1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 using namespace llvm; 51 52 extern cl::opt<bool> EnableARMLongCalls; 53 54 namespace { 55 56 // All possible address modes, plus some. 57 typedef struct Address { 58 enum { 59 RegBase, 60 FrameIndexBase 61 } BaseType; 62 63 union { 64 unsigned Reg; 65 int FI; 66 } Base; 67 68 int Offset; 69 70 // Innocuous defaults for our address. 71 Address() 72 : BaseType(RegBase), Offset(0) { 73 Base.Reg = 0; 74 } 75 } Address; 76 77 class ARMFastISel final : public FastISel { 78 79 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 80 /// make the right decision when generating code for different targets. 81 const ARMSubtarget *Subtarget; 82 Module &M; 83 const TargetMachine &TM; 84 const TargetInstrInfo &TII; 85 const TargetLowering &TLI; 86 ARMFunctionInfo *AFI; 87 88 // Convenience variables to avoid some queries. 89 bool isThumb2; 90 LLVMContext *Context; 91 92 public: 93 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 94 const TargetLibraryInfo *libInfo) 95 : FastISel(funcInfo, libInfo), 96 M(const_cast<Module&>(*funcInfo.Fn->getParent())), 97 TM(funcInfo.MF->getTarget()), 98 TII(*TM.getInstrInfo()), 99 TLI(*TM.getTargetLowering()) { 100 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 101 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 102 isThumb2 = AFI->isThumbFunction(); 103 Context = &funcInfo.Fn->getContext(); 104 } 105 106 // Code from FastISel.cpp. 107 private: 108 unsigned FastEmitInst_r(unsigned MachineInstOpcode, 109 const TargetRegisterClass *RC, 110 unsigned Op0, bool Op0IsKill); 111 unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 112 const TargetRegisterClass *RC, 113 unsigned Op0, bool Op0IsKill, 114 unsigned Op1, bool Op1IsKill); 115 unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 unsigned Op0, bool Op0IsKill, 118 unsigned Op1, bool Op1IsKill, 119 unsigned Op2, bool Op2IsKill); 120 unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 121 const TargetRegisterClass *RC, 122 unsigned Op0, bool Op0IsKill, 123 uint64_t Imm); 124 unsigned FastEmitInst_rri(unsigned MachineInstOpcode, 125 const TargetRegisterClass *RC, 126 unsigned Op0, bool Op0IsKill, 127 unsigned Op1, bool Op1IsKill, 128 uint64_t Imm); 129 unsigned FastEmitInst_i(unsigned MachineInstOpcode, 130 const TargetRegisterClass *RC, 131 uint64_t Imm); 132 133 // Backend specific FastISel code. 134 private: 135 bool TargetSelectInstruction(const Instruction *I) override; 136 unsigned TargetMaterializeConstant(const Constant *C) override; 137 unsigned TargetMaterializeAlloca(const AllocaInst *AI) override; 138 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 139 const LoadInst *LI) override; 140 bool FastLowerArguments() override; 141 private: 142 #include "ARMGenFastISel.inc" 143 144 // Instruction selection routines. 145 private: 146 bool SelectLoad(const Instruction *I); 147 bool SelectStore(const Instruction *I); 148 bool SelectBranch(const Instruction *I); 149 bool SelectIndirectBr(const Instruction *I); 150 bool SelectCmp(const Instruction *I); 151 bool SelectFPExt(const Instruction *I); 152 bool SelectFPTrunc(const Instruction *I); 153 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 154 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 155 bool SelectIToFP(const Instruction *I, bool isSigned); 156 bool SelectFPToI(const Instruction *I, bool isSigned); 157 bool SelectDiv(const Instruction *I, bool isSigned); 158 bool SelectRem(const Instruction *I, bool isSigned); 159 bool SelectCall(const Instruction *I, const char *IntrMemName); 160 bool SelectIntrinsicCall(const IntrinsicInst &I); 161 bool SelectSelect(const Instruction *I); 162 bool SelectRet(const Instruction *I); 163 bool SelectTrunc(const Instruction *I); 164 bool SelectIntExt(const Instruction *I); 165 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 166 167 // Utility routines. 168 private: 169 bool isTypeLegal(Type *Ty, MVT &VT); 170 bool isLoadTypeLegal(Type *Ty, MVT &VT); 171 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 172 bool isZExt); 173 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 174 unsigned Alignment = 0, bool isZExt = true, 175 bool allocReg = true); 176 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 177 unsigned Alignment = 0); 178 bool ARMComputeAddress(const Value *Obj, Address &Addr); 179 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 180 bool ARMIsMemCpySmall(uint64_t Len); 181 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 182 unsigned Alignment); 183 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 184 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 185 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 186 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 187 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 188 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 189 unsigned ARMSelectCallOp(bool UseReg); 190 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 191 192 // Call handling routines. 193 private: 194 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 195 bool Return, 196 bool isVarArg); 197 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 198 SmallVectorImpl<unsigned> &ArgRegs, 199 SmallVectorImpl<MVT> &ArgVTs, 200 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 201 SmallVectorImpl<unsigned> &RegArgs, 202 CallingConv::ID CC, 203 unsigned &NumBytes, 204 bool isVarArg); 205 unsigned getLibcallReg(const Twine &Name); 206 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 207 const Instruction *I, CallingConv::ID CC, 208 unsigned &NumBytes, bool isVarArg); 209 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 210 211 // OptionalDef handling routines. 212 private: 213 bool isARMNEONPred(const MachineInstr *MI); 214 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 215 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 216 void AddLoadStoreOperands(MVT VT, Address &Addr, 217 const MachineInstrBuilder &MIB, 218 unsigned Flags, bool useAM3); 219 }; 220 221 } // end anonymous namespace 222 223 #include "ARMGenCallingConv.inc" 224 225 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 226 // we don't care about implicit defs here, just places we'll need to add a 227 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 228 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 229 if (!MI->hasOptionalDef()) 230 return false; 231 232 // Look to see if our OptionalDef is defining CPSR or CCR. 233 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 234 const MachineOperand &MO = MI->getOperand(i); 235 if (!MO.isReg() || !MO.isDef()) continue; 236 if (MO.getReg() == ARM::CPSR) 237 *CPSR = true; 238 } 239 return true; 240 } 241 242 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 243 const MCInstrDesc &MCID = MI->getDesc(); 244 245 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 246 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 247 AFI->isThumb2Function()) 248 return MI->isPredicable(); 249 250 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 251 if (MCID.OpInfo[i].isPredicate()) 252 return true; 253 254 return false; 255 } 256 257 // If the machine is predicable go ahead and add the predicate operands, if 258 // it needs default CC operands add those. 259 // TODO: If we want to support thumb1 then we'll need to deal with optional 260 // CPSR defs that need to be added before the remaining operands. See s_cc_out 261 // for descriptions why. 262 const MachineInstrBuilder & 263 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 264 MachineInstr *MI = &*MIB; 265 266 // Do we use a predicate? or... 267 // Are we NEON in ARM mode and have a predicate operand? If so, I know 268 // we're not predicable but add it anyways. 269 if (isARMNEONPred(MI)) 270 AddDefaultPred(MIB); 271 272 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 273 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 274 bool CPSR = false; 275 if (DefinesOptionalPredicate(MI, &CPSR)) { 276 if (CPSR) 277 AddDefaultT1CC(MIB); 278 else 279 AddDefaultCC(MIB); 280 } 281 return MIB; 282 } 283 284 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 285 const TargetRegisterClass *RC, 286 unsigned Op0, bool Op0IsKill) { 287 unsigned ResultReg = createResultReg(RC); 288 const MCInstrDesc &II = TII.get(MachineInstOpcode); 289 290 // Make sure the input operand is sufficiently constrained to be legal 291 // for this instruction. 292 Op0 = constrainOperandRegClass(II, Op0, 1); 293 if (II.getNumDefs() >= 1) { 294 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 295 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 296 } else { 297 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 298 .addReg(Op0, Op0IsKill * RegState::Kill)); 299 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 300 TII.get(TargetOpcode::COPY), ResultReg) 301 .addReg(II.ImplicitDefs[0])); 302 } 303 return ResultReg; 304 } 305 306 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 307 const TargetRegisterClass *RC, 308 unsigned Op0, bool Op0IsKill, 309 unsigned Op1, bool Op1IsKill) { 310 unsigned ResultReg = createResultReg(RC); 311 const MCInstrDesc &II = TII.get(MachineInstOpcode); 312 313 // Make sure the input operands are sufficiently constrained to be legal 314 // for this instruction. 315 Op0 = constrainOperandRegClass(II, Op0, 1); 316 Op1 = constrainOperandRegClass(II, Op1, 2); 317 318 if (II.getNumDefs() >= 1) { 319 AddOptionalDefs( 320 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 321 .addReg(Op0, Op0IsKill * RegState::Kill) 322 .addReg(Op1, Op1IsKill * RegState::Kill)); 323 } else { 324 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 325 .addReg(Op0, Op0IsKill * RegState::Kill) 326 .addReg(Op1, Op1IsKill * RegState::Kill)); 327 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 328 TII.get(TargetOpcode::COPY), ResultReg) 329 .addReg(II.ImplicitDefs[0])); 330 } 331 return ResultReg; 332 } 333 334 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 335 const TargetRegisterClass *RC, 336 unsigned Op0, bool Op0IsKill, 337 unsigned Op1, bool Op1IsKill, 338 unsigned Op2, bool Op2IsKill) { 339 unsigned ResultReg = createResultReg(RC); 340 const MCInstrDesc &II = TII.get(MachineInstOpcode); 341 342 // Make sure the input operands are sufficiently constrained to be legal 343 // for this instruction. 344 Op0 = constrainOperandRegClass(II, Op0, 1); 345 Op1 = constrainOperandRegClass(II, Op1, 2); 346 Op2 = constrainOperandRegClass(II, Op1, 3); 347 348 if (II.getNumDefs() >= 1) { 349 AddOptionalDefs( 350 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 351 .addReg(Op0, Op0IsKill * RegState::Kill) 352 .addReg(Op1, Op1IsKill * RegState::Kill) 353 .addReg(Op2, Op2IsKill * RegState::Kill)); 354 } else { 355 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 356 .addReg(Op0, Op0IsKill * RegState::Kill) 357 .addReg(Op1, Op1IsKill * RegState::Kill) 358 .addReg(Op2, Op2IsKill * RegState::Kill)); 359 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 360 TII.get(TargetOpcode::COPY), ResultReg) 361 .addReg(II.ImplicitDefs[0])); 362 } 363 return ResultReg; 364 } 365 366 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 367 const TargetRegisterClass *RC, 368 unsigned Op0, bool Op0IsKill, 369 uint64_t Imm) { 370 unsigned ResultReg = createResultReg(RC); 371 const MCInstrDesc &II = TII.get(MachineInstOpcode); 372 373 // Make sure the input operand is sufficiently constrained to be legal 374 // for this instruction. 375 Op0 = constrainOperandRegClass(II, Op0, 1); 376 if (II.getNumDefs() >= 1) { 377 AddOptionalDefs( 378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 379 .addReg(Op0, Op0IsKill * RegState::Kill) 380 .addImm(Imm)); 381 } else { 382 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 383 .addReg(Op0, Op0IsKill * RegState::Kill) 384 .addImm(Imm)); 385 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 386 TII.get(TargetOpcode::COPY), ResultReg) 387 .addReg(II.ImplicitDefs[0])); 388 } 389 return ResultReg; 390 } 391 392 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 393 const TargetRegisterClass *RC, 394 unsigned Op0, bool Op0IsKill, 395 unsigned Op1, bool Op1IsKill, 396 uint64_t Imm) { 397 unsigned ResultReg = createResultReg(RC); 398 const MCInstrDesc &II = TII.get(MachineInstOpcode); 399 400 // Make sure the input operands are sufficiently constrained to be legal 401 // for this instruction. 402 Op0 = constrainOperandRegClass(II, Op0, 1); 403 Op1 = constrainOperandRegClass(II, Op1, 2); 404 if (II.getNumDefs() >= 1) { 405 AddOptionalDefs( 406 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 407 .addReg(Op0, Op0IsKill * RegState::Kill) 408 .addReg(Op1, Op1IsKill * RegState::Kill) 409 .addImm(Imm)); 410 } else { 411 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 412 .addReg(Op0, Op0IsKill * RegState::Kill) 413 .addReg(Op1, Op1IsKill * RegState::Kill) 414 .addImm(Imm)); 415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 416 TII.get(TargetOpcode::COPY), ResultReg) 417 .addReg(II.ImplicitDefs[0])); 418 } 419 return ResultReg; 420 } 421 422 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, 423 const TargetRegisterClass *RC, 424 uint64_t Imm) { 425 unsigned ResultReg = createResultReg(RC); 426 const MCInstrDesc &II = TII.get(MachineInstOpcode); 427 428 if (II.getNumDefs() >= 1) { 429 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 430 ResultReg).addImm(Imm)); 431 } else { 432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 433 .addImm(Imm)); 434 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 435 TII.get(TargetOpcode::COPY), ResultReg) 436 .addReg(II.ImplicitDefs[0])); 437 } 438 return ResultReg; 439 } 440 441 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 442 // checks from the various callers. 443 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 444 if (VT == MVT::f64) return 0; 445 446 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 447 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 448 TII.get(ARM::VMOVSR), MoveReg) 449 .addReg(SrcReg)); 450 return MoveReg; 451 } 452 453 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 454 if (VT == MVT::i64) return 0; 455 456 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 457 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 458 TII.get(ARM::VMOVRS), MoveReg) 459 .addReg(SrcReg)); 460 return MoveReg; 461 } 462 463 // For double width floating point we need to materialize two constants 464 // (the high and the low) into integer registers then use a move to get 465 // the combined constant into an FP reg. 466 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 467 const APFloat Val = CFP->getValueAPF(); 468 bool is64bit = VT == MVT::f64; 469 470 // This checks to see if we can use VFP3 instructions to materialize 471 // a constant, otherwise we have to go through the constant pool. 472 if (TLI.isFPImmLegal(Val, VT)) { 473 int Imm; 474 unsigned Opc; 475 if (is64bit) { 476 Imm = ARM_AM::getFP64Imm(Val); 477 Opc = ARM::FCONSTD; 478 } else { 479 Imm = ARM_AM::getFP32Imm(Val); 480 Opc = ARM::FCONSTS; 481 } 482 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 483 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 484 TII.get(Opc), DestReg).addImm(Imm)); 485 return DestReg; 486 } 487 488 // Require VFP2 for loading fp constants. 489 if (!Subtarget->hasVFP2()) return false; 490 491 // MachineConstantPool wants an explicit alignment. 492 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 493 if (Align == 0) { 494 // TODO: Figure out if this is correct. 495 Align = DL.getTypeAllocSize(CFP->getType()); 496 } 497 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 498 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 499 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 500 501 // The extra reg is for addrmode5. 502 AddOptionalDefs( 503 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 504 .addConstantPoolIndex(Idx) 505 .addReg(0)); 506 return DestReg; 507 } 508 509 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 510 511 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 512 return false; 513 514 // If we can do this in a single instruction without a constant pool entry 515 // do so now. 516 const ConstantInt *CI = cast<ConstantInt>(C); 517 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 518 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 519 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 520 &ARM::GPRRegClass; 521 unsigned ImmReg = createResultReg(RC); 522 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 523 TII.get(Opc), ImmReg) 524 .addImm(CI->getZExtValue())); 525 return ImmReg; 526 } 527 528 // Use MVN to emit negative constants. 529 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 530 unsigned Imm = (unsigned)~(CI->getSExtValue()); 531 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 532 (ARM_AM::getSOImmVal(Imm) != -1); 533 if (UseImm) { 534 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 535 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 536 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 537 TII.get(Opc), ImmReg) 538 .addImm(Imm)); 539 return ImmReg; 540 } 541 } 542 543 // Load from constant pool. For now 32-bit only. 544 if (VT != MVT::i32) 545 return false; 546 547 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 548 549 // MachineConstantPool wants an explicit alignment. 550 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 551 if (Align == 0) { 552 // TODO: Figure out if this is correct. 553 Align = DL.getTypeAllocSize(C->getType()); 554 } 555 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 556 557 if (isThumb2) 558 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 559 TII.get(ARM::t2LDRpci), DestReg) 560 .addConstantPoolIndex(Idx)); 561 else { 562 // The extra immediate is for addrmode2. 563 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 564 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 565 TII.get(ARM::LDRcp), DestReg) 566 .addConstantPoolIndex(Idx) 567 .addImm(0)); 568 } 569 570 return DestReg; 571 } 572 573 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 574 // For now 32-bit only. 575 if (VT != MVT::i32) return 0; 576 577 Reloc::Model RelocM = TM.getRelocationModel(); 578 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 579 const TargetRegisterClass *RC = isThumb2 ? 580 (const TargetRegisterClass*)&ARM::rGPRRegClass : 581 (const TargetRegisterClass*)&ARM::GPRRegClass; 582 unsigned DestReg = createResultReg(RC); 583 584 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 585 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 586 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 587 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 588 589 // Use movw+movt when possible, it avoids constant pool entries. 590 // Non-darwin targets only support static movt relocations in FastISel. 591 if (Subtarget->useMovt() && 592 (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) { 593 unsigned Opc; 594 unsigned char TF = 0; 595 if (Subtarget->isTargetMachO()) 596 TF = ARMII::MO_NONLAZY; 597 598 switch (RelocM) { 599 case Reloc::PIC_: 600 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 601 break; 602 default: 603 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 604 break; 605 } 606 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 607 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 608 } else { 609 // MachineConstantPool wants an explicit alignment. 610 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 611 if (Align == 0) { 612 // TODO: Figure out if this is correct. 613 Align = DL.getTypeAllocSize(GV->getType()); 614 } 615 616 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 617 return ARMLowerPICELF(GV, Align, VT); 618 619 // Grab index. 620 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 621 (Subtarget->isThumb() ? 4 : 8); 622 unsigned Id = AFI->createPICLabelUId(); 623 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 624 ARMCP::CPValue, 625 PCAdj); 626 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 627 628 // Load value. 629 MachineInstrBuilder MIB; 630 if (isThumb2) { 631 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 632 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 633 DestReg).addConstantPoolIndex(Idx); 634 if (RelocM == Reloc::PIC_) 635 MIB.addImm(Id); 636 AddOptionalDefs(MIB); 637 } else { 638 // The extra immediate is for addrmode2. 639 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 640 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 641 TII.get(ARM::LDRcp), DestReg) 642 .addConstantPoolIndex(Idx) 643 .addImm(0); 644 AddOptionalDefs(MIB); 645 646 if (RelocM == Reloc::PIC_) { 647 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 648 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 649 650 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 651 DbgLoc, TII.get(Opc), NewDestReg) 652 .addReg(DestReg) 653 .addImm(Id); 654 AddOptionalDefs(MIB); 655 return NewDestReg; 656 } 657 } 658 } 659 660 if (IsIndirect) { 661 MachineInstrBuilder MIB; 662 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 663 if (isThumb2) 664 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 665 TII.get(ARM::t2LDRi12), NewDestReg) 666 .addReg(DestReg) 667 .addImm(0); 668 else 669 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 670 TII.get(ARM::LDRi12), NewDestReg) 671 .addReg(DestReg) 672 .addImm(0); 673 DestReg = NewDestReg; 674 AddOptionalDefs(MIB); 675 } 676 677 return DestReg; 678 } 679 680 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { 681 EVT CEVT = TLI.getValueType(C->getType(), true); 682 683 // Only handle simple types. 684 if (!CEVT.isSimple()) return 0; 685 MVT VT = CEVT.getSimpleVT(); 686 687 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 688 return ARMMaterializeFP(CFP, VT); 689 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 690 return ARMMaterializeGV(GV, VT); 691 else if (isa<ConstantInt>(C)) 692 return ARMMaterializeInt(C, VT); 693 694 return 0; 695 } 696 697 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 698 699 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 700 // Don't handle dynamic allocas. 701 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 702 703 MVT VT; 704 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 705 706 DenseMap<const AllocaInst*, int>::iterator SI = 707 FuncInfo.StaticAllocaMap.find(AI); 708 709 // This will get lowered later into the correct offsets and registers 710 // via rewriteXFrameIndex. 711 if (SI != FuncInfo.StaticAllocaMap.end()) { 712 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 713 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 714 unsigned ResultReg = createResultReg(RC); 715 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 716 717 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 718 TII.get(Opc), ResultReg) 719 .addFrameIndex(SI->second) 720 .addImm(0)); 721 return ResultReg; 722 } 723 724 return 0; 725 } 726 727 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 728 EVT evt = TLI.getValueType(Ty, true); 729 730 // Only handle simple types. 731 if (evt == MVT::Other || !evt.isSimple()) return false; 732 VT = evt.getSimpleVT(); 733 734 // Handle all legal types, i.e. a register that will directly hold this 735 // value. 736 return TLI.isTypeLegal(VT); 737 } 738 739 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 740 if (isTypeLegal(Ty, VT)) return true; 741 742 // If this is a type than can be sign or zero-extended to a basic operation 743 // go ahead and accept it now. 744 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 745 return true; 746 747 return false; 748 } 749 750 // Computes the address to get to an object. 751 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 752 // Some boilerplate from the X86 FastISel. 753 const User *U = nullptr; 754 unsigned Opcode = Instruction::UserOp1; 755 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 756 // Don't walk into other basic blocks unless the object is an alloca from 757 // another block, otherwise it may not have a virtual register assigned. 758 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 759 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 760 Opcode = I->getOpcode(); 761 U = I; 762 } 763 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 764 Opcode = C->getOpcode(); 765 U = C; 766 } 767 768 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 769 if (Ty->getAddressSpace() > 255) 770 // Fast instruction selection doesn't support the special 771 // address spaces. 772 return false; 773 774 switch (Opcode) { 775 default: 776 break; 777 case Instruction::BitCast: 778 // Look through bitcasts. 779 return ARMComputeAddress(U->getOperand(0), Addr); 780 case Instruction::IntToPtr: 781 // Look past no-op inttoptrs. 782 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 783 return ARMComputeAddress(U->getOperand(0), Addr); 784 break; 785 case Instruction::PtrToInt: 786 // Look past no-op ptrtoints. 787 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 788 return ARMComputeAddress(U->getOperand(0), Addr); 789 break; 790 case Instruction::GetElementPtr: { 791 Address SavedAddr = Addr; 792 int TmpOffset = Addr.Offset; 793 794 // Iterate through the GEP folding the constants into offsets where 795 // we can. 796 gep_type_iterator GTI = gep_type_begin(U); 797 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 798 i != e; ++i, ++GTI) { 799 const Value *Op = *i; 800 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 801 const StructLayout *SL = DL.getStructLayout(STy); 802 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 803 TmpOffset += SL->getElementOffset(Idx); 804 } else { 805 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 806 for (;;) { 807 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 808 // Constant-offset addressing. 809 TmpOffset += CI->getSExtValue() * S; 810 break; 811 } 812 if (canFoldAddIntoGEP(U, Op)) { 813 // A compatible add with a constant operand. Fold the constant. 814 ConstantInt *CI = 815 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 816 TmpOffset += CI->getSExtValue() * S; 817 // Iterate on the other operand. 818 Op = cast<AddOperator>(Op)->getOperand(0); 819 continue; 820 } 821 // Unsupported 822 goto unsupported_gep; 823 } 824 } 825 } 826 827 // Try to grab the base operand now. 828 Addr.Offset = TmpOffset; 829 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 830 831 // We failed, restore everything and try the other options. 832 Addr = SavedAddr; 833 834 unsupported_gep: 835 break; 836 } 837 case Instruction::Alloca: { 838 const AllocaInst *AI = cast<AllocaInst>(Obj); 839 DenseMap<const AllocaInst*, int>::iterator SI = 840 FuncInfo.StaticAllocaMap.find(AI); 841 if (SI != FuncInfo.StaticAllocaMap.end()) { 842 Addr.BaseType = Address::FrameIndexBase; 843 Addr.Base.FI = SI->second; 844 return true; 845 } 846 break; 847 } 848 } 849 850 // Try to get this in a register if nothing else has worked. 851 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 852 return Addr.Base.Reg != 0; 853 } 854 855 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 856 bool needsLowering = false; 857 switch (VT.SimpleTy) { 858 default: llvm_unreachable("Unhandled load/store type!"); 859 case MVT::i1: 860 case MVT::i8: 861 case MVT::i16: 862 case MVT::i32: 863 if (!useAM3) { 864 // Integer loads/stores handle 12-bit offsets. 865 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 866 // Handle negative offsets. 867 if (needsLowering && isThumb2) 868 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 869 Addr.Offset > -256); 870 } else { 871 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 872 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 873 } 874 break; 875 case MVT::f32: 876 case MVT::f64: 877 // Floating point operands handle 8-bit offsets. 878 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 879 break; 880 } 881 882 // If this is a stack pointer and the offset needs to be simplified then 883 // put the alloca address into a register, set the base type back to 884 // register and continue. This should almost never happen. 885 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 886 const TargetRegisterClass *RC = isThumb2 ? 887 (const TargetRegisterClass*)&ARM::tGPRRegClass : 888 (const TargetRegisterClass*)&ARM::GPRRegClass; 889 unsigned ResultReg = createResultReg(RC); 890 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 891 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 892 TII.get(Opc), ResultReg) 893 .addFrameIndex(Addr.Base.FI) 894 .addImm(0)); 895 Addr.Base.Reg = ResultReg; 896 Addr.BaseType = Address::RegBase; 897 } 898 899 // Since the offset is too large for the load/store instruction 900 // get the reg+offset into a register. 901 if (needsLowering) { 902 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 903 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 904 Addr.Offset = 0; 905 } 906 } 907 908 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 909 const MachineInstrBuilder &MIB, 910 unsigned Flags, bool useAM3) { 911 // addrmode5 output depends on the selection dag addressing dividing the 912 // offset by 4 that it then later multiplies. Do this here as well. 913 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 914 Addr.Offset /= 4; 915 916 // Frame base works a bit differently. Handle it separately. 917 if (Addr.BaseType == Address::FrameIndexBase) { 918 int FI = Addr.Base.FI; 919 int Offset = Addr.Offset; 920 MachineMemOperand *MMO = 921 FuncInfo.MF->getMachineMemOperand( 922 MachinePointerInfo::getFixedStack(FI, Offset), 923 Flags, 924 MFI.getObjectSize(FI), 925 MFI.getObjectAlignment(FI)); 926 // Now add the rest of the operands. 927 MIB.addFrameIndex(FI); 928 929 // ARM halfword load/stores and signed byte loads need an additional 930 // operand. 931 if (useAM3) { 932 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 933 MIB.addReg(0); 934 MIB.addImm(Imm); 935 } else { 936 MIB.addImm(Addr.Offset); 937 } 938 MIB.addMemOperand(MMO); 939 } else { 940 // Now add the rest of the operands. 941 MIB.addReg(Addr.Base.Reg); 942 943 // ARM halfword load/stores and signed byte loads need an additional 944 // operand. 945 if (useAM3) { 946 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 947 MIB.addReg(0); 948 MIB.addImm(Imm); 949 } else { 950 MIB.addImm(Addr.Offset); 951 } 952 } 953 AddOptionalDefs(MIB); 954 } 955 956 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 957 unsigned Alignment, bool isZExt, bool allocReg) { 958 unsigned Opc; 959 bool useAM3 = false; 960 bool needVMOV = false; 961 const TargetRegisterClass *RC; 962 switch (VT.SimpleTy) { 963 // This is mostly going to be Neon/vector support. 964 default: return false; 965 case MVT::i1: 966 case MVT::i8: 967 if (isThumb2) { 968 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 969 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 970 else 971 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 972 } else { 973 if (isZExt) { 974 Opc = ARM::LDRBi12; 975 } else { 976 Opc = ARM::LDRSB; 977 useAM3 = true; 978 } 979 } 980 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 981 break; 982 case MVT::i16: 983 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 984 return false; 985 986 if (isThumb2) { 987 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 988 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 989 else 990 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 991 } else { 992 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 993 useAM3 = true; 994 } 995 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 996 break; 997 case MVT::i32: 998 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 999 return false; 1000 1001 if (isThumb2) { 1002 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1003 Opc = ARM::t2LDRi8; 1004 else 1005 Opc = ARM::t2LDRi12; 1006 } else { 1007 Opc = ARM::LDRi12; 1008 } 1009 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1010 break; 1011 case MVT::f32: 1012 if (!Subtarget->hasVFP2()) return false; 1013 // Unaligned loads need special handling. Floats require word-alignment. 1014 if (Alignment && Alignment < 4) { 1015 needVMOV = true; 1016 VT = MVT::i32; 1017 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1018 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1019 } else { 1020 Opc = ARM::VLDRS; 1021 RC = TLI.getRegClassFor(VT); 1022 } 1023 break; 1024 case MVT::f64: 1025 if (!Subtarget->hasVFP2()) return false; 1026 // FIXME: Unaligned loads need special handling. Doublewords require 1027 // word-alignment. 1028 if (Alignment && Alignment < 4) 1029 return false; 1030 1031 Opc = ARM::VLDRD; 1032 RC = TLI.getRegClassFor(VT); 1033 break; 1034 } 1035 // Simplify this down to something we can handle. 1036 ARMSimplifyAddress(Addr, VT, useAM3); 1037 1038 // Create the base instruction, then add the operands. 1039 if (allocReg) 1040 ResultReg = createResultReg(RC); 1041 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1042 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1043 TII.get(Opc), ResultReg); 1044 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1045 1046 // If we had an unaligned load of a float we've converted it to an regular 1047 // load. Now we must move from the GRP to the FP register. 1048 if (needVMOV) { 1049 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1050 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1051 TII.get(ARM::VMOVSR), MoveReg) 1052 .addReg(ResultReg)); 1053 ResultReg = MoveReg; 1054 } 1055 return true; 1056 } 1057 1058 bool ARMFastISel::SelectLoad(const Instruction *I) { 1059 // Atomic loads need special handling. 1060 if (cast<LoadInst>(I)->isAtomic()) 1061 return false; 1062 1063 // Verify we have a legal type before going any further. 1064 MVT VT; 1065 if (!isLoadTypeLegal(I->getType(), VT)) 1066 return false; 1067 1068 // See if we can handle this address. 1069 Address Addr; 1070 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1071 1072 unsigned ResultReg; 1073 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1074 return false; 1075 UpdateValueMap(I, ResultReg); 1076 return true; 1077 } 1078 1079 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1080 unsigned Alignment) { 1081 unsigned StrOpc; 1082 bool useAM3 = false; 1083 switch (VT.SimpleTy) { 1084 // This is mostly going to be Neon/vector support. 1085 default: return false; 1086 case MVT::i1: { 1087 unsigned Res = createResultReg(isThumb2 ? 1088 (const TargetRegisterClass*)&ARM::tGPRRegClass : 1089 (const TargetRegisterClass*)&ARM::GPRRegClass); 1090 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1091 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1092 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1093 TII.get(Opc), Res) 1094 .addReg(SrcReg).addImm(1)); 1095 SrcReg = Res; 1096 } // Fallthrough here. 1097 case MVT::i8: 1098 if (isThumb2) { 1099 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1100 StrOpc = ARM::t2STRBi8; 1101 else 1102 StrOpc = ARM::t2STRBi12; 1103 } else { 1104 StrOpc = ARM::STRBi12; 1105 } 1106 break; 1107 case MVT::i16: 1108 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1109 return false; 1110 1111 if (isThumb2) { 1112 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1113 StrOpc = ARM::t2STRHi8; 1114 else 1115 StrOpc = ARM::t2STRHi12; 1116 } else { 1117 StrOpc = ARM::STRH; 1118 useAM3 = true; 1119 } 1120 break; 1121 case MVT::i32: 1122 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1123 return false; 1124 1125 if (isThumb2) { 1126 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1127 StrOpc = ARM::t2STRi8; 1128 else 1129 StrOpc = ARM::t2STRi12; 1130 } else { 1131 StrOpc = ARM::STRi12; 1132 } 1133 break; 1134 case MVT::f32: 1135 if (!Subtarget->hasVFP2()) return false; 1136 // Unaligned stores need special handling. Floats require word-alignment. 1137 if (Alignment && Alignment < 4) { 1138 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1139 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1140 TII.get(ARM::VMOVRS), MoveReg) 1141 .addReg(SrcReg)); 1142 SrcReg = MoveReg; 1143 VT = MVT::i32; 1144 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1145 } else { 1146 StrOpc = ARM::VSTRS; 1147 } 1148 break; 1149 case MVT::f64: 1150 if (!Subtarget->hasVFP2()) return false; 1151 // FIXME: Unaligned stores need special handling. Doublewords require 1152 // word-alignment. 1153 if (Alignment && Alignment < 4) 1154 return false; 1155 1156 StrOpc = ARM::VSTRD; 1157 break; 1158 } 1159 // Simplify this down to something we can handle. 1160 ARMSimplifyAddress(Addr, VT, useAM3); 1161 1162 // Create the base instruction, then add the operands. 1163 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1164 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1165 TII.get(StrOpc)) 1166 .addReg(SrcReg); 1167 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1168 return true; 1169 } 1170 1171 bool ARMFastISel::SelectStore(const Instruction *I) { 1172 Value *Op0 = I->getOperand(0); 1173 unsigned SrcReg = 0; 1174 1175 // Atomic stores need special handling. 1176 if (cast<StoreInst>(I)->isAtomic()) 1177 return false; 1178 1179 // Verify we have a legal type before going any further. 1180 MVT VT; 1181 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1182 return false; 1183 1184 // Get the value to be stored into a register. 1185 SrcReg = getRegForValue(Op0); 1186 if (SrcReg == 0) return false; 1187 1188 // See if we can handle this address. 1189 Address Addr; 1190 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1191 return false; 1192 1193 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1194 return false; 1195 return true; 1196 } 1197 1198 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1199 switch (Pred) { 1200 // Needs two compares... 1201 case CmpInst::FCMP_ONE: 1202 case CmpInst::FCMP_UEQ: 1203 default: 1204 // AL is our "false" for now. The other two need more compares. 1205 return ARMCC::AL; 1206 case CmpInst::ICMP_EQ: 1207 case CmpInst::FCMP_OEQ: 1208 return ARMCC::EQ; 1209 case CmpInst::ICMP_SGT: 1210 case CmpInst::FCMP_OGT: 1211 return ARMCC::GT; 1212 case CmpInst::ICMP_SGE: 1213 case CmpInst::FCMP_OGE: 1214 return ARMCC::GE; 1215 case CmpInst::ICMP_UGT: 1216 case CmpInst::FCMP_UGT: 1217 return ARMCC::HI; 1218 case CmpInst::FCMP_OLT: 1219 return ARMCC::MI; 1220 case CmpInst::ICMP_ULE: 1221 case CmpInst::FCMP_OLE: 1222 return ARMCC::LS; 1223 case CmpInst::FCMP_ORD: 1224 return ARMCC::VC; 1225 case CmpInst::FCMP_UNO: 1226 return ARMCC::VS; 1227 case CmpInst::FCMP_UGE: 1228 return ARMCC::PL; 1229 case CmpInst::ICMP_SLT: 1230 case CmpInst::FCMP_ULT: 1231 return ARMCC::LT; 1232 case CmpInst::ICMP_SLE: 1233 case CmpInst::FCMP_ULE: 1234 return ARMCC::LE; 1235 case CmpInst::FCMP_UNE: 1236 case CmpInst::ICMP_NE: 1237 return ARMCC::NE; 1238 case CmpInst::ICMP_UGE: 1239 return ARMCC::HS; 1240 case CmpInst::ICMP_ULT: 1241 return ARMCC::LO; 1242 } 1243 } 1244 1245 bool ARMFastISel::SelectBranch(const Instruction *I) { 1246 const BranchInst *BI = cast<BranchInst>(I); 1247 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1248 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1249 1250 // Simple branch support. 1251 1252 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1253 // behavior. 1254 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1255 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1256 1257 // Get the compare predicate. 1258 // Try to take advantage of fallthrough opportunities. 1259 CmpInst::Predicate Predicate = CI->getPredicate(); 1260 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1261 std::swap(TBB, FBB); 1262 Predicate = CmpInst::getInversePredicate(Predicate); 1263 } 1264 1265 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1266 1267 // We may not handle every CC for now. 1268 if (ARMPred == ARMCC::AL) return false; 1269 1270 // Emit the compare. 1271 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1272 return false; 1273 1274 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1275 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1276 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1277 FastEmitBranch(FBB, DbgLoc); 1278 FuncInfo.MBB->addSuccessor(TBB); 1279 return true; 1280 } 1281 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1282 MVT SourceVT; 1283 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1284 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1285 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1286 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1287 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1288 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1289 TII.get(TstOpc)) 1290 .addReg(OpReg).addImm(1)); 1291 1292 unsigned CCMode = ARMCC::NE; 1293 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1294 std::swap(TBB, FBB); 1295 CCMode = ARMCC::EQ; 1296 } 1297 1298 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1300 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1301 1302 FastEmitBranch(FBB, DbgLoc); 1303 FuncInfo.MBB->addSuccessor(TBB); 1304 return true; 1305 } 1306 } else if (const ConstantInt *CI = 1307 dyn_cast<ConstantInt>(BI->getCondition())) { 1308 uint64_t Imm = CI->getZExtValue(); 1309 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1310 FastEmitBranch(Target, DbgLoc); 1311 return true; 1312 } 1313 1314 unsigned CmpReg = getRegForValue(BI->getCondition()); 1315 if (CmpReg == 0) return false; 1316 1317 // We've been divorced from our compare! Our block was split, and 1318 // now our compare lives in a predecessor block. We musn't 1319 // re-compare here, as the children of the compare aren't guaranteed 1320 // live across the block boundary (we *could* check for this). 1321 // Regardless, the compare has been done in the predecessor block, 1322 // and it left a value for us in a virtual register. Ergo, we test 1323 // the one-bit value left in the virtual register. 1324 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1325 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1326 AddOptionalDefs( 1327 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1328 .addReg(CmpReg) 1329 .addImm(1)); 1330 1331 unsigned CCMode = ARMCC::NE; 1332 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1333 std::swap(TBB, FBB); 1334 CCMode = ARMCC::EQ; 1335 } 1336 1337 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1338 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1339 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1340 FastEmitBranch(FBB, DbgLoc); 1341 FuncInfo.MBB->addSuccessor(TBB); 1342 return true; 1343 } 1344 1345 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1346 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1347 if (AddrReg == 0) return false; 1348 1349 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1350 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1351 TII.get(Opc)).addReg(AddrReg)); 1352 1353 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1354 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1355 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1356 1357 return true; 1358 } 1359 1360 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1361 bool isZExt) { 1362 Type *Ty = Src1Value->getType(); 1363 EVT SrcEVT = TLI.getValueType(Ty, true); 1364 if (!SrcEVT.isSimple()) return false; 1365 MVT SrcVT = SrcEVT.getSimpleVT(); 1366 1367 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1368 if (isFloat && !Subtarget->hasVFP2()) 1369 return false; 1370 1371 // Check to see if the 2nd operand is a constant that we can encode directly 1372 // in the compare. 1373 int Imm = 0; 1374 bool UseImm = false; 1375 bool isNegativeImm = false; 1376 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1377 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1378 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1379 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1380 SrcVT == MVT::i1) { 1381 const APInt &CIVal = ConstInt->getValue(); 1382 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1383 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1384 // then a cmn, because there is no way to represent 2147483648 as a 1385 // signed 32-bit int. 1386 if (Imm < 0 && Imm != (int)0x80000000) { 1387 isNegativeImm = true; 1388 Imm = -Imm; 1389 } 1390 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1391 (ARM_AM::getSOImmVal(Imm) != -1); 1392 } 1393 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1394 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1395 if (ConstFP->isZero() && !ConstFP->isNegative()) 1396 UseImm = true; 1397 } 1398 1399 unsigned CmpOpc; 1400 bool isICmp = true; 1401 bool needsExt = false; 1402 switch (SrcVT.SimpleTy) { 1403 default: return false; 1404 // TODO: Verify compares. 1405 case MVT::f32: 1406 isICmp = false; 1407 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1408 break; 1409 case MVT::f64: 1410 isICmp = false; 1411 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1412 break; 1413 case MVT::i1: 1414 case MVT::i8: 1415 case MVT::i16: 1416 needsExt = true; 1417 // Intentional fall-through. 1418 case MVT::i32: 1419 if (isThumb2) { 1420 if (!UseImm) 1421 CmpOpc = ARM::t2CMPrr; 1422 else 1423 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1424 } else { 1425 if (!UseImm) 1426 CmpOpc = ARM::CMPrr; 1427 else 1428 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1429 } 1430 break; 1431 } 1432 1433 unsigned SrcReg1 = getRegForValue(Src1Value); 1434 if (SrcReg1 == 0) return false; 1435 1436 unsigned SrcReg2 = 0; 1437 if (!UseImm) { 1438 SrcReg2 = getRegForValue(Src2Value); 1439 if (SrcReg2 == 0) return false; 1440 } 1441 1442 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1443 if (needsExt) { 1444 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1445 if (SrcReg1 == 0) return false; 1446 if (!UseImm) { 1447 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1448 if (SrcReg2 == 0) return false; 1449 } 1450 } 1451 1452 const MCInstrDesc &II = TII.get(CmpOpc); 1453 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1454 if (!UseImm) { 1455 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1456 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1457 .addReg(SrcReg1).addReg(SrcReg2)); 1458 } else { 1459 MachineInstrBuilder MIB; 1460 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1461 .addReg(SrcReg1); 1462 1463 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1464 if (isICmp) 1465 MIB.addImm(Imm); 1466 AddOptionalDefs(MIB); 1467 } 1468 1469 // For floating point we need to move the result to a comparison register 1470 // that we can then use for branches. 1471 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1472 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1473 TII.get(ARM::FMSTAT))); 1474 return true; 1475 } 1476 1477 bool ARMFastISel::SelectCmp(const Instruction *I) { 1478 const CmpInst *CI = cast<CmpInst>(I); 1479 1480 // Get the compare predicate. 1481 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1482 1483 // We may not handle every CC for now. 1484 if (ARMPred == ARMCC::AL) return false; 1485 1486 // Emit the compare. 1487 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1488 return false; 1489 1490 // Now set a register based on the comparison. Explicitly set the predicates 1491 // here. 1492 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1493 const TargetRegisterClass *RC = isThumb2 ? 1494 (const TargetRegisterClass*)&ARM::rGPRRegClass : 1495 (const TargetRegisterClass*)&ARM::GPRRegClass; 1496 unsigned DestReg = createResultReg(RC); 1497 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1498 unsigned ZeroReg = TargetMaterializeConstant(Zero); 1499 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1500 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1501 .addReg(ZeroReg).addImm(1) 1502 .addImm(ARMPred).addReg(ARM::CPSR); 1503 1504 UpdateValueMap(I, DestReg); 1505 return true; 1506 } 1507 1508 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1509 // Make sure we have VFP and that we're extending float to double. 1510 if (!Subtarget->hasVFP2()) return false; 1511 1512 Value *V = I->getOperand(0); 1513 if (!I->getType()->isDoubleTy() || 1514 !V->getType()->isFloatTy()) return false; 1515 1516 unsigned Op = getRegForValue(V); 1517 if (Op == 0) return false; 1518 1519 unsigned Result = createResultReg(&ARM::DPRRegClass); 1520 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1521 TII.get(ARM::VCVTDS), Result) 1522 .addReg(Op)); 1523 UpdateValueMap(I, Result); 1524 return true; 1525 } 1526 1527 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1528 // Make sure we have VFP and that we're truncating double to float. 1529 if (!Subtarget->hasVFP2()) return false; 1530 1531 Value *V = I->getOperand(0); 1532 if (!(I->getType()->isFloatTy() && 1533 V->getType()->isDoubleTy())) return false; 1534 1535 unsigned Op = getRegForValue(V); 1536 if (Op == 0) return false; 1537 1538 unsigned Result = createResultReg(&ARM::SPRRegClass); 1539 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1540 TII.get(ARM::VCVTSD), Result) 1541 .addReg(Op)); 1542 UpdateValueMap(I, Result); 1543 return true; 1544 } 1545 1546 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1547 // Make sure we have VFP. 1548 if (!Subtarget->hasVFP2()) return false; 1549 1550 MVT DstVT; 1551 Type *Ty = I->getType(); 1552 if (!isTypeLegal(Ty, DstVT)) 1553 return false; 1554 1555 Value *Src = I->getOperand(0); 1556 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 1557 if (!SrcEVT.isSimple()) 1558 return false; 1559 MVT SrcVT = SrcEVT.getSimpleVT(); 1560 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1561 return false; 1562 1563 unsigned SrcReg = getRegForValue(Src); 1564 if (SrcReg == 0) return false; 1565 1566 // Handle sign-extension. 1567 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1568 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1569 /*isZExt*/!isSigned); 1570 if (SrcReg == 0) return false; 1571 } 1572 1573 // The conversion routine works on fp-reg to fp-reg and the operand above 1574 // was an integer, move it to the fp registers if possible. 1575 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1576 if (FP == 0) return false; 1577 1578 unsigned Opc; 1579 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1580 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1581 else return false; 1582 1583 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1584 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1585 TII.get(Opc), ResultReg).addReg(FP)); 1586 UpdateValueMap(I, ResultReg); 1587 return true; 1588 } 1589 1590 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1591 // Make sure we have VFP. 1592 if (!Subtarget->hasVFP2()) return false; 1593 1594 MVT DstVT; 1595 Type *RetTy = I->getType(); 1596 if (!isTypeLegal(RetTy, DstVT)) 1597 return false; 1598 1599 unsigned Op = getRegForValue(I->getOperand(0)); 1600 if (Op == 0) return false; 1601 1602 unsigned Opc; 1603 Type *OpTy = I->getOperand(0)->getType(); 1604 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1605 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1606 else return false; 1607 1608 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1609 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1610 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1611 TII.get(Opc), ResultReg).addReg(Op)); 1612 1613 // This result needs to be in an integer register, but the conversion only 1614 // takes place in fp-regs. 1615 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1616 if (IntReg == 0) return false; 1617 1618 UpdateValueMap(I, IntReg); 1619 return true; 1620 } 1621 1622 bool ARMFastISel::SelectSelect(const Instruction *I) { 1623 MVT VT; 1624 if (!isTypeLegal(I->getType(), VT)) 1625 return false; 1626 1627 // Things need to be register sized for register moves. 1628 if (VT != MVT::i32) return false; 1629 1630 unsigned CondReg = getRegForValue(I->getOperand(0)); 1631 if (CondReg == 0) return false; 1632 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1633 if (Op1Reg == 0) return false; 1634 1635 // Check to see if we can use an immediate in the conditional move. 1636 int Imm = 0; 1637 bool UseImm = false; 1638 bool isNegativeImm = false; 1639 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1640 assert (VT == MVT::i32 && "Expecting an i32."); 1641 Imm = (int)ConstInt->getValue().getZExtValue(); 1642 if (Imm < 0) { 1643 isNegativeImm = true; 1644 Imm = ~Imm; 1645 } 1646 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1647 (ARM_AM::getSOImmVal(Imm) != -1); 1648 } 1649 1650 unsigned Op2Reg = 0; 1651 if (!UseImm) { 1652 Op2Reg = getRegForValue(I->getOperand(2)); 1653 if (Op2Reg == 0) return false; 1654 } 1655 1656 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 1657 CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0); 1658 AddOptionalDefs( 1659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) 1660 .addReg(CondReg) 1661 .addImm(0)); 1662 1663 unsigned MovCCOpc; 1664 const TargetRegisterClass *RC; 1665 if (!UseImm) { 1666 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1667 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1668 } else { 1669 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1670 if (!isNegativeImm) 1671 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1672 else 1673 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1674 } 1675 unsigned ResultReg = createResultReg(RC); 1676 if (!UseImm) { 1677 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1678 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1680 ResultReg) 1681 .addReg(Op2Reg) 1682 .addReg(Op1Reg) 1683 .addImm(ARMCC::NE) 1684 .addReg(ARM::CPSR); 1685 } else { 1686 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1687 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1688 ResultReg) 1689 .addReg(Op1Reg) 1690 .addImm(Imm) 1691 .addImm(ARMCC::EQ) 1692 .addReg(ARM::CPSR); 1693 } 1694 UpdateValueMap(I, ResultReg); 1695 return true; 1696 } 1697 1698 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1699 MVT VT; 1700 Type *Ty = I->getType(); 1701 if (!isTypeLegal(Ty, VT)) 1702 return false; 1703 1704 // If we have integer div support we should have selected this automagically. 1705 // In case we have a real miss go ahead and return false and we'll pick 1706 // it up later. 1707 if (Subtarget->hasDivide()) return false; 1708 1709 // Otherwise emit a libcall. 1710 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1711 if (VT == MVT::i8) 1712 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1713 else if (VT == MVT::i16) 1714 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1715 else if (VT == MVT::i32) 1716 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1717 else if (VT == MVT::i64) 1718 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1719 else if (VT == MVT::i128) 1720 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1721 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1722 1723 return ARMEmitLibcall(I, LC); 1724 } 1725 1726 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1727 MVT VT; 1728 Type *Ty = I->getType(); 1729 if (!isTypeLegal(Ty, VT)) 1730 return false; 1731 1732 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1733 if (VT == MVT::i8) 1734 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1735 else if (VT == MVT::i16) 1736 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1737 else if (VT == MVT::i32) 1738 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1739 else if (VT == MVT::i64) 1740 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1741 else if (VT == MVT::i128) 1742 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1743 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1744 1745 return ARMEmitLibcall(I, LC); 1746 } 1747 1748 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1749 EVT DestVT = TLI.getValueType(I->getType(), true); 1750 1751 // We can get here in the case when we have a binary operation on a non-legal 1752 // type and the target independent selector doesn't know how to handle it. 1753 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1754 return false; 1755 1756 unsigned Opc; 1757 switch (ISDOpcode) { 1758 default: return false; 1759 case ISD::ADD: 1760 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1761 break; 1762 case ISD::OR: 1763 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1764 break; 1765 case ISD::SUB: 1766 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1767 break; 1768 } 1769 1770 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1771 if (SrcReg1 == 0) return false; 1772 1773 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1774 // in the instruction, rather then materializing the value in a register. 1775 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1776 if (SrcReg2 == 0) return false; 1777 1778 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1779 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1780 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1781 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1782 TII.get(Opc), ResultReg) 1783 .addReg(SrcReg1).addReg(SrcReg2)); 1784 UpdateValueMap(I, ResultReg); 1785 return true; 1786 } 1787 1788 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1789 EVT FPVT = TLI.getValueType(I->getType(), true); 1790 if (!FPVT.isSimple()) return false; 1791 MVT VT = FPVT.getSimpleVT(); 1792 1793 // We can get here in the case when we want to use NEON for our fp 1794 // operations, but can't figure out how to. Just use the vfp instructions 1795 // if we have them. 1796 // FIXME: It'd be nice to use NEON instructions. 1797 Type *Ty = I->getType(); 1798 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1799 if (isFloat && !Subtarget->hasVFP2()) 1800 return false; 1801 1802 unsigned Opc; 1803 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1804 switch (ISDOpcode) { 1805 default: return false; 1806 case ISD::FADD: 1807 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1808 break; 1809 case ISD::FSUB: 1810 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1811 break; 1812 case ISD::FMUL: 1813 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1814 break; 1815 } 1816 unsigned Op1 = getRegForValue(I->getOperand(0)); 1817 if (Op1 == 0) return false; 1818 1819 unsigned Op2 = getRegForValue(I->getOperand(1)); 1820 if (Op2 == 0) return false; 1821 1822 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1823 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1824 TII.get(Opc), ResultReg) 1825 .addReg(Op1).addReg(Op2)); 1826 UpdateValueMap(I, ResultReg); 1827 return true; 1828 } 1829 1830 // Call Handling Code 1831 1832 // This is largely taken directly from CCAssignFnForNode 1833 // TODO: We may not support all of this. 1834 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1835 bool Return, 1836 bool isVarArg) { 1837 switch (CC) { 1838 default: 1839 llvm_unreachable("Unsupported calling convention"); 1840 case CallingConv::Fast: 1841 if (Subtarget->hasVFP2() && !isVarArg) { 1842 if (!Subtarget->isAAPCS_ABI()) 1843 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1844 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1845 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1846 } 1847 // Fallthrough 1848 case CallingConv::C: 1849 // Use target triple & subtarget features to do actual dispatch. 1850 if (Subtarget->isAAPCS_ABI()) { 1851 if (Subtarget->hasVFP2() && 1852 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1853 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1854 else 1855 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1856 } else 1857 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1858 case CallingConv::ARM_AAPCS_VFP: 1859 if (!isVarArg) 1860 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1861 // Fall through to soft float variant, variadic functions don't 1862 // use hard floating point ABI. 1863 case CallingConv::ARM_AAPCS: 1864 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1865 case CallingConv::ARM_APCS: 1866 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1867 case CallingConv::GHC: 1868 if (Return) 1869 llvm_unreachable("Can't return in GHC call convention"); 1870 else 1871 return CC_ARM_APCS_GHC; 1872 } 1873 } 1874 1875 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1876 SmallVectorImpl<unsigned> &ArgRegs, 1877 SmallVectorImpl<MVT> &ArgVTs, 1878 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1879 SmallVectorImpl<unsigned> &RegArgs, 1880 CallingConv::ID CC, 1881 unsigned &NumBytes, 1882 bool isVarArg) { 1883 SmallVector<CCValAssign, 16> ArgLocs; 1884 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1885 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1886 CCAssignFnForCall(CC, false, isVarArg)); 1887 1888 // Check that we can handle all of the arguments. If we can't, then bail out 1889 // now before we add code to the MBB. 1890 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1891 CCValAssign &VA = ArgLocs[i]; 1892 MVT ArgVT = ArgVTs[VA.getValNo()]; 1893 1894 // We don't handle NEON/vector parameters yet. 1895 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1896 return false; 1897 1898 // Now copy/store arg to correct locations. 1899 if (VA.isRegLoc() && !VA.needsCustom()) { 1900 continue; 1901 } else if (VA.needsCustom()) { 1902 // TODO: We need custom lowering for vector (v2f64) args. 1903 if (VA.getLocVT() != MVT::f64 || 1904 // TODO: Only handle register args for now. 1905 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1906 return false; 1907 } else { 1908 switch (ArgVT.SimpleTy) { 1909 default: 1910 return false; 1911 case MVT::i1: 1912 case MVT::i8: 1913 case MVT::i16: 1914 case MVT::i32: 1915 break; 1916 case MVT::f32: 1917 if (!Subtarget->hasVFP2()) 1918 return false; 1919 break; 1920 case MVT::f64: 1921 if (!Subtarget->hasVFP2()) 1922 return false; 1923 break; 1924 } 1925 } 1926 } 1927 1928 // At the point, we are able to handle the call's arguments in fast isel. 1929 1930 // Get a count of how many bytes are to be pushed on the stack. 1931 NumBytes = CCInfo.getNextStackOffset(); 1932 1933 // Issue CALLSEQ_START 1934 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1935 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1936 TII.get(AdjStackDown)) 1937 .addImm(NumBytes)); 1938 1939 // Process the args. 1940 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1941 CCValAssign &VA = ArgLocs[i]; 1942 unsigned Arg = ArgRegs[VA.getValNo()]; 1943 MVT ArgVT = ArgVTs[VA.getValNo()]; 1944 1945 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1946 "We don't handle NEON/vector parameters yet."); 1947 1948 // Handle arg promotion, etc. 1949 switch (VA.getLocInfo()) { 1950 case CCValAssign::Full: break; 1951 case CCValAssign::SExt: { 1952 MVT DestVT = VA.getLocVT(); 1953 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1954 assert (Arg != 0 && "Failed to emit a sext"); 1955 ArgVT = DestVT; 1956 break; 1957 } 1958 case CCValAssign::AExt: 1959 // Intentional fall-through. Handle AExt and ZExt. 1960 case CCValAssign::ZExt: { 1961 MVT DestVT = VA.getLocVT(); 1962 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1963 assert (Arg != 0 && "Failed to emit a zext"); 1964 ArgVT = DestVT; 1965 break; 1966 } 1967 case CCValAssign::BCvt: { 1968 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1969 /*TODO: Kill=*/false); 1970 assert(BC != 0 && "Failed to emit a bitcast!"); 1971 Arg = BC; 1972 ArgVT = VA.getLocVT(); 1973 break; 1974 } 1975 default: llvm_unreachable("Unknown arg promotion!"); 1976 } 1977 1978 // Now copy/store arg to correct locations. 1979 if (VA.isRegLoc() && !VA.needsCustom()) { 1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1981 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1982 RegArgs.push_back(VA.getLocReg()); 1983 } else if (VA.needsCustom()) { 1984 // TODO: We need custom lowering for vector (v2f64) args. 1985 assert(VA.getLocVT() == MVT::f64 && 1986 "Custom lowering for v2f64 args not available"); 1987 1988 CCValAssign &NextVA = ArgLocs[++i]; 1989 1990 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1991 "We only handle register args!"); 1992 1993 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1994 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1995 .addReg(NextVA.getLocReg(), RegState::Define) 1996 .addReg(Arg)); 1997 RegArgs.push_back(VA.getLocReg()); 1998 RegArgs.push_back(NextVA.getLocReg()); 1999 } else { 2000 assert(VA.isMemLoc()); 2001 // Need to store on the stack. 2002 Address Addr; 2003 Addr.BaseType = Address::RegBase; 2004 Addr.Base.Reg = ARM::SP; 2005 Addr.Offset = VA.getLocMemOffset(); 2006 2007 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2008 assert(EmitRet && "Could not emit a store for argument!"); 2009 } 2010 } 2011 2012 return true; 2013 } 2014 2015 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2016 const Instruction *I, CallingConv::ID CC, 2017 unsigned &NumBytes, bool isVarArg) { 2018 // Issue CALLSEQ_END 2019 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2020 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2021 TII.get(AdjStackUp)) 2022 .addImm(NumBytes).addImm(0)); 2023 2024 // Now the return value. 2025 if (RetVT != MVT::isVoid) { 2026 SmallVector<CCValAssign, 16> RVLocs; 2027 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2028 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2029 2030 // Copy all of the result registers out of their specified physreg. 2031 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2032 // For this move we copy into two registers and then move into the 2033 // double fp reg we want. 2034 MVT DestVT = RVLocs[0].getValVT(); 2035 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2036 unsigned ResultReg = createResultReg(DstRC); 2037 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2038 TII.get(ARM::VMOVDRR), ResultReg) 2039 .addReg(RVLocs[0].getLocReg()) 2040 .addReg(RVLocs[1].getLocReg())); 2041 2042 UsedRegs.push_back(RVLocs[0].getLocReg()); 2043 UsedRegs.push_back(RVLocs[1].getLocReg()); 2044 2045 // Finally update the result. 2046 UpdateValueMap(I, ResultReg); 2047 } else { 2048 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2049 MVT CopyVT = RVLocs[0].getValVT(); 2050 2051 // Special handling for extended integers. 2052 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2053 CopyVT = MVT::i32; 2054 2055 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2056 2057 unsigned ResultReg = createResultReg(DstRC); 2058 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2059 TII.get(TargetOpcode::COPY), 2060 ResultReg).addReg(RVLocs[0].getLocReg()); 2061 UsedRegs.push_back(RVLocs[0].getLocReg()); 2062 2063 // Finally update the result. 2064 UpdateValueMap(I, ResultReg); 2065 } 2066 } 2067 2068 return true; 2069 } 2070 2071 bool ARMFastISel::SelectRet(const Instruction *I) { 2072 const ReturnInst *Ret = cast<ReturnInst>(I); 2073 const Function &F = *I->getParent()->getParent(); 2074 2075 if (!FuncInfo.CanLowerReturn) 2076 return false; 2077 2078 // Build a list of return value registers. 2079 SmallVector<unsigned, 4> RetRegs; 2080 2081 CallingConv::ID CC = F.getCallingConv(); 2082 if (Ret->getNumOperands() > 0) { 2083 SmallVector<ISD::OutputArg, 4> Outs; 2084 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 2085 2086 // Analyze operands of the call, assigning locations to each operand. 2087 SmallVector<CCValAssign, 16> ValLocs; 2088 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext()); 2089 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2090 F.isVarArg())); 2091 2092 const Value *RV = Ret->getOperand(0); 2093 unsigned Reg = getRegForValue(RV); 2094 if (Reg == 0) 2095 return false; 2096 2097 // Only handle a single return value for now. 2098 if (ValLocs.size() != 1) 2099 return false; 2100 2101 CCValAssign &VA = ValLocs[0]; 2102 2103 // Don't bother handling odd stuff for now. 2104 if (VA.getLocInfo() != CCValAssign::Full) 2105 return false; 2106 // Only handle register returns for now. 2107 if (!VA.isRegLoc()) 2108 return false; 2109 2110 unsigned SrcReg = Reg + VA.getValNo(); 2111 EVT RVEVT = TLI.getValueType(RV->getType()); 2112 if (!RVEVT.isSimple()) return false; 2113 MVT RVVT = RVEVT.getSimpleVT(); 2114 MVT DestVT = VA.getValVT(); 2115 // Special handling for extended integers. 2116 if (RVVT != DestVT) { 2117 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2118 return false; 2119 2120 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2121 2122 // Perform extension if flagged as either zext or sext. Otherwise, do 2123 // nothing. 2124 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2125 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2126 if (SrcReg == 0) return false; 2127 } 2128 } 2129 2130 // Make the copy. 2131 unsigned DstReg = VA.getLocReg(); 2132 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2133 // Avoid a cross-class copy. This is very unlikely. 2134 if (!SrcRC->contains(DstReg)) 2135 return false; 2136 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2137 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2138 2139 // Add register to return instruction. 2140 RetRegs.push_back(VA.getLocReg()); 2141 } 2142 2143 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2144 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2145 TII.get(RetOpc)); 2146 AddOptionalDefs(MIB); 2147 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2148 MIB.addReg(RetRegs[i], RegState::Implicit); 2149 return true; 2150 } 2151 2152 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2153 if (UseReg) 2154 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2155 else 2156 return isThumb2 ? ARM::tBL : ARM::BL; 2157 } 2158 2159 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2160 // Manually compute the global's type to avoid building it when unnecessary. 2161 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2162 EVT LCREVT = TLI.getValueType(GVTy); 2163 if (!LCREVT.isSimple()) return 0; 2164 2165 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2166 GlobalValue::ExternalLinkage, nullptr, 2167 Name); 2168 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2169 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2170 } 2171 2172 // A quick function that will emit a call for a named libcall in F with the 2173 // vector of passed arguments for the Instruction in I. We can assume that we 2174 // can emit a call for any libcall we can produce. This is an abridged version 2175 // of the full call infrastructure since we won't need to worry about things 2176 // like computed function pointers or strange arguments at call sites. 2177 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2178 // with X86. 2179 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2180 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2181 2182 // Handle *simple* calls for now. 2183 Type *RetTy = I->getType(); 2184 MVT RetVT; 2185 if (RetTy->isVoidTy()) 2186 RetVT = MVT::isVoid; 2187 else if (!isTypeLegal(RetTy, RetVT)) 2188 return false; 2189 2190 // Can't handle non-double multi-reg retvals. 2191 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2192 SmallVector<CCValAssign, 16> RVLocs; 2193 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); 2194 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2195 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2196 return false; 2197 } 2198 2199 // Set up the argument vectors. 2200 SmallVector<Value*, 8> Args; 2201 SmallVector<unsigned, 8> ArgRegs; 2202 SmallVector<MVT, 8> ArgVTs; 2203 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2204 Args.reserve(I->getNumOperands()); 2205 ArgRegs.reserve(I->getNumOperands()); 2206 ArgVTs.reserve(I->getNumOperands()); 2207 ArgFlags.reserve(I->getNumOperands()); 2208 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2209 Value *Op = I->getOperand(i); 2210 unsigned Arg = getRegForValue(Op); 2211 if (Arg == 0) return false; 2212 2213 Type *ArgTy = Op->getType(); 2214 MVT ArgVT; 2215 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2216 2217 ISD::ArgFlagsTy Flags; 2218 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2219 Flags.setOrigAlign(OriginalAlignment); 2220 2221 Args.push_back(Op); 2222 ArgRegs.push_back(Arg); 2223 ArgVTs.push_back(ArgVT); 2224 ArgFlags.push_back(Flags); 2225 } 2226 2227 // Handle the arguments now that we've gotten them. 2228 SmallVector<unsigned, 4> RegArgs; 2229 unsigned NumBytes; 2230 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2231 RegArgs, CC, NumBytes, false)) 2232 return false; 2233 2234 unsigned CalleeReg = 0; 2235 if (EnableARMLongCalls) { 2236 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2237 if (CalleeReg == 0) return false; 2238 } 2239 2240 // Issue the call. 2241 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls); 2242 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2243 DbgLoc, TII.get(CallOpc)); 2244 // BL / BLX don't take a predicate, but tBL / tBLX do. 2245 if (isThumb2) 2246 AddDefaultPred(MIB); 2247 if (EnableARMLongCalls) 2248 MIB.addReg(CalleeReg); 2249 else 2250 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2251 2252 // Add implicit physical register uses to the call. 2253 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2254 MIB.addReg(RegArgs[i], RegState::Implicit); 2255 2256 // Add a register mask with the call-preserved registers. 2257 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2258 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2259 2260 // Finish off the call including any return values. 2261 SmallVector<unsigned, 4> UsedRegs; 2262 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2263 2264 // Set all unused physreg defs as dead. 2265 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2266 2267 return true; 2268 } 2269 2270 bool ARMFastISel::SelectCall(const Instruction *I, 2271 const char *IntrMemName = nullptr) { 2272 const CallInst *CI = cast<CallInst>(I); 2273 const Value *Callee = CI->getCalledValue(); 2274 2275 // Can't handle inline asm. 2276 if (isa<InlineAsm>(Callee)) return false; 2277 2278 // Allow SelectionDAG isel to handle tail calls. 2279 if (CI->isTailCall()) return false; 2280 2281 // Check the calling convention. 2282 ImmutableCallSite CS(CI); 2283 CallingConv::ID CC = CS.getCallingConv(); 2284 2285 // TODO: Avoid some calling conventions? 2286 2287 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2288 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2289 bool isVarArg = FTy->isVarArg(); 2290 2291 // Handle *simple* calls for now. 2292 Type *RetTy = I->getType(); 2293 MVT RetVT; 2294 if (RetTy->isVoidTy()) 2295 RetVT = MVT::isVoid; 2296 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2297 RetVT != MVT::i8 && RetVT != MVT::i1) 2298 return false; 2299 2300 // Can't handle non-double multi-reg retvals. 2301 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2302 RetVT != MVT::i16 && RetVT != MVT::i32) { 2303 SmallVector<CCValAssign, 16> RVLocs; 2304 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2305 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2306 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2307 return false; 2308 } 2309 2310 // Set up the argument vectors. 2311 SmallVector<Value*, 8> Args; 2312 SmallVector<unsigned, 8> ArgRegs; 2313 SmallVector<MVT, 8> ArgVTs; 2314 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2315 unsigned arg_size = CS.arg_size(); 2316 Args.reserve(arg_size); 2317 ArgRegs.reserve(arg_size); 2318 ArgVTs.reserve(arg_size); 2319 ArgFlags.reserve(arg_size); 2320 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2321 i != e; ++i) { 2322 // If we're lowering a memory intrinsic instead of a regular call, skip the 2323 // last two arguments, which shouldn't be passed to the underlying function. 2324 if (IntrMemName && e-i <= 2) 2325 break; 2326 2327 ISD::ArgFlagsTy Flags; 2328 unsigned AttrInd = i - CS.arg_begin() + 1; 2329 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2330 Flags.setSExt(); 2331 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2332 Flags.setZExt(); 2333 2334 // FIXME: Only handle *easy* calls for now. 2335 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2336 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2337 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2338 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2339 return false; 2340 2341 Type *ArgTy = (*i)->getType(); 2342 MVT ArgVT; 2343 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2344 ArgVT != MVT::i1) 2345 return false; 2346 2347 unsigned Arg = getRegForValue(*i); 2348 if (Arg == 0) 2349 return false; 2350 2351 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2352 Flags.setOrigAlign(OriginalAlignment); 2353 2354 Args.push_back(*i); 2355 ArgRegs.push_back(Arg); 2356 ArgVTs.push_back(ArgVT); 2357 ArgFlags.push_back(Flags); 2358 } 2359 2360 // Handle the arguments now that we've gotten them. 2361 SmallVector<unsigned, 4> RegArgs; 2362 unsigned NumBytes; 2363 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2364 RegArgs, CC, NumBytes, isVarArg)) 2365 return false; 2366 2367 bool UseReg = false; 2368 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2369 if (!GV || EnableARMLongCalls) UseReg = true; 2370 2371 unsigned CalleeReg = 0; 2372 if (UseReg) { 2373 if (IntrMemName) 2374 CalleeReg = getLibcallReg(IntrMemName); 2375 else 2376 CalleeReg = getRegForValue(Callee); 2377 2378 if (CalleeReg == 0) return false; 2379 } 2380 2381 // Issue the call. 2382 unsigned CallOpc = ARMSelectCallOp(UseReg); 2383 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2384 DbgLoc, TII.get(CallOpc)); 2385 2386 unsigned char OpFlags = 0; 2387 2388 // Add MO_PLT for global address or external symbol in the PIC relocation 2389 // model. 2390 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 2391 OpFlags = ARMII::MO_PLT; 2392 2393 // ARM calls don't take a predicate, but tBL / tBLX do. 2394 if(isThumb2) 2395 AddDefaultPred(MIB); 2396 if (UseReg) 2397 MIB.addReg(CalleeReg); 2398 else if (!IntrMemName) 2399 MIB.addGlobalAddress(GV, 0, OpFlags); 2400 else 2401 MIB.addExternalSymbol(IntrMemName, OpFlags); 2402 2403 // Add implicit physical register uses to the call. 2404 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2405 MIB.addReg(RegArgs[i], RegState::Implicit); 2406 2407 // Add a register mask with the call-preserved registers. 2408 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2409 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2410 2411 // Finish off the call including any return values. 2412 SmallVector<unsigned, 4> UsedRegs; 2413 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2414 return false; 2415 2416 // Set all unused physreg defs as dead. 2417 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2418 2419 return true; 2420 } 2421 2422 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2423 return Len <= 16; 2424 } 2425 2426 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2427 uint64_t Len, unsigned Alignment) { 2428 // Make sure we don't bloat code by inlining very large memcpy's. 2429 if (!ARMIsMemCpySmall(Len)) 2430 return false; 2431 2432 while (Len) { 2433 MVT VT; 2434 if (!Alignment || Alignment >= 4) { 2435 if (Len >= 4) 2436 VT = MVT::i32; 2437 else if (Len >= 2) 2438 VT = MVT::i16; 2439 else { 2440 assert (Len == 1 && "Expected a length of 1!"); 2441 VT = MVT::i8; 2442 } 2443 } else { 2444 // Bound based on alignment. 2445 if (Len >= 2 && Alignment == 2) 2446 VT = MVT::i16; 2447 else { 2448 VT = MVT::i8; 2449 } 2450 } 2451 2452 bool RV; 2453 unsigned ResultReg; 2454 RV = ARMEmitLoad(VT, ResultReg, Src); 2455 assert (RV == true && "Should be able to handle this load."); 2456 RV = ARMEmitStore(VT, ResultReg, Dest); 2457 assert (RV == true && "Should be able to handle this store."); 2458 (void)RV; 2459 2460 unsigned Size = VT.getSizeInBits()/8; 2461 Len -= Size; 2462 Dest.Offset += Size; 2463 Src.Offset += Size; 2464 } 2465 2466 return true; 2467 } 2468 2469 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2470 // FIXME: Handle more intrinsics. 2471 switch (I.getIntrinsicID()) { 2472 default: return false; 2473 case Intrinsic::frameaddress: { 2474 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2475 MFI->setFrameAddressIsTaken(true); 2476 2477 unsigned LdrOpc; 2478 const TargetRegisterClass *RC; 2479 if (isThumb2) { 2480 LdrOpc = ARM::t2LDRi12; 2481 RC = (const TargetRegisterClass*)&ARM::tGPRRegClass; 2482 } else { 2483 LdrOpc = ARM::LDRi12; 2484 RC = (const TargetRegisterClass*)&ARM::GPRRegClass; 2485 } 2486 2487 const ARMBaseRegisterInfo *RegInfo = 2488 static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo()); 2489 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2490 unsigned SrcReg = FramePtr; 2491 2492 // Recursively load frame address 2493 // ldr r0 [fp] 2494 // ldr r0 [r0] 2495 // ldr r0 [r0] 2496 // ... 2497 unsigned DestReg; 2498 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2499 while (Depth--) { 2500 DestReg = createResultReg(RC); 2501 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2502 TII.get(LdrOpc), DestReg) 2503 .addReg(SrcReg).addImm(0)); 2504 SrcReg = DestReg; 2505 } 2506 UpdateValueMap(&I, SrcReg); 2507 return true; 2508 } 2509 case Intrinsic::memcpy: 2510 case Intrinsic::memmove: { 2511 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2512 // Don't handle volatile. 2513 if (MTI.isVolatile()) 2514 return false; 2515 2516 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2517 // we would emit dead code because we don't currently handle memmoves. 2518 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2519 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2520 // Small memcpy's are common enough that we want to do them without a call 2521 // if possible. 2522 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2523 if (ARMIsMemCpySmall(Len)) { 2524 Address Dest, Src; 2525 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2526 !ARMComputeAddress(MTI.getRawSource(), Src)) 2527 return false; 2528 unsigned Alignment = MTI.getAlignment(); 2529 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2530 return true; 2531 } 2532 } 2533 2534 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2535 return false; 2536 2537 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2538 return false; 2539 2540 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2541 return SelectCall(&I, IntrMemName); 2542 } 2543 case Intrinsic::memset: { 2544 const MemSetInst &MSI = cast<MemSetInst>(I); 2545 // Don't handle volatile. 2546 if (MSI.isVolatile()) 2547 return false; 2548 2549 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2550 return false; 2551 2552 if (MSI.getDestAddressSpace() > 255) 2553 return false; 2554 2555 return SelectCall(&I, "memset"); 2556 } 2557 case Intrinsic::trap: { 2558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2559 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2560 return true; 2561 } 2562 } 2563 } 2564 2565 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2566 // The high bits for a type smaller than the register size are assumed to be 2567 // undefined. 2568 Value *Op = I->getOperand(0); 2569 2570 EVT SrcVT, DestVT; 2571 SrcVT = TLI.getValueType(Op->getType(), true); 2572 DestVT = TLI.getValueType(I->getType(), true); 2573 2574 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2575 return false; 2576 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2577 return false; 2578 2579 unsigned SrcReg = getRegForValue(Op); 2580 if (!SrcReg) return false; 2581 2582 // Because the high bits are undefined, a truncate doesn't generate 2583 // any code. 2584 UpdateValueMap(I, SrcReg); 2585 return true; 2586 } 2587 2588 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2589 bool isZExt) { 2590 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2591 return 0; 2592 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2593 return 0; 2594 2595 // Table of which combinations can be emitted as a single instruction, 2596 // and which will require two. 2597 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2598 // ARM Thumb 2599 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2600 // ext: s z s z s z s z 2601 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2602 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2603 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2604 }; 2605 2606 // Target registers for: 2607 // - For ARM can never be PC. 2608 // - For 16-bit Thumb are restricted to lower 8 registers. 2609 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2610 static const TargetRegisterClass *RCTbl[2][2] = { 2611 // Instructions: Two Single 2612 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2613 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2614 }; 2615 2616 // Table governing the instruction(s) to be emitted. 2617 static const struct InstructionTable { 2618 uint32_t Opc : 16; 2619 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2620 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2621 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2622 } IT[2][2][3][2] = { 2623 { // Two instructions (first is left shift, second is in this table). 2624 { // ARM Opc S Shift Imm 2625 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2626 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2627 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2628 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2629 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2630 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2631 }, 2632 { // Thumb Opc S Shift Imm 2633 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2634 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2635 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2636 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2637 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2638 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2639 } 2640 }, 2641 { // Single instruction. 2642 { // ARM Opc S Shift Imm 2643 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2644 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2645 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2646 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2647 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2648 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2649 }, 2650 { // Thumb Opc S Shift Imm 2651 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2652 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2653 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2654 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2655 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2656 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2657 } 2658 } 2659 }; 2660 2661 unsigned SrcBits = SrcVT.getSizeInBits(); 2662 unsigned DestBits = DestVT.getSizeInBits(); 2663 (void) DestBits; 2664 assert((SrcBits < DestBits) && "can only extend to larger types"); 2665 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2666 "other sizes unimplemented"); 2667 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2668 "other sizes unimplemented"); 2669 2670 bool hasV6Ops = Subtarget->hasV6Ops(); 2671 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2672 assert((Bitness < 3) && "sanity-check table bounds"); 2673 2674 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2675 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2676 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2677 unsigned Opc = ITP->Opc; 2678 assert(ARM::KILL != Opc && "Invalid table entry"); 2679 unsigned hasS = ITP->hasS; 2680 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2681 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2682 "only MOVsi has shift operand addressing mode"); 2683 unsigned Imm = ITP->Imm; 2684 2685 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2686 bool setsCPSR = &ARM::tGPRRegClass == RC; 2687 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2688 unsigned ResultReg; 2689 // MOVsi encodes shift and immediate in shift operand addressing mode. 2690 // The following condition has the same value when emitting two 2691 // instruction sequences: both are shifts. 2692 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2693 2694 // Either one or two instructions are emitted. 2695 // They're always of the form: 2696 // dst = in OP imm 2697 // CPSR is set only by 16-bit Thumb instructions. 2698 // Predicate, if any, is AL. 2699 // S bit, if available, is always 0. 2700 // When two are emitted the first's result will feed as the second's input, 2701 // that value is then dead. 2702 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2703 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2704 ResultReg = createResultReg(RC); 2705 bool isLsl = (0 == Instr) && !isSingleInstr; 2706 unsigned Opcode = isLsl ? LSLOpc : Opc; 2707 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2708 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2709 bool isKill = 1 == Instr; 2710 MachineInstrBuilder MIB = BuildMI( 2711 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2712 if (setsCPSR) 2713 MIB.addReg(ARM::CPSR, RegState::Define); 2714 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2715 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2716 if (hasS) 2717 AddDefaultCC(MIB); 2718 // Second instruction consumes the first's result. 2719 SrcReg = ResultReg; 2720 } 2721 2722 return ResultReg; 2723 } 2724 2725 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2726 // On ARM, in general, integer casts don't involve legal types; this code 2727 // handles promotable integers. 2728 Type *DestTy = I->getType(); 2729 Value *Src = I->getOperand(0); 2730 Type *SrcTy = Src->getType(); 2731 2732 bool isZExt = isa<ZExtInst>(I); 2733 unsigned SrcReg = getRegForValue(Src); 2734 if (!SrcReg) return false; 2735 2736 EVT SrcEVT, DestEVT; 2737 SrcEVT = TLI.getValueType(SrcTy, true); 2738 DestEVT = TLI.getValueType(DestTy, true); 2739 if (!SrcEVT.isSimple()) return false; 2740 if (!DestEVT.isSimple()) return false; 2741 2742 MVT SrcVT = SrcEVT.getSimpleVT(); 2743 MVT DestVT = DestEVT.getSimpleVT(); 2744 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2745 if (ResultReg == 0) return false; 2746 UpdateValueMap(I, ResultReg); 2747 return true; 2748 } 2749 2750 bool ARMFastISel::SelectShift(const Instruction *I, 2751 ARM_AM::ShiftOpc ShiftTy) { 2752 // We handle thumb2 mode by target independent selector 2753 // or SelectionDAG ISel. 2754 if (isThumb2) 2755 return false; 2756 2757 // Only handle i32 now. 2758 EVT DestVT = TLI.getValueType(I->getType(), true); 2759 if (DestVT != MVT::i32) 2760 return false; 2761 2762 unsigned Opc = ARM::MOVsr; 2763 unsigned ShiftImm; 2764 Value *Src2Value = I->getOperand(1); 2765 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2766 ShiftImm = CI->getZExtValue(); 2767 2768 // Fall back to selection DAG isel if the shift amount 2769 // is zero or greater than the width of the value type. 2770 if (ShiftImm == 0 || ShiftImm >=32) 2771 return false; 2772 2773 Opc = ARM::MOVsi; 2774 } 2775 2776 Value *Src1Value = I->getOperand(0); 2777 unsigned Reg1 = getRegForValue(Src1Value); 2778 if (Reg1 == 0) return false; 2779 2780 unsigned Reg2 = 0; 2781 if (Opc == ARM::MOVsr) { 2782 Reg2 = getRegForValue(Src2Value); 2783 if (Reg2 == 0) return false; 2784 } 2785 2786 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2787 if(ResultReg == 0) return false; 2788 2789 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2790 TII.get(Opc), ResultReg) 2791 .addReg(Reg1); 2792 2793 if (Opc == ARM::MOVsi) 2794 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2795 else if (Opc == ARM::MOVsr) { 2796 MIB.addReg(Reg2); 2797 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2798 } 2799 2800 AddOptionalDefs(MIB); 2801 UpdateValueMap(I, ResultReg); 2802 return true; 2803 } 2804 2805 // TODO: SoftFP support. 2806 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { 2807 2808 switch (I->getOpcode()) { 2809 case Instruction::Load: 2810 return SelectLoad(I); 2811 case Instruction::Store: 2812 return SelectStore(I); 2813 case Instruction::Br: 2814 return SelectBranch(I); 2815 case Instruction::IndirectBr: 2816 return SelectIndirectBr(I); 2817 case Instruction::ICmp: 2818 case Instruction::FCmp: 2819 return SelectCmp(I); 2820 case Instruction::FPExt: 2821 return SelectFPExt(I); 2822 case Instruction::FPTrunc: 2823 return SelectFPTrunc(I); 2824 case Instruction::SIToFP: 2825 return SelectIToFP(I, /*isSigned*/ true); 2826 case Instruction::UIToFP: 2827 return SelectIToFP(I, /*isSigned*/ false); 2828 case Instruction::FPToSI: 2829 return SelectFPToI(I, /*isSigned*/ true); 2830 case Instruction::FPToUI: 2831 return SelectFPToI(I, /*isSigned*/ false); 2832 case Instruction::Add: 2833 return SelectBinaryIntOp(I, ISD::ADD); 2834 case Instruction::Or: 2835 return SelectBinaryIntOp(I, ISD::OR); 2836 case Instruction::Sub: 2837 return SelectBinaryIntOp(I, ISD::SUB); 2838 case Instruction::FAdd: 2839 return SelectBinaryFPOp(I, ISD::FADD); 2840 case Instruction::FSub: 2841 return SelectBinaryFPOp(I, ISD::FSUB); 2842 case Instruction::FMul: 2843 return SelectBinaryFPOp(I, ISD::FMUL); 2844 case Instruction::SDiv: 2845 return SelectDiv(I, /*isSigned*/ true); 2846 case Instruction::UDiv: 2847 return SelectDiv(I, /*isSigned*/ false); 2848 case Instruction::SRem: 2849 return SelectRem(I, /*isSigned*/ true); 2850 case Instruction::URem: 2851 return SelectRem(I, /*isSigned*/ false); 2852 case Instruction::Call: 2853 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2854 return SelectIntrinsicCall(*II); 2855 return SelectCall(I); 2856 case Instruction::Select: 2857 return SelectSelect(I); 2858 case Instruction::Ret: 2859 return SelectRet(I); 2860 case Instruction::Trunc: 2861 return SelectTrunc(I); 2862 case Instruction::ZExt: 2863 case Instruction::SExt: 2864 return SelectIntExt(I); 2865 case Instruction::Shl: 2866 return SelectShift(I, ARM_AM::lsl); 2867 case Instruction::LShr: 2868 return SelectShift(I, ARM_AM::lsr); 2869 case Instruction::AShr: 2870 return SelectShift(I, ARM_AM::asr); 2871 default: break; 2872 } 2873 return false; 2874 } 2875 2876 namespace { 2877 // This table describes sign- and zero-extend instructions which can be 2878 // folded into a preceding load. All of these extends have an immediate 2879 // (sometimes a mask and sometimes a shift) that's applied after 2880 // extension. 2881 const struct FoldableLoadExtendsStruct { 2882 uint16_t Opc[2]; // ARM, Thumb. 2883 uint8_t ExpectedImm; 2884 uint8_t isZExt : 1; 2885 uint8_t ExpectedVT : 7; 2886 } FoldableLoadExtends[] = { 2887 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2888 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2889 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2890 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2891 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2892 }; 2893 } 2894 2895 /// \brief The specified machine instr operand is a vreg, and that 2896 /// vreg is being provided by the specified load instruction. If possible, 2897 /// try to fold the load as an operand to the instruction, returning true if 2898 /// successful. 2899 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2900 const LoadInst *LI) { 2901 // Verify we have a legal type before going any further. 2902 MVT VT; 2903 if (!isLoadTypeLegal(LI->getType(), VT)) 2904 return false; 2905 2906 // Combine load followed by zero- or sign-extend. 2907 // ldrb r1, [r0] ldrb r1, [r0] 2908 // uxtb r2, r1 => 2909 // mov r3, r2 mov r3, r1 2910 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2911 return false; 2912 const uint64_t Imm = MI->getOperand(2).getImm(); 2913 2914 bool Found = false; 2915 bool isZExt; 2916 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2917 i != e; ++i) { 2918 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 2919 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 2920 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 2921 Found = true; 2922 isZExt = FoldableLoadExtends[i].isZExt; 2923 } 2924 } 2925 if (!Found) return false; 2926 2927 // See if we can handle this address. 2928 Address Addr; 2929 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2930 2931 unsigned ResultReg = MI->getOperand(0).getReg(); 2932 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2933 return false; 2934 MI->eraseFromParent(); 2935 return true; 2936 } 2937 2938 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2939 unsigned Align, MVT VT) { 2940 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 2941 ARMConstantPoolConstant *CPV = 2942 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 2943 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 2944 2945 unsigned Opc; 2946 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 2947 // Load value. 2948 if (isThumb2) { 2949 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 2950 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2951 TII.get(ARM::t2LDRpci), DestReg1) 2952 .addConstantPoolIndex(Idx)); 2953 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 2954 } else { 2955 // The extra immediate is for addrmode2. 2956 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 2957 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2958 DbgLoc, TII.get(ARM::LDRcp), DestReg1) 2959 .addConstantPoolIndex(Idx).addImm(0)); 2960 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 2961 } 2962 2963 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 2964 if (GlobalBaseReg == 0) { 2965 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 2966 AFI->setGlobalBaseReg(GlobalBaseReg); 2967 } 2968 2969 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 2970 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 2971 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 2972 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 2973 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2974 DbgLoc, TII.get(Opc), DestReg2) 2975 .addReg(DestReg1) 2976 .addReg(GlobalBaseReg); 2977 if (!UseGOTOFF) 2978 MIB.addImm(0); 2979 AddOptionalDefs(MIB); 2980 2981 return DestReg2; 2982 } 2983 2984 bool ARMFastISel::FastLowerArguments() { 2985 if (!FuncInfo.CanLowerReturn) 2986 return false; 2987 2988 const Function *F = FuncInfo.Fn; 2989 if (F->isVarArg()) 2990 return false; 2991 2992 CallingConv::ID CC = F->getCallingConv(); 2993 switch (CC) { 2994 default: 2995 return false; 2996 case CallingConv::Fast: 2997 case CallingConv::C: 2998 case CallingConv::ARM_AAPCS_VFP: 2999 case CallingConv::ARM_AAPCS: 3000 case CallingConv::ARM_APCS: 3001 break; 3002 } 3003 3004 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3005 // which are passed in r0 - r3. 3006 unsigned Idx = 1; 3007 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3008 I != E; ++I, ++Idx) { 3009 if (Idx > 4) 3010 return false; 3011 3012 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3013 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3014 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3015 return false; 3016 3017 Type *ArgTy = I->getType(); 3018 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3019 return false; 3020 3021 EVT ArgVT = TLI.getValueType(ArgTy); 3022 if (!ArgVT.isSimple()) return false; 3023 switch (ArgVT.getSimpleVT().SimpleTy) { 3024 case MVT::i8: 3025 case MVT::i16: 3026 case MVT::i32: 3027 break; 3028 default: 3029 return false; 3030 } 3031 } 3032 3033 3034 static const uint16_t GPRArgRegs[] = { 3035 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3036 }; 3037 3038 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3039 Idx = 0; 3040 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3041 I != E; ++I, ++Idx) { 3042 unsigned SrcReg = GPRArgRegs[Idx]; 3043 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3044 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3045 // Without this, EmitLiveInCopies may eliminate the livein if its only 3046 // use is a bitcast (which isn't turned into an instruction). 3047 unsigned ResultReg = createResultReg(RC); 3048 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3049 TII.get(TargetOpcode::COPY), 3050 ResultReg).addReg(DstReg, getKillRegState(true)); 3051 UpdateValueMap(I, ResultReg); 3052 } 3053 3054 return true; 3055 } 3056 3057 namespace llvm { 3058 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3059 const TargetLibraryInfo *libInfo) { 3060 const TargetMachine &TM = funcInfo.MF->getTarget(); 3061 3062 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 3063 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 3064 bool UseFastISel = false; 3065 UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only(); 3066 UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb(); 3067 UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb(); 3068 3069 if (UseFastISel) { 3070 // iOS always has a FP for backtracking, force other targets 3071 // to keep their FP when doing FastISel. The emitted code is 3072 // currently superior, and in cases like test-suite's lencod 3073 // FastISel isn't quite correct when FP is eliminated. 3074 TM.Options.NoFramePointerElim = true; 3075 return new ARMFastISel(funcInfo, libInfo); 3076 } 3077 return nullptr; 3078 } 3079 } 3080