1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMAddressingModes.h"
18 #include "ARMBaseInstrInfo.h"
19 #include "ARMCallingConv.h"
20 #include "ARMRegisterInfo.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMSubtarget.h"
23 #include "ARMConstantPoolValue.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Instructions.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/Module.h"
30 #include "llvm/Operator.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/FastISel.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineConstantPool.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/Support/CallSite.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/GetElementPtrTypeIterator.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 using namespace llvm;
51 
52 static cl::opt<bool>
53 DisableARMFastISel("disable-arm-fast-isel",
54                     cl::desc("Turn off experimental ARM fast-isel support"),
55                     cl::init(false), cl::Hidden);
56 
57 extern cl::opt<bool> EnableARMLongCalls;
58 
59 namespace {
60 
61   // All possible address modes, plus some.
62   typedef struct Address {
63     enum {
64       RegBase,
65       FrameIndexBase
66     } BaseType;
67 
68     union {
69       unsigned Reg;
70       int FI;
71     } Base;
72 
73     int Offset;
74 
75     // Innocuous defaults for our address.
76     Address()
77      : BaseType(RegBase), Offset(0) {
78        Base.Reg = 0;
79      }
80   } Address;
81 
82 class ARMFastISel : public FastISel {
83 
84   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
85   /// make the right decision when generating code for different targets.
86   const ARMSubtarget *Subtarget;
87   const TargetMachine &TM;
88   const TargetInstrInfo &TII;
89   const TargetLowering &TLI;
90   ARMFunctionInfo *AFI;
91 
92   // Convenience variables to avoid some queries.
93   bool isThumb;
94   LLVMContext *Context;
95 
96   public:
97     explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
98     : FastISel(funcInfo),
99       TM(funcInfo.MF->getTarget()),
100       TII(*TM.getInstrInfo()),
101       TLI(*TM.getTargetLowering()) {
102       Subtarget = &TM.getSubtarget<ARMSubtarget>();
103       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
104       isThumb = AFI->isThumbFunction();
105       Context = &funcInfo.Fn->getContext();
106     }
107 
108     // Code from FastISel.cpp.
109     virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
110                                    const TargetRegisterClass *RC);
111     virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
112                                     const TargetRegisterClass *RC,
113                                     unsigned Op0, bool Op0IsKill);
114     virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
115                                      const TargetRegisterClass *RC,
116                                      unsigned Op0, bool Op0IsKill,
117                                      unsigned Op1, bool Op1IsKill);
118     virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode,
119                                       const TargetRegisterClass *RC,
120                                       unsigned Op0, bool Op0IsKill,
121                                       unsigned Op1, bool Op1IsKill,
122                                       unsigned Op2, bool Op2IsKill);
123     virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
124                                      const TargetRegisterClass *RC,
125                                      unsigned Op0, bool Op0IsKill,
126                                      uint64_t Imm);
127     virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
128                                      const TargetRegisterClass *RC,
129                                      unsigned Op0, bool Op0IsKill,
130                                      const ConstantFP *FPImm);
131     virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
132                                       const TargetRegisterClass *RC,
133                                       unsigned Op0, bool Op0IsKill,
134                                       unsigned Op1, bool Op1IsKill,
135                                       uint64_t Imm);
136     virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
137                                     const TargetRegisterClass *RC,
138                                     uint64_t Imm);
139     virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode,
140                                      const TargetRegisterClass *RC,
141                                      uint64_t Imm1, uint64_t Imm2);
142 
143     virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
144                                                 unsigned Op0, bool Op0IsKill,
145                                                 uint32_t Idx);
146 
147     // Backend specific FastISel code.
148     virtual bool TargetSelectInstruction(const Instruction *I);
149     virtual unsigned TargetMaterializeConstant(const Constant *C);
150     virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
151 
152   #include "ARMGenFastISel.inc"
153 
154     // Instruction selection routines.
155   private:
156     bool SelectLoad(const Instruction *I);
157     bool SelectStore(const Instruction *I);
158     bool SelectBranch(const Instruction *I);
159     bool SelectCmp(const Instruction *I);
160     bool SelectFPExt(const Instruction *I);
161     bool SelectFPTrunc(const Instruction *I);
162     bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
163     bool SelectSIToFP(const Instruction *I);
164     bool SelectFPToSI(const Instruction *I);
165     bool SelectSDiv(const Instruction *I);
166     bool SelectSRem(const Instruction *I);
167     bool SelectCall(const Instruction *I);
168     bool SelectSelect(const Instruction *I);
169     bool SelectRet(const Instruction *I);
170     bool SelectIntCast(const Instruction *I);
171 
172     // Utility routines.
173   private:
174     bool isTypeLegal(const Type *Ty, MVT &VT);
175     bool isLoadTypeLegal(const Type *Ty, MVT &VT);
176     bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr);
177     bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr);
178     bool ARMComputeAddress(const Value *Obj, Address &Addr);
179     void ARMSimplifyAddress(Address &Addr, EVT VT);
180     unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
181     unsigned ARMMaterializeInt(const Constant *C, EVT VT);
182     unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT);
183     unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
184     unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
185     unsigned ARMSelectCallOp(const GlobalValue *GV);
186 
187     // Call handling routines.
188   private:
189     bool FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
190                         unsigned &ResultReg);
191     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
192     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
193                          SmallVectorImpl<unsigned> &ArgRegs,
194                          SmallVectorImpl<MVT> &ArgVTs,
195                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
196                          SmallVectorImpl<unsigned> &RegArgs,
197                          CallingConv::ID CC,
198                          unsigned &NumBytes);
199     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
200                     const Instruction *I, CallingConv::ID CC,
201                     unsigned &NumBytes);
202     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
203 
204     // OptionalDef handling routines.
205   private:
206     bool isARMNEONPred(const MachineInstr *MI);
207     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
208     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
209     void AddLoadStoreOperands(EVT VT, Address &Addr,
210                               const MachineInstrBuilder &MIB,
211                               unsigned Flags);
212 };
213 
214 } // end anonymous namespace
215 
216 #include "ARMGenCallingConv.inc"
217 
218 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
219 // we don't care about implicit defs here, just places we'll need to add a
220 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
221 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
222   const TargetInstrDesc &TID = MI->getDesc();
223   if (!TID.hasOptionalDef())
224     return false;
225 
226   // Look to see if our OptionalDef is defining CPSR or CCR.
227   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
228     const MachineOperand &MO = MI->getOperand(i);
229     if (!MO.isReg() || !MO.isDef()) continue;
230     if (MO.getReg() == ARM::CPSR)
231       *CPSR = true;
232   }
233   return true;
234 }
235 
236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
237   const TargetInstrDesc &TID = MI->getDesc();
238 
239   // If we're a thumb2 or not NEON function we were handled via isPredicable.
240   if ((TID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
241        AFI->isThumb2Function())
242     return false;
243 
244   for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i)
245     if (TID.OpInfo[i].isPredicate())
246       return true;
247 
248   return false;
249 }
250 
251 // If the machine is predicable go ahead and add the predicate operands, if
252 // it needs default CC operands add those.
253 // TODO: If we want to support thumb1 then we'll need to deal with optional
254 // CPSR defs that need to be added before the remaining operands. See s_cc_out
255 // for descriptions why.
256 const MachineInstrBuilder &
257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
258   MachineInstr *MI = &*MIB;
259 
260   // Do we use a predicate? or...
261   // Are we NEON in ARM mode and have a predicate operand? If so, I know
262   // we're not predicable but add it anyways.
263   if (TII.isPredicable(MI) || isARMNEONPred(MI))
264     AddDefaultPred(MIB);
265 
266   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
267   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
268   bool CPSR = false;
269   if (DefinesOptionalPredicate(MI, &CPSR)) {
270     if (CPSR)
271       AddDefaultT1CC(MIB);
272     else
273       AddDefaultCC(MIB);
274   }
275   return MIB;
276 }
277 
278 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
279                                     const TargetRegisterClass* RC) {
280   unsigned ResultReg = createResultReg(RC);
281   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
282 
283   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
284   return ResultReg;
285 }
286 
287 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
288                                      const TargetRegisterClass *RC,
289                                      unsigned Op0, bool Op0IsKill) {
290   unsigned ResultReg = createResultReg(RC);
291   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
292 
293   if (II.getNumDefs() >= 1)
294     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
295                    .addReg(Op0, Op0IsKill * RegState::Kill));
296   else {
297     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
298                    .addReg(Op0, Op0IsKill * RegState::Kill));
299     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
300                    TII.get(TargetOpcode::COPY), ResultReg)
301                    .addReg(II.ImplicitDefs[0]));
302   }
303   return ResultReg;
304 }
305 
306 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
307                                       const TargetRegisterClass *RC,
308                                       unsigned Op0, bool Op0IsKill,
309                                       unsigned Op1, bool Op1IsKill) {
310   unsigned ResultReg = createResultReg(RC);
311   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
312 
313   if (II.getNumDefs() >= 1)
314     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
315                    .addReg(Op0, Op0IsKill * RegState::Kill)
316                    .addReg(Op1, Op1IsKill * RegState::Kill));
317   else {
318     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
319                    .addReg(Op0, Op0IsKill * RegState::Kill)
320                    .addReg(Op1, Op1IsKill * RegState::Kill));
321     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
322                            TII.get(TargetOpcode::COPY), ResultReg)
323                    .addReg(II.ImplicitDefs[0]));
324   }
325   return ResultReg;
326 }
327 
328 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
329                                        const TargetRegisterClass *RC,
330                                        unsigned Op0, bool Op0IsKill,
331                                        unsigned Op1, bool Op1IsKill,
332                                        unsigned Op2, bool Op2IsKill) {
333   unsigned ResultReg = createResultReg(RC);
334   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
335 
336   if (II.getNumDefs() >= 1)
337     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
338                    .addReg(Op0, Op0IsKill * RegState::Kill)
339                    .addReg(Op1, Op1IsKill * RegState::Kill)
340                    .addReg(Op2, Op2IsKill * RegState::Kill));
341   else {
342     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
343                    .addReg(Op0, Op0IsKill * RegState::Kill)
344                    .addReg(Op1, Op1IsKill * RegState::Kill)
345                    .addReg(Op2, Op2IsKill * RegState::Kill));
346     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
347                            TII.get(TargetOpcode::COPY), ResultReg)
348                    .addReg(II.ImplicitDefs[0]));
349   }
350   return ResultReg;
351 }
352 
353 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
354                                       const TargetRegisterClass *RC,
355                                       unsigned Op0, bool Op0IsKill,
356                                       uint64_t Imm) {
357   unsigned ResultReg = createResultReg(RC);
358   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
359 
360   if (II.getNumDefs() >= 1)
361     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
362                    .addReg(Op0, Op0IsKill * RegState::Kill)
363                    .addImm(Imm));
364   else {
365     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
366                    .addReg(Op0, Op0IsKill * RegState::Kill)
367                    .addImm(Imm));
368     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
369                            TII.get(TargetOpcode::COPY), ResultReg)
370                    .addReg(II.ImplicitDefs[0]));
371   }
372   return ResultReg;
373 }
374 
375 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
376                                       const TargetRegisterClass *RC,
377                                       unsigned Op0, bool Op0IsKill,
378                                       const ConstantFP *FPImm) {
379   unsigned ResultReg = createResultReg(RC);
380   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
381 
382   if (II.getNumDefs() >= 1)
383     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
384                    .addReg(Op0, Op0IsKill * RegState::Kill)
385                    .addFPImm(FPImm));
386   else {
387     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
388                    .addReg(Op0, Op0IsKill * RegState::Kill)
389                    .addFPImm(FPImm));
390     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
391                            TII.get(TargetOpcode::COPY), ResultReg)
392                    .addReg(II.ImplicitDefs[0]));
393   }
394   return ResultReg;
395 }
396 
397 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
398                                        const TargetRegisterClass *RC,
399                                        unsigned Op0, bool Op0IsKill,
400                                        unsigned Op1, bool Op1IsKill,
401                                        uint64_t Imm) {
402   unsigned ResultReg = createResultReg(RC);
403   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
404 
405   if (II.getNumDefs() >= 1)
406     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
407                    .addReg(Op0, Op0IsKill * RegState::Kill)
408                    .addReg(Op1, Op1IsKill * RegState::Kill)
409                    .addImm(Imm));
410   else {
411     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
412                    .addReg(Op0, Op0IsKill * RegState::Kill)
413                    .addReg(Op1, Op1IsKill * RegState::Kill)
414                    .addImm(Imm));
415     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
416                            TII.get(TargetOpcode::COPY), ResultReg)
417                    .addReg(II.ImplicitDefs[0]));
418   }
419   return ResultReg;
420 }
421 
422 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
423                                      const TargetRegisterClass *RC,
424                                      uint64_t Imm) {
425   unsigned ResultReg = createResultReg(RC);
426   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
427 
428   if (II.getNumDefs() >= 1)
429     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
430                    .addImm(Imm));
431   else {
432     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
433                    .addImm(Imm));
434     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
435                            TII.get(TargetOpcode::COPY), ResultReg)
436                    .addReg(II.ImplicitDefs[0]));
437   }
438   return ResultReg;
439 }
440 
441 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
442                                       const TargetRegisterClass *RC,
443                                       uint64_t Imm1, uint64_t Imm2) {
444   unsigned ResultReg = createResultReg(RC);
445   const TargetInstrDesc &II = TII.get(MachineInstOpcode);
446 
447   if (II.getNumDefs() >= 1)
448     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
449                     .addImm(Imm1).addImm(Imm2));
450   else {
451     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
452                     .addImm(Imm1).addImm(Imm2));
453     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
454                             TII.get(TargetOpcode::COPY),
455                             ResultReg)
456                     .addReg(II.ImplicitDefs[0]));
457   }
458   return ResultReg;
459 }
460 
461 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
462                                                  unsigned Op0, bool Op0IsKill,
463                                                  uint32_t Idx) {
464   unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
465   assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
466          "Cannot yet extract from physregs");
467   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
468                          DL, TII.get(TargetOpcode::COPY), ResultReg)
469                  .addReg(Op0, getKillRegState(Op0IsKill), Idx));
470   return ResultReg;
471 }
472 
473 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
474 // checks from the various callers.
475 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
476   if (VT == MVT::f64) return 0;
477 
478   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
479   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
480                           TII.get(ARM::VMOVRS), MoveReg)
481                   .addReg(SrcReg));
482   return MoveReg;
483 }
484 
485 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
486   if (VT == MVT::i64) return 0;
487 
488   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
489   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
490                           TII.get(ARM::VMOVSR), MoveReg)
491                   .addReg(SrcReg));
492   return MoveReg;
493 }
494 
495 // For double width floating point we need to materialize two constants
496 // (the high and the low) into integer registers then use a move to get
497 // the combined constant into an FP reg.
498 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
499   const APFloat Val = CFP->getValueAPF();
500   bool is64bit = VT == MVT::f64;
501 
502   // This checks to see if we can use VFP3 instructions to materialize
503   // a constant, otherwise we have to go through the constant pool.
504   if (TLI.isFPImmLegal(Val, VT)) {
505     unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
506     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
507     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
508                             DestReg)
509                     .addFPImm(CFP));
510     return DestReg;
511   }
512 
513   // Require VFP2 for loading fp constants.
514   if (!Subtarget->hasVFP2()) return false;
515 
516   // MachineConstantPool wants an explicit alignment.
517   unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
518   if (Align == 0) {
519     // TODO: Figure out if this is correct.
520     Align = TD.getTypeAllocSize(CFP->getType());
521   }
522   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
523   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
524   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
525 
526   // The extra reg is for addrmode5.
527   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
528                           DestReg)
529                   .addConstantPoolIndex(Idx)
530                   .addReg(0));
531   return DestReg;
532 }
533 
534 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) {
535 
536   // For now 32-bit only.
537   if (VT != MVT::i32) return false;
538 
539   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
540 
541   // If we can do this in a single instruction without a constant pool entry
542   // do so now.
543   const ConstantInt *CI = cast<ConstantInt>(C);
544   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getSExtValue())) {
545     unsigned Opc = isThumb ? ARM::t2MOVi16 : ARM::MOVi16;
546     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
547                             TII.get(Opc), DestReg)
548                     .addImm(CI->getSExtValue()));
549     return DestReg;
550   }
551 
552   // MachineConstantPool wants an explicit alignment.
553   unsigned Align = TD.getPrefTypeAlignment(C->getType());
554   if (Align == 0) {
555     // TODO: Figure out if this is correct.
556     Align = TD.getTypeAllocSize(C->getType());
557   }
558   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
559 
560   if (isThumb)
561     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
562                             TII.get(ARM::t2LDRpci), DestReg)
563                     .addConstantPoolIndex(Idx));
564   else
565     // The extra immediate is for addrmode2.
566     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
567                             TII.get(ARM::LDRcp), DestReg)
568                     .addConstantPoolIndex(Idx)
569                     .addImm(0));
570 
571   return DestReg;
572 }
573 
574 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) {
575   // For now 32-bit only.
576   if (VT != MVT::i32) return 0;
577 
578   Reloc::Model RelocM = TM.getRelocationModel();
579 
580   // TODO: No external globals for now.
581   if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) return 0;
582 
583   // TODO: Need more magic for ARM PIC.
584   if (!isThumb && (RelocM == Reloc::PIC_)) return 0;
585 
586   // MachineConstantPool wants an explicit alignment.
587   unsigned Align = TD.getPrefTypeAlignment(GV->getType());
588   if (Align == 0) {
589     // TODO: Figure out if this is correct.
590     Align = TD.getTypeAllocSize(GV->getType());
591   }
592 
593   // Grab index.
594   unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb() ? 4 : 8);
595   unsigned Id = AFI->createPICLabelUId();
596   ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, Id,
597                                                        ARMCP::CPValue, PCAdj);
598   unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
599 
600   // Load value.
601   MachineInstrBuilder MIB;
602   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
603   if (isThumb) {
604     unsigned Opc = (RelocM != Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
605     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
606           .addConstantPoolIndex(Idx);
607     if (RelocM == Reloc::PIC_)
608       MIB.addImm(Id);
609   } else {
610     // The extra immediate is for addrmode2.
611     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp),
612                   DestReg)
613           .addConstantPoolIndex(Idx)
614           .addImm(0);
615   }
616   AddOptionalDefs(MIB);
617   return DestReg;
618 }
619 
620 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
621   EVT VT = TLI.getValueType(C->getType(), true);
622 
623   // Only handle simple types.
624   if (!VT.isSimple()) return 0;
625 
626   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
627     return ARMMaterializeFP(CFP, VT);
628   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
629     return ARMMaterializeGV(GV, VT);
630   else if (isa<ConstantInt>(C))
631     return ARMMaterializeInt(C, VT);
632 
633   return 0;
634 }
635 
636 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
637   // Don't handle dynamic allocas.
638   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
639 
640   MVT VT;
641   if (!isLoadTypeLegal(AI->getType(), VT)) return false;
642 
643   DenseMap<const AllocaInst*, int>::iterator SI =
644     FuncInfo.StaticAllocaMap.find(AI);
645 
646   // This will get lowered later into the correct offsets and registers
647   // via rewriteXFrameIndex.
648   if (SI != FuncInfo.StaticAllocaMap.end()) {
649     TargetRegisterClass* RC = TLI.getRegClassFor(VT);
650     unsigned ResultReg = createResultReg(RC);
651     unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
652     AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
653                             TII.get(Opc), ResultReg)
654                             .addFrameIndex(SI->second)
655                             .addImm(0));
656     return ResultReg;
657   }
658 
659   return 0;
660 }
661 
662 bool ARMFastISel::isTypeLegal(const Type *Ty, MVT &VT) {
663   EVT evt = TLI.getValueType(Ty, true);
664 
665   // Only handle simple types.
666   if (evt == MVT::Other || !evt.isSimple()) return false;
667   VT = evt.getSimpleVT();
668 
669   // Handle all legal types, i.e. a register that will directly hold this
670   // value.
671   return TLI.isTypeLegal(VT);
672 }
673 
674 bool ARMFastISel::isLoadTypeLegal(const Type *Ty, MVT &VT) {
675   if (isTypeLegal(Ty, VT)) return true;
676 
677   // If this is a type than can be sign or zero-extended to a basic operation
678   // go ahead and accept it now.
679   if (VT == MVT::i8 || VT == MVT::i16)
680     return true;
681 
682   return false;
683 }
684 
685 // Computes the address to get to an object.
686 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
687   // Some boilerplate from the X86 FastISel.
688   const User *U = NULL;
689   unsigned Opcode = Instruction::UserOp1;
690   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
691     // Don't walk into other basic blocks unless the object is an alloca from
692     // another block, otherwise it may not have a virtual register assigned.
693     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
694         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
695       Opcode = I->getOpcode();
696       U = I;
697     }
698   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
699     Opcode = C->getOpcode();
700     U = C;
701   }
702 
703   if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
704     if (Ty->getAddressSpace() > 255)
705       // Fast instruction selection doesn't support the special
706       // address spaces.
707       return false;
708 
709   switch (Opcode) {
710     default:
711     break;
712     case Instruction::BitCast: {
713       // Look through bitcasts.
714       return ARMComputeAddress(U->getOperand(0), Addr);
715     }
716     case Instruction::IntToPtr: {
717       // Look past no-op inttoptrs.
718       if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
719         return ARMComputeAddress(U->getOperand(0), Addr);
720       break;
721     }
722     case Instruction::PtrToInt: {
723       // Look past no-op ptrtoints.
724       if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
725         return ARMComputeAddress(U->getOperand(0), Addr);
726       break;
727     }
728     case Instruction::GetElementPtr: {
729       Address SavedAddr = Addr;
730       int TmpOffset = Addr.Offset;
731 
732       // Iterate through the GEP folding the constants into offsets where
733       // we can.
734       gep_type_iterator GTI = gep_type_begin(U);
735       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
736            i != e; ++i, ++GTI) {
737         const Value *Op = *i;
738         if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
739           const StructLayout *SL = TD.getStructLayout(STy);
740           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
741           TmpOffset += SL->getElementOffset(Idx);
742         } else {
743           uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
744           for (;;) {
745             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
746               // Constant-offset addressing.
747               TmpOffset += CI->getSExtValue() * S;
748               break;
749             }
750             if (isa<AddOperator>(Op) &&
751                 (!isa<Instruction>(Op) ||
752                  FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
753                  == FuncInfo.MBB) &&
754                 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
755               // An add (in the same block) with a constant operand. Fold the
756               // constant.
757               ConstantInt *CI =
758               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
759               TmpOffset += CI->getSExtValue() * S;
760               // Iterate on the other operand.
761               Op = cast<AddOperator>(Op)->getOperand(0);
762               continue;
763             }
764             // Unsupported
765             goto unsupported_gep;
766           }
767         }
768       }
769 
770       // Try to grab the base operand now.
771       Addr.Offset = TmpOffset;
772       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
773 
774       // We failed, restore everything and try the other options.
775       Addr = SavedAddr;
776 
777       unsupported_gep:
778       break;
779     }
780     case Instruction::Alloca: {
781       const AllocaInst *AI = cast<AllocaInst>(Obj);
782       DenseMap<const AllocaInst*, int>::iterator SI =
783         FuncInfo.StaticAllocaMap.find(AI);
784       if (SI != FuncInfo.StaticAllocaMap.end()) {
785         Addr.BaseType = Address::FrameIndexBase;
786         Addr.Base.FI = SI->second;
787         return true;
788       }
789       break;
790     }
791   }
792 
793   // Materialize the global variable's address into a reg which can
794   // then be used later to load the variable.
795   if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
796     unsigned Tmp = ARMMaterializeGV(GV, TLI.getValueType(Obj->getType()));
797     if (Tmp == 0) return false;
798 
799     Addr.Base.Reg = Tmp;
800     return true;
801   }
802 
803   // Try to get this in a register if nothing else has worked.
804   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
805   return Addr.Base.Reg != 0;
806 }
807 
808 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT) {
809 
810   assert(VT.isSimple() && "Non-simple types are invalid here!");
811 
812   bool needsLowering = false;
813   switch (VT.getSimpleVT().SimpleTy) {
814     default:
815       assert(false && "Unhandled load/store type!");
816     case MVT::i1:
817     case MVT::i8:
818     case MVT::i16:
819     case MVT::i32:
820       // Integer loads/stores handle 12-bit offsets.
821       needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
822       break;
823     case MVT::f32:
824     case MVT::f64:
825       // Floating point operands handle 8-bit offsets.
826       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
827       break;
828   }
829 
830   // If this is a stack pointer and the offset needs to be simplified then
831   // put the alloca address into a register, set the base type back to
832   // register and continue. This should almost never happen.
833   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
834     TargetRegisterClass *RC = isThumb ? ARM::tGPRRegisterClass :
835                               ARM::GPRRegisterClass;
836     unsigned ResultReg = createResultReg(RC);
837     unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
838     AddOptionalDefs(BuildMI(*FuncInfo.MBB, *FuncInfo.InsertPt, DL,
839                             TII.get(Opc), ResultReg)
840                             .addFrameIndex(Addr.Base.FI)
841                             .addImm(0));
842     Addr.Base.Reg = ResultReg;
843     Addr.BaseType = Address::RegBase;
844   }
845 
846   // Since the offset is too large for the load/store instruction
847   // get the reg+offset into a register.
848   if (needsLowering) {
849     Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
850                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
851     Addr.Offset = 0;
852   }
853 }
854 
855 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr,
856                                        const MachineInstrBuilder &MIB,
857                                        unsigned Flags) {
858   // addrmode5 output depends on the selection dag addressing dividing the
859   // offset by 4 that it then later multiplies. Do this here as well.
860   if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
861       VT.getSimpleVT().SimpleTy == MVT::f64)
862     Addr.Offset /= 4;
863 
864   // Frame base works a bit differently. Handle it separately.
865   if (Addr.BaseType == Address::FrameIndexBase) {
866     int FI = Addr.Base.FI;
867     int Offset = Addr.Offset;
868     MachineMemOperand *MMO =
869           FuncInfo.MF->getMachineMemOperand(
870                                   MachinePointerInfo::getFixedStack(FI, Offset),
871                                   Flags,
872                                   MFI.getObjectSize(FI),
873                                   MFI.getObjectAlignment(FI));
874     // Now add the rest of the operands.
875     MIB.addFrameIndex(FI);
876 
877     // ARM halfword load/stores need an additional operand.
878     if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
879 
880     MIB.addImm(Addr.Offset);
881     MIB.addMemOperand(MMO);
882   } else {
883     // Now add the rest of the operands.
884     MIB.addReg(Addr.Base.Reg);
885 
886     // ARM halfword load/stores need an additional operand.
887     if (!isThumb && VT.getSimpleVT().SimpleTy == MVT::i16) MIB.addReg(0);
888 
889     MIB.addImm(Addr.Offset);
890   }
891   AddOptionalDefs(MIB);
892 }
893 
894 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr) {
895 
896   assert(VT.isSimple() && "Non-simple types are invalid here!");
897   unsigned Opc;
898   TargetRegisterClass *RC;
899   switch (VT.getSimpleVT().SimpleTy) {
900     // This is mostly going to be Neon/vector support.
901     default: return false;
902     case MVT::i16:
903       Opc = isThumb ? ARM::t2LDRHi12 : ARM::LDRH;
904       RC = ARM::GPRRegisterClass;
905       break;
906     case MVT::i8:
907       Opc = isThumb ? ARM::t2LDRBi12 : ARM::LDRBi12;
908       RC = ARM::GPRRegisterClass;
909       break;
910     case MVT::i32:
911       Opc = isThumb ? ARM::t2LDRi12 : ARM::LDRi12;
912       RC = ARM::GPRRegisterClass;
913       break;
914     case MVT::f32:
915       Opc = ARM::VLDRS;
916       RC = TLI.getRegClassFor(VT);
917       break;
918     case MVT::f64:
919       Opc = ARM::VLDRD;
920       RC = TLI.getRegClassFor(VT);
921       break;
922   }
923   // Simplify this down to something we can handle.
924   ARMSimplifyAddress(Addr, VT);
925 
926   // Create the base instruction, then add the operands.
927   ResultReg = createResultReg(RC);
928   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
929                                     TII.get(Opc), ResultReg);
930   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad);
931   return true;
932 }
933 
934 bool ARMFastISel::SelectLoad(const Instruction *I) {
935   // Verify we have a legal type before going any further.
936   MVT VT;
937   if (!isLoadTypeLegal(I->getType(), VT))
938     return false;
939 
940   // See if we can handle this address.
941   Address Addr;
942   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
943 
944   unsigned ResultReg;
945   if (!ARMEmitLoad(VT, ResultReg, Addr)) return false;
946   UpdateValueMap(I, ResultReg);
947   return true;
948 }
949 
950 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr) {
951   unsigned StrOpc;
952   switch (VT.getSimpleVT().SimpleTy) {
953     // This is mostly going to be Neon/vector support.
954     default: return false;
955     case MVT::i1: {
956       unsigned Res = createResultReg(isThumb ? ARM::tGPRRegisterClass :
957                                                ARM::GPRRegisterClass);
958       unsigned Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
959       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
960                               TII.get(Opc), Res)
961                       .addReg(SrcReg).addImm(1));
962       SrcReg = Res;
963     } // Fallthrough here.
964     case MVT::i8:
965       StrOpc = isThumb ? ARM::t2STRBi12 : ARM::STRBi12;
966       break;
967     case MVT::i16:
968       StrOpc = isThumb ? ARM::t2STRHi12 : ARM::STRH;
969       break;
970     case MVT::i32:
971       StrOpc = isThumb ? ARM::t2STRi12 : ARM::STRi12;
972       break;
973     case MVT::f32:
974       if (!Subtarget->hasVFP2()) return false;
975       StrOpc = ARM::VSTRS;
976       break;
977     case MVT::f64:
978       if (!Subtarget->hasVFP2()) return false;
979       StrOpc = ARM::VSTRD;
980       break;
981   }
982   // Simplify this down to something we can handle.
983   ARMSimplifyAddress(Addr, VT);
984 
985   // Create the base instruction, then add the operands.
986   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
987                                     TII.get(StrOpc))
988                             .addReg(SrcReg, getKillRegState(true));
989   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore);
990   return true;
991 }
992 
993 bool ARMFastISel::SelectStore(const Instruction *I) {
994   Value *Op0 = I->getOperand(0);
995   unsigned SrcReg = 0;
996 
997   // Verify we have a legal type before going any further.
998   MVT VT;
999   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1000     return false;
1001 
1002   // Get the value to be stored into a register.
1003   SrcReg = getRegForValue(Op0);
1004   if (SrcReg == 0) return false;
1005 
1006   // See if we can handle this address.
1007   Address Addr;
1008   if (!ARMComputeAddress(I->getOperand(1), Addr))
1009     return false;
1010 
1011   if (!ARMEmitStore(VT, SrcReg, Addr)) return false;
1012   return true;
1013 }
1014 
1015 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1016   switch (Pred) {
1017     // Needs two compares...
1018     case CmpInst::FCMP_ONE:
1019     case CmpInst::FCMP_UEQ:
1020     default:
1021       // AL is our "false" for now. The other two need more compares.
1022       return ARMCC::AL;
1023     case CmpInst::ICMP_EQ:
1024     case CmpInst::FCMP_OEQ:
1025       return ARMCC::EQ;
1026     case CmpInst::ICMP_SGT:
1027     case CmpInst::FCMP_OGT:
1028       return ARMCC::GT;
1029     case CmpInst::ICMP_SGE:
1030     case CmpInst::FCMP_OGE:
1031       return ARMCC::GE;
1032     case CmpInst::ICMP_UGT:
1033     case CmpInst::FCMP_UGT:
1034       return ARMCC::HI;
1035     case CmpInst::FCMP_OLT:
1036       return ARMCC::MI;
1037     case CmpInst::ICMP_ULE:
1038     case CmpInst::FCMP_OLE:
1039       return ARMCC::LS;
1040     case CmpInst::FCMP_ORD:
1041       return ARMCC::VC;
1042     case CmpInst::FCMP_UNO:
1043       return ARMCC::VS;
1044     case CmpInst::FCMP_UGE:
1045       return ARMCC::PL;
1046     case CmpInst::ICMP_SLT:
1047     case CmpInst::FCMP_ULT:
1048       return ARMCC::LT;
1049     case CmpInst::ICMP_SLE:
1050     case CmpInst::FCMP_ULE:
1051       return ARMCC::LE;
1052     case CmpInst::FCMP_UNE:
1053     case CmpInst::ICMP_NE:
1054       return ARMCC::NE;
1055     case CmpInst::ICMP_UGE:
1056       return ARMCC::HS;
1057     case CmpInst::ICMP_ULT:
1058       return ARMCC::LO;
1059   }
1060 }
1061 
1062 bool ARMFastISel::SelectBranch(const Instruction *I) {
1063   const BranchInst *BI = cast<BranchInst>(I);
1064   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1065   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1066 
1067   // Simple branch support.
1068 
1069   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1070   // behavior.
1071   // TODO: Factor this out.
1072   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1073     MVT SourceVT;
1074     const Type *Ty = CI->getOperand(0)->getType();
1075     if (CI->hasOneUse() && (CI->getParent() == I->getParent())
1076         && isTypeLegal(Ty, SourceVT)) {
1077       bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1078       if (isFloat && !Subtarget->hasVFP2())
1079         return false;
1080 
1081       unsigned CmpOpc;
1082       switch (SourceVT.SimpleTy) {
1083         default: return false;
1084         // TODO: Verify compares.
1085         case MVT::f32:
1086           CmpOpc = ARM::VCMPES;
1087           break;
1088         case MVT::f64:
1089           CmpOpc = ARM::VCMPED;
1090           break;
1091         case MVT::i32:
1092           CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1093           break;
1094       }
1095 
1096       // Get the compare predicate.
1097       // Try to take advantage of fallthrough opportunities.
1098       CmpInst::Predicate Predicate = CI->getPredicate();
1099       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1100         std::swap(TBB, FBB);
1101         Predicate = CmpInst::getInversePredicate(Predicate);
1102       }
1103 
1104       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1105 
1106       // We may not handle every CC for now.
1107       if (ARMPred == ARMCC::AL) return false;
1108 
1109       unsigned Arg1 = getRegForValue(CI->getOperand(0));
1110       if (Arg1 == 0) return false;
1111 
1112       unsigned Arg2 = getRegForValue(CI->getOperand(1));
1113       if (Arg2 == 0) return false;
1114 
1115       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1116                               TII.get(CmpOpc))
1117                       .addReg(Arg1).addReg(Arg2));
1118 
1119       // For floating point we need to move the result to a comparison register
1120       // that we can then use for branches.
1121       if (isFloat)
1122         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1123                                 TII.get(ARM::FMSTAT)));
1124 
1125       unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1126       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1127       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1128       FastEmitBranch(FBB, DL);
1129       FuncInfo.MBB->addSuccessor(TBB);
1130       return true;
1131     }
1132   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1133     MVT SourceVT;
1134     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1135         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1136       unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1137       unsigned OpReg = getRegForValue(TI->getOperand(0));
1138       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1139                               TII.get(TstOpc))
1140                       .addReg(OpReg).addImm(1));
1141 
1142       unsigned CCMode = ARMCC::NE;
1143       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1144         std::swap(TBB, FBB);
1145         CCMode = ARMCC::EQ;
1146       }
1147 
1148       unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1149       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1150       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1151 
1152       FastEmitBranch(FBB, DL);
1153       FuncInfo.MBB->addSuccessor(TBB);
1154       return true;
1155     }
1156   }
1157 
1158   unsigned CmpReg = getRegForValue(BI->getCondition());
1159   if (CmpReg == 0) return false;
1160 
1161   // We've been divorced from our compare!  Our block was split, and
1162   // now our compare lives in a predecessor block.  We musn't
1163   // re-compare here, as the children of the compare aren't guaranteed
1164   // live across the block boundary (we *could* check for this).
1165   // Regardless, the compare has been done in the predecessor block,
1166   // and it left a value for us in a virtual register.  Ergo, we test
1167   // the one-bit value left in the virtual register.
1168   unsigned TstOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1169   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc))
1170                   .addReg(CmpReg).addImm(1));
1171 
1172   unsigned CCMode = ARMCC::NE;
1173   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1174     std::swap(TBB, FBB);
1175     CCMode = ARMCC::EQ;
1176   }
1177 
1178   unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
1179   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
1180                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1181   FastEmitBranch(FBB, DL);
1182   FuncInfo.MBB->addSuccessor(TBB);
1183   return true;
1184 }
1185 
1186 bool ARMFastISel::SelectCmp(const Instruction *I) {
1187   const CmpInst *CI = cast<CmpInst>(I);
1188 
1189   MVT VT;
1190   const Type *Ty = CI->getOperand(0)->getType();
1191   if (!isTypeLegal(Ty, VT))
1192     return false;
1193 
1194   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1195   if (isFloat && !Subtarget->hasVFP2())
1196     return false;
1197 
1198   unsigned CmpOpc;
1199   unsigned CondReg;
1200   switch (VT.SimpleTy) {
1201     default: return false;
1202     // TODO: Verify compares.
1203     case MVT::f32:
1204       CmpOpc = ARM::VCMPES;
1205       CondReg = ARM::FPSCR;
1206       break;
1207     case MVT::f64:
1208       CmpOpc = ARM::VCMPED;
1209       CondReg = ARM::FPSCR;
1210       break;
1211     case MVT::i32:
1212       CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
1213       CondReg = ARM::CPSR;
1214       break;
1215   }
1216 
1217   // Get the compare predicate.
1218   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1219 
1220   // We may not handle every CC for now.
1221   if (ARMPred == ARMCC::AL) return false;
1222 
1223   unsigned Arg1 = getRegForValue(CI->getOperand(0));
1224   if (Arg1 == 0) return false;
1225 
1226   unsigned Arg2 = getRegForValue(CI->getOperand(1));
1227   if (Arg2 == 0) return false;
1228 
1229   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1230                   .addReg(Arg1).addReg(Arg2));
1231 
1232   // For floating point we need to move the result to a comparison register
1233   // that we can then use for branches.
1234   if (isFloat)
1235     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1236                             TII.get(ARM::FMSTAT)));
1237 
1238   // Now set a register based on the comparison. Explicitly set the predicates
1239   // here.
1240   unsigned MovCCOpc = isThumb ? ARM::t2MOVCCi : ARM::MOVCCi;
1241   TargetRegisterClass *RC = isThumb ? ARM::rGPRRegisterClass
1242                                     : ARM::GPRRegisterClass;
1243   unsigned DestReg = createResultReg(RC);
1244   Constant *Zero
1245     = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1246   unsigned ZeroReg = TargetMaterializeConstant(Zero);
1247   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg)
1248           .addReg(ZeroReg).addImm(1)
1249           .addImm(ARMPred).addReg(CondReg);
1250 
1251   UpdateValueMap(I, DestReg);
1252   return true;
1253 }
1254 
1255 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1256   // Make sure we have VFP and that we're extending float to double.
1257   if (!Subtarget->hasVFP2()) return false;
1258 
1259   Value *V = I->getOperand(0);
1260   if (!I->getType()->isDoubleTy() ||
1261       !V->getType()->isFloatTy()) return false;
1262 
1263   unsigned Op = getRegForValue(V);
1264   if (Op == 0) return false;
1265 
1266   unsigned Result = createResultReg(ARM::DPRRegisterClass);
1267   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1268                           TII.get(ARM::VCVTDS), Result)
1269                   .addReg(Op));
1270   UpdateValueMap(I, Result);
1271   return true;
1272 }
1273 
1274 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1275   // Make sure we have VFP and that we're truncating double to float.
1276   if (!Subtarget->hasVFP2()) return false;
1277 
1278   Value *V = I->getOperand(0);
1279   if (!(I->getType()->isFloatTy() &&
1280         V->getType()->isDoubleTy())) return false;
1281 
1282   unsigned Op = getRegForValue(V);
1283   if (Op == 0) return false;
1284 
1285   unsigned Result = createResultReg(ARM::SPRRegisterClass);
1286   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1287                           TII.get(ARM::VCVTSD), Result)
1288                   .addReg(Op));
1289   UpdateValueMap(I, Result);
1290   return true;
1291 }
1292 
1293 bool ARMFastISel::SelectSIToFP(const Instruction *I) {
1294   // Make sure we have VFP.
1295   if (!Subtarget->hasVFP2()) return false;
1296 
1297   MVT DstVT;
1298   const Type *Ty = I->getType();
1299   if (!isTypeLegal(Ty, DstVT))
1300     return false;
1301 
1302   // FIXME: Handle sign-extension where necessary.
1303   if (!I->getOperand(0)->getType()->isIntegerTy(32))
1304     return false;
1305 
1306   unsigned Op = getRegForValue(I->getOperand(0));
1307   if (Op == 0) return false;
1308 
1309   // The conversion routine works on fp-reg to fp-reg and the operand above
1310   // was an integer, move it to the fp registers if possible.
1311   unsigned FP = ARMMoveToFPReg(MVT::f32, Op);
1312   if (FP == 0) return false;
1313 
1314   unsigned Opc;
1315   if (Ty->isFloatTy()) Opc = ARM::VSITOS;
1316   else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
1317   else return 0;
1318 
1319   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1320   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1321                           ResultReg)
1322                   .addReg(FP));
1323   UpdateValueMap(I, ResultReg);
1324   return true;
1325 }
1326 
1327 bool ARMFastISel::SelectFPToSI(const Instruction *I) {
1328   // Make sure we have VFP.
1329   if (!Subtarget->hasVFP2()) return false;
1330 
1331   MVT DstVT;
1332   const Type *RetTy = I->getType();
1333   if (!isTypeLegal(RetTy, DstVT))
1334     return false;
1335 
1336   unsigned Op = getRegForValue(I->getOperand(0));
1337   if (Op == 0) return false;
1338 
1339   unsigned Opc;
1340   const Type *OpTy = I->getOperand(0)->getType();
1341   if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
1342   else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
1343   else return 0;
1344 
1345   // f64->s32 or f32->s32 both need an intermediate f32 reg.
1346   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1347   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
1348                           ResultReg)
1349                   .addReg(Op));
1350 
1351   // This result needs to be in an integer register, but the conversion only
1352   // takes place in fp-regs.
1353   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1354   if (IntReg == 0) return false;
1355 
1356   UpdateValueMap(I, IntReg);
1357   return true;
1358 }
1359 
1360 bool ARMFastISel::SelectSelect(const Instruction *I) {
1361   MVT VT;
1362   if (!isTypeLegal(I->getType(), VT))
1363     return false;
1364 
1365   // Things need to be register sized for register moves.
1366   if (VT != MVT::i32) return false;
1367   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
1368 
1369   unsigned CondReg = getRegForValue(I->getOperand(0));
1370   if (CondReg == 0) return false;
1371   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1372   if (Op1Reg == 0) return false;
1373   unsigned Op2Reg = getRegForValue(I->getOperand(2));
1374   if (Op2Reg == 0) return false;
1375 
1376   unsigned CmpOpc = isThumb ? ARM::t2TSTri : ARM::TSTri;
1377   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
1378                   .addReg(CondReg).addImm(1));
1379   unsigned ResultReg = createResultReg(RC);
1380   unsigned MovCCOpc = isThumb ? ARM::t2MOVCCr : ARM::MOVCCr;
1381   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg)
1382     .addReg(Op1Reg).addReg(Op2Reg)
1383     .addImm(ARMCC::EQ).addReg(ARM::CPSR);
1384   UpdateValueMap(I, ResultReg);
1385   return true;
1386 }
1387 
1388 bool ARMFastISel::SelectSDiv(const Instruction *I) {
1389   MVT VT;
1390   const Type *Ty = I->getType();
1391   if (!isTypeLegal(Ty, VT))
1392     return false;
1393 
1394   // If we have integer div support we should have selected this automagically.
1395   // In case we have a real miss go ahead and return false and we'll pick
1396   // it up later.
1397   if (Subtarget->hasDivide()) return false;
1398 
1399   // Otherwise emit a libcall.
1400   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1401   if (VT == MVT::i8)
1402     LC = RTLIB::SDIV_I8;
1403   else if (VT == MVT::i16)
1404     LC = RTLIB::SDIV_I16;
1405   else if (VT == MVT::i32)
1406     LC = RTLIB::SDIV_I32;
1407   else if (VT == MVT::i64)
1408     LC = RTLIB::SDIV_I64;
1409   else if (VT == MVT::i128)
1410     LC = RTLIB::SDIV_I128;
1411   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1412 
1413   return ARMEmitLibcall(I, LC);
1414 }
1415 
1416 bool ARMFastISel::SelectSRem(const Instruction *I) {
1417   MVT VT;
1418   const Type *Ty = I->getType();
1419   if (!isTypeLegal(Ty, VT))
1420     return false;
1421 
1422   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1423   if (VT == MVT::i8)
1424     LC = RTLIB::SREM_I8;
1425   else if (VT == MVT::i16)
1426     LC = RTLIB::SREM_I16;
1427   else if (VT == MVT::i32)
1428     LC = RTLIB::SREM_I32;
1429   else if (VT == MVT::i64)
1430     LC = RTLIB::SREM_I64;
1431   else if (VT == MVT::i128)
1432     LC = RTLIB::SREM_I128;
1433   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1434 
1435   return ARMEmitLibcall(I, LC);
1436 }
1437 
1438 bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
1439   EVT VT  = TLI.getValueType(I->getType(), true);
1440 
1441   // We can get here in the case when we want to use NEON for our fp
1442   // operations, but can't figure out how to. Just use the vfp instructions
1443   // if we have them.
1444   // FIXME: It'd be nice to use NEON instructions.
1445   const Type *Ty = I->getType();
1446   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1447   if (isFloat && !Subtarget->hasVFP2())
1448     return false;
1449 
1450   unsigned Op1 = getRegForValue(I->getOperand(0));
1451   if (Op1 == 0) return false;
1452 
1453   unsigned Op2 = getRegForValue(I->getOperand(1));
1454   if (Op2 == 0) return false;
1455 
1456   unsigned Opc;
1457   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1458   switch (ISDOpcode) {
1459     default: return false;
1460     case ISD::FADD:
1461       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1462       break;
1463     case ISD::FSUB:
1464       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1465       break;
1466     case ISD::FMUL:
1467       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1468       break;
1469   }
1470   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
1471   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1472                           TII.get(Opc), ResultReg)
1473                   .addReg(Op1).addReg(Op2));
1474   UpdateValueMap(I, ResultReg);
1475   return true;
1476 }
1477 
1478 // Call Handling Code
1479 
1480 bool ARMFastISel::FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src,
1481                                  EVT SrcVT, unsigned &ResultReg) {
1482   unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
1483                            Src, /*TODO: Kill=*/false);
1484 
1485   if (RR != 0) {
1486     ResultReg = RR;
1487     return true;
1488   } else
1489     return false;
1490 }
1491 
1492 // This is largely taken directly from CCAssignFnForNode - we don't support
1493 // varargs in FastISel so that part has been removed.
1494 // TODO: We may not support all of this.
1495 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
1496   switch (CC) {
1497   default:
1498     llvm_unreachable("Unsupported calling convention");
1499   case CallingConv::Fast:
1500     // Ignore fastcc. Silence compiler warnings.
1501     (void)RetFastCC_ARM_APCS;
1502     (void)FastCC_ARM_APCS;
1503     // Fallthrough
1504   case CallingConv::C:
1505     // Use target triple & subtarget features to do actual dispatch.
1506     if (Subtarget->isAAPCS_ABI()) {
1507       if (Subtarget->hasVFP2() &&
1508           FloatABIType == FloatABI::Hard)
1509         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1510       else
1511         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1512     } else
1513         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1514   case CallingConv::ARM_AAPCS_VFP:
1515     return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1516   case CallingConv::ARM_AAPCS:
1517     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1518   case CallingConv::ARM_APCS:
1519     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1520   }
1521 }
1522 
1523 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1524                                   SmallVectorImpl<unsigned> &ArgRegs,
1525                                   SmallVectorImpl<MVT> &ArgVTs,
1526                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1527                                   SmallVectorImpl<unsigned> &RegArgs,
1528                                   CallingConv::ID CC,
1529                                   unsigned &NumBytes) {
1530   SmallVector<CCValAssign, 16> ArgLocs;
1531   CCState CCInfo(CC, false, TM, ArgLocs, *Context);
1532   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
1533 
1534   // Get a count of how many bytes are to be pushed on the stack.
1535   NumBytes = CCInfo.getNextStackOffset();
1536 
1537   // Issue CALLSEQ_START
1538   unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
1539   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1540                           TII.get(AdjStackDown))
1541                   .addImm(NumBytes));
1542 
1543   // Process the args.
1544   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1545     CCValAssign &VA = ArgLocs[i];
1546     unsigned Arg = ArgRegs[VA.getValNo()];
1547     MVT ArgVT = ArgVTs[VA.getValNo()];
1548 
1549     // We don't handle NEON/vector parameters yet.
1550     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1551       return false;
1552 
1553     // Handle arg promotion, etc.
1554     switch (VA.getLocInfo()) {
1555       case CCValAssign::Full: break;
1556       case CCValAssign::SExt: {
1557         bool Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1558                                          Arg, ArgVT, Arg);
1559         assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
1560         Emitted = true;
1561         ArgVT = VA.getLocVT();
1562         break;
1563       }
1564       case CCValAssign::ZExt: {
1565         bool Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1566                                          Arg, ArgVT, Arg);
1567         assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
1568         Emitted = true;
1569         ArgVT = VA.getLocVT();
1570         break;
1571       }
1572       case CCValAssign::AExt: {
1573         bool Emitted = FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
1574                                          Arg, ArgVT, Arg);
1575         if (!Emitted)
1576           Emitted = FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
1577                                       Arg, ArgVT, Arg);
1578         if (!Emitted)
1579           Emitted = FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
1580                                       Arg, ArgVT, Arg);
1581 
1582         assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
1583         ArgVT = VA.getLocVT();
1584         break;
1585       }
1586       case CCValAssign::BCvt: {
1587         unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1588                                  /*TODO: Kill=*/false);
1589         assert(BC != 0 && "Failed to emit a bitcast!");
1590         Arg = BC;
1591         ArgVT = VA.getLocVT();
1592         break;
1593       }
1594       default: llvm_unreachable("Unknown arg promotion!");
1595     }
1596 
1597     // Now copy/store arg to correct locations.
1598     if (VA.isRegLoc() && !VA.needsCustom()) {
1599       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1600               VA.getLocReg())
1601       .addReg(Arg);
1602       RegArgs.push_back(VA.getLocReg());
1603     } else if (VA.needsCustom()) {
1604       // TODO: We need custom lowering for vector (v2f64) args.
1605       if (VA.getLocVT() != MVT::f64) return false;
1606 
1607       CCValAssign &NextVA = ArgLocs[++i];
1608 
1609       // TODO: Only handle register args for now.
1610       if(!(VA.isRegLoc() && NextVA.isRegLoc())) return false;
1611 
1612       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1613                               TII.get(ARM::VMOVRRD), VA.getLocReg())
1614                       .addReg(NextVA.getLocReg(), RegState::Define)
1615                       .addReg(Arg));
1616       RegArgs.push_back(VA.getLocReg());
1617       RegArgs.push_back(NextVA.getLocReg());
1618     } else {
1619       assert(VA.isMemLoc());
1620       // Need to store on the stack.
1621       Address Addr;
1622       Addr.BaseType = Address::RegBase;
1623       Addr.Base.Reg = ARM::SP;
1624       Addr.Offset = VA.getLocMemOffset();
1625 
1626       if (!ARMEmitStore(ArgVT, Arg, Addr)) return false;
1627     }
1628   }
1629   return true;
1630 }
1631 
1632 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
1633                              const Instruction *I, CallingConv::ID CC,
1634                              unsigned &NumBytes) {
1635   // Issue CALLSEQ_END
1636   unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
1637   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1638                           TII.get(AdjStackUp))
1639                   .addImm(NumBytes).addImm(0));
1640 
1641   // Now the return value.
1642   if (RetVT != MVT::isVoid) {
1643     SmallVector<CCValAssign, 16> RVLocs;
1644     CCState CCInfo(CC, false, TM, RVLocs, *Context);
1645     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
1646 
1647     // Copy all of the result registers out of their specified physreg.
1648     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
1649       // For this move we copy into two registers and then move into the
1650       // double fp reg we want.
1651       EVT DestVT = RVLocs[0].getValVT();
1652       TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
1653       unsigned ResultReg = createResultReg(DstRC);
1654       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1655                               TII.get(ARM::VMOVDRR), ResultReg)
1656                       .addReg(RVLocs[0].getLocReg())
1657                       .addReg(RVLocs[1].getLocReg()));
1658 
1659       UsedRegs.push_back(RVLocs[0].getLocReg());
1660       UsedRegs.push_back(RVLocs[1].getLocReg());
1661 
1662       // Finally update the result.
1663       UpdateValueMap(I, ResultReg);
1664     } else {
1665       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
1666       EVT CopyVT = RVLocs[0].getValVT();
1667       TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
1668 
1669       unsigned ResultReg = createResultReg(DstRC);
1670       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1671               ResultReg).addReg(RVLocs[0].getLocReg());
1672       UsedRegs.push_back(RVLocs[0].getLocReg());
1673 
1674       // Finally update the result.
1675       UpdateValueMap(I, ResultReg);
1676     }
1677   }
1678 
1679   return true;
1680 }
1681 
1682 bool ARMFastISel::SelectRet(const Instruction *I) {
1683   const ReturnInst *Ret = cast<ReturnInst>(I);
1684   const Function &F = *I->getParent()->getParent();
1685 
1686   if (!FuncInfo.CanLowerReturn)
1687     return false;
1688 
1689   if (F.isVarArg())
1690     return false;
1691 
1692   CallingConv::ID CC = F.getCallingConv();
1693   if (Ret->getNumOperands() > 0) {
1694     SmallVector<ISD::OutputArg, 4> Outs;
1695     GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
1696                   Outs, TLI);
1697 
1698     // Analyze operands of the call, assigning locations to each operand.
1699     SmallVector<CCValAssign, 16> ValLocs;
1700     CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
1701     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */));
1702 
1703     const Value *RV = Ret->getOperand(0);
1704     unsigned Reg = getRegForValue(RV);
1705     if (Reg == 0)
1706       return false;
1707 
1708     // Only handle a single return value for now.
1709     if (ValLocs.size() != 1)
1710       return false;
1711 
1712     CCValAssign &VA = ValLocs[0];
1713 
1714     // Don't bother handling odd stuff for now.
1715     if (VA.getLocInfo() != CCValAssign::Full)
1716       return false;
1717     // Only handle register returns for now.
1718     if (!VA.isRegLoc())
1719       return false;
1720     // TODO: For now, don't try to handle cases where getLocInfo()
1721     // says Full but the types don't match.
1722     if (TLI.getValueType(RV->getType()) != VA.getValVT())
1723       return false;
1724 
1725     // Make the copy.
1726     unsigned SrcReg = Reg + VA.getValNo();
1727     unsigned DstReg = VA.getLocReg();
1728     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
1729     // Avoid a cross-class copy. This is very unlikely.
1730     if (!SrcRC->contains(DstReg))
1731       return false;
1732     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1733             DstReg).addReg(SrcReg);
1734 
1735     // Mark the register as live out of the function.
1736     MRI.addLiveOut(VA.getLocReg());
1737   }
1738 
1739   unsigned RetOpc = isThumb ? ARM::tBX_RET : ARM::BX_RET;
1740   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1741                           TII.get(RetOpc)));
1742   return true;
1743 }
1744 
1745 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) {
1746 
1747   // Darwin needs the r9 versions of the opcodes.
1748   bool isDarwin = Subtarget->isTargetDarwin();
1749   if (isThumb) {
1750     return isDarwin ? ARM::tBLr9 : ARM::tBL;
1751   } else  {
1752     return isDarwin ? ARM::BLr9 : ARM::BL;
1753   }
1754 }
1755 
1756 // A quick function that will emit a call for a named libcall in F with the
1757 // vector of passed arguments for the Instruction in I. We can assume that we
1758 // can emit a call for any libcall we can produce. This is an abridged version
1759 // of the full call infrastructure since we won't need to worry about things
1760 // like computed function pointers or strange arguments at call sites.
1761 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
1762 // with X86.
1763 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
1764   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
1765 
1766   // Handle *simple* calls for now.
1767   const Type *RetTy = I->getType();
1768   MVT RetVT;
1769   if (RetTy->isVoidTy())
1770     RetVT = MVT::isVoid;
1771   else if (!isTypeLegal(RetTy, RetVT))
1772     return false;
1773 
1774   // TODO: For now if we have long calls specified we don't handle the call.
1775   if (EnableARMLongCalls) return false;
1776 
1777   // Set up the argument vectors.
1778   SmallVector<Value*, 8> Args;
1779   SmallVector<unsigned, 8> ArgRegs;
1780   SmallVector<MVT, 8> ArgVTs;
1781   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1782   Args.reserve(I->getNumOperands());
1783   ArgRegs.reserve(I->getNumOperands());
1784   ArgVTs.reserve(I->getNumOperands());
1785   ArgFlags.reserve(I->getNumOperands());
1786   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1787     Value *Op = I->getOperand(i);
1788     unsigned Arg = getRegForValue(Op);
1789     if (Arg == 0) return false;
1790 
1791     const Type *ArgTy = Op->getType();
1792     MVT ArgVT;
1793     if (!isTypeLegal(ArgTy, ArgVT)) return false;
1794 
1795     ISD::ArgFlagsTy Flags;
1796     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1797     Flags.setOrigAlign(OriginalAlignment);
1798 
1799     Args.push_back(Op);
1800     ArgRegs.push_back(Arg);
1801     ArgVTs.push_back(ArgVT);
1802     ArgFlags.push_back(Flags);
1803   }
1804 
1805   // Handle the arguments now that we've gotten them.
1806   SmallVector<unsigned, 4> RegArgs;
1807   unsigned NumBytes;
1808   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1809     return false;
1810 
1811   // Issue the call, BLr9 for darwin, BL otherwise.
1812   // TODO: Turn this into the table of arm call ops.
1813   MachineInstrBuilder MIB;
1814   unsigned CallOpc = ARMSelectCallOp(NULL);
1815   if(isThumb)
1816     // Explicitly adding the predicate here.
1817     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1818                          TII.get(CallOpc)))
1819                          .addExternalSymbol(TLI.getLibcallName(Call));
1820   else
1821     // Explicitly adding the predicate here.
1822     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1823                          TII.get(CallOpc))
1824           .addExternalSymbol(TLI.getLibcallName(Call)));
1825 
1826   // Add implicit physical register uses to the call.
1827   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1828     MIB.addReg(RegArgs[i]);
1829 
1830   // Finish off the call including any return values.
1831   SmallVector<unsigned, 4> UsedRegs;
1832   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1833 
1834   // Set all unused physreg defs as dead.
1835   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1836 
1837   return true;
1838 }
1839 
1840 bool ARMFastISel::SelectCall(const Instruction *I) {
1841   const CallInst *CI = cast<CallInst>(I);
1842   const Value *Callee = CI->getCalledValue();
1843 
1844   // Can't handle inline asm or worry about intrinsics yet.
1845   if (isa<InlineAsm>(Callee) || isa<IntrinsicInst>(CI)) return false;
1846 
1847   // Only handle global variable Callees.
1848   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1849   if (!GV)
1850     return false;
1851 
1852   // Check the calling convention.
1853   ImmutableCallSite CS(CI);
1854   CallingConv::ID CC = CS.getCallingConv();
1855 
1856   // TODO: Avoid some calling conventions?
1857 
1858   // Let SDISel handle vararg functions.
1859   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
1860   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
1861   if (FTy->isVarArg())
1862     return false;
1863 
1864   // Handle *simple* calls for now.
1865   const Type *RetTy = I->getType();
1866   MVT RetVT;
1867   if (RetTy->isVoidTy())
1868     RetVT = MVT::isVoid;
1869   else if (!isTypeLegal(RetTy, RetVT))
1870     return false;
1871 
1872   // TODO: For now if we have long calls specified we don't handle the call.
1873   if (EnableARMLongCalls) return false;
1874 
1875   // Set up the argument vectors.
1876   SmallVector<Value*, 8> Args;
1877   SmallVector<unsigned, 8> ArgRegs;
1878   SmallVector<MVT, 8> ArgVTs;
1879   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1880   Args.reserve(CS.arg_size());
1881   ArgRegs.reserve(CS.arg_size());
1882   ArgVTs.reserve(CS.arg_size());
1883   ArgFlags.reserve(CS.arg_size());
1884   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1885        i != e; ++i) {
1886     unsigned Arg = getRegForValue(*i);
1887 
1888     if (Arg == 0)
1889       return false;
1890     ISD::ArgFlagsTy Flags;
1891     unsigned AttrInd = i - CS.arg_begin() + 1;
1892     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
1893       Flags.setSExt();
1894     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
1895       Flags.setZExt();
1896 
1897          // FIXME: Only handle *easy* calls for now.
1898     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
1899         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
1900         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
1901         CS.paramHasAttr(AttrInd, Attribute::ByVal))
1902       return false;
1903 
1904     const Type *ArgTy = (*i)->getType();
1905     MVT ArgVT;
1906     if (!isTypeLegal(ArgTy, ArgVT))
1907       return false;
1908     unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
1909     Flags.setOrigAlign(OriginalAlignment);
1910 
1911     Args.push_back(*i);
1912     ArgRegs.push_back(Arg);
1913     ArgVTs.push_back(ArgVT);
1914     ArgFlags.push_back(Flags);
1915   }
1916 
1917   // Handle the arguments now that we've gotten them.
1918   SmallVector<unsigned, 4> RegArgs;
1919   unsigned NumBytes;
1920   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes))
1921     return false;
1922 
1923   // Issue the call, BLr9 for darwin, BL otherwise.
1924   // TODO: Turn this into the table of arm call ops.
1925   MachineInstrBuilder MIB;
1926   unsigned CallOpc = ARMSelectCallOp(GV);
1927   // Explicitly adding the predicate here.
1928   if(isThumb)
1929     // Explicitly adding the predicate here.
1930     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1931                          TII.get(CallOpc)))
1932           .addGlobalAddress(GV, 0, 0);
1933   else
1934     // Explicitly adding the predicate here.
1935     MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
1936                          TII.get(CallOpc))
1937           .addGlobalAddress(GV, 0, 0));
1938 
1939   // Add implicit physical register uses to the call.
1940   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
1941     MIB.addReg(RegArgs[i]);
1942 
1943   // Finish off the call including any return values.
1944   SmallVector<unsigned, 4> UsedRegs;
1945   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false;
1946 
1947   // Set all unused physreg defs as dead.
1948   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
1949 
1950   return true;
1951 
1952 }
1953 
1954 bool ARMFastISel::SelectIntCast(const Instruction *I) {
1955   // On ARM, in general, integer casts don't involve legal types; this code
1956   // handles promotable integers.  The high bits for a type smaller than
1957   // the register size are assumed to be undefined.
1958   const Type *DestTy = I->getType();
1959   Value *Op = I->getOperand(0);
1960   const Type *SrcTy = Op->getType();
1961 
1962   EVT SrcVT, DestVT;
1963   SrcVT = TLI.getValueType(SrcTy, true);
1964   DestVT = TLI.getValueType(DestTy, true);
1965 
1966   if (isa<TruncInst>(I)) {
1967     if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1968       return false;
1969     if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1970       return false;
1971 
1972     unsigned SrcReg = getRegForValue(Op);
1973     if (!SrcReg) return false;
1974 
1975     // Because the high bits are undefined, a truncate doesn't generate
1976     // any code.
1977     UpdateValueMap(I, SrcReg);
1978     return true;
1979   }
1980   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1981     return false;
1982 
1983   unsigned Opc;
1984   bool isZext = isa<ZExtInst>(I);
1985   bool isBoolZext = false;
1986   if (!SrcVT.isSimple())
1987     return false;
1988   switch (SrcVT.getSimpleVT().SimpleTy) {
1989   default: return false;
1990   case MVT::i16:
1991     if (isZext)
1992       Opc = isThumb ? ARM::t2UXTHr : ARM::UXTHr;
1993     else
1994       Opc = isThumb ? ARM::t2SXTHr : ARM::SXTHr;
1995     break;
1996   case MVT::i8:
1997     if (isZext)
1998       Opc = isThumb ? ARM::t2UXTBr : ARM::UXTBr;
1999     else
2000       Opc = isThumb ? ARM::t2SXTBr : ARM::SXTBr;
2001     break;
2002   case MVT::i1:
2003     if (isZext) {
2004       Opc = isThumb ? ARM::t2ANDri : ARM::ANDri;
2005       isBoolZext = true;
2006       break;
2007     }
2008     return false;
2009   }
2010 
2011   // FIXME: We could save an instruction in many cases by special-casing
2012   // load instructions.
2013   unsigned SrcReg = getRegForValue(Op);
2014   if (!SrcReg) return false;
2015 
2016   unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32));
2017   MachineInstrBuilder MIB;
2018   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
2019         .addReg(SrcReg);
2020   if (isBoolZext)
2021     MIB.addImm(1);
2022   AddOptionalDefs(MIB);
2023   UpdateValueMap(I, DestReg);
2024   return true;
2025 }
2026 
2027 // TODO: SoftFP support.
2028 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
2029 
2030   switch (I->getOpcode()) {
2031     case Instruction::Load:
2032       return SelectLoad(I);
2033     case Instruction::Store:
2034       return SelectStore(I);
2035     case Instruction::Br:
2036       return SelectBranch(I);
2037     case Instruction::ICmp:
2038     case Instruction::FCmp:
2039       return SelectCmp(I);
2040     case Instruction::FPExt:
2041       return SelectFPExt(I);
2042     case Instruction::FPTrunc:
2043       return SelectFPTrunc(I);
2044     case Instruction::SIToFP:
2045       return SelectSIToFP(I);
2046     case Instruction::FPToSI:
2047       return SelectFPToSI(I);
2048     case Instruction::FAdd:
2049       return SelectBinaryOp(I, ISD::FADD);
2050     case Instruction::FSub:
2051       return SelectBinaryOp(I, ISD::FSUB);
2052     case Instruction::FMul:
2053       return SelectBinaryOp(I, ISD::FMUL);
2054     case Instruction::SDiv:
2055       return SelectSDiv(I);
2056     case Instruction::SRem:
2057       return SelectSRem(I);
2058     case Instruction::Call:
2059       return SelectCall(I);
2060     case Instruction::Select:
2061       return SelectSelect(I);
2062     case Instruction::Ret:
2063       return SelectRet(I);
2064     case Instruction::Trunc:
2065     case Instruction::ZExt:
2066     case Instruction::SExt:
2067       return SelectIntCast(I);
2068     default: break;
2069   }
2070   return false;
2071 }
2072 
2073 namespace llvm {
2074   llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
2075     // Completely untested on non-darwin.
2076     const TargetMachine &TM = funcInfo.MF->getTarget();
2077 
2078     // Darwin and thumb1 only for now.
2079     const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>();
2080     if (Subtarget->isTargetDarwin() && !Subtarget->isThumb1Only() &&
2081         !DisableARMFastISel)
2082       return new ARMFastISel(funcInfo);
2083     return 0;
2084   }
2085 }
2086