1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMSubtarget.h" 21 #include "ARMTargetMachine.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/IR/CallingConv.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/GlobalVariable.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/Support/CallSite.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/GetElementPtrTypeIterator.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 using namespace llvm; 50 51 extern cl::opt<bool> EnableARMLongCalls; 52 53 namespace { 54 55 // All possible address modes, plus some. 56 typedef struct Address { 57 enum { 58 RegBase, 59 FrameIndexBase 60 } BaseType; 61 62 union { 63 unsigned Reg; 64 int FI; 65 } Base; 66 67 int Offset; 68 69 // Innocuous defaults for our address. 70 Address() 71 : BaseType(RegBase), Offset(0) { 72 Base.Reg = 0; 73 } 74 } Address; 75 76 class ARMFastISel : public FastISel { 77 78 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 79 /// make the right decision when generating code for different targets. 80 const ARMSubtarget *Subtarget; 81 Module &M; 82 const TargetMachine &TM; 83 const TargetInstrInfo &TII; 84 const TargetLowering &TLI; 85 ARMFunctionInfo *AFI; 86 87 // Convenience variables to avoid some queries. 88 bool isThumb2; 89 LLVMContext *Context; 90 91 public: 92 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 93 const TargetLibraryInfo *libInfo) 94 : FastISel(funcInfo, libInfo), 95 M(const_cast<Module&>(*funcInfo.Fn->getParent())), 96 TM(funcInfo.MF->getTarget()), 97 TII(*TM.getInstrInfo()), 98 TLI(*TM.getTargetLowering()) { 99 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 100 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 101 isThumb2 = AFI->isThumbFunction(); 102 Context = &funcInfo.Fn->getContext(); 103 } 104 105 // Code from FastISel.cpp. 106 private: 107 unsigned FastEmitInst_(unsigned MachineInstOpcode, 108 const TargetRegisterClass *RC); 109 unsigned FastEmitInst_r(unsigned MachineInstOpcode, 110 const TargetRegisterClass *RC, 111 unsigned Op0, bool Op0IsKill); 112 unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, bool Op0IsKill, 115 unsigned Op1, bool Op1IsKill); 116 unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, 118 unsigned Op0, bool Op0IsKill, 119 unsigned Op1, bool Op1IsKill, 120 unsigned Op2, bool Op2IsKill); 121 unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 uint64_t Imm); 125 unsigned FastEmitInst_rf(unsigned MachineInstOpcode, 126 const TargetRegisterClass *RC, 127 unsigned Op0, bool Op0IsKill, 128 const ConstantFP *FPImm); 129 unsigned FastEmitInst_rri(unsigned MachineInstOpcode, 130 const TargetRegisterClass *RC, 131 unsigned Op0, bool Op0IsKill, 132 unsigned Op1, bool Op1IsKill, 133 uint64_t Imm); 134 unsigned FastEmitInst_i(unsigned MachineInstOpcode, 135 const TargetRegisterClass *RC, 136 uint64_t Imm); 137 unsigned FastEmitInst_ii(unsigned MachineInstOpcode, 138 const TargetRegisterClass *RC, 139 uint64_t Imm1, uint64_t Imm2); 140 141 unsigned FastEmitInst_extractsubreg(MVT RetVT, 142 unsigned Op0, bool Op0IsKill, 143 uint32_t Idx); 144 145 // Backend specific FastISel code. 146 private: 147 virtual bool TargetSelectInstruction(const Instruction *I); 148 virtual unsigned TargetMaterializeConstant(const Constant *C); 149 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 150 virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 151 const LoadInst *LI); 152 virtual bool FastLowerArguments(); 153 private: 154 #include "ARMGenFastISel.inc" 155 156 // Instruction selection routines. 157 private: 158 bool SelectLoad(const Instruction *I); 159 bool SelectStore(const Instruction *I); 160 bool SelectBranch(const Instruction *I); 161 bool SelectIndirectBr(const Instruction *I); 162 bool SelectCmp(const Instruction *I); 163 bool SelectFPExt(const Instruction *I); 164 bool SelectFPTrunc(const Instruction *I); 165 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 166 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 167 bool SelectIToFP(const Instruction *I, bool isSigned); 168 bool SelectFPToI(const Instruction *I, bool isSigned); 169 bool SelectDiv(const Instruction *I, bool isSigned); 170 bool SelectRem(const Instruction *I, bool isSigned); 171 bool SelectCall(const Instruction *I, const char *IntrMemName); 172 bool SelectIntrinsicCall(const IntrinsicInst &I); 173 bool SelectSelect(const Instruction *I); 174 bool SelectRet(const Instruction *I); 175 bool SelectTrunc(const Instruction *I); 176 bool SelectIntExt(const Instruction *I); 177 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 178 179 // Utility routines. 180 private: 181 unsigned constrainOperandRegClass(const MCInstrDesc &II, unsigned OpNum, 182 unsigned Op); 183 bool isTypeLegal(Type *Ty, MVT &VT); 184 bool isLoadTypeLegal(Type *Ty, MVT &VT); 185 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 186 bool isZExt); 187 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 188 unsigned Alignment = 0, bool isZExt = true, 189 bool allocReg = true); 190 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 191 unsigned Alignment = 0); 192 bool ARMComputeAddress(const Value *Obj, Address &Addr); 193 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 194 bool ARMIsMemCpySmall(uint64_t Len); 195 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 196 unsigned Alignment); 197 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 198 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 199 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 200 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 201 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 202 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 203 unsigned ARMSelectCallOp(bool UseReg); 204 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 205 206 // Call handling routines. 207 private: 208 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 209 bool Return, 210 bool isVarArg); 211 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 212 SmallVectorImpl<unsigned> &ArgRegs, 213 SmallVectorImpl<MVT> &ArgVTs, 214 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 215 SmallVectorImpl<unsigned> &RegArgs, 216 CallingConv::ID CC, 217 unsigned &NumBytes, 218 bool isVarArg); 219 unsigned getLibcallReg(const Twine &Name); 220 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 221 const Instruction *I, CallingConv::ID CC, 222 unsigned &NumBytes, bool isVarArg); 223 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 224 225 // OptionalDef handling routines. 226 private: 227 bool isARMNEONPred(const MachineInstr *MI); 228 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 229 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 230 void AddLoadStoreOperands(MVT VT, Address &Addr, 231 const MachineInstrBuilder &MIB, 232 unsigned Flags, bool useAM3); 233 }; 234 235 } // end anonymous namespace 236 237 #include "ARMGenCallingConv.inc" 238 239 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 240 // we don't care about implicit defs here, just places we'll need to add a 241 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 242 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 243 if (!MI->hasOptionalDef()) 244 return false; 245 246 // Look to see if our OptionalDef is defining CPSR or CCR. 247 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 248 const MachineOperand &MO = MI->getOperand(i); 249 if (!MO.isReg() || !MO.isDef()) continue; 250 if (MO.getReg() == ARM::CPSR) 251 *CPSR = true; 252 } 253 return true; 254 } 255 256 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 257 const MCInstrDesc &MCID = MI->getDesc(); 258 259 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 260 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 261 AFI->isThumb2Function()) 262 return MI->isPredicable(); 263 264 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 265 if (MCID.OpInfo[i].isPredicate()) 266 return true; 267 268 return false; 269 } 270 271 // If the machine is predicable go ahead and add the predicate operands, if 272 // it needs default CC operands add those. 273 // TODO: If we want to support thumb1 then we'll need to deal with optional 274 // CPSR defs that need to be added before the remaining operands. See s_cc_out 275 // for descriptions why. 276 const MachineInstrBuilder & 277 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 278 MachineInstr *MI = &*MIB; 279 280 // Do we use a predicate? or... 281 // Are we NEON in ARM mode and have a predicate operand? If so, I know 282 // we're not predicable but add it anyways. 283 if (isARMNEONPred(MI)) 284 AddDefaultPred(MIB); 285 286 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 287 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 288 bool CPSR = false; 289 if (DefinesOptionalPredicate(MI, &CPSR)) { 290 if (CPSR) 291 AddDefaultT1CC(MIB); 292 else 293 AddDefaultCC(MIB); 294 } 295 return MIB; 296 } 297 298 unsigned ARMFastISel::constrainOperandRegClass(const MCInstrDesc &II, 299 unsigned Op, unsigned OpNum) { 300 if (TargetRegisterInfo::isVirtualRegister(Op)) { 301 const TargetRegisterClass *RegClass = 302 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 303 if (!MRI.constrainRegClass(Op, RegClass)) { 304 // If it's not legal to COPY between the register classes, something 305 // has gone very wrong before we got here. 306 unsigned NewOp = createResultReg(RegClass); 307 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 308 TII.get(TargetOpcode::COPY), NewOp).addReg(Op)); 309 return NewOp; 310 } 311 } 312 return Op; 313 } 314 315 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, 316 const TargetRegisterClass* RC) { 317 unsigned ResultReg = createResultReg(RC); 318 const MCInstrDesc &II = TII.get(MachineInstOpcode); 319 320 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)); 321 return ResultReg; 322 } 323 324 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 325 const TargetRegisterClass *RC, 326 unsigned Op0, bool Op0IsKill) { 327 unsigned ResultReg = createResultReg(RC); 328 const MCInstrDesc &II = TII.get(MachineInstOpcode); 329 330 // Make sure the input operand is sufficiently constrained to be legal 331 // for this instruction. 332 Op0 = constrainOperandRegClass(II, Op0, 1); 333 if (II.getNumDefs() >= 1) { 334 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 335 .addReg(Op0, Op0IsKill * RegState::Kill)); 336 } else { 337 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 338 .addReg(Op0, Op0IsKill * RegState::Kill)); 339 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 340 TII.get(TargetOpcode::COPY), ResultReg) 341 .addReg(II.ImplicitDefs[0])); 342 } 343 return ResultReg; 344 } 345 346 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 347 const TargetRegisterClass *RC, 348 unsigned Op0, bool Op0IsKill, 349 unsigned Op1, bool Op1IsKill) { 350 unsigned ResultReg = createResultReg(RC); 351 const MCInstrDesc &II = TII.get(MachineInstOpcode); 352 353 // Make sure the input operands are sufficiently constrained to be legal 354 // for this instruction. 355 Op0 = constrainOperandRegClass(II, Op0, 1); 356 Op1 = constrainOperandRegClass(II, Op1, 2); 357 358 if (II.getNumDefs() >= 1) { 359 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 360 .addReg(Op0, Op0IsKill * RegState::Kill) 361 .addReg(Op1, Op1IsKill * RegState::Kill)); 362 } else { 363 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 364 .addReg(Op0, Op0IsKill * RegState::Kill) 365 .addReg(Op1, Op1IsKill * RegState::Kill)); 366 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 367 TII.get(TargetOpcode::COPY), ResultReg) 368 .addReg(II.ImplicitDefs[0])); 369 } 370 return ResultReg; 371 } 372 373 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 374 const TargetRegisterClass *RC, 375 unsigned Op0, bool Op0IsKill, 376 unsigned Op1, bool Op1IsKill, 377 unsigned Op2, bool Op2IsKill) { 378 unsigned ResultReg = createResultReg(RC); 379 const MCInstrDesc &II = TII.get(MachineInstOpcode); 380 381 // Make sure the input operands are sufficiently constrained to be legal 382 // for this instruction. 383 Op0 = constrainOperandRegClass(II, Op0, 1); 384 Op1 = constrainOperandRegClass(II, Op1, 2); 385 Op2 = constrainOperandRegClass(II, Op1, 3); 386 387 if (II.getNumDefs() >= 1) { 388 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 389 .addReg(Op0, Op0IsKill * RegState::Kill) 390 .addReg(Op1, Op1IsKill * RegState::Kill) 391 .addReg(Op2, Op2IsKill * RegState::Kill)); 392 } else { 393 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 394 .addReg(Op0, Op0IsKill * RegState::Kill) 395 .addReg(Op1, Op1IsKill * RegState::Kill) 396 .addReg(Op2, Op2IsKill * RegState::Kill)); 397 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 398 TII.get(TargetOpcode::COPY), ResultReg) 399 .addReg(II.ImplicitDefs[0])); 400 } 401 return ResultReg; 402 } 403 404 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 405 const TargetRegisterClass *RC, 406 unsigned Op0, bool Op0IsKill, 407 uint64_t Imm) { 408 unsigned ResultReg = createResultReg(RC); 409 const MCInstrDesc &II = TII.get(MachineInstOpcode); 410 411 // Make sure the input operand is sufficiently constrained to be legal 412 // for this instruction. 413 Op0 = constrainOperandRegClass(II, Op0, 1); 414 if (II.getNumDefs() >= 1) { 415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 416 .addReg(Op0, Op0IsKill * RegState::Kill) 417 .addImm(Imm)); 418 } else { 419 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 420 .addReg(Op0, Op0IsKill * RegState::Kill) 421 .addImm(Imm)); 422 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 423 TII.get(TargetOpcode::COPY), ResultReg) 424 .addReg(II.ImplicitDefs[0])); 425 } 426 return ResultReg; 427 } 428 429 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 430 const TargetRegisterClass *RC, 431 unsigned Op0, bool Op0IsKill, 432 const ConstantFP *FPImm) { 433 unsigned ResultReg = createResultReg(RC); 434 const MCInstrDesc &II = TII.get(MachineInstOpcode); 435 436 // Make sure the input operand is sufficiently constrained to be legal 437 // for this instruction. 438 Op0 = constrainOperandRegClass(II, Op0, 1); 439 if (II.getNumDefs() >= 1) { 440 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 441 .addReg(Op0, Op0IsKill * RegState::Kill) 442 .addFPImm(FPImm)); 443 } else { 444 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 445 .addReg(Op0, Op0IsKill * RegState::Kill) 446 .addFPImm(FPImm)); 447 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 448 TII.get(TargetOpcode::COPY), ResultReg) 449 .addReg(II.ImplicitDefs[0])); 450 } 451 return ResultReg; 452 } 453 454 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 455 const TargetRegisterClass *RC, 456 unsigned Op0, bool Op0IsKill, 457 unsigned Op1, bool Op1IsKill, 458 uint64_t Imm) { 459 unsigned ResultReg = createResultReg(RC); 460 const MCInstrDesc &II = TII.get(MachineInstOpcode); 461 462 // Make sure the input operands are sufficiently constrained to be legal 463 // for this instruction. 464 Op0 = constrainOperandRegClass(II, Op0, 1); 465 Op1 = constrainOperandRegClass(II, Op1, 2); 466 if (II.getNumDefs() >= 1) { 467 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 468 .addReg(Op0, Op0IsKill * RegState::Kill) 469 .addReg(Op1, Op1IsKill * RegState::Kill) 470 .addImm(Imm)); 471 } else { 472 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 473 .addReg(Op0, Op0IsKill * RegState::Kill) 474 .addReg(Op1, Op1IsKill * RegState::Kill) 475 .addImm(Imm)); 476 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 477 TII.get(TargetOpcode::COPY), ResultReg) 478 .addReg(II.ImplicitDefs[0])); 479 } 480 return ResultReg; 481 } 482 483 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, 484 const TargetRegisterClass *RC, 485 uint64_t Imm) { 486 unsigned ResultReg = createResultReg(RC); 487 const MCInstrDesc &II = TII.get(MachineInstOpcode); 488 489 if (II.getNumDefs() >= 1) { 490 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 491 .addImm(Imm)); 492 } else { 493 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 494 .addImm(Imm)); 495 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 496 TII.get(TargetOpcode::COPY), ResultReg) 497 .addReg(II.ImplicitDefs[0])); 498 } 499 return ResultReg; 500 } 501 502 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 503 const TargetRegisterClass *RC, 504 uint64_t Imm1, uint64_t Imm2) { 505 unsigned ResultReg = createResultReg(RC); 506 const MCInstrDesc &II = TII.get(MachineInstOpcode); 507 508 if (II.getNumDefs() >= 1) { 509 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 510 .addImm(Imm1).addImm(Imm2)); 511 } else { 512 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 513 .addImm(Imm1).addImm(Imm2)); 514 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 515 TII.get(TargetOpcode::COPY), 516 ResultReg) 517 .addReg(II.ImplicitDefs[0])); 518 } 519 return ResultReg; 520 } 521 522 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, 523 unsigned Op0, bool Op0IsKill, 524 uint32_t Idx) { 525 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 526 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 527 "Cannot yet extract from physregs"); 528 529 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 530 DL, TII.get(TargetOpcode::COPY), ResultReg) 531 .addReg(Op0, getKillRegState(Op0IsKill), Idx)); 532 return ResultReg; 533 } 534 535 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 536 // checks from the various callers. 537 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 538 if (VT == MVT::f64) return 0; 539 540 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 541 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 542 TII.get(ARM::VMOVSR), MoveReg) 543 .addReg(SrcReg)); 544 return MoveReg; 545 } 546 547 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 548 if (VT == MVT::i64) return 0; 549 550 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 551 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 552 TII.get(ARM::VMOVRS), MoveReg) 553 .addReg(SrcReg)); 554 return MoveReg; 555 } 556 557 // For double width floating point we need to materialize two constants 558 // (the high and the low) into integer registers then use a move to get 559 // the combined constant into an FP reg. 560 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 561 const APFloat Val = CFP->getValueAPF(); 562 bool is64bit = VT == MVT::f64; 563 564 // This checks to see if we can use VFP3 instructions to materialize 565 // a constant, otherwise we have to go through the constant pool. 566 if (TLI.isFPImmLegal(Val, VT)) { 567 int Imm; 568 unsigned Opc; 569 if (is64bit) { 570 Imm = ARM_AM::getFP64Imm(Val); 571 Opc = ARM::FCONSTD; 572 } else { 573 Imm = ARM_AM::getFP32Imm(Val); 574 Opc = ARM::FCONSTS; 575 } 576 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 577 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 578 DestReg) 579 .addImm(Imm)); 580 return DestReg; 581 } 582 583 // Require VFP2 for loading fp constants. 584 if (!Subtarget->hasVFP2()) return false; 585 586 // MachineConstantPool wants an explicit alignment. 587 unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); 588 if (Align == 0) { 589 // TODO: Figure out if this is correct. 590 Align = TD.getTypeAllocSize(CFP->getType()); 591 } 592 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 593 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 594 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 595 596 // The extra reg is for addrmode5. 597 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 598 DestReg) 599 .addConstantPoolIndex(Idx) 600 .addReg(0)); 601 return DestReg; 602 } 603 604 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 605 606 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 607 return false; 608 609 // If we can do this in a single instruction without a constant pool entry 610 // do so now. 611 const ConstantInt *CI = cast<ConstantInt>(C); 612 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 613 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 614 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 615 &ARM::GPRRegClass; 616 unsigned ImmReg = createResultReg(RC); 617 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 618 TII.get(Opc), ImmReg) 619 .addImm(CI->getZExtValue())); 620 return ImmReg; 621 } 622 623 // Use MVN to emit negative constants. 624 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 625 unsigned Imm = (unsigned)~(CI->getSExtValue()); 626 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 627 (ARM_AM::getSOImmVal(Imm) != -1); 628 if (UseImm) { 629 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 630 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 631 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 632 TII.get(Opc), ImmReg) 633 .addImm(Imm)); 634 return ImmReg; 635 } 636 } 637 638 // Load from constant pool. For now 32-bit only. 639 if (VT != MVT::i32) 640 return false; 641 642 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 643 644 // MachineConstantPool wants an explicit alignment. 645 unsigned Align = TD.getPrefTypeAlignment(C->getType()); 646 if (Align == 0) { 647 // TODO: Figure out if this is correct. 648 Align = TD.getTypeAllocSize(C->getType()); 649 } 650 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 651 652 if (isThumb2) 653 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 654 TII.get(ARM::t2LDRpci), DestReg) 655 .addConstantPoolIndex(Idx)); 656 else 657 // The extra immediate is for addrmode2. 658 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 659 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 660 TII.get(ARM::LDRcp), DestReg) 661 .addConstantPoolIndex(Idx) 662 .addImm(0)); 663 664 return DestReg; 665 } 666 667 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 668 // For now 32-bit only. 669 if (VT != MVT::i32) return 0; 670 671 Reloc::Model RelocM = TM.getRelocationModel(); 672 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 673 const TargetRegisterClass *RC = isThumb2 ? 674 (const TargetRegisterClass*)&ARM::rGPRRegClass : 675 (const TargetRegisterClass*)&ARM::GPRRegClass; 676 unsigned DestReg = createResultReg(RC); 677 678 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 679 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 680 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 681 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 682 683 // Use movw+movt when possible, it avoids constant pool entries. 684 // Non-darwin targets only support static movt relocations in FastISel. 685 if (Subtarget->useMovt() && 686 (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) { 687 unsigned Opc; 688 unsigned char TF = 0; 689 if (Subtarget->isTargetMachO()) 690 TF = ARMII::MO_NONLAZY; 691 692 switch (RelocM) { 693 case Reloc::PIC_: 694 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 695 break; 696 default: 697 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 698 break; 699 } 700 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 701 DestReg).addGlobalAddress(GV, 0, TF)); 702 } else { 703 // MachineConstantPool wants an explicit alignment. 704 unsigned Align = TD.getPrefTypeAlignment(GV->getType()); 705 if (Align == 0) { 706 // TODO: Figure out if this is correct. 707 Align = TD.getTypeAllocSize(GV->getType()); 708 } 709 710 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 711 return ARMLowerPICELF(GV, Align, VT); 712 713 // Grab index. 714 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 715 (Subtarget->isThumb() ? 4 : 8); 716 unsigned Id = AFI->createPICLabelUId(); 717 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 718 ARMCP::CPValue, 719 PCAdj); 720 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 721 722 // Load value. 723 MachineInstrBuilder MIB; 724 if (isThumb2) { 725 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 726 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 727 .addConstantPoolIndex(Idx); 728 if (RelocM == Reloc::PIC_) 729 MIB.addImm(Id); 730 AddOptionalDefs(MIB); 731 } else { 732 // The extra immediate is for addrmode2. 733 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 734 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp), 735 DestReg) 736 .addConstantPoolIndex(Idx) 737 .addImm(0); 738 AddOptionalDefs(MIB); 739 740 if (RelocM == Reloc::PIC_) { 741 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 742 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 743 744 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 745 DL, TII.get(Opc), NewDestReg) 746 .addReg(DestReg) 747 .addImm(Id); 748 AddOptionalDefs(MIB); 749 return NewDestReg; 750 } 751 } 752 } 753 754 if (IsIndirect) { 755 MachineInstrBuilder MIB; 756 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 757 if (isThumb2) 758 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 759 TII.get(ARM::t2LDRi12), NewDestReg) 760 .addReg(DestReg) 761 .addImm(0); 762 else 763 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12), 764 NewDestReg) 765 .addReg(DestReg) 766 .addImm(0); 767 DestReg = NewDestReg; 768 AddOptionalDefs(MIB); 769 } 770 771 return DestReg; 772 } 773 774 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { 775 EVT CEVT = TLI.getValueType(C->getType(), true); 776 777 // Only handle simple types. 778 if (!CEVT.isSimple()) return 0; 779 MVT VT = CEVT.getSimpleVT(); 780 781 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 782 return ARMMaterializeFP(CFP, VT); 783 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 784 return ARMMaterializeGV(GV, VT); 785 else if (isa<ConstantInt>(C)) 786 return ARMMaterializeInt(C, VT); 787 788 return 0; 789 } 790 791 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 792 793 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 794 // Don't handle dynamic allocas. 795 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 796 797 MVT VT; 798 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 799 800 DenseMap<const AllocaInst*, int>::iterator SI = 801 FuncInfo.StaticAllocaMap.find(AI); 802 803 // This will get lowered later into the correct offsets and registers 804 // via rewriteXFrameIndex. 805 if (SI != FuncInfo.StaticAllocaMap.end()) { 806 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 807 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 808 unsigned ResultReg = createResultReg(RC); 809 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 810 811 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 812 TII.get(Opc), ResultReg) 813 .addFrameIndex(SI->second) 814 .addImm(0)); 815 return ResultReg; 816 } 817 818 return 0; 819 } 820 821 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 822 EVT evt = TLI.getValueType(Ty, true); 823 824 // Only handle simple types. 825 if (evt == MVT::Other || !evt.isSimple()) return false; 826 VT = evt.getSimpleVT(); 827 828 // Handle all legal types, i.e. a register that will directly hold this 829 // value. 830 return TLI.isTypeLegal(VT); 831 } 832 833 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 834 if (isTypeLegal(Ty, VT)) return true; 835 836 // If this is a type than can be sign or zero-extended to a basic operation 837 // go ahead and accept it now. 838 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 839 return true; 840 841 return false; 842 } 843 844 // Computes the address to get to an object. 845 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 846 // Some boilerplate from the X86 FastISel. 847 const User *U = NULL; 848 unsigned Opcode = Instruction::UserOp1; 849 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 850 // Don't walk into other basic blocks unless the object is an alloca from 851 // another block, otherwise it may not have a virtual register assigned. 852 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 853 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 854 Opcode = I->getOpcode(); 855 U = I; 856 } 857 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 858 Opcode = C->getOpcode(); 859 U = C; 860 } 861 862 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 863 if (Ty->getAddressSpace() > 255) 864 // Fast instruction selection doesn't support the special 865 // address spaces. 866 return false; 867 868 switch (Opcode) { 869 default: 870 break; 871 case Instruction::BitCast: 872 // Look through bitcasts. 873 return ARMComputeAddress(U->getOperand(0), Addr); 874 case Instruction::IntToPtr: 875 // Look past no-op inttoptrs. 876 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 877 return ARMComputeAddress(U->getOperand(0), Addr); 878 break; 879 case Instruction::PtrToInt: 880 // Look past no-op ptrtoints. 881 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 882 return ARMComputeAddress(U->getOperand(0), Addr); 883 break; 884 case Instruction::GetElementPtr: { 885 Address SavedAddr = Addr; 886 int TmpOffset = Addr.Offset; 887 888 // Iterate through the GEP folding the constants into offsets where 889 // we can. 890 gep_type_iterator GTI = gep_type_begin(U); 891 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 892 i != e; ++i, ++GTI) { 893 const Value *Op = *i; 894 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 895 const StructLayout *SL = TD.getStructLayout(STy); 896 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 897 TmpOffset += SL->getElementOffset(Idx); 898 } else { 899 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); 900 for (;;) { 901 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 902 // Constant-offset addressing. 903 TmpOffset += CI->getSExtValue() * S; 904 break; 905 } 906 if (canFoldAddIntoGEP(U, Op)) { 907 // A compatible add with a constant operand. Fold the constant. 908 ConstantInt *CI = 909 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 910 TmpOffset += CI->getSExtValue() * S; 911 // Iterate on the other operand. 912 Op = cast<AddOperator>(Op)->getOperand(0); 913 continue; 914 } 915 // Unsupported 916 goto unsupported_gep; 917 } 918 } 919 } 920 921 // Try to grab the base operand now. 922 Addr.Offset = TmpOffset; 923 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 924 925 // We failed, restore everything and try the other options. 926 Addr = SavedAddr; 927 928 unsupported_gep: 929 break; 930 } 931 case Instruction::Alloca: { 932 const AllocaInst *AI = cast<AllocaInst>(Obj); 933 DenseMap<const AllocaInst*, int>::iterator SI = 934 FuncInfo.StaticAllocaMap.find(AI); 935 if (SI != FuncInfo.StaticAllocaMap.end()) { 936 Addr.BaseType = Address::FrameIndexBase; 937 Addr.Base.FI = SI->second; 938 return true; 939 } 940 break; 941 } 942 } 943 944 // Try to get this in a register if nothing else has worked. 945 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 946 return Addr.Base.Reg != 0; 947 } 948 949 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 950 bool needsLowering = false; 951 switch (VT.SimpleTy) { 952 default: llvm_unreachable("Unhandled load/store type!"); 953 case MVT::i1: 954 case MVT::i8: 955 case MVT::i16: 956 case MVT::i32: 957 if (!useAM3) { 958 // Integer loads/stores handle 12-bit offsets. 959 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 960 // Handle negative offsets. 961 if (needsLowering && isThumb2) 962 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 963 Addr.Offset > -256); 964 } else { 965 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 966 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 967 } 968 break; 969 case MVT::f32: 970 case MVT::f64: 971 // Floating point operands handle 8-bit offsets. 972 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 973 break; 974 } 975 976 // If this is a stack pointer and the offset needs to be simplified then 977 // put the alloca address into a register, set the base type back to 978 // register and continue. This should almost never happen. 979 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 980 const TargetRegisterClass *RC = isThumb2 ? 981 (const TargetRegisterClass*)&ARM::tGPRRegClass : 982 (const TargetRegisterClass*)&ARM::GPRRegClass; 983 unsigned ResultReg = createResultReg(RC); 984 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 985 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 986 TII.get(Opc), ResultReg) 987 .addFrameIndex(Addr.Base.FI) 988 .addImm(0)); 989 Addr.Base.Reg = ResultReg; 990 Addr.BaseType = Address::RegBase; 991 } 992 993 // Since the offset is too large for the load/store instruction 994 // get the reg+offset into a register. 995 if (needsLowering) { 996 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 997 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 998 Addr.Offset = 0; 999 } 1000 } 1001 1002 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 1003 const MachineInstrBuilder &MIB, 1004 unsigned Flags, bool useAM3) { 1005 // addrmode5 output depends on the selection dag addressing dividing the 1006 // offset by 4 that it then later multiplies. Do this here as well. 1007 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 1008 Addr.Offset /= 4; 1009 1010 // Frame base works a bit differently. Handle it separately. 1011 if (Addr.BaseType == Address::FrameIndexBase) { 1012 int FI = Addr.Base.FI; 1013 int Offset = Addr.Offset; 1014 MachineMemOperand *MMO = 1015 FuncInfo.MF->getMachineMemOperand( 1016 MachinePointerInfo::getFixedStack(FI, Offset), 1017 Flags, 1018 MFI.getObjectSize(FI), 1019 MFI.getObjectAlignment(FI)); 1020 // Now add the rest of the operands. 1021 MIB.addFrameIndex(FI); 1022 1023 // ARM halfword load/stores and signed byte loads need an additional 1024 // operand. 1025 if (useAM3) { 1026 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 1027 MIB.addReg(0); 1028 MIB.addImm(Imm); 1029 } else { 1030 MIB.addImm(Addr.Offset); 1031 } 1032 MIB.addMemOperand(MMO); 1033 } else { 1034 // Now add the rest of the operands. 1035 MIB.addReg(Addr.Base.Reg); 1036 1037 // ARM halfword load/stores and signed byte loads need an additional 1038 // operand. 1039 if (useAM3) { 1040 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 1041 MIB.addReg(0); 1042 MIB.addImm(Imm); 1043 } else { 1044 MIB.addImm(Addr.Offset); 1045 } 1046 } 1047 AddOptionalDefs(MIB); 1048 } 1049 1050 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 1051 unsigned Alignment, bool isZExt, bool allocReg) { 1052 unsigned Opc; 1053 bool useAM3 = false; 1054 bool needVMOV = false; 1055 const TargetRegisterClass *RC; 1056 switch (VT.SimpleTy) { 1057 // This is mostly going to be Neon/vector support. 1058 default: return false; 1059 case MVT::i1: 1060 case MVT::i8: 1061 if (isThumb2) { 1062 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1063 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 1064 else 1065 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 1066 } else { 1067 if (isZExt) { 1068 Opc = ARM::LDRBi12; 1069 } else { 1070 Opc = ARM::LDRSB; 1071 useAM3 = true; 1072 } 1073 } 1074 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1075 break; 1076 case MVT::i16: 1077 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1078 return false; 1079 1080 if (isThumb2) { 1081 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1082 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 1083 else 1084 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 1085 } else { 1086 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 1087 useAM3 = true; 1088 } 1089 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1090 break; 1091 case MVT::i32: 1092 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1093 return false; 1094 1095 if (isThumb2) { 1096 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1097 Opc = ARM::t2LDRi8; 1098 else 1099 Opc = ARM::t2LDRi12; 1100 } else { 1101 Opc = ARM::LDRi12; 1102 } 1103 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1104 break; 1105 case MVT::f32: 1106 if (!Subtarget->hasVFP2()) return false; 1107 // Unaligned loads need special handling. Floats require word-alignment. 1108 if (Alignment && Alignment < 4) { 1109 needVMOV = true; 1110 VT = MVT::i32; 1111 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1112 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1113 } else { 1114 Opc = ARM::VLDRS; 1115 RC = TLI.getRegClassFor(VT); 1116 } 1117 break; 1118 case MVT::f64: 1119 if (!Subtarget->hasVFP2()) return false; 1120 // FIXME: Unaligned loads need special handling. Doublewords require 1121 // word-alignment. 1122 if (Alignment && Alignment < 4) 1123 return false; 1124 1125 Opc = ARM::VLDRD; 1126 RC = TLI.getRegClassFor(VT); 1127 break; 1128 } 1129 // Simplify this down to something we can handle. 1130 ARMSimplifyAddress(Addr, VT, useAM3); 1131 1132 // Create the base instruction, then add the operands. 1133 if (allocReg) 1134 ResultReg = createResultReg(RC); 1135 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1136 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1137 TII.get(Opc), ResultReg); 1138 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1139 1140 // If we had an unaligned load of a float we've converted it to an regular 1141 // load. Now we must move from the GRP to the FP register. 1142 if (needVMOV) { 1143 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1144 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1145 TII.get(ARM::VMOVSR), MoveReg) 1146 .addReg(ResultReg)); 1147 ResultReg = MoveReg; 1148 } 1149 return true; 1150 } 1151 1152 bool ARMFastISel::SelectLoad(const Instruction *I) { 1153 // Atomic loads need special handling. 1154 if (cast<LoadInst>(I)->isAtomic()) 1155 return false; 1156 1157 // Verify we have a legal type before going any further. 1158 MVT VT; 1159 if (!isLoadTypeLegal(I->getType(), VT)) 1160 return false; 1161 1162 // See if we can handle this address. 1163 Address Addr; 1164 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1165 1166 unsigned ResultReg; 1167 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1168 return false; 1169 UpdateValueMap(I, ResultReg); 1170 return true; 1171 } 1172 1173 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1174 unsigned Alignment) { 1175 unsigned StrOpc; 1176 bool useAM3 = false; 1177 switch (VT.SimpleTy) { 1178 // This is mostly going to be Neon/vector support. 1179 default: return false; 1180 case MVT::i1: { 1181 unsigned Res = createResultReg(isThumb2 ? 1182 (const TargetRegisterClass*)&ARM::tGPRRegClass : 1183 (const TargetRegisterClass*)&ARM::GPRRegClass); 1184 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1185 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1186 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1187 TII.get(Opc), Res) 1188 .addReg(SrcReg).addImm(1)); 1189 SrcReg = Res; 1190 } // Fallthrough here. 1191 case MVT::i8: 1192 if (isThumb2) { 1193 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1194 StrOpc = ARM::t2STRBi8; 1195 else 1196 StrOpc = ARM::t2STRBi12; 1197 } else { 1198 StrOpc = ARM::STRBi12; 1199 } 1200 break; 1201 case MVT::i16: 1202 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1203 return false; 1204 1205 if (isThumb2) { 1206 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1207 StrOpc = ARM::t2STRHi8; 1208 else 1209 StrOpc = ARM::t2STRHi12; 1210 } else { 1211 StrOpc = ARM::STRH; 1212 useAM3 = true; 1213 } 1214 break; 1215 case MVT::i32: 1216 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1217 return false; 1218 1219 if (isThumb2) { 1220 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1221 StrOpc = ARM::t2STRi8; 1222 else 1223 StrOpc = ARM::t2STRi12; 1224 } else { 1225 StrOpc = ARM::STRi12; 1226 } 1227 break; 1228 case MVT::f32: 1229 if (!Subtarget->hasVFP2()) return false; 1230 // Unaligned stores need special handling. Floats require word-alignment. 1231 if (Alignment && Alignment < 4) { 1232 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1233 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1234 TII.get(ARM::VMOVRS), MoveReg) 1235 .addReg(SrcReg)); 1236 SrcReg = MoveReg; 1237 VT = MVT::i32; 1238 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1239 } else { 1240 StrOpc = ARM::VSTRS; 1241 } 1242 break; 1243 case MVT::f64: 1244 if (!Subtarget->hasVFP2()) return false; 1245 // FIXME: Unaligned stores need special handling. Doublewords require 1246 // word-alignment. 1247 if (Alignment && Alignment < 4) 1248 return false; 1249 1250 StrOpc = ARM::VSTRD; 1251 break; 1252 } 1253 // Simplify this down to something we can handle. 1254 ARMSimplifyAddress(Addr, VT, useAM3); 1255 1256 // Create the base instruction, then add the operands. 1257 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1258 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1259 TII.get(StrOpc)) 1260 .addReg(SrcReg); 1261 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1262 return true; 1263 } 1264 1265 bool ARMFastISel::SelectStore(const Instruction *I) { 1266 Value *Op0 = I->getOperand(0); 1267 unsigned SrcReg = 0; 1268 1269 // Atomic stores need special handling. 1270 if (cast<StoreInst>(I)->isAtomic()) 1271 return false; 1272 1273 // Verify we have a legal type before going any further. 1274 MVT VT; 1275 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1276 return false; 1277 1278 // Get the value to be stored into a register. 1279 SrcReg = getRegForValue(Op0); 1280 if (SrcReg == 0) return false; 1281 1282 // See if we can handle this address. 1283 Address Addr; 1284 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1285 return false; 1286 1287 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1288 return false; 1289 return true; 1290 } 1291 1292 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1293 switch (Pred) { 1294 // Needs two compares... 1295 case CmpInst::FCMP_ONE: 1296 case CmpInst::FCMP_UEQ: 1297 default: 1298 // AL is our "false" for now. The other two need more compares. 1299 return ARMCC::AL; 1300 case CmpInst::ICMP_EQ: 1301 case CmpInst::FCMP_OEQ: 1302 return ARMCC::EQ; 1303 case CmpInst::ICMP_SGT: 1304 case CmpInst::FCMP_OGT: 1305 return ARMCC::GT; 1306 case CmpInst::ICMP_SGE: 1307 case CmpInst::FCMP_OGE: 1308 return ARMCC::GE; 1309 case CmpInst::ICMP_UGT: 1310 case CmpInst::FCMP_UGT: 1311 return ARMCC::HI; 1312 case CmpInst::FCMP_OLT: 1313 return ARMCC::MI; 1314 case CmpInst::ICMP_ULE: 1315 case CmpInst::FCMP_OLE: 1316 return ARMCC::LS; 1317 case CmpInst::FCMP_ORD: 1318 return ARMCC::VC; 1319 case CmpInst::FCMP_UNO: 1320 return ARMCC::VS; 1321 case CmpInst::FCMP_UGE: 1322 return ARMCC::PL; 1323 case CmpInst::ICMP_SLT: 1324 case CmpInst::FCMP_ULT: 1325 return ARMCC::LT; 1326 case CmpInst::ICMP_SLE: 1327 case CmpInst::FCMP_ULE: 1328 return ARMCC::LE; 1329 case CmpInst::FCMP_UNE: 1330 case CmpInst::ICMP_NE: 1331 return ARMCC::NE; 1332 case CmpInst::ICMP_UGE: 1333 return ARMCC::HS; 1334 case CmpInst::ICMP_ULT: 1335 return ARMCC::LO; 1336 } 1337 } 1338 1339 bool ARMFastISel::SelectBranch(const Instruction *I) { 1340 const BranchInst *BI = cast<BranchInst>(I); 1341 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1342 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1343 1344 // Simple branch support. 1345 1346 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1347 // behavior. 1348 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1349 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1350 1351 // Get the compare predicate. 1352 // Try to take advantage of fallthrough opportunities. 1353 CmpInst::Predicate Predicate = CI->getPredicate(); 1354 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1355 std::swap(TBB, FBB); 1356 Predicate = CmpInst::getInversePredicate(Predicate); 1357 } 1358 1359 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1360 1361 // We may not handle every CC for now. 1362 if (ARMPred == ARMCC::AL) return false; 1363 1364 // Emit the compare. 1365 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1366 return false; 1367 1368 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1369 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1370 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1371 FastEmitBranch(FBB, DL); 1372 FuncInfo.MBB->addSuccessor(TBB); 1373 return true; 1374 } 1375 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1376 MVT SourceVT; 1377 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1378 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1379 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1380 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1381 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1382 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1383 TII.get(TstOpc)) 1384 .addReg(OpReg).addImm(1)); 1385 1386 unsigned CCMode = ARMCC::NE; 1387 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1388 std::swap(TBB, FBB); 1389 CCMode = ARMCC::EQ; 1390 } 1391 1392 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1393 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1394 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1395 1396 FastEmitBranch(FBB, DL); 1397 FuncInfo.MBB->addSuccessor(TBB); 1398 return true; 1399 } 1400 } else if (const ConstantInt *CI = 1401 dyn_cast<ConstantInt>(BI->getCondition())) { 1402 uint64_t Imm = CI->getZExtValue(); 1403 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1404 FastEmitBranch(Target, DL); 1405 return true; 1406 } 1407 1408 unsigned CmpReg = getRegForValue(BI->getCondition()); 1409 if (CmpReg == 0) return false; 1410 1411 // We've been divorced from our compare! Our block was split, and 1412 // now our compare lives in a predecessor block. We musn't 1413 // re-compare here, as the children of the compare aren't guaranteed 1414 // live across the block boundary (we *could* check for this). 1415 // Regardless, the compare has been done in the predecessor block, 1416 // and it left a value for us in a virtual register. Ergo, we test 1417 // the one-bit value left in the virtual register. 1418 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1419 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1420 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc)) 1421 .addReg(CmpReg).addImm(1)); 1422 1423 unsigned CCMode = ARMCC::NE; 1424 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1425 std::swap(TBB, FBB); 1426 CCMode = ARMCC::EQ; 1427 } 1428 1429 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1430 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1431 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1432 FastEmitBranch(FBB, DL); 1433 FuncInfo.MBB->addSuccessor(TBB); 1434 return true; 1435 } 1436 1437 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1438 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1439 if (AddrReg == 0) return false; 1440 1441 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1442 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) 1443 .addReg(AddrReg)); 1444 1445 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1446 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 1447 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 1448 1449 return true; 1450 } 1451 1452 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1453 bool isZExt) { 1454 Type *Ty = Src1Value->getType(); 1455 EVT SrcEVT = TLI.getValueType(Ty, true); 1456 if (!SrcEVT.isSimple()) return false; 1457 MVT SrcVT = SrcEVT.getSimpleVT(); 1458 1459 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1460 if (isFloat && !Subtarget->hasVFP2()) 1461 return false; 1462 1463 // Check to see if the 2nd operand is a constant that we can encode directly 1464 // in the compare. 1465 int Imm = 0; 1466 bool UseImm = false; 1467 bool isNegativeImm = false; 1468 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1469 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1470 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1471 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1472 SrcVT == MVT::i1) { 1473 const APInt &CIVal = ConstInt->getValue(); 1474 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1475 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1476 // then a cmn, because there is no way to represent 2147483648 as a 1477 // signed 32-bit int. 1478 if (Imm < 0 && Imm != (int)0x80000000) { 1479 isNegativeImm = true; 1480 Imm = -Imm; 1481 } 1482 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1483 (ARM_AM::getSOImmVal(Imm) != -1); 1484 } 1485 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1486 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1487 if (ConstFP->isZero() && !ConstFP->isNegative()) 1488 UseImm = true; 1489 } 1490 1491 unsigned CmpOpc; 1492 bool isICmp = true; 1493 bool needsExt = false; 1494 switch (SrcVT.SimpleTy) { 1495 default: return false; 1496 // TODO: Verify compares. 1497 case MVT::f32: 1498 isICmp = false; 1499 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1500 break; 1501 case MVT::f64: 1502 isICmp = false; 1503 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1504 break; 1505 case MVT::i1: 1506 case MVT::i8: 1507 case MVT::i16: 1508 needsExt = true; 1509 // Intentional fall-through. 1510 case MVT::i32: 1511 if (isThumb2) { 1512 if (!UseImm) 1513 CmpOpc = ARM::t2CMPrr; 1514 else 1515 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1516 } else { 1517 if (!UseImm) 1518 CmpOpc = ARM::CMPrr; 1519 else 1520 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1521 } 1522 break; 1523 } 1524 1525 unsigned SrcReg1 = getRegForValue(Src1Value); 1526 if (SrcReg1 == 0) return false; 1527 1528 unsigned SrcReg2 = 0; 1529 if (!UseImm) { 1530 SrcReg2 = getRegForValue(Src2Value); 1531 if (SrcReg2 == 0) return false; 1532 } 1533 1534 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1535 if (needsExt) { 1536 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1537 if (SrcReg1 == 0) return false; 1538 if (!UseImm) { 1539 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1540 if (SrcReg2 == 0) return false; 1541 } 1542 } 1543 1544 const MCInstrDesc &II = TII.get(CmpOpc); 1545 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1546 if (!UseImm) { 1547 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1548 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1549 .addReg(SrcReg1).addReg(SrcReg2)); 1550 } else { 1551 MachineInstrBuilder MIB; 1552 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 1553 .addReg(SrcReg1); 1554 1555 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1556 if (isICmp) 1557 MIB.addImm(Imm); 1558 AddOptionalDefs(MIB); 1559 } 1560 1561 // For floating point we need to move the result to a comparison register 1562 // that we can then use for branches. 1563 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1564 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1565 TII.get(ARM::FMSTAT))); 1566 return true; 1567 } 1568 1569 bool ARMFastISel::SelectCmp(const Instruction *I) { 1570 const CmpInst *CI = cast<CmpInst>(I); 1571 1572 // Get the compare predicate. 1573 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1574 1575 // We may not handle every CC for now. 1576 if (ARMPred == ARMCC::AL) return false; 1577 1578 // Emit the compare. 1579 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1580 return false; 1581 1582 // Now set a register based on the comparison. Explicitly set the predicates 1583 // here. 1584 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1585 const TargetRegisterClass *RC = isThumb2 ? 1586 (const TargetRegisterClass*)&ARM::rGPRRegClass : 1587 (const TargetRegisterClass*)&ARM::GPRRegClass; 1588 unsigned DestReg = createResultReg(RC); 1589 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1590 unsigned ZeroReg = TargetMaterializeConstant(Zero); 1591 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1592 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg) 1593 .addReg(ZeroReg).addImm(1) 1594 .addImm(ARMPred).addReg(ARM::CPSR); 1595 1596 UpdateValueMap(I, DestReg); 1597 return true; 1598 } 1599 1600 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1601 // Make sure we have VFP and that we're extending float to double. 1602 if (!Subtarget->hasVFP2()) return false; 1603 1604 Value *V = I->getOperand(0); 1605 if (!I->getType()->isDoubleTy() || 1606 !V->getType()->isFloatTy()) return false; 1607 1608 unsigned Op = getRegForValue(V); 1609 if (Op == 0) return false; 1610 1611 unsigned Result = createResultReg(&ARM::DPRRegClass); 1612 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1613 TII.get(ARM::VCVTDS), Result) 1614 .addReg(Op)); 1615 UpdateValueMap(I, Result); 1616 return true; 1617 } 1618 1619 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1620 // Make sure we have VFP and that we're truncating double to float. 1621 if (!Subtarget->hasVFP2()) return false; 1622 1623 Value *V = I->getOperand(0); 1624 if (!(I->getType()->isFloatTy() && 1625 V->getType()->isDoubleTy())) return false; 1626 1627 unsigned Op = getRegForValue(V); 1628 if (Op == 0) return false; 1629 1630 unsigned Result = createResultReg(&ARM::SPRRegClass); 1631 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1632 TII.get(ARM::VCVTSD), Result) 1633 .addReg(Op)); 1634 UpdateValueMap(I, Result); 1635 return true; 1636 } 1637 1638 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1639 // Make sure we have VFP. 1640 if (!Subtarget->hasVFP2()) return false; 1641 1642 MVT DstVT; 1643 Type *Ty = I->getType(); 1644 if (!isTypeLegal(Ty, DstVT)) 1645 return false; 1646 1647 Value *Src = I->getOperand(0); 1648 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 1649 if (!SrcEVT.isSimple()) 1650 return false; 1651 MVT SrcVT = SrcEVT.getSimpleVT(); 1652 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1653 return false; 1654 1655 unsigned SrcReg = getRegForValue(Src); 1656 if (SrcReg == 0) return false; 1657 1658 // Handle sign-extension. 1659 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1660 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1661 /*isZExt*/!isSigned); 1662 if (SrcReg == 0) return false; 1663 } 1664 1665 // The conversion routine works on fp-reg to fp-reg and the operand above 1666 // was an integer, move it to the fp registers if possible. 1667 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1668 if (FP == 0) return false; 1669 1670 unsigned Opc; 1671 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1672 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1673 else return false; 1674 1675 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1676 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1677 ResultReg) 1678 .addReg(FP)); 1679 UpdateValueMap(I, ResultReg); 1680 return true; 1681 } 1682 1683 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1684 // Make sure we have VFP. 1685 if (!Subtarget->hasVFP2()) return false; 1686 1687 MVT DstVT; 1688 Type *RetTy = I->getType(); 1689 if (!isTypeLegal(RetTy, DstVT)) 1690 return false; 1691 1692 unsigned Op = getRegForValue(I->getOperand(0)); 1693 if (Op == 0) return false; 1694 1695 unsigned Opc; 1696 Type *OpTy = I->getOperand(0)->getType(); 1697 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1698 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1699 else return false; 1700 1701 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1702 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1703 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1704 ResultReg) 1705 .addReg(Op)); 1706 1707 // This result needs to be in an integer register, but the conversion only 1708 // takes place in fp-regs. 1709 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1710 if (IntReg == 0) return false; 1711 1712 UpdateValueMap(I, IntReg); 1713 return true; 1714 } 1715 1716 bool ARMFastISel::SelectSelect(const Instruction *I) { 1717 MVT VT; 1718 if (!isTypeLegal(I->getType(), VT)) 1719 return false; 1720 1721 // Things need to be register sized for register moves. 1722 if (VT != MVT::i32) return false; 1723 1724 unsigned CondReg = getRegForValue(I->getOperand(0)); 1725 if (CondReg == 0) return false; 1726 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1727 if (Op1Reg == 0) return false; 1728 1729 // Check to see if we can use an immediate in the conditional move. 1730 int Imm = 0; 1731 bool UseImm = false; 1732 bool isNegativeImm = false; 1733 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1734 assert (VT == MVT::i32 && "Expecting an i32."); 1735 Imm = (int)ConstInt->getValue().getZExtValue(); 1736 if (Imm < 0) { 1737 isNegativeImm = true; 1738 Imm = ~Imm; 1739 } 1740 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1741 (ARM_AM::getSOImmVal(Imm) != -1); 1742 } 1743 1744 unsigned Op2Reg = 0; 1745 if (!UseImm) { 1746 Op2Reg = getRegForValue(I->getOperand(2)); 1747 if (Op2Reg == 0) return false; 1748 } 1749 1750 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 1751 CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0); 1752 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1753 .addReg(CondReg).addImm(0)); 1754 1755 unsigned MovCCOpc; 1756 const TargetRegisterClass *RC; 1757 if (!UseImm) { 1758 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1759 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1760 } else { 1761 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1762 if (!isNegativeImm) 1763 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1764 else 1765 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1766 } 1767 unsigned ResultReg = createResultReg(RC); 1768 if (!UseImm) { 1769 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1770 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1771 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1772 .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR); 1773 } else { 1774 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1775 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1776 .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR); 1777 } 1778 UpdateValueMap(I, ResultReg); 1779 return true; 1780 } 1781 1782 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1783 MVT VT; 1784 Type *Ty = I->getType(); 1785 if (!isTypeLegal(Ty, VT)) 1786 return false; 1787 1788 // If we have integer div support we should have selected this automagically. 1789 // In case we have a real miss go ahead and return false and we'll pick 1790 // it up later. 1791 if (Subtarget->hasDivide()) return false; 1792 1793 // Otherwise emit a libcall. 1794 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1795 if (VT == MVT::i8) 1796 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1797 else if (VT == MVT::i16) 1798 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1799 else if (VT == MVT::i32) 1800 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1801 else if (VT == MVT::i64) 1802 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1803 else if (VT == MVT::i128) 1804 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1805 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1806 1807 return ARMEmitLibcall(I, LC); 1808 } 1809 1810 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1811 MVT VT; 1812 Type *Ty = I->getType(); 1813 if (!isTypeLegal(Ty, VT)) 1814 return false; 1815 1816 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1817 if (VT == MVT::i8) 1818 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1819 else if (VT == MVT::i16) 1820 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1821 else if (VT == MVT::i32) 1822 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1823 else if (VT == MVT::i64) 1824 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1825 else if (VT == MVT::i128) 1826 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1827 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1828 1829 return ARMEmitLibcall(I, LC); 1830 } 1831 1832 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1833 EVT DestVT = TLI.getValueType(I->getType(), true); 1834 1835 // We can get here in the case when we have a binary operation on a non-legal 1836 // type and the target independent selector doesn't know how to handle it. 1837 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1838 return false; 1839 1840 unsigned Opc; 1841 switch (ISDOpcode) { 1842 default: return false; 1843 case ISD::ADD: 1844 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1845 break; 1846 case ISD::OR: 1847 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1848 break; 1849 case ISD::SUB: 1850 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1851 break; 1852 } 1853 1854 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1855 if (SrcReg1 == 0) return false; 1856 1857 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1858 // in the instruction, rather then materializing the value in a register. 1859 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1860 if (SrcReg2 == 0) return false; 1861 1862 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1863 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1864 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1865 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1866 TII.get(Opc), ResultReg) 1867 .addReg(SrcReg1).addReg(SrcReg2)); 1868 UpdateValueMap(I, ResultReg); 1869 return true; 1870 } 1871 1872 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1873 EVT FPVT = TLI.getValueType(I->getType(), true); 1874 if (!FPVT.isSimple()) return false; 1875 MVT VT = FPVT.getSimpleVT(); 1876 1877 // We can get here in the case when we want to use NEON for our fp 1878 // operations, but can't figure out how to. Just use the vfp instructions 1879 // if we have them. 1880 // FIXME: It'd be nice to use NEON instructions. 1881 Type *Ty = I->getType(); 1882 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1883 if (isFloat && !Subtarget->hasVFP2()) 1884 return false; 1885 1886 unsigned Opc; 1887 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1888 switch (ISDOpcode) { 1889 default: return false; 1890 case ISD::FADD: 1891 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1892 break; 1893 case ISD::FSUB: 1894 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1895 break; 1896 case ISD::FMUL: 1897 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1898 break; 1899 } 1900 unsigned Op1 = getRegForValue(I->getOperand(0)); 1901 if (Op1 == 0) return false; 1902 1903 unsigned Op2 = getRegForValue(I->getOperand(1)); 1904 if (Op2 == 0) return false; 1905 1906 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1907 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1908 TII.get(Opc), ResultReg) 1909 .addReg(Op1).addReg(Op2)); 1910 UpdateValueMap(I, ResultReg); 1911 return true; 1912 } 1913 1914 // Call Handling Code 1915 1916 // This is largely taken directly from CCAssignFnForNode 1917 // TODO: We may not support all of this. 1918 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1919 bool Return, 1920 bool isVarArg) { 1921 switch (CC) { 1922 default: 1923 llvm_unreachable("Unsupported calling convention"); 1924 case CallingConv::Fast: 1925 if (Subtarget->hasVFP2() && !isVarArg) { 1926 if (!Subtarget->isAAPCS_ABI()) 1927 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1928 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1929 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1930 } 1931 // Fallthrough 1932 case CallingConv::C: 1933 // Use target triple & subtarget features to do actual dispatch. 1934 if (Subtarget->isAAPCS_ABI()) { 1935 if (Subtarget->hasVFP2() && 1936 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1937 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1938 else 1939 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1940 } else 1941 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1942 case CallingConv::ARM_AAPCS_VFP: 1943 if (!isVarArg) 1944 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1945 // Fall through to soft float variant, variadic functions don't 1946 // use hard floating point ABI. 1947 case CallingConv::ARM_AAPCS: 1948 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1949 case CallingConv::ARM_APCS: 1950 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1951 case CallingConv::GHC: 1952 if (Return) 1953 llvm_unreachable("Can't return in GHC call convention"); 1954 else 1955 return CC_ARM_APCS_GHC; 1956 } 1957 } 1958 1959 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1960 SmallVectorImpl<unsigned> &ArgRegs, 1961 SmallVectorImpl<MVT> &ArgVTs, 1962 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1963 SmallVectorImpl<unsigned> &RegArgs, 1964 CallingConv::ID CC, 1965 unsigned &NumBytes, 1966 bool isVarArg) { 1967 SmallVector<CCValAssign, 16> ArgLocs; 1968 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1969 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1970 CCAssignFnForCall(CC, false, isVarArg)); 1971 1972 // Check that we can handle all of the arguments. If we can't, then bail out 1973 // now before we add code to the MBB. 1974 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1975 CCValAssign &VA = ArgLocs[i]; 1976 MVT ArgVT = ArgVTs[VA.getValNo()]; 1977 1978 // We don't handle NEON/vector parameters yet. 1979 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1980 return false; 1981 1982 // Now copy/store arg to correct locations. 1983 if (VA.isRegLoc() && !VA.needsCustom()) { 1984 continue; 1985 } else if (VA.needsCustom()) { 1986 // TODO: We need custom lowering for vector (v2f64) args. 1987 if (VA.getLocVT() != MVT::f64 || 1988 // TODO: Only handle register args for now. 1989 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1990 return false; 1991 } else { 1992 switch (ArgVT.SimpleTy) { 1993 default: 1994 return false; 1995 case MVT::i1: 1996 case MVT::i8: 1997 case MVT::i16: 1998 case MVT::i32: 1999 break; 2000 case MVT::f32: 2001 if (!Subtarget->hasVFP2()) 2002 return false; 2003 break; 2004 case MVT::f64: 2005 if (!Subtarget->hasVFP2()) 2006 return false; 2007 break; 2008 } 2009 } 2010 } 2011 2012 // At the point, we are able to handle the call's arguments in fast isel. 2013 2014 // Get a count of how many bytes are to be pushed on the stack. 2015 NumBytes = CCInfo.getNextStackOffset(); 2016 2017 // Issue CALLSEQ_START 2018 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 2019 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2020 TII.get(AdjStackDown)) 2021 .addImm(NumBytes)); 2022 2023 // Process the args. 2024 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2025 CCValAssign &VA = ArgLocs[i]; 2026 unsigned Arg = ArgRegs[VA.getValNo()]; 2027 MVT ArgVT = ArgVTs[VA.getValNo()]; 2028 2029 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 2030 "We don't handle NEON/vector parameters yet."); 2031 2032 // Handle arg promotion, etc. 2033 switch (VA.getLocInfo()) { 2034 case CCValAssign::Full: break; 2035 case CCValAssign::SExt: { 2036 MVT DestVT = VA.getLocVT(); 2037 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 2038 assert (Arg != 0 && "Failed to emit a sext"); 2039 ArgVT = DestVT; 2040 break; 2041 } 2042 case CCValAssign::AExt: 2043 // Intentional fall-through. Handle AExt and ZExt. 2044 case CCValAssign::ZExt: { 2045 MVT DestVT = VA.getLocVT(); 2046 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 2047 assert (Arg != 0 && "Failed to emit a zext"); 2048 ArgVT = DestVT; 2049 break; 2050 } 2051 case CCValAssign::BCvt: { 2052 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 2053 /*TODO: Kill=*/false); 2054 assert(BC != 0 && "Failed to emit a bitcast!"); 2055 Arg = BC; 2056 ArgVT = VA.getLocVT(); 2057 break; 2058 } 2059 default: llvm_unreachable("Unknown arg promotion!"); 2060 } 2061 2062 // Now copy/store arg to correct locations. 2063 if (VA.isRegLoc() && !VA.needsCustom()) { 2064 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2065 VA.getLocReg()) 2066 .addReg(Arg); 2067 RegArgs.push_back(VA.getLocReg()); 2068 } else if (VA.needsCustom()) { 2069 // TODO: We need custom lowering for vector (v2f64) args. 2070 assert(VA.getLocVT() == MVT::f64 && 2071 "Custom lowering for v2f64 args not available"); 2072 2073 CCValAssign &NextVA = ArgLocs[++i]; 2074 2075 assert(VA.isRegLoc() && NextVA.isRegLoc() && 2076 "We only handle register args!"); 2077 2078 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2079 TII.get(ARM::VMOVRRD), VA.getLocReg()) 2080 .addReg(NextVA.getLocReg(), RegState::Define) 2081 .addReg(Arg)); 2082 RegArgs.push_back(VA.getLocReg()); 2083 RegArgs.push_back(NextVA.getLocReg()); 2084 } else { 2085 assert(VA.isMemLoc()); 2086 // Need to store on the stack. 2087 Address Addr; 2088 Addr.BaseType = Address::RegBase; 2089 Addr.Base.Reg = ARM::SP; 2090 Addr.Offset = VA.getLocMemOffset(); 2091 2092 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2093 assert(EmitRet && "Could not emit a store for argument!"); 2094 } 2095 } 2096 2097 return true; 2098 } 2099 2100 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2101 const Instruction *I, CallingConv::ID CC, 2102 unsigned &NumBytes, bool isVarArg) { 2103 // Issue CALLSEQ_END 2104 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2105 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2106 TII.get(AdjStackUp)) 2107 .addImm(NumBytes).addImm(0)); 2108 2109 // Now the return value. 2110 if (RetVT != MVT::isVoid) { 2111 SmallVector<CCValAssign, 16> RVLocs; 2112 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2113 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2114 2115 // Copy all of the result registers out of their specified physreg. 2116 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2117 // For this move we copy into two registers and then move into the 2118 // double fp reg we want. 2119 MVT DestVT = RVLocs[0].getValVT(); 2120 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2121 unsigned ResultReg = createResultReg(DstRC); 2122 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2123 TII.get(ARM::VMOVDRR), ResultReg) 2124 .addReg(RVLocs[0].getLocReg()) 2125 .addReg(RVLocs[1].getLocReg())); 2126 2127 UsedRegs.push_back(RVLocs[0].getLocReg()); 2128 UsedRegs.push_back(RVLocs[1].getLocReg()); 2129 2130 // Finally update the result. 2131 UpdateValueMap(I, ResultReg); 2132 } else { 2133 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2134 MVT CopyVT = RVLocs[0].getValVT(); 2135 2136 // Special handling for extended integers. 2137 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2138 CopyVT = MVT::i32; 2139 2140 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2141 2142 unsigned ResultReg = createResultReg(DstRC); 2143 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2144 ResultReg).addReg(RVLocs[0].getLocReg()); 2145 UsedRegs.push_back(RVLocs[0].getLocReg()); 2146 2147 // Finally update the result. 2148 UpdateValueMap(I, ResultReg); 2149 } 2150 } 2151 2152 return true; 2153 } 2154 2155 bool ARMFastISel::SelectRet(const Instruction *I) { 2156 const ReturnInst *Ret = cast<ReturnInst>(I); 2157 const Function &F = *I->getParent()->getParent(); 2158 2159 if (!FuncInfo.CanLowerReturn) 2160 return false; 2161 2162 // Build a list of return value registers. 2163 SmallVector<unsigned, 4> RetRegs; 2164 2165 CallingConv::ID CC = F.getCallingConv(); 2166 if (Ret->getNumOperands() > 0) { 2167 SmallVector<ISD::OutputArg, 4> Outs; 2168 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 2169 2170 // Analyze operands of the call, assigning locations to each operand. 2171 SmallVector<CCValAssign, 16> ValLocs; 2172 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext()); 2173 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2174 F.isVarArg())); 2175 2176 const Value *RV = Ret->getOperand(0); 2177 unsigned Reg = getRegForValue(RV); 2178 if (Reg == 0) 2179 return false; 2180 2181 // Only handle a single return value for now. 2182 if (ValLocs.size() != 1) 2183 return false; 2184 2185 CCValAssign &VA = ValLocs[0]; 2186 2187 // Don't bother handling odd stuff for now. 2188 if (VA.getLocInfo() != CCValAssign::Full) 2189 return false; 2190 // Only handle register returns for now. 2191 if (!VA.isRegLoc()) 2192 return false; 2193 2194 unsigned SrcReg = Reg + VA.getValNo(); 2195 EVT RVEVT = TLI.getValueType(RV->getType()); 2196 if (!RVEVT.isSimple()) return false; 2197 MVT RVVT = RVEVT.getSimpleVT(); 2198 MVT DestVT = VA.getValVT(); 2199 // Special handling for extended integers. 2200 if (RVVT != DestVT) { 2201 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2202 return false; 2203 2204 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2205 2206 // Perform extension if flagged as either zext or sext. Otherwise, do 2207 // nothing. 2208 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2209 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2210 if (SrcReg == 0) return false; 2211 } 2212 } 2213 2214 // Make the copy. 2215 unsigned DstReg = VA.getLocReg(); 2216 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2217 // Avoid a cross-class copy. This is very unlikely. 2218 if (!SrcRC->contains(DstReg)) 2219 return false; 2220 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2221 DstReg).addReg(SrcReg); 2222 2223 // Add register to return instruction. 2224 RetRegs.push_back(VA.getLocReg()); 2225 } 2226 2227 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2228 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2229 TII.get(RetOpc)); 2230 AddOptionalDefs(MIB); 2231 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2232 MIB.addReg(RetRegs[i], RegState::Implicit); 2233 return true; 2234 } 2235 2236 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2237 if (UseReg) 2238 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2239 else 2240 return isThumb2 ? ARM::tBL : ARM::BL; 2241 } 2242 2243 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2244 // Manually compute the global's type to avoid building it when unnecessary. 2245 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2246 EVT LCREVT = TLI.getValueType(GVTy); 2247 if (!LCREVT.isSimple()) return 0; 2248 2249 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2250 GlobalValue::ExternalLinkage, 0, Name); 2251 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2252 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2253 } 2254 2255 // A quick function that will emit a call for a named libcall in F with the 2256 // vector of passed arguments for the Instruction in I. We can assume that we 2257 // can emit a call for any libcall we can produce. This is an abridged version 2258 // of the full call infrastructure since we won't need to worry about things 2259 // like computed function pointers or strange arguments at call sites. 2260 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2261 // with X86. 2262 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2263 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2264 2265 // Handle *simple* calls for now. 2266 Type *RetTy = I->getType(); 2267 MVT RetVT; 2268 if (RetTy->isVoidTy()) 2269 RetVT = MVT::isVoid; 2270 else if (!isTypeLegal(RetTy, RetVT)) 2271 return false; 2272 2273 // Can't handle non-double multi-reg retvals. 2274 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2275 SmallVector<CCValAssign, 16> RVLocs; 2276 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); 2277 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2278 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2279 return false; 2280 } 2281 2282 // Set up the argument vectors. 2283 SmallVector<Value*, 8> Args; 2284 SmallVector<unsigned, 8> ArgRegs; 2285 SmallVector<MVT, 8> ArgVTs; 2286 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2287 Args.reserve(I->getNumOperands()); 2288 ArgRegs.reserve(I->getNumOperands()); 2289 ArgVTs.reserve(I->getNumOperands()); 2290 ArgFlags.reserve(I->getNumOperands()); 2291 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2292 Value *Op = I->getOperand(i); 2293 unsigned Arg = getRegForValue(Op); 2294 if (Arg == 0) return false; 2295 2296 Type *ArgTy = Op->getType(); 2297 MVT ArgVT; 2298 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2299 2300 ISD::ArgFlagsTy Flags; 2301 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2302 Flags.setOrigAlign(OriginalAlignment); 2303 2304 Args.push_back(Op); 2305 ArgRegs.push_back(Arg); 2306 ArgVTs.push_back(ArgVT); 2307 ArgFlags.push_back(Flags); 2308 } 2309 2310 // Handle the arguments now that we've gotten them. 2311 SmallVector<unsigned, 4> RegArgs; 2312 unsigned NumBytes; 2313 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2314 RegArgs, CC, NumBytes, false)) 2315 return false; 2316 2317 unsigned CalleeReg = 0; 2318 if (EnableARMLongCalls) { 2319 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2320 if (CalleeReg == 0) return false; 2321 } 2322 2323 // Issue the call. 2324 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls); 2325 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2326 DL, TII.get(CallOpc)); 2327 // BL / BLX don't take a predicate, but tBL / tBLX do. 2328 if (isThumb2) 2329 AddDefaultPred(MIB); 2330 if (EnableARMLongCalls) 2331 MIB.addReg(CalleeReg); 2332 else 2333 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2334 2335 // Add implicit physical register uses to the call. 2336 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2337 MIB.addReg(RegArgs[i], RegState::Implicit); 2338 2339 // Add a register mask with the call-preserved registers. 2340 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2341 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2342 2343 // Finish off the call including any return values. 2344 SmallVector<unsigned, 4> UsedRegs; 2345 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2346 2347 // Set all unused physreg defs as dead. 2348 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2349 2350 return true; 2351 } 2352 2353 bool ARMFastISel::SelectCall(const Instruction *I, 2354 const char *IntrMemName = 0) { 2355 const CallInst *CI = cast<CallInst>(I); 2356 const Value *Callee = CI->getCalledValue(); 2357 2358 // Can't handle inline asm. 2359 if (isa<InlineAsm>(Callee)) return false; 2360 2361 // Allow SelectionDAG isel to handle tail calls. 2362 if (CI->isTailCall()) return false; 2363 2364 // Check the calling convention. 2365 ImmutableCallSite CS(CI); 2366 CallingConv::ID CC = CS.getCallingConv(); 2367 2368 // TODO: Avoid some calling conventions? 2369 2370 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2371 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2372 bool isVarArg = FTy->isVarArg(); 2373 2374 // Handle *simple* calls for now. 2375 Type *RetTy = I->getType(); 2376 MVT RetVT; 2377 if (RetTy->isVoidTy()) 2378 RetVT = MVT::isVoid; 2379 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2380 RetVT != MVT::i8 && RetVT != MVT::i1) 2381 return false; 2382 2383 // Can't handle non-double multi-reg retvals. 2384 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2385 RetVT != MVT::i16 && RetVT != MVT::i32) { 2386 SmallVector<CCValAssign, 16> RVLocs; 2387 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2388 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2389 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2390 return false; 2391 } 2392 2393 // Set up the argument vectors. 2394 SmallVector<Value*, 8> Args; 2395 SmallVector<unsigned, 8> ArgRegs; 2396 SmallVector<MVT, 8> ArgVTs; 2397 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2398 unsigned arg_size = CS.arg_size(); 2399 Args.reserve(arg_size); 2400 ArgRegs.reserve(arg_size); 2401 ArgVTs.reserve(arg_size); 2402 ArgFlags.reserve(arg_size); 2403 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2404 i != e; ++i) { 2405 // If we're lowering a memory intrinsic instead of a regular call, skip the 2406 // last two arguments, which shouldn't be passed to the underlying function. 2407 if (IntrMemName && e-i <= 2) 2408 break; 2409 2410 ISD::ArgFlagsTy Flags; 2411 unsigned AttrInd = i - CS.arg_begin() + 1; 2412 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2413 Flags.setSExt(); 2414 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2415 Flags.setZExt(); 2416 2417 // FIXME: Only handle *easy* calls for now. 2418 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2419 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2420 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2421 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2422 return false; 2423 2424 Type *ArgTy = (*i)->getType(); 2425 MVT ArgVT; 2426 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2427 ArgVT != MVT::i1) 2428 return false; 2429 2430 unsigned Arg = getRegForValue(*i); 2431 if (Arg == 0) 2432 return false; 2433 2434 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2435 Flags.setOrigAlign(OriginalAlignment); 2436 2437 Args.push_back(*i); 2438 ArgRegs.push_back(Arg); 2439 ArgVTs.push_back(ArgVT); 2440 ArgFlags.push_back(Flags); 2441 } 2442 2443 // Handle the arguments now that we've gotten them. 2444 SmallVector<unsigned, 4> RegArgs; 2445 unsigned NumBytes; 2446 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2447 RegArgs, CC, NumBytes, isVarArg)) 2448 return false; 2449 2450 bool UseReg = false; 2451 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2452 if (!GV || EnableARMLongCalls) UseReg = true; 2453 2454 unsigned CalleeReg = 0; 2455 if (UseReg) { 2456 if (IntrMemName) 2457 CalleeReg = getLibcallReg(IntrMemName); 2458 else 2459 CalleeReg = getRegForValue(Callee); 2460 2461 if (CalleeReg == 0) return false; 2462 } 2463 2464 // Issue the call. 2465 unsigned CallOpc = ARMSelectCallOp(UseReg); 2466 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2467 DL, TII.get(CallOpc)); 2468 2469 unsigned char OpFlags = 0; 2470 2471 // Add MO_PLT for global address or external symbol in the PIC relocation 2472 // model. 2473 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 2474 OpFlags = ARMII::MO_PLT; 2475 2476 // ARM calls don't take a predicate, but tBL / tBLX do. 2477 if(isThumb2) 2478 AddDefaultPred(MIB); 2479 if (UseReg) 2480 MIB.addReg(CalleeReg); 2481 else if (!IntrMemName) 2482 MIB.addGlobalAddress(GV, 0, OpFlags); 2483 else 2484 MIB.addExternalSymbol(IntrMemName, OpFlags); 2485 2486 // Add implicit physical register uses to the call. 2487 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2488 MIB.addReg(RegArgs[i], RegState::Implicit); 2489 2490 // Add a register mask with the call-preserved registers. 2491 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2492 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2493 2494 // Finish off the call including any return values. 2495 SmallVector<unsigned, 4> UsedRegs; 2496 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2497 return false; 2498 2499 // Set all unused physreg defs as dead. 2500 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2501 2502 return true; 2503 } 2504 2505 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2506 return Len <= 16; 2507 } 2508 2509 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2510 uint64_t Len, unsigned Alignment) { 2511 // Make sure we don't bloat code by inlining very large memcpy's. 2512 if (!ARMIsMemCpySmall(Len)) 2513 return false; 2514 2515 while (Len) { 2516 MVT VT; 2517 if (!Alignment || Alignment >= 4) { 2518 if (Len >= 4) 2519 VT = MVT::i32; 2520 else if (Len >= 2) 2521 VT = MVT::i16; 2522 else { 2523 assert (Len == 1 && "Expected a length of 1!"); 2524 VT = MVT::i8; 2525 } 2526 } else { 2527 // Bound based on alignment. 2528 if (Len >= 2 && Alignment == 2) 2529 VT = MVT::i16; 2530 else { 2531 VT = MVT::i8; 2532 } 2533 } 2534 2535 bool RV; 2536 unsigned ResultReg; 2537 RV = ARMEmitLoad(VT, ResultReg, Src); 2538 assert (RV == true && "Should be able to handle this load."); 2539 RV = ARMEmitStore(VT, ResultReg, Dest); 2540 assert (RV == true && "Should be able to handle this store."); 2541 (void)RV; 2542 2543 unsigned Size = VT.getSizeInBits()/8; 2544 Len -= Size; 2545 Dest.Offset += Size; 2546 Src.Offset += Size; 2547 } 2548 2549 return true; 2550 } 2551 2552 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2553 // FIXME: Handle more intrinsics. 2554 switch (I.getIntrinsicID()) { 2555 default: return false; 2556 case Intrinsic::frameaddress: { 2557 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2558 MFI->setFrameAddressIsTaken(true); 2559 2560 unsigned LdrOpc; 2561 const TargetRegisterClass *RC; 2562 if (isThumb2) { 2563 LdrOpc = ARM::t2LDRi12; 2564 RC = (const TargetRegisterClass*)&ARM::tGPRRegClass; 2565 } else { 2566 LdrOpc = ARM::LDRi12; 2567 RC = (const TargetRegisterClass*)&ARM::GPRRegClass; 2568 } 2569 2570 const ARMBaseRegisterInfo *RegInfo = 2571 static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo()); 2572 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2573 unsigned SrcReg = FramePtr; 2574 2575 // Recursively load frame address 2576 // ldr r0 [fp] 2577 // ldr r0 [r0] 2578 // ldr r0 [r0] 2579 // ... 2580 unsigned DestReg; 2581 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2582 while (Depth--) { 2583 DestReg = createResultReg(RC); 2584 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2585 TII.get(LdrOpc), DestReg) 2586 .addReg(SrcReg).addImm(0)); 2587 SrcReg = DestReg; 2588 } 2589 UpdateValueMap(&I, SrcReg); 2590 return true; 2591 } 2592 case Intrinsic::memcpy: 2593 case Intrinsic::memmove: { 2594 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2595 // Don't handle volatile. 2596 if (MTI.isVolatile()) 2597 return false; 2598 2599 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2600 // we would emit dead code because we don't currently handle memmoves. 2601 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2602 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2603 // Small memcpy's are common enough that we want to do them without a call 2604 // if possible. 2605 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2606 if (ARMIsMemCpySmall(Len)) { 2607 Address Dest, Src; 2608 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2609 !ARMComputeAddress(MTI.getRawSource(), Src)) 2610 return false; 2611 unsigned Alignment = MTI.getAlignment(); 2612 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2613 return true; 2614 } 2615 } 2616 2617 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2618 return false; 2619 2620 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2621 return false; 2622 2623 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2624 return SelectCall(&I, IntrMemName); 2625 } 2626 case Intrinsic::memset: { 2627 const MemSetInst &MSI = cast<MemSetInst>(I); 2628 // Don't handle volatile. 2629 if (MSI.isVolatile()) 2630 return false; 2631 2632 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2633 return false; 2634 2635 if (MSI.getDestAddressSpace() > 255) 2636 return false; 2637 2638 return SelectCall(&I, "memset"); 2639 } 2640 case Intrinsic::trap: { 2641 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get( 2642 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2643 return true; 2644 } 2645 } 2646 } 2647 2648 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2649 // The high bits for a type smaller than the register size are assumed to be 2650 // undefined. 2651 Value *Op = I->getOperand(0); 2652 2653 EVT SrcVT, DestVT; 2654 SrcVT = TLI.getValueType(Op->getType(), true); 2655 DestVT = TLI.getValueType(I->getType(), true); 2656 2657 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2658 return false; 2659 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2660 return false; 2661 2662 unsigned SrcReg = getRegForValue(Op); 2663 if (!SrcReg) return false; 2664 2665 // Because the high bits are undefined, a truncate doesn't generate 2666 // any code. 2667 UpdateValueMap(I, SrcReg); 2668 return true; 2669 } 2670 2671 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2672 bool isZExt) { 2673 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2674 return 0; 2675 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2676 return 0; 2677 2678 // Table of which combinations can be emitted as a single instruction, 2679 // and which will require two. 2680 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2681 // ARM Thumb 2682 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2683 // ext: s z s z s z s z 2684 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2685 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2686 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2687 }; 2688 2689 // Target registers for: 2690 // - For ARM can never be PC. 2691 // - For 16-bit Thumb are restricted to lower 8 registers. 2692 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2693 static const TargetRegisterClass *RCTbl[2][2] = { 2694 // Instructions: Two Single 2695 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2696 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2697 }; 2698 2699 // Table governing the instruction(s) to be emitted. 2700 static const struct InstructionTable { 2701 uint32_t Opc : 16; 2702 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2703 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2704 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2705 } IT[2][2][3][2] = { 2706 { // Two instructions (first is left shift, second is in this table). 2707 { // ARM Opc S Shift Imm 2708 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2709 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2710 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2711 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2712 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2713 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2714 }, 2715 { // Thumb Opc S Shift Imm 2716 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2717 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2718 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2719 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2720 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2721 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2722 } 2723 }, 2724 { // Single instruction. 2725 { // ARM Opc S Shift Imm 2726 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2727 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2728 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2729 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2730 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2731 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2732 }, 2733 { // Thumb Opc S Shift Imm 2734 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2735 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2736 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2737 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2738 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2739 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2740 } 2741 } 2742 }; 2743 2744 unsigned SrcBits = SrcVT.getSizeInBits(); 2745 unsigned DestBits = DestVT.getSizeInBits(); 2746 (void) DestBits; 2747 assert((SrcBits < DestBits) && "can only extend to larger types"); 2748 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2749 "other sizes unimplemented"); 2750 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2751 "other sizes unimplemented"); 2752 2753 bool hasV6Ops = Subtarget->hasV6Ops(); 2754 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2755 assert((Bitness < 3) && "sanity-check table bounds"); 2756 2757 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2758 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2759 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2760 unsigned Opc = ITP->Opc; 2761 assert(ARM::KILL != Opc && "Invalid table entry"); 2762 unsigned hasS = ITP->hasS; 2763 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2764 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2765 "only MOVsi has shift operand addressing mode"); 2766 unsigned Imm = ITP->Imm; 2767 2768 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2769 bool setsCPSR = &ARM::tGPRRegClass == RC; 2770 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2771 unsigned ResultReg; 2772 // MOVsi encodes shift and immediate in shift operand addressing mode. 2773 // The following condition has the same value when emitting two 2774 // instruction sequences: both are shifts. 2775 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2776 2777 // Either one or two instructions are emitted. 2778 // They're always of the form: 2779 // dst = in OP imm 2780 // CPSR is set only by 16-bit Thumb instructions. 2781 // Predicate, if any, is AL. 2782 // S bit, if available, is always 0. 2783 // When two are emitted the first's result will feed as the second's input, 2784 // that value is then dead. 2785 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2786 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2787 ResultReg = createResultReg(RC); 2788 bool isLsl = (0 == Instr) && !isSingleInstr; 2789 unsigned Opcode = isLsl ? LSLOpc : Opc; 2790 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2791 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2792 bool isKill = 1 == Instr; 2793 MachineInstrBuilder MIB = BuildMI( 2794 *FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opcode), ResultReg); 2795 if (setsCPSR) 2796 MIB.addReg(ARM::CPSR, RegState::Define); 2797 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2798 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2799 if (hasS) 2800 AddDefaultCC(MIB); 2801 // Second instruction consumes the first's result. 2802 SrcReg = ResultReg; 2803 } 2804 2805 return ResultReg; 2806 } 2807 2808 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2809 // On ARM, in general, integer casts don't involve legal types; this code 2810 // handles promotable integers. 2811 Type *DestTy = I->getType(); 2812 Value *Src = I->getOperand(0); 2813 Type *SrcTy = Src->getType(); 2814 2815 bool isZExt = isa<ZExtInst>(I); 2816 unsigned SrcReg = getRegForValue(Src); 2817 if (!SrcReg) return false; 2818 2819 EVT SrcEVT, DestEVT; 2820 SrcEVT = TLI.getValueType(SrcTy, true); 2821 DestEVT = TLI.getValueType(DestTy, true); 2822 if (!SrcEVT.isSimple()) return false; 2823 if (!DestEVT.isSimple()) return false; 2824 2825 MVT SrcVT = SrcEVT.getSimpleVT(); 2826 MVT DestVT = DestEVT.getSimpleVT(); 2827 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2828 if (ResultReg == 0) return false; 2829 UpdateValueMap(I, ResultReg); 2830 return true; 2831 } 2832 2833 bool ARMFastISel::SelectShift(const Instruction *I, 2834 ARM_AM::ShiftOpc ShiftTy) { 2835 // We handle thumb2 mode by target independent selector 2836 // or SelectionDAG ISel. 2837 if (isThumb2) 2838 return false; 2839 2840 // Only handle i32 now. 2841 EVT DestVT = TLI.getValueType(I->getType(), true); 2842 if (DestVT != MVT::i32) 2843 return false; 2844 2845 unsigned Opc = ARM::MOVsr; 2846 unsigned ShiftImm; 2847 Value *Src2Value = I->getOperand(1); 2848 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2849 ShiftImm = CI->getZExtValue(); 2850 2851 // Fall back to selection DAG isel if the shift amount 2852 // is zero or greater than the width of the value type. 2853 if (ShiftImm == 0 || ShiftImm >=32) 2854 return false; 2855 2856 Opc = ARM::MOVsi; 2857 } 2858 2859 Value *Src1Value = I->getOperand(0); 2860 unsigned Reg1 = getRegForValue(Src1Value); 2861 if (Reg1 == 0) return false; 2862 2863 unsigned Reg2 = 0; 2864 if (Opc == ARM::MOVsr) { 2865 Reg2 = getRegForValue(Src2Value); 2866 if (Reg2 == 0) return false; 2867 } 2868 2869 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2870 if(ResultReg == 0) return false; 2871 2872 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2873 TII.get(Opc), ResultReg) 2874 .addReg(Reg1); 2875 2876 if (Opc == ARM::MOVsi) 2877 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2878 else if (Opc == ARM::MOVsr) { 2879 MIB.addReg(Reg2); 2880 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2881 } 2882 2883 AddOptionalDefs(MIB); 2884 UpdateValueMap(I, ResultReg); 2885 return true; 2886 } 2887 2888 // TODO: SoftFP support. 2889 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { 2890 2891 switch (I->getOpcode()) { 2892 case Instruction::Load: 2893 return SelectLoad(I); 2894 case Instruction::Store: 2895 return SelectStore(I); 2896 case Instruction::Br: 2897 return SelectBranch(I); 2898 case Instruction::IndirectBr: 2899 return SelectIndirectBr(I); 2900 case Instruction::ICmp: 2901 case Instruction::FCmp: 2902 return SelectCmp(I); 2903 case Instruction::FPExt: 2904 return SelectFPExt(I); 2905 case Instruction::FPTrunc: 2906 return SelectFPTrunc(I); 2907 case Instruction::SIToFP: 2908 return SelectIToFP(I, /*isSigned*/ true); 2909 case Instruction::UIToFP: 2910 return SelectIToFP(I, /*isSigned*/ false); 2911 case Instruction::FPToSI: 2912 return SelectFPToI(I, /*isSigned*/ true); 2913 case Instruction::FPToUI: 2914 return SelectFPToI(I, /*isSigned*/ false); 2915 case Instruction::Add: 2916 return SelectBinaryIntOp(I, ISD::ADD); 2917 case Instruction::Or: 2918 return SelectBinaryIntOp(I, ISD::OR); 2919 case Instruction::Sub: 2920 return SelectBinaryIntOp(I, ISD::SUB); 2921 case Instruction::FAdd: 2922 return SelectBinaryFPOp(I, ISD::FADD); 2923 case Instruction::FSub: 2924 return SelectBinaryFPOp(I, ISD::FSUB); 2925 case Instruction::FMul: 2926 return SelectBinaryFPOp(I, ISD::FMUL); 2927 case Instruction::SDiv: 2928 return SelectDiv(I, /*isSigned*/ true); 2929 case Instruction::UDiv: 2930 return SelectDiv(I, /*isSigned*/ false); 2931 case Instruction::SRem: 2932 return SelectRem(I, /*isSigned*/ true); 2933 case Instruction::URem: 2934 return SelectRem(I, /*isSigned*/ false); 2935 case Instruction::Call: 2936 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2937 return SelectIntrinsicCall(*II); 2938 return SelectCall(I); 2939 case Instruction::Select: 2940 return SelectSelect(I); 2941 case Instruction::Ret: 2942 return SelectRet(I); 2943 case Instruction::Trunc: 2944 return SelectTrunc(I); 2945 case Instruction::ZExt: 2946 case Instruction::SExt: 2947 return SelectIntExt(I); 2948 case Instruction::Shl: 2949 return SelectShift(I, ARM_AM::lsl); 2950 case Instruction::LShr: 2951 return SelectShift(I, ARM_AM::lsr); 2952 case Instruction::AShr: 2953 return SelectShift(I, ARM_AM::asr); 2954 default: break; 2955 } 2956 return false; 2957 } 2958 2959 namespace { 2960 // This table describes sign- and zero-extend instructions which can be 2961 // folded into a preceding load. All of these extends have an immediate 2962 // (sometimes a mask and sometimes a shift) that's applied after 2963 // extension. 2964 const struct FoldableLoadExtendsStruct { 2965 uint16_t Opc[2]; // ARM, Thumb. 2966 uint8_t ExpectedImm; 2967 uint8_t isZExt : 1; 2968 uint8_t ExpectedVT : 7; 2969 } FoldableLoadExtends[] = { 2970 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2971 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2972 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2973 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2974 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2975 }; 2976 } 2977 2978 /// \brief The specified machine instr operand is a vreg, and that 2979 /// vreg is being provided by the specified load instruction. If possible, 2980 /// try to fold the load as an operand to the instruction, returning true if 2981 /// successful. 2982 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2983 const LoadInst *LI) { 2984 // Verify we have a legal type before going any further. 2985 MVT VT; 2986 if (!isLoadTypeLegal(LI->getType(), VT)) 2987 return false; 2988 2989 // Combine load followed by zero- or sign-extend. 2990 // ldrb r1, [r0] ldrb r1, [r0] 2991 // uxtb r2, r1 => 2992 // mov r3, r2 mov r3, r1 2993 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2994 return false; 2995 const uint64_t Imm = MI->getOperand(2).getImm(); 2996 2997 bool Found = false; 2998 bool isZExt; 2999 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 3000 i != e; ++i) { 3001 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 3002 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 3003 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 3004 Found = true; 3005 isZExt = FoldableLoadExtends[i].isZExt; 3006 } 3007 } 3008 if (!Found) return false; 3009 3010 // See if we can handle this address. 3011 Address Addr; 3012 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 3013 3014 unsigned ResultReg = MI->getOperand(0).getReg(); 3015 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 3016 return false; 3017 MI->eraseFromParent(); 3018 return true; 3019 } 3020 3021 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 3022 unsigned Align, MVT VT) { 3023 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 3024 ARMConstantPoolConstant *CPV = 3025 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 3026 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 3027 3028 unsigned Opc; 3029 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 3030 // Load value. 3031 if (isThumb2) { 3032 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 3033 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 3034 TII.get(ARM::t2LDRpci), DestReg1) 3035 .addConstantPoolIndex(Idx)); 3036 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 3037 } else { 3038 // The extra immediate is for addrmode2. 3039 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 3040 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 3041 DL, TII.get(ARM::LDRcp), DestReg1) 3042 .addConstantPoolIndex(Idx).addImm(0)); 3043 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 3044 } 3045 3046 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 3047 if (GlobalBaseReg == 0) { 3048 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 3049 AFI->setGlobalBaseReg(GlobalBaseReg); 3050 } 3051 3052 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 3053 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 3054 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 3055 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 3056 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 3057 DL, TII.get(Opc), DestReg2) 3058 .addReg(DestReg1) 3059 .addReg(GlobalBaseReg); 3060 if (!UseGOTOFF) 3061 MIB.addImm(0); 3062 AddOptionalDefs(MIB); 3063 3064 return DestReg2; 3065 } 3066 3067 bool ARMFastISel::FastLowerArguments() { 3068 if (!FuncInfo.CanLowerReturn) 3069 return false; 3070 3071 const Function *F = FuncInfo.Fn; 3072 if (F->isVarArg()) 3073 return false; 3074 3075 CallingConv::ID CC = F->getCallingConv(); 3076 switch (CC) { 3077 default: 3078 return false; 3079 case CallingConv::Fast: 3080 case CallingConv::C: 3081 case CallingConv::ARM_AAPCS_VFP: 3082 case CallingConv::ARM_AAPCS: 3083 case CallingConv::ARM_APCS: 3084 break; 3085 } 3086 3087 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3088 // which are passed in r0 - r3. 3089 unsigned Idx = 1; 3090 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3091 I != E; ++I, ++Idx) { 3092 if (Idx > 4) 3093 return false; 3094 3095 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3096 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3097 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3098 return false; 3099 3100 Type *ArgTy = I->getType(); 3101 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3102 return false; 3103 3104 EVT ArgVT = TLI.getValueType(ArgTy); 3105 if (!ArgVT.isSimple()) return false; 3106 switch (ArgVT.getSimpleVT().SimpleTy) { 3107 case MVT::i8: 3108 case MVT::i16: 3109 case MVT::i32: 3110 break; 3111 default: 3112 return false; 3113 } 3114 } 3115 3116 3117 static const uint16_t GPRArgRegs[] = { 3118 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3119 }; 3120 3121 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3122 Idx = 0; 3123 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3124 I != E; ++I, ++Idx) { 3125 unsigned SrcReg = GPRArgRegs[Idx]; 3126 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3127 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3128 // Without this, EmitLiveInCopies may eliminate the livein if its only 3129 // use is a bitcast (which isn't turned into an instruction). 3130 unsigned ResultReg = createResultReg(RC); 3131 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 3132 ResultReg).addReg(DstReg, getKillRegState(true)); 3133 UpdateValueMap(I, ResultReg); 3134 } 3135 3136 return true; 3137 } 3138 3139 namespace llvm { 3140 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3141 const TargetLibraryInfo *libInfo) { 3142 const TargetMachine &TM = funcInfo.MF->getTarget(); 3143 3144 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 3145 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 3146 bool UseFastISel = false; 3147 UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only(); 3148 UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb(); 3149 UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb(); 3150 3151 if (UseFastISel) { 3152 // iOS always has a FP for backtracking, force other targets 3153 // to keep their FP when doing FastISel. The emitted code is 3154 // currently superior, and in cases like test-suite's lencod 3155 // FastISel isn't quite correct when FP is eliminated. 3156 TM.Options.NoFramePointerElim = true; 3157 return new ARMFastISel(funcInfo, libInfo); 3158 } 3159 return 0; 3160 } 3161 } 3162