1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Target/TargetInstrInfo.h" 47 #include "llvm/Target/TargetLowering.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include "llvm/Target/TargetOptions.h" 50 using namespace llvm; 51 52 namespace { 53 54 // All possible address modes, plus some. 55 typedef struct Address { 56 enum { 57 RegBase, 58 FrameIndexBase 59 } BaseType; 60 61 union { 62 unsigned Reg; 63 int FI; 64 } Base; 65 66 int Offset; 67 68 // Innocuous defaults for our address. 69 Address() 70 : BaseType(RegBase), Offset(0) { 71 Base.Reg = 0; 72 } 73 } Address; 74 75 class ARMFastISel final : public FastISel { 76 77 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 78 /// make the right decision when generating code for different targets. 79 const ARMSubtarget *Subtarget; 80 Module &M; 81 const TargetMachine &TM; 82 const TargetInstrInfo &TII; 83 const TargetLowering &TLI; 84 ARMFunctionInfo *AFI; 85 86 // Convenience variables to avoid some queries. 87 bool isThumb2; 88 LLVMContext *Context; 89 90 public: 91 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 92 const TargetLibraryInfo *libInfo) 93 : FastISel(funcInfo, libInfo), 94 Subtarget( 95 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 96 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 97 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 98 TLI(*Subtarget->getTargetLowering()) { 99 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 100 isThumb2 = AFI->isThumbFunction(); 101 Context = &funcInfo.Fn->getContext(); 102 } 103 104 // Code from FastISel.cpp. 105 private: 106 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 107 const TargetRegisterClass *RC, 108 unsigned Op0, bool Op0IsKill); 109 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 110 const TargetRegisterClass *RC, 111 unsigned Op0, bool Op0IsKill, 112 unsigned Op1, bool Op1IsKill); 113 unsigned fastEmitInst_rrr(unsigned MachineInstOpcode, 114 const TargetRegisterClass *RC, 115 unsigned Op0, bool Op0IsKill, 116 unsigned Op1, bool Op1IsKill, 117 unsigned Op2, bool Op2IsKill); 118 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 119 const TargetRegisterClass *RC, 120 unsigned Op0, bool Op0IsKill, 121 uint64_t Imm); 122 unsigned fastEmitInst_rri(unsigned MachineInstOpcode, 123 const TargetRegisterClass *RC, 124 unsigned Op0, bool Op0IsKill, 125 unsigned Op1, bool Op1IsKill, 126 uint64_t Imm); 127 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 128 const TargetRegisterClass *RC, 129 uint64_t Imm); 130 131 // Backend specific FastISel code. 132 private: 133 bool fastSelectInstruction(const Instruction *I) override; 134 unsigned fastMaterializeConstant(const Constant *C) override; 135 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 136 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 137 const LoadInst *LI) override; 138 bool fastLowerArguments() override; 139 private: 140 #include "ARMGenFastISel.inc" 141 142 // Instruction selection routines. 143 private: 144 bool SelectLoad(const Instruction *I); 145 bool SelectStore(const Instruction *I); 146 bool SelectBranch(const Instruction *I); 147 bool SelectIndirectBr(const Instruction *I); 148 bool SelectCmp(const Instruction *I); 149 bool SelectFPExt(const Instruction *I); 150 bool SelectFPTrunc(const Instruction *I); 151 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 152 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 153 bool SelectIToFP(const Instruction *I, bool isSigned); 154 bool SelectFPToI(const Instruction *I, bool isSigned); 155 bool SelectDiv(const Instruction *I, bool isSigned); 156 bool SelectRem(const Instruction *I, bool isSigned); 157 bool SelectCall(const Instruction *I, const char *IntrMemName); 158 bool SelectIntrinsicCall(const IntrinsicInst &I); 159 bool SelectSelect(const Instruction *I); 160 bool SelectRet(const Instruction *I); 161 bool SelectTrunc(const Instruction *I); 162 bool SelectIntExt(const Instruction *I); 163 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 164 165 // Utility routines. 166 private: 167 bool isTypeLegal(Type *Ty, MVT &VT); 168 bool isLoadTypeLegal(Type *Ty, MVT &VT); 169 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 170 bool isZExt); 171 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 172 unsigned Alignment = 0, bool isZExt = true, 173 bool allocReg = true); 174 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 175 unsigned Alignment = 0); 176 bool ARMComputeAddress(const Value *Obj, Address &Addr); 177 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 178 bool ARMIsMemCpySmall(uint64_t Len); 179 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 180 unsigned Alignment); 181 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 182 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 183 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 184 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 185 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 186 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 187 unsigned ARMSelectCallOp(bool UseReg); 188 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 189 190 const TargetLowering *getTargetLowering() { return &TLI; } 191 192 // Call handling routines. 193 private: 194 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 195 bool Return, 196 bool isVarArg); 197 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 198 SmallVectorImpl<unsigned> &ArgRegs, 199 SmallVectorImpl<MVT> &ArgVTs, 200 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 201 SmallVectorImpl<unsigned> &RegArgs, 202 CallingConv::ID CC, 203 unsigned &NumBytes, 204 bool isVarArg); 205 unsigned getLibcallReg(const Twine &Name); 206 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 207 const Instruction *I, CallingConv::ID CC, 208 unsigned &NumBytes, bool isVarArg); 209 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 210 211 // OptionalDef handling routines. 212 private: 213 bool isARMNEONPred(const MachineInstr *MI); 214 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 215 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 216 void AddLoadStoreOperands(MVT VT, Address &Addr, 217 const MachineInstrBuilder &MIB, 218 unsigned Flags, bool useAM3); 219 }; 220 221 } // end anonymous namespace 222 223 #include "ARMGenCallingConv.inc" 224 225 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 226 // we don't care about implicit defs here, just places we'll need to add a 227 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 228 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 229 if (!MI->hasOptionalDef()) 230 return false; 231 232 // Look to see if our OptionalDef is defining CPSR or CCR. 233 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 234 const MachineOperand &MO = MI->getOperand(i); 235 if (!MO.isReg() || !MO.isDef()) continue; 236 if (MO.getReg() == ARM::CPSR) 237 *CPSR = true; 238 } 239 return true; 240 } 241 242 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 243 const MCInstrDesc &MCID = MI->getDesc(); 244 245 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 246 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 247 AFI->isThumb2Function()) 248 return MI->isPredicable(); 249 250 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 251 if (MCID.OpInfo[i].isPredicate()) 252 return true; 253 254 return false; 255 } 256 257 // If the machine is predicable go ahead and add the predicate operands, if 258 // it needs default CC operands add those. 259 // TODO: If we want to support thumb1 then we'll need to deal with optional 260 // CPSR defs that need to be added before the remaining operands. See s_cc_out 261 // for descriptions why. 262 const MachineInstrBuilder & 263 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 264 MachineInstr *MI = &*MIB; 265 266 // Do we use a predicate? or... 267 // Are we NEON in ARM mode and have a predicate operand? If so, I know 268 // we're not predicable but add it anyways. 269 if (isARMNEONPred(MI)) 270 AddDefaultPred(MIB); 271 272 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 273 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 274 bool CPSR = false; 275 if (DefinesOptionalPredicate(MI, &CPSR)) { 276 if (CPSR) 277 AddDefaultT1CC(MIB); 278 else 279 AddDefaultCC(MIB); 280 } 281 return MIB; 282 } 283 284 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 285 const TargetRegisterClass *RC, 286 unsigned Op0, bool Op0IsKill) { 287 unsigned ResultReg = createResultReg(RC); 288 const MCInstrDesc &II = TII.get(MachineInstOpcode); 289 290 // Make sure the input operand is sufficiently constrained to be legal 291 // for this instruction. 292 Op0 = constrainOperandRegClass(II, Op0, 1); 293 if (II.getNumDefs() >= 1) { 294 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 295 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 296 } else { 297 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 298 .addReg(Op0, Op0IsKill * RegState::Kill)); 299 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 300 TII.get(TargetOpcode::COPY), ResultReg) 301 .addReg(II.ImplicitDefs[0])); 302 } 303 return ResultReg; 304 } 305 306 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 307 const TargetRegisterClass *RC, 308 unsigned Op0, bool Op0IsKill, 309 unsigned Op1, bool Op1IsKill) { 310 unsigned ResultReg = createResultReg(RC); 311 const MCInstrDesc &II = TII.get(MachineInstOpcode); 312 313 // Make sure the input operands are sufficiently constrained to be legal 314 // for this instruction. 315 Op0 = constrainOperandRegClass(II, Op0, 1); 316 Op1 = constrainOperandRegClass(II, Op1, 2); 317 318 if (II.getNumDefs() >= 1) { 319 AddOptionalDefs( 320 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 321 .addReg(Op0, Op0IsKill * RegState::Kill) 322 .addReg(Op1, Op1IsKill * RegState::Kill)); 323 } else { 324 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 325 .addReg(Op0, Op0IsKill * RegState::Kill) 326 .addReg(Op1, Op1IsKill * RegState::Kill)); 327 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 328 TII.get(TargetOpcode::COPY), ResultReg) 329 .addReg(II.ImplicitDefs[0])); 330 } 331 return ResultReg; 332 } 333 334 unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 335 const TargetRegisterClass *RC, 336 unsigned Op0, bool Op0IsKill, 337 unsigned Op1, bool Op1IsKill, 338 unsigned Op2, bool Op2IsKill) { 339 unsigned ResultReg = createResultReg(RC); 340 const MCInstrDesc &II = TII.get(MachineInstOpcode); 341 342 // Make sure the input operands are sufficiently constrained to be legal 343 // for this instruction. 344 Op0 = constrainOperandRegClass(II, Op0, 1); 345 Op1 = constrainOperandRegClass(II, Op1, 2); 346 Op2 = constrainOperandRegClass(II, Op1, 3); 347 348 if (II.getNumDefs() >= 1) { 349 AddOptionalDefs( 350 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 351 .addReg(Op0, Op0IsKill * RegState::Kill) 352 .addReg(Op1, Op1IsKill * RegState::Kill) 353 .addReg(Op2, Op2IsKill * RegState::Kill)); 354 } else { 355 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 356 .addReg(Op0, Op0IsKill * RegState::Kill) 357 .addReg(Op1, Op1IsKill * RegState::Kill) 358 .addReg(Op2, Op2IsKill * RegState::Kill)); 359 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 360 TII.get(TargetOpcode::COPY), ResultReg) 361 .addReg(II.ImplicitDefs[0])); 362 } 363 return ResultReg; 364 } 365 366 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 367 const TargetRegisterClass *RC, 368 unsigned Op0, bool Op0IsKill, 369 uint64_t Imm) { 370 unsigned ResultReg = createResultReg(RC); 371 const MCInstrDesc &II = TII.get(MachineInstOpcode); 372 373 // Make sure the input operand is sufficiently constrained to be legal 374 // for this instruction. 375 Op0 = constrainOperandRegClass(II, Op0, 1); 376 if (II.getNumDefs() >= 1) { 377 AddOptionalDefs( 378 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 379 .addReg(Op0, Op0IsKill * RegState::Kill) 380 .addImm(Imm)); 381 } else { 382 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 383 .addReg(Op0, Op0IsKill * RegState::Kill) 384 .addImm(Imm)); 385 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 386 TII.get(TargetOpcode::COPY), ResultReg) 387 .addReg(II.ImplicitDefs[0])); 388 } 389 return ResultReg; 390 } 391 392 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 393 const TargetRegisterClass *RC, 394 unsigned Op0, bool Op0IsKill, 395 unsigned Op1, bool Op1IsKill, 396 uint64_t Imm) { 397 unsigned ResultReg = createResultReg(RC); 398 const MCInstrDesc &II = TII.get(MachineInstOpcode); 399 400 // Make sure the input operands are sufficiently constrained to be legal 401 // for this instruction. 402 Op0 = constrainOperandRegClass(II, Op0, 1); 403 Op1 = constrainOperandRegClass(II, Op1, 2); 404 if (II.getNumDefs() >= 1) { 405 AddOptionalDefs( 406 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 407 .addReg(Op0, Op0IsKill * RegState::Kill) 408 .addReg(Op1, Op1IsKill * RegState::Kill) 409 .addImm(Imm)); 410 } else { 411 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 412 .addReg(Op0, Op0IsKill * RegState::Kill) 413 .addReg(Op1, Op1IsKill * RegState::Kill) 414 .addImm(Imm)); 415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 416 TII.get(TargetOpcode::COPY), ResultReg) 417 .addReg(II.ImplicitDefs[0])); 418 } 419 return ResultReg; 420 } 421 422 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 423 const TargetRegisterClass *RC, 424 uint64_t Imm) { 425 unsigned ResultReg = createResultReg(RC); 426 const MCInstrDesc &II = TII.get(MachineInstOpcode); 427 428 if (II.getNumDefs() >= 1) { 429 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 430 ResultReg).addImm(Imm)); 431 } else { 432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 433 .addImm(Imm)); 434 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 435 TII.get(TargetOpcode::COPY), ResultReg) 436 .addReg(II.ImplicitDefs[0])); 437 } 438 return ResultReg; 439 } 440 441 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 442 // checks from the various callers. 443 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 444 if (VT == MVT::f64) return 0; 445 446 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 447 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 448 TII.get(ARM::VMOVSR), MoveReg) 449 .addReg(SrcReg)); 450 return MoveReg; 451 } 452 453 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 454 if (VT == MVT::i64) return 0; 455 456 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 457 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 458 TII.get(ARM::VMOVRS), MoveReg) 459 .addReg(SrcReg)); 460 return MoveReg; 461 } 462 463 // For double width floating point we need to materialize two constants 464 // (the high and the low) into integer registers then use a move to get 465 // the combined constant into an FP reg. 466 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 467 const APFloat Val = CFP->getValueAPF(); 468 bool is64bit = VT == MVT::f64; 469 470 // This checks to see if we can use VFP3 instructions to materialize 471 // a constant, otherwise we have to go through the constant pool. 472 if (TLI.isFPImmLegal(Val, VT)) { 473 int Imm; 474 unsigned Opc; 475 if (is64bit) { 476 Imm = ARM_AM::getFP64Imm(Val); 477 Opc = ARM::FCONSTD; 478 } else { 479 Imm = ARM_AM::getFP32Imm(Val); 480 Opc = ARM::FCONSTS; 481 } 482 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 483 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 484 TII.get(Opc), DestReg).addImm(Imm)); 485 return DestReg; 486 } 487 488 // Require VFP2 for loading fp constants. 489 if (!Subtarget->hasVFP2()) return false; 490 491 // MachineConstantPool wants an explicit alignment. 492 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 493 if (Align == 0) { 494 // TODO: Figure out if this is correct. 495 Align = DL.getTypeAllocSize(CFP->getType()); 496 } 497 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 498 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 499 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 500 501 // The extra reg is for addrmode5. 502 AddOptionalDefs( 503 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 504 .addConstantPoolIndex(Idx) 505 .addReg(0)); 506 return DestReg; 507 } 508 509 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 510 511 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 512 return 0; 513 514 // If we can do this in a single instruction without a constant pool entry 515 // do so now. 516 const ConstantInt *CI = cast<ConstantInt>(C); 517 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 518 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 519 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 520 &ARM::GPRRegClass; 521 unsigned ImmReg = createResultReg(RC); 522 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 523 TII.get(Opc), ImmReg) 524 .addImm(CI->getZExtValue())); 525 return ImmReg; 526 } 527 528 // Use MVN to emit negative constants. 529 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 530 unsigned Imm = (unsigned)~(CI->getSExtValue()); 531 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 532 (ARM_AM::getSOImmVal(Imm) != -1); 533 if (UseImm) { 534 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 535 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 536 &ARM::GPRRegClass; 537 unsigned ImmReg = createResultReg(RC); 538 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 539 TII.get(Opc), ImmReg) 540 .addImm(Imm)); 541 return ImmReg; 542 } 543 } 544 545 unsigned ResultReg = 0; 546 if (Subtarget->useMovt(*FuncInfo.MF)) 547 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 548 549 if (ResultReg) 550 return ResultReg; 551 552 // Load from constant pool. For now 32-bit only. 553 if (VT != MVT::i32) 554 return 0; 555 556 // MachineConstantPool wants an explicit alignment. 557 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 558 if (Align == 0) { 559 // TODO: Figure out if this is correct. 560 Align = DL.getTypeAllocSize(C->getType()); 561 } 562 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 563 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 564 if (isThumb2) 565 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 566 TII.get(ARM::t2LDRpci), ResultReg) 567 .addConstantPoolIndex(Idx)); 568 else { 569 // The extra immediate is for addrmode2. 570 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 571 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 572 TII.get(ARM::LDRcp), ResultReg) 573 .addConstantPoolIndex(Idx) 574 .addImm(0)); 575 } 576 return ResultReg; 577 } 578 579 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 580 // For now 32-bit only. 581 if (VT != MVT::i32) return 0; 582 583 Reloc::Model RelocM = TM.getRelocationModel(); 584 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 585 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 586 : &ARM::GPRRegClass; 587 unsigned DestReg = createResultReg(RC); 588 589 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 590 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 591 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 592 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 593 594 // Use movw+movt when possible, it avoids constant pool entries. 595 // Non-darwin targets only support static movt relocations in FastISel. 596 if (Subtarget->useMovt(*FuncInfo.MF) && 597 (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) { 598 unsigned Opc; 599 unsigned char TF = 0; 600 if (Subtarget->isTargetMachO()) 601 TF = ARMII::MO_NONLAZY; 602 603 switch (RelocM) { 604 case Reloc::PIC_: 605 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 606 break; 607 default: 608 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 609 break; 610 } 611 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 612 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 613 } else { 614 // MachineConstantPool wants an explicit alignment. 615 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 616 if (Align == 0) { 617 // TODO: Figure out if this is correct. 618 Align = DL.getTypeAllocSize(GV->getType()); 619 } 620 621 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 622 return ARMLowerPICELF(GV, Align, VT); 623 624 // Grab index. 625 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 626 (Subtarget->isThumb() ? 4 : 8); 627 unsigned Id = AFI->createPICLabelUId(); 628 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 629 ARMCP::CPValue, 630 PCAdj); 631 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 632 633 // Load value. 634 MachineInstrBuilder MIB; 635 if (isThumb2) { 636 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 637 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 638 DestReg).addConstantPoolIndex(Idx); 639 if (RelocM == Reloc::PIC_) 640 MIB.addImm(Id); 641 AddOptionalDefs(MIB); 642 } else { 643 // The extra immediate is for addrmode2. 644 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 645 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 646 TII.get(ARM::LDRcp), DestReg) 647 .addConstantPoolIndex(Idx) 648 .addImm(0); 649 AddOptionalDefs(MIB); 650 651 if (RelocM == Reloc::PIC_) { 652 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 653 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 654 655 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 656 DbgLoc, TII.get(Opc), NewDestReg) 657 .addReg(DestReg) 658 .addImm(Id); 659 AddOptionalDefs(MIB); 660 return NewDestReg; 661 } 662 } 663 } 664 665 if (IsIndirect) { 666 MachineInstrBuilder MIB; 667 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 668 if (isThumb2) 669 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 670 TII.get(ARM::t2LDRi12), NewDestReg) 671 .addReg(DestReg) 672 .addImm(0); 673 else 674 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 675 TII.get(ARM::LDRi12), NewDestReg) 676 .addReg(DestReg) 677 .addImm(0); 678 DestReg = NewDestReg; 679 AddOptionalDefs(MIB); 680 } 681 682 return DestReg; 683 } 684 685 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 686 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 687 688 // Only handle simple types. 689 if (!CEVT.isSimple()) return 0; 690 MVT VT = CEVT.getSimpleVT(); 691 692 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 693 return ARMMaterializeFP(CFP, VT); 694 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 695 return ARMMaterializeGV(GV, VT); 696 else if (isa<ConstantInt>(C)) 697 return ARMMaterializeInt(C, VT); 698 699 return 0; 700 } 701 702 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 703 704 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 705 // Don't handle dynamic allocas. 706 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 707 708 MVT VT; 709 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 710 711 DenseMap<const AllocaInst*, int>::iterator SI = 712 FuncInfo.StaticAllocaMap.find(AI); 713 714 // This will get lowered later into the correct offsets and registers 715 // via rewriteXFrameIndex. 716 if (SI != FuncInfo.StaticAllocaMap.end()) { 717 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 718 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 719 unsigned ResultReg = createResultReg(RC); 720 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 721 722 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 723 TII.get(Opc), ResultReg) 724 .addFrameIndex(SI->second) 725 .addImm(0)); 726 return ResultReg; 727 } 728 729 return 0; 730 } 731 732 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 733 EVT evt = TLI.getValueType(DL, Ty, true); 734 735 // Only handle simple types. 736 if (evt == MVT::Other || !evt.isSimple()) return false; 737 VT = evt.getSimpleVT(); 738 739 // Handle all legal types, i.e. a register that will directly hold this 740 // value. 741 return TLI.isTypeLegal(VT); 742 } 743 744 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 745 if (isTypeLegal(Ty, VT)) return true; 746 747 // If this is a type than can be sign or zero-extended to a basic operation 748 // go ahead and accept it now. 749 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 750 return true; 751 752 return false; 753 } 754 755 // Computes the address to get to an object. 756 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 757 // Some boilerplate from the X86 FastISel. 758 const User *U = nullptr; 759 unsigned Opcode = Instruction::UserOp1; 760 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 761 // Don't walk into other basic blocks unless the object is an alloca from 762 // another block, otherwise it may not have a virtual register assigned. 763 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 764 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 765 Opcode = I->getOpcode(); 766 U = I; 767 } 768 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 769 Opcode = C->getOpcode(); 770 U = C; 771 } 772 773 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 774 if (Ty->getAddressSpace() > 255) 775 // Fast instruction selection doesn't support the special 776 // address spaces. 777 return false; 778 779 switch (Opcode) { 780 default: 781 break; 782 case Instruction::BitCast: 783 // Look through bitcasts. 784 return ARMComputeAddress(U->getOperand(0), Addr); 785 case Instruction::IntToPtr: 786 // Look past no-op inttoptrs. 787 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 788 TLI.getPointerTy(DL)) 789 return ARMComputeAddress(U->getOperand(0), Addr); 790 break; 791 case Instruction::PtrToInt: 792 // Look past no-op ptrtoints. 793 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 794 return ARMComputeAddress(U->getOperand(0), Addr); 795 break; 796 case Instruction::GetElementPtr: { 797 Address SavedAddr = Addr; 798 int TmpOffset = Addr.Offset; 799 800 // Iterate through the GEP folding the constants into offsets where 801 // we can. 802 gep_type_iterator GTI = gep_type_begin(U); 803 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 804 i != e; ++i, ++GTI) { 805 const Value *Op = *i; 806 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 807 const StructLayout *SL = DL.getStructLayout(STy); 808 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 809 TmpOffset += SL->getElementOffset(Idx); 810 } else { 811 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 812 for (;;) { 813 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 814 // Constant-offset addressing. 815 TmpOffset += CI->getSExtValue() * S; 816 break; 817 } 818 if (canFoldAddIntoGEP(U, Op)) { 819 // A compatible add with a constant operand. Fold the constant. 820 ConstantInt *CI = 821 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 822 TmpOffset += CI->getSExtValue() * S; 823 // Iterate on the other operand. 824 Op = cast<AddOperator>(Op)->getOperand(0); 825 continue; 826 } 827 // Unsupported 828 goto unsupported_gep; 829 } 830 } 831 } 832 833 // Try to grab the base operand now. 834 Addr.Offset = TmpOffset; 835 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 836 837 // We failed, restore everything and try the other options. 838 Addr = SavedAddr; 839 840 unsupported_gep: 841 break; 842 } 843 case Instruction::Alloca: { 844 const AllocaInst *AI = cast<AllocaInst>(Obj); 845 DenseMap<const AllocaInst*, int>::iterator SI = 846 FuncInfo.StaticAllocaMap.find(AI); 847 if (SI != FuncInfo.StaticAllocaMap.end()) { 848 Addr.BaseType = Address::FrameIndexBase; 849 Addr.Base.FI = SI->second; 850 return true; 851 } 852 break; 853 } 854 } 855 856 // Try to get this in a register if nothing else has worked. 857 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 858 return Addr.Base.Reg != 0; 859 } 860 861 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 862 bool needsLowering = false; 863 switch (VT.SimpleTy) { 864 default: llvm_unreachable("Unhandled load/store type!"); 865 case MVT::i1: 866 case MVT::i8: 867 case MVT::i16: 868 case MVT::i32: 869 if (!useAM3) { 870 // Integer loads/stores handle 12-bit offsets. 871 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 872 // Handle negative offsets. 873 if (needsLowering && isThumb2) 874 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 875 Addr.Offset > -256); 876 } else { 877 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 878 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 879 } 880 break; 881 case MVT::f32: 882 case MVT::f64: 883 // Floating point operands handle 8-bit offsets. 884 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 885 break; 886 } 887 888 // If this is a stack pointer and the offset needs to be simplified then 889 // put the alloca address into a register, set the base type back to 890 // register and continue. This should almost never happen. 891 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 892 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 893 : &ARM::GPRRegClass; 894 unsigned ResultReg = createResultReg(RC); 895 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 896 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 897 TII.get(Opc), ResultReg) 898 .addFrameIndex(Addr.Base.FI) 899 .addImm(0)); 900 Addr.Base.Reg = ResultReg; 901 Addr.BaseType = Address::RegBase; 902 } 903 904 // Since the offset is too large for the load/store instruction 905 // get the reg+offset into a register. 906 if (needsLowering) { 907 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 908 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 909 Addr.Offset = 0; 910 } 911 } 912 913 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 914 const MachineInstrBuilder &MIB, 915 unsigned Flags, bool useAM3) { 916 // addrmode5 output depends on the selection dag addressing dividing the 917 // offset by 4 that it then later multiplies. Do this here as well. 918 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 919 Addr.Offset /= 4; 920 921 // Frame base works a bit differently. Handle it separately. 922 if (Addr.BaseType == Address::FrameIndexBase) { 923 int FI = Addr.Base.FI; 924 int Offset = Addr.Offset; 925 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 926 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 927 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); 928 // Now add the rest of the operands. 929 MIB.addFrameIndex(FI); 930 931 // ARM halfword load/stores and signed byte loads need an additional 932 // operand. 933 if (useAM3) { 934 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 935 MIB.addReg(0); 936 MIB.addImm(Imm); 937 } else { 938 MIB.addImm(Addr.Offset); 939 } 940 MIB.addMemOperand(MMO); 941 } else { 942 // Now add the rest of the operands. 943 MIB.addReg(Addr.Base.Reg); 944 945 // ARM halfword load/stores and signed byte loads need an additional 946 // operand. 947 if (useAM3) { 948 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 949 MIB.addReg(0); 950 MIB.addImm(Imm); 951 } else { 952 MIB.addImm(Addr.Offset); 953 } 954 } 955 AddOptionalDefs(MIB); 956 } 957 958 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 959 unsigned Alignment, bool isZExt, bool allocReg) { 960 unsigned Opc; 961 bool useAM3 = false; 962 bool needVMOV = false; 963 const TargetRegisterClass *RC; 964 switch (VT.SimpleTy) { 965 // This is mostly going to be Neon/vector support. 966 default: return false; 967 case MVT::i1: 968 case MVT::i8: 969 if (isThumb2) { 970 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 971 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 972 else 973 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 974 } else { 975 if (isZExt) { 976 Opc = ARM::LDRBi12; 977 } else { 978 Opc = ARM::LDRSB; 979 useAM3 = true; 980 } 981 } 982 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 983 break; 984 case MVT::i16: 985 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 986 return false; 987 988 if (isThumb2) { 989 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 990 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 991 else 992 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 993 } else { 994 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 995 useAM3 = true; 996 } 997 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 998 break; 999 case MVT::i32: 1000 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1001 return false; 1002 1003 if (isThumb2) { 1004 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1005 Opc = ARM::t2LDRi8; 1006 else 1007 Opc = ARM::t2LDRi12; 1008 } else { 1009 Opc = ARM::LDRi12; 1010 } 1011 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1012 break; 1013 case MVT::f32: 1014 if (!Subtarget->hasVFP2()) return false; 1015 // Unaligned loads need special handling. Floats require word-alignment. 1016 if (Alignment && Alignment < 4) { 1017 needVMOV = true; 1018 VT = MVT::i32; 1019 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1020 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 1021 } else { 1022 Opc = ARM::VLDRS; 1023 RC = TLI.getRegClassFor(VT); 1024 } 1025 break; 1026 case MVT::f64: 1027 if (!Subtarget->hasVFP2()) return false; 1028 // FIXME: Unaligned loads need special handling. Doublewords require 1029 // word-alignment. 1030 if (Alignment && Alignment < 4) 1031 return false; 1032 1033 Opc = ARM::VLDRD; 1034 RC = TLI.getRegClassFor(VT); 1035 break; 1036 } 1037 // Simplify this down to something we can handle. 1038 ARMSimplifyAddress(Addr, VT, useAM3); 1039 1040 // Create the base instruction, then add the operands. 1041 if (allocReg) 1042 ResultReg = createResultReg(RC); 1043 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1044 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1045 TII.get(Opc), ResultReg); 1046 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1047 1048 // If we had an unaligned load of a float we've converted it to an regular 1049 // load. Now we must move from the GRP to the FP register. 1050 if (needVMOV) { 1051 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1052 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1053 TII.get(ARM::VMOVSR), MoveReg) 1054 .addReg(ResultReg)); 1055 ResultReg = MoveReg; 1056 } 1057 return true; 1058 } 1059 1060 bool ARMFastISel::SelectLoad(const Instruction *I) { 1061 // Atomic loads need special handling. 1062 if (cast<LoadInst>(I)->isAtomic()) 1063 return false; 1064 1065 // Verify we have a legal type before going any further. 1066 MVT VT; 1067 if (!isLoadTypeLegal(I->getType(), VT)) 1068 return false; 1069 1070 // See if we can handle this address. 1071 Address Addr; 1072 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1073 1074 unsigned ResultReg; 1075 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1076 return false; 1077 updateValueMap(I, ResultReg); 1078 return true; 1079 } 1080 1081 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1082 unsigned Alignment) { 1083 unsigned StrOpc; 1084 bool useAM3 = false; 1085 switch (VT.SimpleTy) { 1086 // This is mostly going to be Neon/vector support. 1087 default: return false; 1088 case MVT::i1: { 1089 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1090 : &ARM::GPRRegClass); 1091 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1092 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1093 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1094 TII.get(Opc), Res) 1095 .addReg(SrcReg).addImm(1)); 1096 SrcReg = Res; 1097 } // Fallthrough here. 1098 case MVT::i8: 1099 if (isThumb2) { 1100 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1101 StrOpc = ARM::t2STRBi8; 1102 else 1103 StrOpc = ARM::t2STRBi12; 1104 } else { 1105 StrOpc = ARM::STRBi12; 1106 } 1107 break; 1108 case MVT::i16: 1109 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1110 return false; 1111 1112 if (isThumb2) { 1113 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1114 StrOpc = ARM::t2STRHi8; 1115 else 1116 StrOpc = ARM::t2STRHi12; 1117 } else { 1118 StrOpc = ARM::STRH; 1119 useAM3 = true; 1120 } 1121 break; 1122 case MVT::i32: 1123 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1124 return false; 1125 1126 if (isThumb2) { 1127 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1128 StrOpc = ARM::t2STRi8; 1129 else 1130 StrOpc = ARM::t2STRi12; 1131 } else { 1132 StrOpc = ARM::STRi12; 1133 } 1134 break; 1135 case MVT::f32: 1136 if (!Subtarget->hasVFP2()) return false; 1137 // Unaligned stores need special handling. Floats require word-alignment. 1138 if (Alignment && Alignment < 4) { 1139 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1140 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1141 TII.get(ARM::VMOVRS), MoveReg) 1142 .addReg(SrcReg)); 1143 SrcReg = MoveReg; 1144 VT = MVT::i32; 1145 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1146 } else { 1147 StrOpc = ARM::VSTRS; 1148 } 1149 break; 1150 case MVT::f64: 1151 if (!Subtarget->hasVFP2()) return false; 1152 // FIXME: Unaligned stores need special handling. Doublewords require 1153 // word-alignment. 1154 if (Alignment && Alignment < 4) 1155 return false; 1156 1157 StrOpc = ARM::VSTRD; 1158 break; 1159 } 1160 // Simplify this down to something we can handle. 1161 ARMSimplifyAddress(Addr, VT, useAM3); 1162 1163 // Create the base instruction, then add the operands. 1164 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1165 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1166 TII.get(StrOpc)) 1167 .addReg(SrcReg); 1168 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1169 return true; 1170 } 1171 1172 bool ARMFastISel::SelectStore(const Instruction *I) { 1173 Value *Op0 = I->getOperand(0); 1174 unsigned SrcReg = 0; 1175 1176 // Atomic stores need special handling. 1177 if (cast<StoreInst>(I)->isAtomic()) 1178 return false; 1179 1180 // Verify we have a legal type before going any further. 1181 MVT VT; 1182 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1183 return false; 1184 1185 // Get the value to be stored into a register. 1186 SrcReg = getRegForValue(Op0); 1187 if (SrcReg == 0) return false; 1188 1189 // See if we can handle this address. 1190 Address Addr; 1191 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1192 return false; 1193 1194 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1195 return false; 1196 return true; 1197 } 1198 1199 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1200 switch (Pred) { 1201 // Needs two compares... 1202 case CmpInst::FCMP_ONE: 1203 case CmpInst::FCMP_UEQ: 1204 default: 1205 // AL is our "false" for now. The other two need more compares. 1206 return ARMCC::AL; 1207 case CmpInst::ICMP_EQ: 1208 case CmpInst::FCMP_OEQ: 1209 return ARMCC::EQ; 1210 case CmpInst::ICMP_SGT: 1211 case CmpInst::FCMP_OGT: 1212 return ARMCC::GT; 1213 case CmpInst::ICMP_SGE: 1214 case CmpInst::FCMP_OGE: 1215 return ARMCC::GE; 1216 case CmpInst::ICMP_UGT: 1217 case CmpInst::FCMP_UGT: 1218 return ARMCC::HI; 1219 case CmpInst::FCMP_OLT: 1220 return ARMCC::MI; 1221 case CmpInst::ICMP_ULE: 1222 case CmpInst::FCMP_OLE: 1223 return ARMCC::LS; 1224 case CmpInst::FCMP_ORD: 1225 return ARMCC::VC; 1226 case CmpInst::FCMP_UNO: 1227 return ARMCC::VS; 1228 case CmpInst::FCMP_UGE: 1229 return ARMCC::PL; 1230 case CmpInst::ICMP_SLT: 1231 case CmpInst::FCMP_ULT: 1232 return ARMCC::LT; 1233 case CmpInst::ICMP_SLE: 1234 case CmpInst::FCMP_ULE: 1235 return ARMCC::LE; 1236 case CmpInst::FCMP_UNE: 1237 case CmpInst::ICMP_NE: 1238 return ARMCC::NE; 1239 case CmpInst::ICMP_UGE: 1240 return ARMCC::HS; 1241 case CmpInst::ICMP_ULT: 1242 return ARMCC::LO; 1243 } 1244 } 1245 1246 bool ARMFastISel::SelectBranch(const Instruction *I) { 1247 const BranchInst *BI = cast<BranchInst>(I); 1248 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1249 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1250 1251 // Simple branch support. 1252 1253 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1254 // behavior. 1255 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1256 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1257 1258 // Get the compare predicate. 1259 // Try to take advantage of fallthrough opportunities. 1260 CmpInst::Predicate Predicate = CI->getPredicate(); 1261 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1262 std::swap(TBB, FBB); 1263 Predicate = CmpInst::getInversePredicate(Predicate); 1264 } 1265 1266 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1267 1268 // We may not handle every CC for now. 1269 if (ARMPred == ARMCC::AL) return false; 1270 1271 // Emit the compare. 1272 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1273 return false; 1274 1275 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1277 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1278 finishCondBranch(BI->getParent(), TBB, FBB); 1279 return true; 1280 } 1281 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1282 MVT SourceVT; 1283 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1284 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1285 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1286 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1287 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1288 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1289 TII.get(TstOpc)) 1290 .addReg(OpReg).addImm(1)); 1291 1292 unsigned CCMode = ARMCC::NE; 1293 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1294 std::swap(TBB, FBB); 1295 CCMode = ARMCC::EQ; 1296 } 1297 1298 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1299 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1300 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1301 1302 finishCondBranch(BI->getParent(), TBB, FBB); 1303 return true; 1304 } 1305 } else if (const ConstantInt *CI = 1306 dyn_cast<ConstantInt>(BI->getCondition())) { 1307 uint64_t Imm = CI->getZExtValue(); 1308 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1309 fastEmitBranch(Target, DbgLoc); 1310 return true; 1311 } 1312 1313 unsigned CmpReg = getRegForValue(BI->getCondition()); 1314 if (CmpReg == 0) return false; 1315 1316 // We've been divorced from our compare! Our block was split, and 1317 // now our compare lives in a predecessor block. We musn't 1318 // re-compare here, as the children of the compare aren't guaranteed 1319 // live across the block boundary (we *could* check for this). 1320 // Regardless, the compare has been done in the predecessor block, 1321 // and it left a value for us in a virtual register. Ergo, we test 1322 // the one-bit value left in the virtual register. 1323 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1324 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1325 AddOptionalDefs( 1326 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1327 .addReg(CmpReg) 1328 .addImm(1)); 1329 1330 unsigned CCMode = ARMCC::NE; 1331 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1332 std::swap(TBB, FBB); 1333 CCMode = ARMCC::EQ; 1334 } 1335 1336 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1337 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1338 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1339 finishCondBranch(BI->getParent(), TBB, FBB); 1340 return true; 1341 } 1342 1343 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1344 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1345 if (AddrReg == 0) return false; 1346 1347 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1348 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1349 TII.get(Opc)).addReg(AddrReg)); 1350 1351 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1352 for (const BasicBlock *SuccBB : IB->successors()) 1353 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1354 1355 return true; 1356 } 1357 1358 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1359 bool isZExt) { 1360 Type *Ty = Src1Value->getType(); 1361 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1362 if (!SrcEVT.isSimple()) return false; 1363 MVT SrcVT = SrcEVT.getSimpleVT(); 1364 1365 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1366 if (isFloat && !Subtarget->hasVFP2()) 1367 return false; 1368 1369 // Check to see if the 2nd operand is a constant that we can encode directly 1370 // in the compare. 1371 int Imm = 0; 1372 bool UseImm = false; 1373 bool isNegativeImm = false; 1374 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1375 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1376 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1377 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1378 SrcVT == MVT::i1) { 1379 const APInt &CIVal = ConstInt->getValue(); 1380 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1381 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1382 // then a cmn, because there is no way to represent 2147483648 as a 1383 // signed 32-bit int. 1384 if (Imm < 0 && Imm != (int)0x80000000) { 1385 isNegativeImm = true; 1386 Imm = -Imm; 1387 } 1388 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1389 (ARM_AM::getSOImmVal(Imm) != -1); 1390 } 1391 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1392 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1393 if (ConstFP->isZero() && !ConstFP->isNegative()) 1394 UseImm = true; 1395 } 1396 1397 unsigned CmpOpc; 1398 bool isICmp = true; 1399 bool needsExt = false; 1400 switch (SrcVT.SimpleTy) { 1401 default: return false; 1402 // TODO: Verify compares. 1403 case MVT::f32: 1404 isICmp = false; 1405 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1406 break; 1407 case MVT::f64: 1408 isICmp = false; 1409 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1410 break; 1411 case MVT::i1: 1412 case MVT::i8: 1413 case MVT::i16: 1414 needsExt = true; 1415 // Intentional fall-through. 1416 case MVT::i32: 1417 if (isThumb2) { 1418 if (!UseImm) 1419 CmpOpc = ARM::t2CMPrr; 1420 else 1421 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1422 } else { 1423 if (!UseImm) 1424 CmpOpc = ARM::CMPrr; 1425 else 1426 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1427 } 1428 break; 1429 } 1430 1431 unsigned SrcReg1 = getRegForValue(Src1Value); 1432 if (SrcReg1 == 0) return false; 1433 1434 unsigned SrcReg2 = 0; 1435 if (!UseImm) { 1436 SrcReg2 = getRegForValue(Src2Value); 1437 if (SrcReg2 == 0) return false; 1438 } 1439 1440 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1441 if (needsExt) { 1442 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1443 if (SrcReg1 == 0) return false; 1444 if (!UseImm) { 1445 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1446 if (SrcReg2 == 0) return false; 1447 } 1448 } 1449 1450 const MCInstrDesc &II = TII.get(CmpOpc); 1451 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1452 if (!UseImm) { 1453 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1454 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1455 .addReg(SrcReg1).addReg(SrcReg2)); 1456 } else { 1457 MachineInstrBuilder MIB; 1458 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1459 .addReg(SrcReg1); 1460 1461 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1462 if (isICmp) 1463 MIB.addImm(Imm); 1464 AddOptionalDefs(MIB); 1465 } 1466 1467 // For floating point we need to move the result to a comparison register 1468 // that we can then use for branches. 1469 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1470 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1471 TII.get(ARM::FMSTAT))); 1472 return true; 1473 } 1474 1475 bool ARMFastISel::SelectCmp(const Instruction *I) { 1476 const CmpInst *CI = cast<CmpInst>(I); 1477 1478 // Get the compare predicate. 1479 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1480 1481 // We may not handle every CC for now. 1482 if (ARMPred == ARMCC::AL) return false; 1483 1484 // Emit the compare. 1485 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1486 return false; 1487 1488 // Now set a register based on the comparison. Explicitly set the predicates 1489 // here. 1490 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1491 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1492 : &ARM::GPRRegClass; 1493 unsigned DestReg = createResultReg(RC); 1494 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1495 unsigned ZeroReg = fastMaterializeConstant(Zero); 1496 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1498 .addReg(ZeroReg).addImm(1) 1499 .addImm(ARMPred).addReg(ARM::CPSR); 1500 1501 updateValueMap(I, DestReg); 1502 return true; 1503 } 1504 1505 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1506 // Make sure we have VFP and that we're extending float to double. 1507 if (!Subtarget->hasVFP2()) return false; 1508 1509 Value *V = I->getOperand(0); 1510 if (!I->getType()->isDoubleTy() || 1511 !V->getType()->isFloatTy()) return false; 1512 1513 unsigned Op = getRegForValue(V); 1514 if (Op == 0) return false; 1515 1516 unsigned Result = createResultReg(&ARM::DPRRegClass); 1517 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1518 TII.get(ARM::VCVTDS), Result) 1519 .addReg(Op)); 1520 updateValueMap(I, Result); 1521 return true; 1522 } 1523 1524 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1525 // Make sure we have VFP and that we're truncating double to float. 1526 if (!Subtarget->hasVFP2()) return false; 1527 1528 Value *V = I->getOperand(0); 1529 if (!(I->getType()->isFloatTy() && 1530 V->getType()->isDoubleTy())) return false; 1531 1532 unsigned Op = getRegForValue(V); 1533 if (Op == 0) return false; 1534 1535 unsigned Result = createResultReg(&ARM::SPRRegClass); 1536 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1537 TII.get(ARM::VCVTSD), Result) 1538 .addReg(Op)); 1539 updateValueMap(I, Result); 1540 return true; 1541 } 1542 1543 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1544 // Make sure we have VFP. 1545 if (!Subtarget->hasVFP2()) return false; 1546 1547 MVT DstVT; 1548 Type *Ty = I->getType(); 1549 if (!isTypeLegal(Ty, DstVT)) 1550 return false; 1551 1552 Value *Src = I->getOperand(0); 1553 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1554 if (!SrcEVT.isSimple()) 1555 return false; 1556 MVT SrcVT = SrcEVT.getSimpleVT(); 1557 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1558 return false; 1559 1560 unsigned SrcReg = getRegForValue(Src); 1561 if (SrcReg == 0) return false; 1562 1563 // Handle sign-extension. 1564 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1565 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1566 /*isZExt*/!isSigned); 1567 if (SrcReg == 0) return false; 1568 } 1569 1570 // The conversion routine works on fp-reg to fp-reg and the operand above 1571 // was an integer, move it to the fp registers if possible. 1572 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1573 if (FP == 0) return false; 1574 1575 unsigned Opc; 1576 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1577 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1578 else return false; 1579 1580 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1581 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1582 TII.get(Opc), ResultReg).addReg(FP)); 1583 updateValueMap(I, ResultReg); 1584 return true; 1585 } 1586 1587 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1588 // Make sure we have VFP. 1589 if (!Subtarget->hasVFP2()) return false; 1590 1591 MVT DstVT; 1592 Type *RetTy = I->getType(); 1593 if (!isTypeLegal(RetTy, DstVT)) 1594 return false; 1595 1596 unsigned Op = getRegForValue(I->getOperand(0)); 1597 if (Op == 0) return false; 1598 1599 unsigned Opc; 1600 Type *OpTy = I->getOperand(0)->getType(); 1601 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1602 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1603 else return false; 1604 1605 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1606 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1607 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1608 TII.get(Opc), ResultReg).addReg(Op)); 1609 1610 // This result needs to be in an integer register, but the conversion only 1611 // takes place in fp-regs. 1612 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1613 if (IntReg == 0) return false; 1614 1615 updateValueMap(I, IntReg); 1616 return true; 1617 } 1618 1619 bool ARMFastISel::SelectSelect(const Instruction *I) { 1620 MVT VT; 1621 if (!isTypeLegal(I->getType(), VT)) 1622 return false; 1623 1624 // Things need to be register sized for register moves. 1625 if (VT != MVT::i32) return false; 1626 1627 unsigned CondReg = getRegForValue(I->getOperand(0)); 1628 if (CondReg == 0) return false; 1629 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1630 if (Op1Reg == 0) return false; 1631 1632 // Check to see if we can use an immediate in the conditional move. 1633 int Imm = 0; 1634 bool UseImm = false; 1635 bool isNegativeImm = false; 1636 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1637 assert (VT == MVT::i32 && "Expecting an i32."); 1638 Imm = (int)ConstInt->getValue().getZExtValue(); 1639 if (Imm < 0) { 1640 isNegativeImm = true; 1641 Imm = ~Imm; 1642 } 1643 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1644 (ARM_AM::getSOImmVal(Imm) != -1); 1645 } 1646 1647 unsigned Op2Reg = 0; 1648 if (!UseImm) { 1649 Op2Reg = getRegForValue(I->getOperand(2)); 1650 if (Op2Reg == 0) return false; 1651 } 1652 1653 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1654 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1655 AddOptionalDefs( 1656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1657 .addReg(CondReg) 1658 .addImm(1)); 1659 1660 unsigned MovCCOpc; 1661 const TargetRegisterClass *RC; 1662 if (!UseImm) { 1663 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1664 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1665 } else { 1666 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1667 if (!isNegativeImm) 1668 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1669 else 1670 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1671 } 1672 unsigned ResultReg = createResultReg(RC); 1673 if (!UseImm) { 1674 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1675 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1676 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1677 ResultReg) 1678 .addReg(Op2Reg) 1679 .addReg(Op1Reg) 1680 .addImm(ARMCC::NE) 1681 .addReg(ARM::CPSR); 1682 } else { 1683 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1685 ResultReg) 1686 .addReg(Op1Reg) 1687 .addImm(Imm) 1688 .addImm(ARMCC::EQ) 1689 .addReg(ARM::CPSR); 1690 } 1691 updateValueMap(I, ResultReg); 1692 return true; 1693 } 1694 1695 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1696 MVT VT; 1697 Type *Ty = I->getType(); 1698 if (!isTypeLegal(Ty, VT)) 1699 return false; 1700 1701 // If we have integer div support we should have selected this automagically. 1702 // In case we have a real miss go ahead and return false and we'll pick 1703 // it up later. 1704 if (Subtarget->hasDivide()) return false; 1705 1706 // Otherwise emit a libcall. 1707 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1708 if (VT == MVT::i8) 1709 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1710 else if (VT == MVT::i16) 1711 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1712 else if (VT == MVT::i32) 1713 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1714 else if (VT == MVT::i64) 1715 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1716 else if (VT == MVT::i128) 1717 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1718 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1719 1720 return ARMEmitLibcall(I, LC); 1721 } 1722 1723 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1724 MVT VT; 1725 Type *Ty = I->getType(); 1726 if (!isTypeLegal(Ty, VT)) 1727 return false; 1728 1729 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1730 if (VT == MVT::i8) 1731 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1732 else if (VT == MVT::i16) 1733 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1734 else if (VT == MVT::i32) 1735 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1736 else if (VT == MVT::i64) 1737 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1738 else if (VT == MVT::i128) 1739 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1740 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1741 1742 return ARMEmitLibcall(I, LC); 1743 } 1744 1745 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1746 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1747 1748 // We can get here in the case when we have a binary operation on a non-legal 1749 // type and the target independent selector doesn't know how to handle it. 1750 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1751 return false; 1752 1753 unsigned Opc; 1754 switch (ISDOpcode) { 1755 default: return false; 1756 case ISD::ADD: 1757 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1758 break; 1759 case ISD::OR: 1760 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1761 break; 1762 case ISD::SUB: 1763 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1764 break; 1765 } 1766 1767 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1768 if (SrcReg1 == 0) return false; 1769 1770 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1771 // in the instruction, rather then materializing the value in a register. 1772 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1773 if (SrcReg2 == 0) return false; 1774 1775 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1776 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1777 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1778 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1779 TII.get(Opc), ResultReg) 1780 .addReg(SrcReg1).addReg(SrcReg2)); 1781 updateValueMap(I, ResultReg); 1782 return true; 1783 } 1784 1785 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1786 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1787 if (!FPVT.isSimple()) return false; 1788 MVT VT = FPVT.getSimpleVT(); 1789 1790 // FIXME: Support vector types where possible. 1791 if (VT.isVector()) 1792 return false; 1793 1794 // We can get here in the case when we want to use NEON for our fp 1795 // operations, but can't figure out how to. Just use the vfp instructions 1796 // if we have them. 1797 // FIXME: It'd be nice to use NEON instructions. 1798 Type *Ty = I->getType(); 1799 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1800 if (isFloat && !Subtarget->hasVFP2()) 1801 return false; 1802 1803 unsigned Opc; 1804 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1805 switch (ISDOpcode) { 1806 default: return false; 1807 case ISD::FADD: 1808 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1809 break; 1810 case ISD::FSUB: 1811 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1812 break; 1813 case ISD::FMUL: 1814 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1815 break; 1816 } 1817 unsigned Op1 = getRegForValue(I->getOperand(0)); 1818 if (Op1 == 0) return false; 1819 1820 unsigned Op2 = getRegForValue(I->getOperand(1)); 1821 if (Op2 == 0) return false; 1822 1823 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1824 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1825 TII.get(Opc), ResultReg) 1826 .addReg(Op1).addReg(Op2)); 1827 updateValueMap(I, ResultReg); 1828 return true; 1829 } 1830 1831 // Call Handling Code 1832 1833 // This is largely taken directly from CCAssignFnForNode 1834 // TODO: We may not support all of this. 1835 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1836 bool Return, 1837 bool isVarArg) { 1838 switch (CC) { 1839 default: 1840 llvm_unreachable("Unsupported calling convention"); 1841 case CallingConv::Fast: 1842 if (Subtarget->hasVFP2() && !isVarArg) { 1843 if (!Subtarget->isAAPCS_ABI()) 1844 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1845 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1846 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1847 } 1848 // Fallthrough 1849 case CallingConv::C: 1850 // Use target triple & subtarget features to do actual dispatch. 1851 if (Subtarget->isAAPCS_ABI()) { 1852 if (Subtarget->hasVFP2() && 1853 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1854 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1855 else 1856 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1857 } else 1858 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1859 case CallingConv::ARM_AAPCS_VFP: 1860 if (!isVarArg) 1861 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1862 // Fall through to soft float variant, variadic functions don't 1863 // use hard floating point ABI. 1864 case CallingConv::ARM_AAPCS: 1865 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1866 case CallingConv::ARM_APCS: 1867 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1868 case CallingConv::GHC: 1869 if (Return) 1870 llvm_unreachable("Can't return in GHC call convention"); 1871 else 1872 return CC_ARM_APCS_GHC; 1873 } 1874 } 1875 1876 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1877 SmallVectorImpl<unsigned> &ArgRegs, 1878 SmallVectorImpl<MVT> &ArgVTs, 1879 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1880 SmallVectorImpl<unsigned> &RegArgs, 1881 CallingConv::ID CC, 1882 unsigned &NumBytes, 1883 bool isVarArg) { 1884 SmallVector<CCValAssign, 16> ArgLocs; 1885 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1886 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1887 CCAssignFnForCall(CC, false, isVarArg)); 1888 1889 // Check that we can handle all of the arguments. If we can't, then bail out 1890 // now before we add code to the MBB. 1891 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1892 CCValAssign &VA = ArgLocs[i]; 1893 MVT ArgVT = ArgVTs[VA.getValNo()]; 1894 1895 // We don't handle NEON/vector parameters yet. 1896 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1897 return false; 1898 1899 // Now copy/store arg to correct locations. 1900 if (VA.isRegLoc() && !VA.needsCustom()) { 1901 continue; 1902 } else if (VA.needsCustom()) { 1903 // TODO: We need custom lowering for vector (v2f64) args. 1904 if (VA.getLocVT() != MVT::f64 || 1905 // TODO: Only handle register args for now. 1906 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1907 return false; 1908 } else { 1909 switch (ArgVT.SimpleTy) { 1910 default: 1911 return false; 1912 case MVT::i1: 1913 case MVT::i8: 1914 case MVT::i16: 1915 case MVT::i32: 1916 break; 1917 case MVT::f32: 1918 if (!Subtarget->hasVFP2()) 1919 return false; 1920 break; 1921 case MVT::f64: 1922 if (!Subtarget->hasVFP2()) 1923 return false; 1924 break; 1925 } 1926 } 1927 } 1928 1929 // At the point, we are able to handle the call's arguments in fast isel. 1930 1931 // Get a count of how many bytes are to be pushed on the stack. 1932 NumBytes = CCInfo.getNextStackOffset(); 1933 1934 // Issue CALLSEQ_START 1935 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1936 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1937 TII.get(AdjStackDown)) 1938 .addImm(NumBytes)); 1939 1940 // Process the args. 1941 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1942 CCValAssign &VA = ArgLocs[i]; 1943 const Value *ArgVal = Args[VA.getValNo()]; 1944 unsigned Arg = ArgRegs[VA.getValNo()]; 1945 MVT ArgVT = ArgVTs[VA.getValNo()]; 1946 1947 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1948 "We don't handle NEON/vector parameters yet."); 1949 1950 // Handle arg promotion, etc. 1951 switch (VA.getLocInfo()) { 1952 case CCValAssign::Full: break; 1953 case CCValAssign::SExt: { 1954 MVT DestVT = VA.getLocVT(); 1955 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1956 assert (Arg != 0 && "Failed to emit a sext"); 1957 ArgVT = DestVT; 1958 break; 1959 } 1960 case CCValAssign::AExt: 1961 // Intentional fall-through. Handle AExt and ZExt. 1962 case CCValAssign::ZExt: { 1963 MVT DestVT = VA.getLocVT(); 1964 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1965 assert (Arg != 0 && "Failed to emit a zext"); 1966 ArgVT = DestVT; 1967 break; 1968 } 1969 case CCValAssign::BCvt: { 1970 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1971 /*TODO: Kill=*/false); 1972 assert(BC != 0 && "Failed to emit a bitcast!"); 1973 Arg = BC; 1974 ArgVT = VA.getLocVT(); 1975 break; 1976 } 1977 default: llvm_unreachable("Unknown arg promotion!"); 1978 } 1979 1980 // Now copy/store arg to correct locations. 1981 if (VA.isRegLoc() && !VA.needsCustom()) { 1982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1983 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1984 RegArgs.push_back(VA.getLocReg()); 1985 } else if (VA.needsCustom()) { 1986 // TODO: We need custom lowering for vector (v2f64) args. 1987 assert(VA.getLocVT() == MVT::f64 && 1988 "Custom lowering for v2f64 args not available"); 1989 1990 CCValAssign &NextVA = ArgLocs[++i]; 1991 1992 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1993 "We only handle register args!"); 1994 1995 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1996 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1997 .addReg(NextVA.getLocReg(), RegState::Define) 1998 .addReg(Arg)); 1999 RegArgs.push_back(VA.getLocReg()); 2000 RegArgs.push_back(NextVA.getLocReg()); 2001 } else { 2002 assert(VA.isMemLoc()); 2003 // Need to store on the stack. 2004 2005 // Don't emit stores for undef values. 2006 if (isa<UndefValue>(ArgVal)) 2007 continue; 2008 2009 Address Addr; 2010 Addr.BaseType = Address::RegBase; 2011 Addr.Base.Reg = ARM::SP; 2012 Addr.Offset = VA.getLocMemOffset(); 2013 2014 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2015 assert(EmitRet && "Could not emit a store for argument!"); 2016 } 2017 } 2018 2019 return true; 2020 } 2021 2022 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2023 const Instruction *I, CallingConv::ID CC, 2024 unsigned &NumBytes, bool isVarArg) { 2025 // Issue CALLSEQ_END 2026 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2027 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2028 TII.get(AdjStackUp)) 2029 .addImm(NumBytes).addImm(0)); 2030 2031 // Now the return value. 2032 if (RetVT != MVT::isVoid) { 2033 SmallVector<CCValAssign, 16> RVLocs; 2034 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2035 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2036 2037 // Copy all of the result registers out of their specified physreg. 2038 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2039 // For this move we copy into two registers and then move into the 2040 // double fp reg we want. 2041 MVT DestVT = RVLocs[0].getValVT(); 2042 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2043 unsigned ResultReg = createResultReg(DstRC); 2044 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2045 TII.get(ARM::VMOVDRR), ResultReg) 2046 .addReg(RVLocs[0].getLocReg()) 2047 .addReg(RVLocs[1].getLocReg())); 2048 2049 UsedRegs.push_back(RVLocs[0].getLocReg()); 2050 UsedRegs.push_back(RVLocs[1].getLocReg()); 2051 2052 // Finally update the result. 2053 updateValueMap(I, ResultReg); 2054 } else { 2055 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2056 MVT CopyVT = RVLocs[0].getValVT(); 2057 2058 // Special handling for extended integers. 2059 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2060 CopyVT = MVT::i32; 2061 2062 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2063 2064 unsigned ResultReg = createResultReg(DstRC); 2065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2066 TII.get(TargetOpcode::COPY), 2067 ResultReg).addReg(RVLocs[0].getLocReg()); 2068 UsedRegs.push_back(RVLocs[0].getLocReg()); 2069 2070 // Finally update the result. 2071 updateValueMap(I, ResultReg); 2072 } 2073 } 2074 2075 return true; 2076 } 2077 2078 bool ARMFastISel::SelectRet(const Instruction *I) { 2079 const ReturnInst *Ret = cast<ReturnInst>(I); 2080 const Function &F = *I->getParent()->getParent(); 2081 2082 if (!FuncInfo.CanLowerReturn) 2083 return false; 2084 2085 // Build a list of return value registers. 2086 SmallVector<unsigned, 4> RetRegs; 2087 2088 CallingConv::ID CC = F.getCallingConv(); 2089 if (Ret->getNumOperands() > 0) { 2090 SmallVector<ISD::OutputArg, 4> Outs; 2091 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2092 2093 // Analyze operands of the call, assigning locations to each operand. 2094 SmallVector<CCValAssign, 16> ValLocs; 2095 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2096 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2097 F.isVarArg())); 2098 2099 const Value *RV = Ret->getOperand(0); 2100 unsigned Reg = getRegForValue(RV); 2101 if (Reg == 0) 2102 return false; 2103 2104 // Only handle a single return value for now. 2105 if (ValLocs.size() != 1) 2106 return false; 2107 2108 CCValAssign &VA = ValLocs[0]; 2109 2110 // Don't bother handling odd stuff for now. 2111 if (VA.getLocInfo() != CCValAssign::Full) 2112 return false; 2113 // Only handle register returns for now. 2114 if (!VA.isRegLoc()) 2115 return false; 2116 2117 unsigned SrcReg = Reg + VA.getValNo(); 2118 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2119 if (!RVEVT.isSimple()) return false; 2120 MVT RVVT = RVEVT.getSimpleVT(); 2121 MVT DestVT = VA.getValVT(); 2122 // Special handling for extended integers. 2123 if (RVVT != DestVT) { 2124 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2125 return false; 2126 2127 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2128 2129 // Perform extension if flagged as either zext or sext. Otherwise, do 2130 // nothing. 2131 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2132 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2133 if (SrcReg == 0) return false; 2134 } 2135 } 2136 2137 // Make the copy. 2138 unsigned DstReg = VA.getLocReg(); 2139 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2140 // Avoid a cross-class copy. This is very unlikely. 2141 if (!SrcRC->contains(DstReg)) 2142 return false; 2143 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2144 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2145 2146 // Add register to return instruction. 2147 RetRegs.push_back(VA.getLocReg()); 2148 } 2149 2150 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2151 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2152 TII.get(RetOpc)); 2153 AddOptionalDefs(MIB); 2154 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2155 MIB.addReg(RetRegs[i], RegState::Implicit); 2156 return true; 2157 } 2158 2159 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2160 if (UseReg) 2161 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2162 else 2163 return isThumb2 ? ARM::tBL : ARM::BL; 2164 } 2165 2166 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2167 // Manually compute the global's type to avoid building it when unnecessary. 2168 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2169 EVT LCREVT = TLI.getValueType(DL, GVTy); 2170 if (!LCREVT.isSimple()) return 0; 2171 2172 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2173 GlobalValue::ExternalLinkage, nullptr, 2174 Name); 2175 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2176 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2177 } 2178 2179 // A quick function that will emit a call for a named libcall in F with the 2180 // vector of passed arguments for the Instruction in I. We can assume that we 2181 // can emit a call for any libcall we can produce. This is an abridged version 2182 // of the full call infrastructure since we won't need to worry about things 2183 // like computed function pointers or strange arguments at call sites. 2184 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2185 // with X86. 2186 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2187 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2188 2189 // Handle *simple* calls for now. 2190 Type *RetTy = I->getType(); 2191 MVT RetVT; 2192 if (RetTy->isVoidTy()) 2193 RetVT = MVT::isVoid; 2194 else if (!isTypeLegal(RetTy, RetVT)) 2195 return false; 2196 2197 // Can't handle non-double multi-reg retvals. 2198 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2199 SmallVector<CCValAssign, 16> RVLocs; 2200 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2201 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2202 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2203 return false; 2204 } 2205 2206 // Set up the argument vectors. 2207 SmallVector<Value*, 8> Args; 2208 SmallVector<unsigned, 8> ArgRegs; 2209 SmallVector<MVT, 8> ArgVTs; 2210 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2211 Args.reserve(I->getNumOperands()); 2212 ArgRegs.reserve(I->getNumOperands()); 2213 ArgVTs.reserve(I->getNumOperands()); 2214 ArgFlags.reserve(I->getNumOperands()); 2215 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2216 Value *Op = I->getOperand(i); 2217 unsigned Arg = getRegForValue(Op); 2218 if (Arg == 0) return false; 2219 2220 Type *ArgTy = Op->getType(); 2221 MVT ArgVT; 2222 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2223 2224 ISD::ArgFlagsTy Flags; 2225 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2226 Flags.setOrigAlign(OriginalAlignment); 2227 2228 Args.push_back(Op); 2229 ArgRegs.push_back(Arg); 2230 ArgVTs.push_back(ArgVT); 2231 ArgFlags.push_back(Flags); 2232 } 2233 2234 // Handle the arguments now that we've gotten them. 2235 SmallVector<unsigned, 4> RegArgs; 2236 unsigned NumBytes; 2237 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2238 RegArgs, CC, NumBytes, false)) 2239 return false; 2240 2241 unsigned CalleeReg = 0; 2242 if (Subtarget->genLongCalls()) { 2243 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2244 if (CalleeReg == 0) return false; 2245 } 2246 2247 // Issue the call. 2248 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2249 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2250 DbgLoc, TII.get(CallOpc)); 2251 // BL / BLX don't take a predicate, but tBL / tBLX do. 2252 if (isThumb2) 2253 AddDefaultPred(MIB); 2254 if (Subtarget->genLongCalls()) 2255 MIB.addReg(CalleeReg); 2256 else 2257 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2258 2259 // Add implicit physical register uses to the call. 2260 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2261 MIB.addReg(RegArgs[i], RegState::Implicit); 2262 2263 // Add a register mask with the call-preserved registers. 2264 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2265 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2266 2267 // Finish off the call including any return values. 2268 SmallVector<unsigned, 4> UsedRegs; 2269 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2270 2271 // Set all unused physreg defs as dead. 2272 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2273 2274 return true; 2275 } 2276 2277 bool ARMFastISel::SelectCall(const Instruction *I, 2278 const char *IntrMemName = nullptr) { 2279 const CallInst *CI = cast<CallInst>(I); 2280 const Value *Callee = CI->getCalledValue(); 2281 2282 // Can't handle inline asm. 2283 if (isa<InlineAsm>(Callee)) return false; 2284 2285 // Allow SelectionDAG isel to handle tail calls. 2286 if (CI->isTailCall()) return false; 2287 2288 // Check the calling convention. 2289 ImmutableCallSite CS(CI); 2290 CallingConv::ID CC = CS.getCallingConv(); 2291 2292 // TODO: Avoid some calling conventions? 2293 2294 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2295 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2296 bool isVarArg = FTy->isVarArg(); 2297 2298 // Handle *simple* calls for now. 2299 Type *RetTy = I->getType(); 2300 MVT RetVT; 2301 if (RetTy->isVoidTy()) 2302 RetVT = MVT::isVoid; 2303 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2304 RetVT != MVT::i8 && RetVT != MVT::i1) 2305 return false; 2306 2307 // Can't handle non-double multi-reg retvals. 2308 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2309 RetVT != MVT::i16 && RetVT != MVT::i32) { 2310 SmallVector<CCValAssign, 16> RVLocs; 2311 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2312 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2313 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2314 return false; 2315 } 2316 2317 // Set up the argument vectors. 2318 SmallVector<Value*, 8> Args; 2319 SmallVector<unsigned, 8> ArgRegs; 2320 SmallVector<MVT, 8> ArgVTs; 2321 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2322 unsigned arg_size = CS.arg_size(); 2323 Args.reserve(arg_size); 2324 ArgRegs.reserve(arg_size); 2325 ArgVTs.reserve(arg_size); 2326 ArgFlags.reserve(arg_size); 2327 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2328 i != e; ++i) { 2329 // If we're lowering a memory intrinsic instead of a regular call, skip the 2330 // last two arguments, which shouldn't be passed to the underlying function. 2331 if (IntrMemName && e-i <= 2) 2332 break; 2333 2334 ISD::ArgFlagsTy Flags; 2335 unsigned AttrInd = i - CS.arg_begin() + 1; 2336 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2337 Flags.setSExt(); 2338 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2339 Flags.setZExt(); 2340 2341 // FIXME: Only handle *easy* calls for now. 2342 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2343 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2344 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2345 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2346 return false; 2347 2348 Type *ArgTy = (*i)->getType(); 2349 MVT ArgVT; 2350 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2351 ArgVT != MVT::i1) 2352 return false; 2353 2354 unsigned Arg = getRegForValue(*i); 2355 if (Arg == 0) 2356 return false; 2357 2358 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2359 Flags.setOrigAlign(OriginalAlignment); 2360 2361 Args.push_back(*i); 2362 ArgRegs.push_back(Arg); 2363 ArgVTs.push_back(ArgVT); 2364 ArgFlags.push_back(Flags); 2365 } 2366 2367 // Handle the arguments now that we've gotten them. 2368 SmallVector<unsigned, 4> RegArgs; 2369 unsigned NumBytes; 2370 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2371 RegArgs, CC, NumBytes, isVarArg)) 2372 return false; 2373 2374 bool UseReg = false; 2375 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2376 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2377 2378 unsigned CalleeReg = 0; 2379 if (UseReg) { 2380 if (IntrMemName) 2381 CalleeReg = getLibcallReg(IntrMemName); 2382 else 2383 CalleeReg = getRegForValue(Callee); 2384 2385 if (CalleeReg == 0) return false; 2386 } 2387 2388 // Issue the call. 2389 unsigned CallOpc = ARMSelectCallOp(UseReg); 2390 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2391 DbgLoc, TII.get(CallOpc)); 2392 2393 unsigned char OpFlags = 0; 2394 2395 // Add MO_PLT for global address or external symbol in the PIC relocation 2396 // model. 2397 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 2398 OpFlags = ARMII::MO_PLT; 2399 2400 // ARM calls don't take a predicate, but tBL / tBLX do. 2401 if(isThumb2) 2402 AddDefaultPred(MIB); 2403 if (UseReg) 2404 MIB.addReg(CalleeReg); 2405 else if (!IntrMemName) 2406 MIB.addGlobalAddress(GV, 0, OpFlags); 2407 else 2408 MIB.addExternalSymbol(IntrMemName, OpFlags); 2409 2410 // Add implicit physical register uses to the call. 2411 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2412 MIB.addReg(RegArgs[i], RegState::Implicit); 2413 2414 // Add a register mask with the call-preserved registers. 2415 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2416 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2417 2418 // Finish off the call including any return values. 2419 SmallVector<unsigned, 4> UsedRegs; 2420 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2421 return false; 2422 2423 // Set all unused physreg defs as dead. 2424 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2425 2426 return true; 2427 } 2428 2429 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2430 return Len <= 16; 2431 } 2432 2433 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2434 uint64_t Len, unsigned Alignment) { 2435 // Make sure we don't bloat code by inlining very large memcpy's. 2436 if (!ARMIsMemCpySmall(Len)) 2437 return false; 2438 2439 while (Len) { 2440 MVT VT; 2441 if (!Alignment || Alignment >= 4) { 2442 if (Len >= 4) 2443 VT = MVT::i32; 2444 else if (Len >= 2) 2445 VT = MVT::i16; 2446 else { 2447 assert (Len == 1 && "Expected a length of 1!"); 2448 VT = MVT::i8; 2449 } 2450 } else { 2451 // Bound based on alignment. 2452 if (Len >= 2 && Alignment == 2) 2453 VT = MVT::i16; 2454 else { 2455 VT = MVT::i8; 2456 } 2457 } 2458 2459 bool RV; 2460 unsigned ResultReg; 2461 RV = ARMEmitLoad(VT, ResultReg, Src); 2462 assert (RV == true && "Should be able to handle this load."); 2463 RV = ARMEmitStore(VT, ResultReg, Dest); 2464 assert (RV == true && "Should be able to handle this store."); 2465 (void)RV; 2466 2467 unsigned Size = VT.getSizeInBits()/8; 2468 Len -= Size; 2469 Dest.Offset += Size; 2470 Src.Offset += Size; 2471 } 2472 2473 return true; 2474 } 2475 2476 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2477 // FIXME: Handle more intrinsics. 2478 switch (I.getIntrinsicID()) { 2479 default: return false; 2480 case Intrinsic::frameaddress: { 2481 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2482 MFI->setFrameAddressIsTaken(true); 2483 2484 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2485 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2486 : &ARM::GPRRegClass; 2487 2488 const ARMBaseRegisterInfo *RegInfo = 2489 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2490 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2491 unsigned SrcReg = FramePtr; 2492 2493 // Recursively load frame address 2494 // ldr r0 [fp] 2495 // ldr r0 [r0] 2496 // ldr r0 [r0] 2497 // ... 2498 unsigned DestReg; 2499 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2500 while (Depth--) { 2501 DestReg = createResultReg(RC); 2502 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2503 TII.get(LdrOpc), DestReg) 2504 .addReg(SrcReg).addImm(0)); 2505 SrcReg = DestReg; 2506 } 2507 updateValueMap(&I, SrcReg); 2508 return true; 2509 } 2510 case Intrinsic::memcpy: 2511 case Intrinsic::memmove: { 2512 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2513 // Don't handle volatile. 2514 if (MTI.isVolatile()) 2515 return false; 2516 2517 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2518 // we would emit dead code because we don't currently handle memmoves. 2519 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2520 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2521 // Small memcpy's are common enough that we want to do them without a call 2522 // if possible. 2523 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2524 if (ARMIsMemCpySmall(Len)) { 2525 Address Dest, Src; 2526 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2527 !ARMComputeAddress(MTI.getRawSource(), Src)) 2528 return false; 2529 unsigned Alignment = MTI.getAlignment(); 2530 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2531 return true; 2532 } 2533 } 2534 2535 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2536 return false; 2537 2538 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2539 return false; 2540 2541 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2542 return SelectCall(&I, IntrMemName); 2543 } 2544 case Intrinsic::memset: { 2545 const MemSetInst &MSI = cast<MemSetInst>(I); 2546 // Don't handle volatile. 2547 if (MSI.isVolatile()) 2548 return false; 2549 2550 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2551 return false; 2552 2553 if (MSI.getDestAddressSpace() > 255) 2554 return false; 2555 2556 return SelectCall(&I, "memset"); 2557 } 2558 case Intrinsic::trap: { 2559 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2560 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2561 return true; 2562 } 2563 } 2564 } 2565 2566 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2567 // The high bits for a type smaller than the register size are assumed to be 2568 // undefined. 2569 Value *Op = I->getOperand(0); 2570 2571 EVT SrcVT, DestVT; 2572 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2573 DestVT = TLI.getValueType(DL, I->getType(), true); 2574 2575 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2576 return false; 2577 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2578 return false; 2579 2580 unsigned SrcReg = getRegForValue(Op); 2581 if (!SrcReg) return false; 2582 2583 // Because the high bits are undefined, a truncate doesn't generate 2584 // any code. 2585 updateValueMap(I, SrcReg); 2586 return true; 2587 } 2588 2589 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2590 bool isZExt) { 2591 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2592 return 0; 2593 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2594 return 0; 2595 2596 // Table of which combinations can be emitted as a single instruction, 2597 // and which will require two. 2598 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2599 // ARM Thumb 2600 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2601 // ext: s z s z s z s z 2602 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2603 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2604 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2605 }; 2606 2607 // Target registers for: 2608 // - For ARM can never be PC. 2609 // - For 16-bit Thumb are restricted to lower 8 registers. 2610 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2611 static const TargetRegisterClass *RCTbl[2][2] = { 2612 // Instructions: Two Single 2613 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2614 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2615 }; 2616 2617 // Table governing the instruction(s) to be emitted. 2618 static const struct InstructionTable { 2619 uint32_t Opc : 16; 2620 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2621 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2622 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2623 } IT[2][2][3][2] = { 2624 { // Two instructions (first is left shift, second is in this table). 2625 { // ARM Opc S Shift Imm 2626 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2627 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2628 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2629 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2630 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2631 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2632 }, 2633 { // Thumb Opc S Shift Imm 2634 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2635 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2636 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2637 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2638 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2639 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2640 } 2641 }, 2642 { // Single instruction. 2643 { // ARM Opc S Shift Imm 2644 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2645 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2646 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2647 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2648 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2649 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2650 }, 2651 { // Thumb Opc S Shift Imm 2652 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2653 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2654 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2655 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2656 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2657 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2658 } 2659 } 2660 }; 2661 2662 unsigned SrcBits = SrcVT.getSizeInBits(); 2663 unsigned DestBits = DestVT.getSizeInBits(); 2664 (void) DestBits; 2665 assert((SrcBits < DestBits) && "can only extend to larger types"); 2666 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2667 "other sizes unimplemented"); 2668 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2669 "other sizes unimplemented"); 2670 2671 bool hasV6Ops = Subtarget->hasV6Ops(); 2672 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2673 assert((Bitness < 3) && "sanity-check table bounds"); 2674 2675 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2676 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2677 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2678 unsigned Opc = ITP->Opc; 2679 assert(ARM::KILL != Opc && "Invalid table entry"); 2680 unsigned hasS = ITP->hasS; 2681 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2682 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2683 "only MOVsi has shift operand addressing mode"); 2684 unsigned Imm = ITP->Imm; 2685 2686 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2687 bool setsCPSR = &ARM::tGPRRegClass == RC; 2688 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2689 unsigned ResultReg; 2690 // MOVsi encodes shift and immediate in shift operand addressing mode. 2691 // The following condition has the same value when emitting two 2692 // instruction sequences: both are shifts. 2693 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2694 2695 // Either one or two instructions are emitted. 2696 // They're always of the form: 2697 // dst = in OP imm 2698 // CPSR is set only by 16-bit Thumb instructions. 2699 // Predicate, if any, is AL. 2700 // S bit, if available, is always 0. 2701 // When two are emitted the first's result will feed as the second's input, 2702 // that value is then dead. 2703 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2704 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2705 ResultReg = createResultReg(RC); 2706 bool isLsl = (0 == Instr) && !isSingleInstr; 2707 unsigned Opcode = isLsl ? LSLOpc : Opc; 2708 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2709 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2710 bool isKill = 1 == Instr; 2711 MachineInstrBuilder MIB = BuildMI( 2712 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2713 if (setsCPSR) 2714 MIB.addReg(ARM::CPSR, RegState::Define); 2715 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2716 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2717 if (hasS) 2718 AddDefaultCC(MIB); 2719 // Second instruction consumes the first's result. 2720 SrcReg = ResultReg; 2721 } 2722 2723 return ResultReg; 2724 } 2725 2726 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2727 // On ARM, in general, integer casts don't involve legal types; this code 2728 // handles promotable integers. 2729 Type *DestTy = I->getType(); 2730 Value *Src = I->getOperand(0); 2731 Type *SrcTy = Src->getType(); 2732 2733 bool isZExt = isa<ZExtInst>(I); 2734 unsigned SrcReg = getRegForValue(Src); 2735 if (!SrcReg) return false; 2736 2737 EVT SrcEVT, DestEVT; 2738 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2739 DestEVT = TLI.getValueType(DL, DestTy, true); 2740 if (!SrcEVT.isSimple()) return false; 2741 if (!DestEVT.isSimple()) return false; 2742 2743 MVT SrcVT = SrcEVT.getSimpleVT(); 2744 MVT DestVT = DestEVT.getSimpleVT(); 2745 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2746 if (ResultReg == 0) return false; 2747 updateValueMap(I, ResultReg); 2748 return true; 2749 } 2750 2751 bool ARMFastISel::SelectShift(const Instruction *I, 2752 ARM_AM::ShiftOpc ShiftTy) { 2753 // We handle thumb2 mode by target independent selector 2754 // or SelectionDAG ISel. 2755 if (isThumb2) 2756 return false; 2757 2758 // Only handle i32 now. 2759 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2760 if (DestVT != MVT::i32) 2761 return false; 2762 2763 unsigned Opc = ARM::MOVsr; 2764 unsigned ShiftImm; 2765 Value *Src2Value = I->getOperand(1); 2766 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2767 ShiftImm = CI->getZExtValue(); 2768 2769 // Fall back to selection DAG isel if the shift amount 2770 // is zero or greater than the width of the value type. 2771 if (ShiftImm == 0 || ShiftImm >=32) 2772 return false; 2773 2774 Opc = ARM::MOVsi; 2775 } 2776 2777 Value *Src1Value = I->getOperand(0); 2778 unsigned Reg1 = getRegForValue(Src1Value); 2779 if (Reg1 == 0) return false; 2780 2781 unsigned Reg2 = 0; 2782 if (Opc == ARM::MOVsr) { 2783 Reg2 = getRegForValue(Src2Value); 2784 if (Reg2 == 0) return false; 2785 } 2786 2787 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2788 if(ResultReg == 0) return false; 2789 2790 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2791 TII.get(Opc), ResultReg) 2792 .addReg(Reg1); 2793 2794 if (Opc == ARM::MOVsi) 2795 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2796 else if (Opc == ARM::MOVsr) { 2797 MIB.addReg(Reg2); 2798 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2799 } 2800 2801 AddOptionalDefs(MIB); 2802 updateValueMap(I, ResultReg); 2803 return true; 2804 } 2805 2806 // TODO: SoftFP support. 2807 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2808 2809 switch (I->getOpcode()) { 2810 case Instruction::Load: 2811 return SelectLoad(I); 2812 case Instruction::Store: 2813 return SelectStore(I); 2814 case Instruction::Br: 2815 return SelectBranch(I); 2816 case Instruction::IndirectBr: 2817 return SelectIndirectBr(I); 2818 case Instruction::ICmp: 2819 case Instruction::FCmp: 2820 return SelectCmp(I); 2821 case Instruction::FPExt: 2822 return SelectFPExt(I); 2823 case Instruction::FPTrunc: 2824 return SelectFPTrunc(I); 2825 case Instruction::SIToFP: 2826 return SelectIToFP(I, /*isSigned*/ true); 2827 case Instruction::UIToFP: 2828 return SelectIToFP(I, /*isSigned*/ false); 2829 case Instruction::FPToSI: 2830 return SelectFPToI(I, /*isSigned*/ true); 2831 case Instruction::FPToUI: 2832 return SelectFPToI(I, /*isSigned*/ false); 2833 case Instruction::Add: 2834 return SelectBinaryIntOp(I, ISD::ADD); 2835 case Instruction::Or: 2836 return SelectBinaryIntOp(I, ISD::OR); 2837 case Instruction::Sub: 2838 return SelectBinaryIntOp(I, ISD::SUB); 2839 case Instruction::FAdd: 2840 return SelectBinaryFPOp(I, ISD::FADD); 2841 case Instruction::FSub: 2842 return SelectBinaryFPOp(I, ISD::FSUB); 2843 case Instruction::FMul: 2844 return SelectBinaryFPOp(I, ISD::FMUL); 2845 case Instruction::SDiv: 2846 return SelectDiv(I, /*isSigned*/ true); 2847 case Instruction::UDiv: 2848 return SelectDiv(I, /*isSigned*/ false); 2849 case Instruction::SRem: 2850 return SelectRem(I, /*isSigned*/ true); 2851 case Instruction::URem: 2852 return SelectRem(I, /*isSigned*/ false); 2853 case Instruction::Call: 2854 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2855 return SelectIntrinsicCall(*II); 2856 return SelectCall(I); 2857 case Instruction::Select: 2858 return SelectSelect(I); 2859 case Instruction::Ret: 2860 return SelectRet(I); 2861 case Instruction::Trunc: 2862 return SelectTrunc(I); 2863 case Instruction::ZExt: 2864 case Instruction::SExt: 2865 return SelectIntExt(I); 2866 case Instruction::Shl: 2867 return SelectShift(I, ARM_AM::lsl); 2868 case Instruction::LShr: 2869 return SelectShift(I, ARM_AM::lsr); 2870 case Instruction::AShr: 2871 return SelectShift(I, ARM_AM::asr); 2872 default: break; 2873 } 2874 return false; 2875 } 2876 2877 namespace { 2878 // This table describes sign- and zero-extend instructions which can be 2879 // folded into a preceding load. All of these extends have an immediate 2880 // (sometimes a mask and sometimes a shift) that's applied after 2881 // extension. 2882 const struct FoldableLoadExtendsStruct { 2883 uint16_t Opc[2]; // ARM, Thumb. 2884 uint8_t ExpectedImm; 2885 uint8_t isZExt : 1; 2886 uint8_t ExpectedVT : 7; 2887 } FoldableLoadExtends[] = { 2888 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2889 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2890 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2891 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2892 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2893 }; 2894 } 2895 2896 /// \brief The specified machine instr operand is a vreg, and that 2897 /// vreg is being provided by the specified load instruction. If possible, 2898 /// try to fold the load as an operand to the instruction, returning true if 2899 /// successful. 2900 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2901 const LoadInst *LI) { 2902 // Verify we have a legal type before going any further. 2903 MVT VT; 2904 if (!isLoadTypeLegal(LI->getType(), VT)) 2905 return false; 2906 2907 // Combine load followed by zero- or sign-extend. 2908 // ldrb r1, [r0] ldrb r1, [r0] 2909 // uxtb r2, r1 => 2910 // mov r3, r2 mov r3, r1 2911 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2912 return false; 2913 const uint64_t Imm = MI->getOperand(2).getImm(); 2914 2915 bool Found = false; 2916 bool isZExt; 2917 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2918 i != e; ++i) { 2919 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 2920 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 2921 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 2922 Found = true; 2923 isZExt = FoldableLoadExtends[i].isZExt; 2924 } 2925 } 2926 if (!Found) return false; 2927 2928 // See if we can handle this address. 2929 Address Addr; 2930 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2931 2932 unsigned ResultReg = MI->getOperand(0).getReg(); 2933 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2934 return false; 2935 MI->eraseFromParent(); 2936 return true; 2937 } 2938 2939 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2940 unsigned Align, MVT VT) { 2941 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 2942 ARMConstantPoolConstant *CPV = 2943 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 2944 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 2945 2946 unsigned Opc; 2947 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 2948 // Load value. 2949 if (isThumb2) { 2950 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 2951 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2952 TII.get(ARM::t2LDRpci), DestReg1) 2953 .addConstantPoolIndex(Idx)); 2954 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 2955 } else { 2956 // The extra immediate is for addrmode2. 2957 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 2958 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2959 DbgLoc, TII.get(ARM::LDRcp), DestReg1) 2960 .addConstantPoolIndex(Idx).addImm(0)); 2961 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 2962 } 2963 2964 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 2965 if (GlobalBaseReg == 0) { 2966 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 2967 AFI->setGlobalBaseReg(GlobalBaseReg); 2968 } 2969 2970 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 2971 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 2972 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 2973 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 2974 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2975 DbgLoc, TII.get(Opc), DestReg2) 2976 .addReg(DestReg1) 2977 .addReg(GlobalBaseReg); 2978 if (!UseGOTOFF) 2979 MIB.addImm(0); 2980 AddOptionalDefs(MIB); 2981 2982 return DestReg2; 2983 } 2984 2985 bool ARMFastISel::fastLowerArguments() { 2986 if (!FuncInfo.CanLowerReturn) 2987 return false; 2988 2989 const Function *F = FuncInfo.Fn; 2990 if (F->isVarArg()) 2991 return false; 2992 2993 CallingConv::ID CC = F->getCallingConv(); 2994 switch (CC) { 2995 default: 2996 return false; 2997 case CallingConv::Fast: 2998 case CallingConv::C: 2999 case CallingConv::ARM_AAPCS_VFP: 3000 case CallingConv::ARM_AAPCS: 3001 case CallingConv::ARM_APCS: 3002 break; 3003 } 3004 3005 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3006 // which are passed in r0 - r3. 3007 unsigned Idx = 1; 3008 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3009 I != E; ++I, ++Idx) { 3010 if (Idx > 4) 3011 return false; 3012 3013 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3014 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3015 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3016 return false; 3017 3018 Type *ArgTy = I->getType(); 3019 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3020 return false; 3021 3022 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3023 if (!ArgVT.isSimple()) return false; 3024 switch (ArgVT.getSimpleVT().SimpleTy) { 3025 case MVT::i8: 3026 case MVT::i16: 3027 case MVT::i32: 3028 break; 3029 default: 3030 return false; 3031 } 3032 } 3033 3034 3035 static const uint16_t GPRArgRegs[] = { 3036 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3037 }; 3038 3039 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3040 Idx = 0; 3041 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3042 I != E; ++I, ++Idx) { 3043 unsigned SrcReg = GPRArgRegs[Idx]; 3044 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3045 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3046 // Without this, EmitLiveInCopies may eliminate the livein if its only 3047 // use is a bitcast (which isn't turned into an instruction). 3048 unsigned ResultReg = createResultReg(RC); 3049 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3050 TII.get(TargetOpcode::COPY), 3051 ResultReg).addReg(DstReg, getKillRegState(true)); 3052 updateValueMap(I, ResultReg); 3053 } 3054 3055 return true; 3056 } 3057 3058 namespace llvm { 3059 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3060 const TargetLibraryInfo *libInfo) { 3061 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3062 return new ARMFastISel(funcInfo, libInfo); 3063 3064 return nullptr; 3065 } 3066 } 3067