1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/CallSite.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalValue.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include "llvm/Target/TargetOptions.h"
80 #include <cassert>
81 #include <cstdint>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 namespace {
87 
88   // All possible address modes, plus some.
89   struct Address {
90     enum {
91       RegBase,
92       FrameIndexBase
93     } BaseType = RegBase;
94 
95     union {
96       unsigned Reg;
97       int FI;
98     } Base;
99 
100     int Offset = 0;
101 
102     // Innocuous defaults for our address.
103     Address() {
104       Base.Reg = 0;
105     }
106   };
107 
108 class ARMFastISel final : public FastISel {
109   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
110   /// make the right decision when generating code for different targets.
111   const ARMSubtarget *Subtarget;
112   Module &M;
113   const TargetMachine &TM;
114   const TargetInstrInfo &TII;
115   const TargetLowering &TLI;
116   ARMFunctionInfo *AFI;
117 
118   // Convenience variables to avoid some queries.
119   bool isThumb2;
120   LLVMContext *Context;
121 
122   public:
123     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
124                          const TargetLibraryInfo *libInfo)
125         : FastISel(funcInfo, libInfo),
126           Subtarget(
127               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
128           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
129           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
130           TLI(*Subtarget->getTargetLowering()) {
131       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
132       isThumb2 = AFI->isThumbFunction();
133       Context = &funcInfo.Fn->getContext();
134     }
135 
136   private:
137     // Code from FastISel.cpp.
138 
139     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
140                             const TargetRegisterClass *RC,
141                             unsigned Op0, bool Op0IsKill);
142     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
143                              const TargetRegisterClass *RC,
144                              unsigned Op0, bool Op0IsKill,
145                              unsigned Op1, bool Op1IsKill);
146     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
147                              const TargetRegisterClass *RC,
148                              unsigned Op0, bool Op0IsKill,
149                              uint64_t Imm);
150     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
151                             const TargetRegisterClass *RC,
152                             uint64_t Imm);
153 
154     // Backend specific FastISel code.
155 
156     bool fastSelectInstruction(const Instruction *I) override;
157     unsigned fastMaterializeConstant(const Constant *C) override;
158     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
159     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
160                              const LoadInst *LI) override;
161     bool fastLowerArguments() override;
162 
163   #include "ARMGenFastISel.inc"
164 
165     // Instruction selection routines.
166 
167     bool SelectLoad(const Instruction *I);
168     bool SelectStore(const Instruction *I);
169     bool SelectBranch(const Instruction *I);
170     bool SelectIndirectBr(const Instruction *I);
171     bool SelectCmp(const Instruction *I);
172     bool SelectFPExt(const Instruction *I);
173     bool SelectFPTrunc(const Instruction *I);
174     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
175     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
176     bool SelectIToFP(const Instruction *I, bool isSigned);
177     bool SelectFPToI(const Instruction *I, bool isSigned);
178     bool SelectDiv(const Instruction *I, bool isSigned);
179     bool SelectRem(const Instruction *I, bool isSigned);
180     bool SelectCall(const Instruction *I, const char *IntrMemName);
181     bool SelectIntrinsicCall(const IntrinsicInst &I);
182     bool SelectSelect(const Instruction *I);
183     bool SelectRet(const Instruction *I);
184     bool SelectTrunc(const Instruction *I);
185     bool SelectIntExt(const Instruction *I);
186     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
187 
188     // Utility routines.
189 
190     bool isPositionIndependent() const;
191     bool isTypeLegal(Type *Ty, MVT &VT);
192     bool isLoadTypeLegal(Type *Ty, MVT &VT);
193     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
194                     bool isZExt, bool isEquality);
195     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
196                      unsigned Alignment = 0, bool isZExt = true,
197                      bool allocReg = true);
198     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
199                       unsigned Alignment = 0);
200     bool ARMComputeAddress(const Value *Obj, Address &Addr);
201     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
202     bool ARMIsMemCpySmall(uint64_t Len);
203     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
204                                unsigned Alignment);
205     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
206     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
207     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
208     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
209     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
210     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
211     unsigned ARMSelectCallOp(bool UseReg);
212     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
213 
214     const TargetLowering *getTargetLowering() { return &TLI; }
215 
216     // Call handling routines.
217 
218     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
219                                   bool Return,
220                                   bool isVarArg);
221     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
222                          SmallVectorImpl<unsigned> &ArgRegs,
223                          SmallVectorImpl<MVT> &ArgVTs,
224                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
225                          SmallVectorImpl<unsigned> &RegArgs,
226                          CallingConv::ID CC,
227                          unsigned &NumBytes,
228                          bool isVarArg);
229     unsigned getLibcallReg(const Twine &Name);
230     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
231                     const Instruction *I, CallingConv::ID CC,
232                     unsigned &NumBytes, bool isVarArg);
233     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
234 
235     // OptionalDef handling routines.
236 
237     bool isARMNEONPred(const MachineInstr *MI);
238     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
239     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
240     void AddLoadStoreOperands(MVT VT, Address &Addr,
241                               const MachineInstrBuilder &MIB,
242                               MachineMemOperand::Flags Flags, bool useAM3);
243 };
244 
245 } // end anonymous namespace
246 
247 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
248 // we don't care about implicit defs here, just places we'll need to add a
249 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
250 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
251   if (!MI->hasOptionalDef())
252     return false;
253 
254   // Look to see if our OptionalDef is defining CPSR or CCR.
255   for (const MachineOperand &MO : MI->operands()) {
256     if (!MO.isReg() || !MO.isDef()) continue;
257     if (MO.getReg() == ARM::CPSR)
258       *CPSR = true;
259   }
260   return true;
261 }
262 
263 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
264   const MCInstrDesc &MCID = MI->getDesc();
265 
266   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
267   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
268        AFI->isThumb2Function())
269     return MI->isPredicable();
270 
271   for (const MCOperandInfo &opInfo : MCID.operands())
272     if (opInfo.isPredicate())
273       return true;
274 
275   return false;
276 }
277 
278 // If the machine is predicable go ahead and add the predicate operands, if
279 // it needs default CC operands add those.
280 // TODO: If we want to support thumb1 then we'll need to deal with optional
281 // CPSR defs that need to be added before the remaining operands. See s_cc_out
282 // for descriptions why.
283 const MachineInstrBuilder &
284 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
285   MachineInstr *MI = &*MIB;
286 
287   // Do we use a predicate? or...
288   // Are we NEON in ARM mode and have a predicate operand? If so, I know
289   // we're not predicable but add it anyways.
290   if (isARMNEONPred(MI))
291     MIB.add(predOps(ARMCC::AL));
292 
293   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
294   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
295   bool CPSR = false;
296   if (DefinesOptionalPredicate(MI, &CPSR))
297     MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
298   return MIB;
299 }
300 
301 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
302                                      const TargetRegisterClass *RC,
303                                      unsigned Op0, bool Op0IsKill) {
304   unsigned ResultReg = createResultReg(RC);
305   const MCInstrDesc &II = TII.get(MachineInstOpcode);
306 
307   // Make sure the input operand is sufficiently constrained to be legal
308   // for this instruction.
309   Op0 = constrainOperandRegClass(II, Op0, 1);
310   if (II.getNumDefs() >= 1) {
311     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
312                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
313   } else {
314     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
315                    .addReg(Op0, Op0IsKill * RegState::Kill));
316     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
317                    TII.get(TargetOpcode::COPY), ResultReg)
318                    .addReg(II.ImplicitDefs[0]));
319   }
320   return ResultReg;
321 }
322 
323 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
324                                       const TargetRegisterClass *RC,
325                                       unsigned Op0, bool Op0IsKill,
326                                       unsigned Op1, bool Op1IsKill) {
327   unsigned ResultReg = createResultReg(RC);
328   const MCInstrDesc &II = TII.get(MachineInstOpcode);
329 
330   // Make sure the input operands are sufficiently constrained to be legal
331   // for this instruction.
332   Op0 = constrainOperandRegClass(II, Op0, 1);
333   Op1 = constrainOperandRegClass(II, Op1, 2);
334 
335   if (II.getNumDefs() >= 1) {
336     AddOptionalDefs(
337         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
338             .addReg(Op0, Op0IsKill * RegState::Kill)
339             .addReg(Op1, Op1IsKill * RegState::Kill));
340   } else {
341     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
342                    .addReg(Op0, Op0IsKill * RegState::Kill)
343                    .addReg(Op1, Op1IsKill * RegState::Kill));
344     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
345                            TII.get(TargetOpcode::COPY), ResultReg)
346                    .addReg(II.ImplicitDefs[0]));
347   }
348   return ResultReg;
349 }
350 
351 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
352                                       const TargetRegisterClass *RC,
353                                       unsigned Op0, bool Op0IsKill,
354                                       uint64_t Imm) {
355   unsigned ResultReg = createResultReg(RC);
356   const MCInstrDesc &II = TII.get(MachineInstOpcode);
357 
358   // Make sure the input operand is sufficiently constrained to be legal
359   // for this instruction.
360   Op0 = constrainOperandRegClass(II, Op0, 1);
361   if (II.getNumDefs() >= 1) {
362     AddOptionalDefs(
363         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
364             .addReg(Op0, Op0IsKill * RegState::Kill)
365             .addImm(Imm));
366   } else {
367     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
368                    .addReg(Op0, Op0IsKill * RegState::Kill)
369                    .addImm(Imm));
370     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
371                            TII.get(TargetOpcode::COPY), ResultReg)
372                    .addReg(II.ImplicitDefs[0]));
373   }
374   return ResultReg;
375 }
376 
377 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
378                                      const TargetRegisterClass *RC,
379                                      uint64_t Imm) {
380   unsigned ResultReg = createResultReg(RC);
381   const MCInstrDesc &II = TII.get(MachineInstOpcode);
382 
383   if (II.getNumDefs() >= 1) {
384     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
385                             ResultReg).addImm(Imm));
386   } else {
387     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
388                    .addImm(Imm));
389     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
390                            TII.get(TargetOpcode::COPY), ResultReg)
391                    .addReg(II.ImplicitDefs[0]));
392   }
393   return ResultReg;
394 }
395 
396 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
397 // checks from the various callers.
398 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
399   if (VT == MVT::f64) return 0;
400 
401   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
402   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
403                           TII.get(ARM::VMOVSR), MoveReg)
404                   .addReg(SrcReg));
405   return MoveReg;
406 }
407 
408 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
409   if (VT == MVT::i64) return 0;
410 
411   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
412   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
413                           TII.get(ARM::VMOVRS), MoveReg)
414                   .addReg(SrcReg));
415   return MoveReg;
416 }
417 
418 // For double width floating point we need to materialize two constants
419 // (the high and the low) into integer registers then use a move to get
420 // the combined constant into an FP reg.
421 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
422   const APFloat Val = CFP->getValueAPF();
423   bool is64bit = VT == MVT::f64;
424 
425   // This checks to see if we can use VFP3 instructions to materialize
426   // a constant, otherwise we have to go through the constant pool.
427   if (TLI.isFPImmLegal(Val, VT)) {
428     int Imm;
429     unsigned Opc;
430     if (is64bit) {
431       Imm = ARM_AM::getFP64Imm(Val);
432       Opc = ARM::FCONSTD;
433     } else {
434       Imm = ARM_AM::getFP32Imm(Val);
435       Opc = ARM::FCONSTS;
436     }
437     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
438     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
439                             TII.get(Opc), DestReg).addImm(Imm));
440     return DestReg;
441   }
442 
443   // Require VFP2 for loading fp constants.
444   if (!Subtarget->hasVFP2()) return false;
445 
446   // MachineConstantPool wants an explicit alignment.
447   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
448   if (Align == 0) {
449     // TODO: Figure out if this is correct.
450     Align = DL.getTypeAllocSize(CFP->getType());
451   }
452   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
453   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
454   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
455 
456   // The extra reg is for addrmode5.
457   AddOptionalDefs(
458       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
459           .addConstantPoolIndex(Idx)
460           .addReg(0));
461   return DestReg;
462 }
463 
464 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
465   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
466     return 0;
467 
468   // If we can do this in a single instruction without a constant pool entry
469   // do so now.
470   const ConstantInt *CI = cast<ConstantInt>(C);
471   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
472     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
473     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
474       &ARM::GPRRegClass;
475     unsigned ImmReg = createResultReg(RC);
476     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
477                             TII.get(Opc), ImmReg)
478                     .addImm(CI->getZExtValue()));
479     return ImmReg;
480   }
481 
482   // Use MVN to emit negative constants.
483   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
484     unsigned Imm = (unsigned)~(CI->getSExtValue());
485     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
486       (ARM_AM::getSOImmVal(Imm) != -1);
487     if (UseImm) {
488       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
489       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
490                                                  &ARM::GPRRegClass;
491       unsigned ImmReg = createResultReg(RC);
492       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
493                               TII.get(Opc), ImmReg)
494                       .addImm(Imm));
495       return ImmReg;
496     }
497   }
498 
499   unsigned ResultReg = 0;
500   if (Subtarget->useMovt(*FuncInfo.MF))
501     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
502 
503   if (ResultReg)
504     return ResultReg;
505 
506   // Load from constant pool.  For now 32-bit only.
507   if (VT != MVT::i32)
508     return 0;
509 
510   // MachineConstantPool wants an explicit alignment.
511   unsigned Align = DL.getPrefTypeAlignment(C->getType());
512   if (Align == 0) {
513     // TODO: Figure out if this is correct.
514     Align = DL.getTypeAllocSize(C->getType());
515   }
516   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
517   ResultReg = createResultReg(TLI.getRegClassFor(VT));
518   if (isThumb2)
519     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
520                             TII.get(ARM::t2LDRpci), ResultReg)
521                       .addConstantPoolIndex(Idx));
522   else {
523     // The extra immediate is for addrmode2.
524     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
525     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
526                             TII.get(ARM::LDRcp), ResultReg)
527                       .addConstantPoolIndex(Idx)
528                       .addImm(0));
529   }
530   return ResultReg;
531 }
532 
533 bool ARMFastISel::isPositionIndependent() const {
534   return TLI.isPositionIndependent();
535 }
536 
537 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
538   // For now 32-bit only.
539   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
540 
541   // ROPI/RWPI not currently supported.
542   if (Subtarget->isROPI() || Subtarget->isRWPI())
543     return 0;
544 
545   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
546   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
547                                            : &ARM::GPRRegClass;
548   unsigned DestReg = createResultReg(RC);
549 
550   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
551   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
552   bool IsThreadLocal = GVar && GVar->isThreadLocal();
553   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
554 
555   bool IsPositionIndependent = isPositionIndependent();
556   // Use movw+movt when possible, it avoids constant pool entries.
557   // Non-darwin targets only support static movt relocations in FastISel.
558   if (Subtarget->useMovt(*FuncInfo.MF) &&
559       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
560     unsigned Opc;
561     unsigned char TF = 0;
562     if (Subtarget->isTargetMachO())
563       TF = ARMII::MO_NONLAZY;
564 
565     if (IsPositionIndependent)
566       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
567     else
568       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
569     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
570                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
571   } else {
572     // MachineConstantPool wants an explicit alignment.
573     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
574     if (Align == 0) {
575       // TODO: Figure out if this is correct.
576       Align = DL.getTypeAllocSize(GV->getType());
577     }
578 
579     if (Subtarget->isTargetELF() && IsPositionIndependent)
580       return ARMLowerPICELF(GV, Align, VT);
581 
582     // Grab index.
583     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
584     unsigned Id = AFI->createPICLabelUId();
585     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
586                                                                 ARMCP::CPValue,
587                                                                 PCAdj);
588     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
589 
590     // Load value.
591     MachineInstrBuilder MIB;
592     if (isThumb2) {
593       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
594       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
595                     DestReg).addConstantPoolIndex(Idx);
596       if (IsPositionIndependent)
597         MIB.addImm(Id);
598       AddOptionalDefs(MIB);
599     } else {
600       // The extra immediate is for addrmode2.
601       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
602       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
603                     TII.get(ARM::LDRcp), DestReg)
604                 .addConstantPoolIndex(Idx)
605                 .addImm(0);
606       AddOptionalDefs(MIB);
607 
608       if (IsPositionIndependent) {
609         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
610         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
611 
612         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
613                                           DbgLoc, TII.get(Opc), NewDestReg)
614                                   .addReg(DestReg)
615                                   .addImm(Id);
616         AddOptionalDefs(MIB);
617         return NewDestReg;
618       }
619     }
620   }
621 
622   if (IsIndirect) {
623     MachineInstrBuilder MIB;
624     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
625     if (isThumb2)
626       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
627                     TII.get(ARM::t2LDRi12), NewDestReg)
628             .addReg(DestReg)
629             .addImm(0);
630     else
631       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
632                     TII.get(ARM::LDRi12), NewDestReg)
633                 .addReg(DestReg)
634                 .addImm(0);
635     DestReg = NewDestReg;
636     AddOptionalDefs(MIB);
637   }
638 
639   return DestReg;
640 }
641 
642 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
643   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
644 
645   // Only handle simple types.
646   if (!CEVT.isSimple()) return 0;
647   MVT VT = CEVT.getSimpleVT();
648 
649   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
650     return ARMMaterializeFP(CFP, VT);
651   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
652     return ARMMaterializeGV(GV, VT);
653   else if (isa<ConstantInt>(C))
654     return ARMMaterializeInt(C, VT);
655 
656   return 0;
657 }
658 
659 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
660 
661 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
662   // Don't handle dynamic allocas.
663   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
664 
665   MVT VT;
666   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
667 
668   DenseMap<const AllocaInst*, int>::iterator SI =
669     FuncInfo.StaticAllocaMap.find(AI);
670 
671   // This will get lowered later into the correct offsets and registers
672   // via rewriteXFrameIndex.
673   if (SI != FuncInfo.StaticAllocaMap.end()) {
674     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
675     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
676     unsigned ResultReg = createResultReg(RC);
677     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
678 
679     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
680                             TII.get(Opc), ResultReg)
681                             .addFrameIndex(SI->second)
682                             .addImm(0));
683     return ResultReg;
684   }
685 
686   return 0;
687 }
688 
689 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
690   EVT evt = TLI.getValueType(DL, Ty, true);
691 
692   // Only handle simple types.
693   if (evt == MVT::Other || !evt.isSimple()) return false;
694   VT = evt.getSimpleVT();
695 
696   // Handle all legal types, i.e. a register that will directly hold this
697   // value.
698   return TLI.isTypeLegal(VT);
699 }
700 
701 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
702   if (isTypeLegal(Ty, VT)) return true;
703 
704   // If this is a type than can be sign or zero-extended to a basic operation
705   // go ahead and accept it now.
706   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
707     return true;
708 
709   return false;
710 }
711 
712 // Computes the address to get to an object.
713 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
714   // Some boilerplate from the X86 FastISel.
715   const User *U = nullptr;
716   unsigned Opcode = Instruction::UserOp1;
717   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
718     // Don't walk into other basic blocks unless the object is an alloca from
719     // another block, otherwise it may not have a virtual register assigned.
720     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
721         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
722       Opcode = I->getOpcode();
723       U = I;
724     }
725   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
726     Opcode = C->getOpcode();
727     U = C;
728   }
729 
730   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
731     if (Ty->getAddressSpace() > 255)
732       // Fast instruction selection doesn't support the special
733       // address spaces.
734       return false;
735 
736   switch (Opcode) {
737     default:
738     break;
739     case Instruction::BitCast:
740       // Look through bitcasts.
741       return ARMComputeAddress(U->getOperand(0), Addr);
742     case Instruction::IntToPtr:
743       // Look past no-op inttoptrs.
744       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
745           TLI.getPointerTy(DL))
746         return ARMComputeAddress(U->getOperand(0), Addr);
747       break;
748     case Instruction::PtrToInt:
749       // Look past no-op ptrtoints.
750       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
751         return ARMComputeAddress(U->getOperand(0), Addr);
752       break;
753     case Instruction::GetElementPtr: {
754       Address SavedAddr = Addr;
755       int TmpOffset = Addr.Offset;
756 
757       // Iterate through the GEP folding the constants into offsets where
758       // we can.
759       gep_type_iterator GTI = gep_type_begin(U);
760       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
761            i != e; ++i, ++GTI) {
762         const Value *Op = *i;
763         if (StructType *STy = GTI.getStructTypeOrNull()) {
764           const StructLayout *SL = DL.getStructLayout(STy);
765           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
766           TmpOffset += SL->getElementOffset(Idx);
767         } else {
768           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
769           while (true) {
770             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
771               // Constant-offset addressing.
772               TmpOffset += CI->getSExtValue() * S;
773               break;
774             }
775             if (canFoldAddIntoGEP(U, Op)) {
776               // A compatible add with a constant operand. Fold the constant.
777               ConstantInt *CI =
778               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
779               TmpOffset += CI->getSExtValue() * S;
780               // Iterate on the other operand.
781               Op = cast<AddOperator>(Op)->getOperand(0);
782               continue;
783             }
784             // Unsupported
785             goto unsupported_gep;
786           }
787         }
788       }
789 
790       // Try to grab the base operand now.
791       Addr.Offset = TmpOffset;
792       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
793 
794       // We failed, restore everything and try the other options.
795       Addr = SavedAddr;
796 
797       unsupported_gep:
798       break;
799     }
800     case Instruction::Alloca: {
801       const AllocaInst *AI = cast<AllocaInst>(Obj);
802       DenseMap<const AllocaInst*, int>::iterator SI =
803         FuncInfo.StaticAllocaMap.find(AI);
804       if (SI != FuncInfo.StaticAllocaMap.end()) {
805         Addr.BaseType = Address::FrameIndexBase;
806         Addr.Base.FI = SI->second;
807         return true;
808       }
809       break;
810     }
811   }
812 
813   // Try to get this in a register if nothing else has worked.
814   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
815   return Addr.Base.Reg != 0;
816 }
817 
818 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
819   bool needsLowering = false;
820   switch (VT.SimpleTy) {
821     default: llvm_unreachable("Unhandled load/store type!");
822     case MVT::i1:
823     case MVT::i8:
824     case MVT::i16:
825     case MVT::i32:
826       if (!useAM3) {
827         // Integer loads/stores handle 12-bit offsets.
828         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
829         // Handle negative offsets.
830         if (needsLowering && isThumb2)
831           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
832                             Addr.Offset > -256);
833       } else {
834         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
835         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
836       }
837       break;
838     case MVT::f32:
839     case MVT::f64:
840       // Floating point operands handle 8-bit offsets.
841       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
842       break;
843   }
844 
845   // If this is a stack pointer and the offset needs to be simplified then
846   // put the alloca address into a register, set the base type back to
847   // register and continue. This should almost never happen.
848   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
849     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
850                                              : &ARM::GPRRegClass;
851     unsigned ResultReg = createResultReg(RC);
852     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
853     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
854                             TII.get(Opc), ResultReg)
855                             .addFrameIndex(Addr.Base.FI)
856                             .addImm(0));
857     Addr.Base.Reg = ResultReg;
858     Addr.BaseType = Address::RegBase;
859   }
860 
861   // Since the offset is too large for the load/store instruction
862   // get the reg+offset into a register.
863   if (needsLowering) {
864     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
865                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
866     Addr.Offset = 0;
867   }
868 }
869 
870 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
871                                        const MachineInstrBuilder &MIB,
872                                        MachineMemOperand::Flags Flags,
873                                        bool useAM3) {
874   // addrmode5 output depends on the selection dag addressing dividing the
875   // offset by 4 that it then later multiplies. Do this here as well.
876   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
877     Addr.Offset /= 4;
878 
879   // Frame base works a bit differently. Handle it separately.
880   if (Addr.BaseType == Address::FrameIndexBase) {
881     int FI = Addr.Base.FI;
882     int Offset = Addr.Offset;
883     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
884         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
885         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
886     // Now add the rest of the operands.
887     MIB.addFrameIndex(FI);
888 
889     // ARM halfword load/stores and signed byte loads need an additional
890     // operand.
891     if (useAM3) {
892       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
893       MIB.addReg(0);
894       MIB.addImm(Imm);
895     } else {
896       MIB.addImm(Addr.Offset);
897     }
898     MIB.addMemOperand(MMO);
899   } else {
900     // Now add the rest of the operands.
901     MIB.addReg(Addr.Base.Reg);
902 
903     // ARM halfword load/stores and signed byte loads need an additional
904     // operand.
905     if (useAM3) {
906       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
907       MIB.addReg(0);
908       MIB.addImm(Imm);
909     } else {
910       MIB.addImm(Addr.Offset);
911     }
912   }
913   AddOptionalDefs(MIB);
914 }
915 
916 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
917                               unsigned Alignment, bool isZExt, bool allocReg) {
918   unsigned Opc;
919   bool useAM3 = false;
920   bool needVMOV = false;
921   const TargetRegisterClass *RC;
922   switch (VT.SimpleTy) {
923     // This is mostly going to be Neon/vector support.
924     default: return false;
925     case MVT::i1:
926     case MVT::i8:
927       if (isThumb2) {
928         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
929           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
930         else
931           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
932       } else {
933         if (isZExt) {
934           Opc = ARM::LDRBi12;
935         } else {
936           Opc = ARM::LDRSB;
937           useAM3 = true;
938         }
939       }
940       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
941       break;
942     case MVT::i16:
943       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
944         return false;
945 
946       if (isThumb2) {
947         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
948           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
949         else
950           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
951       } else {
952         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
953         useAM3 = true;
954       }
955       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
956       break;
957     case MVT::i32:
958       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
959         return false;
960 
961       if (isThumb2) {
962         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
963           Opc = ARM::t2LDRi8;
964         else
965           Opc = ARM::t2LDRi12;
966       } else {
967         Opc = ARM::LDRi12;
968       }
969       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
970       break;
971     case MVT::f32:
972       if (!Subtarget->hasVFP2()) return false;
973       // Unaligned loads need special handling. Floats require word-alignment.
974       if (Alignment && Alignment < 4) {
975         needVMOV = true;
976         VT = MVT::i32;
977         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
978         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
979       } else {
980         Opc = ARM::VLDRS;
981         RC = TLI.getRegClassFor(VT);
982       }
983       break;
984     case MVT::f64:
985       if (!Subtarget->hasVFP2()) return false;
986       // FIXME: Unaligned loads need special handling.  Doublewords require
987       // word-alignment.
988       if (Alignment && Alignment < 4)
989         return false;
990 
991       Opc = ARM::VLDRD;
992       RC = TLI.getRegClassFor(VT);
993       break;
994   }
995   // Simplify this down to something we can handle.
996   ARMSimplifyAddress(Addr, VT, useAM3);
997 
998   // Create the base instruction, then add the operands.
999   if (allocReg)
1000     ResultReg = createResultReg(RC);
1001   assert(ResultReg > 255 && "Expected an allocated virtual register.");
1002   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1003                                     TII.get(Opc), ResultReg);
1004   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1005 
1006   // If we had an unaligned load of a float we've converted it to an regular
1007   // load.  Now we must move from the GRP to the FP register.
1008   if (needVMOV) {
1009     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1010     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1011                             TII.get(ARM::VMOVSR), MoveReg)
1012                     .addReg(ResultReg));
1013     ResultReg = MoveReg;
1014   }
1015   return true;
1016 }
1017 
1018 bool ARMFastISel::SelectLoad(const Instruction *I) {
1019   // Atomic loads need special handling.
1020   if (cast<LoadInst>(I)->isAtomic())
1021     return false;
1022 
1023   const Value *SV = I->getOperand(0);
1024   if (TLI.supportSwiftError()) {
1025     // Swifterror values can come from either a function parameter with
1026     // swifterror attribute or an alloca with swifterror attribute.
1027     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1028       if (Arg->hasSwiftErrorAttr())
1029         return false;
1030     }
1031 
1032     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1033       if (Alloca->isSwiftError())
1034         return false;
1035     }
1036   }
1037 
1038   // Verify we have a legal type before going any further.
1039   MVT VT;
1040   if (!isLoadTypeLegal(I->getType(), VT))
1041     return false;
1042 
1043   // See if we can handle this address.
1044   Address Addr;
1045   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1046 
1047   unsigned ResultReg;
1048   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1049     return false;
1050   updateValueMap(I, ResultReg);
1051   return true;
1052 }
1053 
1054 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1055                                unsigned Alignment) {
1056   unsigned StrOpc;
1057   bool useAM3 = false;
1058   switch (VT.SimpleTy) {
1059     // This is mostly going to be Neon/vector support.
1060     default: return false;
1061     case MVT::i1: {
1062       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1063                                               : &ARM::GPRRegClass);
1064       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1065       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1066       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1067                               TII.get(Opc), Res)
1068                       .addReg(SrcReg).addImm(1));
1069       SrcReg = Res;
1070       LLVM_FALLTHROUGH;
1071     }
1072     case MVT::i8:
1073       if (isThumb2) {
1074         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1075           StrOpc = ARM::t2STRBi8;
1076         else
1077           StrOpc = ARM::t2STRBi12;
1078       } else {
1079         StrOpc = ARM::STRBi12;
1080       }
1081       break;
1082     case MVT::i16:
1083       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1084         return false;
1085 
1086       if (isThumb2) {
1087         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1088           StrOpc = ARM::t2STRHi8;
1089         else
1090           StrOpc = ARM::t2STRHi12;
1091       } else {
1092         StrOpc = ARM::STRH;
1093         useAM3 = true;
1094       }
1095       break;
1096     case MVT::i32:
1097       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1098         return false;
1099 
1100       if (isThumb2) {
1101         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1102           StrOpc = ARM::t2STRi8;
1103         else
1104           StrOpc = ARM::t2STRi12;
1105       } else {
1106         StrOpc = ARM::STRi12;
1107       }
1108       break;
1109     case MVT::f32:
1110       if (!Subtarget->hasVFP2()) return false;
1111       // Unaligned stores need special handling. Floats require word-alignment.
1112       if (Alignment && Alignment < 4) {
1113         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1114         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1115                                 TII.get(ARM::VMOVRS), MoveReg)
1116                         .addReg(SrcReg));
1117         SrcReg = MoveReg;
1118         VT = MVT::i32;
1119         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1120       } else {
1121         StrOpc = ARM::VSTRS;
1122       }
1123       break;
1124     case MVT::f64:
1125       if (!Subtarget->hasVFP2()) return false;
1126       // FIXME: Unaligned stores need special handling.  Doublewords require
1127       // word-alignment.
1128       if (Alignment && Alignment < 4)
1129           return false;
1130 
1131       StrOpc = ARM::VSTRD;
1132       break;
1133   }
1134   // Simplify this down to something we can handle.
1135   ARMSimplifyAddress(Addr, VT, useAM3);
1136 
1137   // Create the base instruction, then add the operands.
1138   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1139   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1140                                     TII.get(StrOpc))
1141                             .addReg(SrcReg);
1142   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1143   return true;
1144 }
1145 
1146 bool ARMFastISel::SelectStore(const Instruction *I) {
1147   Value *Op0 = I->getOperand(0);
1148   unsigned SrcReg = 0;
1149 
1150   // Atomic stores need special handling.
1151   if (cast<StoreInst>(I)->isAtomic())
1152     return false;
1153 
1154   const Value *PtrV = I->getOperand(1);
1155   if (TLI.supportSwiftError()) {
1156     // Swifterror values can come from either a function parameter with
1157     // swifterror attribute or an alloca with swifterror attribute.
1158     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1159       if (Arg->hasSwiftErrorAttr())
1160         return false;
1161     }
1162 
1163     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1164       if (Alloca->isSwiftError())
1165         return false;
1166     }
1167   }
1168 
1169   // Verify we have a legal type before going any further.
1170   MVT VT;
1171   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1172     return false;
1173 
1174   // Get the value to be stored into a register.
1175   SrcReg = getRegForValue(Op0);
1176   if (SrcReg == 0) return false;
1177 
1178   // See if we can handle this address.
1179   Address Addr;
1180   if (!ARMComputeAddress(I->getOperand(1), Addr))
1181     return false;
1182 
1183   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1184     return false;
1185   return true;
1186 }
1187 
1188 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1189   switch (Pred) {
1190     // Needs two compares...
1191     case CmpInst::FCMP_ONE:
1192     case CmpInst::FCMP_UEQ:
1193     default:
1194       // AL is our "false" for now. The other two need more compares.
1195       return ARMCC::AL;
1196     case CmpInst::ICMP_EQ:
1197     case CmpInst::FCMP_OEQ:
1198       return ARMCC::EQ;
1199     case CmpInst::ICMP_SGT:
1200     case CmpInst::FCMP_OGT:
1201       return ARMCC::GT;
1202     case CmpInst::ICMP_SGE:
1203     case CmpInst::FCMP_OGE:
1204       return ARMCC::GE;
1205     case CmpInst::ICMP_UGT:
1206     case CmpInst::FCMP_UGT:
1207       return ARMCC::HI;
1208     case CmpInst::FCMP_OLT:
1209       return ARMCC::MI;
1210     case CmpInst::ICMP_ULE:
1211     case CmpInst::FCMP_OLE:
1212       return ARMCC::LS;
1213     case CmpInst::FCMP_ORD:
1214       return ARMCC::VC;
1215     case CmpInst::FCMP_UNO:
1216       return ARMCC::VS;
1217     case CmpInst::FCMP_UGE:
1218       return ARMCC::PL;
1219     case CmpInst::ICMP_SLT:
1220     case CmpInst::FCMP_ULT:
1221       return ARMCC::LT;
1222     case CmpInst::ICMP_SLE:
1223     case CmpInst::FCMP_ULE:
1224       return ARMCC::LE;
1225     case CmpInst::FCMP_UNE:
1226     case CmpInst::ICMP_NE:
1227       return ARMCC::NE;
1228     case CmpInst::ICMP_UGE:
1229       return ARMCC::HS;
1230     case CmpInst::ICMP_ULT:
1231       return ARMCC::LO;
1232   }
1233 }
1234 
1235 bool ARMFastISel::SelectBranch(const Instruction *I) {
1236   const BranchInst *BI = cast<BranchInst>(I);
1237   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1238   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1239 
1240   // Simple branch support.
1241 
1242   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1243   // behavior.
1244   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1245     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1246       // Get the compare predicate.
1247       // Try to take advantage of fallthrough opportunities.
1248       CmpInst::Predicate Predicate = CI->getPredicate();
1249       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1250         std::swap(TBB, FBB);
1251         Predicate = CmpInst::getInversePredicate(Predicate);
1252       }
1253 
1254       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1255 
1256       // We may not handle every CC for now.
1257       if (ARMPred == ARMCC::AL) return false;
1258 
1259       // Emit the compare.
1260       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
1261                       CI->isEquality()))
1262         return false;
1263 
1264       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1265       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1266       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1267       finishCondBranch(BI->getParent(), TBB, FBB);
1268       return true;
1269     }
1270   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1271     MVT SourceVT;
1272     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1273         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1274       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1275       unsigned OpReg = getRegForValue(TI->getOperand(0));
1276       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1277       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1278                               TII.get(TstOpc))
1279                       .addReg(OpReg).addImm(1));
1280 
1281       unsigned CCMode = ARMCC::NE;
1282       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1283         std::swap(TBB, FBB);
1284         CCMode = ARMCC::EQ;
1285       }
1286 
1287       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1288       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1289       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1290 
1291       finishCondBranch(BI->getParent(), TBB, FBB);
1292       return true;
1293     }
1294   } else if (const ConstantInt *CI =
1295              dyn_cast<ConstantInt>(BI->getCondition())) {
1296     uint64_t Imm = CI->getZExtValue();
1297     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1298     fastEmitBranch(Target, DbgLoc);
1299     return true;
1300   }
1301 
1302   unsigned CmpReg = getRegForValue(BI->getCondition());
1303   if (CmpReg == 0) return false;
1304 
1305   // We've been divorced from our compare!  Our block was split, and
1306   // now our compare lives in a predecessor block.  We musn't
1307   // re-compare here, as the children of the compare aren't guaranteed
1308   // live across the block boundary (we *could* check for this).
1309   // Regardless, the compare has been done in the predecessor block,
1310   // and it left a value for us in a virtual register.  Ergo, we test
1311   // the one-bit value left in the virtual register.
1312   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1313   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1314   AddOptionalDefs(
1315       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1316           .addReg(CmpReg)
1317           .addImm(1));
1318 
1319   unsigned CCMode = ARMCC::NE;
1320   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1321     std::swap(TBB, FBB);
1322     CCMode = ARMCC::EQ;
1323   }
1324 
1325   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1326   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1327                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1328   finishCondBranch(BI->getParent(), TBB, FBB);
1329   return true;
1330 }
1331 
1332 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1333   unsigned AddrReg = getRegForValue(I->getOperand(0));
1334   if (AddrReg == 0) return false;
1335 
1336   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1337   assert(isThumb2 || Subtarget->hasV4TOps());
1338 
1339   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1340                           TII.get(Opc)).addReg(AddrReg));
1341 
1342   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1343   for (const BasicBlock *SuccBB : IB->successors())
1344     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1345 
1346   return true;
1347 }
1348 
1349 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1350                              bool isZExt, bool isEquality) {
1351   Type *Ty = Src1Value->getType();
1352   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1353   if (!SrcEVT.isSimple()) return false;
1354   MVT SrcVT = SrcEVT.getSimpleVT();
1355 
1356   if (Ty->isFloatTy() && !Subtarget->hasVFP2())
1357     return false;
1358 
1359   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()))
1360     return false;
1361 
1362   // Check to see if the 2nd operand is a constant that we can encode directly
1363   // in the compare.
1364   int Imm = 0;
1365   bool UseImm = false;
1366   bool isNegativeImm = false;
1367   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1368   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1369   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1370     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1371         SrcVT == MVT::i1) {
1372       const APInt &CIVal = ConstInt->getValue();
1373       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1374       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1375       // then a cmn, because there is no way to represent 2147483648 as a
1376       // signed 32-bit int.
1377       if (Imm < 0 && Imm != (int)0x80000000) {
1378         isNegativeImm = true;
1379         Imm = -Imm;
1380       }
1381       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1382         (ARM_AM::getSOImmVal(Imm) != -1);
1383     }
1384   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1385     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1386       if (ConstFP->isZero() && !ConstFP->isNegative())
1387         UseImm = true;
1388   }
1389 
1390   unsigned CmpOpc;
1391   bool isICmp = true;
1392   bool needsExt = false;
1393   switch (SrcVT.SimpleTy) {
1394     default: return false;
1395     // TODO: Verify compares.
1396     case MVT::f32:
1397       isICmp = false;
1398       // Equality comparisons shouldn't raise Invalid on uordered inputs.
1399       if (isEquality)
1400         CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1401       else
1402         CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1403       break;
1404     case MVT::f64:
1405       isICmp = false;
1406       // Equality comparisons shouldn't raise Invalid on uordered inputs.
1407       if (isEquality)
1408         CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1409       else
1410       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1411       break;
1412     case MVT::i1:
1413     case MVT::i8:
1414     case MVT::i16:
1415       needsExt = true;
1416       LLVM_FALLTHROUGH;
1417     case MVT::i32:
1418       if (isThumb2) {
1419         if (!UseImm)
1420           CmpOpc = ARM::t2CMPrr;
1421         else
1422           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1423       } else {
1424         if (!UseImm)
1425           CmpOpc = ARM::CMPrr;
1426         else
1427           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1428       }
1429       break;
1430   }
1431 
1432   unsigned SrcReg1 = getRegForValue(Src1Value);
1433   if (SrcReg1 == 0) return false;
1434 
1435   unsigned SrcReg2 = 0;
1436   if (!UseImm) {
1437     SrcReg2 = getRegForValue(Src2Value);
1438     if (SrcReg2 == 0) return false;
1439   }
1440 
1441   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1442   if (needsExt) {
1443     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1444     if (SrcReg1 == 0) return false;
1445     if (!UseImm) {
1446       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1447       if (SrcReg2 == 0) return false;
1448     }
1449   }
1450 
1451   const MCInstrDesc &II = TII.get(CmpOpc);
1452   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1453   if (!UseImm) {
1454     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1455     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1456                     .addReg(SrcReg1).addReg(SrcReg2));
1457   } else {
1458     MachineInstrBuilder MIB;
1459     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1460       .addReg(SrcReg1);
1461 
1462     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1463     if (isICmp)
1464       MIB.addImm(Imm);
1465     AddOptionalDefs(MIB);
1466   }
1467 
1468   // For floating point we need to move the result to a comparison register
1469   // that we can then use for branches.
1470   if (Ty->isFloatTy() || Ty->isDoubleTy())
1471     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1472                             TII.get(ARM::FMSTAT)));
1473   return true;
1474 }
1475 
1476 bool ARMFastISel::SelectCmp(const Instruction *I) {
1477   const CmpInst *CI = cast<CmpInst>(I);
1478 
1479   // Get the compare predicate.
1480   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1481 
1482   // We may not handle every CC for now.
1483   if (ARMPred == ARMCC::AL) return false;
1484 
1485   // Emit the compare.
1486   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
1487                   CI->isEquality()))
1488     return false;
1489 
1490   // Now set a register based on the comparison. Explicitly set the predicates
1491   // here.
1492   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1493   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1494                                            : &ARM::GPRRegClass;
1495   unsigned DestReg = createResultReg(RC);
1496   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1497   unsigned ZeroReg = fastMaterializeConstant(Zero);
1498   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1499   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1500           .addReg(ZeroReg).addImm(1)
1501           .addImm(ARMPred).addReg(ARM::CPSR);
1502 
1503   updateValueMap(I, DestReg);
1504   return true;
1505 }
1506 
1507 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1508   // Make sure we have VFP and that we're extending float to double.
1509   if (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()) return false;
1510 
1511   Value *V = I->getOperand(0);
1512   if (!I->getType()->isDoubleTy() ||
1513       !V->getType()->isFloatTy()) return false;
1514 
1515   unsigned Op = getRegForValue(V);
1516   if (Op == 0) return false;
1517 
1518   unsigned Result = createResultReg(&ARM::DPRRegClass);
1519   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1520                           TII.get(ARM::VCVTDS), Result)
1521                   .addReg(Op));
1522   updateValueMap(I, Result);
1523   return true;
1524 }
1525 
1526 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1527   // Make sure we have VFP and that we're truncating double to float.
1528   if (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()) return false;
1529 
1530   Value *V = I->getOperand(0);
1531   if (!(I->getType()->isFloatTy() &&
1532         V->getType()->isDoubleTy())) return false;
1533 
1534   unsigned Op = getRegForValue(V);
1535   if (Op == 0) return false;
1536 
1537   unsigned Result = createResultReg(&ARM::SPRRegClass);
1538   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1539                           TII.get(ARM::VCVTSD), Result)
1540                   .addReg(Op));
1541   updateValueMap(I, Result);
1542   return true;
1543 }
1544 
1545 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1546   // Make sure we have VFP.
1547   if (!Subtarget->hasVFP2()) return false;
1548 
1549   MVT DstVT;
1550   Type *Ty = I->getType();
1551   if (!isTypeLegal(Ty, DstVT))
1552     return false;
1553 
1554   Value *Src = I->getOperand(0);
1555   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1556   if (!SrcEVT.isSimple())
1557     return false;
1558   MVT SrcVT = SrcEVT.getSimpleVT();
1559   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1560     return false;
1561 
1562   unsigned SrcReg = getRegForValue(Src);
1563   if (SrcReg == 0) return false;
1564 
1565   // Handle sign-extension.
1566   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1567     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1568                                        /*isZExt*/!isSigned);
1569     if (SrcReg == 0) return false;
1570   }
1571 
1572   // The conversion routine works on fp-reg to fp-reg and the operand above
1573   // was an integer, move it to the fp registers if possible.
1574   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1575   if (FP == 0) return false;
1576 
1577   unsigned Opc;
1578   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1579   else if (Ty->isDoubleTy() && !Subtarget->isFPOnlySP())
1580     Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1581   else return false;
1582 
1583   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1584   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1585                           TII.get(Opc), ResultReg).addReg(FP));
1586   updateValueMap(I, ResultReg);
1587   return true;
1588 }
1589 
1590 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1591   // Make sure we have VFP.
1592   if (!Subtarget->hasVFP2()) return false;
1593 
1594   MVT DstVT;
1595   Type *RetTy = I->getType();
1596   if (!isTypeLegal(RetTy, DstVT))
1597     return false;
1598 
1599   unsigned Op = getRegForValue(I->getOperand(0));
1600   if (Op == 0) return false;
1601 
1602   unsigned Opc;
1603   Type *OpTy = I->getOperand(0)->getType();
1604   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1605   else if (OpTy->isDoubleTy() && !Subtarget->isFPOnlySP())
1606     Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1607   else return false;
1608 
1609   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1610   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1611   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1612                           TII.get(Opc), ResultReg).addReg(Op));
1613 
1614   // This result needs to be in an integer register, but the conversion only
1615   // takes place in fp-regs.
1616   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1617   if (IntReg == 0) return false;
1618 
1619   updateValueMap(I, IntReg);
1620   return true;
1621 }
1622 
1623 bool ARMFastISel::SelectSelect(const Instruction *I) {
1624   MVT VT;
1625   if (!isTypeLegal(I->getType(), VT))
1626     return false;
1627 
1628   // Things need to be register sized for register moves.
1629   if (VT != MVT::i32) return false;
1630 
1631   unsigned CondReg = getRegForValue(I->getOperand(0));
1632   if (CondReg == 0) return false;
1633   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1634   if (Op1Reg == 0) return false;
1635 
1636   // Check to see if we can use an immediate in the conditional move.
1637   int Imm = 0;
1638   bool UseImm = false;
1639   bool isNegativeImm = false;
1640   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1641     assert(VT == MVT::i32 && "Expecting an i32.");
1642     Imm = (int)ConstInt->getValue().getZExtValue();
1643     if (Imm < 0) {
1644       isNegativeImm = true;
1645       Imm = ~Imm;
1646     }
1647     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1648       (ARM_AM::getSOImmVal(Imm) != -1);
1649   }
1650 
1651   unsigned Op2Reg = 0;
1652   if (!UseImm) {
1653     Op2Reg = getRegForValue(I->getOperand(2));
1654     if (Op2Reg == 0) return false;
1655   }
1656 
1657   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1658   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1659   AddOptionalDefs(
1660       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1661           .addReg(CondReg)
1662           .addImm(1));
1663 
1664   unsigned MovCCOpc;
1665   const TargetRegisterClass *RC;
1666   if (!UseImm) {
1667     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1668     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1669   } else {
1670     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1671     if (!isNegativeImm)
1672       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1673     else
1674       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1675   }
1676   unsigned ResultReg = createResultReg(RC);
1677   if (!UseImm) {
1678     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1679     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1680     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1681             ResultReg)
1682         .addReg(Op2Reg)
1683         .addReg(Op1Reg)
1684         .addImm(ARMCC::NE)
1685         .addReg(ARM::CPSR);
1686   } else {
1687     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1688     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1689             ResultReg)
1690         .addReg(Op1Reg)
1691         .addImm(Imm)
1692         .addImm(ARMCC::EQ)
1693         .addReg(ARM::CPSR);
1694   }
1695   updateValueMap(I, ResultReg);
1696   return true;
1697 }
1698 
1699 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1700   MVT VT;
1701   Type *Ty = I->getType();
1702   if (!isTypeLegal(Ty, VT))
1703     return false;
1704 
1705   // If we have integer div support we should have selected this automagically.
1706   // In case we have a real miss go ahead and return false and we'll pick
1707   // it up later.
1708   if (Subtarget->hasDivideInThumbMode())
1709     return false;
1710 
1711   // Otherwise emit a libcall.
1712   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1713   if (VT == MVT::i8)
1714     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1715   else if (VT == MVT::i16)
1716     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1717   else if (VT == MVT::i32)
1718     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1719   else if (VT == MVT::i64)
1720     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1721   else if (VT == MVT::i128)
1722     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1723   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1724 
1725   return ARMEmitLibcall(I, LC);
1726 }
1727 
1728 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1729   MVT VT;
1730   Type *Ty = I->getType();
1731   if (!isTypeLegal(Ty, VT))
1732     return false;
1733 
1734   // Many ABIs do not provide a libcall for standalone remainder, so we need to
1735   // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1736   // multi-reg returns, we'll have to bail out.
1737   if (!TLI.hasStandaloneRem(VT)) {
1738     return false;
1739   }
1740 
1741   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1742   if (VT == MVT::i8)
1743     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1744   else if (VT == MVT::i16)
1745     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1746   else if (VT == MVT::i32)
1747     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1748   else if (VT == MVT::i64)
1749     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1750   else if (VT == MVT::i128)
1751     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1752   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1753 
1754   return ARMEmitLibcall(I, LC);
1755 }
1756 
1757 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1758   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1759 
1760   // We can get here in the case when we have a binary operation on a non-legal
1761   // type and the target independent selector doesn't know how to handle it.
1762   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1763     return false;
1764 
1765   unsigned Opc;
1766   switch (ISDOpcode) {
1767     default: return false;
1768     case ISD::ADD:
1769       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1770       break;
1771     case ISD::OR:
1772       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1773       break;
1774     case ISD::SUB:
1775       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1776       break;
1777   }
1778 
1779   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1780   if (SrcReg1 == 0) return false;
1781 
1782   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1783   // in the instruction, rather then materializing the value in a register.
1784   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1785   if (SrcReg2 == 0) return false;
1786 
1787   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1788   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1789   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1790   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1791                           TII.get(Opc), ResultReg)
1792                   .addReg(SrcReg1).addReg(SrcReg2));
1793   updateValueMap(I, ResultReg);
1794   return true;
1795 }
1796 
1797 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1798   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1799   if (!FPVT.isSimple()) return false;
1800   MVT VT = FPVT.getSimpleVT();
1801 
1802   // FIXME: Support vector types where possible.
1803   if (VT.isVector())
1804     return false;
1805 
1806   // We can get here in the case when we want to use NEON for our fp
1807   // operations, but can't figure out how to. Just use the vfp instructions
1808   // if we have them.
1809   // FIXME: It'd be nice to use NEON instructions.
1810   Type *Ty = I->getType();
1811   if (Ty->isFloatTy() && !Subtarget->hasVFP2())
1812     return false;
1813   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2() || Subtarget->isFPOnlySP()))
1814     return false;
1815 
1816   unsigned Opc;
1817   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1818   switch (ISDOpcode) {
1819     default: return false;
1820     case ISD::FADD:
1821       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1822       break;
1823     case ISD::FSUB:
1824       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1825       break;
1826     case ISD::FMUL:
1827       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1828       break;
1829   }
1830   unsigned Op1 = getRegForValue(I->getOperand(0));
1831   if (Op1 == 0) return false;
1832 
1833   unsigned Op2 = getRegForValue(I->getOperand(1));
1834   if (Op2 == 0) return false;
1835 
1836   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1837   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1838                           TII.get(Opc), ResultReg)
1839                   .addReg(Op1).addReg(Op2));
1840   updateValueMap(I, ResultReg);
1841   return true;
1842 }
1843 
1844 // Call Handling Code
1845 
1846 // This is largely taken directly from CCAssignFnForNode
1847 // TODO: We may not support all of this.
1848 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1849                                            bool Return,
1850                                            bool isVarArg) {
1851   switch (CC) {
1852   default:
1853     report_fatal_error("Unsupported calling convention");
1854   case CallingConv::Fast:
1855     if (Subtarget->hasVFP2() && !isVarArg) {
1856       if (!Subtarget->isAAPCS_ABI())
1857         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1858       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1859       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1860     }
1861     LLVM_FALLTHROUGH;
1862   case CallingConv::C:
1863   case CallingConv::CXX_FAST_TLS:
1864     // Use target triple & subtarget features to do actual dispatch.
1865     if (Subtarget->isAAPCS_ABI()) {
1866       if (Subtarget->hasVFP2() &&
1867           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1868         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1869       else
1870         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1871     } else {
1872       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1873     }
1874   case CallingConv::ARM_AAPCS_VFP:
1875   case CallingConv::Swift:
1876     if (!isVarArg)
1877       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1878     // Fall through to soft float variant, variadic functions don't
1879     // use hard floating point ABI.
1880     LLVM_FALLTHROUGH;
1881   case CallingConv::ARM_AAPCS:
1882     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1883   case CallingConv::ARM_APCS:
1884     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1885   case CallingConv::GHC:
1886     if (Return)
1887       report_fatal_error("Can't return in GHC call convention");
1888     else
1889       return CC_ARM_APCS_GHC;
1890   }
1891 }
1892 
1893 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1894                                   SmallVectorImpl<unsigned> &ArgRegs,
1895                                   SmallVectorImpl<MVT> &ArgVTs,
1896                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1897                                   SmallVectorImpl<unsigned> &RegArgs,
1898                                   CallingConv::ID CC,
1899                                   unsigned &NumBytes,
1900                                   bool isVarArg) {
1901   SmallVector<CCValAssign, 16> ArgLocs;
1902   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1903   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1904                              CCAssignFnForCall(CC, false, isVarArg));
1905 
1906   // Check that we can handle all of the arguments. If we can't, then bail out
1907   // now before we add code to the MBB.
1908   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1909     CCValAssign &VA = ArgLocs[i];
1910     MVT ArgVT = ArgVTs[VA.getValNo()];
1911 
1912     // We don't handle NEON/vector parameters yet.
1913     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1914       return false;
1915 
1916     // Now copy/store arg to correct locations.
1917     if (VA.isRegLoc() && !VA.needsCustom()) {
1918       continue;
1919     } else if (VA.needsCustom()) {
1920       // TODO: We need custom lowering for vector (v2f64) args.
1921       if (VA.getLocVT() != MVT::f64 ||
1922           // TODO: Only handle register args for now.
1923           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1924         return false;
1925     } else {
1926       switch (ArgVT.SimpleTy) {
1927       default:
1928         return false;
1929       case MVT::i1:
1930       case MVT::i8:
1931       case MVT::i16:
1932       case MVT::i32:
1933         break;
1934       case MVT::f32:
1935         if (!Subtarget->hasVFP2())
1936           return false;
1937         break;
1938       case MVT::f64:
1939         if (!Subtarget->hasVFP2())
1940           return false;
1941         break;
1942       }
1943     }
1944   }
1945 
1946   // At the point, we are able to handle the call's arguments in fast isel.
1947 
1948   // Get a count of how many bytes are to be pushed on the stack.
1949   NumBytes = CCInfo.getNextStackOffset();
1950 
1951   // Issue CALLSEQ_START
1952   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1953   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1954                           TII.get(AdjStackDown))
1955                   .addImm(NumBytes).addImm(0));
1956 
1957   // Process the args.
1958   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1959     CCValAssign &VA = ArgLocs[i];
1960     const Value *ArgVal = Args[VA.getValNo()];
1961     unsigned Arg = ArgRegs[VA.getValNo()];
1962     MVT ArgVT = ArgVTs[VA.getValNo()];
1963 
1964     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1965            "We don't handle NEON/vector parameters yet.");
1966 
1967     // Handle arg promotion, etc.
1968     switch (VA.getLocInfo()) {
1969       case CCValAssign::Full: break;
1970       case CCValAssign::SExt: {
1971         MVT DestVT = VA.getLocVT();
1972         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1973         assert(Arg != 0 && "Failed to emit a sext");
1974         ArgVT = DestVT;
1975         break;
1976       }
1977       case CCValAssign::AExt:
1978       // Intentional fall-through.  Handle AExt and ZExt.
1979       case CCValAssign::ZExt: {
1980         MVT DestVT = VA.getLocVT();
1981         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1982         assert(Arg != 0 && "Failed to emit a zext");
1983         ArgVT = DestVT;
1984         break;
1985       }
1986       case CCValAssign::BCvt: {
1987         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1988                                  /*TODO: Kill=*/false);
1989         assert(BC != 0 && "Failed to emit a bitcast!");
1990         Arg = BC;
1991         ArgVT = VA.getLocVT();
1992         break;
1993       }
1994       default: llvm_unreachable("Unknown arg promotion!");
1995     }
1996 
1997     // Now copy/store arg to correct locations.
1998     if (VA.isRegLoc() && !VA.needsCustom()) {
1999       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2000               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
2001       RegArgs.push_back(VA.getLocReg());
2002     } else if (VA.needsCustom()) {
2003       // TODO: We need custom lowering for vector (v2f64) args.
2004       assert(VA.getLocVT() == MVT::f64 &&
2005              "Custom lowering for v2f64 args not available");
2006 
2007       // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
2008       CCValAssign &NextVA = ArgLocs[++i];
2009 
2010       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2011              "We only handle register args!");
2012 
2013       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2014                               TII.get(ARM::VMOVRRD), VA.getLocReg())
2015                       .addReg(NextVA.getLocReg(), RegState::Define)
2016                       .addReg(Arg));
2017       RegArgs.push_back(VA.getLocReg());
2018       RegArgs.push_back(NextVA.getLocReg());
2019     } else {
2020       assert(VA.isMemLoc());
2021       // Need to store on the stack.
2022 
2023       // Don't emit stores for undef values.
2024       if (isa<UndefValue>(ArgVal))
2025         continue;
2026 
2027       Address Addr;
2028       Addr.BaseType = Address::RegBase;
2029       Addr.Base.Reg = ARM::SP;
2030       Addr.Offset = VA.getLocMemOffset();
2031 
2032       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2033       assert(EmitRet && "Could not emit a store for argument!");
2034     }
2035   }
2036 
2037   return true;
2038 }
2039 
2040 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2041                              const Instruction *I, CallingConv::ID CC,
2042                              unsigned &NumBytes, bool isVarArg) {
2043   // Issue CALLSEQ_END
2044   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2045   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2046                           TII.get(AdjStackUp))
2047                   .addImm(NumBytes).addImm(0));
2048 
2049   // Now the return value.
2050   if (RetVT != MVT::isVoid) {
2051     SmallVector<CCValAssign, 16> RVLocs;
2052     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2053     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2054 
2055     // Copy all of the result registers out of their specified physreg.
2056     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2057       // For this move we copy into two registers and then move into the
2058       // double fp reg we want.
2059       MVT DestVT = RVLocs[0].getValVT();
2060       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2061       unsigned ResultReg = createResultReg(DstRC);
2062       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2063                               TII.get(ARM::VMOVDRR), ResultReg)
2064                       .addReg(RVLocs[0].getLocReg())
2065                       .addReg(RVLocs[1].getLocReg()));
2066 
2067       UsedRegs.push_back(RVLocs[0].getLocReg());
2068       UsedRegs.push_back(RVLocs[1].getLocReg());
2069 
2070       // Finally update the result.
2071       updateValueMap(I, ResultReg);
2072     } else {
2073       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2074       MVT CopyVT = RVLocs[0].getValVT();
2075 
2076       // Special handling for extended integers.
2077       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2078         CopyVT = MVT::i32;
2079 
2080       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2081 
2082       unsigned ResultReg = createResultReg(DstRC);
2083       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2084               TII.get(TargetOpcode::COPY),
2085               ResultReg).addReg(RVLocs[0].getLocReg());
2086       UsedRegs.push_back(RVLocs[0].getLocReg());
2087 
2088       // Finally update the result.
2089       updateValueMap(I, ResultReg);
2090     }
2091   }
2092 
2093   return true;
2094 }
2095 
2096 bool ARMFastISel::SelectRet(const Instruction *I) {
2097   const ReturnInst *Ret = cast<ReturnInst>(I);
2098   const Function &F = *I->getParent()->getParent();
2099 
2100   if (!FuncInfo.CanLowerReturn)
2101     return false;
2102 
2103   if (TLI.supportSwiftError() &&
2104       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2105     return false;
2106 
2107   if (TLI.supportSplitCSR(FuncInfo.MF))
2108     return false;
2109 
2110   // Build a list of return value registers.
2111   SmallVector<unsigned, 4> RetRegs;
2112 
2113   CallingConv::ID CC = F.getCallingConv();
2114   if (Ret->getNumOperands() > 0) {
2115     SmallVector<ISD::OutputArg, 4> Outs;
2116     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2117 
2118     // Analyze operands of the call, assigning locations to each operand.
2119     SmallVector<CCValAssign, 16> ValLocs;
2120     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2121     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2122                                                  F.isVarArg()));
2123 
2124     const Value *RV = Ret->getOperand(0);
2125     unsigned Reg = getRegForValue(RV);
2126     if (Reg == 0)
2127       return false;
2128 
2129     // Only handle a single return value for now.
2130     if (ValLocs.size() != 1)
2131       return false;
2132 
2133     CCValAssign &VA = ValLocs[0];
2134 
2135     // Don't bother handling odd stuff for now.
2136     if (VA.getLocInfo() != CCValAssign::Full)
2137       return false;
2138     // Only handle register returns for now.
2139     if (!VA.isRegLoc())
2140       return false;
2141 
2142     unsigned SrcReg = Reg + VA.getValNo();
2143     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2144     if (!RVEVT.isSimple()) return false;
2145     MVT RVVT = RVEVT.getSimpleVT();
2146     MVT DestVT = VA.getValVT();
2147     // Special handling for extended integers.
2148     if (RVVT != DestVT) {
2149       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2150         return false;
2151 
2152       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2153 
2154       // Perform extension if flagged as either zext or sext.  Otherwise, do
2155       // nothing.
2156       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2157         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2158         if (SrcReg == 0) return false;
2159       }
2160     }
2161 
2162     // Make the copy.
2163     unsigned DstReg = VA.getLocReg();
2164     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2165     // Avoid a cross-class copy. This is very unlikely.
2166     if (!SrcRC->contains(DstReg))
2167       return false;
2168     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2169             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2170 
2171     // Add register to return instruction.
2172     RetRegs.push_back(VA.getLocReg());
2173   }
2174 
2175   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2176                                     TII.get(Subtarget->getReturnOpcode()));
2177   AddOptionalDefs(MIB);
2178   for (unsigned R : RetRegs)
2179     MIB.addReg(R, RegState::Implicit);
2180   return true;
2181 }
2182 
2183 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2184   if (UseReg)
2185     return isThumb2 ? ARM::tBLXr : ARM::BLX;
2186   else
2187     return isThumb2 ? ARM::tBL : ARM::BL;
2188 }
2189 
2190 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2191   // Manually compute the global's type to avoid building it when unnecessary.
2192   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2193   EVT LCREVT = TLI.getValueType(DL, GVTy);
2194   if (!LCREVT.isSimple()) return 0;
2195 
2196   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2197                                        GlobalValue::ExternalLinkage, nullptr,
2198                                        Name);
2199   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2200   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2201 }
2202 
2203 // A quick function that will emit a call for a named libcall in F with the
2204 // vector of passed arguments for the Instruction in I. We can assume that we
2205 // can emit a call for any libcall we can produce. This is an abridged version
2206 // of the full call infrastructure since we won't need to worry about things
2207 // like computed function pointers or strange arguments at call sites.
2208 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2209 // with X86.
2210 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2211   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2212 
2213   // Handle *simple* calls for now.
2214   Type *RetTy = I->getType();
2215   MVT RetVT;
2216   if (RetTy->isVoidTy())
2217     RetVT = MVT::isVoid;
2218   else if (!isTypeLegal(RetTy, RetVT))
2219     return false;
2220 
2221   // Can't handle non-double multi-reg retvals.
2222   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2223     SmallVector<CCValAssign, 16> RVLocs;
2224     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2225     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2226     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2227       return false;
2228   }
2229 
2230   // Set up the argument vectors.
2231   SmallVector<Value*, 8> Args;
2232   SmallVector<unsigned, 8> ArgRegs;
2233   SmallVector<MVT, 8> ArgVTs;
2234   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2235   Args.reserve(I->getNumOperands());
2236   ArgRegs.reserve(I->getNumOperands());
2237   ArgVTs.reserve(I->getNumOperands());
2238   ArgFlags.reserve(I->getNumOperands());
2239   for (Value *Op :  I->operands()) {
2240     unsigned Arg = getRegForValue(Op);
2241     if (Arg == 0) return false;
2242 
2243     Type *ArgTy = Op->getType();
2244     MVT ArgVT;
2245     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2246 
2247     ISD::ArgFlagsTy Flags;
2248     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2249     Flags.setOrigAlign(OriginalAlignment);
2250 
2251     Args.push_back(Op);
2252     ArgRegs.push_back(Arg);
2253     ArgVTs.push_back(ArgVT);
2254     ArgFlags.push_back(Flags);
2255   }
2256 
2257   // Handle the arguments now that we've gotten them.
2258   SmallVector<unsigned, 4> RegArgs;
2259   unsigned NumBytes;
2260   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2261                        RegArgs, CC, NumBytes, false))
2262     return false;
2263 
2264   unsigned CalleeReg = 0;
2265   if (Subtarget->genLongCalls()) {
2266     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2267     if (CalleeReg == 0) return false;
2268   }
2269 
2270   // Issue the call.
2271   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2272   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2273                                     DbgLoc, TII.get(CallOpc));
2274   // BL / BLX don't take a predicate, but tBL / tBLX do.
2275   if (isThumb2)
2276     MIB.add(predOps(ARMCC::AL));
2277   if (Subtarget->genLongCalls())
2278     MIB.addReg(CalleeReg);
2279   else
2280     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2281 
2282   // Add implicit physical register uses to the call.
2283   for (unsigned R : RegArgs)
2284     MIB.addReg(R, RegState::Implicit);
2285 
2286   // Add a register mask with the call-preserved registers.
2287   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2288   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2289 
2290   // Finish off the call including any return values.
2291   SmallVector<unsigned, 4> UsedRegs;
2292   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2293 
2294   // Set all unused physreg defs as dead.
2295   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2296 
2297   return true;
2298 }
2299 
2300 bool ARMFastISel::SelectCall(const Instruction *I,
2301                              const char *IntrMemName = nullptr) {
2302   const CallInst *CI = cast<CallInst>(I);
2303   const Value *Callee = CI->getCalledValue();
2304 
2305   // Can't handle inline asm.
2306   if (isa<InlineAsm>(Callee)) return false;
2307 
2308   // Allow SelectionDAG isel to handle tail calls.
2309   if (CI->isTailCall()) return false;
2310 
2311   // Check the calling convention.
2312   ImmutableCallSite CS(CI);
2313   CallingConv::ID CC = CS.getCallingConv();
2314 
2315   // TODO: Avoid some calling conventions?
2316 
2317   FunctionType *FTy = CS.getFunctionType();
2318   bool isVarArg = FTy->isVarArg();
2319 
2320   // Handle *simple* calls for now.
2321   Type *RetTy = I->getType();
2322   MVT RetVT;
2323   if (RetTy->isVoidTy())
2324     RetVT = MVT::isVoid;
2325   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2326            RetVT != MVT::i8  && RetVT != MVT::i1)
2327     return false;
2328 
2329   // Can't handle non-double multi-reg retvals.
2330   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2331       RetVT != MVT::i16 && RetVT != MVT::i32) {
2332     SmallVector<CCValAssign, 16> RVLocs;
2333     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2334     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2335     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2336       return false;
2337   }
2338 
2339   // Set up the argument vectors.
2340   SmallVector<Value*, 8> Args;
2341   SmallVector<unsigned, 8> ArgRegs;
2342   SmallVector<MVT, 8> ArgVTs;
2343   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2344   unsigned arg_size = CS.arg_size();
2345   Args.reserve(arg_size);
2346   ArgRegs.reserve(arg_size);
2347   ArgVTs.reserve(arg_size);
2348   ArgFlags.reserve(arg_size);
2349   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2350        i != e; ++i) {
2351     // If we're lowering a memory intrinsic instead of a regular call, skip the
2352     // last argument, which shouldn't be passed to the underlying function.
2353     if (IntrMemName && e - i <= 1)
2354       break;
2355 
2356     ISD::ArgFlagsTy Flags;
2357     unsigned ArgIdx = i - CS.arg_begin();
2358     if (CS.paramHasAttr(ArgIdx, Attribute::SExt))
2359       Flags.setSExt();
2360     if (CS.paramHasAttr(ArgIdx, Attribute::ZExt))
2361       Flags.setZExt();
2362 
2363     // FIXME: Only handle *easy* calls for now.
2364     if (CS.paramHasAttr(ArgIdx, Attribute::InReg) ||
2365         CS.paramHasAttr(ArgIdx, Attribute::StructRet) ||
2366         CS.paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2367         CS.paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2368         CS.paramHasAttr(ArgIdx, Attribute::Nest) ||
2369         CS.paramHasAttr(ArgIdx, Attribute::ByVal))
2370       return false;
2371 
2372     Type *ArgTy = (*i)->getType();
2373     MVT ArgVT;
2374     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2375         ArgVT != MVT::i1)
2376       return false;
2377 
2378     unsigned Arg = getRegForValue(*i);
2379     if (Arg == 0)
2380       return false;
2381 
2382     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2383     Flags.setOrigAlign(OriginalAlignment);
2384 
2385     Args.push_back(*i);
2386     ArgRegs.push_back(Arg);
2387     ArgVTs.push_back(ArgVT);
2388     ArgFlags.push_back(Flags);
2389   }
2390 
2391   // Handle the arguments now that we've gotten them.
2392   SmallVector<unsigned, 4> RegArgs;
2393   unsigned NumBytes;
2394   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2395                        RegArgs, CC, NumBytes, isVarArg))
2396     return false;
2397 
2398   bool UseReg = false;
2399   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2400   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2401 
2402   unsigned CalleeReg = 0;
2403   if (UseReg) {
2404     if (IntrMemName)
2405       CalleeReg = getLibcallReg(IntrMemName);
2406     else
2407       CalleeReg = getRegForValue(Callee);
2408 
2409     if (CalleeReg == 0) return false;
2410   }
2411 
2412   // Issue the call.
2413   unsigned CallOpc = ARMSelectCallOp(UseReg);
2414   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2415                                     DbgLoc, TII.get(CallOpc));
2416 
2417   // ARM calls don't take a predicate, but tBL / tBLX do.
2418   if(isThumb2)
2419     MIB.add(predOps(ARMCC::AL));
2420   if (UseReg)
2421     MIB.addReg(CalleeReg);
2422   else if (!IntrMemName)
2423     MIB.addGlobalAddress(GV, 0, 0);
2424   else
2425     MIB.addExternalSymbol(IntrMemName, 0);
2426 
2427   // Add implicit physical register uses to the call.
2428   for (unsigned R : RegArgs)
2429     MIB.addReg(R, RegState::Implicit);
2430 
2431   // Add a register mask with the call-preserved registers.
2432   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2433   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2434 
2435   // Finish off the call including any return values.
2436   SmallVector<unsigned, 4> UsedRegs;
2437   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2438     return false;
2439 
2440   // Set all unused physreg defs as dead.
2441   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2442 
2443   return true;
2444 }
2445 
2446 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2447   return Len <= 16;
2448 }
2449 
2450 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2451                                         uint64_t Len, unsigned Alignment) {
2452   // Make sure we don't bloat code by inlining very large memcpy's.
2453   if (!ARMIsMemCpySmall(Len))
2454     return false;
2455 
2456   while (Len) {
2457     MVT VT;
2458     if (!Alignment || Alignment >= 4) {
2459       if (Len >= 4)
2460         VT = MVT::i32;
2461       else if (Len >= 2)
2462         VT = MVT::i16;
2463       else {
2464         assert(Len == 1 && "Expected a length of 1!");
2465         VT = MVT::i8;
2466       }
2467     } else {
2468       // Bound based on alignment.
2469       if (Len >= 2 && Alignment == 2)
2470         VT = MVT::i16;
2471       else {
2472         VT = MVT::i8;
2473       }
2474     }
2475 
2476     bool RV;
2477     unsigned ResultReg;
2478     RV = ARMEmitLoad(VT, ResultReg, Src);
2479     assert(RV && "Should be able to handle this load.");
2480     RV = ARMEmitStore(VT, ResultReg, Dest);
2481     assert(RV && "Should be able to handle this store.");
2482     (void)RV;
2483 
2484     unsigned Size = VT.getSizeInBits()/8;
2485     Len -= Size;
2486     Dest.Offset += Size;
2487     Src.Offset += Size;
2488   }
2489 
2490   return true;
2491 }
2492 
2493 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2494   // FIXME: Handle more intrinsics.
2495   switch (I.getIntrinsicID()) {
2496   default: return false;
2497   case Intrinsic::frameaddress: {
2498     MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2499     MFI.setFrameAddressIsTaken(true);
2500 
2501     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2502     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2503                                              : &ARM::GPRRegClass;
2504 
2505     const ARMBaseRegisterInfo *RegInfo =
2506         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2507     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2508     unsigned SrcReg = FramePtr;
2509 
2510     // Recursively load frame address
2511     // ldr r0 [fp]
2512     // ldr r0 [r0]
2513     // ldr r0 [r0]
2514     // ...
2515     unsigned DestReg;
2516     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2517     while (Depth--) {
2518       DestReg = createResultReg(RC);
2519       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2520                               TII.get(LdrOpc), DestReg)
2521                       .addReg(SrcReg).addImm(0));
2522       SrcReg = DestReg;
2523     }
2524     updateValueMap(&I, SrcReg);
2525     return true;
2526   }
2527   case Intrinsic::memcpy:
2528   case Intrinsic::memmove: {
2529     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2530     // Don't handle volatile.
2531     if (MTI.isVolatile())
2532       return false;
2533 
2534     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2535     // we would emit dead code because we don't currently handle memmoves.
2536     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2537     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2538       // Small memcpy's are common enough that we want to do them without a call
2539       // if possible.
2540       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2541       if (ARMIsMemCpySmall(Len)) {
2542         Address Dest, Src;
2543         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2544             !ARMComputeAddress(MTI.getRawSource(), Src))
2545           return false;
2546         unsigned Alignment = MinAlign(MTI.getDestAlignment(),
2547                                       MTI.getSourceAlignment());
2548         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2549           return true;
2550       }
2551     }
2552 
2553     if (!MTI.getLength()->getType()->isIntegerTy(32))
2554       return false;
2555 
2556     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2557       return false;
2558 
2559     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2560     return SelectCall(&I, IntrMemName);
2561   }
2562   case Intrinsic::memset: {
2563     const MemSetInst &MSI = cast<MemSetInst>(I);
2564     // Don't handle volatile.
2565     if (MSI.isVolatile())
2566       return false;
2567 
2568     if (!MSI.getLength()->getType()->isIntegerTy(32))
2569       return false;
2570 
2571     if (MSI.getDestAddressSpace() > 255)
2572       return false;
2573 
2574     return SelectCall(&I, "memset");
2575   }
2576   case Intrinsic::trap: {
2577     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2578       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2579     return true;
2580   }
2581   }
2582 }
2583 
2584 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2585   // The high bits for a type smaller than the register size are assumed to be
2586   // undefined.
2587   Value *Op = I->getOperand(0);
2588 
2589   EVT SrcVT, DestVT;
2590   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2591   DestVT = TLI.getValueType(DL, I->getType(), true);
2592 
2593   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2594     return false;
2595   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2596     return false;
2597 
2598   unsigned SrcReg = getRegForValue(Op);
2599   if (!SrcReg) return false;
2600 
2601   // Because the high bits are undefined, a truncate doesn't generate
2602   // any code.
2603   updateValueMap(I, SrcReg);
2604   return true;
2605 }
2606 
2607 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2608                                     bool isZExt) {
2609   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2610     return 0;
2611   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2612     return 0;
2613 
2614   // Table of which combinations can be emitted as a single instruction,
2615   // and which will require two.
2616   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2617     //            ARM                     Thumb
2618     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2619     //    ext:     s  z      s  z          s  z      s  z
2620     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2621     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2622     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2623   };
2624 
2625   // Target registers for:
2626   //  - For ARM can never be PC.
2627   //  - For 16-bit Thumb are restricted to lower 8 registers.
2628   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2629   static const TargetRegisterClass *RCTbl[2][2] = {
2630     // Instructions: Two                     Single
2631     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2632     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2633   };
2634 
2635   // Table governing the instruction(s) to be emitted.
2636   static const struct InstructionTable {
2637     uint32_t Opc   : 16;
2638     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2639     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2640     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2641   } IT[2][2][3][2] = {
2642     { // Two instructions (first is left shift, second is in this table).
2643       { // ARM                Opc           S  Shift             Imm
2644         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2645         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2646         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2647         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2648         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2649         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2650       },
2651       { // Thumb              Opc           S  Shift             Imm
2652         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2653         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2654         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2655         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2656         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2657         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2658       }
2659     },
2660     { // Single instruction.
2661       { // ARM                Opc           S  Shift             Imm
2662         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2663         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2664         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2665         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2666         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2667         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2668       },
2669       { // Thumb              Opc           S  Shift             Imm
2670         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2671         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2672         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2673         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2674         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2675         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2676       }
2677     }
2678   };
2679 
2680   unsigned SrcBits = SrcVT.getSizeInBits();
2681   unsigned DestBits = DestVT.getSizeInBits();
2682   (void) DestBits;
2683   assert((SrcBits < DestBits) && "can only extend to larger types");
2684   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2685          "other sizes unimplemented");
2686   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2687          "other sizes unimplemented");
2688 
2689   bool hasV6Ops = Subtarget->hasV6Ops();
2690   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2691   assert((Bitness < 3) && "sanity-check table bounds");
2692 
2693   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2694   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2695   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2696   unsigned Opc = ITP->Opc;
2697   assert(ARM::KILL != Opc && "Invalid table entry");
2698   unsigned hasS = ITP->hasS;
2699   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2700   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2701          "only MOVsi has shift operand addressing mode");
2702   unsigned Imm = ITP->Imm;
2703 
2704   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2705   bool setsCPSR = &ARM::tGPRRegClass == RC;
2706   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2707   unsigned ResultReg;
2708   // MOVsi encodes shift and immediate in shift operand addressing mode.
2709   // The following condition has the same value when emitting two
2710   // instruction sequences: both are shifts.
2711   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2712 
2713   // Either one or two instructions are emitted.
2714   // They're always of the form:
2715   //   dst = in OP imm
2716   // CPSR is set only by 16-bit Thumb instructions.
2717   // Predicate, if any, is AL.
2718   // S bit, if available, is always 0.
2719   // When two are emitted the first's result will feed as the second's input,
2720   // that value is then dead.
2721   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2722   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2723     ResultReg = createResultReg(RC);
2724     bool isLsl = (0 == Instr) && !isSingleInstr;
2725     unsigned Opcode = isLsl ? LSLOpc : Opc;
2726     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2727     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2728     bool isKill = 1 == Instr;
2729     MachineInstrBuilder MIB = BuildMI(
2730         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2731     if (setsCPSR)
2732       MIB.addReg(ARM::CPSR, RegState::Define);
2733     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2734     MIB.addReg(SrcReg, isKill * RegState::Kill)
2735         .addImm(ImmEnc)
2736         .add(predOps(ARMCC::AL));
2737     if (hasS)
2738       MIB.add(condCodeOp());
2739     // Second instruction consumes the first's result.
2740     SrcReg = ResultReg;
2741   }
2742 
2743   return ResultReg;
2744 }
2745 
2746 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2747   // On ARM, in general, integer casts don't involve legal types; this code
2748   // handles promotable integers.
2749   Type *DestTy = I->getType();
2750   Value *Src = I->getOperand(0);
2751   Type *SrcTy = Src->getType();
2752 
2753   bool isZExt = isa<ZExtInst>(I);
2754   unsigned SrcReg = getRegForValue(Src);
2755   if (!SrcReg) return false;
2756 
2757   EVT SrcEVT, DestEVT;
2758   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2759   DestEVT = TLI.getValueType(DL, DestTy, true);
2760   if (!SrcEVT.isSimple()) return false;
2761   if (!DestEVT.isSimple()) return false;
2762 
2763   MVT SrcVT = SrcEVT.getSimpleVT();
2764   MVT DestVT = DestEVT.getSimpleVT();
2765   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2766   if (ResultReg == 0) return false;
2767   updateValueMap(I, ResultReg);
2768   return true;
2769 }
2770 
2771 bool ARMFastISel::SelectShift(const Instruction *I,
2772                               ARM_AM::ShiftOpc ShiftTy) {
2773   // We handle thumb2 mode by target independent selector
2774   // or SelectionDAG ISel.
2775   if (isThumb2)
2776     return false;
2777 
2778   // Only handle i32 now.
2779   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2780   if (DestVT != MVT::i32)
2781     return false;
2782 
2783   unsigned Opc = ARM::MOVsr;
2784   unsigned ShiftImm;
2785   Value *Src2Value = I->getOperand(1);
2786   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2787     ShiftImm = CI->getZExtValue();
2788 
2789     // Fall back to selection DAG isel if the shift amount
2790     // is zero or greater than the width of the value type.
2791     if (ShiftImm == 0 || ShiftImm >=32)
2792       return false;
2793 
2794     Opc = ARM::MOVsi;
2795   }
2796 
2797   Value *Src1Value = I->getOperand(0);
2798   unsigned Reg1 = getRegForValue(Src1Value);
2799   if (Reg1 == 0) return false;
2800 
2801   unsigned Reg2 = 0;
2802   if (Opc == ARM::MOVsr) {
2803     Reg2 = getRegForValue(Src2Value);
2804     if (Reg2 == 0) return false;
2805   }
2806 
2807   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2808   if(ResultReg == 0) return false;
2809 
2810   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2811                                     TII.get(Opc), ResultReg)
2812                             .addReg(Reg1);
2813 
2814   if (Opc == ARM::MOVsi)
2815     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2816   else if (Opc == ARM::MOVsr) {
2817     MIB.addReg(Reg2);
2818     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2819   }
2820 
2821   AddOptionalDefs(MIB);
2822   updateValueMap(I, ResultReg);
2823   return true;
2824 }
2825 
2826 // TODO: SoftFP support.
2827 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2828   switch (I->getOpcode()) {
2829     case Instruction::Load:
2830       return SelectLoad(I);
2831     case Instruction::Store:
2832       return SelectStore(I);
2833     case Instruction::Br:
2834       return SelectBranch(I);
2835     case Instruction::IndirectBr:
2836       return SelectIndirectBr(I);
2837     case Instruction::ICmp:
2838     case Instruction::FCmp:
2839       return SelectCmp(I);
2840     case Instruction::FPExt:
2841       return SelectFPExt(I);
2842     case Instruction::FPTrunc:
2843       return SelectFPTrunc(I);
2844     case Instruction::SIToFP:
2845       return SelectIToFP(I, /*isSigned*/ true);
2846     case Instruction::UIToFP:
2847       return SelectIToFP(I, /*isSigned*/ false);
2848     case Instruction::FPToSI:
2849       return SelectFPToI(I, /*isSigned*/ true);
2850     case Instruction::FPToUI:
2851       return SelectFPToI(I, /*isSigned*/ false);
2852     case Instruction::Add:
2853       return SelectBinaryIntOp(I, ISD::ADD);
2854     case Instruction::Or:
2855       return SelectBinaryIntOp(I, ISD::OR);
2856     case Instruction::Sub:
2857       return SelectBinaryIntOp(I, ISD::SUB);
2858     case Instruction::FAdd:
2859       return SelectBinaryFPOp(I, ISD::FADD);
2860     case Instruction::FSub:
2861       return SelectBinaryFPOp(I, ISD::FSUB);
2862     case Instruction::FMul:
2863       return SelectBinaryFPOp(I, ISD::FMUL);
2864     case Instruction::SDiv:
2865       return SelectDiv(I, /*isSigned*/ true);
2866     case Instruction::UDiv:
2867       return SelectDiv(I, /*isSigned*/ false);
2868     case Instruction::SRem:
2869       return SelectRem(I, /*isSigned*/ true);
2870     case Instruction::URem:
2871       return SelectRem(I, /*isSigned*/ false);
2872     case Instruction::Call:
2873       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2874         return SelectIntrinsicCall(*II);
2875       return SelectCall(I);
2876     case Instruction::Select:
2877       return SelectSelect(I);
2878     case Instruction::Ret:
2879       return SelectRet(I);
2880     case Instruction::Trunc:
2881       return SelectTrunc(I);
2882     case Instruction::ZExt:
2883     case Instruction::SExt:
2884       return SelectIntExt(I);
2885     case Instruction::Shl:
2886       return SelectShift(I, ARM_AM::lsl);
2887     case Instruction::LShr:
2888       return SelectShift(I, ARM_AM::lsr);
2889     case Instruction::AShr:
2890       return SelectShift(I, ARM_AM::asr);
2891     default: break;
2892   }
2893   return false;
2894 }
2895 
2896 // This table describes sign- and zero-extend instructions which can be
2897 // folded into a preceding load. All of these extends have an immediate
2898 // (sometimes a mask and sometimes a shift) that's applied after
2899 // extension.
2900 static const struct FoldableLoadExtendsStruct {
2901   uint16_t Opc[2];  // ARM, Thumb.
2902   uint8_t ExpectedImm;
2903   uint8_t isZExt     : 1;
2904   uint8_t ExpectedVT : 7;
2905 } FoldableLoadExtends[] = {
2906   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2907   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2908   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2909   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2910   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2911 };
2912 
2913 /// The specified machine instr operand is a vreg, and that
2914 /// vreg is being provided by the specified load instruction.  If possible,
2915 /// try to fold the load as an operand to the instruction, returning true if
2916 /// successful.
2917 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2918                                       const LoadInst *LI) {
2919   // Verify we have a legal type before going any further.
2920   MVT VT;
2921   if (!isLoadTypeLegal(LI->getType(), VT))
2922     return false;
2923 
2924   // Combine load followed by zero- or sign-extend.
2925   // ldrb r1, [r0]       ldrb r1, [r0]
2926   // uxtb r2, r1     =>
2927   // mov  r3, r2         mov  r3, r1
2928   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2929     return false;
2930   const uint64_t Imm = MI->getOperand(2).getImm();
2931 
2932   bool Found = false;
2933   bool isZExt;
2934   for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2935     if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2936         (uint64_t)FLE.ExpectedImm == Imm &&
2937         MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2938       Found = true;
2939       isZExt = FLE.isZExt;
2940     }
2941   }
2942   if (!Found) return false;
2943 
2944   // See if we can handle this address.
2945   Address Addr;
2946   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2947 
2948   unsigned ResultReg = MI->getOperand(0).getReg();
2949   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2950     return false;
2951   MachineBasicBlock::iterator I(MI);
2952   removeDeadCode(I, std::next(I));
2953   return true;
2954 }
2955 
2956 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2957                                      unsigned Align, MVT VT) {
2958   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2959 
2960   LLVMContext *Context = &MF->getFunction().getContext();
2961   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2962   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2963   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2964       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2965       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2966       /*AddCurrentAddress=*/UseGOT_PREL);
2967 
2968   unsigned ConstAlign =
2969       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2970   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2971   MachineMemOperand *CPMMO =
2972       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2973                                MachineMemOperand::MOLoad, 4, 4);
2974 
2975   unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2976   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2977   MachineInstrBuilder MIB =
2978       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2979           .addConstantPoolIndex(Idx)
2980           .addMemOperand(CPMMO);
2981   if (Opc == ARM::LDRcp)
2982     MIB.addImm(0);
2983   MIB.add(predOps(ARMCC::AL));
2984 
2985   // Fix the address by adding pc.
2986   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2987   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2988                                                           : ARM::PICADD;
2989   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2990   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2991             .addReg(TempReg)
2992             .addImm(ARMPCLabelIndex);
2993 
2994   if (!Subtarget->isThumb())
2995     MIB.add(predOps(ARMCC::AL));
2996 
2997   if (UseGOT_PREL && Subtarget->isThumb()) {
2998     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2999     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3000                   TII.get(ARM::t2LDRi12), NewDestReg)
3001               .addReg(DestReg)
3002               .addImm(0);
3003     DestReg = NewDestReg;
3004     AddOptionalDefs(MIB);
3005   }
3006   return DestReg;
3007 }
3008 
3009 bool ARMFastISel::fastLowerArguments() {
3010   if (!FuncInfo.CanLowerReturn)
3011     return false;
3012 
3013   const Function *F = FuncInfo.Fn;
3014   if (F->isVarArg())
3015     return false;
3016 
3017   CallingConv::ID CC = F->getCallingConv();
3018   switch (CC) {
3019   default:
3020     return false;
3021   case CallingConv::Fast:
3022   case CallingConv::C:
3023   case CallingConv::ARM_AAPCS_VFP:
3024   case CallingConv::ARM_AAPCS:
3025   case CallingConv::ARM_APCS:
3026   case CallingConv::Swift:
3027     break;
3028   }
3029 
3030   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3031   // which are passed in r0 - r3.
3032   for (const Argument &Arg : F->args()) {
3033     if (Arg.getArgNo() >= 4)
3034       return false;
3035 
3036     if (Arg.hasAttribute(Attribute::InReg) ||
3037         Arg.hasAttribute(Attribute::StructRet) ||
3038         Arg.hasAttribute(Attribute::SwiftSelf) ||
3039         Arg.hasAttribute(Attribute::SwiftError) ||
3040         Arg.hasAttribute(Attribute::ByVal))
3041       return false;
3042 
3043     Type *ArgTy = Arg.getType();
3044     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3045       return false;
3046 
3047     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3048     if (!ArgVT.isSimple()) return false;
3049     switch (ArgVT.getSimpleVT().SimpleTy) {
3050     case MVT::i8:
3051     case MVT::i16:
3052     case MVT::i32:
3053       break;
3054     default:
3055       return false;
3056     }
3057   }
3058 
3059   static const MCPhysReg GPRArgRegs[] = {
3060     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3061   };
3062 
3063   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3064   for (const Argument &Arg : F->args()) {
3065     unsigned ArgNo = Arg.getArgNo();
3066     unsigned SrcReg = GPRArgRegs[ArgNo];
3067     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3068     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3069     // Without this, EmitLiveInCopies may eliminate the livein if its only
3070     // use is a bitcast (which isn't turned into an instruction).
3071     unsigned ResultReg = createResultReg(RC);
3072     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3073             TII.get(TargetOpcode::COPY),
3074             ResultReg).addReg(DstReg, getKillRegState(true));
3075     updateValueMap(&Arg, ResultReg);
3076   }
3077 
3078   return true;
3079 }
3080 
3081 namespace llvm {
3082 
3083   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3084                                 const TargetLibraryInfo *libInfo) {
3085     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3086       return new ARMFastISel(funcInfo, libInfo);
3087 
3088     return nullptr;
3089   }
3090 
3091 } // end namespace llvm
3092