1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCRegisterInfo.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MachineValueType.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cstdint>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 namespace {
86 
87   // All possible address modes, plus some.
88   struct Address {
89     enum {
90       RegBase,
91       FrameIndexBase
92     } BaseType = RegBase;
93 
94     union {
95       unsigned Reg;
96       int FI;
97     } Base;
98 
99     int Offset = 0;
100 
101     // Innocuous defaults for our address.
102     Address() {
103       Base.Reg = 0;
104     }
105   };
106 
107 class ARMFastISel final : public FastISel {
108   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
109   /// make the right decision when generating code for different targets.
110   const ARMSubtarget *Subtarget;
111   Module &M;
112   const TargetMachine &TM;
113   const TargetInstrInfo &TII;
114   const TargetLowering &TLI;
115   ARMFunctionInfo *AFI;
116 
117   // Convenience variables to avoid some queries.
118   bool isThumb2;
119   LLVMContext *Context;
120 
121   public:
122     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
123                          const TargetLibraryInfo *libInfo)
124         : FastISel(funcInfo, libInfo),
125           Subtarget(
126               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
127           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
128           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
129           TLI(*Subtarget->getTargetLowering()) {
130       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
131       isThumb2 = AFI->isThumbFunction();
132       Context = &funcInfo.Fn->getContext();
133     }
134 
135   private:
136     // Code from FastISel.cpp.
137 
138     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
139                             const TargetRegisterClass *RC, unsigned Op0);
140     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
141                              const TargetRegisterClass *RC,
142                              unsigned Op0, unsigned Op1);
143     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
144                              const TargetRegisterClass *RC,
145                              unsigned Op0, uint64_t Imm);
146     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
147                             const TargetRegisterClass *RC,
148                             uint64_t Imm);
149 
150     // Backend specific FastISel code.
151 
152     bool fastSelectInstruction(const Instruction *I) override;
153     unsigned fastMaterializeConstant(const Constant *C) override;
154     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
155     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
156                              const LoadInst *LI) override;
157     bool fastLowerArguments() override;
158 
159   #include "ARMGenFastISel.inc"
160 
161     // Instruction selection routines.
162 
163     bool SelectLoad(const Instruction *I);
164     bool SelectStore(const Instruction *I);
165     bool SelectBranch(const Instruction *I);
166     bool SelectIndirectBr(const Instruction *I);
167     bool SelectCmp(const Instruction *I);
168     bool SelectFPExt(const Instruction *I);
169     bool SelectFPTrunc(const Instruction *I);
170     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
171     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
172     bool SelectIToFP(const Instruction *I, bool isSigned);
173     bool SelectFPToI(const Instruction *I, bool isSigned);
174     bool SelectDiv(const Instruction *I, bool isSigned);
175     bool SelectRem(const Instruction *I, bool isSigned);
176     bool SelectCall(const Instruction *I, const char *IntrMemName);
177     bool SelectIntrinsicCall(const IntrinsicInst &I);
178     bool SelectSelect(const Instruction *I);
179     bool SelectRet(const Instruction *I);
180     bool SelectTrunc(const Instruction *I);
181     bool SelectIntExt(const Instruction *I);
182     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
183 
184     // Utility routines.
185 
186     bool isPositionIndependent() const;
187     bool isTypeLegal(Type *Ty, MVT &VT);
188     bool isLoadTypeLegal(Type *Ty, MVT &VT);
189     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
190                     bool isZExt);
191     bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
192                      unsigned Alignment = 0, bool isZExt = true,
193                      bool allocReg = true);
194     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
195                       unsigned Alignment = 0);
196     bool ARMComputeAddress(const Value *Obj, Address &Addr);
197     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
198     bool ARMIsMemCpySmall(uint64_t Len);
199     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
200                                unsigned Alignment);
201     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
202     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
203     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
204     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
205     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
206     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
207     unsigned ARMSelectCallOp(bool UseReg);
208     unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);
209 
210     const TargetLowering *getTargetLowering() { return &TLI; }
211 
212     // Call handling routines.
213 
214     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
215                                   bool Return,
216                                   bool isVarArg);
217     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
218                          SmallVectorImpl<Register> &ArgRegs,
219                          SmallVectorImpl<MVT> &ArgVTs,
220                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
221                          SmallVectorImpl<Register> &RegArgs,
222                          CallingConv::ID CC,
223                          unsigned &NumBytes,
224                          bool isVarArg);
225     unsigned getLibcallReg(const Twine &Name);
226     bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
227                     const Instruction *I, CallingConv::ID CC,
228                     unsigned &NumBytes, bool isVarArg);
229     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
230 
231     // OptionalDef handling routines.
232 
233     bool isARMNEONPred(const MachineInstr *MI);
234     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
235     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
236     void AddLoadStoreOperands(MVT VT, Address &Addr,
237                               const MachineInstrBuilder &MIB,
238                               MachineMemOperand::Flags Flags, bool useAM3);
239 };
240 
241 } // end anonymous namespace
242 
243 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
244 // we don't care about implicit defs here, just places we'll need to add a
245 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
246 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
247   if (!MI->hasOptionalDef())
248     return false;
249 
250   // Look to see if our OptionalDef is defining CPSR or CCR.
251   for (const MachineOperand &MO : MI->operands()) {
252     if (!MO.isReg() || !MO.isDef()) continue;
253     if (MO.getReg() == ARM::CPSR)
254       *CPSR = true;
255   }
256   return true;
257 }
258 
259 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
260   const MCInstrDesc &MCID = MI->getDesc();
261 
262   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
263   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
264        AFI->isThumb2Function())
265     return MI->isPredicable();
266 
267   for (const MCOperandInfo &opInfo : MCID.operands())
268     if (opInfo.isPredicate())
269       return true;
270 
271   return false;
272 }
273 
274 // If the machine is predicable go ahead and add the predicate operands, if
275 // it needs default CC operands add those.
276 // TODO: If we want to support thumb1 then we'll need to deal with optional
277 // CPSR defs that need to be added before the remaining operands. See s_cc_out
278 // for descriptions why.
279 const MachineInstrBuilder &
280 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
281   MachineInstr *MI = &*MIB;
282 
283   // Do we use a predicate? or...
284   // Are we NEON in ARM mode and have a predicate operand? If so, I know
285   // we're not predicable but add it anyways.
286   if (isARMNEONPred(MI))
287     MIB.add(predOps(ARMCC::AL));
288 
289   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
290   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
291   bool CPSR = false;
292   if (DefinesOptionalPredicate(MI, &CPSR))
293     MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
294   return MIB;
295 }
296 
297 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
298                                      const TargetRegisterClass *RC,
299                                      unsigned Op0) {
300   Register ResultReg = createResultReg(RC);
301   const MCInstrDesc &II = TII.get(MachineInstOpcode);
302 
303   // Make sure the input operand is sufficiently constrained to be legal
304   // for this instruction.
305   Op0 = constrainOperandRegClass(II, Op0, 1);
306   if (II.getNumDefs() >= 1) {
307     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
308                             ResultReg).addReg(Op0));
309   } else {
310     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
311                    .addReg(Op0));
312     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
313                    TII.get(TargetOpcode::COPY), ResultReg)
314                    .addReg(II.ImplicitDefs[0]));
315   }
316   return ResultReg;
317 }
318 
319 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
320                                       const TargetRegisterClass *RC,
321                                       unsigned Op0, unsigned Op1) {
322   unsigned ResultReg = createResultReg(RC);
323   const MCInstrDesc &II = TII.get(MachineInstOpcode);
324 
325   // Make sure the input operands are sufficiently constrained to be legal
326   // for this instruction.
327   Op0 = constrainOperandRegClass(II, Op0, 1);
328   Op1 = constrainOperandRegClass(II, Op1, 2);
329 
330   if (II.getNumDefs() >= 1) {
331     AddOptionalDefs(
332         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
333             .addReg(Op0)
334             .addReg(Op1));
335   } else {
336     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
337                    .addReg(Op0)
338                    .addReg(Op1));
339     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
340                            TII.get(TargetOpcode::COPY), ResultReg)
341                    .addReg(II.ImplicitDefs[0]));
342   }
343   return ResultReg;
344 }
345 
346 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
347                                       const TargetRegisterClass *RC,
348                                       unsigned Op0, uint64_t Imm) {
349   unsigned ResultReg = createResultReg(RC);
350   const MCInstrDesc &II = TII.get(MachineInstOpcode);
351 
352   // Make sure the input operand is sufficiently constrained to be legal
353   // for this instruction.
354   Op0 = constrainOperandRegClass(II, Op0, 1);
355   if (II.getNumDefs() >= 1) {
356     AddOptionalDefs(
357         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
358             .addReg(Op0)
359             .addImm(Imm));
360   } else {
361     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
362                    .addReg(Op0)
363                    .addImm(Imm));
364     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
365                            TII.get(TargetOpcode::COPY), ResultReg)
366                    .addReg(II.ImplicitDefs[0]));
367   }
368   return ResultReg;
369 }
370 
371 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
372                                      const TargetRegisterClass *RC,
373                                      uint64_t Imm) {
374   unsigned ResultReg = createResultReg(RC);
375   const MCInstrDesc &II = TII.get(MachineInstOpcode);
376 
377   if (II.getNumDefs() >= 1) {
378     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
379                             ResultReg).addImm(Imm));
380   } else {
381     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
382                    .addImm(Imm));
383     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
384                            TII.get(TargetOpcode::COPY), ResultReg)
385                    .addReg(II.ImplicitDefs[0]));
386   }
387   return ResultReg;
388 }
389 
390 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
391 // checks from the various callers.
392 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
393   if (VT == MVT::f64) return 0;
394 
395   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
396   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
397                           TII.get(ARM::VMOVSR), MoveReg)
398                   .addReg(SrcReg));
399   return MoveReg;
400 }
401 
402 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
403   if (VT == MVT::i64) return 0;
404 
405   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
406   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
407                           TII.get(ARM::VMOVRS), MoveReg)
408                   .addReg(SrcReg));
409   return MoveReg;
410 }
411 
412 // For double width floating point we need to materialize two constants
413 // (the high and the low) into integer registers then use a move to get
414 // the combined constant into an FP reg.
415 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
416   const APFloat Val = CFP->getValueAPF();
417   bool is64bit = VT == MVT::f64;
418 
419   // This checks to see if we can use VFP3 instructions to materialize
420   // a constant, otherwise we have to go through the constant pool.
421   if (TLI.isFPImmLegal(Val, VT)) {
422     int Imm;
423     unsigned Opc;
424     if (is64bit) {
425       Imm = ARM_AM::getFP64Imm(Val);
426       Opc = ARM::FCONSTD;
427     } else {
428       Imm = ARM_AM::getFP32Imm(Val);
429       Opc = ARM::FCONSTS;
430     }
431     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
432     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
433                             TII.get(Opc), DestReg).addImm(Imm));
434     return DestReg;
435   }
436 
437   // Require VFP2 for loading fp constants.
438   if (!Subtarget->hasVFP2Base()) return false;
439 
440   // MachineConstantPool wants an explicit alignment.
441   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
442   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
443   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
444   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
445 
446   // The extra reg is for addrmode5.
447   AddOptionalDefs(
448       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
449           .addConstantPoolIndex(Idx)
450           .addReg(0));
451   return DestReg;
452 }
453 
454 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
455   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
456     return 0;
457 
458   // If we can do this in a single instruction without a constant pool entry
459   // do so now.
460   const ConstantInt *CI = cast<ConstantInt>(C);
461   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
462     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
463     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
464       &ARM::GPRRegClass;
465     unsigned ImmReg = createResultReg(RC);
466     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
467                             TII.get(Opc), ImmReg)
468                     .addImm(CI->getZExtValue()));
469     return ImmReg;
470   }
471 
472   // Use MVN to emit negative constants.
473   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
474     unsigned Imm = (unsigned)~(CI->getSExtValue());
475     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
476       (ARM_AM::getSOImmVal(Imm) != -1);
477     if (UseImm) {
478       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
479       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
480                                                  &ARM::GPRRegClass;
481       unsigned ImmReg = createResultReg(RC);
482       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
483                               TII.get(Opc), ImmReg)
484                       .addImm(Imm));
485       return ImmReg;
486     }
487   }
488 
489   unsigned ResultReg = 0;
490   if (Subtarget->useMovt())
491     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
492 
493   if (ResultReg)
494     return ResultReg;
495 
496   // Load from constant pool.  For now 32-bit only.
497   if (VT != MVT::i32)
498     return 0;
499 
500   // MachineConstantPool wants an explicit alignment.
501   Align Alignment = DL.getPrefTypeAlign(C->getType());
502   unsigned Idx = MCP.getConstantPoolIndex(C, Alignment);
503   ResultReg = createResultReg(TLI.getRegClassFor(VT));
504   if (isThumb2)
505     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
506                             TII.get(ARM::t2LDRpci), ResultReg)
507                       .addConstantPoolIndex(Idx));
508   else {
509     // The extra immediate is for addrmode2.
510     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
511     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
512                             TII.get(ARM::LDRcp), ResultReg)
513                       .addConstantPoolIndex(Idx)
514                       .addImm(0));
515   }
516   return ResultReg;
517 }
518 
519 bool ARMFastISel::isPositionIndependent() const {
520   return TLI.isPositionIndependent();
521 }
522 
523 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
524   // For now 32-bit only.
525   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
526 
527   // ROPI/RWPI not currently supported.
528   if (Subtarget->isROPI() || Subtarget->isRWPI())
529     return 0;
530 
531   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
532   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
533                                            : &ARM::GPRRegClass;
534   unsigned DestReg = createResultReg(RC);
535 
536   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
537   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
538   bool IsThreadLocal = GVar && GVar->isThreadLocal();
539   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
540 
541   bool IsPositionIndependent = isPositionIndependent();
542   // Use movw+movt when possible, it avoids constant pool entries.
543   // Non-darwin targets only support static movt relocations in FastISel.
544   if (Subtarget->useMovt() &&
545       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
546     unsigned Opc;
547     unsigned char TF = 0;
548     if (Subtarget->isTargetMachO())
549       TF = ARMII::MO_NONLAZY;
550 
551     if (IsPositionIndependent)
552       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
553     else
554       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
555     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
556                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
557   } else {
558     // MachineConstantPool wants an explicit alignment.
559     Align Alignment = DL.getPrefTypeAlign(GV->getType());
560 
561     if (Subtarget->isTargetELF() && IsPositionIndependent)
562       return ARMLowerPICELF(GV, VT);
563 
564     // Grab index.
565     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
566     unsigned Id = AFI->createPICLabelUId();
567     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
568                                                                 ARMCP::CPValue,
569                                                                 PCAdj);
570     unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment);
571 
572     // Load value.
573     MachineInstrBuilder MIB;
574     if (isThumb2) {
575       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
576       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
577                     DestReg).addConstantPoolIndex(Idx);
578       if (IsPositionIndependent)
579         MIB.addImm(Id);
580       AddOptionalDefs(MIB);
581     } else {
582       // The extra immediate is for addrmode2.
583       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
584       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
585                     TII.get(ARM::LDRcp), DestReg)
586                 .addConstantPoolIndex(Idx)
587                 .addImm(0);
588       AddOptionalDefs(MIB);
589 
590       if (IsPositionIndependent) {
591         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
592         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
593 
594         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
595                                           DbgLoc, TII.get(Opc), NewDestReg)
596                                   .addReg(DestReg)
597                                   .addImm(Id);
598         AddOptionalDefs(MIB);
599         return NewDestReg;
600       }
601     }
602   }
603 
604   if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) ||
605       (Subtarget->isTargetMachO() && IsIndirect) ||
606       Subtarget->genLongCalls()) {
607     MachineInstrBuilder MIB;
608     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
609     if (isThumb2)
610       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
611                     TII.get(ARM::t2LDRi12), NewDestReg)
612             .addReg(DestReg)
613             .addImm(0);
614     else
615       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
616                     TII.get(ARM::LDRi12), NewDestReg)
617                 .addReg(DestReg)
618                 .addImm(0);
619     DestReg = NewDestReg;
620     AddOptionalDefs(MIB);
621   }
622 
623   return DestReg;
624 }
625 
626 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
627   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
628 
629   // Only handle simple types.
630   if (!CEVT.isSimple()) return 0;
631   MVT VT = CEVT.getSimpleVT();
632 
633   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
634     return ARMMaterializeFP(CFP, VT);
635   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
636     return ARMMaterializeGV(GV, VT);
637   else if (isa<ConstantInt>(C))
638     return ARMMaterializeInt(C, VT);
639 
640   return 0;
641 }
642 
643 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
644 
645 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
646   // Don't handle dynamic allocas.
647   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
648 
649   MVT VT;
650   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
651 
652   DenseMap<const AllocaInst*, int>::iterator SI =
653     FuncInfo.StaticAllocaMap.find(AI);
654 
655   // This will get lowered later into the correct offsets and registers
656   // via rewriteXFrameIndex.
657   if (SI != FuncInfo.StaticAllocaMap.end()) {
658     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
659     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
660     unsigned ResultReg = createResultReg(RC);
661     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
662 
663     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
664                             TII.get(Opc), ResultReg)
665                             .addFrameIndex(SI->second)
666                             .addImm(0));
667     return ResultReg;
668   }
669 
670   return 0;
671 }
672 
673 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
674   EVT evt = TLI.getValueType(DL, Ty, true);
675 
676   // Only handle simple types.
677   if (evt == MVT::Other || !evt.isSimple()) return false;
678   VT = evt.getSimpleVT();
679 
680   // Handle all legal types, i.e. a register that will directly hold this
681   // value.
682   return TLI.isTypeLegal(VT);
683 }
684 
685 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
686   if (isTypeLegal(Ty, VT)) return true;
687 
688   // If this is a type than can be sign or zero-extended to a basic operation
689   // go ahead and accept it now.
690   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
691     return true;
692 
693   return false;
694 }
695 
696 // Computes the address to get to an object.
697 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
698   // Some boilerplate from the X86 FastISel.
699   const User *U = nullptr;
700   unsigned Opcode = Instruction::UserOp1;
701   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
702     // Don't walk into other basic blocks unless the object is an alloca from
703     // another block, otherwise it may not have a virtual register assigned.
704     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
705         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
706       Opcode = I->getOpcode();
707       U = I;
708     }
709   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
710     Opcode = C->getOpcode();
711     U = C;
712   }
713 
714   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
715     if (Ty->getAddressSpace() > 255)
716       // Fast instruction selection doesn't support the special
717       // address spaces.
718       return false;
719 
720   switch (Opcode) {
721     default:
722     break;
723     case Instruction::BitCast:
724       // Look through bitcasts.
725       return ARMComputeAddress(U->getOperand(0), Addr);
726     case Instruction::IntToPtr:
727       // Look past no-op inttoptrs.
728       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
729           TLI.getPointerTy(DL))
730         return ARMComputeAddress(U->getOperand(0), Addr);
731       break;
732     case Instruction::PtrToInt:
733       // Look past no-op ptrtoints.
734       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
735         return ARMComputeAddress(U->getOperand(0), Addr);
736       break;
737     case Instruction::GetElementPtr: {
738       Address SavedAddr = Addr;
739       int TmpOffset = Addr.Offset;
740 
741       // Iterate through the GEP folding the constants into offsets where
742       // we can.
743       gep_type_iterator GTI = gep_type_begin(U);
744       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
745            i != e; ++i, ++GTI) {
746         const Value *Op = *i;
747         if (StructType *STy = GTI.getStructTypeOrNull()) {
748           const StructLayout *SL = DL.getStructLayout(STy);
749           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
750           TmpOffset += SL->getElementOffset(Idx);
751         } else {
752           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
753           while (true) {
754             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
755               // Constant-offset addressing.
756               TmpOffset += CI->getSExtValue() * S;
757               break;
758             }
759             if (canFoldAddIntoGEP(U, Op)) {
760               // A compatible add with a constant operand. Fold the constant.
761               ConstantInt *CI =
762               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
763               TmpOffset += CI->getSExtValue() * S;
764               // Iterate on the other operand.
765               Op = cast<AddOperator>(Op)->getOperand(0);
766               continue;
767             }
768             // Unsupported
769             goto unsupported_gep;
770           }
771         }
772       }
773 
774       // Try to grab the base operand now.
775       Addr.Offset = TmpOffset;
776       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
777 
778       // We failed, restore everything and try the other options.
779       Addr = SavedAddr;
780 
781       unsupported_gep:
782       break;
783     }
784     case Instruction::Alloca: {
785       const AllocaInst *AI = cast<AllocaInst>(Obj);
786       DenseMap<const AllocaInst*, int>::iterator SI =
787         FuncInfo.StaticAllocaMap.find(AI);
788       if (SI != FuncInfo.StaticAllocaMap.end()) {
789         Addr.BaseType = Address::FrameIndexBase;
790         Addr.Base.FI = SI->second;
791         return true;
792       }
793       break;
794     }
795   }
796 
797   // Try to get this in a register if nothing else has worked.
798   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
799   return Addr.Base.Reg != 0;
800 }
801 
802 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
803   bool needsLowering = false;
804   switch (VT.SimpleTy) {
805     default: llvm_unreachable("Unhandled load/store type!");
806     case MVT::i1:
807     case MVT::i8:
808     case MVT::i16:
809     case MVT::i32:
810       if (!useAM3) {
811         // Integer loads/stores handle 12-bit offsets.
812         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
813         // Handle negative offsets.
814         if (needsLowering && isThumb2)
815           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
816                             Addr.Offset > -256);
817       } else {
818         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
819         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
820       }
821       break;
822     case MVT::f32:
823     case MVT::f64:
824       // Floating point operands handle 8-bit offsets.
825       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
826       break;
827   }
828 
829   // If this is a stack pointer and the offset needs to be simplified then
830   // put the alloca address into a register, set the base type back to
831   // register and continue. This should almost never happen.
832   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
833     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
834                                              : &ARM::GPRRegClass;
835     unsigned ResultReg = createResultReg(RC);
836     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
837     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
838                             TII.get(Opc), ResultReg)
839                             .addFrameIndex(Addr.Base.FI)
840                             .addImm(0));
841     Addr.Base.Reg = ResultReg;
842     Addr.BaseType = Address::RegBase;
843   }
844 
845   // Since the offset is too large for the load/store instruction
846   // get the reg+offset into a register.
847   if (needsLowering) {
848     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
849                                  Addr.Offset, MVT::i32);
850     Addr.Offset = 0;
851   }
852 }
853 
854 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
855                                        const MachineInstrBuilder &MIB,
856                                        MachineMemOperand::Flags Flags,
857                                        bool useAM3) {
858   // addrmode5 output depends on the selection dag addressing dividing the
859   // offset by 4 that it then later multiplies. Do this here as well.
860   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
861     Addr.Offset /= 4;
862 
863   // Frame base works a bit differently. Handle it separately.
864   if (Addr.BaseType == Address::FrameIndexBase) {
865     int FI = Addr.Base.FI;
866     int Offset = Addr.Offset;
867     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
868         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
869         MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
870     // Now add the rest of the operands.
871     MIB.addFrameIndex(FI);
872 
873     // ARM halfword load/stores and signed byte loads need an additional
874     // operand.
875     if (useAM3) {
876       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
877       MIB.addReg(0);
878       MIB.addImm(Imm);
879     } else {
880       MIB.addImm(Addr.Offset);
881     }
882     MIB.addMemOperand(MMO);
883   } else {
884     // Now add the rest of the operands.
885     MIB.addReg(Addr.Base.Reg);
886 
887     // ARM halfword load/stores and signed byte loads need an additional
888     // operand.
889     if (useAM3) {
890       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
891       MIB.addReg(0);
892       MIB.addImm(Imm);
893     } else {
894       MIB.addImm(Addr.Offset);
895     }
896   }
897   AddOptionalDefs(MIB);
898 }
899 
900 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
901                               unsigned Alignment, bool isZExt, bool allocReg) {
902   unsigned Opc;
903   bool useAM3 = false;
904   bool needVMOV = false;
905   const TargetRegisterClass *RC;
906   switch (VT.SimpleTy) {
907     // This is mostly going to be Neon/vector support.
908     default: return false;
909     case MVT::i1:
910     case MVT::i8:
911       if (isThumb2) {
912         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
913           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
914         else
915           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
916       } else {
917         if (isZExt) {
918           Opc = ARM::LDRBi12;
919         } else {
920           Opc = ARM::LDRSB;
921           useAM3 = true;
922         }
923       }
924       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
925       break;
926     case MVT::i16:
927       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
928         return false;
929 
930       if (isThumb2) {
931         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
932           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
933         else
934           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
935       } else {
936         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
937         useAM3 = true;
938       }
939       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
940       break;
941     case MVT::i32:
942       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
943         return false;
944 
945       if (isThumb2) {
946         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
947           Opc = ARM::t2LDRi8;
948         else
949           Opc = ARM::t2LDRi12;
950       } else {
951         Opc = ARM::LDRi12;
952       }
953       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
954       break;
955     case MVT::f32:
956       if (!Subtarget->hasVFP2Base()) return false;
957       // Unaligned loads need special handling. Floats require word-alignment.
958       if (Alignment && Alignment < 4) {
959         needVMOV = true;
960         VT = MVT::i32;
961         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
962         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
963       } else {
964         Opc = ARM::VLDRS;
965         RC = TLI.getRegClassFor(VT);
966       }
967       break;
968     case MVT::f64:
969       // Can load and store double precision even without FeatureFP64
970       if (!Subtarget->hasVFP2Base()) return false;
971       // FIXME: Unaligned loads need special handling.  Doublewords require
972       // word-alignment.
973       if (Alignment && Alignment < 4)
974         return false;
975 
976       Opc = ARM::VLDRD;
977       RC = TLI.getRegClassFor(VT);
978       break;
979   }
980   // Simplify this down to something we can handle.
981   ARMSimplifyAddress(Addr, VT, useAM3);
982 
983   // Create the base instruction, then add the operands.
984   if (allocReg)
985     ResultReg = createResultReg(RC);
986   assert(ResultReg > 255 && "Expected an allocated virtual register.");
987   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
988                                     TII.get(Opc), ResultReg);
989   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
990 
991   // If we had an unaligned load of a float we've converted it to an regular
992   // load.  Now we must move from the GRP to the FP register.
993   if (needVMOV) {
994     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
995     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
996                             TII.get(ARM::VMOVSR), MoveReg)
997                     .addReg(ResultReg));
998     ResultReg = MoveReg;
999   }
1000   return true;
1001 }
1002 
1003 bool ARMFastISel::SelectLoad(const Instruction *I) {
1004   // Atomic loads need special handling.
1005   if (cast<LoadInst>(I)->isAtomic())
1006     return false;
1007 
1008   const Value *SV = I->getOperand(0);
1009   if (TLI.supportSwiftError()) {
1010     // Swifterror values can come from either a function parameter with
1011     // swifterror attribute or an alloca with swifterror attribute.
1012     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1013       if (Arg->hasSwiftErrorAttr())
1014         return false;
1015     }
1016 
1017     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1018       if (Alloca->isSwiftError())
1019         return false;
1020     }
1021   }
1022 
1023   // Verify we have a legal type before going any further.
1024   MVT VT;
1025   if (!isLoadTypeLegal(I->getType(), VT))
1026     return false;
1027 
1028   // See if we can handle this address.
1029   Address Addr;
1030   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1031 
1032   Register ResultReg;
1033   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1034     return false;
1035   updateValueMap(I, ResultReg);
1036   return true;
1037 }
1038 
1039 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1040                                unsigned Alignment) {
1041   unsigned StrOpc;
1042   bool useAM3 = false;
1043   switch (VT.SimpleTy) {
1044     // This is mostly going to be Neon/vector support.
1045     default: return false;
1046     case MVT::i1: {
1047       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1048                                               : &ARM::GPRRegClass);
1049       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1050       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1051       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1052                               TII.get(Opc), Res)
1053                       .addReg(SrcReg).addImm(1));
1054       SrcReg = Res;
1055       LLVM_FALLTHROUGH;
1056     }
1057     case MVT::i8:
1058       if (isThumb2) {
1059         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1060           StrOpc = ARM::t2STRBi8;
1061         else
1062           StrOpc = ARM::t2STRBi12;
1063       } else {
1064         StrOpc = ARM::STRBi12;
1065       }
1066       break;
1067     case MVT::i16:
1068       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1069         return false;
1070 
1071       if (isThumb2) {
1072         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1073           StrOpc = ARM::t2STRHi8;
1074         else
1075           StrOpc = ARM::t2STRHi12;
1076       } else {
1077         StrOpc = ARM::STRH;
1078         useAM3 = true;
1079       }
1080       break;
1081     case MVT::i32:
1082       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1083         return false;
1084 
1085       if (isThumb2) {
1086         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1087           StrOpc = ARM::t2STRi8;
1088         else
1089           StrOpc = ARM::t2STRi12;
1090       } else {
1091         StrOpc = ARM::STRi12;
1092       }
1093       break;
1094     case MVT::f32:
1095       if (!Subtarget->hasVFP2Base()) return false;
1096       // Unaligned stores need special handling. Floats require word-alignment.
1097       if (Alignment && Alignment < 4) {
1098         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1099         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1100                                 TII.get(ARM::VMOVRS), MoveReg)
1101                         .addReg(SrcReg));
1102         SrcReg = MoveReg;
1103         VT = MVT::i32;
1104         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1105       } else {
1106         StrOpc = ARM::VSTRS;
1107       }
1108       break;
1109     case MVT::f64:
1110       // Can load and store double precision even without FeatureFP64
1111       if (!Subtarget->hasVFP2Base()) return false;
1112       // FIXME: Unaligned stores need special handling.  Doublewords require
1113       // word-alignment.
1114       if (Alignment && Alignment < 4)
1115           return false;
1116 
1117       StrOpc = ARM::VSTRD;
1118       break;
1119   }
1120   // Simplify this down to something we can handle.
1121   ARMSimplifyAddress(Addr, VT, useAM3);
1122 
1123   // Create the base instruction, then add the operands.
1124   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1125   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1126                                     TII.get(StrOpc))
1127                             .addReg(SrcReg);
1128   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1129   return true;
1130 }
1131 
1132 bool ARMFastISel::SelectStore(const Instruction *I) {
1133   Value *Op0 = I->getOperand(0);
1134   unsigned SrcReg = 0;
1135 
1136   // Atomic stores need special handling.
1137   if (cast<StoreInst>(I)->isAtomic())
1138     return false;
1139 
1140   const Value *PtrV = I->getOperand(1);
1141   if (TLI.supportSwiftError()) {
1142     // Swifterror values can come from either a function parameter with
1143     // swifterror attribute or an alloca with swifterror attribute.
1144     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1145       if (Arg->hasSwiftErrorAttr())
1146         return false;
1147     }
1148 
1149     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1150       if (Alloca->isSwiftError())
1151         return false;
1152     }
1153   }
1154 
1155   // Verify we have a legal type before going any further.
1156   MVT VT;
1157   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1158     return false;
1159 
1160   // Get the value to be stored into a register.
1161   SrcReg = getRegForValue(Op0);
1162   if (SrcReg == 0) return false;
1163 
1164   // See if we can handle this address.
1165   Address Addr;
1166   if (!ARMComputeAddress(I->getOperand(1), Addr))
1167     return false;
1168 
1169   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1170     return false;
1171   return true;
1172 }
1173 
1174 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1175   switch (Pred) {
1176     // Needs two compares...
1177     case CmpInst::FCMP_ONE:
1178     case CmpInst::FCMP_UEQ:
1179     default:
1180       // AL is our "false" for now. The other two need more compares.
1181       return ARMCC::AL;
1182     case CmpInst::ICMP_EQ:
1183     case CmpInst::FCMP_OEQ:
1184       return ARMCC::EQ;
1185     case CmpInst::ICMP_SGT:
1186     case CmpInst::FCMP_OGT:
1187       return ARMCC::GT;
1188     case CmpInst::ICMP_SGE:
1189     case CmpInst::FCMP_OGE:
1190       return ARMCC::GE;
1191     case CmpInst::ICMP_UGT:
1192     case CmpInst::FCMP_UGT:
1193       return ARMCC::HI;
1194     case CmpInst::FCMP_OLT:
1195       return ARMCC::MI;
1196     case CmpInst::ICMP_ULE:
1197     case CmpInst::FCMP_OLE:
1198       return ARMCC::LS;
1199     case CmpInst::FCMP_ORD:
1200       return ARMCC::VC;
1201     case CmpInst::FCMP_UNO:
1202       return ARMCC::VS;
1203     case CmpInst::FCMP_UGE:
1204       return ARMCC::PL;
1205     case CmpInst::ICMP_SLT:
1206     case CmpInst::FCMP_ULT:
1207       return ARMCC::LT;
1208     case CmpInst::ICMP_SLE:
1209     case CmpInst::FCMP_ULE:
1210       return ARMCC::LE;
1211     case CmpInst::FCMP_UNE:
1212     case CmpInst::ICMP_NE:
1213       return ARMCC::NE;
1214     case CmpInst::ICMP_UGE:
1215       return ARMCC::HS;
1216     case CmpInst::ICMP_ULT:
1217       return ARMCC::LO;
1218   }
1219 }
1220 
1221 bool ARMFastISel::SelectBranch(const Instruction *I) {
1222   const BranchInst *BI = cast<BranchInst>(I);
1223   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1224   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1225 
1226   // Simple branch support.
1227 
1228   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1229   // behavior.
1230   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1231     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1232       // Get the compare predicate.
1233       // Try to take advantage of fallthrough opportunities.
1234       CmpInst::Predicate Predicate = CI->getPredicate();
1235       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1236         std::swap(TBB, FBB);
1237         Predicate = CmpInst::getInversePredicate(Predicate);
1238       }
1239 
1240       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1241 
1242       // We may not handle every CC for now.
1243       if (ARMPred == ARMCC::AL) return false;
1244 
1245       // Emit the compare.
1246       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1247         return false;
1248 
1249       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1250       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1251       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1252       finishCondBranch(BI->getParent(), TBB, FBB);
1253       return true;
1254     }
1255   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1256     MVT SourceVT;
1257     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1258         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1259       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1260       unsigned OpReg = getRegForValue(TI->getOperand(0));
1261       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1262       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1263                               TII.get(TstOpc))
1264                       .addReg(OpReg).addImm(1));
1265 
1266       unsigned CCMode = ARMCC::NE;
1267       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1268         std::swap(TBB, FBB);
1269         CCMode = ARMCC::EQ;
1270       }
1271 
1272       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1273       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1274       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1275 
1276       finishCondBranch(BI->getParent(), TBB, FBB);
1277       return true;
1278     }
1279   } else if (const ConstantInt *CI =
1280              dyn_cast<ConstantInt>(BI->getCondition())) {
1281     uint64_t Imm = CI->getZExtValue();
1282     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1283     fastEmitBranch(Target, DbgLoc);
1284     return true;
1285   }
1286 
1287   unsigned CmpReg = getRegForValue(BI->getCondition());
1288   if (CmpReg == 0) return false;
1289 
1290   // We've been divorced from our compare!  Our block was split, and
1291   // now our compare lives in a predecessor block.  We musn't
1292   // re-compare here, as the children of the compare aren't guaranteed
1293   // live across the block boundary (we *could* check for this).
1294   // Regardless, the compare has been done in the predecessor block,
1295   // and it left a value for us in a virtual register.  Ergo, we test
1296   // the one-bit value left in the virtual register.
1297   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1298   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1299   AddOptionalDefs(
1300       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1301           .addReg(CmpReg)
1302           .addImm(1));
1303 
1304   unsigned CCMode = ARMCC::NE;
1305   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1306     std::swap(TBB, FBB);
1307     CCMode = ARMCC::EQ;
1308   }
1309 
1310   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1311   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1312                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1313   finishCondBranch(BI->getParent(), TBB, FBB);
1314   return true;
1315 }
1316 
1317 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1318   unsigned AddrReg = getRegForValue(I->getOperand(0));
1319   if (AddrReg == 0) return false;
1320 
1321   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1322   assert(isThumb2 || Subtarget->hasV4TOps());
1323 
1324   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1325                           TII.get(Opc)).addReg(AddrReg));
1326 
1327   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1328   for (const BasicBlock *SuccBB : IB->successors())
1329     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1330 
1331   return true;
1332 }
1333 
1334 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1335                              bool isZExt) {
1336   Type *Ty = Src1Value->getType();
1337   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1338   if (!SrcEVT.isSimple()) return false;
1339   MVT SrcVT = SrcEVT.getSimpleVT();
1340 
1341   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1342     return false;
1343 
1344   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1345     return false;
1346 
1347   // Check to see if the 2nd operand is a constant that we can encode directly
1348   // in the compare.
1349   int Imm = 0;
1350   bool UseImm = false;
1351   bool isNegativeImm = false;
1352   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1353   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1354   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1355     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1356         SrcVT == MVT::i1) {
1357       const APInt &CIVal = ConstInt->getValue();
1358       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1359       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1360       // then a cmn, because there is no way to represent 2147483648 as a
1361       // signed 32-bit int.
1362       if (Imm < 0 && Imm != (int)0x80000000) {
1363         isNegativeImm = true;
1364         Imm = -Imm;
1365       }
1366       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1367         (ARM_AM::getSOImmVal(Imm) != -1);
1368     }
1369   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1370     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1371       if (ConstFP->isZero() && !ConstFP->isNegative())
1372         UseImm = true;
1373   }
1374 
1375   unsigned CmpOpc;
1376   bool isICmp = true;
1377   bool needsExt = false;
1378   switch (SrcVT.SimpleTy) {
1379     default: return false;
1380     // TODO: Verify compares.
1381     case MVT::f32:
1382       isICmp = false;
1383       CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1384       break;
1385     case MVT::f64:
1386       isICmp = false;
1387       CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1388       break;
1389     case MVT::i1:
1390     case MVT::i8:
1391     case MVT::i16:
1392       needsExt = true;
1393       LLVM_FALLTHROUGH;
1394     case MVT::i32:
1395       if (isThumb2) {
1396         if (!UseImm)
1397           CmpOpc = ARM::t2CMPrr;
1398         else
1399           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1400       } else {
1401         if (!UseImm)
1402           CmpOpc = ARM::CMPrr;
1403         else
1404           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1405       }
1406       break;
1407   }
1408 
1409   unsigned SrcReg1 = getRegForValue(Src1Value);
1410   if (SrcReg1 == 0) return false;
1411 
1412   unsigned SrcReg2 = 0;
1413   if (!UseImm) {
1414     SrcReg2 = getRegForValue(Src2Value);
1415     if (SrcReg2 == 0) return false;
1416   }
1417 
1418   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1419   if (needsExt) {
1420     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1421     if (SrcReg1 == 0) return false;
1422     if (!UseImm) {
1423       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1424       if (SrcReg2 == 0) return false;
1425     }
1426   }
1427 
1428   const MCInstrDesc &II = TII.get(CmpOpc);
1429   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1430   if (!UseImm) {
1431     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1432     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1433                     .addReg(SrcReg1).addReg(SrcReg2));
1434   } else {
1435     MachineInstrBuilder MIB;
1436     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1437       .addReg(SrcReg1);
1438 
1439     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1440     if (isICmp)
1441       MIB.addImm(Imm);
1442     AddOptionalDefs(MIB);
1443   }
1444 
1445   // For floating point we need to move the result to a comparison register
1446   // that we can then use for branches.
1447   if (Ty->isFloatTy() || Ty->isDoubleTy())
1448     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1449                             TII.get(ARM::FMSTAT)));
1450   return true;
1451 }
1452 
1453 bool ARMFastISel::SelectCmp(const Instruction *I) {
1454   const CmpInst *CI = cast<CmpInst>(I);
1455 
1456   // Get the compare predicate.
1457   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1458 
1459   // We may not handle every CC for now.
1460   if (ARMPred == ARMCC::AL) return false;
1461 
1462   // Emit the compare.
1463   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1464     return false;
1465 
1466   // Now set a register based on the comparison. Explicitly set the predicates
1467   // here.
1468   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1469   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1470                                            : &ARM::GPRRegClass;
1471   unsigned DestReg = createResultReg(RC);
1472   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1473   unsigned ZeroReg = fastMaterializeConstant(Zero);
1474   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1475   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1476           .addReg(ZeroReg).addImm(1)
1477           .addImm(ARMPred).addReg(ARM::CPSR);
1478 
1479   updateValueMap(I, DestReg);
1480   return true;
1481 }
1482 
1483 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1484   // Make sure we have VFP and that we're extending float to double.
1485   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1486 
1487   Value *V = I->getOperand(0);
1488   if (!I->getType()->isDoubleTy() ||
1489       !V->getType()->isFloatTy()) return false;
1490 
1491   unsigned Op = getRegForValue(V);
1492   if (Op == 0) return false;
1493 
1494   unsigned Result = createResultReg(&ARM::DPRRegClass);
1495   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1496                           TII.get(ARM::VCVTDS), Result)
1497                   .addReg(Op));
1498   updateValueMap(I, Result);
1499   return true;
1500 }
1501 
1502 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1503   // Make sure we have VFP and that we're truncating double to float.
1504   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1505 
1506   Value *V = I->getOperand(0);
1507   if (!(I->getType()->isFloatTy() &&
1508         V->getType()->isDoubleTy())) return false;
1509 
1510   unsigned Op = getRegForValue(V);
1511   if (Op == 0) return false;
1512 
1513   unsigned Result = createResultReg(&ARM::SPRRegClass);
1514   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1515                           TII.get(ARM::VCVTSD), Result)
1516                   .addReg(Op));
1517   updateValueMap(I, Result);
1518   return true;
1519 }
1520 
1521 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1522   // Make sure we have VFP.
1523   if (!Subtarget->hasVFP2Base()) return false;
1524 
1525   MVT DstVT;
1526   Type *Ty = I->getType();
1527   if (!isTypeLegal(Ty, DstVT))
1528     return false;
1529 
1530   Value *Src = I->getOperand(0);
1531   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1532   if (!SrcEVT.isSimple())
1533     return false;
1534   MVT SrcVT = SrcEVT.getSimpleVT();
1535   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1536     return false;
1537 
1538   unsigned SrcReg = getRegForValue(Src);
1539   if (SrcReg == 0) return false;
1540 
1541   // Handle sign-extension.
1542   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1543     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1544                                        /*isZExt*/!isSigned);
1545     if (SrcReg == 0) return false;
1546   }
1547 
1548   // The conversion routine works on fp-reg to fp-reg and the operand above
1549   // was an integer, move it to the fp registers if possible.
1550   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1551   if (FP == 0) return false;
1552 
1553   unsigned Opc;
1554   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1555   else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1556     Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1557   else return false;
1558 
1559   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1560   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1561                           TII.get(Opc), ResultReg).addReg(FP));
1562   updateValueMap(I, ResultReg);
1563   return true;
1564 }
1565 
1566 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1567   // Make sure we have VFP.
1568   if (!Subtarget->hasVFP2Base()) return false;
1569 
1570   MVT DstVT;
1571   Type *RetTy = I->getType();
1572   if (!isTypeLegal(RetTy, DstVT))
1573     return false;
1574 
1575   unsigned Op = getRegForValue(I->getOperand(0));
1576   if (Op == 0) return false;
1577 
1578   unsigned Opc;
1579   Type *OpTy = I->getOperand(0)->getType();
1580   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1581   else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1582     Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1583   else return false;
1584 
1585   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1586   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1587   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1588                           TII.get(Opc), ResultReg).addReg(Op));
1589 
1590   // This result needs to be in an integer register, but the conversion only
1591   // takes place in fp-regs.
1592   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1593   if (IntReg == 0) return false;
1594 
1595   updateValueMap(I, IntReg);
1596   return true;
1597 }
1598 
1599 bool ARMFastISel::SelectSelect(const Instruction *I) {
1600   MVT VT;
1601   if (!isTypeLegal(I->getType(), VT))
1602     return false;
1603 
1604   // Things need to be register sized for register moves.
1605   if (VT != MVT::i32) return false;
1606 
1607   unsigned CondReg = getRegForValue(I->getOperand(0));
1608   if (CondReg == 0) return false;
1609   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1610   if (Op1Reg == 0) return false;
1611 
1612   // Check to see if we can use an immediate in the conditional move.
1613   int Imm = 0;
1614   bool UseImm = false;
1615   bool isNegativeImm = false;
1616   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1617     assert(VT == MVT::i32 && "Expecting an i32.");
1618     Imm = (int)ConstInt->getValue().getZExtValue();
1619     if (Imm < 0) {
1620       isNegativeImm = true;
1621       Imm = ~Imm;
1622     }
1623     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1624       (ARM_AM::getSOImmVal(Imm) != -1);
1625   }
1626 
1627   unsigned Op2Reg = 0;
1628   if (!UseImm) {
1629     Op2Reg = getRegForValue(I->getOperand(2));
1630     if (Op2Reg == 0) return false;
1631   }
1632 
1633   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1634   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1635   AddOptionalDefs(
1636       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1637           .addReg(CondReg)
1638           .addImm(1));
1639 
1640   unsigned MovCCOpc;
1641   const TargetRegisterClass *RC;
1642   if (!UseImm) {
1643     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1644     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1645   } else {
1646     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1647     if (!isNegativeImm)
1648       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1649     else
1650       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1651   }
1652   unsigned ResultReg = createResultReg(RC);
1653   if (!UseImm) {
1654     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1655     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1656     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1657             ResultReg)
1658         .addReg(Op2Reg)
1659         .addReg(Op1Reg)
1660         .addImm(ARMCC::NE)
1661         .addReg(ARM::CPSR);
1662   } else {
1663     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1664     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1665             ResultReg)
1666         .addReg(Op1Reg)
1667         .addImm(Imm)
1668         .addImm(ARMCC::EQ)
1669         .addReg(ARM::CPSR);
1670   }
1671   updateValueMap(I, ResultReg);
1672   return true;
1673 }
1674 
1675 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1676   MVT VT;
1677   Type *Ty = I->getType();
1678   if (!isTypeLegal(Ty, VT))
1679     return false;
1680 
1681   // If we have integer div support we should have selected this automagically.
1682   // In case we have a real miss go ahead and return false and we'll pick
1683   // it up later.
1684   if (Subtarget->hasDivideInThumbMode())
1685     return false;
1686 
1687   // Otherwise emit a libcall.
1688   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1689   if (VT == MVT::i8)
1690     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1691   else if (VT == MVT::i16)
1692     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1693   else if (VT == MVT::i32)
1694     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1695   else if (VT == MVT::i64)
1696     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1697   else if (VT == MVT::i128)
1698     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1699   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1700 
1701   return ARMEmitLibcall(I, LC);
1702 }
1703 
1704 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1705   MVT VT;
1706   Type *Ty = I->getType();
1707   if (!isTypeLegal(Ty, VT))
1708     return false;
1709 
1710   // Many ABIs do not provide a libcall for standalone remainder, so we need to
1711   // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1712   // multi-reg returns, we'll have to bail out.
1713   if (!TLI.hasStandaloneRem(VT)) {
1714     return false;
1715   }
1716 
1717   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1718   if (VT == MVT::i8)
1719     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1720   else if (VT == MVT::i16)
1721     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1722   else if (VT == MVT::i32)
1723     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1724   else if (VT == MVT::i64)
1725     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1726   else if (VT == MVT::i128)
1727     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1728   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1729 
1730   return ARMEmitLibcall(I, LC);
1731 }
1732 
1733 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1734   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1735 
1736   // We can get here in the case when we have a binary operation on a non-legal
1737   // type and the target independent selector doesn't know how to handle it.
1738   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1739     return false;
1740 
1741   unsigned Opc;
1742   switch (ISDOpcode) {
1743     default: return false;
1744     case ISD::ADD:
1745       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1746       break;
1747     case ISD::OR:
1748       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1749       break;
1750     case ISD::SUB:
1751       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1752       break;
1753   }
1754 
1755   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1756   if (SrcReg1 == 0) return false;
1757 
1758   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1759   // in the instruction, rather then materializing the value in a register.
1760   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1761   if (SrcReg2 == 0) return false;
1762 
1763   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1764   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1765   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1766   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1767                           TII.get(Opc), ResultReg)
1768                   .addReg(SrcReg1).addReg(SrcReg2));
1769   updateValueMap(I, ResultReg);
1770   return true;
1771 }
1772 
1773 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1774   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1775   if (!FPVT.isSimple()) return false;
1776   MVT VT = FPVT.getSimpleVT();
1777 
1778   // FIXME: Support vector types where possible.
1779   if (VT.isVector())
1780     return false;
1781 
1782   // We can get here in the case when we want to use NEON for our fp
1783   // operations, but can't figure out how to. Just use the vfp instructions
1784   // if we have them.
1785   // FIXME: It'd be nice to use NEON instructions.
1786   Type *Ty = I->getType();
1787   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1788     return false;
1789   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1790     return false;
1791 
1792   unsigned Opc;
1793   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1794   switch (ISDOpcode) {
1795     default: return false;
1796     case ISD::FADD:
1797       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1798       break;
1799     case ISD::FSUB:
1800       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1801       break;
1802     case ISD::FMUL:
1803       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1804       break;
1805   }
1806   unsigned Op1 = getRegForValue(I->getOperand(0));
1807   if (Op1 == 0) return false;
1808 
1809   unsigned Op2 = getRegForValue(I->getOperand(1));
1810   if (Op2 == 0) return false;
1811 
1812   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1813   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1814                           TII.get(Opc), ResultReg)
1815                   .addReg(Op1).addReg(Op2));
1816   updateValueMap(I, ResultReg);
1817   return true;
1818 }
1819 
1820 // Call Handling Code
1821 
1822 // This is largely taken directly from CCAssignFnForNode
1823 // TODO: We may not support all of this.
1824 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1825                                            bool Return,
1826                                            bool isVarArg) {
1827   switch (CC) {
1828   default:
1829     report_fatal_error("Unsupported calling convention");
1830   case CallingConv::Fast:
1831     if (Subtarget->hasVFP2Base() && !isVarArg) {
1832       if (!Subtarget->isAAPCS_ABI())
1833         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1834       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1835       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1836     }
1837     LLVM_FALLTHROUGH;
1838   case CallingConv::C:
1839   case CallingConv::CXX_FAST_TLS:
1840     // Use target triple & subtarget features to do actual dispatch.
1841     if (Subtarget->isAAPCS_ABI()) {
1842       if (Subtarget->hasVFP2Base() &&
1843           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1844         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1845       else
1846         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1847     } else {
1848       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1849     }
1850   case CallingConv::ARM_AAPCS_VFP:
1851   case CallingConv::Swift:
1852   case CallingConv::SwiftTail:
1853     if (!isVarArg)
1854       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1855     // Fall through to soft float variant, variadic functions don't
1856     // use hard floating point ABI.
1857     LLVM_FALLTHROUGH;
1858   case CallingConv::ARM_AAPCS:
1859     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1860   case CallingConv::ARM_APCS:
1861     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1862   case CallingConv::GHC:
1863     if (Return)
1864       report_fatal_error("Can't return in GHC call convention");
1865     else
1866       return CC_ARM_APCS_GHC;
1867   case CallingConv::CFGuard_Check:
1868     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1869   }
1870 }
1871 
1872 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1873                                   SmallVectorImpl<Register> &ArgRegs,
1874                                   SmallVectorImpl<MVT> &ArgVTs,
1875                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1876                                   SmallVectorImpl<Register> &RegArgs,
1877                                   CallingConv::ID CC,
1878                                   unsigned &NumBytes,
1879                                   bool isVarArg) {
1880   SmallVector<CCValAssign, 16> ArgLocs;
1881   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1882   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1883                              CCAssignFnForCall(CC, false, isVarArg));
1884 
1885   // Check that we can handle all of the arguments. If we can't, then bail out
1886   // now before we add code to the MBB.
1887   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1888     CCValAssign &VA = ArgLocs[i];
1889     MVT ArgVT = ArgVTs[VA.getValNo()];
1890 
1891     // We don't handle NEON/vector parameters yet.
1892     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1893       return false;
1894 
1895     // Now copy/store arg to correct locations.
1896     if (VA.isRegLoc() && !VA.needsCustom()) {
1897       continue;
1898     } else if (VA.needsCustom()) {
1899       // TODO: We need custom lowering for vector (v2f64) args.
1900       if (VA.getLocVT() != MVT::f64 ||
1901           // TODO: Only handle register args for now.
1902           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1903         return false;
1904     } else {
1905       switch (ArgVT.SimpleTy) {
1906       default:
1907         return false;
1908       case MVT::i1:
1909       case MVT::i8:
1910       case MVT::i16:
1911       case MVT::i32:
1912         break;
1913       case MVT::f32:
1914         if (!Subtarget->hasVFP2Base())
1915           return false;
1916         break;
1917       case MVT::f64:
1918         if (!Subtarget->hasVFP2Base())
1919           return false;
1920         break;
1921       }
1922     }
1923   }
1924 
1925   // At the point, we are able to handle the call's arguments in fast isel.
1926 
1927   // Get a count of how many bytes are to be pushed on the stack.
1928   NumBytes = CCInfo.getNextStackOffset();
1929 
1930   // Issue CALLSEQ_START
1931   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1932   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1933                           TII.get(AdjStackDown))
1934                   .addImm(NumBytes).addImm(0));
1935 
1936   // Process the args.
1937   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1938     CCValAssign &VA = ArgLocs[i];
1939     const Value *ArgVal = Args[VA.getValNo()];
1940     Register Arg = ArgRegs[VA.getValNo()];
1941     MVT ArgVT = ArgVTs[VA.getValNo()];
1942 
1943     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1944            "We don't handle NEON/vector parameters yet.");
1945 
1946     // Handle arg promotion, etc.
1947     switch (VA.getLocInfo()) {
1948       case CCValAssign::Full: break;
1949       case CCValAssign::SExt: {
1950         MVT DestVT = VA.getLocVT();
1951         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1952         assert(Arg != 0 && "Failed to emit a sext");
1953         ArgVT = DestVT;
1954         break;
1955       }
1956       case CCValAssign::AExt:
1957       // Intentional fall-through.  Handle AExt and ZExt.
1958       case CCValAssign::ZExt: {
1959         MVT DestVT = VA.getLocVT();
1960         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1961         assert(Arg != 0 && "Failed to emit a zext");
1962         ArgVT = DestVT;
1963         break;
1964       }
1965       case CCValAssign::BCvt: {
1966         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg);
1967         assert(BC != 0 && "Failed to emit a bitcast!");
1968         Arg = BC;
1969         ArgVT = VA.getLocVT();
1970         break;
1971       }
1972       default: llvm_unreachable("Unknown arg promotion!");
1973     }
1974 
1975     // Now copy/store arg to correct locations.
1976     if (VA.isRegLoc() && !VA.needsCustom()) {
1977       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1978               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1979       RegArgs.push_back(VA.getLocReg());
1980     } else if (VA.needsCustom()) {
1981       // TODO: We need custom lowering for vector (v2f64) args.
1982       assert(VA.getLocVT() == MVT::f64 &&
1983              "Custom lowering for v2f64 args not available");
1984 
1985       // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
1986       CCValAssign &NextVA = ArgLocs[++i];
1987 
1988       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1989              "We only handle register args!");
1990 
1991       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992                               TII.get(ARM::VMOVRRD), VA.getLocReg())
1993                       .addReg(NextVA.getLocReg(), RegState::Define)
1994                       .addReg(Arg));
1995       RegArgs.push_back(VA.getLocReg());
1996       RegArgs.push_back(NextVA.getLocReg());
1997     } else {
1998       assert(VA.isMemLoc());
1999       // Need to store on the stack.
2000 
2001       // Don't emit stores for undef values.
2002       if (isa<UndefValue>(ArgVal))
2003         continue;
2004 
2005       Address Addr;
2006       Addr.BaseType = Address::RegBase;
2007       Addr.Base.Reg = ARM::SP;
2008       Addr.Offset = VA.getLocMemOffset();
2009 
2010       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2011       assert(EmitRet && "Could not emit a store for argument!");
2012     }
2013   }
2014 
2015   return true;
2016 }
2017 
2018 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2019                              const Instruction *I, CallingConv::ID CC,
2020                              unsigned &NumBytes, bool isVarArg) {
2021   // Issue CALLSEQ_END
2022   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2023   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2024                           TII.get(AdjStackUp))
2025                   .addImm(NumBytes).addImm(0));
2026 
2027   // Now the return value.
2028   if (RetVT != MVT::isVoid) {
2029     SmallVector<CCValAssign, 16> RVLocs;
2030     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2031     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2032 
2033     // Copy all of the result registers out of their specified physreg.
2034     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2035       // For this move we copy into two registers and then move into the
2036       // double fp reg we want.
2037       MVT DestVT = RVLocs[0].getValVT();
2038       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2039       Register ResultReg = createResultReg(DstRC);
2040       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2041                               TII.get(ARM::VMOVDRR), ResultReg)
2042                       .addReg(RVLocs[0].getLocReg())
2043                       .addReg(RVLocs[1].getLocReg()));
2044 
2045       UsedRegs.push_back(RVLocs[0].getLocReg());
2046       UsedRegs.push_back(RVLocs[1].getLocReg());
2047 
2048       // Finally update the result.
2049       updateValueMap(I, ResultReg);
2050     } else {
2051       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2052       MVT CopyVT = RVLocs[0].getValVT();
2053 
2054       // Special handling for extended integers.
2055       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2056         CopyVT = MVT::i32;
2057 
2058       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2059 
2060       Register ResultReg = createResultReg(DstRC);
2061       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2062               TII.get(TargetOpcode::COPY),
2063               ResultReg).addReg(RVLocs[0].getLocReg());
2064       UsedRegs.push_back(RVLocs[0].getLocReg());
2065 
2066       // Finally update the result.
2067       updateValueMap(I, ResultReg);
2068     }
2069   }
2070 
2071   return true;
2072 }
2073 
2074 bool ARMFastISel::SelectRet(const Instruction *I) {
2075   const ReturnInst *Ret = cast<ReturnInst>(I);
2076   const Function &F = *I->getParent()->getParent();
2077   const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry");
2078 
2079   if (!FuncInfo.CanLowerReturn)
2080     return false;
2081 
2082   if (TLI.supportSwiftError() &&
2083       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2084     return false;
2085 
2086   if (TLI.supportSplitCSR(FuncInfo.MF))
2087     return false;
2088 
2089   // Build a list of return value registers.
2090   SmallVector<unsigned, 4> RetRegs;
2091 
2092   CallingConv::ID CC = F.getCallingConv();
2093   if (Ret->getNumOperands() > 0) {
2094     SmallVector<ISD::OutputArg, 4> Outs;
2095     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2096 
2097     // Analyze operands of the call, assigning locations to each operand.
2098     SmallVector<CCValAssign, 16> ValLocs;
2099     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2100     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2101                                                  F.isVarArg()));
2102 
2103     const Value *RV = Ret->getOperand(0);
2104     unsigned Reg = getRegForValue(RV);
2105     if (Reg == 0)
2106       return false;
2107 
2108     // Only handle a single return value for now.
2109     if (ValLocs.size() != 1)
2110       return false;
2111 
2112     CCValAssign &VA = ValLocs[0];
2113 
2114     // Don't bother handling odd stuff for now.
2115     if (VA.getLocInfo() != CCValAssign::Full)
2116       return false;
2117     // Only handle register returns for now.
2118     if (!VA.isRegLoc())
2119       return false;
2120 
2121     unsigned SrcReg = Reg + VA.getValNo();
2122     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2123     if (!RVEVT.isSimple()) return false;
2124     MVT RVVT = RVEVT.getSimpleVT();
2125     MVT DestVT = VA.getValVT();
2126     // Special handling for extended integers.
2127     if (RVVT != DestVT) {
2128       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2129         return false;
2130 
2131       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2132 
2133       // Perform extension if flagged as either zext or sext.  Otherwise, do
2134       // nothing.
2135       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2136         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2137         if (SrcReg == 0) return false;
2138       }
2139     }
2140 
2141     // Make the copy.
2142     Register DstReg = VA.getLocReg();
2143     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2144     // Avoid a cross-class copy. This is very unlikely.
2145     if (!SrcRC->contains(DstReg))
2146       return false;
2147     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2148             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2149 
2150     // Add register to return instruction.
2151     RetRegs.push_back(VA.getLocReg());
2152   }
2153 
2154   unsigned RetOpc;
2155   if (IsCmseNSEntry)
2156     if (isThumb2)
2157       RetOpc = ARM::tBXNS_RET;
2158     else
2159       llvm_unreachable("CMSE not valid for non-Thumb targets");
2160   else
2161     RetOpc = Subtarget->getReturnOpcode();
2162 
2163   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2164                                     TII.get(RetOpc));
2165   AddOptionalDefs(MIB);
2166   for (unsigned R : RetRegs)
2167     MIB.addReg(R, RegState::Implicit);
2168   return true;
2169 }
2170 
2171 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2172   if (UseReg)
2173     return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF);
2174   else
2175     return isThumb2 ? ARM::tBL : ARM::BL;
2176 }
2177 
2178 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2179   // Manually compute the global's type to avoid building it when unnecessary.
2180   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2181   EVT LCREVT = TLI.getValueType(DL, GVTy);
2182   if (!LCREVT.isSimple()) return 0;
2183 
2184   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2185                                        GlobalValue::ExternalLinkage, nullptr,
2186                                        Name);
2187   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2188   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2189 }
2190 
2191 // A quick function that will emit a call for a named libcall in F with the
2192 // vector of passed arguments for the Instruction in I. We can assume that we
2193 // can emit a call for any libcall we can produce. This is an abridged version
2194 // of the full call infrastructure since we won't need to worry about things
2195 // like computed function pointers or strange arguments at call sites.
2196 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2197 // with X86.
2198 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2199   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2200 
2201   // Handle *simple* calls for now.
2202   Type *RetTy = I->getType();
2203   MVT RetVT;
2204   if (RetTy->isVoidTy())
2205     RetVT = MVT::isVoid;
2206   else if (!isTypeLegal(RetTy, RetVT))
2207     return false;
2208 
2209   // Can't handle non-double multi-reg retvals.
2210   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2211     SmallVector<CCValAssign, 16> RVLocs;
2212     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2213     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2214     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2215       return false;
2216   }
2217 
2218   // Set up the argument vectors.
2219   SmallVector<Value*, 8> Args;
2220   SmallVector<Register, 8> ArgRegs;
2221   SmallVector<MVT, 8> ArgVTs;
2222   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2223   Args.reserve(I->getNumOperands());
2224   ArgRegs.reserve(I->getNumOperands());
2225   ArgVTs.reserve(I->getNumOperands());
2226   ArgFlags.reserve(I->getNumOperands());
2227   for (Value *Op :  I->operands()) {
2228     unsigned Arg = getRegForValue(Op);
2229     if (Arg == 0) return false;
2230 
2231     Type *ArgTy = Op->getType();
2232     MVT ArgVT;
2233     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2234 
2235     ISD::ArgFlagsTy Flags;
2236     Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2237 
2238     Args.push_back(Op);
2239     ArgRegs.push_back(Arg);
2240     ArgVTs.push_back(ArgVT);
2241     ArgFlags.push_back(Flags);
2242   }
2243 
2244   // Handle the arguments now that we've gotten them.
2245   SmallVector<Register, 4> RegArgs;
2246   unsigned NumBytes;
2247   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2248                        RegArgs, CC, NumBytes, false))
2249     return false;
2250 
2251   Register CalleeReg;
2252   if (Subtarget->genLongCalls()) {
2253     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2254     if (CalleeReg == 0) return false;
2255   }
2256 
2257   // Issue the call.
2258   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2259   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2260                                     DbgLoc, TII.get(CallOpc));
2261   // BL / BLX don't take a predicate, but tBL / tBLX do.
2262   if (isThumb2)
2263     MIB.add(predOps(ARMCC::AL));
2264   if (Subtarget->genLongCalls()) {
2265     CalleeReg =
2266         constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2267     MIB.addReg(CalleeReg);
2268   } else
2269     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2270 
2271   // Add implicit physical register uses to the call.
2272   for (Register R : RegArgs)
2273     MIB.addReg(R, RegState::Implicit);
2274 
2275   // Add a register mask with the call-preserved registers.
2276   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2277   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2278 
2279   // Finish off the call including any return values.
2280   SmallVector<Register, 4> UsedRegs;
2281   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2282 
2283   // Set all unused physreg defs as dead.
2284   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2285 
2286   return true;
2287 }
2288 
2289 bool ARMFastISel::SelectCall(const Instruction *I,
2290                              const char *IntrMemName = nullptr) {
2291   const CallInst *CI = cast<CallInst>(I);
2292   const Value *Callee = CI->getCalledOperand();
2293 
2294   // Can't handle inline asm.
2295   if (isa<InlineAsm>(Callee)) return false;
2296 
2297   // Allow SelectionDAG isel to handle tail calls.
2298   if (CI->isTailCall()) return false;
2299 
2300   // Check the calling convention.
2301   CallingConv::ID CC = CI->getCallingConv();
2302 
2303   // TODO: Avoid some calling conventions?
2304 
2305   FunctionType *FTy = CI->getFunctionType();
2306   bool isVarArg = FTy->isVarArg();
2307 
2308   // Handle *simple* calls for now.
2309   Type *RetTy = I->getType();
2310   MVT RetVT;
2311   if (RetTy->isVoidTy())
2312     RetVT = MVT::isVoid;
2313   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2314            RetVT != MVT::i8  && RetVT != MVT::i1)
2315     return false;
2316 
2317   // Can't handle non-double multi-reg retvals.
2318   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2319       RetVT != MVT::i16 && RetVT != MVT::i32) {
2320     SmallVector<CCValAssign, 16> RVLocs;
2321     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2322     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2323     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2324       return false;
2325   }
2326 
2327   // Set up the argument vectors.
2328   SmallVector<Value*, 8> Args;
2329   SmallVector<Register, 8> ArgRegs;
2330   SmallVector<MVT, 8> ArgVTs;
2331   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2332   unsigned arg_size = CI->arg_size();
2333   Args.reserve(arg_size);
2334   ArgRegs.reserve(arg_size);
2335   ArgVTs.reserve(arg_size);
2336   ArgFlags.reserve(arg_size);
2337   for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) {
2338     // If we're lowering a memory intrinsic instead of a regular call, skip the
2339     // last argument, which shouldn't be passed to the underlying function.
2340     if (IntrMemName && ArgE - ArgI <= 1)
2341       break;
2342 
2343     ISD::ArgFlagsTy Flags;
2344     unsigned ArgIdx = ArgI - CI->arg_begin();
2345     if (CI->paramHasAttr(ArgIdx, Attribute::SExt))
2346       Flags.setSExt();
2347     if (CI->paramHasAttr(ArgIdx, Attribute::ZExt))
2348       Flags.setZExt();
2349 
2350     // FIXME: Only handle *easy* calls for now.
2351     if (CI->paramHasAttr(ArgIdx, Attribute::InReg) ||
2352         CI->paramHasAttr(ArgIdx, Attribute::StructRet) ||
2353         CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2354         CI->paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2355         CI->paramHasAttr(ArgIdx, Attribute::Nest) ||
2356         CI->paramHasAttr(ArgIdx, Attribute::ByVal))
2357       return false;
2358 
2359     Type *ArgTy = (*ArgI)->getType();
2360     MVT ArgVT;
2361     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2362         ArgVT != MVT::i1)
2363       return false;
2364 
2365     Register Arg = getRegForValue(*ArgI);
2366     if (!Arg.isValid())
2367       return false;
2368 
2369     Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2370 
2371     Args.push_back(*ArgI);
2372     ArgRegs.push_back(Arg);
2373     ArgVTs.push_back(ArgVT);
2374     ArgFlags.push_back(Flags);
2375   }
2376 
2377   // Handle the arguments now that we've gotten them.
2378   SmallVector<Register, 4> RegArgs;
2379   unsigned NumBytes;
2380   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2381                        RegArgs, CC, NumBytes, isVarArg))
2382     return false;
2383 
2384   bool UseReg = false;
2385   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2386   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2387 
2388   Register CalleeReg;
2389   if (UseReg) {
2390     if (IntrMemName)
2391       CalleeReg = getLibcallReg(IntrMemName);
2392     else
2393       CalleeReg = getRegForValue(Callee);
2394 
2395     if (CalleeReg == 0) return false;
2396   }
2397 
2398   // Issue the call.
2399   unsigned CallOpc = ARMSelectCallOp(UseReg);
2400   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2401                                     DbgLoc, TII.get(CallOpc));
2402 
2403   // ARM calls don't take a predicate, but tBL / tBLX do.
2404   if(isThumb2)
2405     MIB.add(predOps(ARMCC::AL));
2406   if (UseReg) {
2407     CalleeReg =
2408         constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2409     MIB.addReg(CalleeReg);
2410   } else if (!IntrMemName)
2411     MIB.addGlobalAddress(GV, 0, 0);
2412   else
2413     MIB.addExternalSymbol(IntrMemName, 0);
2414 
2415   // Add implicit physical register uses to the call.
2416   for (Register R : RegArgs)
2417     MIB.addReg(R, RegState::Implicit);
2418 
2419   // Add a register mask with the call-preserved registers.
2420   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2421   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2422 
2423   // Finish off the call including any return values.
2424   SmallVector<Register, 4> UsedRegs;
2425   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2426     return false;
2427 
2428   // Set all unused physreg defs as dead.
2429   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2430 
2431   return true;
2432 }
2433 
2434 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2435   return Len <= 16;
2436 }
2437 
2438 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2439                                         uint64_t Len, unsigned Alignment) {
2440   // Make sure we don't bloat code by inlining very large memcpy's.
2441   if (!ARMIsMemCpySmall(Len))
2442     return false;
2443 
2444   while (Len) {
2445     MVT VT;
2446     if (!Alignment || Alignment >= 4) {
2447       if (Len >= 4)
2448         VT = MVT::i32;
2449       else if (Len >= 2)
2450         VT = MVT::i16;
2451       else {
2452         assert(Len == 1 && "Expected a length of 1!");
2453         VT = MVT::i8;
2454       }
2455     } else {
2456       // Bound based on alignment.
2457       if (Len >= 2 && Alignment == 2)
2458         VT = MVT::i16;
2459       else {
2460         VT = MVT::i8;
2461       }
2462     }
2463 
2464     bool RV;
2465     Register ResultReg;
2466     RV = ARMEmitLoad(VT, ResultReg, Src);
2467     assert(RV && "Should be able to handle this load.");
2468     RV = ARMEmitStore(VT, ResultReg, Dest);
2469     assert(RV && "Should be able to handle this store.");
2470     (void)RV;
2471 
2472     unsigned Size = VT.getSizeInBits()/8;
2473     Len -= Size;
2474     Dest.Offset += Size;
2475     Src.Offset += Size;
2476   }
2477 
2478   return true;
2479 }
2480 
2481 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2482   // FIXME: Handle more intrinsics.
2483   switch (I.getIntrinsicID()) {
2484   default: return false;
2485   case Intrinsic::frameaddress: {
2486     MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2487     MFI.setFrameAddressIsTaken(true);
2488 
2489     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2490     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2491                                              : &ARM::GPRRegClass;
2492 
2493     const ARMBaseRegisterInfo *RegInfo =
2494         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2495     Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2496     unsigned SrcReg = FramePtr;
2497 
2498     // Recursively load frame address
2499     // ldr r0 [fp]
2500     // ldr r0 [r0]
2501     // ldr r0 [r0]
2502     // ...
2503     unsigned DestReg;
2504     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2505     while (Depth--) {
2506       DestReg = createResultReg(RC);
2507       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2508                               TII.get(LdrOpc), DestReg)
2509                       .addReg(SrcReg).addImm(0));
2510       SrcReg = DestReg;
2511     }
2512     updateValueMap(&I, SrcReg);
2513     return true;
2514   }
2515   case Intrinsic::memcpy:
2516   case Intrinsic::memmove: {
2517     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2518     // Don't handle volatile.
2519     if (MTI.isVolatile())
2520       return false;
2521 
2522     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2523     // we would emit dead code because we don't currently handle memmoves.
2524     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2525     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2526       // Small memcpy's are common enough that we want to do them without a call
2527       // if possible.
2528       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2529       if (ARMIsMemCpySmall(Len)) {
2530         Address Dest, Src;
2531         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2532             !ARMComputeAddress(MTI.getRawSource(), Src))
2533           return false;
2534         unsigned Alignment = MinAlign(MTI.getDestAlignment(),
2535                                       MTI.getSourceAlignment());
2536         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2537           return true;
2538       }
2539     }
2540 
2541     if (!MTI.getLength()->getType()->isIntegerTy(32))
2542       return false;
2543 
2544     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2545       return false;
2546 
2547     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2548     return SelectCall(&I, IntrMemName);
2549   }
2550   case Intrinsic::memset: {
2551     const MemSetInst &MSI = cast<MemSetInst>(I);
2552     // Don't handle volatile.
2553     if (MSI.isVolatile())
2554       return false;
2555 
2556     if (!MSI.getLength()->getType()->isIntegerTy(32))
2557       return false;
2558 
2559     if (MSI.getDestAddressSpace() > 255)
2560       return false;
2561 
2562     return SelectCall(&I, "memset");
2563   }
2564   case Intrinsic::trap: {
2565     unsigned Opcode;
2566     if (Subtarget->isThumb())
2567       Opcode = ARM::tTRAP;
2568     else
2569       Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
2570     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode));
2571     return true;
2572   }
2573   }
2574 }
2575 
2576 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2577   // The high bits for a type smaller than the register size are assumed to be
2578   // undefined.
2579   Value *Op = I->getOperand(0);
2580 
2581   EVT SrcVT, DestVT;
2582   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2583   DestVT = TLI.getValueType(DL, I->getType(), true);
2584 
2585   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2586     return false;
2587   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2588     return false;
2589 
2590   unsigned SrcReg = getRegForValue(Op);
2591   if (!SrcReg) return false;
2592 
2593   // Because the high bits are undefined, a truncate doesn't generate
2594   // any code.
2595   updateValueMap(I, SrcReg);
2596   return true;
2597 }
2598 
2599 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2600                                     bool isZExt) {
2601   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2602     return 0;
2603   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2604     return 0;
2605 
2606   // Table of which combinations can be emitted as a single instruction,
2607   // and which will require two.
2608   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2609     //            ARM                     Thumb
2610     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2611     //    ext:     s  z      s  z          s  z      s  z
2612     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2613     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2614     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2615   };
2616 
2617   // Target registers for:
2618   //  - For ARM can never be PC.
2619   //  - For 16-bit Thumb are restricted to lower 8 registers.
2620   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2621   static const TargetRegisterClass *RCTbl[2][2] = {
2622     // Instructions: Two                     Single
2623     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2624     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2625   };
2626 
2627   // Table governing the instruction(s) to be emitted.
2628   static const struct InstructionTable {
2629     uint32_t Opc   : 16;
2630     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2631     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2632     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2633   } IT[2][2][3][2] = {
2634     { // Two instructions (first is left shift, second is in this table).
2635       { // ARM                Opc           S  Shift             Imm
2636         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2637         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2638         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2639         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2640         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2641         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2642       },
2643       { // Thumb              Opc           S  Shift             Imm
2644         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2645         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2646         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2647         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2648         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2649         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2650       }
2651     },
2652     { // Single instruction.
2653       { // ARM                Opc           S  Shift             Imm
2654         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2655         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2656         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2657         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2658         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2659         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2660       },
2661       { // Thumb              Opc           S  Shift             Imm
2662         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2663         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2664         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2665         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2666         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2667         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2668       }
2669     }
2670   };
2671 
2672   unsigned SrcBits = SrcVT.getSizeInBits();
2673   unsigned DestBits = DestVT.getSizeInBits();
2674   (void) DestBits;
2675   assert((SrcBits < DestBits) && "can only extend to larger types");
2676   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2677          "other sizes unimplemented");
2678   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2679          "other sizes unimplemented");
2680 
2681   bool hasV6Ops = Subtarget->hasV6Ops();
2682   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2683   assert((Bitness < 3) && "sanity-check table bounds");
2684 
2685   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2686   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2687   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2688   unsigned Opc = ITP->Opc;
2689   assert(ARM::KILL != Opc && "Invalid table entry");
2690   unsigned hasS = ITP->hasS;
2691   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2692   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2693          "only MOVsi has shift operand addressing mode");
2694   unsigned Imm = ITP->Imm;
2695 
2696   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2697   bool setsCPSR = &ARM::tGPRRegClass == RC;
2698   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2699   unsigned ResultReg;
2700   // MOVsi encodes shift and immediate in shift operand addressing mode.
2701   // The following condition has the same value when emitting two
2702   // instruction sequences: both are shifts.
2703   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2704 
2705   // Either one or two instructions are emitted.
2706   // They're always of the form:
2707   //   dst = in OP imm
2708   // CPSR is set only by 16-bit Thumb instructions.
2709   // Predicate, if any, is AL.
2710   // S bit, if available, is always 0.
2711   // When two are emitted the first's result will feed as the second's input,
2712   // that value is then dead.
2713   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2714   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2715     ResultReg = createResultReg(RC);
2716     bool isLsl = (0 == Instr) && !isSingleInstr;
2717     unsigned Opcode = isLsl ? LSLOpc : Opc;
2718     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2719     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2720     bool isKill = 1 == Instr;
2721     MachineInstrBuilder MIB = BuildMI(
2722         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2723     if (setsCPSR)
2724       MIB.addReg(ARM::CPSR, RegState::Define);
2725     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2726     MIB.addReg(SrcReg, isKill * RegState::Kill)
2727         .addImm(ImmEnc)
2728         .add(predOps(ARMCC::AL));
2729     if (hasS)
2730       MIB.add(condCodeOp());
2731     // Second instruction consumes the first's result.
2732     SrcReg = ResultReg;
2733   }
2734 
2735   return ResultReg;
2736 }
2737 
2738 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2739   // On ARM, in general, integer casts don't involve legal types; this code
2740   // handles promotable integers.
2741   Type *DestTy = I->getType();
2742   Value *Src = I->getOperand(0);
2743   Type *SrcTy = Src->getType();
2744 
2745   bool isZExt = isa<ZExtInst>(I);
2746   unsigned SrcReg = getRegForValue(Src);
2747   if (!SrcReg) return false;
2748 
2749   EVT SrcEVT, DestEVT;
2750   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2751   DestEVT = TLI.getValueType(DL, DestTy, true);
2752   if (!SrcEVT.isSimple()) return false;
2753   if (!DestEVT.isSimple()) return false;
2754 
2755   MVT SrcVT = SrcEVT.getSimpleVT();
2756   MVT DestVT = DestEVT.getSimpleVT();
2757   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2758   if (ResultReg == 0) return false;
2759   updateValueMap(I, ResultReg);
2760   return true;
2761 }
2762 
2763 bool ARMFastISel::SelectShift(const Instruction *I,
2764                               ARM_AM::ShiftOpc ShiftTy) {
2765   // We handle thumb2 mode by target independent selector
2766   // or SelectionDAG ISel.
2767   if (isThumb2)
2768     return false;
2769 
2770   // Only handle i32 now.
2771   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2772   if (DestVT != MVT::i32)
2773     return false;
2774 
2775   unsigned Opc = ARM::MOVsr;
2776   unsigned ShiftImm;
2777   Value *Src2Value = I->getOperand(1);
2778   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2779     ShiftImm = CI->getZExtValue();
2780 
2781     // Fall back to selection DAG isel if the shift amount
2782     // is zero or greater than the width of the value type.
2783     if (ShiftImm == 0 || ShiftImm >=32)
2784       return false;
2785 
2786     Opc = ARM::MOVsi;
2787   }
2788 
2789   Value *Src1Value = I->getOperand(0);
2790   unsigned Reg1 = getRegForValue(Src1Value);
2791   if (Reg1 == 0) return false;
2792 
2793   unsigned Reg2 = 0;
2794   if (Opc == ARM::MOVsr) {
2795     Reg2 = getRegForValue(Src2Value);
2796     if (Reg2 == 0) return false;
2797   }
2798 
2799   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2800   if(ResultReg == 0) return false;
2801 
2802   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2803                                     TII.get(Opc), ResultReg)
2804                             .addReg(Reg1);
2805 
2806   if (Opc == ARM::MOVsi)
2807     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2808   else if (Opc == ARM::MOVsr) {
2809     MIB.addReg(Reg2);
2810     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2811   }
2812 
2813   AddOptionalDefs(MIB);
2814   updateValueMap(I, ResultReg);
2815   return true;
2816 }
2817 
2818 // TODO: SoftFP support.
2819 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2820   switch (I->getOpcode()) {
2821     case Instruction::Load:
2822       return SelectLoad(I);
2823     case Instruction::Store:
2824       return SelectStore(I);
2825     case Instruction::Br:
2826       return SelectBranch(I);
2827     case Instruction::IndirectBr:
2828       return SelectIndirectBr(I);
2829     case Instruction::ICmp:
2830     case Instruction::FCmp:
2831       return SelectCmp(I);
2832     case Instruction::FPExt:
2833       return SelectFPExt(I);
2834     case Instruction::FPTrunc:
2835       return SelectFPTrunc(I);
2836     case Instruction::SIToFP:
2837       return SelectIToFP(I, /*isSigned*/ true);
2838     case Instruction::UIToFP:
2839       return SelectIToFP(I, /*isSigned*/ false);
2840     case Instruction::FPToSI:
2841       return SelectFPToI(I, /*isSigned*/ true);
2842     case Instruction::FPToUI:
2843       return SelectFPToI(I, /*isSigned*/ false);
2844     case Instruction::Add:
2845       return SelectBinaryIntOp(I, ISD::ADD);
2846     case Instruction::Or:
2847       return SelectBinaryIntOp(I, ISD::OR);
2848     case Instruction::Sub:
2849       return SelectBinaryIntOp(I, ISD::SUB);
2850     case Instruction::FAdd:
2851       return SelectBinaryFPOp(I, ISD::FADD);
2852     case Instruction::FSub:
2853       return SelectBinaryFPOp(I, ISD::FSUB);
2854     case Instruction::FMul:
2855       return SelectBinaryFPOp(I, ISD::FMUL);
2856     case Instruction::SDiv:
2857       return SelectDiv(I, /*isSigned*/ true);
2858     case Instruction::UDiv:
2859       return SelectDiv(I, /*isSigned*/ false);
2860     case Instruction::SRem:
2861       return SelectRem(I, /*isSigned*/ true);
2862     case Instruction::URem:
2863       return SelectRem(I, /*isSigned*/ false);
2864     case Instruction::Call:
2865       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2866         return SelectIntrinsicCall(*II);
2867       return SelectCall(I);
2868     case Instruction::Select:
2869       return SelectSelect(I);
2870     case Instruction::Ret:
2871       return SelectRet(I);
2872     case Instruction::Trunc:
2873       return SelectTrunc(I);
2874     case Instruction::ZExt:
2875     case Instruction::SExt:
2876       return SelectIntExt(I);
2877     case Instruction::Shl:
2878       return SelectShift(I, ARM_AM::lsl);
2879     case Instruction::LShr:
2880       return SelectShift(I, ARM_AM::lsr);
2881     case Instruction::AShr:
2882       return SelectShift(I, ARM_AM::asr);
2883     default: break;
2884   }
2885   return false;
2886 }
2887 
2888 // This table describes sign- and zero-extend instructions which can be
2889 // folded into a preceding load. All of these extends have an immediate
2890 // (sometimes a mask and sometimes a shift) that's applied after
2891 // extension.
2892 static const struct FoldableLoadExtendsStruct {
2893   uint16_t Opc[2];  // ARM, Thumb.
2894   uint8_t ExpectedImm;
2895   uint8_t isZExt     : 1;
2896   uint8_t ExpectedVT : 7;
2897 } FoldableLoadExtends[] = {
2898   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2899   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2900   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2901   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2902   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2903 };
2904 
2905 /// The specified machine instr operand is a vreg, and that
2906 /// vreg is being provided by the specified load instruction.  If possible,
2907 /// try to fold the load as an operand to the instruction, returning true if
2908 /// successful.
2909 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2910                                       const LoadInst *LI) {
2911   // Verify we have a legal type before going any further.
2912   MVT VT;
2913   if (!isLoadTypeLegal(LI->getType(), VT))
2914     return false;
2915 
2916   // Combine load followed by zero- or sign-extend.
2917   // ldrb r1, [r0]       ldrb r1, [r0]
2918   // uxtb r2, r1     =>
2919   // mov  r3, r2         mov  r3, r1
2920   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2921     return false;
2922   const uint64_t Imm = MI->getOperand(2).getImm();
2923 
2924   bool Found = false;
2925   bool isZExt;
2926   for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2927     if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2928         (uint64_t)FLE.ExpectedImm == Imm &&
2929         MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2930       Found = true;
2931       isZExt = FLE.isZExt;
2932     }
2933   }
2934   if (!Found) return false;
2935 
2936   // See if we can handle this address.
2937   Address Addr;
2938   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2939 
2940   Register ResultReg = MI->getOperand(0).getReg();
2941   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2942     return false;
2943   MachineBasicBlock::iterator I(MI);
2944   removeDeadCode(I, std::next(I));
2945   return true;
2946 }
2947 
2948 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
2949   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2950 
2951   LLVMContext *Context = &MF->getFunction().getContext();
2952   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2953   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2954   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2955       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2956       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2957       /*AddCurrentAddress=*/UseGOT_PREL);
2958 
2959   Align ConstAlign =
2960       MF->getDataLayout().getPrefTypeAlign(Type::getInt32PtrTy(*Context));
2961   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2962   MachineMemOperand *CPMMO =
2963       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2964                                MachineMemOperand::MOLoad, 4, Align(4));
2965 
2966   Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2967   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2968   MachineInstrBuilder MIB =
2969       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2970           .addConstantPoolIndex(Idx)
2971           .addMemOperand(CPMMO);
2972   if (Opc == ARM::LDRcp)
2973     MIB.addImm(0);
2974   MIB.add(predOps(ARMCC::AL));
2975 
2976   // Fix the address by adding pc.
2977   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2978   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2979                                                           : ARM::PICADD;
2980   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2981   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2982             .addReg(TempReg)
2983             .addImm(ARMPCLabelIndex);
2984 
2985   if (!Subtarget->isThumb())
2986     MIB.add(predOps(ARMCC::AL));
2987 
2988   if (UseGOT_PREL && Subtarget->isThumb()) {
2989     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2990     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2991                   TII.get(ARM::t2LDRi12), NewDestReg)
2992               .addReg(DestReg)
2993               .addImm(0);
2994     DestReg = NewDestReg;
2995     AddOptionalDefs(MIB);
2996   }
2997   return DestReg;
2998 }
2999 
3000 bool ARMFastISel::fastLowerArguments() {
3001   if (!FuncInfo.CanLowerReturn)
3002     return false;
3003 
3004   const Function *F = FuncInfo.Fn;
3005   if (F->isVarArg())
3006     return false;
3007 
3008   CallingConv::ID CC = F->getCallingConv();
3009   switch (CC) {
3010   default:
3011     return false;
3012   case CallingConv::Fast:
3013   case CallingConv::C:
3014   case CallingConv::ARM_AAPCS_VFP:
3015   case CallingConv::ARM_AAPCS:
3016   case CallingConv::ARM_APCS:
3017   case CallingConv::Swift:
3018   case CallingConv::SwiftTail:
3019     break;
3020   }
3021 
3022   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3023   // which are passed in r0 - r3.
3024   for (const Argument &Arg : F->args()) {
3025     if (Arg.getArgNo() >= 4)
3026       return false;
3027 
3028     if (Arg.hasAttribute(Attribute::InReg) ||
3029         Arg.hasAttribute(Attribute::StructRet) ||
3030         Arg.hasAttribute(Attribute::SwiftSelf) ||
3031         Arg.hasAttribute(Attribute::SwiftError) ||
3032         Arg.hasAttribute(Attribute::ByVal))
3033       return false;
3034 
3035     Type *ArgTy = Arg.getType();
3036     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3037       return false;
3038 
3039     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3040     if (!ArgVT.isSimple()) return false;
3041     switch (ArgVT.getSimpleVT().SimpleTy) {
3042     case MVT::i8:
3043     case MVT::i16:
3044     case MVT::i32:
3045       break;
3046     default:
3047       return false;
3048     }
3049   }
3050 
3051   static const MCPhysReg GPRArgRegs[] = {
3052     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3053   };
3054 
3055   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3056   for (const Argument &Arg : F->args()) {
3057     unsigned ArgNo = Arg.getArgNo();
3058     unsigned SrcReg = GPRArgRegs[ArgNo];
3059     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3060     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3061     // Without this, EmitLiveInCopies may eliminate the livein if its only
3062     // use is a bitcast (which isn't turned into an instruction).
3063     unsigned ResultReg = createResultReg(RC);
3064     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3065             TII.get(TargetOpcode::COPY),
3066             ResultReg).addReg(DstReg, getKillRegState(true));
3067     updateValueMap(&Arg, ResultReg);
3068   }
3069 
3070   return true;
3071 }
3072 
3073 namespace llvm {
3074 
3075   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3076                                 const TargetLibraryInfo *libInfo) {
3077     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3078       return new ARMFastISel(funcInfo, libInfo);
3079 
3080     return nullptr;
3081   }
3082 
3083 } // end namespace llvm
3084