false; 2510 2511 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2512 return SelectCall(&I, IntrMemName); 2513 } 2514 case Intrinsic::memset: { 2515 const MemSetInst &MSI = cast<MemSetInst>(I); 2516 // Don't handle volatile. 2517 if (MSI.isVolatile()) 2518 return false; 2519 2520 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2521 return false; 2522 2523 if (MSI.getDestAddressSpace() > 255) 2524 return false; 2525 2526 return SelectCall(&I, "memset"); 2527 } 2528 case Intrinsic::trap: { 2529 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2530 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2531 return true; 2532 } 2533 } 2534 } 2535 2536 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2537 // The high bits for a type smaller than the register size are assumed to be 2538 // undefined. 2539 Value *Op = I->getOperand(0); 2540 2541 EVT SrcVT, DestVT; 2542 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2543 DestVT = TLI.getValueType(DL, I->getType(), true); 2544 2545 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2546 return false; 2547 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2548 return false; 2549 2550 unsigned SrcReg = getRegForValue(Op); 2551 if (!SrcReg) return false; 2552 2553 // Because the high bits are undefined, a truncate doesn't generate 2554 // any code. 2555 updateValueMap(I, SrcReg); 2556 return true; 2557 } 2558 2559 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2560 bool isZExt) { 2561 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2562 return 0; 2563 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2564 return 0; 2565 2566 // Table of which combinations can be emitted as a single instruction, 2567 // and which will require two. 2568 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2569 // ARM Thumb 2570 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2571 // ext: s z s z s z s z 2572 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2573 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2574 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2575 }; 2576 2577 // Target registers for: 2578 // - For ARM can never be PC. 2579 // - For 16-bit Thumb are restricted to lower 8 registers. 2580 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2581 static const TargetRegisterClass *RCTbl[2][2] = { 2582 // Instructions: Two Single 2583 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2584 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2585 }; 2586 2587 // Table governing the instruction(s) to be emitted. 2588 static const struct InstructionTable { 2589 uint32_t Opc : 16; 2590 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2591 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2592 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2593 } IT[2][2][3][2] = { 2594 { // Two instructions (first is left shift, second is in this table). 2595 { // ARM Opc S Shift Imm 2596 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2597 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2598 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2599 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2600 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2601 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2602 }, 2603 { // Thumb Opc S Shift Imm 2604 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2605 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2606 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2607 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2608 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2609 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2610 } 2611 }, 2612 { // Single instruction. 2613 { // ARM Opc S Shift Imm 2614 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2615 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2616 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2617 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2618 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2619 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2620 }, 2621 { // Thumb Opc S Shift Imm 2622 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2623 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2624 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2625 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2626 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2627 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2628 } 2629 } 2630 }; 2631 2632 unsigned SrcBits = SrcVT.getSizeInBits(); 2633 unsigned DestBits = DestVT.getSizeInBits(); 2634 (void) DestBits; 2635 assert((SrcBits < DestBits) && "can only extend to larger types"); 2636 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2637 "other sizes unimplemented"); 2638 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2639 "other sizes unimplemented"); 2640 2641 bool hasV6Ops = Subtarget->hasV6Ops(); 2642 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2643 assert((Bitness < 3) && "sanity-check table bounds"); 2644 2645 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2646 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2647 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2648 unsigned Opc = ITP->Opc; 2649 assert(ARM::KILL != Opc && "Invalid table entry"); 2650 unsigned hasS = ITP->hasS; 2651 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2652 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2653 "only MOVsi has shift operand addressing mode"); 2654 unsigned Imm = ITP->Imm; 2655 2656 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2657 bool setsCPSR = &ARM::tGPRRegClass == RC; 2658 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2659 unsigned ResultReg; 2660 // MOVsi encodes shift and immediate in shift operand addressing mode. 2661 // The following condition has the same value when emitting two 2662 // instruction sequences: both are shifts. 2663 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2664 2665 // Either one or two instructions are emitted. 2666 // They're always of the form: 2667 // dst = in OP imm 2668 // CPSR is set only by 16-bit Thumb instructions. 2669 // Predicate, if any, is AL. 2670 // S bit, if available, is always 0. 2671 // When two are emitted the first's result will feed as the second's input, 2672 // that value is then dead. 2673 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2674 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2675 ResultReg = createResultReg(RC); 2676 bool isLsl = (0 == Instr) && !isSingleInstr; 2677 unsigned Opcode = isLsl ? LSLOpc : Opc; 2678 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2679 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2680 bool isKill = 1 == Instr; 2681 MachineInstrBuilder MIB = BuildMI( 2682 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2683 if (setsCPSR) 2684 MIB.addReg(ARM::CPSR, RegState::Define); 2685 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2686 MIB.addReg(SrcReg, isKill * RegState::Kill) 2687 .addImm(ImmEnc) 2688 .add(predOps(ARMCC::AL)); 2689 if (hasS) 2690 MIB.add(condCodeOp()); 2691 // Second instruction consumes the first's result. 2692 SrcReg = ResultReg; 2693 } 2694 2695 return ResultReg; 2696 } 2697 2698 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2699 // On ARM, in general, integer casts don't involve legal types; this code 2700 // handles promotable integers. 2701 Type *DestTy = I->getType(); 2702 Value *Src = I->getOperand(0); 2703 Type *SrcTy = Src->getType(); 2704 2705 bool isZExt = isa<ZExtInst>(I); 2706 unsigned SrcReg = getRegForValue(Src); 2707 if (!SrcReg) return false; 2708 2709 EVT SrcEVT, DestEVT; 2710 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2711 DestEVT = TLI.getValueType(DL, DestTy, true); 2712 if (!SrcEVT.isSimple()) return false; 2713 if (!DestEVT.isSimple()) return false; 2714 2715 MVT SrcVT = SrcEVT.getSimpleVT(); 2716 MVT DestVT = DestEVT.getSimpleVT(); 2717 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2718 if (ResultReg == 0) return false; 2719 updateValueMap(I, ResultReg); 2720 return true; 2721 } 2722 2723 bool ARMFastISel::SelectShift(const Instruction *I, 2724 ARM_AM::ShiftOpc ShiftTy) { 2725 // We handle thumb2 mode by target independent selector 2726 // or SelectionDAG ISel. 2727 if (isThumb2) 2728 return false; 2729 2730 // Only handle i32 now. 2731 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2732 if (DestVT != MVT::i32) 2733 return false; 2734 2735 unsigned Opc = ARM::MOVsr; 2736 unsigned ShiftImm; 2737 Value *Src2Value = I->getOperand(1); 2738 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2739 ShiftImm = CI->getZExtValue(); 2740 2741 // Fall back to selection DAG isel if the shift amount 2742 // is zero or greater than the width of the value type. 2743 if (ShiftImm == 0 || ShiftImm >=32) 2744 return false; 2745 2746 Opc = ARM::MOVsi; 2747 } 2748 2749 Value *Src1Value = I->getOperand(0); 2750 unsigned Reg1 = getRegForValue(Src1Value); 2751 if (Reg1 == 0) return false; 2752 2753 unsigned Reg2 = 0; 2754 if (Opc == ARM::MOVsr) { 2755 Reg2 = getRegForValue(Src2Value); 2756 if (Reg2 == 0) return false; 2757 } 2758 2759 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2760 if(ResultReg == 0) return false; 2761 2762 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2763 TII.get(Opc), ResultReg) 2764 .addReg(Reg1); 2765 2766 if (Opc == ARM::MOVsi) 2767 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2768 else if (Opc == ARM::MOVsr) { 2769 MIB.addReg(Reg2); 2770 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2771 } 2772 2773 AddOptionalDefs(MIB); 2774 updateValueMap(I, ResultReg); 2775 return true; 2776 } 2777 2778 // TODO: SoftFP support. 2779 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2780 2781 switch (I->getOpcode()) { 2782 case Instruction::Load: 2783 return SelectLoad(I); 2784 case Instruction::Store: 2785 return SelectStore(I); 2786 case Instruction::Br: 2787 return SelectBranch(I); 2788 case Instruction::IndirectBr: 2789 return SelectIndirectBr(I); 2790 case Instruction::ICmp: 2791 case Instruction::FCmp: 2792 return SelectCmp(I); 2793 case Instruction::FPExt: 2794 return SelectFPExt(I); 2795 case Instruction::FPTrunc: 2796 return SelectFPTrunc(I); 2797 case Instruction::SIToFP: 2798 return SelectIToFP(I, /*isSigned*/ true); 2799 case Instruction::UIToFP: 2800 return SelectIToFP(I, /*isSigned*/ false); 2801 case Instruction::FPToSI: 2802 return SelectFPToI(I, /*isSigned*/ true); 2803 case Instruction::FPToUI: 2804 return SelectFPToI(I, /*isSigned*/ false); 2805 case Instruction::Add: 2806 return SelectBinaryIntOp(I, ISD::ADD); 2807 case Instruction::Or: 2808 return SelectBinaryIntOp(I, ISD::OR); 2809 case Instruction::Sub: 2810 return SelectBinaryIntOp(I, ISD::SUB); 2811 case Instruction::FAdd: 2812 return SelectBinaryFPOp(I, ISD::FADD); 2813 case Instruction::FSub: 2814 return SelectBinaryFPOp(I, ISD::FSUB); 2815 case Instruction::FMul: 2816 return SelectBinaryFPOp(I, ISD::FMUL); 2817 case Instruction::SDiv: 2818 return SelectDiv(I, /*isSigned*/ true); 2819 case Instruction::UDiv: 2820 return SelectDiv(I, /*isSigned*/ false); 2821 case Instruction::SRem: 2822 return SelectRem(I, /*isSigned*/ true); 2823 case Instruction::URem: 2824 return SelectRem(I, /*isSigned*/ false); 2825 case Instruction::Call: 2826 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2827 return SelectIntrinsicCall(*II); 2828 return SelectCall(I); 2829 case Instruction::Select: 2830 return SelectSelect(I); 2831 case Instruction::Ret: 2832 return SelectRet(I); 2833 case Instruction::Trunc: 2834 return SelectTrunc(I); 2835 case Instruction::ZExt: 2836 case Instruction::SExt: 2837 return SelectIntExt(I); 2838 case Instruction::Shl: 2839 return SelectShift(I, ARM_AM::lsl); 2840 case Instruction::LShr: 2841 return SelectShift(I, ARM_AM::lsr); 2842 case Instruction::AShr: 2843 return SelectShift(I, ARM_AM::asr); 2844 default: break; 2845 } 2846 return false; 2847 } 2848 2849 namespace { 2850 // This table describes sign- and zero-extend instructions which can be 2851 // folded into a preceding load. All of these extends have an immediate 2852 // (sometimes a mask and sometimes a shift) that's applied after 2853 // extension. 2854 const struct FoldableLoadExtendsStruct { 2855 uint16_t Opc[2]; // ARM, Thumb. 2856 uint8_t ExpectedImm; 2857 uint8_t isZExt : 1; 2858 uint8_t ExpectedVT : 7; 2859 } FoldableLoadExtends[] = { 2860 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2861 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2862 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2863 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2864 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2865 }; 2866 } 2867 2868 /// \brief The specified machine instr operand is a vreg, and that 2869 /// vreg is being provided by the specified load instruction. If possible, 2870 /// try to fold the load as an operand to the instruction, returning true if 2871 /// successful. 2872 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2873 const LoadInst *LI) { 2874 // Verify we have a legal type before going any further. 2875 MVT VT; 2876 if (!isLoadTypeLegal(LI->getType(), VT)) 2877 return false; 2878 2879 // Combine load followed by zero- or sign-extend. 2880 // ldrb r1, [r0] ldrb r1, [r0] 2881 // uxtb r2, r1 => 2882 // mov r3, r2 mov r3, r1 2883 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2884 return false; 2885 const uint64_t Imm = MI->getOperand(2).getImm(); 2886 2887 bool Found = false; 2888 bool isZExt; 2889 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2890 i != e; ++i) { 2891 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 2892 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 2893 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 2894 Found = true; 2895 isZExt = FoldableLoadExtends[i].isZExt; 2896 } 2897 } 2898 if (!Found) return false; 2899 2900 // See if we can handle this address. 2901 Address Addr; 2902 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2903 2904 unsigned ResultReg = MI->getOperand(0).getReg(); 2905 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2906 return false; 2907 MI->eraseFromParent(); 2908 return true; 2909 } 2910 2911 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2912 unsigned Align, MVT VT) { 2913 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 2914 2915 LLVMContext *Context = &MF->getFunction()->getContext(); 2916 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2917 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2918 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2919 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2920 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2921 /*AddCurrentAddress=*/UseGOT_PREL); 2922 2923 unsigned ConstAlign = 2924 MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context)); 2925 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2926 2927 unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2928 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2929 MachineInstrBuilder MIB = 2930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) 2931 .addConstantPoolIndex(Idx); 2932 if (Opc == ARM::LDRcp) 2933 MIB.addImm(0); 2934 MIB.add(predOps(ARMCC::AL)); 2935 2936 // Fix the address by adding pc. 2937 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 2938 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2939 : ARM::PICADD; 2940 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2941 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2942 .addReg(TempReg) 2943 .addImm(ARMPCLabelIndex); 2944 if (!Subtarget->isThumb()) 2945 MIB.add(predOps(ARMCC::AL)); 2946 2947 if (UseGOT_PREL && Subtarget->isThumb()) { 2948 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2949 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2950 TII.get(ARM::t2LDRi12), NewDestReg) 2951 .addReg(DestReg) 2952 .addImm(0); 2953 DestReg = NewDestReg; 2954 AddOptionalDefs(MIB); 2955 } 2956 return DestReg; 2957 } 2958 2959 bool ARMFastISel::fastLowerArguments() { 2960 if (!FuncInfo.CanLowerReturn) 2961 return false; 2962 2963 const Function *F = FuncInfo.Fn; 2964 if (F->isVarArg()) 2965 return false; 2966 2967 CallingConv::ID CC = F->getCallingConv(); 2968 switch (CC) { 2969 default: 2970 return false; 2971 case CallingConv::Fast: 2972 case CallingConv::C: 2973 case CallingConv::ARM_AAPCS_VFP: 2974 case CallingConv::ARM_AAPCS: 2975 case CallingConv::ARM_APCS: 2976 case CallingConv::Swift: 2977 break; 2978 } 2979 2980 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 2981 // which are passed in r0 - r3. 2982 unsigned Idx = 1; 2983 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 2984 I != E; ++I, ++Idx) { 2985 if (Idx > 4) 2986 return false; 2987 2988 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 2989 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 2990 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) || 2991 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) || 2992 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 2993 return false; 2994 2995 Type *ArgTy = I->getType(); 2996 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 2997 return false; 2998 2999 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3000 if (!ArgVT.isSimple()) return false; 3001 switch (ArgVT.getSimpleVT().SimpleTy) { 3002 case MVT::i8: 3003 case MVT::i16: 3004 case MVT::i32: 3005 break; 3006 default: 3007 return false; 3008 } 3009 } 3010 3011 3012 static const MCPhysReg GPRArgRegs[] = { 3013 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3014 }; 3015 3016 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3017 Idx = 0; 3018 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3019 I != E; ++I, ++Idx) { 3020 unsigned SrcReg = GPRArgRegs[Idx]; 3021 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3022 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3023 // Without this, EmitLiveInCopies may eliminate the livein if its only 3024 // use is a bitcast (which isn't turned into an instruction). 3025 unsigned ResultReg = createResultReg(RC); 3026 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3027 TII.get(TargetOpcode::COPY), 3028 ResultReg).addReg(DstReg, getKillRegState(true)); 3029 updateValueMap(&*I, ResultReg); 3030 } 3031 3032 return true; 3033 } 3034 3035 namespace llvm { 3036 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3037 const TargetLibraryInfo *libInfo) { 3038 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3039 return new ARMFastISel(funcInfo, libInfo); 3040 3041 return nullptr; 3042 } 3043 } 3044