1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMSubtarget.h" 21 #include "ARMConstantPoolValue.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/Module.h" 29 #include "llvm/Operator.h" 30 #include "llvm/CodeGen/Analysis.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/GetElementPtrTypeIterator.h" 43 #include "llvm/Target/TargetData.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 using namespace llvm; 49 50 extern cl::opt<bool> EnableARMLongCalls; 51 52 namespace { 53 54 // All possible address modes, plus some. 55 typedef struct Address { 56 enum { 57 RegBase, 58 FrameIndexBase 59 } BaseType; 60 61 union { 62 unsigned Reg; 63 int FI; 64 } Base; 65 66 int Offset; 67 68 // Innocuous defaults for our address. 69 Address() 70 : BaseType(RegBase), Offset(0) { 71 Base.Reg = 0; 72 } 73 } Address; 74 75 class ARMFastISel : public FastISel { 76 77 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 78 /// make the right decision when generating code for different targets. 79 const ARMSubtarget *Subtarget; 80 const TargetMachine &TM; 81 const TargetInstrInfo &TII; 82 const TargetLowering &TLI; 83 ARMFunctionInfo *AFI; 84 85 // Convenience variables to avoid some queries. 86 bool isThumb2; 87 LLVMContext *Context; 88 89 public: 90 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 91 const TargetLibraryInfo *libInfo) 92 : FastISel(funcInfo, libInfo), 93 TM(funcInfo.MF->getTarget()), 94 TII(*TM.getInstrInfo()), 95 TLI(*TM.getTargetLowering()) { 96 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 97 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 98 isThumb2 = AFI->isThumbFunction(); 99 Context = &funcInfo.Fn->getContext(); 100 } 101 102 // Code from FastISel.cpp. 103 virtual unsigned FastEmitInst_(unsigned MachineInstOpcode, 104 const TargetRegisterClass *RC); 105 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, 106 const TargetRegisterClass *RC, 107 unsigned Op0, bool Op0IsKill); 108 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 109 const TargetRegisterClass *RC, 110 unsigned Op0, bool Op0IsKill, 111 unsigned Op1, bool Op1IsKill); 112 virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, bool Op0IsKill, 115 unsigned Op1, bool Op1IsKill, 116 unsigned Op2, bool Op2IsKill); 117 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 118 const TargetRegisterClass *RC, 119 unsigned Op0, bool Op0IsKill, 120 uint64_t Imm); 121 virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 const ConstantFP *FPImm); 125 virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode, 126 const TargetRegisterClass *RC, 127 unsigned Op0, bool Op0IsKill, 128 unsigned Op1, bool Op1IsKill, 129 uint64_t Imm); 130 virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode, 131 const TargetRegisterClass *RC, 132 uint64_t Imm); 133 virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode, 134 const TargetRegisterClass *RC, 135 uint64_t Imm1, uint64_t Imm2); 136 137 virtual unsigned FastEmitInst_extractsubreg(MVT RetVT, 138 unsigned Op0, bool Op0IsKill, 139 uint32_t Idx); 140 141 // Backend specific FastISel code. 142 virtual bool TargetSelectInstruction(const Instruction *I); 143 virtual unsigned TargetMaterializeConstant(const Constant *C); 144 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 145 virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo, 146 const LoadInst *LI); 147 148 #include "ARMGenFastISel.inc" 149 150 // Instruction selection routines. 151 private: 152 bool SelectLoad(const Instruction *I); 153 bool SelectStore(const Instruction *I); 154 bool SelectBranch(const Instruction *I); 155 bool SelectIndirectBr(const Instruction *I); 156 bool SelectCmp(const Instruction *I); 157 bool SelectFPExt(const Instruction *I); 158 bool SelectFPTrunc(const Instruction *I); 159 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 160 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 161 bool SelectIToFP(const Instruction *I, bool isSigned); 162 bool SelectFPToI(const Instruction *I, bool isSigned); 163 bool SelectDiv(const Instruction *I, bool isSigned); 164 bool SelectRem(const Instruction *I, bool isSigned); 165 bool SelectCall(const Instruction *I, const char *IntrMemName); 166 bool SelectIntrinsicCall(const IntrinsicInst &I); 167 bool SelectSelect(const Instruction *I); 168 bool SelectRet(const Instruction *I); 169 bool SelectTrunc(const Instruction *I); 170 bool SelectIntExt(const Instruction *I); 171 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 172 173 // Utility routines. 174 private: 175 bool isTypeLegal(Type *Ty, MVT &VT); 176 bool isLoadTypeLegal(Type *Ty, MVT &VT); 177 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 178 bool isZExt); 179 bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr, 180 unsigned Alignment = 0, bool isZExt = true, 181 bool allocReg = true); 182 bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr, 183 unsigned Alignment = 0); 184 bool ARMComputeAddress(const Value *Obj, Address &Addr); 185 void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3); 186 bool ARMIsMemCpySmall(uint64_t Len); 187 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len); 188 unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt); 189 unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT); 190 unsigned ARMMaterializeInt(const Constant *C, EVT VT); 191 unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT); 192 unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg); 193 unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg); 194 unsigned ARMSelectCallOp(bool UseReg); 195 196 // Call handling routines. 197 private: 198 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 199 bool Return, 200 bool isVarArg); 201 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 202 SmallVectorImpl<unsigned> &ArgRegs, 203 SmallVectorImpl<MVT> &ArgVTs, 204 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 205 SmallVectorImpl<unsigned> &RegArgs, 206 CallingConv::ID CC, 207 unsigned &NumBytes, 208 bool isVarArg); 209 unsigned getLibcallReg(const Twine &Name); 210 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 211 const Instruction *I, CallingConv::ID CC, 212 unsigned &NumBytes, bool isVarArg); 213 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 214 215 // OptionalDef handling routines. 216 private: 217 bool isARMNEONPred(const MachineInstr *MI); 218 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 219 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 220 void AddLoadStoreOperands(EVT VT, Address &Addr, 221 const MachineInstrBuilder &MIB, 222 unsigned Flags, bool useAM3); 223 }; 224 225 } // end anonymous namespace 226 227 #include "ARMGenCallingConv.inc" 228 229 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 230 // we don't care about implicit defs here, just places we'll need to add a 231 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 232 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 233 if (!MI->hasOptionalDef()) 234 return false; 235 236 // Look to see if our OptionalDef is defining CPSR or CCR. 237 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 238 const MachineOperand &MO = MI->getOperand(i); 239 if (!MO.isReg() || !MO.isDef()) continue; 240 if (MO.getReg() == ARM::CPSR) 241 *CPSR = true; 242 } 243 return true; 244 } 245 246 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 247 const MCInstrDesc &MCID = MI->getDesc(); 248 249 // If we're a thumb2 or not NEON function we were handled via isPredicable. 250 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 251 AFI->isThumb2Function()) 252 return false; 253 254 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 255 if (MCID.OpInfo[i].isPredicate()) 256 return true; 257 258 return false; 259 } 260 261 // If the machine is predicable go ahead and add the predicate operands, if 262 // it needs default CC operands add those. 263 // TODO: If we want to support thumb1 then we'll need to deal with optional 264 // CPSR defs that need to be added before the remaining operands. See s_cc_out 265 // for descriptions why. 266 const MachineInstrBuilder & 267 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 268 MachineInstr *MI = &*MIB; 269 270 // Do we use a predicate? or... 271 // Are we NEON in ARM mode and have a predicate operand? If so, I know 272 // we're not predicable but add it anyways. 273 if (TII.isPredicable(MI) || isARMNEONPred(MI)) 274 AddDefaultPred(MIB); 275 276 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 277 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 278 bool CPSR = false; 279 if (DefinesOptionalPredicate(MI, &CPSR)) { 280 if (CPSR) 281 AddDefaultT1CC(MIB); 282 else 283 AddDefaultCC(MIB); 284 } 285 return MIB; 286 } 287 288 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, 289 const TargetRegisterClass* RC) { 290 unsigned ResultReg = createResultReg(RC); 291 const MCInstrDesc &II = TII.get(MachineInstOpcode); 292 293 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)); 294 return ResultReg; 295 } 296 297 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 298 const TargetRegisterClass *RC, 299 unsigned Op0, bool Op0IsKill) { 300 unsigned ResultReg = createResultReg(RC); 301 const MCInstrDesc &II = TII.get(MachineInstOpcode); 302 303 if (II.getNumDefs() >= 1) { 304 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 305 .addReg(Op0, Op0IsKill * RegState::Kill)); 306 } else { 307 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 308 .addReg(Op0, Op0IsKill * RegState::Kill)); 309 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 310 TII.get(TargetOpcode::COPY), ResultReg) 311 .addReg(II.ImplicitDefs[0])); 312 } 313 return ResultReg; 314 } 315 316 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 317 const TargetRegisterClass *RC, 318 unsigned Op0, bool Op0IsKill, 319 unsigned Op1, bool Op1IsKill) { 320 unsigned ResultReg = createResultReg(RC); 321 const MCInstrDesc &II = TII.get(MachineInstOpcode); 322 323 if (II.getNumDefs() >= 1) { 324 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 325 .addReg(Op0, Op0IsKill * RegState::Kill) 326 .addReg(Op1, Op1IsKill * RegState::Kill)); 327 } else { 328 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 329 .addReg(Op0, Op0IsKill * RegState::Kill) 330 .addReg(Op1, Op1IsKill * RegState::Kill)); 331 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 332 TII.get(TargetOpcode::COPY), ResultReg) 333 .addReg(II.ImplicitDefs[0])); 334 } 335 return ResultReg; 336 } 337 338 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 339 const TargetRegisterClass *RC, 340 unsigned Op0, bool Op0IsKill, 341 unsigned Op1, bool Op1IsKill, 342 unsigned Op2, bool Op2IsKill) { 343 unsigned ResultReg = createResultReg(RC); 344 const MCInstrDesc &II = TII.get(MachineInstOpcode); 345 346 if (II.getNumDefs() >= 1) { 347 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 348 .addReg(Op0, Op0IsKill * RegState::Kill) 349 .addReg(Op1, Op1IsKill * RegState::Kill) 350 .addReg(Op2, Op2IsKill * RegState::Kill)); 351 } else { 352 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 353 .addReg(Op0, Op0IsKill * RegState::Kill) 354 .addReg(Op1, Op1IsKill * RegState::Kill) 355 .addReg(Op2, Op2IsKill * RegState::Kill)); 356 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 357 TII.get(TargetOpcode::COPY), ResultReg) 358 .addReg(II.ImplicitDefs[0])); 359 } 360 return ResultReg; 361 } 362 363 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 364 const TargetRegisterClass *RC, 365 unsigned Op0, bool Op0IsKill, 366 uint64_t Imm) { 367 unsigned ResultReg = createResultReg(RC); 368 const MCInstrDesc &II = TII.get(MachineInstOpcode); 369 370 if (II.getNumDefs() >= 1) { 371 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 372 .addReg(Op0, Op0IsKill * RegState::Kill) 373 .addImm(Imm)); 374 } else { 375 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 376 .addReg(Op0, Op0IsKill * RegState::Kill) 377 .addImm(Imm)); 378 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 379 TII.get(TargetOpcode::COPY), ResultReg) 380 .addReg(II.ImplicitDefs[0])); 381 } 382 return ResultReg; 383 } 384 385 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 386 const TargetRegisterClass *RC, 387 unsigned Op0, bool Op0IsKill, 388 const ConstantFP *FPImm) { 389 unsigned ResultReg = createResultReg(RC); 390 const MCInstrDesc &II = TII.get(MachineInstOpcode); 391 392 if (II.getNumDefs() >= 1) { 393 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 394 .addReg(Op0, Op0IsKill * RegState::Kill) 395 .addFPImm(FPImm)); 396 } else { 397 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 398 .addReg(Op0, Op0IsKill * RegState::Kill) 399 .addFPImm(FPImm)); 400 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 401 TII.get(TargetOpcode::COPY), ResultReg) 402 .addReg(II.ImplicitDefs[0])); 403 } 404 return ResultReg; 405 } 406 407 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 408 const TargetRegisterClass *RC, 409 unsigned Op0, bool Op0IsKill, 410 unsigned Op1, bool Op1IsKill, 411 uint64_t Imm) { 412 unsigned ResultReg = createResultReg(RC); 413 const MCInstrDesc &II = TII.get(MachineInstOpcode); 414 415 if (II.getNumDefs() >= 1) { 416 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 417 .addReg(Op0, Op0IsKill * RegState::Kill) 418 .addReg(Op1, Op1IsKill * RegState::Kill) 419 .addImm(Imm)); 420 } else { 421 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 422 .addReg(Op0, Op0IsKill * RegState::Kill) 423 .addReg(Op1, Op1IsKill * RegState::Kill) 424 .addImm(Imm)); 425 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 426 TII.get(TargetOpcode::COPY), ResultReg) 427 .addReg(II.ImplicitDefs[0])); 428 } 429 return ResultReg; 430 } 431 432 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, 433 const TargetRegisterClass *RC, 434 uint64_t Imm) { 435 unsigned ResultReg = createResultReg(RC); 436 const MCInstrDesc &II = TII.get(MachineInstOpcode); 437 438 if (II.getNumDefs() >= 1) { 439 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 440 .addImm(Imm)); 441 } else { 442 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 443 .addImm(Imm)); 444 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 445 TII.get(TargetOpcode::COPY), ResultReg) 446 .addReg(II.ImplicitDefs[0])); 447 } 448 return ResultReg; 449 } 450 451 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 452 const TargetRegisterClass *RC, 453 uint64_t Imm1, uint64_t Imm2) { 454 unsigned ResultReg = createResultReg(RC); 455 const MCInstrDesc &II = TII.get(MachineInstOpcode); 456 457 if (II.getNumDefs() >= 1) { 458 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 459 .addImm(Imm1).addImm(Imm2)); 460 } else { 461 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 462 .addImm(Imm1).addImm(Imm2)); 463 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 464 TII.get(TargetOpcode::COPY), 465 ResultReg) 466 .addReg(II.ImplicitDefs[0])); 467 } 468 return ResultReg; 469 } 470 471 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, 472 unsigned Op0, bool Op0IsKill, 473 uint32_t Idx) { 474 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 475 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 476 "Cannot yet extract from physregs"); 477 478 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 479 DL, TII.get(TargetOpcode::COPY), ResultReg) 480 .addReg(Op0, getKillRegState(Op0IsKill), Idx)); 481 return ResultReg; 482 } 483 484 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 485 // checks from the various callers. 486 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) { 487 if (VT == MVT::f64) return 0; 488 489 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 490 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 491 TII.get(ARM::VMOVSR), MoveReg) 492 .addReg(SrcReg)); 493 return MoveReg; 494 } 495 496 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) { 497 if (VT == MVT::i64) return 0; 498 499 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 500 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 501 TII.get(ARM::VMOVRS), MoveReg) 502 .addReg(SrcReg)); 503 return MoveReg; 504 } 505 506 // For double width floating point we need to materialize two constants 507 // (the high and the low) into integer registers then use a move to get 508 // the combined constant into an FP reg. 509 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) { 510 const APFloat Val = CFP->getValueAPF(); 511 bool is64bit = VT == MVT::f64; 512 513 // This checks to see if we can use VFP3 instructions to materialize 514 // a constant, otherwise we have to go through the constant pool. 515 if (TLI.isFPImmLegal(Val, VT)) { 516 int Imm; 517 unsigned Opc; 518 if (is64bit) { 519 Imm = ARM_AM::getFP64Imm(Val); 520 Opc = ARM::FCONSTD; 521 } else { 522 Imm = ARM_AM::getFP32Imm(Val); 523 Opc = ARM::FCONSTS; 524 } 525 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 526 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 527 DestReg) 528 .addImm(Imm)); 529 return DestReg; 530 } 531 532 // Require VFP2 for loading fp constants. 533 if (!Subtarget->hasVFP2()) return false; 534 535 // MachineConstantPool wants an explicit alignment. 536 unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); 537 if (Align == 0) { 538 // TODO: Figure out if this is correct. 539 Align = TD.getTypeAllocSize(CFP->getType()); 540 } 541 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 542 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 543 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 544 545 // The extra reg is for addrmode5. 546 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 547 DestReg) 548 .addConstantPoolIndex(Idx) 549 .addReg(0)); 550 return DestReg; 551 } 552 553 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) { 554 555 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 556 return false; 557 558 // If we can do this in a single instruction without a constant pool entry 559 // do so now. 560 const ConstantInt *CI = cast<ConstantInt>(C); 561 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 562 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 563 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 564 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 565 TII.get(Opc), ImmReg) 566 .addImm(CI->getZExtValue())); 567 return ImmReg; 568 } 569 570 // Use MVN to emit negative constants. 571 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 572 unsigned Imm = (unsigned)~(CI->getSExtValue()); 573 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 574 (ARM_AM::getSOImmVal(Imm) != -1); 575 if (UseImm) { 576 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 577 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 578 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 579 TII.get(Opc), ImmReg) 580 .addImm(Imm)); 581 return ImmReg; 582 } 583 } 584 585 // Load from constant pool. For now 32-bit only. 586 if (VT != MVT::i32) 587 return false; 588 589 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 590 591 // MachineConstantPool wants an explicit alignment. 592 unsigned Align = TD.getPrefTypeAlignment(C->getType()); 593 if (Align == 0) { 594 // TODO: Figure out if this is correct. 595 Align = TD.getTypeAllocSize(C->getType()); 596 } 597 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 598 599 if (isThumb2) 600 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 601 TII.get(ARM::t2LDRpci), DestReg) 602 .addConstantPoolIndex(Idx)); 603 else 604 // The extra immediate is for addrmode2. 605 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 606 TII.get(ARM::LDRcp), DestReg) 607 .addConstantPoolIndex(Idx) 608 .addImm(0)); 609 610 return DestReg; 611 } 612 613 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) { 614 // For now 32-bit only. 615 if (VT != MVT::i32) return 0; 616 617 Reloc::Model RelocM = TM.getRelocationModel(); 618 619 // TODO: Need more magic for ARM PIC. 620 if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0; 621 622 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 623 624 // Use movw+movt when possible, it avoids constant pool entries. 625 // Darwin targets don't support movt with Reloc::Static, see 626 // ARMTargetLowering::LowerGlobalAddressDarwin. Other targets only support 627 // static movt relocations. 628 if (Subtarget->useMovt() && 629 Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) { 630 unsigned Opc; 631 switch (RelocM) { 632 case Reloc::PIC_: 633 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 634 break; 635 case Reloc::DynamicNoPIC: 636 Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn; 637 break; 638 default: 639 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 640 break; 641 } 642 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 643 DestReg).addGlobalAddress(GV)); 644 } else { 645 // MachineConstantPool wants an explicit alignment. 646 unsigned Align = TD.getPrefTypeAlignment(GV->getType()); 647 if (Align == 0) { 648 // TODO: Figure out if this is correct. 649 Align = TD.getTypeAllocSize(GV->getType()); 650 } 651 652 // Grab index. 653 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 654 (Subtarget->isThumb() ? 4 : 8); 655 unsigned Id = AFI->createPICLabelUId(); 656 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 657 ARMCP::CPValue, 658 PCAdj); 659 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 660 661 // Load value. 662 MachineInstrBuilder MIB; 663 if (isThumb2) { 664 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 665 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 666 .addConstantPoolIndex(Idx); 667 if (RelocM == Reloc::PIC_) 668 MIB.addImm(Id); 669 } else { 670 // The extra immediate is for addrmode2. 671 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp), 672 DestReg) 673 .addConstantPoolIndex(Idx) 674 .addImm(0); 675 } 676 AddOptionalDefs(MIB); 677 } 678 679 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) { 680 MachineInstrBuilder MIB; 681 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 682 if (isThumb2) 683 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 684 TII.get(ARM::t2LDRi12), NewDestReg) 685 .addReg(DestReg) 686 .addImm(0); 687 else 688 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12), 689 NewDestReg) 690 .addReg(DestReg) 691 .addImm(0); 692 DestReg = NewDestReg; 693 AddOptionalDefs(MIB); 694 } 695 696 return DestReg; 697 } 698 699 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { 700 EVT VT = TLI.getValueType(C->getType(), true); 701 702 // Only handle simple types. 703 if (!VT.isSimple()) return 0; 704 705 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 706 return ARMMaterializeFP(CFP, VT); 707 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 708 return ARMMaterializeGV(GV, VT); 709 else if (isa<ConstantInt>(C)) 710 return ARMMaterializeInt(C, VT); 711 712 return 0; 713 } 714 715 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 716 717 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 718 // Don't handle dynamic allocas. 719 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 720 721 MVT VT; 722 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 723 724 DenseMap<const AllocaInst*, int>::iterator SI = 725 FuncInfo.StaticAllocaMap.find(AI); 726 727 // This will get lowered later into the correct offsets and registers 728 // via rewriteXFrameIndex. 729 if (SI != FuncInfo.StaticAllocaMap.end()) { 730 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 731 unsigned ResultReg = createResultReg(RC); 732 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 733 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 734 TII.get(Opc), ResultReg) 735 .addFrameIndex(SI->second) 736 .addImm(0)); 737 return ResultReg; 738 } 739 740 return 0; 741 } 742 743 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 744 EVT evt = TLI.getValueType(Ty, true); 745 746 // Only handle simple types. 747 if (evt == MVT::Other || !evt.isSimple()) return false; 748 VT = evt.getSimpleVT(); 749 750 // Handle all legal types, i.e. a register that will directly hold this 751 // value. 752 return TLI.isTypeLegal(VT); 753 } 754 755 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 756 if (isTypeLegal(Ty, VT)) return true; 757 758 // If this is a type than can be sign or zero-extended to a basic operation 759 // go ahead and accept it now. 760 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 761 return true; 762 763 return false; 764 } 765 766 // Computes the address to get to an object. 767 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 768 // Some boilerplate from the X86 FastISel. 769 const User *U = NULL; 770 unsigned Opcode = Instruction::UserOp1; 771 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 772 // Don't walk into other basic blocks unless the object is an alloca from 773 // another block, otherwise it may not have a virtual register assigned. 774 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 775 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 776 Opcode = I->getOpcode(); 777 U = I; 778 } 779 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 780 Opcode = C->getOpcode(); 781 U = C; 782 } 783 784 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 785 if (Ty->getAddressSpace() > 255) 786 // Fast instruction selection doesn't support the special 787 // address spaces. 788 return false; 789 790 switch (Opcode) { 791 default: 792 break; 793 case Instruction::BitCast: { 794 // Look through bitcasts. 795 return ARMComputeAddress(U->getOperand(0), Addr); 796 } 797 case Instruction::IntToPtr: { 798 // Look past no-op inttoptrs. 799 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 800 return ARMComputeAddress(U->getOperand(0), Addr); 801 break; 802 } 803 case Instruction::PtrToInt: { 804 // Look past no-op ptrtoints. 805 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 806 return ARMComputeAddress(U->getOperand(0), Addr); 807 break; 808 } 809 case Instruction::GetElementPtr: { 810 Address SavedAddr = Addr; 811 int TmpOffset = Addr.Offset; 812 813 // Iterate through the GEP folding the constants into offsets where 814 // we can. 815 gep_type_iterator GTI = gep_type_begin(U); 816 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 817 i != e; ++i, ++GTI) { 818 const Value *Op = *i; 819 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 820 const StructLayout *SL = TD.getStructLayout(STy); 821 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 822 TmpOffset += SL->getElementOffset(Idx); 823 } else { 824 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); 825 for (;;) { 826 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 827 // Constant-offset addressing. 828 TmpOffset += CI->getSExtValue() * S; 829 break; 830 } 831 if (isa<AddOperator>(Op) && 832 (!isa<Instruction>(Op) || 833 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()] 834 == FuncInfo.MBB) && 835 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { 836 // An add (in the same block) with a constant operand. Fold the 837 // constant. 838 ConstantInt *CI = 839 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 840 TmpOffset += CI->getSExtValue() * S; 841 // Iterate on the other operand. 842 Op = cast<AddOperator>(Op)->getOperand(0); 843 continue; 844 } 845 // Unsupported 846 goto unsupported_gep; 847 } 848 } 849 } 850 851 // Try to grab the base operand now. 852 Addr.Offset = TmpOffset; 853 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 854 855 // We failed, restore everything and try the other options. 856 Addr = SavedAddr; 857 858 unsupported_gep: 859 break; 860 } 861 case Instruction::Alloca: { 862 const AllocaInst *AI = cast<AllocaInst>(Obj); 863 DenseMap<const AllocaInst*, int>::iterator SI = 864 FuncInfo.StaticAllocaMap.find(AI); 865 if (SI != FuncInfo.StaticAllocaMap.end()) { 866 Addr.BaseType = Address::FrameIndexBase; 867 Addr.Base.FI = SI->second; 868 return true; 869 } 870 break; 871 } 872 } 873 874 // Try to get this in a register if nothing else has worked. 875 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 876 return Addr.Base.Reg != 0; 877 } 878 879 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) { 880 881 assert(VT.isSimple() && "Non-simple types are invalid here!"); 882 883 bool needsLowering = false; 884 switch (VT.getSimpleVT().SimpleTy) { 885 default: llvm_unreachable("Unhandled load/store type!"); 886 case MVT::i1: 887 case MVT::i8: 888 case MVT::i16: 889 case MVT::i32: 890 if (!useAM3) { 891 // Integer loads/stores handle 12-bit offsets. 892 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 893 // Handle negative offsets. 894 if (needsLowering && isThumb2) 895 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 896 Addr.Offset > -256); 897 } else { 898 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 899 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 900 } 901 break; 902 case MVT::f32: 903 case MVT::f64: 904 // Floating point operands handle 8-bit offsets. 905 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 906 break; 907 } 908 909 // If this is a stack pointer and the offset needs to be simplified then 910 // put the alloca address into a register, set the base type back to 911 // register and continue. This should almost never happen. 912 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 913 const TargetRegisterClass *RC = isThumb2 ? 914 (const TargetRegisterClass*)&ARM::tGPRRegClass : 915 (const TargetRegisterClass*)&ARM::GPRRegClass; 916 unsigned ResultReg = createResultReg(RC); 917 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 918 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 919 TII.get(Opc), ResultReg) 920 .addFrameIndex(Addr.Base.FI) 921 .addImm(0)); 922 Addr.Base.Reg = ResultReg; 923 Addr.BaseType = Address::RegBase; 924 } 925 926 // Since the offset is too large for the load/store instruction 927 // get the reg+offset into a register. 928 if (needsLowering) { 929 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 930 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 931 Addr.Offset = 0; 932 } 933 } 934 935 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr, 936 const MachineInstrBuilder &MIB, 937 unsigned Flags, bool useAM3) { 938 // addrmode5 output depends on the selection dag addressing dividing the 939 // offset by 4 that it then later multiplies. Do this here as well. 940 if (VT.getSimpleVT().SimpleTy == MVT::f32 || 941 VT.getSimpleVT().SimpleTy == MVT::f64) 942 Addr.Offset /= 4; 943 944 // Frame base works a bit differently. Handle it separately. 945 if (Addr.BaseType == Address::FrameIndexBase) { 946 int FI = Addr.Base.FI; 947 int Offset = Addr.Offset; 948 MachineMemOperand *MMO = 949 FuncInfo.MF->getMachineMemOperand( 950 MachinePointerInfo::getFixedStack(FI, Offset), 951 Flags, 952 MFI.getObjectSize(FI), 953 MFI.getObjectAlignment(FI)); 954 // Now add the rest of the operands. 955 MIB.addFrameIndex(FI); 956 957 // ARM halfword load/stores and signed byte loads need an additional 958 // operand. 959 if (useAM3) { 960 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 961 MIB.addReg(0); 962 MIB.addImm(Imm); 963 } else { 964 MIB.addImm(Addr.Offset); 965 } 966 MIB.addMemOperand(MMO); 967 } else { 968 // Now add the rest of the operands. 969 MIB.addReg(Addr.Base.Reg); 970 971 // ARM halfword load/stores and signed byte loads need an additional 972 // operand. 973 if (useAM3) { 974 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 975 MIB.addReg(0); 976 MIB.addImm(Imm); 977 } else { 978 MIB.addImm(Addr.Offset); 979 } 980 } 981 AddOptionalDefs(MIB); 982 } 983 984 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr, 985 unsigned Alignment, bool isZExt, bool allocReg) { 986 assert(VT.isSimple() && "Non-simple types are invalid here!"); 987 unsigned Opc; 988 bool useAM3 = false; 989 bool needVMOV = false; 990 const TargetRegisterClass *RC; 991 switch (VT.getSimpleVT().SimpleTy) { 992 // This is mostly going to be Neon/vector support. 993 default: return false; 994 case MVT::i1: 995 case MVT::i8: 996 if (isThumb2) { 997 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 998 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 999 else 1000 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 1001 } else { 1002 if (isZExt) { 1003 Opc = ARM::LDRBi12; 1004 } else { 1005 Opc = ARM::LDRSB; 1006 useAM3 = true; 1007 } 1008 } 1009 RC = &ARM::GPRRegClass; 1010 break; 1011 case MVT::i16: 1012 if (isThumb2) { 1013 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1014 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 1015 else 1016 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 1017 } else { 1018 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 1019 useAM3 = true; 1020 } 1021 RC = &ARM::GPRRegClass; 1022 break; 1023 case MVT::i32: 1024 if (isThumb2) { 1025 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1026 Opc = ARM::t2LDRi8; 1027 else 1028 Opc = ARM::t2LDRi12; 1029 } else { 1030 Opc = ARM::LDRi12; 1031 } 1032 RC = &ARM::GPRRegClass; 1033 break; 1034 case MVT::f32: 1035 if (!Subtarget->hasVFP2()) return false; 1036 // Unaligned loads need special handling. Floats require word-alignment. 1037 if (Alignment && Alignment < 4) { 1038 needVMOV = true; 1039 VT = MVT::i32; 1040 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1041 RC = &ARM::GPRRegClass; 1042 } else { 1043 Opc = ARM::VLDRS; 1044 RC = TLI.getRegClassFor(VT); 1045 } 1046 break; 1047 case MVT::f64: 1048 if (!Subtarget->hasVFP2()) return false; 1049 // FIXME: Unaligned loads need special handling. Doublewords require 1050 // word-alignment. 1051 if (Alignment && Alignment < 4) 1052 return false; 1053 1054 Opc = ARM::VLDRD; 1055 RC = TLI.getRegClassFor(VT); 1056 break; 1057 } 1058 // Simplify this down to something we can handle. 1059 ARMSimplifyAddress(Addr, VT, useAM3); 1060 1061 // Create the base instruction, then add the operands. 1062 if (allocReg) 1063 ResultReg = createResultReg(RC); 1064 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1065 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1066 TII.get(Opc), ResultReg); 1067 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1068 1069 // If we had an unaligned load of a float we've converted it to an regular 1070 // load. Now we must move from the GRP to the FP register. 1071 if (needVMOV) { 1072 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1073 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1074 TII.get(ARM::VMOVSR), MoveReg) 1075 .addReg(ResultReg)); 1076 ResultReg = MoveReg; 1077 } 1078 return true; 1079 } 1080 1081 bool ARMFastISel::SelectLoad(const Instruction *I) { 1082 // Atomic loads need special handling. 1083 if (cast<LoadInst>(I)->isAtomic()) 1084 return false; 1085 1086 // Verify we have a legal type before going any further. 1087 MVT VT; 1088 if (!isLoadTypeLegal(I->getType(), VT)) 1089 return false; 1090 1091 // See if we can handle this address. 1092 Address Addr; 1093 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1094 1095 unsigned ResultReg; 1096 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1097 return false; 1098 UpdateValueMap(I, ResultReg); 1099 return true; 1100 } 1101 1102 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr, 1103 unsigned Alignment) { 1104 unsigned StrOpc; 1105 bool useAM3 = false; 1106 switch (VT.getSimpleVT().SimpleTy) { 1107 // This is mostly going to be Neon/vector support. 1108 default: return false; 1109 case MVT::i1: { 1110 unsigned Res = createResultReg(isThumb2 ? 1111 (const TargetRegisterClass*)&ARM::tGPRRegClass : 1112 (const TargetRegisterClass*)&ARM::GPRRegClass); 1113 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1114 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1115 TII.get(Opc), Res) 1116 .addReg(SrcReg).addImm(1)); 1117 SrcReg = Res; 1118 } // Fallthrough here. 1119 case MVT::i8: 1120 if (isThumb2) { 1121 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1122 StrOpc = ARM::t2STRBi8; 1123 else 1124 StrOpc = ARM::t2STRBi12; 1125 } else { 1126 StrOpc = ARM::STRBi12; 1127 } 1128 break; 1129 case MVT::i16: 1130 if (isThumb2) { 1131 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1132 StrOpc = ARM::t2STRHi8; 1133 else 1134 StrOpc = ARM::t2STRHi12; 1135 } else { 1136 StrOpc = ARM::STRH; 1137 useAM3 = true; 1138 } 1139 break; 1140 case MVT::i32: 1141 if (isThumb2) { 1142 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1143 StrOpc = ARM::t2STRi8; 1144 else 1145 StrOpc = ARM::t2STRi12; 1146 } else { 1147 StrOpc = ARM::STRi12; 1148 } 1149 break; 1150 case MVT::f32: 1151 if (!Subtarget->hasVFP2()) return false; 1152 // Unaligned stores need special handling. Floats require word-alignment. 1153 if (Alignment && Alignment < 4) { 1154 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1155 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1156 TII.get(ARM::VMOVRS), MoveReg) 1157 .addReg(SrcReg)); 1158 SrcReg = MoveReg; 1159 VT = MVT::i32; 1160 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1161 } else { 1162 StrOpc = ARM::VSTRS; 1163 } 1164 break; 1165 case MVT::f64: 1166 if (!Subtarget->hasVFP2()) return false; 1167 // FIXME: Unaligned stores need special handling. Doublewords require 1168 // word-alignment. 1169 if (Alignment && Alignment < 4) 1170 return false; 1171 1172 StrOpc = ARM::VSTRD; 1173 break; 1174 } 1175 // Simplify this down to something we can handle. 1176 ARMSimplifyAddress(Addr, VT, useAM3); 1177 1178 // Create the base instruction, then add the operands. 1179 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1180 TII.get(StrOpc)) 1181 .addReg(SrcReg); 1182 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1183 return true; 1184 } 1185 1186 bool ARMFastISel::SelectStore(const Instruction *I) { 1187 Value *Op0 = I->getOperand(0); 1188 unsigned SrcReg = 0; 1189 1190 // Atomic stores need special handling. 1191 if (cast<StoreInst>(I)->isAtomic()) 1192 return false; 1193 1194 // Verify we have a legal type before going any further. 1195 MVT VT; 1196 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1197 return false; 1198 1199 // Get the value to be stored into a register. 1200 SrcReg = getRegForValue(Op0); 1201 if (SrcReg == 0) return false; 1202 1203 // See if we can handle this address. 1204 Address Addr; 1205 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1206 return false; 1207 1208 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1209 return false; 1210 return true; 1211 } 1212 1213 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1214 switch (Pred) { 1215 // Needs two compares... 1216 case CmpInst::FCMP_ONE: 1217 case CmpInst::FCMP_UEQ: 1218 default: 1219 // AL is our "false" for now. The other two need more compares. 1220 return ARMCC::AL; 1221 case CmpInst::ICMP_EQ: 1222 case CmpInst::FCMP_OEQ: 1223 return ARMCC::EQ; 1224 case CmpInst::ICMP_SGT: 1225 case CmpInst::FCMP_OGT: 1226 return ARMCC::GT; 1227 case CmpInst::ICMP_SGE: 1228 case CmpInst::FCMP_OGE: 1229 return ARMCC::GE; 1230 case CmpInst::ICMP_UGT: 1231 case CmpInst::FCMP_UGT: 1232 return ARMCC::HI; 1233 case CmpInst::FCMP_OLT: 1234 return ARMCC::MI; 1235 case CmpInst::ICMP_ULE: 1236 case CmpInst::FCMP_OLE: 1237 return ARMCC::LS; 1238 case CmpInst::FCMP_ORD: 1239 return ARMCC::VC; 1240 case CmpInst::FCMP_UNO: 1241 return ARMCC::VS; 1242 case CmpInst::FCMP_UGE: 1243 return ARMCC::PL; 1244 case CmpInst::ICMP_SLT: 1245 case CmpInst::FCMP_ULT: 1246 return ARMCC::LT; 1247 case CmpInst::ICMP_SLE: 1248 case CmpInst::FCMP_ULE: 1249 return ARMCC::LE; 1250 case CmpInst::FCMP_UNE: 1251 case CmpInst::ICMP_NE: 1252 return ARMCC::NE; 1253 case CmpInst::ICMP_UGE: 1254 return ARMCC::HS; 1255 case CmpInst::ICMP_ULT: 1256 return ARMCC::LO; 1257 } 1258 } 1259 1260 bool ARMFastISel::SelectBranch(const Instruction *I) { 1261 const BranchInst *BI = cast<BranchInst>(I); 1262 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1263 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1264 1265 // Simple branch support. 1266 1267 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1268 // behavior. 1269 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1270 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1271 1272 // Get the compare predicate. 1273 // Try to take advantage of fallthrough opportunities. 1274 CmpInst::Predicate Predicate = CI->getPredicate(); 1275 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1276 std::swap(TBB, FBB); 1277 Predicate = CmpInst::getInversePredicate(Predicate); 1278 } 1279 1280 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1281 1282 // We may not handle every CC for now. 1283 if (ARMPred == ARMCC::AL) return false; 1284 1285 // Emit the compare. 1286 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1287 return false; 1288 1289 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1290 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1291 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1292 FastEmitBranch(FBB, DL); 1293 FuncInfo.MBB->addSuccessor(TBB); 1294 return true; 1295 } 1296 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1297 MVT SourceVT; 1298 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1299 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1300 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1301 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1302 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1303 TII.get(TstOpc)) 1304 .addReg(OpReg).addImm(1)); 1305 1306 unsigned CCMode = ARMCC::NE; 1307 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1308 std::swap(TBB, FBB); 1309 CCMode = ARMCC::EQ; 1310 } 1311 1312 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1313 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1314 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1315 1316 FastEmitBranch(FBB, DL); 1317 FuncInfo.MBB->addSuccessor(TBB); 1318 return true; 1319 } 1320 } else if (const ConstantInt *CI = 1321 dyn_cast<ConstantInt>(BI->getCondition())) { 1322 uint64_t Imm = CI->getZExtValue(); 1323 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1324 FastEmitBranch(Target, DL); 1325 return true; 1326 } 1327 1328 unsigned CmpReg = getRegForValue(BI->getCondition()); 1329 if (CmpReg == 0) return false; 1330 1331 // We've been divorced from our compare! Our block was split, and 1332 // now our compare lives in a predecessor block. We musn't 1333 // re-compare here, as the children of the compare aren't guaranteed 1334 // live across the block boundary (we *could* check for this). 1335 // Regardless, the compare has been done in the predecessor block, 1336 // and it left a value for us in a virtual register. Ergo, we test 1337 // the one-bit value left in the virtual register. 1338 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1339 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc)) 1340 .addReg(CmpReg).addImm(1)); 1341 1342 unsigned CCMode = ARMCC::NE; 1343 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1344 std::swap(TBB, FBB); 1345 CCMode = ARMCC::EQ; 1346 } 1347 1348 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1349 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1350 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1351 FastEmitBranch(FBB, DL); 1352 FuncInfo.MBB->addSuccessor(TBB); 1353 return true; 1354 } 1355 1356 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1357 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1358 if (AddrReg == 0) return false; 1359 1360 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) 1362 .addReg(AddrReg)); 1363 return true; 1364 } 1365 1366 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1367 bool isZExt) { 1368 Type *Ty = Src1Value->getType(); 1369 EVT SrcVT = TLI.getValueType(Ty, true); 1370 if (!SrcVT.isSimple()) return false; 1371 1372 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1373 if (isFloat && !Subtarget->hasVFP2()) 1374 return false; 1375 1376 // Check to see if the 2nd operand is a constant that we can encode directly 1377 // in the compare. 1378 int Imm = 0; 1379 bool UseImm = false; 1380 bool isNegativeImm = false; 1381 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1382 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1383 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1384 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1385 SrcVT == MVT::i1) { 1386 const APInt &CIVal = ConstInt->getValue(); 1387 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1388 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1389 // then a cmn, because there is no way to represent 2147483648 as a 1390 // signed 32-bit int. 1391 if (Imm < 0 && Imm != (int)0x80000000) { 1392 isNegativeImm = true; 1393 Imm = -Imm; 1394 } 1395 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1396 (ARM_AM::getSOImmVal(Imm) != -1); 1397 } 1398 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1399 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1400 if (ConstFP->isZero() && !ConstFP->isNegative()) 1401 UseImm = true; 1402 } 1403 1404 unsigned CmpOpc; 1405 bool isICmp = true; 1406 bool needsExt = false; 1407 switch (SrcVT.getSimpleVT().SimpleTy) { 1408 default: return false; 1409 // TODO: Verify compares. 1410 case MVT::f32: 1411 isICmp = false; 1412 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1413 break; 1414 case MVT::f64: 1415 isICmp = false; 1416 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1417 break; 1418 case MVT::i1: 1419 case MVT::i8: 1420 case MVT::i16: 1421 needsExt = true; 1422 // Intentional fall-through. 1423 case MVT::i32: 1424 if (isThumb2) { 1425 if (!UseImm) 1426 CmpOpc = ARM::t2CMPrr; 1427 else 1428 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1429 } else { 1430 if (!UseImm) 1431 CmpOpc = ARM::CMPrr; 1432 else 1433 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1434 } 1435 break; 1436 } 1437 1438 unsigned SrcReg1 = getRegForValue(Src1Value); 1439 if (SrcReg1 == 0) return false; 1440 1441 unsigned SrcReg2 = 0; 1442 if (!UseImm) { 1443 SrcReg2 = getRegForValue(Src2Value); 1444 if (SrcReg2 == 0) return false; 1445 } 1446 1447 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1448 if (needsExt) { 1449 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1450 if (SrcReg1 == 0) return false; 1451 if (!UseImm) { 1452 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1453 if (SrcReg2 == 0) return false; 1454 } 1455 } 1456 1457 if (!UseImm) { 1458 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1459 TII.get(CmpOpc)) 1460 .addReg(SrcReg1).addReg(SrcReg2)); 1461 } else { 1462 MachineInstrBuilder MIB; 1463 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1464 .addReg(SrcReg1); 1465 1466 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1467 if (isICmp) 1468 MIB.addImm(Imm); 1469 AddOptionalDefs(MIB); 1470 } 1471 1472 // For floating point we need to move the result to a comparison register 1473 // that we can then use for branches. 1474 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1475 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1476 TII.get(ARM::FMSTAT))); 1477 return true; 1478 } 1479 1480 bool ARMFastISel::SelectCmp(const Instruction *I) { 1481 const CmpInst *CI = cast<CmpInst>(I); 1482 1483 // Get the compare predicate. 1484 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1485 1486 // We may not handle every CC for now. 1487 if (ARMPred == ARMCC::AL) return false; 1488 1489 // Emit the compare. 1490 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1491 return false; 1492 1493 // Now set a register based on the comparison. Explicitly set the predicates 1494 // here. 1495 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1496 const TargetRegisterClass *RC = isThumb2 ? 1497 (const TargetRegisterClass*)&ARM::rGPRRegClass : 1498 (const TargetRegisterClass*)&ARM::GPRRegClass; 1499 unsigned DestReg = createResultReg(RC); 1500 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1501 unsigned ZeroReg = TargetMaterializeConstant(Zero); 1502 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1503 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg) 1504 .addReg(ZeroReg).addImm(1) 1505 .addImm(ARMPred).addReg(ARM::CPSR); 1506 1507 UpdateValueMap(I, DestReg); 1508 return true; 1509 } 1510 1511 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1512 // Make sure we have VFP and that we're extending float to double. 1513 if (!Subtarget->hasVFP2()) return false; 1514 1515 Value *V = I->getOperand(0); 1516 if (!I->getType()->isDoubleTy() || 1517 !V->getType()->isFloatTy()) return false; 1518 1519 unsigned Op = getRegForValue(V); 1520 if (Op == 0) return false; 1521 1522 unsigned Result = createResultReg(&ARM::DPRRegClass); 1523 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1524 TII.get(ARM::VCVTDS), Result) 1525 .addReg(Op)); 1526 UpdateValueMap(I, Result); 1527 return true; 1528 } 1529 1530 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1531 // Make sure we have VFP and that we're truncating double to float. 1532 if (!Subtarget->hasVFP2()) return false; 1533 1534 Value *V = I->getOperand(0); 1535 if (!(I->getType()->isFloatTy() && 1536 V->getType()->isDoubleTy())) return false; 1537 1538 unsigned Op = getRegForValue(V); 1539 if (Op == 0) return false; 1540 1541 unsigned Result = createResultReg(&ARM::SPRRegClass); 1542 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1543 TII.get(ARM::VCVTSD), Result) 1544 .addReg(Op)); 1545 UpdateValueMap(I, Result); 1546 return true; 1547 } 1548 1549 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1550 // Make sure we have VFP. 1551 if (!Subtarget->hasVFP2()) return false; 1552 1553 MVT DstVT; 1554 Type *Ty = I->getType(); 1555 if (!isTypeLegal(Ty, DstVT)) 1556 return false; 1557 1558 Value *Src = I->getOperand(0); 1559 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1560 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1561 return false; 1562 1563 unsigned SrcReg = getRegForValue(Src); 1564 if (SrcReg == 0) return false; 1565 1566 // Handle sign-extension. 1567 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1568 EVT DestVT = MVT::i32; 1569 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, 1570 /*isZExt*/!isSigned); 1571 if (SrcReg == 0) return false; 1572 } 1573 1574 // The conversion routine works on fp-reg to fp-reg and the operand above 1575 // was an integer, move it to the fp registers if possible. 1576 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1577 if (FP == 0) return false; 1578 1579 unsigned Opc; 1580 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1581 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1582 else return false; 1583 1584 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1585 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1586 ResultReg) 1587 .addReg(FP)); 1588 UpdateValueMap(I, ResultReg); 1589 return true; 1590 } 1591 1592 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1593 // Make sure we have VFP. 1594 if (!Subtarget->hasVFP2()) return false; 1595 1596 MVT DstVT; 1597 Type *RetTy = I->getType(); 1598 if (!isTypeLegal(RetTy, DstVT)) 1599 return false; 1600 1601 unsigned Op = getRegForValue(I->getOperand(0)); 1602 if (Op == 0) return false; 1603 1604 unsigned Opc; 1605 Type *OpTy = I->getOperand(0)->getType(); 1606 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1607 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1608 else return false; 1609 1610 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1611 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1612 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1613 ResultReg) 1614 .addReg(Op)); 1615 1616 // This result needs to be in an integer register, but the conversion only 1617 // takes place in fp-regs. 1618 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1619 if (IntReg == 0) return false; 1620 1621 UpdateValueMap(I, IntReg); 1622 return true; 1623 } 1624 1625 bool ARMFastISel::SelectSelect(const Instruction *I) { 1626 MVT VT; 1627 if (!isTypeLegal(I->getType(), VT)) 1628 return false; 1629 1630 // Things need to be register sized for register moves. 1631 if (VT != MVT::i32) return false; 1632 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 1633 1634 unsigned CondReg = getRegForValue(I->getOperand(0)); 1635 if (CondReg == 0) return false; 1636 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1637 if (Op1Reg == 0) return false; 1638 1639 // Check to see if we can use an immediate in the conditional move. 1640 int Imm = 0; 1641 bool UseImm = false; 1642 bool isNegativeImm = false; 1643 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1644 assert (VT == MVT::i32 && "Expecting an i32."); 1645 Imm = (int)ConstInt->getValue().getZExtValue(); 1646 if (Imm < 0) { 1647 isNegativeImm = true; 1648 Imm = ~Imm; 1649 } 1650 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1651 (ARM_AM::getSOImmVal(Imm) != -1); 1652 } 1653 1654 unsigned Op2Reg = 0; 1655 if (!UseImm) { 1656 Op2Reg = getRegForValue(I->getOperand(2)); 1657 if (Op2Reg == 0) return false; 1658 } 1659 1660 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 1661 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1662 .addReg(CondReg).addImm(0)); 1663 1664 unsigned MovCCOpc; 1665 if (!UseImm) { 1666 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1667 } else { 1668 if (!isNegativeImm) { 1669 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1670 } else { 1671 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1672 } 1673 } 1674 unsigned ResultReg = createResultReg(RC); 1675 if (!UseImm) 1676 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1677 .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR); 1678 else 1679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1680 .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR); 1681 UpdateValueMap(I, ResultReg); 1682 return true; 1683 } 1684 1685 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1686 MVT VT; 1687 Type *Ty = I->getType(); 1688 if (!isTypeLegal(Ty, VT)) 1689 return false; 1690 1691 // If we have integer div support we should have selected this automagically. 1692 // In case we have a real miss go ahead and return false and we'll pick 1693 // it up later. 1694 if (Subtarget->hasDivide()) return false; 1695 1696 // Otherwise emit a libcall. 1697 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1698 if (VT == MVT::i8) 1699 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1700 else if (VT == MVT::i16) 1701 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1702 else if (VT == MVT::i32) 1703 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1704 else if (VT == MVT::i64) 1705 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1706 else if (VT == MVT::i128) 1707 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1708 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1709 1710 return ARMEmitLibcall(I, LC); 1711 } 1712 1713 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1714 MVT VT; 1715 Type *Ty = I->getType(); 1716 if (!isTypeLegal(Ty, VT)) 1717 return false; 1718 1719 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1720 if (VT == MVT::i8) 1721 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1722 else if (VT == MVT::i16) 1723 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1724 else if (VT == MVT::i32) 1725 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1726 else if (VT == MVT::i64) 1727 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1728 else if (VT == MVT::i128) 1729 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1730 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1731 1732 return ARMEmitLibcall(I, LC); 1733 } 1734 1735 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1736 EVT DestVT = TLI.getValueType(I->getType(), true); 1737 1738 // We can get here in the case when we have a binary operation on a non-legal 1739 // type and the target independent selector doesn't know how to handle it. 1740 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1741 return false; 1742 1743 unsigned Opc; 1744 switch (ISDOpcode) { 1745 default: return false; 1746 case ISD::ADD: 1747 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1748 break; 1749 case ISD::OR: 1750 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1751 break; 1752 case ISD::SUB: 1753 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1754 break; 1755 } 1756 1757 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1758 if (SrcReg1 == 0) return false; 1759 1760 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1761 // in the instruction, rather then materializing the value in a register. 1762 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1763 if (SrcReg2 == 0) return false; 1764 1765 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1766 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1767 TII.get(Opc), ResultReg) 1768 .addReg(SrcReg1).addReg(SrcReg2)); 1769 UpdateValueMap(I, ResultReg); 1770 return true; 1771 } 1772 1773 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1774 EVT VT = TLI.getValueType(I->getType(), true); 1775 1776 // We can get here in the case when we want to use NEON for our fp 1777 // operations, but can't figure out how to. Just use the vfp instructions 1778 // if we have them. 1779 // FIXME: It'd be nice to use NEON instructions. 1780 Type *Ty = I->getType(); 1781 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1782 if (isFloat && !Subtarget->hasVFP2()) 1783 return false; 1784 1785 unsigned Opc; 1786 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1787 switch (ISDOpcode) { 1788 default: return false; 1789 case ISD::FADD: 1790 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1791 break; 1792 case ISD::FSUB: 1793 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1794 break; 1795 case ISD::FMUL: 1796 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1797 break; 1798 } 1799 unsigned Op1 = getRegForValue(I->getOperand(0)); 1800 if (Op1 == 0) return false; 1801 1802 unsigned Op2 = getRegForValue(I->getOperand(1)); 1803 if (Op2 == 0) return false; 1804 1805 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 1806 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1807 TII.get(Opc), ResultReg) 1808 .addReg(Op1).addReg(Op2)); 1809 UpdateValueMap(I, ResultReg); 1810 return true; 1811 } 1812 1813 // Call Handling Code 1814 1815 // This is largely taken directly from CCAssignFnForNode 1816 // TODO: We may not support all of this. 1817 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1818 bool Return, 1819 bool isVarArg) { 1820 switch (CC) { 1821 default: 1822 llvm_unreachable("Unsupported calling convention"); 1823 case CallingConv::Fast: 1824 if (Subtarget->hasVFP2() && !isVarArg) { 1825 if (!Subtarget->isAAPCS_ABI()) 1826 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1827 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1828 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1829 } 1830 // Fallthrough 1831 case CallingConv::C: 1832 // Use target triple & subtarget features to do actual dispatch. 1833 if (Subtarget->isAAPCS_ABI()) { 1834 if (Subtarget->hasVFP2() && 1835 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1836 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1837 else 1838 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1839 } else 1840 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1841 case CallingConv::ARM_AAPCS_VFP: 1842 if (!isVarArg) 1843 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1844 // Fall through to soft float variant, variadic functions don't 1845 // use hard floating point ABI. 1846 case CallingConv::ARM_AAPCS: 1847 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1848 case CallingConv::ARM_APCS: 1849 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1850 case CallingConv::GHC: 1851 if (Return) 1852 llvm_unreachable("Can't return in GHC call convention"); 1853 else 1854 return CC_ARM_APCS_GHC; 1855 } 1856 } 1857 1858 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1859 SmallVectorImpl<unsigned> &ArgRegs, 1860 SmallVectorImpl<MVT> &ArgVTs, 1861 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1862 SmallVectorImpl<unsigned> &RegArgs, 1863 CallingConv::ID CC, 1864 unsigned &NumBytes, 1865 bool isVarArg) { 1866 SmallVector<CCValAssign, 16> ArgLocs; 1867 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, *Context); 1868 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1869 CCAssignFnForCall(CC, false, isVarArg)); 1870 1871 // Check that we can handle all of the arguments. If we can't, then bail out 1872 // now before we add code to the MBB. 1873 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1874 CCValAssign &VA = ArgLocs[i]; 1875 MVT ArgVT = ArgVTs[VA.getValNo()]; 1876 1877 // We don't handle NEON/vector parameters yet. 1878 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1879 return false; 1880 1881 // Now copy/store arg to correct locations. 1882 if (VA.isRegLoc() && !VA.needsCustom()) { 1883 continue; 1884 } else if (VA.needsCustom()) { 1885 // TODO: We need custom lowering for vector (v2f64) args. 1886 if (VA.getLocVT() != MVT::f64 || 1887 // TODO: Only handle register args for now. 1888 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1889 return false; 1890 } else { 1891 switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) { 1892 default: 1893 return false; 1894 case MVT::i1: 1895 case MVT::i8: 1896 case MVT::i16: 1897 case MVT::i32: 1898 break; 1899 case MVT::f32: 1900 if (!Subtarget->hasVFP2()) 1901 return false; 1902 break; 1903 case MVT::f64: 1904 if (!Subtarget->hasVFP2()) 1905 return false; 1906 break; 1907 } 1908 } 1909 } 1910 1911 // At the point, we are able to handle the call's arguments in fast isel. 1912 1913 // Get a count of how many bytes are to be pushed on the stack. 1914 NumBytes = CCInfo.getNextStackOffset(); 1915 1916 // Issue CALLSEQ_START 1917 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1918 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1919 TII.get(AdjStackDown)) 1920 .addImm(NumBytes)); 1921 1922 // Process the args. 1923 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1924 CCValAssign &VA = ArgLocs[i]; 1925 unsigned Arg = ArgRegs[VA.getValNo()]; 1926 MVT ArgVT = ArgVTs[VA.getValNo()]; 1927 1928 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1929 "We don't handle NEON/vector parameters yet."); 1930 1931 // Handle arg promotion, etc. 1932 switch (VA.getLocInfo()) { 1933 case CCValAssign::Full: break; 1934 case CCValAssign::SExt: { 1935 MVT DestVT = VA.getLocVT(); 1936 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1937 assert (Arg != 0 && "Failed to emit a sext"); 1938 ArgVT = DestVT; 1939 break; 1940 } 1941 case CCValAssign::AExt: 1942 // Intentional fall-through. Handle AExt and ZExt. 1943 case CCValAssign::ZExt: { 1944 MVT DestVT = VA.getLocVT(); 1945 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1946 assert (Arg != 0 && "Failed to emit a sext"); 1947 ArgVT = DestVT; 1948 break; 1949 } 1950 case CCValAssign::BCvt: { 1951 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1952 /*TODO: Kill=*/false); 1953 assert(BC != 0 && "Failed to emit a bitcast!"); 1954 Arg = BC; 1955 ArgVT = VA.getLocVT(); 1956 break; 1957 } 1958 default: llvm_unreachable("Unknown arg promotion!"); 1959 } 1960 1961 // Now copy/store arg to correct locations. 1962 if (VA.isRegLoc() && !VA.needsCustom()) { 1963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1964 VA.getLocReg()) 1965 .addReg(Arg); 1966 RegArgs.push_back(VA.getLocReg()); 1967 } else if (VA.needsCustom()) { 1968 // TODO: We need custom lowering for vector (v2f64) args. 1969 assert(VA.getLocVT() == MVT::f64 && 1970 "Custom lowering for v2f64 args not available"); 1971 1972 CCValAssign &NextVA = ArgLocs[++i]; 1973 1974 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1975 "We only handle register args!"); 1976 1977 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1978 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1979 .addReg(NextVA.getLocReg(), RegState::Define) 1980 .addReg(Arg)); 1981 RegArgs.push_back(VA.getLocReg()); 1982 RegArgs.push_back(NextVA.getLocReg()); 1983 } else { 1984 assert(VA.isMemLoc()); 1985 // Need to store on the stack. 1986 Address Addr; 1987 Addr.BaseType = Address::RegBase; 1988 Addr.Base.Reg = ARM::SP; 1989 Addr.Offset = VA.getLocMemOffset(); 1990 1991 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 1992 assert(EmitRet && "Could not emit a store for argument!"); 1993 } 1994 } 1995 1996 return true; 1997 } 1998 1999 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2000 const Instruction *I, CallingConv::ID CC, 2001 unsigned &NumBytes, bool isVarArg) { 2002 // Issue CALLSEQ_END 2003 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2004 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2005 TII.get(AdjStackUp)) 2006 .addImm(NumBytes).addImm(0)); 2007 2008 // Now the return value. 2009 if (RetVT != MVT::isVoid) { 2010 SmallVector<CCValAssign, 16> RVLocs; 2011 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2012 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2013 2014 // Copy all of the result registers out of their specified physreg. 2015 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2016 // For this move we copy into two registers and then move into the 2017 // double fp reg we want. 2018 EVT DestVT = RVLocs[0].getValVT(); 2019 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2020 unsigned ResultReg = createResultReg(DstRC); 2021 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2022 TII.get(ARM::VMOVDRR), ResultReg) 2023 .addReg(RVLocs[0].getLocReg()) 2024 .addReg(RVLocs[1].getLocReg())); 2025 2026 UsedRegs.push_back(RVLocs[0].getLocReg()); 2027 UsedRegs.push_back(RVLocs[1].getLocReg()); 2028 2029 // Finally update the result. 2030 UpdateValueMap(I, ResultReg); 2031 } else { 2032 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2033 EVT CopyVT = RVLocs[0].getValVT(); 2034 2035 // Special handling for extended integers. 2036 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2037 CopyVT = MVT::i32; 2038 2039 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2040 2041 unsigned ResultReg = createResultReg(DstRC); 2042 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2043 ResultReg).addReg(RVLocs[0].getLocReg()); 2044 UsedRegs.push_back(RVLocs[0].getLocReg()); 2045 2046 // Finally update the result. 2047 UpdateValueMap(I, ResultReg); 2048 } 2049 } 2050 2051 return true; 2052 } 2053 2054 bool ARMFastISel::SelectRet(const Instruction *I) { 2055 const ReturnInst *Ret = cast<ReturnInst>(I); 2056 const Function &F = *I->getParent()->getParent(); 2057 2058 if (!FuncInfo.CanLowerReturn) 2059 return false; 2060 2061 CallingConv::ID CC = F.getCallingConv(); 2062 if (Ret->getNumOperands() > 0) { 2063 SmallVector<ISD::OutputArg, 4> Outs; 2064 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 2065 Outs, TLI); 2066 2067 // Analyze operands of the call, assigning locations to each operand. 2068 SmallVector<CCValAssign, 16> ValLocs; 2069 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext()); 2070 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2071 F.isVarArg())); 2072 2073 const Value *RV = Ret->getOperand(0); 2074 unsigned Reg = getRegForValue(RV); 2075 if (Reg == 0) 2076 return false; 2077 2078 // Only handle a single return value for now. 2079 if (ValLocs.size() != 1) 2080 return false; 2081 2082 CCValAssign &VA = ValLocs[0]; 2083 2084 // Don't bother handling odd stuff for now. 2085 if (VA.getLocInfo() != CCValAssign::Full) 2086 return false; 2087 // Only handle register returns for now. 2088 if (!VA.isRegLoc()) 2089 return false; 2090 2091 unsigned SrcReg = Reg + VA.getValNo(); 2092 EVT RVVT = TLI.getValueType(RV->getType()); 2093 EVT DestVT = VA.getValVT(); 2094 // Special handling for extended integers. 2095 if (RVVT != DestVT) { 2096 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2097 return false; 2098 2099 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2100 2101 // Perform extension if flagged as either zext or sext. Otherwise, do 2102 // nothing. 2103 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2104 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2105 if (SrcReg == 0) return false; 2106 } 2107 } 2108 2109 // Make the copy. 2110 unsigned DstReg = VA.getLocReg(); 2111 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2112 // Avoid a cross-class copy. This is very unlikely. 2113 if (!SrcRC->contains(DstReg)) 2114 return false; 2115 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2116 DstReg).addReg(SrcReg); 2117 2118 // Mark the register as live out of the function. 2119 MRI.addLiveOut(VA.getLocReg()); 2120 } 2121 2122 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2123 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2124 TII.get(RetOpc))); 2125 return true; 2126 } 2127 2128 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2129 if (UseReg) 2130 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2131 else 2132 return isThumb2 ? ARM::tBL : ARM::BL; 2133 } 2134 2135 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2136 GlobalValue *GV = new GlobalVariable(Type::getInt32Ty(*Context), false, 2137 GlobalValue::ExternalLinkage, 0, Name); 2138 return ARMMaterializeGV(GV, TLI.getValueType(GV->getType())); 2139 } 2140 2141 // A quick function that will emit a call for a named libcall in F with the 2142 // vector of passed arguments for the Instruction in I. We can assume that we 2143 // can emit a call for any libcall we can produce. This is an abridged version 2144 // of the full call infrastructure since we won't need to worry about things 2145 // like computed function pointers or strange arguments at call sites. 2146 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2147 // with X86. 2148 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2149 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2150 2151 // Handle *simple* calls for now. 2152 Type *RetTy = I->getType(); 2153 MVT RetVT; 2154 if (RetTy->isVoidTy()) 2155 RetVT = MVT::isVoid; 2156 else if (!isTypeLegal(RetTy, RetVT)) 2157 return false; 2158 2159 // Can't handle non-double multi-reg retvals. 2160 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2161 SmallVector<CCValAssign, 16> RVLocs; 2162 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); 2163 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2164 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2165 return false; 2166 } 2167 2168 // Set up the argument vectors. 2169 SmallVector<Value*, 8> Args; 2170 SmallVector<unsigned, 8> ArgRegs; 2171 SmallVector<MVT, 8> ArgVTs; 2172 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2173 Args.reserve(I->getNumOperands()); 2174 ArgRegs.reserve(I->getNumOperands()); 2175 ArgVTs.reserve(I->getNumOperands()); 2176 ArgFlags.reserve(I->getNumOperands()); 2177 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2178 Value *Op = I->getOperand(i); 2179 unsigned Arg = getRegForValue(Op); 2180 if (Arg == 0) return false; 2181 2182 Type *ArgTy = Op->getType(); 2183 MVT ArgVT; 2184 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2185 2186 ISD::ArgFlagsTy Flags; 2187 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2188 Flags.setOrigAlign(OriginalAlignment); 2189 2190 Args.push_back(Op); 2191 ArgRegs.push_back(Arg); 2192 ArgVTs.push_back(ArgVT); 2193 ArgFlags.push_back(Flags); 2194 } 2195 2196 // Handle the arguments now that we've gotten them. 2197 SmallVector<unsigned, 4> RegArgs; 2198 unsigned NumBytes; 2199 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2200 RegArgs, CC, NumBytes, false)) 2201 return false; 2202 2203 unsigned CalleeReg = 0; 2204 if (EnableARMLongCalls) { 2205 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2206 if (CalleeReg == 0) return false; 2207 } 2208 2209 // Issue the call. 2210 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls); 2211 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2212 DL, TII.get(CallOpc)); 2213 if (isThumb2) { 2214 // Explicitly adding the predicate here. 2215 AddDefaultPred(MIB); 2216 if (EnableARMLongCalls) 2217 MIB.addReg(CalleeReg); 2218 else 2219 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2220 } else { 2221 if (EnableARMLongCalls) 2222 MIB.addReg(CalleeReg); 2223 else 2224 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2225 2226 // Explicitly adding the predicate here. 2227 AddDefaultPred(MIB); 2228 } 2229 // Add implicit physical register uses to the call. 2230 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2231 MIB.addReg(RegArgs[i]); 2232 2233 // Add a register mask with the call-preserved registers. 2234 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2235 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2236 2237 // Finish off the call including any return values. 2238 SmallVector<unsigned, 4> UsedRegs; 2239 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2240 2241 // Set all unused physreg defs as dead. 2242 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2243 2244 return true; 2245 } 2246 2247 bool ARMFastISel::SelectCall(const Instruction *I, 2248 const char *IntrMemName = 0) { 2249 const CallInst *CI = cast<CallInst>(I); 2250 const Value *Callee = CI->getCalledValue(); 2251 2252 // Can't handle inline asm. 2253 if (isa<InlineAsm>(Callee)) return false; 2254 2255 // Check the calling convention. 2256 ImmutableCallSite CS(CI); 2257 CallingConv::ID CC = CS.getCallingConv(); 2258 2259 // TODO: Avoid some calling conventions? 2260 2261 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2262 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2263 bool isVarArg = FTy->isVarArg(); 2264 2265 // Handle *simple* calls for now. 2266 Type *RetTy = I->getType(); 2267 MVT RetVT; 2268 if (RetTy->isVoidTy()) 2269 RetVT = MVT::isVoid; 2270 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2271 RetVT != MVT::i8 && RetVT != MVT::i1) 2272 return false; 2273 2274 // Can't handle non-double multi-reg retvals. 2275 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2276 RetVT != MVT::i16 && RetVT != MVT::i32) { 2277 SmallVector<CCValAssign, 16> RVLocs; 2278 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, RVLocs, *Context); 2279 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2280 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2281 return false; 2282 } 2283 2284 // Set up the argument vectors. 2285 SmallVector<Value*, 8> Args; 2286 SmallVector<unsigned, 8> ArgRegs; 2287 SmallVector<MVT, 8> ArgVTs; 2288 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2289 unsigned arg_size = CS.arg_size(); 2290 Args.reserve(arg_size); 2291 ArgRegs.reserve(arg_size); 2292 ArgVTs.reserve(arg_size); 2293 ArgFlags.reserve(arg_size); 2294 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2295 i != e; ++i) { 2296 // If we're lowering a memory intrinsic instead of a regular call, skip the 2297 // last two arguments, which shouldn't be passed to the underlying function. 2298 if (IntrMemName && e-i <= 2) 2299 break; 2300 2301 ISD::ArgFlagsTy Flags; 2302 unsigned AttrInd = i - CS.arg_begin() + 1; 2303 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2304 Flags.setSExt(); 2305 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2306 Flags.setZExt(); 2307 2308 // FIXME: Only handle *easy* calls for now. 2309 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2310 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2311 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2312 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2313 return false; 2314 2315 Type *ArgTy = (*i)->getType(); 2316 MVT ArgVT; 2317 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2318 ArgVT != MVT::i1) 2319 return false; 2320 2321 unsigned Arg = getRegForValue(*i); 2322 if (Arg == 0) 2323 return false; 2324 2325 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2326 Flags.setOrigAlign(OriginalAlignment); 2327 2328 Args.push_back(*i); 2329 ArgRegs.push_back(Arg); 2330 ArgVTs.push_back(ArgVT); 2331 ArgFlags.push_back(Flags); 2332 } 2333 2334 // Handle the arguments now that we've gotten them. 2335 SmallVector<unsigned, 4> RegArgs; 2336 unsigned NumBytes; 2337 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2338 RegArgs, CC, NumBytes, isVarArg)) 2339 return false; 2340 2341 bool UseReg = false; 2342 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2343 if (!GV || EnableARMLongCalls) UseReg = true; 2344 2345 unsigned CalleeReg = 0; 2346 if (UseReg) { 2347 if (IntrMemName) 2348 CalleeReg = getLibcallReg(IntrMemName); 2349 else 2350 CalleeReg = getRegForValue(Callee); 2351 2352 if (CalleeReg == 0) return false; 2353 } 2354 2355 // Issue the call. 2356 unsigned CallOpc = ARMSelectCallOp(UseReg); 2357 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2358 DL, TII.get(CallOpc)); 2359 if(isThumb2) { 2360 // Explicitly adding the predicate here. 2361 AddDefaultPred(MIB); 2362 if (UseReg) 2363 MIB.addReg(CalleeReg); 2364 else if (!IntrMemName) 2365 MIB.addGlobalAddress(GV, 0, 0); 2366 else 2367 MIB.addExternalSymbol(IntrMemName, 0); 2368 } else { 2369 if (UseReg) 2370 MIB.addReg(CalleeReg); 2371 else if (!IntrMemName) 2372 MIB.addGlobalAddress(GV, 0, 0); 2373 else 2374 MIB.addExternalSymbol(IntrMemName, 0); 2375 2376 // Explicitly adding the predicate here. 2377 AddDefaultPred(MIB); 2378 } 2379 2380 // Add implicit physical register uses to the call. 2381 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2382 MIB.addReg(RegArgs[i]); 2383 2384 // Add a register mask with the call-preserved registers. 2385 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2386 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2387 2388 // Finish off the call including any return values. 2389 SmallVector<unsigned, 4> UsedRegs; 2390 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2391 return false; 2392 2393 // Set all unused physreg defs as dead. 2394 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2395 2396 return true; 2397 } 2398 2399 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2400 return Len <= 16; 2401 } 2402 2403 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2404 uint64_t Len) { 2405 // Make sure we don't bloat code by inlining very large memcpy's. 2406 if (!ARMIsMemCpySmall(Len)) 2407 return false; 2408 2409 // We don't care about alignment here since we just emit integer accesses. 2410 while (Len) { 2411 MVT VT; 2412 if (Len >= 4) 2413 VT = MVT::i32; 2414 else if (Len >= 2) 2415 VT = MVT::i16; 2416 else { 2417 assert(Len == 1); 2418 VT = MVT::i8; 2419 } 2420 2421 bool RV; 2422 unsigned ResultReg; 2423 RV = ARMEmitLoad(VT, ResultReg, Src); 2424 assert (RV == true && "Should be able to handle this load."); 2425 RV = ARMEmitStore(VT, ResultReg, Dest); 2426 assert (RV == true && "Should be able to handle this store."); 2427 (void)RV; 2428 2429 unsigned Size = VT.getSizeInBits()/8; 2430 Len -= Size; 2431 Dest.Offset += Size; 2432 Src.Offset += Size; 2433 } 2434 2435 return true; 2436 } 2437 2438 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2439 // FIXME: Handle more intrinsics. 2440 switch (I.getIntrinsicID()) { 2441 default: return false; 2442 case Intrinsic::frameaddress: { 2443 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2444 MFI->setFrameAddressIsTaken(true); 2445 2446 unsigned LdrOpc; 2447 const TargetRegisterClass *RC; 2448 if (isThumb2) { 2449 LdrOpc = ARM::t2LDRi12; 2450 RC = (const TargetRegisterClass*)&ARM::tGPRRegClass; 2451 } else { 2452 LdrOpc = ARM::LDRi12; 2453 RC = (const TargetRegisterClass*)&ARM::GPRRegClass; 2454 } 2455 2456 const ARMBaseRegisterInfo *RegInfo = 2457 static_cast<const ARMBaseRegisterInfo*>(TM.getRegisterInfo()); 2458 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2459 unsigned SrcReg = FramePtr; 2460 2461 // Recursively load frame address 2462 // ldr r0 [fp] 2463 // ldr r0 [r0] 2464 // ldr r0 [r0] 2465 // ... 2466 unsigned DestReg; 2467 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2468 while (Depth--) { 2469 DestReg = createResultReg(RC); 2470 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2471 TII.get(LdrOpc), DestReg) 2472 .addReg(SrcReg).addImm(0)); 2473 SrcReg = DestReg; 2474 } 2475 UpdateValueMap(&I, SrcReg); 2476 return true; 2477 } 2478 case Intrinsic::memcpy: 2479 case Intrinsic::memmove: { 2480 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2481 // Don't handle volatile. 2482 if (MTI.isVolatile()) 2483 return false; 2484 2485 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2486 // we would emit dead code because we don't currently handle memmoves. 2487 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2488 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2489 // Small memcpy's are common enough that we want to do them without a call 2490 // if possible. 2491 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2492 if (ARMIsMemCpySmall(Len)) { 2493 Address Dest, Src; 2494 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2495 !ARMComputeAddress(MTI.getRawSource(), Src)) 2496 return false; 2497 if (ARMTryEmitSmallMemCpy(Dest, Src, Len)) 2498 return true; 2499 } 2500 } 2501 2502 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2503 return false; 2504 2505 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2506 return false; 2507 2508 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2509 return SelectCall(&I, IntrMemName); 2510 } 2511 case Intrinsic::memset: { 2512 const MemSetInst &MSI = cast<MemSetInst>(I); 2513 // Don't handle volatile. 2514 if (MSI.isVolatile()) 2515 return false; 2516 2517 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2518 return false; 2519 2520 if (MSI.getDestAddressSpace() > 255) 2521 return false; 2522 2523 return SelectCall(&I, "memset"); 2524 } 2525 case Intrinsic::trap: { 2526 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::TRAP)); 2527 return true; 2528 } 2529 } 2530 } 2531 2532 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2533 // The high bits for a type smaller than the register size are assumed to be 2534 // undefined. 2535 Value *Op = I->getOperand(0); 2536 2537 EVT SrcVT, DestVT; 2538 SrcVT = TLI.getValueType(Op->getType(), true); 2539 DestVT = TLI.getValueType(I->getType(), true); 2540 2541 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2542 return false; 2543 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2544 return false; 2545 2546 unsigned SrcReg = getRegForValue(Op); 2547 if (!SrcReg) return false; 2548 2549 // Because the high bits are undefined, a truncate doesn't generate 2550 // any code. 2551 UpdateValueMap(I, SrcReg); 2552 return true; 2553 } 2554 2555 unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, 2556 bool isZExt) { 2557 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2558 return 0; 2559 2560 unsigned Opc; 2561 bool isBoolZext = false; 2562 if (!SrcVT.isSimple()) return 0; 2563 switch (SrcVT.getSimpleVT().SimpleTy) { 2564 default: return 0; 2565 case MVT::i16: 2566 if (!Subtarget->hasV6Ops()) return 0; 2567 if (isZExt) 2568 Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH; 2569 else 2570 Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH; 2571 break; 2572 case MVT::i8: 2573 if (!Subtarget->hasV6Ops()) return 0; 2574 if (isZExt) 2575 Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB; 2576 else 2577 Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB; 2578 break; 2579 case MVT::i1: 2580 if (isZExt) { 2581 Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 2582 isBoolZext = true; 2583 break; 2584 } 2585 return 0; 2586 } 2587 2588 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 2589 MachineInstrBuilder MIB; 2590 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) 2591 .addReg(SrcReg); 2592 if (isBoolZext) 2593 MIB.addImm(1); 2594 else 2595 MIB.addImm(0); 2596 AddOptionalDefs(MIB); 2597 return ResultReg; 2598 } 2599 2600 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2601 // On ARM, in general, integer casts don't involve legal types; this code 2602 // handles promotable integers. 2603 Type *DestTy = I->getType(); 2604 Value *Src = I->getOperand(0); 2605 Type *SrcTy = Src->getType(); 2606 2607 EVT SrcVT, DestVT; 2608 SrcVT = TLI.getValueType(SrcTy, true); 2609 DestVT = TLI.getValueType(DestTy, true); 2610 2611 bool isZExt = isa<ZExtInst>(I); 2612 unsigned SrcReg = getRegForValue(Src); 2613 if (!SrcReg) return false; 2614 2615 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2616 if (ResultReg == 0) return false; 2617 UpdateValueMap(I, ResultReg); 2618 return true; 2619 } 2620 2621 bool ARMFastISel::SelectShift(const Instruction *I, 2622 ARM_AM::ShiftOpc ShiftTy) { 2623 // We handle thumb2 mode by target independent selector 2624 // or SelectionDAG ISel. 2625 if (isThumb2) 2626 return false; 2627 2628 // Only handle i32 now. 2629 EVT DestVT = TLI.getValueType(I->getType(), true); 2630 if (DestVT != MVT::i32) 2631 return false; 2632 2633 unsigned Opc = ARM::MOVsr; 2634 unsigned ShiftImm; 2635 Value *Src2Value = I->getOperand(1); 2636 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2637 ShiftImm = CI->getZExtValue(); 2638 2639 // Fall back to selection DAG isel if the shift amount 2640 // is zero or greater than the width of the value type. 2641 if (ShiftImm == 0 || ShiftImm >=32) 2642 return false; 2643 2644 Opc = ARM::MOVsi; 2645 } 2646 2647 Value *Src1Value = I->getOperand(0); 2648 unsigned Reg1 = getRegForValue(Src1Value); 2649 if (Reg1 == 0) return false; 2650 2651 unsigned Reg2; 2652 if (Opc == ARM::MOVsr) { 2653 Reg2 = getRegForValue(Src2Value); 2654 if (Reg2 == 0) return false; 2655 } 2656 2657 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 2658 if(ResultReg == 0) return false; 2659 2660 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2661 TII.get(Opc), ResultReg) 2662 .addReg(Reg1); 2663 2664 if (Opc == ARM::MOVsi) 2665 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2666 else if (Opc == ARM::MOVsr) { 2667 MIB.addReg(Reg2); 2668 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2669 } 2670 2671 AddOptionalDefs(MIB); 2672 UpdateValueMap(I, ResultReg); 2673 return true; 2674 } 2675 2676 // TODO: SoftFP support. 2677 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { 2678 2679 switch (I->getOpcode()) { 2680 case Instruction::Load: 2681 return SelectLoad(I); 2682 case Instruction::Store: 2683 return SelectStore(I); 2684 case Instruction::Br: 2685 return SelectBranch(I); 2686 case Instruction::IndirectBr: 2687 return SelectIndirectBr(I); 2688 case Instruction::ICmp: 2689 case Instruction::FCmp: 2690 return SelectCmp(I); 2691 case Instruction::FPExt: 2692 return SelectFPExt(I); 2693 case Instruction::FPTrunc: 2694 return SelectFPTrunc(I); 2695 case Instruction::SIToFP: 2696 return SelectIToFP(I, /*isSigned*/ true); 2697 case Instruction::UIToFP: 2698 return SelectIToFP(I, /*isSigned*/ false); 2699 case Instruction::FPToSI: 2700 return SelectFPToI(I, /*isSigned*/ true); 2701 case Instruction::FPToUI: 2702 return SelectFPToI(I, /*isSigned*/ false); 2703 case Instruction::Add: 2704 return SelectBinaryIntOp(I, ISD::ADD); 2705 case Instruction::Or: 2706 return SelectBinaryIntOp(I, ISD::OR); 2707 case Instruction::Sub: 2708 return SelectBinaryIntOp(I, ISD::SUB); 2709 case Instruction::FAdd: 2710 return SelectBinaryFPOp(I, ISD::FADD); 2711 case Instruction::FSub: 2712 return SelectBinaryFPOp(I, ISD::FSUB); 2713 case Instruction::FMul: 2714 return SelectBinaryFPOp(I, ISD::FMUL); 2715 case Instruction::SDiv: 2716 return SelectDiv(I, /*isSigned*/ true); 2717 case Instruction::UDiv: 2718 return SelectDiv(I, /*isSigned*/ false); 2719 case Instruction::SRem: 2720 return SelectRem(I, /*isSigned*/ true); 2721 case Instruction::URem: 2722 return SelectRem(I, /*isSigned*/ false); 2723 case Instruction::Call: 2724 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2725 return SelectIntrinsicCall(*II); 2726 return SelectCall(I); 2727 case Instruction::Select: 2728 return SelectSelect(I); 2729 case Instruction::Ret: 2730 return SelectRet(I); 2731 case Instruction::Trunc: 2732 return SelectTrunc(I); 2733 case Instruction::ZExt: 2734 case Instruction::SExt: 2735 return SelectIntExt(I); 2736 case Instruction::Shl: 2737 return SelectShift(I, ARM_AM::lsl); 2738 case Instruction::LShr: 2739 return SelectShift(I, ARM_AM::lsr); 2740 case Instruction::AShr: 2741 return SelectShift(I, ARM_AM::asr); 2742 default: break; 2743 } 2744 return false; 2745 } 2746 2747 /// TryToFoldLoad - The specified machine instr operand is a vreg, and that 2748 /// vreg is being provided by the specified load instruction. If possible, 2749 /// try to fold the load as an operand to the instruction, returning true if 2750 /// successful. 2751 bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo, 2752 const LoadInst *LI) { 2753 // Verify we have a legal type before going any further. 2754 MVT VT; 2755 if (!isLoadTypeLegal(LI->getType(), VT)) 2756 return false; 2757 2758 // Combine load followed by zero- or sign-extend. 2759 // ldrb r1, [r0] ldrb r1, [r0] 2760 // uxtb r2, r1 => 2761 // mov r3, r2 mov r3, r1 2762 bool isZExt = true; 2763 switch(MI->getOpcode()) { 2764 default: return false; 2765 case ARM::SXTH: 2766 case ARM::t2SXTH: 2767 isZExt = false; 2768 case ARM::UXTH: 2769 case ARM::t2UXTH: 2770 if (VT != MVT::i16) 2771 return false; 2772 break; 2773 case ARM::SXTB: 2774 case ARM::t2SXTB: 2775 isZExt = false; 2776 case ARM::UXTB: 2777 case ARM::t2UXTB: 2778 if (VT != MVT::i8) 2779 return false; 2780 break; 2781 } 2782 // See if we can handle this address. 2783 Address Addr; 2784 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2785 2786 unsigned ResultReg = MI->getOperand(0).getReg(); 2787 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2788 return false; 2789 MI->eraseFromParent(); 2790 return true; 2791 } 2792 2793 namespace llvm { 2794 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 2795 const TargetLibraryInfo *libInfo) { 2796 // Completely untested on non-iOS. 2797 const TargetMachine &TM = funcInfo.MF->getTarget(); 2798 2799 // Darwin and thumb1 only for now. 2800 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 2801 if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only()) 2802 return new ARMFastISel(funcInfo, libInfo); 2803 return 0; 2804 } 2805 } 2806