1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMSubtarget.h" 21 #include "ARMTargetMachine.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 using namespace llvm; 50 51 extern cl::opt<bool> EnableARMLongCalls; 52 53 namespace { 54 55 // All possible address modes, plus some. 56 typedef struct Address { 57 enum { 58 RegBase, 59 FrameIndexBase 60 } BaseType; 61 62 union { 63 unsigned Reg; 64 int FI; 65 } Base; 66 67 int Offset; 68 69 // Innocuous defaults for our address. 70 Address() 71 : BaseType(RegBase), Offset(0) { 72 Base.Reg = 0; 73 } 74 } Address; 75 76 class ARMFastISel final : public FastISel { 77 78 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 79 /// make the right decision when generating code for different targets. 80 const ARMSubtarget *Subtarget; 81 Module &M; 82 const TargetMachine &TM; 83 const TargetInstrInfo &TII; 84 const TargetLowering &TLI; 85 ARMFunctionInfo *AFI; 86 87 // Convenience variables to avoid some queries. 88 bool isThumb2; 89 LLVMContext *Context; 90 91 public: 92 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 93 const TargetLibraryInfo *libInfo) 94 : FastISel(funcInfo, libInfo), 95 M(const_cast<Module&>(*funcInfo.Fn->getParent())), 96 TM(funcInfo.MF->getTarget()), 97 TII(*TM.getInstrInfo()), 98 TLI(*TM.getTargetLowering()) { 99 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 100 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 101 isThumb2 = AFI->isThumbFunction(); 102 Context = &funcInfo.Fn->getContext(); 103 } 104 105 // Code from FastISel.cpp. 106 private: 107 unsigned FastEmitInst_(unsigned MachineInstOpcode, 108 const TargetRegisterClass *RC); 109 unsigned FastEmitInst_r(unsigned MachineInstOpcode, 110 const TargetRegisterClass *RC, 111 unsigned Op0, bool Op0IsKill); 112 unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, bool Op0IsKill, 115 unsigned Op1, bool Op1IsKill); 116 unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, 118 unsigned Op0, bool Op0IsKill, 119 unsigned Op1, bool Op1IsKill, 120 unsigned Op2, bool Op2IsKill); 121 unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 uint64_t Imm); 125 unsigned FastEmitInst_rf(unsigned MachineInstOpcode, 126 const TargetRegisterClass *RC, 127 unsigned Op0, bool Op0IsKill, 128 const ConstantFP *FPImm); 129 unsigned FastEmitInst_rri(unsigned MachineInstOpcode, 130 const TargetRegisterClass *RC, 131 unsigned Op0, bool Op0IsKill, 132 unsigned Op1, bool Op1IsKill, 133 uint64_t Imm); 134 unsigned FastEmitInst_i(unsigned MachineInstOpcode, 135 const TargetRegisterClass *RC, 136 uint64_t Imm); 137 unsigned FastEmitInst_ii(unsigned MachineInstOpcode, 138 const TargetRegisterClass *RC, 139 uint64_t Imm1, uint64_t Imm2); 140 141 unsigned FastEmitInst_extractsubreg(MVT RetVT, 142 unsigned Op0, bool Op0IsKill, 143 uint32_t Idx); 144 145 // Backend specific FastISel code. 146 private: 147 bool TargetSelectInstruction(const Instruction *I) override; 148 unsigned TargetMaterializeConstant(const Constant *C) override; 149 unsigned TargetMaterializeAlloca(const AllocaInst *AI) override; 150 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 151 const LoadInst *LI) override; 152 bool FastLowerArguments() override; 153 private: 154 #include "ARMGenFastISel.inc" 155 156 // Instruction selection routines. 157 private: 158 bool SelectLoad(const Instruction *I); 159 bool SelectStore(const Instruction *I); 160 bool SelectBranch(const Instruction *I); 161 bool SelectIndirectBr(const Instruction *I); 162 bool SelectCmp(const Instruction *I); 163 bool SelectFPExt(const Instruction *I); 164 bool SelectFPTrunc(const Instruction *I); 165 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 166 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 167 bool SelectIToFP(const Instruction *I, bool isSigned); 168 bool SelectFPToI(const Instruction *I, bool isSigned); 169 bool SelectDiv(const Instruction *I, bool isSigned); 170 bool SelectRem(const Instruction *I, bool isSigned); 171 bool SelectCall(const Instruction *I, const char *IntrMemName); 172 bool SelectIntrinsicCall(const IntrinsicInst &I); 173 bool SelectSelect(const Instruction *I); 174 bool SelectRet(const Instruction *I); 175 bool SelectTrunc(const Instruction *I); 176 bool SelectIntExt(const Instruction *I); 177 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 178 179 // Utility routines. 180 private: 181 unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned OpNum, 182 unsigned Op); 183 bool isTypeLegal(Type *Ty, MVT &VT); 184 bool isLoadTypeLegal(Type *Ty, MVT &VT); 185 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 186 bool isZExt); 187 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 188 unsigned Alignment = 0, bool isZExt = true, 189 bool allocReg = true); 190 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 191 unsigned Alignment = 0); 192 bool ARMComputeAddress(const Value *Obj, Address &Addr); 193 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 194 bool ARMIsMemCpySmall(uint64_t Len); 195 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 196 unsigned Alignment); 197 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 198 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 199 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 200 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 201 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 202 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 203 unsigned ARMSelectCallOp(bool UseReg); 204 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 205 206 // Call handling routines. 207 private: 208 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 209 bool Return, 210 bool isVarArg); 211 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 212 SmallVectorImpl<unsigned> &ArgRegs, 213 SmallVectorImpl<MVT> &ArgVTs, 214 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 215 SmallVectorImpl<unsigned> &RegArgs, 216 CallingConv::ID CC, 217 unsigned &NumBytes, 218 bool isVarArg); 219 unsigned getLibcallReg(const Twine &Name); 220 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 221 const Instruction *I, CallingConv::ID CC, 222 unsigned &NumBytes, bool isVarArg); 223 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 224 225 // OptionalDef handling routines. 226 private: 227 bool isARMNEONPred(const MachineInstr *MI); 228 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 229 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 230 void AddLoadStoreOperands(MVT VT, Address &Addr, 231 const MachineInstrBuilder &MIB, 232 unsigned Flags, bool useAM3); 233 }; 234 235 } // end anonymous namespace 236 237 #include "ARMGenCallingConv.inc" 238 239 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 240 // we don't care about implicit defs here, just places we'll need to add a 241 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 242 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 243 if (!MI->hasOptionalDef()) 244 return false; 245 246 // Look to see if our OptionalDef is defining CPSR or CCR. 247 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 248 const MachineOperand &MO = MI->getOperand(i); 249 if (!MO.isReg() || !MO.isDef()) continue; 250 if (MO.getReg() == ARM::CPSR) 251 *CPSR = true; 252 } 253 return true; 254 } 255 256 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 257 const MCInstrDesc &MCID = MI->getDesc(); 258 259 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 260 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 261 AFI->isThumb2Function()) 262 return MI->isPredicable(); 263 264 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 265 if (MCID.OpInfo[i].isPredicate()) 266 return true; 267 268 return false; 269 } 270 271 // If the machine is predicable go ahead and add the predicate operands, if 272 // it needs default CC operands add those. 273 // TODO: If we want to support thumb1 then we'll need to deal with optional 274 // CPSR defs that need to be added before the remaining operands. See s_cc_out 275 // for descriptions why. 276 const MachineInstrBuilder & 277 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 278 MachineInstr *MI = &*MIB; 279 280 // Do we use a predicate? or... 281 // Are we NEON in ARM mode and have a predicate operand? If so, I know 282 // we're not predicable but add it anyways. 283 if (isARMNEONPred(MI)) 284 AddDefaultPred(MIB); 285 286 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 287 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 288 bool CPSR = false; 289 if (DefinesOptionalPredicate(MI, &CPSR)) { 290 if (CPSR) 291 AddDefaultT1CC(MIB); 292 else 293 AddDefaultCC(MIB); 294 } 295 return MIB; 296 } 297 298 unsigned ARMFastISel::constrainOperandRegClass(const MCInstrDesc &II, 299 unsigned Op, unsigned OpNum) { 300 if (TargetRegisterInfo::isVirtualRegister(Op)) { 301 const TargetRegisterClass *RegClass = 302 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 303 if (!MRI.constrainRegClass(Op, RegClass)) { 304 // If it's not legal to COPY between the register classes, something 305 // has gone very wrong before we got here. 306 unsigned NewOp = createResultReg(RegClass); 307 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 308 TII.get(TargetOpcode::COPY), NewOp).addReg(Op)); 309 return NewOp; 310 } 311 } 312 return Op; 313 } 314 315 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, 316 const TargetRegisterClass* RC) { 317 unsigned ResultReg = createResultReg(RC); 318 const MCInstrDesc &II = TII.get(MachineInstOpcode); 319 320 AddOptionalDefs( 321 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)); 322 return ResultReg; 323 } 324 325 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 326 const TargetRegisterClass *RC, 327 unsigned Op0, bool Op0IsKill) { 328 unsigned ResultReg = createResultReg(RC); 329 const MCInstrDesc &II = TII.get(MachineInstOpcode); 330 331 // Make sure the input operand is sufficiently constrained to be legal 332 // for this instruction. 333 Op0 = constrainOperandRegClass(II, Op0, 1); 334 if (II.getNumDefs() >= 1) { 335 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 336 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 337 } else { 338 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 339 .addReg(Op0, Op0IsKill * RegState::Kill)); 340 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 341 TII.get(TargetOpcode::COPY), ResultReg) 342 .addReg(II.ImplicitDefs[0])); 343 } 344 return ResultReg; 345 } 346 347 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 348 const TargetRegisterClass *RC, 349 unsigned Op0, bool Op0IsKill, 350 unsigned Op1, bool Op1IsKill) { 351 unsigned ResultReg = createResultReg(RC); 352 const MCInstrDesc &II = TII.get(MachineInstOpcode); 353 354 // Make sure the input operands are sufficiently constrained to be legal 355 // for this instruction. 356 Op0 = constrainOperandRegClass(II, Op0, 1); 357 Op1 = constrainOperandRegClass(II, Op1, 2); 358 359 if (II.getNumDefs() >= 1) { 360 AddOptionalDefs( 361 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 362 .addReg(Op0, Op0IsKill * RegState::Kill) 363 .addReg(Op1, Op1IsKill * RegState::Kill)); 364 } else { 365 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 366 .addReg(Op0, Op0IsKill * RegState::Kill) 367 .addReg(Op1, Op1IsKill * RegState::Kill)); 368 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 369 TII.get(TargetOpcode::COPY), ResultReg) 370 .addReg(II.ImplicitDefs[0])); 371 } 372 return ResultReg; 373 } 374 375 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 376 const TargetRegisterClass *RC, 377 unsigned Op0, bool Op0IsKill, 378 unsigned Op1, bool Op1IsKill, 379 unsigned Op2, bool Op2IsKill) { 380 unsigned ResultReg = createResultReg(RC); 381 const MCInstrDesc &II = TII.get(MachineInstOpcode); 382 383 // Make sure the input operands are sufficiently constrained to be legal 384 // for this instruction. 385 Op0 = constrainOperandRegClass(II, Op0, 1); 386 Op1 = constrainOperandRegClass(II, Op1, 2); 387 Op2 = constrainOperandRegClass(II, Op1, 3); 388 389 if (II.getNumDefs() >= 1) { 390 AddOptionalDefs( 391 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 392 .addReg(Op0, Op0IsKill * RegState::Kill) 393 .addReg(Op1, Op1IsKill * RegState::Kill) 394 .addReg(Op2, Op2IsKill * RegState::Kill)); 395 } else { 396 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 397 .addReg(Op0, Op0IsKill * RegState::Kill) 398 .addReg(Op1, Op1IsKill * RegState::Kill) 399 .addReg(Op2, Op2IsKill * RegState::Kill)); 400 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 401 TII.get(TargetOpcode::COPY), ResultReg) 402 .addReg(II.ImplicitDefs[0])); 403 } 404 return ResultReg; 405 } 406 407 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 408 const TargetRegisterClass *RC, 409 unsigned Op0, bool Op0IsKill, 410 uint64_t Imm) { 411 unsigned ResultReg = createResultReg(RC); 412 const MCInstrDesc &II = TII.get(MachineInstOpcode); 413 414 // Make sure the input operand is sufficiently constrained to be legal 415 // for this instruction. 416 Op0 = constrainOperandRegClass(II, Op0, 1); 417 if (II.getNumDefs() >= 1) { 418 AddOptionalDefs( 419 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 420 .addReg(Op0, Op0IsKill * RegState::Kill) 421 .addImm(Imm)); 422 } else { 423 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 424 .addReg(Op0, Op0IsKill * RegState::Kill) 425 .addImm(Imm)); 426 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 427 TII.get(TargetOpcode::COPY), ResultReg) 428 .addReg(II.ImplicitDefs[0])); 429 } 430 return ResultReg; 431 } 432 433 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 434 const TargetRegisterClass *RC, 435 unsigned Op0, bool Op0IsKill, 436 const ConstantFP *FPImm) { 437 unsigned ResultReg = createResultReg(RC); 438 const MCInstrDesc &II = TII.get(MachineInstOpcode); 439 440 // Make sure the input operand is sufficiently constrained to be legal 441 // for this instruction. 442 Op0 = constrainOperandRegClass(II, Op0, 1); 443 if (II.getNumDefs() >= 1) { 444 AddOptionalDefs( 445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 446 .addReg(Op0, Op0IsKill * RegState::Kill) 447 .addFPImm(FPImm)); 448 } else { 449 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 450 .addReg(Op0, Op0IsKill * RegState::Kill) 451 .addFPImm(FPImm)); 452 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 453 TII.get(TargetOpcode::COPY), ResultReg) 454 .addReg(II.ImplicitDefs[0])); 455 } 456 return ResultReg; 457 } 458 459 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 460 const TargetRegisterClass *RC, 461 unsigned Op0, bool Op0IsKill, 462 unsigned Op1, bool Op1IsKill, 463 uint64_t Imm) { 464 unsigned ResultReg = createResultReg(RC); 465 const MCInstrDesc &II = TII.get(MachineInstOpcode); 466 467 // Make sure the input operands are sufficiently constrained to be legal 468 // for this instruction. 469 Op0 = constrainOperandRegClass(II, Op0, 1); 470 Op1 = constrainOperandRegClass(II, Op1, 2); 471 if (II.getNumDefs() >= 1) { 472 AddOptionalDefs( 473 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 474 .addReg(Op0, Op0IsKill * RegState::Kill) 475 .addReg(Op1, Op1IsKill * RegState::Kill) 476 .addImm(Imm)); 477 } else { 478 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 479 .addReg(Op0, Op0IsKill * RegState::Kill) 480 .addReg(Op1, Op1IsKill * RegState::Kill) 481 .addImm(Imm)); 482 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 483 TII.get(TargetOpcode::COPY), ResultReg) 484 .addReg(II.ImplicitDefs[0])); 485 } 486 return ResultReg; 487 } 488 489 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, 490 const TargetRegisterClass *RC, 491 uint64_t Imm) { 492 unsigned ResultReg = createResultReg(RC); 493 const MCInstrDesc &II = TII.get(MachineInstOpcode); 494 495 if (II.getNumDefs() >= 1) { 496 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 497 ResultReg).addImm(Imm)); 498 } else { 499 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 500 .addImm(Imm)); 501 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 502 TII.get(TargetOpcode::COPY), ResultReg) 503 .addReg(II.ImplicitDefs[0])); 504 } 505 return ResultReg; 506 } 507 508 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 509 const TargetRegisterClass *RC, 510 uint64_t Imm1, uint64_t Imm2) { 511 unsigned ResultReg = createResultReg(RC); 512 const MCInstrDesc &II = TII.get(MachineInstOpcode); 513 514 if (II.getNumDefs() >= 1) { 515 AddOptionalDefs( 516 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 517 .addImm(Imm1) 518 .addImm(Imm2)); 519 } else { 520 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 521 .addImm(Imm1).addImm(Imm2)); 522 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 523 TII.get(TargetOpcode::COPY), 524 ResultReg) 525 .addReg(II.ImplicitDefs[0])); 526 } 527 return ResultReg; 528 } 529 530 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, 531 unsigned Op0, bool Op0IsKill, 532 uint32_t Idx) { 533 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 534 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 535 "Cannot yet extract from physregs"); 536 537 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 538 DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) 539 .addReg(Op0, getKillRegState(Op0IsKill), Idx)); 540 return ResultReg; 541 } 542 543 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 544 // checks from the various callers. 545 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 546 if (VT == MVT::f64) return 0; 547 548 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 549 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 550 TII.get(ARM::VMOVSR), MoveReg) 551 .addReg(SrcReg)); 552 return MoveReg; 553 } 554 555 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 556 if (VT == MVT::i64) return 0; 557 558 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 559 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 560 TII.get(ARM::VMOVRS), MoveReg) 561 .addReg(SrcReg)); 562 return MoveReg; 563 } 564 565 // For double width floating point we need to materialize two constants 566 // (the high and the low) into integer registers then use a move to get 567 // the combined constant into an FP reg. 568 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 569 const APFloat Val = CFP->getValueAPF(); 570 bool is64bit = VT == MVT::f64; 571 572 // This checks to see if we can use VFP3 instructions to materialize 573 // a constant, otherwise we have to go through the constant pool. 574 if (TLI.isFPImmLegal(Val, VT)) { 575 int Imm; 576 unsigned Opc; 577 if (is64bit) { 578 Imm = ARM_AM::getFP64Imm(Val); 579 Opc = ARM::FCONSTD; 580 } else { 581 Imm = ARM_AM::getFP32Imm(Val); 582 Opc = ARM::FCONSTS; 583 } 584 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 585 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 586 TII.get(Opc), DestReg).addImm(Imm)); 587 return DestReg; 588 } 589 590 // Require VFP2 for loading fp constants. 591 if (!Subtarget->hasVFP2()) return false; 592 593 // MachineConstantPool wants an explicit alignment. 594 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 595 if (Align == 0) { 596 // TODO: Figure out if this is correct. 597 Align = DL.getTypeAllocSize(CFP->getType()); 598 } 599 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 600 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 601 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 602 603 // The extra reg is for addrmode5. 604 AddOptionalDefs( 605 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 606 .addConstantPoolIndex(Idx) 607 .addReg(0)); 608 return DestReg; 609 } 610 611 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 612 613 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 614 return false; 615 616 // If we can do this in a single instruction without a constant pool entry 617 // do so now. 618 const ConstantInt *CI = cast<ConstantInt>(C); 619 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 620 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 621 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 622 &ARM::GPRRegClass; 623 unsigned ImmReg = createResultReg(RC); 624 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 625 TII.get(Opc), ImmReg) 626 .addImm(CI->getZExtValue())); 627 return ImmReg; 628 } 629 630 // Use MVN to emit negative constants. 631 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 632 unsigned Imm = (unsigned)~(CI->getSExtValue()); 633 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 634 (ARM_AM::getSOImmVal(Imm) != -1); 635 if (UseImm) { 636 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 637 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 638 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 639 TII.get(Opc), ImmReg) 640 .addImm(Imm)); 641 return ImmReg; 642 } 643 } 644 645 // Load from constant pool. For now 32-bit only. 646 if (VT != MVT::i32) 647 return false; 648 649 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 650 651 // MachineConstantPool wants an explicit alignment. 652 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 653 if (Align == 0) { 654 // TODO: Figure out if this is correct. 655 Align = DL.getTypeAllocSize(C->getType()); 656 } 657 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 658 659 if (isThumb2) 660 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 661 TII.get(ARM::t2LDRpci), DestReg) 662 .addConstantPoolIndex(Idx)); 663 else { 664 // The extra immediate is for addrmode2. 665 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 666 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 667 TII.get(ARM::LDRcp), DestReg) 668 .addConstantPoolIndex(Idx) 669 .addImm(0)); 670 } 671 672 return DestReg; 673 } 674 675 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 676 // For now 32-bit only. 677 if (VT != MVT::i32) return 0; 678 679 Reloc::Model RelocM = TM.getRelocationModel(); 680 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 681 const TargetRegisterClass *RC = isThumb2 ? 682 (const TargetRegisterClass*)&ARM::rGPRRegClass : 683 (const TargetRegisterClass*)&ARM::GPRRegClass; 684 unsigned DestReg = createResultReg(RC); 685 686 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 687 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 688 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 689 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 690 691 // Use movw+movt when possible, it avoids constant pool entries. 692 // Non-darwin targets only support static movt relocations in FastISel. 693 if (Subtarget->useMovt() && 694 (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) { 695 unsigned Opc; 696 unsigned char TF = 0; 697 if (Subtarget->isTargetMachO()) 698 TF = ARMII::MO_NONLAZY; 699 700 switch (RelocM) { 701 case Reloc::PIC_: 702 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 703 break; 704 default: 705 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 706 break; 707 } 708 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 709 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 710 } else { 711 // MachineConstantPool wants an explicit alignment. 712 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 713 if (Align == 0) { 714 // TODO: Figure out if this is correct. 715 Align = DL.getTypeAllocSize(GV->getType()); 716 } 717 718 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 719 return ARMLowerPICELF(GV, Align, VT); 720 721 // Grab index. 722 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 723 (Subtarget->isThumb() ? 4 : 8); 724 unsigned Id = AFI->createPICLabelUId(); 725 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 726 ARMCP::CPValue, 727 PCAdj); 728 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 729 730 // Load value. 731 MachineInstrBuilder MIB; 732 if (isThumb2) { 733 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 734 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 735 DestReg).addConstantPoolIndex(Idx); 736 if (RelocM == Reloc::PIC_) 737 MIB.addImm(Id); 738 AddOptionalDefs(MIB); 739 } else { 740 // The extra immediate is for addrmode2. 741 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 742 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 743 TII.get(ARM::LDRcp), DestReg) 744 .addConstantPoolIndex(Idx) 745 .addImm(0); 746 AddOptionalDefs(MIB); 747 748 if (RelocM == Reloc::PIC_) { 749 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 750 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 751 752 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 753 DbgLoc, TII.get(Opc), NewDestReg) 754 .addReg(DestReg) 755 .addImm(Id); 756 AddOptionalDefs(MIB); 757 return NewDestReg; 758 } 759 } 760 } 761 762 if (IsIndirect) { 763 MachineInstrBuilder MIB; 764 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 765 if (isThumb2) 766 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 767 TII.get(ARM::t2LDRi12), NewDestReg) 768 .addReg(DestReg) 769 .addImm(0); 770 else 771 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 772 TII.get(ARM::LDRi12), NewDestReg) 773 .addReg(DestReg) 774 .addImm(0); 775 DestReg = NewDestReg; 776 AddOptionalDefs(MIB); 777 } 778 779 return DestReg; 780 } 781 782 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { 783 EVT CEVT = TLI.getValueType(C->getType(), true); 784 785 // Only handle simple types. 786 if (!CEVT.isSimple()) return 0; 787 MVT VT = CEVT.getSimpleVT(); 788 789 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 790 return ARMMaterializeFP(CFP, VT); 791 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 792 return ARMMaterializeGV(GV, VT); 793 else if (isa<ConstantInt>(C)) 794 return ARMMaterializeInt(C, VT); 795 796 return 0; 797 } 798 799 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 800 801 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 802 // Don't handle dynamic allocas. 803 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 804 805 MVT VT; 806 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 807 808 DenseMap<const AllocaInst*, int>::iterator SI = 809 FuncInfo.StaticAllocaMap.find(AI); 810 811 // This will get lowered later into the correct offsets and registers 812 // via rewriteXFrameIndex. 813 if (SI != FuncInfo.StaticAllocaMap.end()) { 814 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 815 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 816 unsigned ResultReg = createResultReg(RC); 817 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 818 819 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 820 TII.get(Opc), ResultReg) 821 .addFrameIndex(SI->second) 822 .addImm(0)); 823 return ResultReg; 824 } 825 826 return 0; 827 } 828 829 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 830 EVT evt = TLI.getValueType(Ty, true); 831 832 // Only handle simple types. 833 if (evt == MVT::Other || !evt.isSimple()) return false; 834 VT = evt.getSimpleVT(); 835 836 // Handle all legal types, i.e. a register that will directly hold this 837 // value. 838 return TLI.isTypeLegal(VT); 839 } 840 841 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 842 if (isTypeLegal(Ty, VT)) return true; 843 844 // If this is a type than can be sign or zero-extended to a basic operation 845 // go ahead and accept it now. 846 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 847 return true; 848 849 return false; 850 } 851 852 // Computes the address to get to an object. 853 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 854 // Some boilerplate from the X86 FastISel. 855 const User *U = NULL; 856 unsigned Opcode = Instruction::UserOp1; 857 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 858 // Don't walk into other basic blocks unless the object is an alloca from 859 // another block, otherwise it may not have a virtual register assigned. 860 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 861 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 862 Opcode = I->getOpcode(); 863 U = I; 864 } 865 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 866 Opcode = C->getOpcode(); 867 U = C; 868 } 869 870 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 871 if (Ty->getAddressSpace() > 255) 872 // Fast instruction selection doesn't support the special 873 // address spaces. 874 return false; 875 876 switch (Opcode) { 877 default: 878 break; 879 case Instruction::BitCast: 880 // Look through bitcasts. 881 return ARMComputeAddress(U->getOperand(0), Addr); 882 case Instruction::IntToPtr: 883 // Look past no-op inttoptrs. 884 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 885 return ARMComputeAddress(U->getOperand(0), Addr); 886 break; 887 case Instruction::PtrToInt: 888 // Look past no-op ptrtoints. 889 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 890 return ARMComputeAddress(U->getOperand(0), Addr); 891 break; 892 case Instruction::GetElementPtr: { 893 Address SavedAddr = Addr; 894 int TmpOffset = Addr.Offset; 895 896 // Iterate through the GEP folding the constants into offsets where 897 // we can. 898 gep_type_iterator GTI = gep_type_begin(U); 899 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 900 i != e; ++i, ++GTI) { 901 const Value *Op = *i; 902 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 903 const StructLayout *SL = DL.getStructLayout(STy); 904 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 905 TmpOffset += SL->getElementOffset(Idx); 906 } else { 907 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 908 for (;;) { 909 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 910 // Constant-offset addressing. 911 TmpOffset += CI->getSExtValue() * S; 912 break; 913 } 914 if (canFoldAddIntoGEP(U, Op)) { 915 // A compatible add with a constant operand. Fold the constant. 916 ConstantInt *CI = 917 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 918 TmpOffset += CI->getSExtValue() * S; 919 // Iterate on the other operand. 920 Op = cast<AddOperator>(Op)->getOperand(0); 921 continue; 922 } 923 // Unsupported 924 goto unsupported_gep; 925 } 926 } 927 } 928 929 // Try to grab the base operand now. 930 Addr.Offset = TmpOffset; 931 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 932 933 // We failed, restore everything and try the other options. 934 Addr = SavedAddr; 935 936 unsupported_gep: 937 break; 938 } 939 case Instruction::Alloca: { 940 const AllocaInst *AI = cast<AllocaInst>(Obj); 941 DenseMap<const AllocaInst*, int>::iterator SI = 942 FuncInfo.StaticAllocaMap.find(AI); 943 if (SI != FuncInfo.StaticAllocaMap.end()) { 944 Addr.BaseType = Address::FrameIndexBase; 945 Addr.Base.FI = SI->second; 946 return true; 947 } 948 break; 949 } 950 } 951 952 // Try to get this in a register if nothing else has worked. 953 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 954 return Addr.Base.Reg != 0; 955 } 956 957 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 958 bool needsLowering = false; 959 switch (VT.SimpleTy) { 960 default: llvm_unreachable("Unhandled load/store type!"); 961 case MVT::i1: 962 case MVT::i8: 963 case MVT::i16: 964 case MVT::i32: 965 if (!useAM3) { 966 // Integer loads/stores handle 12-bit offsets. 967 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 968 // Handle negative offsets. 969 if (needsLowering && isThumb2) 970 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 971 Addr.Offset > -256); 972 } else { 973 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 974 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 975 } 976 break; 977 case MVT::f32: 978 case MVT::f64: 979 // Floating point operands handle 8-bit offsets. 980 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 981 break; 982 } 983 984 // If this is a stack pointer and the offset needs to be simplified then 985 // put the alloca address into a register, set the base type back to 986 // register and continue. This should almost never happen. 987 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 988 const TargetRegisterClass *RC = isThumb2 ? 989 (const TargetRegisterClass*)&ARM::tGPRRegClass : 990 (const TargetRegisterClass*)&ARM::GPRRegClass; 991 unsigned ResultReg = createResultReg(RC); 992 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 993 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 994 TII.get(Opc), ResultReg) 995 .addFrameIndex(Addr.Base.FI) 996 .addImm(0)); 997 Addr.Base.Reg = ResultReg; 998 Addr.BaseType = Address::RegBase; 999 } 1000 1001 // Since the offset is too large for the load/store instruction 1002 // get the reg+offset into a register. 1003 if (needsLowering) { 1004 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 1005 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 1006 Addr.Offset = 0; 1007 } 1008 } 1009 1010 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 1011 const MachineInstrBuilder &MIB, 1012 unsigned Flags, bool useAM3) { 1013 // addrmode5 output depends on the selection dag addressing dividing the 1014 // offset by 4 that it then later multiplies. Do this here as well. 1015 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 1016 Addr.Offset /= 4; 1017 1018 // Frame base works a bit differently. Handle it separately. 1019 if (Addr.BaseType == Address::FrameIndexBase) { 1020 int FI = Addr.Base.FI; 1021 int Offset = Addr.Offset; 1022 MachineMemOperand *MMO = 1023 FuncInfo.MF->getMachineMemOperand( 1024 MachinePointerInfo::getFixedStack(FI, Offset), 1025 Flags, 1026 MFI.getObjectSize(FI), 1027 MFI.getObjectAlignment(FI)); 1028 // Now add the rest of the operands. 1029 MIB.addFrameIndex(FI); 1030 1031 // ARM halfword load/stores and signed byte loads need an additional 1032 // operand. 1033 if (useAM3) { 1034 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 1035 MIB.addReg(0); 1036 MIB.addImm(Imm); 1037 } else { 1038 MIB.addImm(Addr.Offset); 1039 } 1040 MIB.addMemOperand(MMO); 1041 } else { 1042 // Now add the rest of the operands. 1043 MIB.addReg(Addr.Base.Reg); 1044 1045 // ARM halfword load/stores and signed byte loads need an additional 1046 // operand. 1047 if (useAM3) { 1048 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 1049 MIB.addReg(0); 1050 MIB.addImm(Imm); 1051 } else { 1052 MIB.addImm(Addr.Offset); 1053 } 1054 } 1055 AddOptionalDefs(MIB); 1056 } 1057 1058 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 1059 unsigned Alignment, bool isZExt, bool allocReg) { 1060 unsigned Opc; 1061 bool useAM3 = false; 1062 bool needVMOV = false; 1063 const TargetRegisterClass *RC; 1064 switch (VT.SimpleTy) { 1065 // This is mostly going to be Neon/vector support. 1066 default: return false; 1067 case MVT::i1: 1068 case MVT::i8: 1069 if (isThumb2) { 1070 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1071 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 1072 else 1073 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 1074 } else { 1075 if (isZExt) { 1076 Opc = ARM::LDRBi12; 1077 } else { 1078 Opc = ARM::LDRSB; 1079 useAM3 = true; 1080 } 1081 } 1082 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1083 break; 1084 case MVT::i16: 1085 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1086 return false; 1087 1088 if (isThumb2) { 1089 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1090 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 1091 else 1092 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 1093 } else { 1094 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 1095 useAM3 = true; 1096 } 1097 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1098 break; 1099 case MVT::i32: 1100 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1101 return false; 1102 1103 if (isThumb2) { 1104 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1105 Opc = ARM::t2LDRi8; 1106 else 1107 Opc = ARM::t2LDRi12; 1108 } else { 1109 Opc = ARM::LDRi12; 1110 } 1111 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1112 break; 1113 case MVT::f32: 1114 if (!Subtarget->hasVFP2()) return false; 1115 // Unaligned loads need special handling. Floats require word-alignment. 1116 if (Alignment && Alignment < 4) { 1117 needVMOV = true; 1118 VT = MVT::i32; 1119 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1120 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1121 } else { 1122 Opc = ARM::VLDRS; 1123 RC = TLI.getRegClassFor(VT); 1124 } 1125 break; 1126 case MVT::f64: 1127 if (!Subtarget->hasVFP2()) return false; 1128 // FIXME: Unaligned loads need special handling. Doublewords require 1129 // word-alignment. 1130 if (Alignment && Alignment < 4) 1131 return false; 1132 1133 Opc = ARM::VLDRD; 1134 RC = TLI.getRegClassFor(VT); 1135 break; 1136 } 1137 // Simplify this down to something we can handle. 1138 ARMSimplifyAddress(Addr, VT, useAM3); 1139 1140 // Create the base instruction, then add the operands. 1141 if (allocReg) 1142 ResultReg = createResultReg(RC); 1143 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1144 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1145 TII.get(Opc), ResultReg); 1146 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1147 1148 // If we had an unaligned load of a float we've converted it to an regular 1149 // load. Now we must move from the GRP to the FP register. 1150 if (needVMOV) { 1151 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1152 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1153 TII.get(ARM::VMOVSR), MoveReg) 1154 .addReg(ResultReg)); 1155 ResultReg = MoveReg; 1156 } 1157 return true; 1158 } 1159 1160 bool ARMFastISel::SelectLoad(const Instruction *I) { 1161 // Atomic loads need special handling. 1162 if (cast<LoadInst>(I)->isAtomic()) 1163 return false; 1164 1165 // Verify we have a legal type before going any further. 1166 MVT VT; 1167 if (!isLoadTypeLegal(I->getType(), VT)) 1168 return false; 1169 1170 // See if we can handle this address. 1171 Address Addr; 1172 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1173 1174 unsigned ResultReg; 1175 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1176 return false; 1177 UpdateValueMap(I, ResultReg); 1178 return true; 1179 } 1180 1181 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1182 unsigned Alignment) { 1183 unsigned StrOpc; 1184 bool useAM3 = false; 1185 switch (VT.SimpleTy) { 1186 // This is mostly going to be Neon/vector support. 1187 default: return false; 1188 case MVT::i1: { 1189 unsigned Res = createResultReg(isThumb2 ? 1190 (const TargetRegisterClass*)&ARM::tGPRRegClass : 1191 (const TargetRegisterClass*)&ARM::GPRRegClass); 1192 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1193 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1194 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1195 TII.get(Opc), Res) 1196 .addReg(SrcReg).addImm(1)); 1197 SrcReg = Res; 1198 } // Fallthrough here. 1199 case MVT::i8: 1200 if (isThumb2) { 1201 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1202 StrOpc = ARM::t2STRBi8; 1203 else 1204 StrOpc = ARM::t2STRBi12; 1205 } else { 1206 StrOpc = ARM::STRBi12; 1207 } 1208 break; 1209 case MVT::i16: 1210 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1211 return false; 1212 1213 if (isThumb2) { 1214 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1215 StrOpc = ARM::t2STRHi8; 1216 else 1217 StrOpc = ARM::t2STRHi12; 1218 } else { 1219 StrOpc = ARM::STRH; 1220 useAM3 = true; 1221 } 1222 break; 1223 case MVT::i32: 1224 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1225 return false; 1226 1227 if (isThumb2) { 1228 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1229 StrOpc = ARM::t2STRi8; 1230 else 1231 StrOpc = ARM::t2STRi12; 1232 } else { 1233 StrOpc = ARM::STRi12; 1234 } 1235 break; 1236 case MVT::f32: 1237 if (!Subtarget->hasVFP2()) return false; 1238 // Unaligned stores need special handling. Floats require word-alignment. 1239 if (Alignment && Alignment < 4) { 1240 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1241 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1242 TII.get(ARM::VMOVRS), MoveReg) 1243 .addReg(SrcReg)); 1244 SrcReg = MoveReg; 1245 VT = MVT::i32; 1246 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1247 } else { 1248 StrOpc = ARM::VSTRS; 1249 } 1250 break; 1251 case MVT::f64: 1252 if (!Subtarget->hasVFP2()) return false; 1253 // FIXME: Unaligned stores need special handling. Doublewords require 1254 // word-alignment. 1255 if (Alignment && Alignment < 4) 1256 return false; 1257 1258 StrOpc = ARM::VSTRD; 1259 break; 1260 } 1261 // Simplify this down to something we can handle. 1262 ARMSimplifyAddress(Addr, VT, useAM3); 1263 1264 // Create the base instruction, then add the operands. 1265 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1266 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1267 TII.get(StrOpc)) 1268 .addReg(SrcReg); 1269 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1270 return true; 1271 } 1272 1273 bool ARMFastISel::SelectStore(const Instruction *I) { 1274 Value *Op0 = I->getOperand(0); 1275 unsigned SrcReg = 0; 1276 1277 // Atomic stores need special handling. 1278 if (cast<StoreInst>(I)->isAtomic()) 1279 return false; 1280 1281 // Verify we have a legal type before going any further. 1282 MVT VT; 1283 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1284 return false; 1285 1286 // Get the value to be stored into a register. 1287 SrcReg = getRegForValue(Op0); 1288 if (SrcReg == 0) return false; 1289 1290 // See if we can handle this address. 1291 Address Addr; 1292 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1293 return false; 1294 1295 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1296 return false; 1297 return true; 1298 } 1299 1300 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1301 switch (Pred) { 1302 // Needs two compares... 1303 case CmpInst::FCMP_ONE: 1304 case CmpInst::FCMP_UEQ: 1305 default: 1306 // AL is our "false" for now. The other two need more compares. 1307 return ARMCC::AL; 1308 case CmpInst::ICMP_EQ: 1309 case CmpInst::FCMP_OEQ: 1310 return ARMCC::EQ; 1311 case CmpInst::ICMP_SGT: 1312 case CmpInst::FCMP_OGT: 1313 return ARMCC::GT; 1314 case CmpInst::ICMP_SGE: 1315 case CmpInst::FCMP_OGE: 1316 return ARMCC::GE; 1317 case CmpInst::ICMP_UGT: 1318 case CmpInst::FCMP_UGT: 1319 return ARMCC::HI; 1320 case CmpInst::FCMP_OLT: 1321 return ARMCC::MI; 1322 case CmpInst::ICMP_ULE: 1323 case CmpInst::FCMP_OLE: 1324 return ARMCC::LS; 1325 case CmpInst::FCMP_ORD: 1326 return ARMCC::VC; 1327 case CmpInst::FCMP_UNO: 1328 return ARMCC::VS; 1329 case CmpInst::FCMP_UGE: 1330 return ARMCC::PL; 1331 case CmpInst::ICMP_SLT: 1332 case CmpInst::FCMP_ULT: 1333 return ARMCC::LT; 1334 case CmpInst::ICMP_SLE: 1335 case CmpInst::FCMP_ULE: 1336 return ARMCC::LE; 1337 case CmpInst::FCMP_UNE: 1338 case CmpInst::ICMP_NE: 1339 return ARMCC::NE; 1340 case CmpInst::ICMP_UGE: 1341 return ARMCC::HS; 1342 case CmpInst::ICMP_ULT: 1343 return ARMCC::LO; 1344 } 1345 } 1346 1347 bool ARMFastISel::SelectBranch(const Instruction *I) { 1348 const BranchInst *BI = cast<BranchInst>(I); 1349 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1350 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1351 1352 // Simple branch support. 1353 1354 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1355 // behavior. 1356 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1357 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1358 1359 // Get the compare predicate. 1360 // Try to take advantage of fallthrough opportunities. 1361 CmpInst::Predicate Predicate = CI->getPredicate(); 1362 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1363 std::swap(TBB, FBB); 1364 Predicate = CmpInst::getInversePredicate(Predicate); 1365 } 1366 1367 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1368 1369 // We may not handle every CC for now. 1370 if (ARMPred == ARMCC::AL) return false; 1371 1372 // Emit the compare. 1373 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1374 return false; 1375 1376 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1377 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1378 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1379 FastEmitBranch(FBB, DbgLoc); 1380 FuncInfo.MBB->addSuccessor(TBB); 1381 return true; 1382 } 1383 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1384 MVT SourceVT; 1385 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1386 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1387 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1388 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1389 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1390 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1391 TII.get(TstOpc)) 1392 .addReg(OpReg).addImm(1)); 1393 1394 unsigned CCMode = ARMCC::NE; 1395 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1396 std::swap(TBB, FBB); 1397 CCMode = ARMCC::EQ; 1398 } 1399 1400 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1401 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1402 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1403 1404 FastEmitBranch(FBB, DbgLoc); 1405 FuncInfo.MBB->addSuccessor(TBB); 1406 return true; 1407 } 1408 } else if (const ConstantInt *CI = 1409 dyn_cast<ConstantInt>(BI->getCondition())) { 1410 uint64_t Imm = CI->getZExtValue(); 1411 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1412 FastEmitBranch(Target, DbgLoc); 1413 return true; 1414 } 1415 1416 unsigned CmpReg = getRegForValue(BI->getCondition()); 1417 if (CmpReg == 0) return false; 1418 1419 // We've been divorced from our compare! Our block was split, and 1420 // now our compare lives in a predecessor block. We musn't 1421 // re-compare here, as the children of the compare aren't guaranteed 1422 // live across the block boundary (we *could* check for this). 1423 // Regardless, the compare has been done in the predecessor block, 1424 // and it left a value for us in a virtual register. Ergo, we test 1425 // the one-bit value left in the virtual register. 1426 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1427 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1428 AddOptionalDefs( 1429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1430 .addReg(CmpReg) 1431 .addImm(1)); 1432 1433 unsigned CCMode = ARMCC::NE; 1434 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1435 std::swap(TBB, FBB); 1436 CCMode = ARMCC::EQ; 1437 } 1438 1439 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1440 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1441 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1442 FastEmitBranch(FBB, DbgLoc); 1443 FuncInfo.MBB->addSuccessor(TBB); 1444 return true; 1445 } 1446 1447 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1448 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1449 if (AddrReg == 0) return false; 1450 1451 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1452 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1453 TII.get(Opc)).addReg(AddrReg)); 1454 1455 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1456 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1457 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1458 1459 return true; 1460 } 1461 1462 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1463 bool isZExt) { 1464 Type *Ty = Src1Value->getType(); 1465 EVT SrcEVT = TLI.getValueType(Ty, true); 1466 if (!SrcEVT.isSimple()) return false; 1467 MVT SrcVT = SrcEVT.getSimpleVT(); 1468 1469 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1470 if (isFloat && !Subtarget->hasVFP2()) 1471 return false; 1472 1473 // Check to see if the 2nd operand is a constant that we can encode directly 1474 // in the compare. 1475 int Imm = 0; 1476 bool UseImm = false; 1477 bool isNegativeImm = false; 1478 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1479 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1480 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1481 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1482 SrcVT == MVT::i1) { 1483 const APInt &CIVal = ConstInt->getValue(); 1484 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1485 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1486 // then a cmn, because there is no way to represent 2147483648 as a 1487 // signed 32-bit int. 1488 if (Imm < 0 && Imm != (int)0x80000000) { 1489 isNegativeImm = true; 1490 Imm = -Imm; 1491 } 1492 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1493 (ARM_AM::getSOImmVal(Imm) != -1); 1494 } 1495 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1496 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1497 if (ConstFP->isZero() && !ConstFP->isNegative()) 1498 UseImm = true; 1499 } 1500 1501 unsigned CmpOpc; 1502 bool isICmp = true; 1503 bool needsExt = false; 1504 switch (SrcVT.SimpleTy) { 1505 default: return false; 1506 // TODO: Verify compares. 1507 case MVT::f32: 1508 isICmp = false; 1509 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1510 break; 1511 case MVT::f64: 1512 isICmp = false; 1513 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1514 break; 1515 case MVT::i1: 1516 case MVT::i8: 1517 case MVT::i16: 1518 needsExt = true; 1519 // Intentional fall-through. 1520 case MVT::i32: 1521 if (isThumb2) { 1522 if (!UseImm) 1523 CmpOpc = ARM::t2CMPrr; 1524 else 1525 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1526 } else { 1527 if (!UseImm) 1528 CmpOpc = ARM::CMPrr; 1529 else 1530 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1531 } 1532 break; 1533 } 1534 1535 unsigned SrcReg1 = getRegForValue(Src1Value); 1536 if (SrcReg1 == 0) return false; 1537 1538 unsigned SrcReg2 = 0; 1539 if (!UseImm) { 1540 SrcReg2 = getRegForValue(Src2Value); 1541 if (SrcReg2 == 0) return false; 1542 } 1543 1544 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1545 if (needsExt) { 1546 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1547 if (SrcReg1 == 0) return false; 1548 if (!UseImm) { 1549 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1550 if (SrcReg2 == 0) return false; 1551 } 1552 } 1553 1554 const MCInstrDesc &II = TII.get(CmpOpc); 1555 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1556 if (!UseImm) { 1557 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1558 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1559 .addReg(SrcReg1).addReg(SrcReg2)); 1560 } else { 1561 MachineInstrBuilder MIB; 1562 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1563 .addReg(SrcReg1); 1564 1565 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1566 if (isICmp) 1567 MIB.addImm(Imm); 1568 AddOptionalDefs(MIB); 1569 } 1570 1571 // For floating point we need to move the result to a comparison register 1572 // that we can then use for branches. 1573 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1574 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1575 TII.get(ARM::FMSTAT))); 1576 return true; 1577 } 1578 1579 bool ARMFastISel::SelectCmp(const Instruction *I) { 1580 const CmpInst *CI = cast<CmpInst>(I); 1581 1582 // Get the compare predicate. 1583 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1584 1585 // We may not handle every CC for now. 1586 if (ARMPred == ARMCC::AL) return false; 1587 1588 // Emit the compare. 1589 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1590 return false; 1591 1592 // Now set a register based on the comparison. Explicitly set the predicates 1593 // here. 1594 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1595 const TargetRegisterClass *RC = isThumb2 ? 1596 (const TargetRegisterClass*)&ARM::rGPRRegClass : 1597 (const TargetRegisterClass*)&ARM::GPRRegClass; 1598 unsigned DestReg = createResultReg(RC); 1599 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1600 unsigned ZeroReg = TargetMaterializeConstant(Zero); 1601 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1602 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1603 .addReg(ZeroReg).addImm(1) 1604 .addImm(ARMPred).addReg(ARM::CPSR); 1605 1606 UpdateValueMap(I, DestReg); 1607 return true; 1608 } 1609 1610 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1611 // Make sure we have VFP and that we're extending float to double. 1612 if (!Subtarget->hasVFP2()) return false; 1613 1614 Value *V = I->getOperand(0); 1615 if (!I->getType()->isDoubleTy() || 1616 !V->getType()->isFloatTy()) return false; 1617 1618 unsigned Op = getRegForValue(V); 1619 if (Op == 0) return false; 1620 1621 unsigned Result = createResultReg(&ARM::DPRRegClass); 1622 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1623 TII.get(ARM::VCVTDS), Result) 1624 .addReg(Op)); 1625 UpdateValueMap(I, Result); 1626 return true; 1627 } 1628 1629 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1630 // Make sure we have VFP and that we're truncating double to float. 1631 if (!Subtarget->hasVFP2()) return false; 1632 1633 Value *V = I->getOperand(0); 1634 if (!(I->getType()->isFloatTy() && 1635 V->getType()->isDoubleTy())) return false; 1636 1637 unsigned Op = getRegForValue(V); 1638 if (Op == 0) return false; 1639 1640 unsigned Result = createResultReg(&ARM::SPRRegClass); 1641 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1642 TII.get(ARM::VCVTSD), Result) 1643 .addReg(Op)); 1644 UpdateValueMap(I, Result); 1645 return true; 1646 } 1647 1648 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1649 // Make sure we have VFP. 1650 if (!Subtarget->hasVFP2()) return false; 1651 1652 MVT DstVT; 1653 Type *Ty = I->getType(); 1654 if (!isTypeLegal(Ty, DstVT)) 1655 return false; 1656 1657 Value *Src = I->getOperand(0); 1658 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 1659 if (!SrcEVT.isSimple()) 1660 return false; 1661 MVT SrcVT = SrcEVT.getSimpleVT(); 1662 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1663 return false; 1664 1665 unsigned SrcReg = getRegForValue(Src); 1666 if (SrcReg == 0) return false; 1667 1668 // Handle sign-extension. 1669 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1670 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1671 /*isZExt*/!isSigned); 1672 if (SrcReg == 0) return false; 1673 } 1674 1675 // The conversion routine works on fp-reg to fp-reg and the operand above 1676 // was an integer, move it to the fp registers if possible. 1677 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1678 if (FP == 0) return false; 1679 1680 unsigned Opc; 1681 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1682 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1683 else return false; 1684 1685 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1686 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1687 TII.get(Opc), ResultReg).addReg(FP)); 1688 UpdateValueMap(I, ResultReg); 1689 return true; 1690 } 1691 1692 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1693 // Make sure we have VFP. 1694 if (!Subtarget->hasVFP2()) return false; 1695 1696 MVT DstVT; 1697 Type *RetTy = I->getType(); 1698 if (!isTypeLegal(RetTy, DstVT)) 1699 return false; 1700 1701 unsigned Op = getRegForValue(I->getOperand(0)); 1702 if (Op == 0) return false; 1703 1704 unsigned Opc; 1705 Type *OpTy = I->getOperand(0)->getType(); 1706 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1707 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1708 else return false; 1709 1710 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1711 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1712 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1713 TII.get(Opc), ResultReg).addReg(Op)); 1714 1715 // This result needs to be in an integer register, but the conversion only 1716 // takes place in fp-regs. 1717 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1718 if (IntReg == 0) return false; 1719 1720 UpdateValueMap(I, IntReg); 1721 return true; 1722 } 1723 1724 bool ARMFastISel::SelectSelect(const Instruction *I) { 1725 MVT VT; 1726 if (!isTypeLegal(I->getType(), VT)) 1727 return false; 1728 1729 // Things need to be register sized for register moves. 1730 if (VT != MVT::i32) return false; 1731 1732 unsigned CondReg = getRegForValue(I->getOperand(0)); 1733 if (CondReg == 0) return false; 1734 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1735 if (Op1Reg == 0) return false; 1736 1737 // Check to see if we can use an immediate in the conditional move. 1738 int Imm = 0; 1739 bool UseImm = false; 1740 bool isNegativeImm = false; 1741 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1742 assert (VT == MVT::i32 && "Expecting an i32."); 1743 Imm = (int)ConstInt->getValue().getZExtValue(); 1744 if (Imm < 0) { 1745 isNegativeImm = true; 1746 Imm = ~Imm; 1747 } 1748 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1749 (ARM_AM::getSOImmVal(Imm) != -1); 1750 } 1751 1752 unsigned Op2Reg = 0; 1753 if (!UseImm) { 1754 Op2Reg = getRegForValue(I->getOperand(2)); 1755 if (Op2Reg == 0) return false; 1756 } 1757 1758 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 1759 CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0); 1760 AddOptionalDefs( 1761 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) 1762 .addReg(CondReg) 1763 .addImm(0)); 1764 1765 unsigned MovCCOpc; 1766 const TargetRegisterClass *RC; 1767 if (!UseImm) { 1768 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1769 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1770 } else { 1771 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1772 if (!isNegativeImm) 1773 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1774 else 1775 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1776 } 1777 unsigned ResultReg = createResultReg(RC); 1778 if (!UseImm) { 1779 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1780 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1781 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1782 ResultReg) 1783 .addReg(Op2Reg) 1784 .addReg(Op1Reg) 1785 .addImm(ARMCC::NE) 1786 .addReg(ARM::CPSR); 1787 } else { 1788 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1789 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1790 ResultReg) 1791 .addReg(Op1Reg) 1792 .addImm(Imm) 1793 .addImm(ARMCC::EQ) 1794 .addReg(ARM::CPSR); 1795 } 1796 UpdateValueMap(I, ResultReg); 1797 return true; 1798 } 1799 1800 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1801 MVT VT; 1802 Type *Ty = I->getType(); 1803 if (!isTypeLegal(Ty, VT)) 1804 return false; 1805 1806 // If we have integer div support we should have selected this automagically. 1807 // In case we have a real miss go ahead and return false and we'll pick 1808 // it up later. 1809 if (Subtarget->hasDivide()) return false; 1810 1811 // Otherwise emit a libcall. 1812 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1813 if (VT == MVT::i8) 1814 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1815 else if (VT == MVT::i16) 1816 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1817 else if (VT == MVT::i32) 1818 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1819 else if (VT == MVT::i64) 1820 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1821 else if (VT == MVT::i128) 1822 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1823 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1824 1825 return ARMEmitLibcall(I, LC); 1826 } 1827 1828 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1829 MVT VT; 1830 Type *Ty = I->getType(); 1831 if (!isTypeLegal(Ty, VT)) 1832 return false; 1833 1834 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1835 if (VT == MVT::i8) 1836 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1837 else if (VT == MVT::i16) 1838 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1839 else if (VT == MVT::i32) 1840 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1841 else if (VT == MVT::i64) 1842 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1843 else if (VT == MVT::i128) 1844 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1845 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1846 1847 return ARMEmitLibcall(I, LC); 1848 } 1849 1850 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1851 EVT DestVT = TLI.getValueType(I->getType(), true); 1852 1853 // We can get here in the case when we have a binary operation on a non-legal 1854 // type and the target independent selector doesn't know how to handle it. 1855 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1856 return false; 1857 1858 unsigned Opc; 1859 switch (ISDOpcode) { 1860 default: return false; 1861 case ISD::ADD: 1862 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1863 break; 1864 case ISD::OR: 1865 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1866 break; 1867 case ISD::SUB: 1868 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1869 break; 1870 } 1871 1872 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1873 if (SrcReg1 == 0) return false; 1874 1875 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1876 // in the instruction, rather then materializing the value in a register. 1877 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1878 if (SrcReg2 == 0) return false; 1879 1880 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1881 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1882 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1883 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1884 TII.get(Opc), ResultReg) 1885 .addReg(SrcReg1).addReg(SrcReg2)); 1886 UpdateValueMap(I, ResultReg); 1887 return true; 1888 } 1889 1890 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1891 EVT FPVT = TLI.getValueType(I->getType(), true); 1892 if (!FPVT.isSimple()) return false; 1893 MVT VT = FPVT.getSimpleVT(); 1894 1895 // We can get here in the case when we want to use NEON for our fp 1896 // operations, but can't figure out how to. Just use the vfp instructions 1897 // if we have them. 1898 // FIXME: It'd be nice to use NEON instructions. 1899 Type *Ty = I->getType(); 1900 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1901 if (isFloat && !Subtarget->hasVFP2()) 1902 return false; 1903 1904 unsigned Opc; 1905 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1906 switch (ISDOpcode) { 1907 default: return false; 1908 case ISD::FADD: 1909 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1910 break; 1911 case ISD::FSUB: 1912 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1913 break; 1914 case ISD::FMUL: 1915 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1916 break; 1917 } 1918 unsigned Op1 = getRegForValue(I->getOperand(0)); 1919 if (Op1 == 0) return false; 1920 1921 unsigned Op2 = getRegForValue(I->getOperand(1)); 1922 if (Op2 == 0) return false; 1923 1924 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1925 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1926 TII.get(Opc), ResultReg) 1927 .addReg(Op1).addReg(Op2)); 1928 UpdateValueMap(I, ResultReg); 1929 return true; 1930 } 1931 1932 // Call Handling Code 1933 1934 // This is largely taken directly from CCAssignFnForNode 1935 // TODO: We may not support all of this. 1936 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1937 bool Return, 1938 bool isVarArg) { 1939 switch (CC) { 1940 default: 1941 llvm_unreachable("Unsupported calling convention"); 1942 case CallingConv::Fast: 1943 if (Subtarget->hasVFP2() && !isVarArg) { 1944 if (!Subtarget->isAAPCS_ABI()) 1945 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1946 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1947 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1948 } 1949 // Fallthrough 1950 case CallingConv::C: 1951 // Use target triple & subtarget features to do actual dispatch. 1952 if (Subtarget->isAAPCS_ABI()) { 1953 if (Subtarget->hasVFP2() && 1954 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1955 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1956 else 1957 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1958 } else 1959 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1960 case CallingConv::ARM_AAPCS_VFP: 1961 if (!isVarArg) 1962 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1963 // Fall through to soft float variant, variadic functions don't 1964 // use hard floating point ABI. 1965 case CallingConv::ARM_AAPCS: 1966 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1967 case CallingConv::ARM_APCS: 1968 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1969 case CallingConv::GHC: 1970 if (Return) 1971 llvm_unreachable("Can't return in GHC call convention"); 1972 else 1973 return CC_ARM_APCS_GHC; 1974 } 1975 } 1976 1977 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1978 SmallVectorImpl<unsigned> &ArgRegs, 1979 SmallVectorImpl<MVT> &ArgVTs, 1980 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1981 SmallVectorImpl<unsigned> &RegArgs, 1982 CallingConv::ID CC, 1983 unsigned &NumBytes, 1984 bool isVarArg) { 1985 SmallVector<CCValAssign, 16> ArgLocs; 1986 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1987 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1988 CCAssignFnForCall(CC, false, isVarArg)); 1989 1990 // Check that we can handle all of the arguments. If we can't, then bail out 1991 // now before we add code to the MBB. 1992 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1993 CCValAssign &VA = ArgLocs[i]; 1994 MVT ArgVT = ArgVTs[VA.getValNo()]; 1995 1996 // We don't handle NEON/vector parameters yet. 1997 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1998 return false; 1999 2000 // Now copy/store arg to correct locations. 2001 if (VA.isRegLoc() && !VA.needsCustom()) { 2002 continue; 2003 } else if (VA.needsCustom()) { 2004 // TODO: We need custom lowering for vector (v2f64) args. 2005 if (VA.getLocVT() != MVT::f64 || 2006 // TODO: Only handle register args for now. 2007 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 2008 return false; 2009 } else { 2010 switch (ArgVT.SimpleTy) { 2011 default: 2012 return false; 2013 case MVT::i1: 2014 case MVT::i8: 2015 case MVT::i16: 2016 case MVT::i32: 2017 break; 2018 case MVT::f32: 2019 if (!Subtarget->hasVFP2()) 2020 return false; 2021 break; 2022 case MVT::f64: 2023 if (!Subtarget->hasVFP2()) 2024 return false; 2025 break; 2026 } 2027 } 2028 } 2029 2030 // At the point, we are able to handle the call's arguments in fast isel. 2031 2032 // Get a count of how many bytes are to be pushed on the stack. 2033 NumBytes = CCInfo.getNextStackOffset(); 2034 2035 // Issue CALLSEQ_START 2036 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 2037 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2038 TII.get(AdjStackDown)) 2039 .addImm(NumBytes)); 2040 2041 // Process the args. 2042 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2043 CCValAssign &VA = ArgLocs[i]; 2044 unsigned Arg = ArgRegs[VA.getValNo()]; 2045 MVT ArgVT = ArgVTs[VA.getValNo()]; 2046 2047 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 2048 "We don't handle NEON/vector parameters yet."); 2049 2050 // Handle arg promotion, etc. 2051 switch (VA.getLocInfo()) { 2052 case CCValAssign::Full: break; 2053 case CCValAssign::SExt: { 2054 MVT DestVT = VA.getLocVT(); 2055 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 2056 assert (Arg != 0 && "Failed to emit a sext"); 2057 ArgVT = DestVT; 2058 break; 2059 } 2060 case CCValAssign::AExt: 2061 // Intentional fall-through. Handle AExt and ZExt. 2062 case CCValAssign::ZExt: { 2063 MVT DestVT = VA.getLocVT(); 2064 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 2065 assert (Arg != 0 && "Failed to emit a zext"); 2066 ArgVT = DestVT; 2067 break; 2068 } 2069 case CCValAssign::BCvt: { 2070 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 2071 /*TODO: Kill=*/false); 2072 assert(BC != 0 && "Failed to emit a bitcast!"); 2073 Arg = BC; 2074 ArgVT = VA.getLocVT(); 2075 break; 2076 } 2077 default: llvm_unreachable("Unknown arg promotion!"); 2078 } 2079 2080 // Now copy/store arg to correct locations. 2081 if (VA.isRegLoc() && !VA.needsCustom()) { 2082 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2083 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 2084 RegArgs.push_back(VA.getLocReg()); 2085 } else if (VA.needsCustom()) { 2086 // TODO: We need custom lowering for vector (v2f64) args. 2087 assert(VA.getLocVT() == MVT::f64 && 2088 "Custom lowering for v2f64 args not available"); 2089 2090 CCValAssign &NextVA = ArgLocs[++i]; 2091 2092 assert(VA.isRegLoc() && NextVA.isRegLoc() && 2093 "We only handle register args!"); 2094 2095 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2096 TII.get(ARM::VMOVRRD), VA.getLocReg()) 2097 .addReg(NextVA.getLocReg(), RegState::Define) 2098 .addReg(Arg)); 2099 RegArgs.push_back(VA.getLocReg()); 2100 RegArgs.push_back(NextVA.getLocReg()); 2101 } else { 2102 assert(VA.isMemLoc()); 2103 // Need to store on the stack. 2104 Address Addr; 2105 Addr.BaseType = Address::RegBase; 2106 Addr.Base.Reg = ARM::SP; 2107 Addr.Offset = VA.getLocMemOffset(); 2108 2109 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2110 assert(EmitRet && "Could not emit a store for argument!"); 2111 } 2112 } 2113 2114 return true; 2115 } 2116 2117 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2118 const Instruction *I, CallingConv::ID CC, 2119 unsigned &NumBytes, bool isVarArg) { 2120 // Issue CALLSEQ_END 2121 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2122 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2123 TII.get(AdjStackUp)) 2124 .addImm(NumBytes).addImm(0)); 2125 2126 // Now the return value. 2127 if (RetVT != MVT::isVoid) { 2128 SmallVector<CCValAssign, 16> RVLocs; 2129 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2130 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2131 2132 // Copy all of the result registers out of their specified physreg. 2133 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2134 // For this move we copy into two registers and then move into the 2135 // double fp reg we want. 2136 MVT DestVT = RVLocs[0].getValVT(); 2137 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2138 unsigned ResultReg = createResultReg(DstRC); 2139 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2140 TII.get(ARM::VMOVDRR), ResultReg) 2141 .addReg(RVLocs[0].getLocReg()) 2142 .addReg(RVLocs[1].getLocReg())); 2143 2144 UsedRegs.push_back(RVLocs[0].getLocReg()); 2145 UsedRegs.push_back(RVLocs[1].getLocReg()); 2146 2147 // Finally update the result. 2148 UpdateValueMap(I, ResultReg); 2149 } else { 2150 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2151 MVT CopyVT = RVLocs[0].getValVT(); 2152 2153 // Special handling for extended integers. 2154 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2155 CopyVT = MVT::i32; 2156 2157 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2158 2159 unsigned ResultReg = createResultReg(DstRC); 2160 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2161 TII.get(TargetOpcode::COPY), 2162 ResultReg).addReg(RVLocs[0].getLocReg()); 2163 UsedRegs.push_back(RVLocs[0].getLocReg()); 2164 2165 // Finally update the result. 2166 UpdateValueMap(I, ResultReg); 2167 } 2168 } 2169 2170 return true; 2171 } 2172 2173 bool ARMFastISel::SelectRet(const Instruction *I) { 2174 const ReturnInst *Ret = cast<ReturnInst>(I); 2175 const Function &F = *I->getParent()->getParent(); 2176 2177 if (!FuncInfo.CanLowerReturn) 2178 return false; 2179 2180 // Build a list of return value registers. 2181 SmallVector<unsigned, 4> RetRegs; 2182 2183 CallingConv::ID CC = F.getCallingConv(); 2184 if (Ret->getNumOperands() > 0) { 2185 SmallVector<ISD::OutputArg, 4> Outs; 2186 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 2187 2188 // Analyze operands of the call, assigning locations to each operand. 2189 SmallVector<CCValAssign, 16> ValLocs; 2190 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext()); 2191 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2192 F.isVarArg())); 2193 2194 const Value *RV = Ret->getOperand(0); 2195 unsigned Reg = getRegForValue(RV); 2196 if (Reg == 0) 2197 return false; 2198 2199 // Only handle a single return value for now. 2200 if (ValLocs.size() != 1) 2201 return false; 2202 2203 CCValAssign &VA = ValLocs[0]; 2204 2205 // Don't bother handling odd stuff for now. 2206 if (VA.getLocInfo() != CCValAssign::Full) 2207 return false; 2208 // Only handle register returns for now. 2209 if (!VA.isRegLoc()) 2210 return false; 2211 2212 unsigned SrcReg = Reg + VA.getValNo(); 2213 EVT RVEVT = TLI.getValueType(RV->getType()); 2214 if (!RVEVT.isSimple()) return false; 2215 MVT RVVT = RVEVT.getSimpleVT(); 2216 MVT DestVT = VA.getValVT(); 2217 // Special handling for extended integers. 2218 if (RVVT != DestVT) { 2219 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2220 return false; 2221 2222 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2223 2224 // Perform extension if flagged as either zext or sext. Otherwise, do 2225 // nothing. 2226 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2227 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2228 if (SrcReg == 0) return false; 2229 } 2230 } 2231 2232 // Make the copy. 2233 unsigned DstReg = VA.getLocReg(); 2234 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2235 // Avoid a cross-class copy. This is very unlikely. 2236 if (!SrcRC->contains(DstReg)) 2237 return false; 2238 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2239 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2240 2241 // Add register to return instruction. 2242 RetRegs.push_back(VA.getLocReg()); 2243 } 2244 2245 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2246 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2247 TII.get(RetOpc)); 2248 AddOptionalDefs(MIB); 2249 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2250 MIB.addReg(RetRegs[i], RegState::Implicit); 2251 return true; 2252 } 2253 2254 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2255 if (UseReg) 2256 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2257 else 2258 return isThumb2 ? ARM::tBL : ARM::BL; 2259 } 2260 2261 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2262 // Manually compute the global's type to avoid building it when unnecessary. 2263 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2264 EVT LCREVT = TLI.getValueType(GVTy); 2265 if (!LCREVT.isSimple()) return 0; 2266 2267 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2268 GlobalValue::ExternalLinkage, 0, Name); 2269 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2270 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2271 } 2272 2273 // A quick function that will emit a call for a named libcall in F with the 2274 // vector of passed arguments for the Instruction in I. We can assume that we 2275 // can emit a call for any libcall we can produce. This is an abridged version 2276 // of the full call infrastructure since we won't need to worry about things 2277 // like computed function pointers or strange arguments at call sites. 2278 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2279 // with X86. 2280 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2281 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2282 2283 // Handle *simple* calls for now. 2284 Type *RetTy = I->getType(); 2285 MVT RetVT; 2286 if (RetTy->isVoidTy()) 2287 RetVT = MVT::isVoid; 2288 else if (!isTypeLegal(RetTy, RetVT)) 2289 return false; 2290 2291 // Can't handle non-double multi-reg retvals. 2292 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2293 SmallVector<CCValAssign, 16> RVLocs; 2294 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); 2295 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2296 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2297 return false; 2298 } 2299 2300 // Set up the argument vectors. 2301 SmallVector<Value*, 8> Args; 2302 SmallVector<unsigned, 8> ArgRegs; 2303 SmallVector<MVT, 8> ArgVTs; 2304 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2305 Args.reserve(I->getNumOperands()); 2306 ArgRegs.reserve(I->getNumOperands()); 2307 ArgVTs.reserve(I->getNumOperands()); 2308 ArgFlags.reserve(I->getNumOperands()); 2309 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2310 Value *Op = I->getOperand(i); 2311 unsigned Arg = getRegForValue(Op); 2312 if (Arg == 0) return false; 2313 2314 Type *ArgTy = Op->getType(); 2315 MVT ArgVT; 2316 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2317 2318 ISD::ArgFlagsTy Flags; 2319 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2320 Flags.setOrigAlign(OriginalAlignment); 2321 2322 Args.push_back(Op); 2323 ArgRegs.push_back(Arg); 2324 ArgVTs.push_back(ArgVT); 2325 ArgFlags.push_back(Flags); 2326 } 2327 2328 // Handle the arguments now that we've gotten them. 2329 SmallVector<unsigned, 4> RegArgs; 2330 unsigned NumBytes; 2331 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2332 RegArgs, CC, NumBytes, false)) 2333 return false; 2334 2335 unsigned CalleeReg = 0; 2336 if (EnableARMLongCalls) { 2337 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2338 if (CalleeReg == 0) return false; 2339 } 2340 2341 // Issue the call. 2342 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls); 2343 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2344 DbgLoc, TII.get(CallOpc)); 2345 // BL / BLX don't take a predicate, but tBL / tBLX do. 2346 if (isThumb2) 2347 AddDefaultPred(MIB); 2348 if (EnableARMLongCalls) 2349 MIB.addReg(CalleeReg); 2350 else 2351 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2352 2353 // Add implicit physical register uses to the call. 2354 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2355 MIB.addReg(RegArgs[i], RegState::Implicit); 2356 2357 // Add a register mask with the call-preserved registers. 2358 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2359 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2360 2361 // Finish off the call including any return values. 2362 SmallVector<unsigned, 4> UsedRegs; 2363 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2364 2365 // Set all unused physreg defs as dead. 2366 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2367 2368 return true; 2369 } 2370 2371 bool ARMFastISel::SelectCall(const Instruction *I, 2372 const char *IntrMemName = 0) { 2373 const CallInst *CI = cast<CallInst>(I); 2374 const Value *Callee = CI->getCalledValue(); 2375 2376 // Can't handle inline asm. 2377 if (isa<InlineAsm>(Callee)) return false; 2378 2379 // Allow SelectionDAG isel to handle tail calls. 2380 if (CI->isTailCall()) return false; 2381 2382 // Check the calling convention. 2383 ImmutableCallSite CS(CI); 2384 CallingConv::ID CC = CS.getCallingConv(); 2385 2386 // TODO: Avoid some calling conventions? 2387 2388 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2389 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2390 bool isVarArg = FTy->isVarArg(); 2391 2392 // Handle *simple* calls for now. 2393 Type *RetTy = I->getType(); 2394 MVT RetVT; 2395 if (RetTy->isVoidTy()) 2396 RetVT = MVT::isVoid; 2397 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2398 RetVT != MVT::i8 && RetVT != MVT::i1) 2399 return false; 2400 2401 // Can't handle non-double multi-reg retvals. 2402 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2403 RetVT != MVT::i16 && RetVT != MVT::i32) { 2404 SmallVector<CCValAssign, 16> RVLocs; 2405 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2406 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2407 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2408 return false; 2409 } 2410 2411 // Set up the argument vectors. 2412 SmallVector<Value*, 8> Args; 2413 SmallVector<unsigned, 8> ArgRegs; 2414 SmallVector<MVT, 8> ArgVTs; 2415 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2416 unsigned arg_size = CS.arg_size(); 2417 Args.reserve(arg_size); 2418 ArgRegs.reserve(arg_size); 2419 ArgVTs.reserve(arg_size); 2420 ArgFlags.reserve(arg_size); 2421 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2422 i != e; ++i) { 2423 // If we're lowering a memory intrinsic instead of a regular call, skip the 2424 // last two arguments, which shouldn't be passed to the underlying function. 2425 if (IntrMemName && e-i <= 2) 2426 break; 2427 2428 ISD::ArgFlagsTy Flags; 2429 unsigned AttrInd = i - CS.arg_begin() + 1; 2430 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2431 Flags.setSExt(); 2432 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2433 Flags.setZExt(); 2434 2435 // FIXME: Only handle *easy* calls for now. 2436 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2437 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2438 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2439 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2440 return false; 2441 2442 Type *ArgTy = (*i)->getType(); 2443 MVT ArgVT; 2444 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2445 ArgVT != MVT::i1) 2446 return false; 2447 2448 unsigned Arg = getRegForValue(*i); 2449 if (Arg == 0) 2450 return false; 2451 2452 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2453 Flags.setOrigAlign(OriginalAlignment); 2454 2455 Args.push_back(*i); 2456 ArgRegs.push_back(Arg); 2457 ArgVTs.push_back(ArgVT); 2458 ArgFlags.push_back(Flags); 2459 } 2460 2461 // Handle the arguments now that we've gotten them. 2462 SmallVector<unsigned, 4> RegArgs; 2463 unsigned NumBytes; 2464 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2465 RegArgs, CC, NumBytes, isVarArg)) 2466 return false; 2467 2468 bool UseReg = false; 2469 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2470 if (!GV || EnableARMLongCalls) UseReg = true; 2471 2472 unsigned CalleeReg = 0; 2473 if (UseReg) { 2474 if (IntrMemName) 2475 CalleeReg = getLibcallReg(IntrMemName); 2476 else 2477 CalleeReg = getRegForValue(Callee); 2478 2479 if (CalleeReg == 0) return false; 2480 } 2481 2482 // Issue the call. 2483 unsigned CallOpc = ARMSelectCallOp(UseReg); 2484 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2485 DbgLoc, TII.get(CallOpc)); 2486 2487 unsigned char OpFlags = 0; 2488 2489 // Add MO_PLT for global address or external symbol in the PIC relocation 2490 // model. 2491 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 2492 OpFlags = ARMII::MO_PLT; 2493 2494 // ARM calls don't take a predicate, but tBL / tBLX do. 2495 if(isThumb2) 2496 AddDefaultPred(MIB); 2497 if (UseReg) 2498 MIB.addReg(CalleeReg); 2499 else if (!IntrMemName) 2500 MIB.addGlobalAddress(GV, 0, OpFlags); 2501 else 2502 MIB.addExternalSymbol(IntrMemName, OpFlags); 2503 2504 // Add implicit physical register uses to the call. 2505 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2506 MIB.addReg(RegArgs[i], RegState::Implicit); 2507 2508 // Add a register mask with the call-preserved registers. 2509 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2510 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2511 2512 // Finish off the call including any return values. 2513 SmallVector<unsigned, 4> UsedRegs; 2514 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2515 return false; 2516 2517 // Set all unused physreg defs as dead. 2518 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2519 2520 return true; 2521 } 2522 2523 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2524 return Len <= 16; 2525 } 2526 2527 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2528 uint64_t Len, unsigned Alignment) { 2529 // Make sure we don't bloat code by inlining very large memcpy's. 2530 if (!ARMIsMemCpySmall(Len)) 2531 return false; 2532 2533 while (Len) { 2534 MVT VT; 2535 if (!Alignment || Alignment >= 4) { 2536 if (Len >= 4) 2537 VT = MVT::i32; 2538 else if (Len >= 2) 2539 VT = MVT::i16; 2540 else { 2541 assert (Len == 1 && "Expected a length of 1!"); 2542 VT = MVT::i8; 2543 } 2544 } else { 2545 // Bound based on alignment. 2546 if (Len >= 2 && Alignment == 2) 2547 VT = MVT::i16; 2548 else { 2549 VT = MVT::i8; 2550 } 2551 } 2552 2553 bool RV; 2554 unsigned ResultReg; 2555 RV = ARMEmitLoad(VT, ResultReg, Src); 2556 assert (RV == true && "Should be able to handle this load."); 2557 RV = ARMEmitStore(VT, ResultReg, Dest); 2558 assert (RV == true && "Should be able to handle this store."); 2559 (void)RV; 2560 2561 unsigned Size = VT.getSizeInBits()/8; 2562 Len -= Size; 2563 Dest.Offset += Size; 2564 Src.Offset += Size; 2565 } 2566 2567 return true; 2568 } 2569 2570 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2571 // FIXME: Handle more intrinsics. 2572 switch (I.getIntrinsicID()) { 2573 default: return false; 2574 case Intrinsic::frameaddress: { 2575 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2576 MFI->setFrameAddressIsTaken(true); 2577 2578 unsigned LdrOpc; 2579 const TargetRegisterClass *RC; 2580 if (isThumb2) { 2581 LdrOpc = ARM::t2LDRi12; 2582 RC = (const TargetRegisterClass*)&ARM::tGPRRegClass; 2583 } else { 2584 LdrOpc = ARM::LDRi12; 2585 RC = (const TargetRegisterClass*)&ARM::GPRRegClass; 2586 } 2587 2588 const ARMBaseRegisterInfo *RegInfo = 2589 static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo()); 2590 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2591 unsigned SrcReg = FramePtr; 2592 2593 // Recursively load frame address 2594 // ldr r0 [fp] 2595 // ldr r0 [r0] 2596 // ldr r0 [r0] 2597 // ... 2598 unsigned DestReg; 2599 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2600 while (Depth--) { 2601 DestReg = createResultReg(RC); 2602 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2603 TII.get(LdrOpc), DestReg) 2604 .addReg(SrcReg).addImm(0)); 2605 SrcReg = DestReg; 2606 } 2607 UpdateValueMap(&I, SrcReg); 2608 return true; 2609 } 2610 case Intrinsic::memcpy: 2611 case Intrinsic::memmove: { 2612 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2613 // Don't handle volatile. 2614 if (MTI.isVolatile()) 2615 return false; 2616 2617 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2618 // we would emit dead code because we don't currently handle memmoves. 2619 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2620 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2621 // Small memcpy's are common enough that we want to do them without a call 2622 // if possible. 2623 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2624 if (ARMIsMemCpySmall(Len)) { 2625 Address Dest, Src; 2626 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2627 !ARMComputeAddress(MTI.getRawSource(), Src)) 2628 return false; 2629 unsigned Alignment = MTI.getAlignment(); 2630 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2631 return true; 2632 } 2633 } 2634 2635 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2636 return false; 2637 2638 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2639 return false; 2640 2641 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2642 return SelectCall(&I, IntrMemName); 2643 } 2644 case Intrinsic::memset: { 2645 const MemSetInst &MSI = cast<MemSetInst>(I); 2646 // Don't handle volatile. 2647 if (MSI.isVolatile()) 2648 return false; 2649 2650 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2651 return false; 2652 2653 if (MSI.getDestAddressSpace() > 255) 2654 return false; 2655 2656 return SelectCall(&I, "memset"); 2657 } 2658 case Intrinsic::trap: { 2659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2660 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2661 return true; 2662 } 2663 } 2664 } 2665 2666 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2667 // The high bits for a type smaller than the register size are assumed to be 2668 // undefined. 2669 Value *Op = I->getOperand(0); 2670 2671 EVT SrcVT, DestVT; 2672 SrcVT = TLI.getValueType(Op->getType(), true); 2673 DestVT = TLI.getValueType(I->getType(), true); 2674 2675 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2676 return false; 2677 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2678 return false; 2679 2680 unsigned SrcReg = getRegForValue(Op); 2681 if (!SrcReg) return false; 2682 2683 // Because the high bits are undefined, a truncate doesn't generate 2684 // any code. 2685 UpdateValueMap(I, SrcReg); 2686 return true; 2687 } 2688 2689 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2690 bool isZExt) { 2691 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2692 return 0; 2693 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2694 return 0; 2695 2696 // Table of which combinations can be emitted as a single instruction, 2697 // and which will require two. 2698 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2699 // ARM Thumb 2700 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2701 // ext: s z s z s z s z 2702 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2703 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2704 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2705 }; 2706 2707 // Target registers for: 2708 // - For ARM can never be PC. 2709 // - For 16-bit Thumb are restricted to lower 8 registers. 2710 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2711 static const TargetRegisterClass *RCTbl[2][2] = { 2712 // Instructions: Two Single 2713 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2714 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2715 }; 2716 2717 // Table governing the instruction(s) to be emitted. 2718 static const struct InstructionTable { 2719 uint32_t Opc : 16; 2720 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2721 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2722 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2723 } IT[2][2][3][2] = { 2724 { // Two instructions (first is left shift, second is in this table). 2725 { // ARM Opc S Shift Imm 2726 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2727 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2728 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2729 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2730 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2731 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2732 }, 2733 { // Thumb Opc S Shift Imm 2734 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2735 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2736 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2737 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2738 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2739 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2740 } 2741 }, 2742 { // Single instruction. 2743 { // ARM Opc S Shift Imm 2744 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2745 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2746 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2747 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2748 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2749 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2750 }, 2751 { // Thumb Opc S Shift Imm 2752 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2753 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2754 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2755 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2756 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2757 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2758 } 2759 } 2760 }; 2761 2762 unsigned SrcBits = SrcVT.getSizeInBits(); 2763 unsigned DestBits = DestVT.getSizeInBits(); 2764 (void) DestBits; 2765 assert((SrcBits < DestBits) && "can only extend to larger types"); 2766 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2767 "other sizes unimplemented"); 2768 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2769 "other sizes unimplemented"); 2770 2771 bool hasV6Ops = Subtarget->hasV6Ops(); 2772 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2773 assert((Bitness < 3) && "sanity-check table bounds"); 2774 2775 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2776 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2777 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2778 unsigned Opc = ITP->Opc; 2779 assert(ARM::KILL != Opc && "Invalid table entry"); 2780 unsigned hasS = ITP->hasS; 2781 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2782 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2783 "only MOVsi has shift operand addressing mode"); 2784 unsigned Imm = ITP->Imm; 2785 2786 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2787 bool setsCPSR = &ARM::tGPRRegClass == RC; 2788 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2789 unsigned ResultReg; 2790 // MOVsi encodes shift and immediate in shift operand addressing mode. 2791 // The following condition has the same value when emitting two 2792 // instruction sequences: both are shifts. 2793 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2794 2795 // Either one or two instructions are emitted. 2796 // They're always of the form: 2797 // dst = in OP imm 2798 // CPSR is set only by 16-bit Thumb instructions. 2799 // Predicate, if any, is AL. 2800 // S bit, if available, is always 0. 2801 // When two are emitted the first's result will feed as the second's input, 2802 // that value is then dead. 2803 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2804 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2805 ResultReg = createResultReg(RC); 2806 bool isLsl = (0 == Instr) && !isSingleInstr; 2807 unsigned Opcode = isLsl ? LSLOpc : Opc; 2808 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2809 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2810 bool isKill = 1 == Instr; 2811 MachineInstrBuilder MIB = BuildMI( 2812 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2813 if (setsCPSR) 2814 MIB.addReg(ARM::CPSR, RegState::Define); 2815 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2816 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2817 if (hasS) 2818 AddDefaultCC(MIB); 2819 // Second instruction consumes the first's result. 2820 SrcReg = ResultReg; 2821 } 2822 2823 return ResultReg; 2824 } 2825 2826 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2827 // On ARM, in general, integer casts don't involve legal types; this code 2828 // handles promotable integers. 2829 Type *DestTy = I->getType(); 2830 Value *Src = I->getOperand(0); 2831 Type *SrcTy = Src->getType(); 2832 2833 bool isZExt = isa<ZExtInst>(I); 2834 unsigned SrcReg = getRegForValue(Src); 2835 if (!SrcReg) return false; 2836 2837 EVT SrcEVT, DestEVT; 2838 SrcEVT = TLI.getValueType(SrcTy, true); 2839 DestEVT = TLI.getValueType(DestTy, true); 2840 if (!SrcEVT.isSimple()) return false; 2841 if (!DestEVT.isSimple()) return false; 2842 2843 MVT SrcVT = SrcEVT.getSimpleVT(); 2844 MVT DestVT = DestEVT.getSimpleVT(); 2845 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2846 if (ResultReg == 0) return false; 2847 UpdateValueMap(I, ResultReg); 2848 return true; 2849 } 2850 2851 bool ARMFastISel::SelectShift(const Instruction *I, 2852 ARM_AM::ShiftOpc ShiftTy) { 2853 // We handle thumb2 mode by target independent selector 2854 // or SelectionDAG ISel. 2855 if (isThumb2) 2856 return false; 2857 2858 // Only handle i32 now. 2859 EVT DestVT = TLI.getValueType(I->getType(), true); 2860 if (DestVT != MVT::i32) 2861 return false; 2862 2863 unsigned Opc = ARM::MOVsr; 2864 unsigned ShiftImm; 2865 Value *Src2Value = I->getOperand(1); 2866 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2867 ShiftImm = CI->getZExtValue(); 2868 2869 // Fall back to selection DAG isel if the shift amount 2870 // is zero or greater than the width of the value type. 2871 if (ShiftImm == 0 || ShiftImm >=32) 2872 return false; 2873 2874 Opc = ARM::MOVsi; 2875 } 2876 2877 Value *Src1Value = I->getOperand(0); 2878 unsigned Reg1 = getRegForValue(Src1Value); 2879 if (Reg1 == 0) return false; 2880 2881 unsigned Reg2 = 0; 2882 if (Opc == ARM::MOVsr) { 2883 Reg2 = getRegForValue(Src2Value); 2884 if (Reg2 == 0) return false; 2885 } 2886 2887 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2888 if(ResultReg == 0) return false; 2889 2890 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2891 TII.get(Opc), ResultReg) 2892 .addReg(Reg1); 2893 2894 if (Opc == ARM::MOVsi) 2895 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2896 else if (Opc == ARM::MOVsr) { 2897 MIB.addReg(Reg2); 2898 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2899 } 2900 2901 AddOptionalDefs(MIB); 2902 UpdateValueMap(I, ResultReg); 2903 return true; 2904 } 2905 2906 // TODO: SoftFP support. 2907 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { 2908 2909 switch (I->getOpcode()) { 2910 case Instruction::Load: 2911 return SelectLoad(I); 2912 case Instruction::Store: 2913 return SelectStore(I); 2914 case Instruction::Br: 2915 return SelectBranch(I); 2916 case Instruction::IndirectBr: 2917 return SelectIndirectBr(I); 2918 case Instruction::ICmp: 2919 case Instruction::FCmp: 2920 return SelectCmp(I); 2921 case Instruction::FPExt: 2922 return SelectFPExt(I); 2923 case Instruction::FPTrunc: 2924 return SelectFPTrunc(I); 2925 case Instruction::SIToFP: 2926 return SelectIToFP(I, /*isSigned*/ true); 2927 case Instruction::UIToFP: 2928 return SelectIToFP(I, /*isSigned*/ false); 2929 case Instruction::FPToSI: 2930 return SelectFPToI(I, /*isSigned*/ true); 2931 case Instruction::FPToUI: 2932 return SelectFPToI(I, /*isSigned*/ false); 2933 case Instruction::Add: 2934 return SelectBinaryIntOp(I, ISD::ADD); 2935 case Instruction::Or: 2936 return SelectBinaryIntOp(I, ISD::OR); 2937 case Instruction::Sub: 2938 return SelectBinaryIntOp(I, ISD::SUB); 2939 case Instruction::FAdd: 2940 return SelectBinaryFPOp(I, ISD::FADD); 2941 case Instruction::FSub: 2942 return SelectBinaryFPOp(I, ISD::FSUB); 2943 case Instruction::FMul: 2944 return SelectBinaryFPOp(I, ISD::FMUL); 2945 case Instruction::SDiv: 2946 return SelectDiv(I, /*isSigned*/ true); 2947 case Instruction::UDiv: 2948 return SelectDiv(I, /*isSigned*/ false); 2949 case Instruction::SRem: 2950 return SelectRem(I, /*isSigned*/ true); 2951 case Instruction::URem: 2952 return SelectRem(I, /*isSigned*/ false); 2953 case Instruction::Call: 2954 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2955 return SelectIntrinsicCall(*II); 2956 return SelectCall(I); 2957 case Instruction::Select: 2958 return SelectSelect(I); 2959 case Instruction::Ret: 2960 return SelectRet(I); 2961 case Instruction::Trunc: 2962 return SelectTrunc(I); 2963 case Instruction::ZExt: 2964 case Instruction::SExt: 2965 return SelectIntExt(I); 2966 case Instruction::Shl: 2967 return SelectShift(I, ARM_AM::lsl); 2968 case Instruction::LShr: 2969 return SelectShift(I, ARM_AM::lsr); 2970 case Instruction::AShr: 2971 return SelectShift(I, ARM_AM::asr); 2972 default: break; 2973 } 2974 return false; 2975 } 2976 2977 namespace { 2978 // This table describes sign- and zero-extend instructions which can be 2979 // folded into a preceding load. All of these extends have an immediate 2980 // (sometimes a mask and sometimes a shift) that's applied after 2981 // extension. 2982 const struct FoldableLoadExtendsStruct { 2983 uint16_t Opc[2]; // ARM, Thumb. 2984 uint8_t ExpectedImm; 2985 uint8_t isZExt : 1; 2986 uint8_t ExpectedVT : 7; 2987 } FoldableLoadExtends[] = { 2988 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2989 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2990 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2991 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2992 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2993 }; 2994 } 2995 2996 /// \brief The specified machine instr operand is a vreg, and that 2997 /// vreg is being provided by the specified load instruction. If possible, 2998 /// try to fold the load as an operand to the instruction, returning true if 2999 /// successful. 3000 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 3001 const LoadInst *LI) { 3002 // Verify we have a legal type before going any further. 3003 MVT VT; 3004 if (!isLoadTypeLegal(LI->getType(), VT)) 3005 return false; 3006 3007 // Combine load followed by zero- or sign-extend. 3008 // ldrb r1, [r0] ldrb r1, [r0] 3009 // uxtb r2, r1 => 3010 // mov r3, r2 mov r3, r1 3011 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 3012 return false; 3013 const uint64_t Imm = MI->getOperand(2).getImm(); 3014 3015 bool Found = false; 3016 bool isZExt; 3017 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 3018 i != e; ++i) { 3019 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 3020 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 3021 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 3022 Found = true; 3023 isZExt = FoldableLoadExtends[i].isZExt; 3024 } 3025 } 3026 if (!Found) return false; 3027 3028 // See if we can handle this address. 3029 Address Addr; 3030 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 3031 3032 unsigned ResultReg = MI->getOperand(0).getReg(); 3033 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 3034 return false; 3035 MI->eraseFromParent(); 3036 return true; 3037 } 3038 3039 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 3040 unsigned Align, MVT VT) { 3041 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 3042 ARMConstantPoolConstant *CPV = 3043 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 3044 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 3045 3046 unsigned Opc; 3047 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 3048 // Load value. 3049 if (isThumb2) { 3050 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 3051 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3052 TII.get(ARM::t2LDRpci), DestReg1) 3053 .addConstantPoolIndex(Idx)); 3054 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 3055 } else { 3056 // The extra immediate is for addrmode2. 3057 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 3058 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 3059 DbgLoc, TII.get(ARM::LDRcp), DestReg1) 3060 .addConstantPoolIndex(Idx).addImm(0)); 3061 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 3062 } 3063 3064 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 3065 if (GlobalBaseReg == 0) { 3066 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 3067 AFI->setGlobalBaseReg(GlobalBaseReg); 3068 } 3069 3070 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 3071 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 3072 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 3073 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 3074 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 3075 DbgLoc, TII.get(Opc), DestReg2) 3076 .addReg(DestReg1) 3077 .addReg(GlobalBaseReg); 3078 if (!UseGOTOFF) 3079 MIB.addImm(0); 3080 AddOptionalDefs(MIB); 3081 3082 return DestReg2; 3083 } 3084 3085 bool ARMFastISel::FastLowerArguments() { 3086 if (!FuncInfo.CanLowerReturn) 3087 return false; 3088 3089 const Function *F = FuncInfo.Fn; 3090 if (F->isVarArg()) 3091 return false; 3092 3093 CallingConv::ID CC = F->getCallingConv(); 3094 switch (CC) { 3095 default: 3096 return false; 3097 case CallingConv::Fast: 3098 case CallingConv::C: 3099 case CallingConv::ARM_AAPCS_VFP: 3100 case CallingConv::ARM_AAPCS: 3101 case CallingConv::ARM_APCS: 3102 break; 3103 } 3104 3105 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3106 // which are passed in r0 - r3. 3107 unsigned Idx = 1; 3108 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3109 I != E; ++I, ++Idx) { 3110 if (Idx > 4) 3111 return false; 3112 3113 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3114 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3115 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3116 return false; 3117 3118 Type *ArgTy = I->getType(); 3119 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3120 return false; 3121 3122 EVT ArgVT = TLI.getValueType(ArgTy); 3123 if (!ArgVT.isSimple()) return false; 3124 switch (ArgVT.getSimpleVT().SimpleTy) { 3125 case MVT::i8: 3126 case MVT::i16: 3127 case MVT::i32: 3128 break; 3129 default: 3130 return false; 3131 } 3132 } 3133 3134 3135 static const uint16_t GPRArgRegs[] = { 3136 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3137 }; 3138 3139 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3140 Idx = 0; 3141 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3142 I != E; ++I, ++Idx) { 3143 unsigned SrcReg = GPRArgRegs[Idx]; 3144 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3145 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3146 // Without this, EmitLiveInCopies may eliminate the livein if its only 3147 // use is a bitcast (which isn't turned into an instruction). 3148 unsigned ResultReg = createResultReg(RC); 3149 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3150 TII.get(TargetOpcode::COPY), 3151 ResultReg).addReg(DstReg, getKillRegState(true)); 3152 UpdateValueMap(I, ResultReg); 3153 } 3154 3155 return true; 3156 } 3157 3158 namespace llvm { 3159 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3160 const TargetLibraryInfo *libInfo) { 3161 const TargetMachine &TM = funcInfo.MF->getTarget(); 3162 3163 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 3164 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 3165 bool UseFastISel = false; 3166 UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only(); 3167 UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb(); 3168 UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb(); 3169 3170 if (UseFastISel) { 3171 // iOS always has a FP for backtracking, force other targets 3172 // to keep their FP when doing FastISel. The emitted code is 3173 // currently superior, and in cases like test-suite's lencod 3174 // FastISel isn't quite correct when FP is eliminated. 3175 TM.Options.NoFramePointerElim = true; 3176 return new ARMFastISel(funcInfo, libInfo); 3177 } 3178 return 0; 3179 } 3180 } 3181