1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineMemOperand.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Operator.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 using namespace llvm; 49 50 namespace { 51 52 // All possible address modes, plus some. 53 typedef struct Address { 54 enum { 55 RegBase, 56 FrameIndexBase 57 } BaseType; 58 59 union { 60 unsigned Reg; 61 int FI; 62 } Base; 63 64 int Offset; 65 66 // Innocuous defaults for our address. 67 Address() 68 : BaseType(RegBase), Offset(0) { 69 Base.Reg = 0; 70 } 71 } Address; 72 73 class ARMFastISel final : public FastISel { 74 75 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 76 /// make the right decision when generating code for different targets. 77 const ARMSubtarget *Subtarget; 78 Module &M; 79 const TargetMachine &TM; 80 const TargetInstrInfo &TII; 81 const TargetLowering &TLI; 82 ARMFunctionInfo *AFI; 83 84 // Convenience variables to avoid some queries. 85 bool isThumb2; 86 LLVMContext *Context; 87 88 public: 89 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 90 const TargetLibraryInfo *libInfo) 91 : FastISel(funcInfo, libInfo), 92 Subtarget( 93 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 94 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 95 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 96 TLI(*Subtarget->getTargetLowering()) { 97 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 98 isThumb2 = AFI->isThumbFunction(); 99 Context = &funcInfo.Fn->getContext(); 100 } 101 102 // Code from FastISel.cpp. 103 private: 104 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 105 const TargetRegisterClass *RC, 106 unsigned Op0, bool Op0IsKill); 107 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 108 const TargetRegisterClass *RC, 109 unsigned Op0, bool Op0IsKill, 110 unsigned Op1, bool Op1IsKill); 111 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 112 const TargetRegisterClass *RC, 113 unsigned Op0, bool Op0IsKill, 114 uint64_t Imm); 115 unsigned fastEmitInst_rri(unsigned MachineInstOpcode, 116 const TargetRegisterClass *RC, 117 unsigned Op0, bool Op0IsKill, 118 unsigned Op1, bool Op1IsKill, 119 uint64_t Imm); 120 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 121 const TargetRegisterClass *RC, 122 uint64_t Imm); 123 124 // Backend specific FastISel code. 125 private: 126 bool fastSelectInstruction(const Instruction *I) override; 127 unsigned fastMaterializeConstant(const Constant *C) override; 128 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 129 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 130 const LoadInst *LI) override; 131 bool fastLowerArguments() override; 132 private: 133 #include "ARMGenFastISel.inc" 134 135 // Instruction selection routines. 136 private: 137 bool SelectLoad(const Instruction *I); 138 bool SelectStore(const Instruction *I); 139 bool SelectBranch(const Instruction *I); 140 bool SelectIndirectBr(const Instruction *I); 141 bool SelectCmp(const Instruction *I); 142 bool SelectFPExt(const Instruction *I); 143 bool SelectFPTrunc(const Instruction *I); 144 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 145 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 146 bool SelectIToFP(const Instruction *I, bool isSigned); 147 bool SelectFPToI(const Instruction *I, bool isSigned); 148 bool SelectDiv(const Instruction *I, bool isSigned); 149 bool SelectRem(const Instruction *I, bool isSigned); 150 bool SelectCall(const Instruction *I, const char *IntrMemName); 151 bool SelectIntrinsicCall(const IntrinsicInst &I); 152 bool SelectSelect(const Instruction *I); 153 bool SelectRet(const Instruction *I); 154 bool SelectTrunc(const Instruction *I); 155 bool SelectIntExt(const Instruction *I); 156 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 157 158 // Utility routines. 159 private: 160 bool isPositionIndependent() const; 161 bool isTypeLegal(Type *Ty, MVT &VT); 162 bool isLoadTypeLegal(Type *Ty, MVT &VT); 163 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 164 bool isZExt); 165 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 166 unsigned Alignment = 0, bool isZExt = true, 167 bool allocReg = true); 168 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 169 unsigned Alignment = 0); 170 bool ARMComputeAddress(const Value *Obj, Address &Addr); 171 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 172 bool ARMIsMemCpySmall(uint64_t Len); 173 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 174 unsigned Alignment); 175 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 176 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 177 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 178 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 179 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 180 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 181 unsigned ARMSelectCallOp(bool UseReg); 182 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 183 184 const TargetLowering *getTargetLowering() { return &TLI; } 185 186 // Call handling routines. 187 private: 188 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 189 bool Return, 190 bool isVarArg); 191 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 192 SmallVectorImpl<unsigned> &ArgRegs, 193 SmallVectorImpl<MVT> &ArgVTs, 194 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 195 SmallVectorImpl<unsigned> &RegArgs, 196 CallingConv::ID CC, 197 unsigned &NumBytes, 198 bool isVarArg); 199 unsigned getLibcallReg(const Twine &Name); 200 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 201 const Instruction *I, CallingConv::ID CC, 202 unsigned &NumBytes, bool isVarArg); 203 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 204 205 // OptionalDef handling routines. 206 private: 207 bool isARMNEONPred(const MachineInstr *MI); 208 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 209 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 210 void AddLoadStoreOperands(MVT VT, Address &Addr, 211 const MachineInstrBuilder &MIB, 212 MachineMemOperand::Flags Flags, bool useAM3); 213 }; 214 215 } // end anonymous namespace 216 217 #include "ARMGenCallingConv.inc" 218 219 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 220 // we don't care about implicit defs here, just places we'll need to add a 221 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 222 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 223 if (!MI->hasOptionalDef()) 224 return false; 225 226 // Look to see if our OptionalDef is defining CPSR or CCR. 227 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 228 const MachineOperand &MO = MI->getOperand(i); 229 if (!MO.isReg() || !MO.isDef()) continue; 230 if (MO.getReg() == ARM::CPSR) 231 *CPSR = true; 232 } 233 return true; 234 } 235 236 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 237 const MCInstrDesc &MCID = MI->getDesc(); 238 239 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 240 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 241 AFI->isThumb2Function()) 242 return MI->isPredicable(); 243 244 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 245 if (MCID.OpInfo[i].isPredicate()) 246 return true; 247 248 return false; 249 } 250 251 // If the machine is predicable go ahead and add the predicate operands, if 252 // it needs default CC operands add those. 253 // TODO: If we want to support thumb1 then we'll need to deal with optional 254 // CPSR defs that need to be added before the remaining operands. See s_cc_out 255 // for descriptions why. 256 const MachineInstrBuilder & 257 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 258 MachineInstr *MI = &*MIB; 259 260 // Do we use a predicate? or... 261 // Are we NEON in ARM mode and have a predicate operand? If so, I know 262 // we're not predicable but add it anyways. 263 if (isARMNEONPred(MI)) 264 AddDefaultPred(MIB); 265 266 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 267 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 268 bool CPSR = false; 269 if (DefinesOptionalPredicate(MI, &CPSR)) { 270 if (CPSR) 271 AddDefaultT1CC(MIB); 272 else 273 AddDefaultCC(MIB); 274 } 275 return MIB; 276 } 277 278 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 279 const TargetRegisterClass *RC, 280 unsigned Op0, bool Op0IsKill) { 281 unsigned ResultReg = createResultReg(RC); 282 const MCInstrDesc &II = TII.get(MachineInstOpcode); 283 284 // Make sure the input operand is sufficiently constrained to be legal 285 // for this instruction. 286 Op0 = constrainOperandRegClass(II, Op0, 1); 287 if (II.getNumDefs() >= 1) { 288 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 289 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 290 } else { 291 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 292 .addReg(Op0, Op0IsKill * RegState::Kill)); 293 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 294 TII.get(TargetOpcode::COPY), ResultReg) 295 .addReg(II.ImplicitDefs[0])); 296 } 297 return ResultReg; 298 } 299 300 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 301 const TargetRegisterClass *RC, 302 unsigned Op0, bool Op0IsKill, 303 unsigned Op1, bool Op1IsKill) { 304 unsigned ResultReg = createResultReg(RC); 305 const MCInstrDesc &II = TII.get(MachineInstOpcode); 306 307 // Make sure the input operands are sufficiently constrained to be legal 308 // for this instruction. 309 Op0 = constrainOperandRegClass(II, Op0, 1); 310 Op1 = constrainOperandRegClass(II, Op1, 2); 311 312 if (II.getNumDefs() >= 1) { 313 AddOptionalDefs( 314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 315 .addReg(Op0, Op0IsKill * RegState::Kill) 316 .addReg(Op1, Op1IsKill * RegState::Kill)); 317 } else { 318 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 319 .addReg(Op0, Op0IsKill * RegState::Kill) 320 .addReg(Op1, Op1IsKill * RegState::Kill)); 321 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 322 TII.get(TargetOpcode::COPY), ResultReg) 323 .addReg(II.ImplicitDefs[0])); 324 } 325 return ResultReg; 326 } 327 328 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 329 const TargetRegisterClass *RC, 330 unsigned Op0, bool Op0IsKill, 331 uint64_t Imm) { 332 unsigned ResultReg = createResultReg(RC); 333 const MCInstrDesc &II = TII.get(MachineInstOpcode); 334 335 // Make sure the input operand is sufficiently constrained to be legal 336 // for this instruction. 337 Op0 = constrainOperandRegClass(II, Op0, 1); 338 if (II.getNumDefs() >= 1) { 339 AddOptionalDefs( 340 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 341 .addReg(Op0, Op0IsKill * RegState::Kill) 342 .addImm(Imm)); 343 } else { 344 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 345 .addReg(Op0, Op0IsKill * RegState::Kill) 346 .addImm(Imm)); 347 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 348 TII.get(TargetOpcode::COPY), ResultReg) 349 .addReg(II.ImplicitDefs[0])); 350 } 351 return ResultReg; 352 } 353 354 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 355 const TargetRegisterClass *RC, 356 unsigned Op0, bool Op0IsKill, 357 unsigned Op1, bool Op1IsKill, 358 uint64_t Imm) { 359 unsigned ResultReg = createResultReg(RC); 360 const MCInstrDesc &II = TII.get(MachineInstOpcode); 361 362 // Make sure the input operands are sufficiently constrained to be legal 363 // for this instruction. 364 Op0 = constrainOperandRegClass(II, Op0, 1); 365 Op1 = constrainOperandRegClass(II, Op1, 2); 366 if (II.getNumDefs() >= 1) { 367 AddOptionalDefs( 368 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 369 .addReg(Op0, Op0IsKill * RegState::Kill) 370 .addReg(Op1, Op1IsKill * RegState::Kill) 371 .addImm(Imm)); 372 } else { 373 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 374 .addReg(Op0, Op0IsKill * RegState::Kill) 375 .addReg(Op1, Op1IsKill * RegState::Kill) 376 .addImm(Imm)); 377 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 378 TII.get(TargetOpcode::COPY), ResultReg) 379 .addReg(II.ImplicitDefs[0])); 380 } 381 return ResultReg; 382 } 383 384 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 385 const TargetRegisterClass *RC, 386 uint64_t Imm) { 387 unsigned ResultReg = createResultReg(RC); 388 const MCInstrDesc &II = TII.get(MachineInstOpcode); 389 390 if (II.getNumDefs() >= 1) { 391 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 392 ResultReg).addImm(Imm)); 393 } else { 394 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 395 .addImm(Imm)); 396 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 397 TII.get(TargetOpcode::COPY), ResultReg) 398 .addReg(II.ImplicitDefs[0])); 399 } 400 return ResultReg; 401 } 402 403 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 404 // checks from the various callers. 405 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 406 if (VT == MVT::f64) return 0; 407 408 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 409 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 410 TII.get(ARM::VMOVSR), MoveReg) 411 .addReg(SrcReg)); 412 return MoveReg; 413 } 414 415 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 416 if (VT == MVT::i64) return 0; 417 418 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 419 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 420 TII.get(ARM::VMOVRS), MoveReg) 421 .addReg(SrcReg)); 422 return MoveReg; 423 } 424 425 // For double width floating point we need to materialize two constants 426 // (the high and the low) into integer registers then use a move to get 427 // the combined constant into an FP reg. 428 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 429 const APFloat Val = CFP->getValueAPF(); 430 bool is64bit = VT == MVT::f64; 431 432 // This checks to see if we can use VFP3 instructions to materialize 433 // a constant, otherwise we have to go through the constant pool. 434 if (TLI.isFPImmLegal(Val, VT)) { 435 int Imm; 436 unsigned Opc; 437 if (is64bit) { 438 Imm = ARM_AM::getFP64Imm(Val); 439 Opc = ARM::FCONSTD; 440 } else { 441 Imm = ARM_AM::getFP32Imm(Val); 442 Opc = ARM::FCONSTS; 443 } 444 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 445 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 446 TII.get(Opc), DestReg).addImm(Imm)); 447 return DestReg; 448 } 449 450 // Require VFP2 for loading fp constants. 451 if (!Subtarget->hasVFP2()) return false; 452 453 // MachineConstantPool wants an explicit alignment. 454 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 455 if (Align == 0) { 456 // TODO: Figure out if this is correct. 457 Align = DL.getTypeAllocSize(CFP->getType()); 458 } 459 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 460 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 461 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 462 463 // The extra reg is for addrmode5. 464 AddOptionalDefs( 465 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 466 .addConstantPoolIndex(Idx) 467 .addReg(0)); 468 return DestReg; 469 } 470 471 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 472 473 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 474 return 0; 475 476 // If we can do this in a single instruction without a constant pool entry 477 // do so now. 478 const ConstantInt *CI = cast<ConstantInt>(C); 479 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 480 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 481 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 482 &ARM::GPRRegClass; 483 unsigned ImmReg = createResultReg(RC); 484 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 485 TII.get(Opc), ImmReg) 486 .addImm(CI->getZExtValue())); 487 return ImmReg; 488 } 489 490 // Use MVN to emit negative constants. 491 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 492 unsigned Imm = (unsigned)~(CI->getSExtValue()); 493 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 494 (ARM_AM::getSOImmVal(Imm) != -1); 495 if (UseImm) { 496 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 497 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 498 &ARM::GPRRegClass; 499 unsigned ImmReg = createResultReg(RC); 500 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 501 TII.get(Opc), ImmReg) 502 .addImm(Imm)); 503 return ImmReg; 504 } 505 } 506 507 unsigned ResultReg = 0; 508 if (Subtarget->useMovt(*FuncInfo.MF)) 509 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 510 511 if (ResultReg) 512 return ResultReg; 513 514 // Load from constant pool. For now 32-bit only. 515 if (VT != MVT::i32) 516 return 0; 517 518 // MachineConstantPool wants an explicit alignment. 519 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 520 if (Align == 0) { 521 // TODO: Figure out if this is correct. 522 Align = DL.getTypeAllocSize(C->getType()); 523 } 524 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 525 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 526 if (isThumb2) 527 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 528 TII.get(ARM::t2LDRpci), ResultReg) 529 .addConstantPoolIndex(Idx)); 530 else { 531 // The extra immediate is for addrmode2. 532 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 533 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 534 TII.get(ARM::LDRcp), ResultReg) 535 .addConstantPoolIndex(Idx) 536 .addImm(0)); 537 } 538 return ResultReg; 539 } 540 541 bool ARMFastISel::isPositionIndependent() const { 542 return TLI.isPositionIndependent(); 543 } 544 545 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 546 // For now 32-bit only. 547 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 548 549 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 550 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 551 : &ARM::GPRRegClass; 552 unsigned DestReg = createResultReg(RC); 553 554 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 555 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 556 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 557 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 558 559 bool IsPositionIndependent = isPositionIndependent(); 560 // Use movw+movt when possible, it avoids constant pool entries. 561 // Non-darwin targets only support static movt relocations in FastISel. 562 if (Subtarget->useMovt(*FuncInfo.MF) && 563 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 564 unsigned Opc; 565 unsigned char TF = 0; 566 if (Subtarget->isTargetMachO()) 567 TF = ARMII::MO_NONLAZY; 568 569 if (IsPositionIndependent) 570 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 571 else 572 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 573 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 574 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 575 } else { 576 // MachineConstantPool wants an explicit alignment. 577 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 578 if (Align == 0) { 579 // TODO: Figure out if this is correct. 580 Align = DL.getTypeAllocSize(GV->getType()); 581 } 582 583 if (Subtarget->isTargetELF() && IsPositionIndependent) 584 return ARMLowerPICELF(GV, Align, VT); 585 586 // Grab index. 587 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 588 unsigned Id = AFI->createPICLabelUId(); 589 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 590 ARMCP::CPValue, 591 PCAdj); 592 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 593 594 // Load value. 595 MachineInstrBuilder MIB; 596 if (isThumb2) { 597 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 598 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 599 DestReg).addConstantPoolIndex(Idx); 600 if (IsPositionIndependent) 601 MIB.addImm(Id); 602 AddOptionalDefs(MIB); 603 } else { 604 // The extra immediate is for addrmode2. 605 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 606 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 607 TII.get(ARM::LDRcp), DestReg) 608 .addConstantPoolIndex(Idx) 609 .addImm(0); 610 AddOptionalDefs(MIB); 611 612 if (IsPositionIndependent) { 613 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 614 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 615 616 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 617 DbgLoc, TII.get(Opc), NewDestReg) 618 .addReg(DestReg) 619 .addImm(Id); 620 AddOptionalDefs(MIB); 621 return NewDestReg; 622 } 623 } 624 } 625 626 if (IsIndirect) { 627 MachineInstrBuilder MIB; 628 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 629 if (isThumb2) 630 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 631 TII.get(ARM::t2LDRi12), NewDestReg) 632 .addReg(DestReg) 633 .addImm(0); 634 else 635 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 636 TII.get(ARM::LDRi12), NewDestReg) 637 .addReg(DestReg) 638 .addImm(0); 639 DestReg = NewDestReg; 640 AddOptionalDefs(MIB); 641 } 642 643 return DestReg; 644 } 645 646 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 647 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 648 649 // Only handle simple types. 650 if (!CEVT.isSimple()) return 0; 651 MVT VT = CEVT.getSimpleVT(); 652 653 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 654 return ARMMaterializeFP(CFP, VT); 655 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 656 return ARMMaterializeGV(GV, VT); 657 else if (isa<ConstantInt>(C)) 658 return ARMMaterializeInt(C, VT); 659 660 return 0; 661 } 662 663 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 664 665 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 666 // Don't handle dynamic allocas. 667 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 668 669 MVT VT; 670 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 671 672 DenseMap<const AllocaInst*, int>::iterator SI = 673 FuncInfo.StaticAllocaMap.find(AI); 674 675 // This will get lowered later into the correct offsets and registers 676 // via rewriteXFrameIndex. 677 if (SI != FuncInfo.StaticAllocaMap.end()) { 678 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 679 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 680 unsigned ResultReg = createResultReg(RC); 681 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 682 683 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 684 TII.get(Opc), ResultReg) 685 .addFrameIndex(SI->second) 686 .addImm(0)); 687 return ResultReg; 688 } 689 690 return 0; 691 } 692 693 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 694 EVT evt = TLI.getValueType(DL, Ty, true); 695 696 // Only handle simple types. 697 if (evt == MVT::Other || !evt.isSimple()) return false; 698 VT = evt.getSimpleVT(); 699 700 // Handle all legal types, i.e. a register that will directly hold this 701 // value. 702 return TLI.isTypeLegal(VT); 703 } 704 705 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 706 if (isTypeLegal(Ty, VT)) return true; 707 708 // If this is a type than can be sign or zero-extended to a basic operation 709 // go ahead and accept it now. 710 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 711 return true; 712 713 return false; 714 } 715 716 // Computes the address to get to an object. 717 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 718 // Some boilerplate from the X86 FastISel. 719 const User *U = nullptr; 720 unsigned Opcode = Instruction::UserOp1; 721 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 722 // Don't walk into other basic blocks unless the object is an alloca from 723 // another block, otherwise it may not have a virtual register assigned. 724 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 725 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 726 Opcode = I->getOpcode(); 727 U = I; 728 } 729 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 730 Opcode = C->getOpcode(); 731 U = C; 732 } 733 734 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 735 if (Ty->getAddressSpace() > 255) 736 // Fast instruction selection doesn't support the special 737 // address spaces. 738 return false; 739 740 switch (Opcode) { 741 default: 742 break; 743 case Instruction::BitCast: 744 // Look through bitcasts. 745 return ARMComputeAddress(U->getOperand(0), Addr); 746 case Instruction::IntToPtr: 747 // Look past no-op inttoptrs. 748 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 749 TLI.getPointerTy(DL)) 750 return ARMComputeAddress(U->getOperand(0), Addr); 751 break; 752 case Instruction::PtrToInt: 753 // Look past no-op ptrtoints. 754 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 755 return ARMComputeAddress(U->getOperand(0), Addr); 756 break; 757 case Instruction::GetElementPtr: { 758 Address SavedAddr = Addr; 759 int TmpOffset = Addr.Offset; 760 761 // Iterate through the GEP folding the constants into offsets where 762 // we can. 763 gep_type_iterator GTI = gep_type_begin(U); 764 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 765 i != e; ++i, ++GTI) { 766 const Value *Op = *i; 767 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 768 const StructLayout *SL = DL.getStructLayout(STy); 769 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 770 TmpOffset += SL->getElementOffset(Idx); 771 } else { 772 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 773 for (;;) { 774 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 775 // Constant-offset addressing. 776 TmpOffset += CI->getSExtValue() * S; 777 break; 778 } 779 if (canFoldAddIntoGEP(U, Op)) { 780 // A compatible add with a constant operand. Fold the constant. 781 ConstantInt *CI = 782 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 783 TmpOffset += CI->getSExtValue() * S; 784 // Iterate on the other operand. 785 Op = cast<AddOperator>(Op)->getOperand(0); 786 continue; 787 } 788 // Unsupported 789 goto unsupported_gep; 790 } 791 } 792 } 793 794 // Try to grab the base operand now. 795 Addr.Offset = TmpOffset; 796 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 797 798 // We failed, restore everything and try the other options. 799 Addr = SavedAddr; 800 801 unsupported_gep: 802 break; 803 } 804 case Instruction::Alloca: { 805 const AllocaInst *AI = cast<AllocaInst>(Obj); 806 DenseMap<const AllocaInst*, int>::iterator SI = 807 FuncInfo.StaticAllocaMap.find(AI); 808 if (SI != FuncInfo.StaticAllocaMap.end()) { 809 Addr.BaseType = Address::FrameIndexBase; 810 Addr.Base.FI = SI->second; 811 return true; 812 } 813 break; 814 } 815 } 816 817 // Try to get this in a register if nothing else has worked. 818 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 819 return Addr.Base.Reg != 0; 820 } 821 822 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 823 bool needsLowering = false; 824 switch (VT.SimpleTy) { 825 default: llvm_unreachable("Unhandled load/store type!"); 826 case MVT::i1: 827 case MVT::i8: 828 case MVT::i16: 829 case MVT::i32: 830 if (!useAM3) { 831 // Integer loads/stores handle 12-bit offsets. 832 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 833 // Handle negative offsets. 834 if (needsLowering && isThumb2) 835 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 836 Addr.Offset > -256); 837 } else { 838 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 839 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 840 } 841 break; 842 case MVT::f32: 843 case MVT::f64: 844 // Floating point operands handle 8-bit offsets. 845 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 846 break; 847 } 848 849 // If this is a stack pointer and the offset needs to be simplified then 850 // put the alloca address into a register, set the base type back to 851 // register and continue. This should almost never happen. 852 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 853 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 854 : &ARM::GPRRegClass; 855 unsigned ResultReg = createResultReg(RC); 856 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 857 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 858 TII.get(Opc), ResultReg) 859 .addFrameIndex(Addr.Base.FI) 860 .addImm(0)); 861 Addr.Base.Reg = ResultReg; 862 Addr.BaseType = Address::RegBase; 863 } 864 865 // Since the offset is too large for the load/store instruction 866 // get the reg+offset into a register. 867 if (needsLowering) { 868 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 869 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 870 Addr.Offset = 0; 871 } 872 } 873 874 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 875 const MachineInstrBuilder &MIB, 876 MachineMemOperand::Flags Flags, 877 bool useAM3) { 878 // addrmode5 output depends on the selection dag addressing dividing the 879 // offset by 4 that it then later multiplies. Do this here as well. 880 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 881 Addr.Offset /= 4; 882 883 // Frame base works a bit differently. Handle it separately. 884 if (Addr.BaseType == Address::FrameIndexBase) { 885 int FI = Addr.Base.FI; 886 int Offset = Addr.Offset; 887 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 888 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 889 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); 890 // Now add the rest of the operands. 891 MIB.addFrameIndex(FI); 892 893 // ARM halfword load/stores and signed byte loads need an additional 894 // operand. 895 if (useAM3) { 896 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 897 MIB.addReg(0); 898 MIB.addImm(Imm); 899 } else { 900 MIB.addImm(Addr.Offset); 901 } 902 MIB.addMemOperand(MMO); 903 } else { 904 // Now add the rest of the operands. 905 MIB.addReg(Addr.Base.Reg); 906 907 // ARM halfword load/stores and signed byte loads need an additional 908 // operand. 909 if (useAM3) { 910 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 911 MIB.addReg(0); 912 MIB.addImm(Imm); 913 } else { 914 MIB.addImm(Addr.Offset); 915 } 916 } 917 AddOptionalDefs(MIB); 918 } 919 920 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 921 unsigned Alignment, bool isZExt, bool allocReg) { 922 unsigned Opc; 923 bool useAM3 = false; 924 bool needVMOV = false; 925 const TargetRegisterClass *RC; 926 switch (VT.SimpleTy) { 927 // This is mostly going to be Neon/vector support. 928 default: return false; 929 case MVT::i1: 930 case MVT::i8: 931 if (isThumb2) { 932 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 933 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 934 else 935 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 936 } else { 937 if (isZExt) { 938 Opc = ARM::LDRBi12; 939 } else { 940 Opc = ARM::LDRSB; 941 useAM3 = true; 942 } 943 } 944 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 945 break; 946 case MVT::i16: 947 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 948 return false; 949 950 if (isThumb2) { 951 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 952 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 953 else 954 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 955 } else { 956 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 957 useAM3 = true; 958 } 959 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 960 break; 961 case MVT::i32: 962 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 963 return false; 964 965 if (isThumb2) { 966 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 967 Opc = ARM::t2LDRi8; 968 else 969 Opc = ARM::t2LDRi12; 970 } else { 971 Opc = ARM::LDRi12; 972 } 973 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 974 break; 975 case MVT::f32: 976 if (!Subtarget->hasVFP2()) return false; 977 // Unaligned loads need special handling. Floats require word-alignment. 978 if (Alignment && Alignment < 4) { 979 needVMOV = true; 980 VT = MVT::i32; 981 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 982 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 983 } else { 984 Opc = ARM::VLDRS; 985 RC = TLI.getRegClassFor(VT); 986 } 987 break; 988 case MVT::f64: 989 if (!Subtarget->hasVFP2()) return false; 990 // FIXME: Unaligned loads need special handling. Doublewords require 991 // word-alignment. 992 if (Alignment && Alignment < 4) 993 return false; 994 995 Opc = ARM::VLDRD; 996 RC = TLI.getRegClassFor(VT); 997 break; 998 } 999 // Simplify this down to something we can handle. 1000 ARMSimplifyAddress(Addr, VT, useAM3); 1001 1002 // Create the base instruction, then add the operands. 1003 if (allocReg) 1004 ResultReg = createResultReg(RC); 1005 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1006 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1007 TII.get(Opc), ResultReg); 1008 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1009 1010 // If we had an unaligned load of a float we've converted it to an regular 1011 // load. Now we must move from the GRP to the FP register. 1012 if (needVMOV) { 1013 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1014 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1015 TII.get(ARM::VMOVSR), MoveReg) 1016 .addReg(ResultReg)); 1017 ResultReg = MoveReg; 1018 } 1019 return true; 1020 } 1021 1022 bool ARMFastISel::SelectLoad(const Instruction *I) { 1023 // Atomic loads need special handling. 1024 if (cast<LoadInst>(I)->isAtomic()) 1025 return false; 1026 1027 const Value *SV = I->getOperand(0); 1028 if (TLI.supportSwiftError()) { 1029 // Swifterror values can come from either a function parameter with 1030 // swifterror attribute or an alloca with swifterror attribute. 1031 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1032 if (Arg->hasSwiftErrorAttr()) 1033 return false; 1034 } 1035 1036 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1037 if (Alloca->isSwiftError()) 1038 return false; 1039 } 1040 } 1041 1042 // Verify we have a legal type before going any further. 1043 MVT VT; 1044 if (!isLoadTypeLegal(I->getType(), VT)) 1045 return false; 1046 1047 // See if we can handle this address. 1048 Address Addr; 1049 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1050 1051 unsigned ResultReg; 1052 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1053 return false; 1054 updateValueMap(I, ResultReg); 1055 return true; 1056 } 1057 1058 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1059 unsigned Alignment) { 1060 unsigned StrOpc; 1061 bool useAM3 = false; 1062 switch (VT.SimpleTy) { 1063 // This is mostly going to be Neon/vector support. 1064 default: return false; 1065 case MVT::i1: { 1066 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1067 : &ARM::GPRRegClass); 1068 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1069 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1070 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1071 TII.get(Opc), Res) 1072 .addReg(SrcReg).addImm(1)); 1073 SrcReg = Res; 1074 } // Fallthrough here. 1075 case MVT::i8: 1076 if (isThumb2) { 1077 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1078 StrOpc = ARM::t2STRBi8; 1079 else 1080 StrOpc = ARM::t2STRBi12; 1081 } else { 1082 StrOpc = ARM::STRBi12; 1083 } 1084 break; 1085 case MVT::i16: 1086 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1087 return false; 1088 1089 if (isThumb2) { 1090 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1091 StrOpc = ARM::t2STRHi8; 1092 else 1093 StrOpc = ARM::t2STRHi12; 1094 } else { 1095 StrOpc = ARM::STRH; 1096 useAM3 = true; 1097 } 1098 break; 1099 case MVT::i32: 1100 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1101 return false; 1102 1103 if (isThumb2) { 1104 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1105 StrOpc = ARM::t2STRi8; 1106 else 1107 StrOpc = ARM::t2STRi12; 1108 } else { 1109 StrOpc = ARM::STRi12; 1110 } 1111 break; 1112 case MVT::f32: 1113 if (!Subtarget->hasVFP2()) return false; 1114 // Unaligned stores need special handling. Floats require word-alignment. 1115 if (Alignment && Alignment < 4) { 1116 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1117 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1118 TII.get(ARM::VMOVRS), MoveReg) 1119 .addReg(SrcReg)); 1120 SrcReg = MoveReg; 1121 VT = MVT::i32; 1122 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1123 } else { 1124 StrOpc = ARM::VSTRS; 1125 } 1126 break; 1127 case MVT::f64: 1128 if (!Subtarget->hasVFP2()) return false; 1129 // FIXME: Unaligned stores need special handling. Doublewords require 1130 // word-alignment. 1131 if (Alignment && Alignment < 4) 1132 return false; 1133 1134 StrOpc = ARM::VSTRD; 1135 break; 1136 } 1137 // Simplify this down to something we can handle. 1138 ARMSimplifyAddress(Addr, VT, useAM3); 1139 1140 // Create the base instruction, then add the operands. 1141 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1142 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1143 TII.get(StrOpc)) 1144 .addReg(SrcReg); 1145 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1146 return true; 1147 } 1148 1149 bool ARMFastISel::SelectStore(const Instruction *I) { 1150 Value *Op0 = I->getOperand(0); 1151 unsigned SrcReg = 0; 1152 1153 // Atomic stores need special handling. 1154 if (cast<StoreInst>(I)->isAtomic()) 1155 return false; 1156 1157 const Value *PtrV = I->getOperand(1); 1158 if (TLI.supportSwiftError()) { 1159 // Swifterror values can come from either a function parameter with 1160 // swifterror attribute or an alloca with swifterror attribute. 1161 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1162 if (Arg->hasSwiftErrorAttr()) 1163 return false; 1164 } 1165 1166 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1167 if (Alloca->isSwiftError()) 1168 return false; 1169 } 1170 } 1171 1172 // Verify we have a legal type before going any further. 1173 MVT VT; 1174 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1175 return false; 1176 1177 // Get the value to be stored into a register. 1178 SrcReg = getRegForValue(Op0); 1179 if (SrcReg == 0) return false; 1180 1181 // See if we can handle this address. 1182 Address Addr; 1183 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1184 return false; 1185 1186 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1187 return false; 1188 return true; 1189 } 1190 1191 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1192 switch (Pred) { 1193 // Needs two compares... 1194 case CmpInst::FCMP_ONE: 1195 case CmpInst::FCMP_UEQ: 1196 default: 1197 // AL is our "false" for now. The other two need more compares. 1198 return ARMCC::AL; 1199 case CmpInst::ICMP_EQ: 1200 case CmpInst::FCMP_OEQ: 1201 return ARMCC::EQ; 1202 case CmpInst::ICMP_SGT: 1203 case CmpInst::FCMP_OGT: 1204 return ARMCC::GT; 1205 case CmpInst::ICMP_SGE: 1206 case CmpInst::FCMP_OGE: 1207 return ARMCC::GE; 1208 case CmpInst::ICMP_UGT: 1209 case CmpInst::FCMP_UGT: 1210 return ARMCC::HI; 1211 case CmpInst::FCMP_OLT: 1212 return ARMCC::MI; 1213 case CmpInst::ICMP_ULE: 1214 case CmpInst::FCMP_OLE: 1215 return ARMCC::LS; 1216 case CmpInst::FCMP_ORD: 1217 return ARMCC::VC; 1218 case CmpInst::FCMP_UNO: 1219 return ARMCC::VS; 1220 case CmpInst::FCMP_UGE: 1221 return ARMCC::PL; 1222 case CmpInst::ICMP_SLT: 1223 case CmpInst::FCMP_ULT: 1224 return ARMCC::LT; 1225 case CmpInst::ICMP_SLE: 1226 case CmpInst::FCMP_ULE: 1227 return ARMCC::LE; 1228 case CmpInst::FCMP_UNE: 1229 case CmpInst::ICMP_NE: 1230 return ARMCC::NE; 1231 case CmpInst::ICMP_UGE: 1232 return ARMCC::HS; 1233 case CmpInst::ICMP_ULT: 1234 return ARMCC::LO; 1235 } 1236 } 1237 1238 bool ARMFastISel::SelectBranch(const Instruction *I) { 1239 const BranchInst *BI = cast<BranchInst>(I); 1240 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1241 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1242 1243 // Simple branch support. 1244 1245 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1246 // behavior. 1247 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1248 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1249 1250 // Get the compare predicate. 1251 // Try to take advantage of fallthrough opportunities. 1252 CmpInst::Predicate Predicate = CI->getPredicate(); 1253 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1254 std::swap(TBB, FBB); 1255 Predicate = CmpInst::getInversePredicate(Predicate); 1256 } 1257 1258 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1259 1260 // We may not handle every CC for now. 1261 if (ARMPred == ARMCC::AL) return false; 1262 1263 // Emit the compare. 1264 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1265 return false; 1266 1267 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1268 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1269 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1270 finishCondBranch(BI->getParent(), TBB, FBB); 1271 return true; 1272 } 1273 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1274 MVT SourceVT; 1275 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1276 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1277 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1278 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1279 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1280 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1281 TII.get(TstOpc)) 1282 .addReg(OpReg).addImm(1)); 1283 1284 unsigned CCMode = ARMCC::NE; 1285 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1286 std::swap(TBB, FBB); 1287 CCMode = ARMCC::EQ; 1288 } 1289 1290 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1291 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1292 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1293 1294 finishCondBranch(BI->getParent(), TBB, FBB); 1295 return true; 1296 } 1297 } else if (const ConstantInt *CI = 1298 dyn_cast<ConstantInt>(BI->getCondition())) { 1299 uint64_t Imm = CI->getZExtValue(); 1300 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1301 fastEmitBranch(Target, DbgLoc); 1302 return true; 1303 } 1304 1305 unsigned CmpReg = getRegForValue(BI->getCondition()); 1306 if (CmpReg == 0) return false; 1307 1308 // We've been divorced from our compare! Our block was split, and 1309 // now our compare lives in a predecessor block. We musn't 1310 // re-compare here, as the children of the compare aren't guaranteed 1311 // live across the block boundary (we *could* check for this). 1312 // Regardless, the compare has been done in the predecessor block, 1313 // and it left a value for us in a virtual register. Ergo, we test 1314 // the one-bit value left in the virtual register. 1315 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1316 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1317 AddOptionalDefs( 1318 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1319 .addReg(CmpReg) 1320 .addImm(1)); 1321 1322 unsigned CCMode = ARMCC::NE; 1323 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1324 std::swap(TBB, FBB); 1325 CCMode = ARMCC::EQ; 1326 } 1327 1328 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1329 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1330 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1331 finishCondBranch(BI->getParent(), TBB, FBB); 1332 return true; 1333 } 1334 1335 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1336 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1337 if (AddrReg == 0) return false; 1338 1339 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1340 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1341 TII.get(Opc)).addReg(AddrReg)); 1342 1343 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1344 for (const BasicBlock *SuccBB : IB->successors()) 1345 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1346 1347 return true; 1348 } 1349 1350 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1351 bool isZExt) { 1352 Type *Ty = Src1Value->getType(); 1353 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1354 if (!SrcEVT.isSimple()) return false; 1355 MVT SrcVT = SrcEVT.getSimpleVT(); 1356 1357 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1358 if (isFloat && !Subtarget->hasVFP2()) 1359 return false; 1360 1361 // Check to see if the 2nd operand is a constant that we can encode directly 1362 // in the compare. 1363 int Imm = 0; 1364 bool UseImm = false; 1365 bool isNegativeImm = false; 1366 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1367 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1368 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1369 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1370 SrcVT == MVT::i1) { 1371 const APInt &CIVal = ConstInt->getValue(); 1372 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1373 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1374 // then a cmn, because there is no way to represent 2147483648 as a 1375 // signed 32-bit int. 1376 if (Imm < 0 && Imm != (int)0x80000000) { 1377 isNegativeImm = true; 1378 Imm = -Imm; 1379 } 1380 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1381 (ARM_AM::getSOImmVal(Imm) != -1); 1382 } 1383 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1384 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1385 if (ConstFP->isZero() && !ConstFP->isNegative()) 1386 UseImm = true; 1387 } 1388 1389 unsigned CmpOpc; 1390 bool isICmp = true; 1391 bool needsExt = false; 1392 switch (SrcVT.SimpleTy) { 1393 default: return false; 1394 // TODO: Verify compares. 1395 case MVT::f32: 1396 isICmp = false; 1397 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1398 break; 1399 case MVT::f64: 1400 isICmp = false; 1401 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1402 break; 1403 case MVT::i1: 1404 case MVT::i8: 1405 case MVT::i16: 1406 needsExt = true; 1407 // Intentional fall-through. 1408 case MVT::i32: 1409 if (isThumb2) { 1410 if (!UseImm) 1411 CmpOpc = ARM::t2CMPrr; 1412 else 1413 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1414 } else { 1415 if (!UseImm) 1416 CmpOpc = ARM::CMPrr; 1417 else 1418 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1419 } 1420 break; 1421 } 1422 1423 unsigned SrcReg1 = getRegForValue(Src1Value); 1424 if (SrcReg1 == 0) return false; 1425 1426 unsigned SrcReg2 = 0; 1427 if (!UseImm) { 1428 SrcReg2 = getRegForValue(Src2Value); 1429 if (SrcReg2 == 0) return false; 1430 } 1431 1432 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1433 if (needsExt) { 1434 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1435 if (SrcReg1 == 0) return false; 1436 if (!UseImm) { 1437 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1438 if (SrcReg2 == 0) return false; 1439 } 1440 } 1441 1442 const MCInstrDesc &II = TII.get(CmpOpc); 1443 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1444 if (!UseImm) { 1445 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1446 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1447 .addReg(SrcReg1).addReg(SrcReg2)); 1448 } else { 1449 MachineInstrBuilder MIB; 1450 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1451 .addReg(SrcReg1); 1452 1453 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1454 if (isICmp) 1455 MIB.addImm(Imm); 1456 AddOptionalDefs(MIB); 1457 } 1458 1459 // For floating point we need to move the result to a comparison register 1460 // that we can then use for branches. 1461 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1462 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1463 TII.get(ARM::FMSTAT))); 1464 return true; 1465 } 1466 1467 bool ARMFastISel::SelectCmp(const Instruction *I) { 1468 const CmpInst *CI = cast<CmpInst>(I); 1469 1470 // Get the compare predicate. 1471 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1472 1473 // We may not handle every CC for now. 1474 if (ARMPred == ARMCC::AL) return false; 1475 1476 // Emit the compare. 1477 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1478 return false; 1479 1480 // Now set a register based on the comparison. Explicitly set the predicates 1481 // here. 1482 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1483 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1484 : &ARM::GPRRegClass; 1485 unsigned DestReg = createResultReg(RC); 1486 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1487 unsigned ZeroReg = fastMaterializeConstant(Zero); 1488 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1489 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1490 .addReg(ZeroReg).addImm(1) 1491 .addImm(ARMPred).addReg(ARM::CPSR); 1492 1493 updateValueMap(I, DestReg); 1494 return true; 1495 } 1496 1497 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1498 // Make sure we have VFP and that we're extending float to double. 1499 if (!Subtarget->hasVFP2()) return false; 1500 1501 Value *V = I->getOperand(0); 1502 if (!I->getType()->isDoubleTy() || 1503 !V->getType()->isFloatTy()) return false; 1504 1505 unsigned Op = getRegForValue(V); 1506 if (Op == 0) return false; 1507 1508 unsigned Result = createResultReg(&ARM::DPRRegClass); 1509 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1510 TII.get(ARM::VCVTDS), Result) 1511 .addReg(Op)); 1512 updateValueMap(I, Result); 1513 return true; 1514 } 1515 1516 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1517 // Make sure we have VFP and that we're truncating double to float. 1518 if (!Subtarget->hasVFP2()) return false; 1519 1520 Value *V = I->getOperand(0); 1521 if (!(I->getType()->isFloatTy() && 1522 V->getType()->isDoubleTy())) return false; 1523 1524 unsigned Op = getRegForValue(V); 1525 if (Op == 0) return false; 1526 1527 unsigned Result = createResultReg(&ARM::SPRRegClass); 1528 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1529 TII.get(ARM::VCVTSD), Result) 1530 .addReg(Op)); 1531 updateValueMap(I, Result); 1532 return true; 1533 } 1534 1535 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1536 // Make sure we have VFP. 1537 if (!Subtarget->hasVFP2()) return false; 1538 1539 MVT DstVT; 1540 Type *Ty = I->getType(); 1541 if (!isTypeLegal(Ty, DstVT)) 1542 return false; 1543 1544 Value *Src = I->getOperand(0); 1545 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1546 if (!SrcEVT.isSimple()) 1547 return false; 1548 MVT SrcVT = SrcEVT.getSimpleVT(); 1549 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1550 return false; 1551 1552 unsigned SrcReg = getRegForValue(Src); 1553 if (SrcReg == 0) return false; 1554 1555 // Handle sign-extension. 1556 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1557 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1558 /*isZExt*/!isSigned); 1559 if (SrcReg == 0) return false; 1560 } 1561 1562 // The conversion routine works on fp-reg to fp-reg and the operand above 1563 // was an integer, move it to the fp registers if possible. 1564 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1565 if (FP == 0) return false; 1566 1567 unsigned Opc; 1568 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1569 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1570 else return false; 1571 1572 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1573 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1574 TII.get(Opc), ResultReg).addReg(FP)); 1575 updateValueMap(I, ResultReg); 1576 return true; 1577 } 1578 1579 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1580 // Make sure we have VFP. 1581 if (!Subtarget->hasVFP2()) return false; 1582 1583 MVT DstVT; 1584 Type *RetTy = I->getType(); 1585 if (!isTypeLegal(RetTy, DstVT)) 1586 return false; 1587 1588 unsigned Op = getRegForValue(I->getOperand(0)); 1589 if (Op == 0) return false; 1590 1591 unsigned Opc; 1592 Type *OpTy = I->getOperand(0)->getType(); 1593 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1594 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1595 else return false; 1596 1597 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1598 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1599 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1600 TII.get(Opc), ResultReg).addReg(Op)); 1601 1602 // This result needs to be in an integer register, but the conversion only 1603 // takes place in fp-regs. 1604 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1605 if (IntReg == 0) return false; 1606 1607 updateValueMap(I, IntReg); 1608 return true; 1609 } 1610 1611 bool ARMFastISel::SelectSelect(const Instruction *I) { 1612 MVT VT; 1613 if (!isTypeLegal(I->getType(), VT)) 1614 return false; 1615 1616 // Things need to be register sized for register moves. 1617 if (VT != MVT::i32) return false; 1618 1619 unsigned CondReg = getRegForValue(I->getOperand(0)); 1620 if (CondReg == 0) return false; 1621 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1622 if (Op1Reg == 0) return false; 1623 1624 // Check to see if we can use an immediate in the conditional move. 1625 int Imm = 0; 1626 bool UseImm = false; 1627 bool isNegativeImm = false; 1628 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1629 assert (VT == MVT::i32 && "Expecting an i32."); 1630 Imm = (int)ConstInt->getValue().getZExtValue(); 1631 if (Imm < 0) { 1632 isNegativeImm = true; 1633 Imm = ~Imm; 1634 } 1635 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1636 (ARM_AM::getSOImmVal(Imm) != -1); 1637 } 1638 1639 unsigned Op2Reg = 0; 1640 if (!UseImm) { 1641 Op2Reg = getRegForValue(I->getOperand(2)); 1642 if (Op2Reg == 0) return false; 1643 } 1644 1645 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1646 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1647 AddOptionalDefs( 1648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1649 .addReg(CondReg) 1650 .addImm(1)); 1651 1652 unsigned MovCCOpc; 1653 const TargetRegisterClass *RC; 1654 if (!UseImm) { 1655 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1656 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1657 } else { 1658 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1659 if (!isNegativeImm) 1660 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1661 else 1662 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1663 } 1664 unsigned ResultReg = createResultReg(RC); 1665 if (!UseImm) { 1666 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1667 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1668 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1669 ResultReg) 1670 .addReg(Op2Reg) 1671 .addReg(Op1Reg) 1672 .addImm(ARMCC::NE) 1673 .addReg(ARM::CPSR); 1674 } else { 1675 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1676 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1677 ResultReg) 1678 .addReg(Op1Reg) 1679 .addImm(Imm) 1680 .addImm(ARMCC::EQ) 1681 .addReg(ARM::CPSR); 1682 } 1683 updateValueMap(I, ResultReg); 1684 return true; 1685 } 1686 1687 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1688 MVT VT; 1689 Type *Ty = I->getType(); 1690 if (!isTypeLegal(Ty, VT)) 1691 return false; 1692 1693 // If we have integer div support we should have selected this automagically. 1694 // In case we have a real miss go ahead and return false and we'll pick 1695 // it up later. 1696 if (Subtarget->hasDivide()) return false; 1697 1698 // Otherwise emit a libcall. 1699 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1700 if (VT == MVT::i8) 1701 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1702 else if (VT == MVT::i16) 1703 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1704 else if (VT == MVT::i32) 1705 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1706 else if (VT == MVT::i64) 1707 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1708 else if (VT == MVT::i128) 1709 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1710 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1711 1712 return ARMEmitLibcall(I, LC); 1713 } 1714 1715 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1716 MVT VT; 1717 Type *Ty = I->getType(); 1718 if (!isTypeLegal(Ty, VT)) 1719 return false; 1720 1721 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1722 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1723 // multi-reg returns, we'll have to bail out. 1724 if (!TLI.hasStandaloneRem(VT)) { 1725 return false; 1726 } 1727 1728 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1729 if (VT == MVT::i8) 1730 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1731 else if (VT == MVT::i16) 1732 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1733 else if (VT == MVT::i32) 1734 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1735 else if (VT == MVT::i64) 1736 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1737 else if (VT == MVT::i128) 1738 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1739 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1740 1741 return ARMEmitLibcall(I, LC); 1742 } 1743 1744 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1745 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1746 1747 // We can get here in the case when we have a binary operation on a non-legal 1748 // type and the target independent selector doesn't know how to handle it. 1749 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1750 return false; 1751 1752 unsigned Opc; 1753 switch (ISDOpcode) { 1754 default: return false; 1755 case ISD::ADD: 1756 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1757 break; 1758 case ISD::OR: 1759 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1760 break; 1761 case ISD::SUB: 1762 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1763 break; 1764 } 1765 1766 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1767 if (SrcReg1 == 0) return false; 1768 1769 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1770 // in the instruction, rather then materializing the value in a register. 1771 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1772 if (SrcReg2 == 0) return false; 1773 1774 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1775 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1776 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1777 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1778 TII.get(Opc), ResultReg) 1779 .addReg(SrcReg1).addReg(SrcReg2)); 1780 updateValueMap(I, ResultReg); 1781 return true; 1782 } 1783 1784 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1785 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1786 if (!FPVT.isSimple()) return false; 1787 MVT VT = FPVT.getSimpleVT(); 1788 1789 // FIXME: Support vector types where possible. 1790 if (VT.isVector()) 1791 return false; 1792 1793 // We can get here in the case when we want to use NEON for our fp 1794 // operations, but can't figure out how to. Just use the vfp instructions 1795 // if we have them. 1796 // FIXME: It'd be nice to use NEON instructions. 1797 Type *Ty = I->getType(); 1798 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1799 if (isFloat && !Subtarget->hasVFP2()) 1800 return false; 1801 1802 unsigned Opc; 1803 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1804 switch (ISDOpcode) { 1805 default: return false; 1806 case ISD::FADD: 1807 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1808 break; 1809 case ISD::FSUB: 1810 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1811 break; 1812 case ISD::FMUL: 1813 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1814 break; 1815 } 1816 unsigned Op1 = getRegForValue(I->getOperand(0)); 1817 if (Op1 == 0) return false; 1818 1819 unsigned Op2 = getRegForValue(I->getOperand(1)); 1820 if (Op2 == 0) return false; 1821 1822 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1823 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1824 TII.get(Opc), ResultReg) 1825 .addReg(Op1).addReg(Op2)); 1826 updateValueMap(I, ResultReg); 1827 return true; 1828 } 1829 1830 // Call Handling Code 1831 1832 // This is largely taken directly from CCAssignFnForNode 1833 // TODO: We may not support all of this. 1834 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1835 bool Return, 1836 bool isVarArg) { 1837 switch (CC) { 1838 default: 1839 llvm_unreachable("Unsupported calling convention"); 1840 case CallingConv::Fast: 1841 if (Subtarget->hasVFP2() && !isVarArg) { 1842 if (!Subtarget->isAAPCS_ABI()) 1843 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1844 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1845 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1846 } 1847 // Fallthrough 1848 case CallingConv::C: 1849 case CallingConv::CXX_FAST_TLS: 1850 // Use target triple & subtarget features to do actual dispatch. 1851 if (Subtarget->isAAPCS_ABI()) { 1852 if (Subtarget->hasVFP2() && 1853 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1854 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1855 else 1856 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1857 } else { 1858 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1859 } 1860 case CallingConv::ARM_AAPCS_VFP: 1861 case CallingConv::Swift: 1862 if (!isVarArg) 1863 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1864 // Fall through to soft float variant, variadic functions don't 1865 // use hard floating point ABI. 1866 case CallingConv::ARM_AAPCS: 1867 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1868 case CallingConv::ARM_APCS: 1869 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1870 case CallingConv::GHC: 1871 if (Return) 1872 llvm_unreachable("Can't return in GHC call convention"); 1873 else 1874 return CC_ARM_APCS_GHC; 1875 } 1876 } 1877 1878 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1879 SmallVectorImpl<unsigned> &ArgRegs, 1880 SmallVectorImpl<MVT> &ArgVTs, 1881 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1882 SmallVectorImpl<unsigned> &RegArgs, 1883 CallingConv::ID CC, 1884 unsigned &NumBytes, 1885 bool isVarArg) { 1886 SmallVector<CCValAssign, 16> ArgLocs; 1887 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1888 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1889 CCAssignFnForCall(CC, false, isVarArg)); 1890 1891 // Check that we can handle all of the arguments. If we can't, then bail out 1892 // now before we add code to the MBB. 1893 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1894 CCValAssign &VA = ArgLocs[i]; 1895 MVT ArgVT = ArgVTs[VA.getValNo()]; 1896 1897 // We don't handle NEON/vector parameters yet. 1898 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1899 return false; 1900 1901 // Now copy/store arg to correct locations. 1902 if (VA.isRegLoc() && !VA.needsCustom()) { 1903 continue; 1904 } else if (VA.needsCustom()) { 1905 // TODO: We need custom lowering for vector (v2f64) args. 1906 if (VA.getLocVT() != MVT::f64 || 1907 // TODO: Only handle register args for now. 1908 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1909 return false; 1910 } else { 1911 switch (ArgVT.SimpleTy) { 1912 default: 1913 return false; 1914 case MVT::i1: 1915 case MVT::i8: 1916 case MVT::i16: 1917 case MVT::i32: 1918 break; 1919 case MVT::f32: 1920 if (!Subtarget->hasVFP2()) 1921 return false; 1922 break; 1923 case MVT::f64: 1924 if (!Subtarget->hasVFP2()) 1925 return false; 1926 break; 1927 } 1928 } 1929 } 1930 1931 // At the point, we are able to handle the call's arguments in fast isel. 1932 1933 // Get a count of how many bytes are to be pushed on the stack. 1934 NumBytes = CCInfo.getNextStackOffset(); 1935 1936 // Issue CALLSEQ_START 1937 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1938 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1939 TII.get(AdjStackDown)) 1940 .addImm(NumBytes)); 1941 1942 // Process the args. 1943 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1944 CCValAssign &VA = ArgLocs[i]; 1945 const Value *ArgVal = Args[VA.getValNo()]; 1946 unsigned Arg = ArgRegs[VA.getValNo()]; 1947 MVT ArgVT = ArgVTs[VA.getValNo()]; 1948 1949 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1950 "We don't handle NEON/vector parameters yet."); 1951 1952 // Handle arg promotion, etc. 1953 switch (VA.getLocInfo()) { 1954 case CCValAssign::Full: break; 1955 case CCValAssign::SExt: { 1956 MVT DestVT = VA.getLocVT(); 1957 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1958 assert (Arg != 0 && "Failed to emit a sext"); 1959 ArgVT = DestVT; 1960 break; 1961 } 1962 case CCValAssign::AExt: 1963 // Intentional fall-through. Handle AExt and ZExt. 1964 case CCValAssign::ZExt: { 1965 MVT DestVT = VA.getLocVT(); 1966 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1967 assert (Arg != 0 && "Failed to emit a zext"); 1968 ArgVT = DestVT; 1969 break; 1970 } 1971 case CCValAssign::BCvt: { 1972 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1973 /*TODO: Kill=*/false); 1974 assert(BC != 0 && "Failed to emit a bitcast!"); 1975 Arg = BC; 1976 ArgVT = VA.getLocVT(); 1977 break; 1978 } 1979 default: llvm_unreachable("Unknown arg promotion!"); 1980 } 1981 1982 // Now copy/store arg to correct locations. 1983 if (VA.isRegLoc() && !VA.needsCustom()) { 1984 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1985 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1986 RegArgs.push_back(VA.getLocReg()); 1987 } else if (VA.needsCustom()) { 1988 // TODO: We need custom lowering for vector (v2f64) args. 1989 assert(VA.getLocVT() == MVT::f64 && 1990 "Custom lowering for v2f64 args not available"); 1991 1992 CCValAssign &NextVA = ArgLocs[++i]; 1993 1994 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1995 "We only handle register args!"); 1996 1997 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1998 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1999 .addReg(NextVA.getLocReg(), RegState::Define) 2000 .addReg(Arg)); 2001 RegArgs.push_back(VA.getLocReg()); 2002 RegArgs.push_back(NextVA.getLocReg()); 2003 } else { 2004 assert(VA.isMemLoc()); 2005 // Need to store on the stack. 2006 2007 // Don't emit stores for undef values. 2008 if (isa<UndefValue>(ArgVal)) 2009 continue; 2010 2011 Address Addr; 2012 Addr.BaseType = Address::RegBase; 2013 Addr.Base.Reg = ARM::SP; 2014 Addr.Offset = VA.getLocMemOffset(); 2015 2016 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2017 assert(EmitRet && "Could not emit a store for argument!"); 2018 } 2019 } 2020 2021 return true; 2022 } 2023 2024 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2025 const Instruction *I, CallingConv::ID CC, 2026 unsigned &NumBytes, bool isVarArg) { 2027 // Issue CALLSEQ_END 2028 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2029 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2030 TII.get(AdjStackUp)) 2031 .addImm(NumBytes).addImm(0)); 2032 2033 // Now the return value. 2034 if (RetVT != MVT::isVoid) { 2035 SmallVector<CCValAssign, 16> RVLocs; 2036 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2037 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2038 2039 // Copy all of the result registers out of their specified physreg. 2040 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2041 // For this move we copy into two registers and then move into the 2042 // double fp reg we want. 2043 MVT DestVT = RVLocs[0].getValVT(); 2044 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2045 unsigned ResultReg = createResultReg(DstRC); 2046 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2047 TII.get(ARM::VMOVDRR), ResultReg) 2048 .addReg(RVLocs[0].getLocReg()) 2049 .addReg(RVLocs[1].getLocReg())); 2050 2051 UsedRegs.push_back(RVLocs[0].getLocReg()); 2052 UsedRegs.push_back(RVLocs[1].getLocReg()); 2053 2054 // Finally update the result. 2055 updateValueMap(I, ResultReg); 2056 } else { 2057 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2058 MVT CopyVT = RVLocs[0].getValVT(); 2059 2060 // Special handling for extended integers. 2061 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2062 CopyVT = MVT::i32; 2063 2064 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2065 2066 unsigned ResultReg = createResultReg(DstRC); 2067 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2068 TII.get(TargetOpcode::COPY), 2069 ResultReg).addReg(RVLocs[0].getLocReg()); 2070 UsedRegs.push_back(RVLocs[0].getLocReg()); 2071 2072 // Finally update the result. 2073 updateValueMap(I, ResultReg); 2074 } 2075 } 2076 2077 return true; 2078 } 2079 2080 bool ARMFastISel::SelectRet(const Instruction *I) { 2081 const ReturnInst *Ret = cast<ReturnInst>(I); 2082 const Function &F = *I->getParent()->getParent(); 2083 2084 if (!FuncInfo.CanLowerReturn) 2085 return false; 2086 2087 if (TLI.supportSwiftError() && 2088 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2089 return false; 2090 2091 if (TLI.supportSplitCSR(FuncInfo.MF)) 2092 return false; 2093 2094 // Build a list of return value registers. 2095 SmallVector<unsigned, 4> RetRegs; 2096 2097 CallingConv::ID CC = F.getCallingConv(); 2098 if (Ret->getNumOperands() > 0) { 2099 SmallVector<ISD::OutputArg, 4> Outs; 2100 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2101 2102 // Analyze operands of the call, assigning locations to each operand. 2103 SmallVector<CCValAssign, 16> ValLocs; 2104 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2105 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2106 F.isVarArg())); 2107 2108 const Value *RV = Ret->getOperand(0); 2109 unsigned Reg = getRegForValue(RV); 2110 if (Reg == 0) 2111 return false; 2112 2113 // Only handle a single return value for now. 2114 if (ValLocs.size() != 1) 2115 return false; 2116 2117 CCValAssign &VA = ValLocs[0]; 2118 2119 // Don't bother handling odd stuff for now. 2120 if (VA.getLocInfo() != CCValAssign::Full) 2121 return false; 2122 // Only handle register returns for now. 2123 if (!VA.isRegLoc()) 2124 return false; 2125 2126 unsigned SrcReg = Reg + VA.getValNo(); 2127 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2128 if (!RVEVT.isSimple()) return false; 2129 MVT RVVT = RVEVT.getSimpleVT(); 2130 MVT DestVT = VA.getValVT(); 2131 // Special handling for extended integers. 2132 if (RVVT != DestVT) { 2133 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2134 return false; 2135 2136 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2137 2138 // Perform extension if flagged as either zext or sext. Otherwise, do 2139 // nothing. 2140 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2141 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2142 if (SrcReg == 0) return false; 2143 } 2144 } 2145 2146 // Make the copy. 2147 unsigned DstReg = VA.getLocReg(); 2148 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2149 // Avoid a cross-class copy. This is very unlikely. 2150 if (!SrcRC->contains(DstReg)) 2151 return false; 2152 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2153 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2154 2155 // Add register to return instruction. 2156 RetRegs.push_back(VA.getLocReg()); 2157 } 2158 2159 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2160 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2161 TII.get(RetOpc)); 2162 AddOptionalDefs(MIB); 2163 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2164 MIB.addReg(RetRegs[i], RegState::Implicit); 2165 return true; 2166 } 2167 2168 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2169 if (UseReg) 2170 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2171 else 2172 return isThumb2 ? ARM::tBL : ARM::BL; 2173 } 2174 2175 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2176 // Manually compute the global's type to avoid building it when unnecessary. 2177 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2178 EVT LCREVT = TLI.getValueType(DL, GVTy); 2179 if (!LCREVT.isSimple()) return 0; 2180 2181 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2182 GlobalValue::ExternalLinkage, nullptr, 2183 Name); 2184 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2185 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2186 } 2187 2188 // A quick function that will emit a call for a named libcall in F with the 2189 // vector of passed arguments for the Instruction in I. We can assume that we 2190 // can emit a call for any libcall we can produce. This is an abridged version 2191 // of the full call infrastructure since we won't need to worry about things 2192 // like computed function pointers or strange arguments at call sites. 2193 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2194 // with X86. 2195 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2196 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2197 2198 // Handle *simple* calls for now. 2199 Type *RetTy = I->getType(); 2200 MVT RetVT; 2201 if (RetTy->isVoidTy()) 2202 RetVT = MVT::isVoid; 2203 else if (!isTypeLegal(RetTy, RetVT)) 2204 return false; 2205 2206 // Can't handle non-double multi-reg retvals. 2207 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2208 SmallVector<CCValAssign, 16> RVLocs; 2209 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2210 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2211 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2212 return false; 2213 } 2214 2215 // Set up the argument vectors. 2216 SmallVector<Value*, 8> Args; 2217 SmallVector<unsigned, 8> ArgRegs; 2218 SmallVector<MVT, 8> ArgVTs; 2219 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2220 Args.reserve(I->getNumOperands()); 2221 ArgRegs.reserve(I->getNumOperands()); 2222 ArgVTs.reserve(I->getNumOperands()); 2223 ArgFlags.reserve(I->getNumOperands()); 2224 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2225 Value *Op = I->getOperand(i); 2226 unsigned Arg = getRegForValue(Op); 2227 if (Arg == 0) return false; 2228 2229 Type *ArgTy = Op->getType(); 2230 MVT ArgVT; 2231 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2232 2233 ISD::ArgFlagsTy Flags; 2234 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2235 Flags.setOrigAlign(OriginalAlignment); 2236 2237 Args.push_back(Op); 2238 ArgRegs.push_back(Arg); 2239 ArgVTs.push_back(ArgVT); 2240 ArgFlags.push_back(Flags); 2241 } 2242 2243 // Handle the arguments now that we've gotten them. 2244 SmallVector<unsigned, 4> RegArgs; 2245 unsigned NumBytes; 2246 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2247 RegArgs, CC, NumBytes, false)) 2248 return false; 2249 2250 unsigned CalleeReg = 0; 2251 if (Subtarget->genLongCalls()) { 2252 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2253 if (CalleeReg == 0) return false; 2254 } 2255 2256 // Issue the call. 2257 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2258 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2259 DbgLoc, TII.get(CallOpc)); 2260 // BL / BLX don't take a predicate, but tBL / tBLX do. 2261 if (isThumb2) 2262 AddDefaultPred(MIB); 2263 if (Subtarget->genLongCalls()) 2264 MIB.addReg(CalleeReg); 2265 else 2266 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2267 2268 // Add implicit physical register uses to the call. 2269 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2270 MIB.addReg(RegArgs[i], RegState::Implicit); 2271 2272 // Add a register mask with the call-preserved registers. 2273 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2274 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2275 2276 // Finish off the call including any return values. 2277 SmallVector<unsigned, 4> UsedRegs; 2278 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2279 2280 // Set all unused physreg defs as dead. 2281 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2282 2283 return true; 2284 } 2285 2286 bool ARMFastISel::SelectCall(const Instruction *I, 2287 const char *IntrMemName = nullptr) { 2288 const CallInst *CI = cast<CallInst>(I); 2289 const Value *Callee = CI->getCalledValue(); 2290 2291 // Can't handle inline asm. 2292 if (isa<InlineAsm>(Callee)) return false; 2293 2294 // Allow SelectionDAG isel to handle tail calls. 2295 if (CI->isTailCall()) return false; 2296 2297 // Check the calling convention. 2298 ImmutableCallSite CS(CI); 2299 CallingConv::ID CC = CS.getCallingConv(); 2300 2301 // TODO: Avoid some calling conventions? 2302 2303 FunctionType *FTy = CS.getFunctionType(); 2304 bool isVarArg = FTy->isVarArg(); 2305 2306 // Handle *simple* calls for now. 2307 Type *RetTy = I->getType(); 2308 MVT RetVT; 2309 if (RetTy->isVoidTy()) 2310 RetVT = MVT::isVoid; 2311 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2312 RetVT != MVT::i8 && RetVT != MVT::i1) 2313 return false; 2314 2315 // Can't handle non-double multi-reg retvals. 2316 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2317 RetVT != MVT::i16 && RetVT != MVT::i32) { 2318 SmallVector<CCValAssign, 16> RVLocs; 2319 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2320 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2321 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2322 return false; 2323 } 2324 2325 // Set up the argument vectors. 2326 SmallVector<Value*, 8> Args; 2327 SmallVector<unsigned, 8> ArgRegs; 2328 SmallVector<MVT, 8> ArgVTs; 2329 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2330 unsigned arg_size = CS.arg_size(); 2331 Args.reserve(arg_size); 2332 ArgRegs.reserve(arg_size); 2333 ArgVTs.reserve(arg_size); 2334 ArgFlags.reserve(arg_size); 2335 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2336 i != e; ++i) { 2337 // If we're lowering a memory intrinsic instead of a regular call, skip the 2338 // last two arguments, which shouldn't be passed to the underlying function. 2339 if (IntrMemName && e-i <= 2) 2340 break; 2341 2342 ISD::ArgFlagsTy Flags; 2343 unsigned AttrInd = i - CS.arg_begin() + 1; 2344 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2345 Flags.setSExt(); 2346 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2347 Flags.setZExt(); 2348 2349 // FIXME: Only handle *easy* calls for now. 2350 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2351 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2352 CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) || 2353 CS.paramHasAttr(AttrInd, Attribute::SwiftError) || 2354 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2355 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2356 return false; 2357 2358 Type *ArgTy = (*i)->getType(); 2359 MVT ArgVT; 2360 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2361 ArgVT != MVT::i1) 2362 return false; 2363 2364 unsigned Arg = getRegForValue(*i); 2365 if (Arg == 0) 2366 return false; 2367 2368 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2369 Flags.setOrigAlign(OriginalAlignment); 2370 2371 Args.push_back(*i); 2372 ArgRegs.push_back(Arg); 2373 ArgVTs.push_back(ArgVT); 2374 ArgFlags.push_back(Flags); 2375 } 2376 2377 // Handle the arguments now that we've gotten them. 2378 SmallVector<unsigned, 4> RegArgs; 2379 unsigned NumBytes; 2380 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2381 RegArgs, CC, NumBytes, isVarArg)) 2382 return false; 2383 2384 bool UseReg = false; 2385 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2386 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2387 2388 unsigned CalleeReg = 0; 2389 if (UseReg) { 2390 if (IntrMemName) 2391 CalleeReg = getLibcallReg(IntrMemName); 2392 else 2393 CalleeReg = getRegForValue(Callee); 2394 2395 if (CalleeReg == 0) return false; 2396 } 2397 2398 // Issue the call. 2399 unsigned CallOpc = ARMSelectCallOp(UseReg); 2400 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2401 DbgLoc, TII.get(CallOpc)); 2402 2403 // ARM calls don't take a predicate, but tBL / tBLX do. 2404 if(isThumb2) 2405 AddDefaultPred(MIB); 2406 if (UseReg) 2407 MIB.addReg(CalleeReg); 2408 else if (!IntrMemName) 2409 MIB.addGlobalAddress(GV, 0, 0); 2410 else 2411 MIB.addExternalSymbol(IntrMemName, 0); 2412 2413 // Add implicit physical register uses to the call. 2414 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2415 MIB.addReg(RegArgs[i], RegState::Implicit); 2416 2417 // Add a register mask with the call-preserved registers. 2418 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2419 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2420 2421 // Finish off the call including any return values. 2422 SmallVector<unsigned, 4> UsedRegs; 2423 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2424 return false; 2425 2426 // Set all unused physreg defs as dead. 2427 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2428 2429 return true; 2430 } 2431 2432 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2433 return Len <= 16; 2434 } 2435 2436 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2437 uint64_t Len, unsigned Alignment) { 2438 // Make sure we don't bloat code by inlining very large memcpy's. 2439 if (!ARMIsMemCpySmall(Len)) 2440 return false; 2441 2442 while (Len) { 2443 MVT VT; 2444 if (!Alignment || Alignment >= 4) { 2445 if (Len >= 4) 2446 VT = MVT::i32; 2447 else if (Len >= 2) 2448 VT = MVT::i16; 2449 else { 2450 assert (Len == 1 && "Expected a length of 1!"); 2451 VT = MVT::i8; 2452 } 2453 } else { 2454 // Bound based on alignment. 2455 if (Len >= 2 && Alignment == 2) 2456 VT = MVT::i16; 2457 else { 2458 VT = MVT::i8; 2459 } 2460 } 2461 2462 bool RV; 2463 unsigned ResultReg; 2464 RV = ARMEmitLoad(VT, ResultReg, Src); 2465 assert (RV == true && "Should be able to handle this load."); 2466 RV = ARMEmitStore(VT, ResultReg, Dest); 2467 assert (RV == true && "Should be able to handle this store."); 2468 (void)RV; 2469 2470 unsigned Size = VT.getSizeInBits()/8; 2471 Len -= Size; 2472 Dest.Offset += Size; 2473 Src.Offset += Size; 2474 } 2475 2476 return true; 2477 } 2478 2479 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2480 // FIXME: Handle more intrinsics. 2481 switch (I.getIntrinsicID()) { 2482 default: return false; 2483 case Intrinsic::frameaddress: { 2484 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2485 MFI->setFrameAddressIsTaken(true); 2486 2487 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2488 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2489 : &ARM::GPRRegClass; 2490 2491 const ARMBaseRegisterInfo *RegInfo = 2492 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2493 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2494 unsigned SrcReg = FramePtr; 2495 2496 // Recursively load frame address 2497 // ldr r0 [fp] 2498 // ldr r0 [r0] 2499 // ldr r0 [r0] 2500 // ... 2501 unsigned DestReg; 2502 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2503 while (Depth--) { 2504 DestReg = createResultReg(RC); 2505 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2506 TII.get(LdrOpc), DestReg) 2507 .addReg(SrcReg).addImm(0)); 2508 SrcReg = DestReg; 2509 } 2510 updateValueMap(&I, SrcReg); 2511 return true; 2512 } 2513 case Intrinsic::memcpy: 2514 case Intrinsic::memmove: { 2515 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2516 // Don't handle volatile. 2517 if (MTI.isVolatile()) 2518 return false; 2519 2520 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2521 // we would emit dead code because we don't currently handle memmoves. 2522 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2523 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2524 // Small memcpy's are common enough that we want to do them without a call 2525 // if possible. 2526 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2527 if (ARMIsMemCpySmall(Len)) { 2528 Address Dest, Src; 2529 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2530 !ARMComputeAddress(MTI.getRawSource(), Src)) 2531 return false; 2532 unsigned Alignment = MTI.getAlignment(); 2533 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2534 return true; 2535 } 2536 } 2537 2538 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2539 return false; 2540 2541 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2542 return false; 2543 2544 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2545 return SelectCall(&I, IntrMemName); 2546 } 2547 case Intrinsic::memset: { 2548 const MemSetInst &MSI = cast<MemSetInst>(I); 2549 // Don't handle volatile. 2550 if (MSI.isVolatile()) 2551 return false; 2552 2553 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2554 return false; 2555 2556 if (MSI.getDestAddressSpace() > 255) 2557 return false; 2558 2559 return SelectCall(&I, "memset"); 2560 } 2561 case Intrinsic::trap: { 2562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2563 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2564 return true; 2565 } 2566 } 2567 } 2568 2569 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2570 // The high bits for a type smaller than the register size are assumed to be 2571 // undefined. 2572 Value *Op = I->getOperand(0); 2573 2574 EVT SrcVT, DestVT; 2575 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2576 DestVT = TLI.getValueType(DL, I->getType(), true); 2577 2578 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2579 return false; 2580 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2581 return false; 2582 2583 unsigned SrcReg = getRegForValue(Op); 2584 if (!SrcReg) return false; 2585 2586 // Because the high bits are undefined, a truncate doesn't generate 2587 // any code. 2588 updateValueMap(I, SrcReg); 2589 return true; 2590 } 2591 2592 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2593 bool isZExt) { 2594 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2595 return 0; 2596 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2597 return 0; 2598 2599 // Table of which combinations can be emitted as a single instruction, 2600 // and which will require two. 2601 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2602 // ARM Thumb 2603 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2604 // ext: s z s z s z s z 2605 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2606 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2607 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2608 }; 2609 2610 // Target registers for: 2611 // - For ARM can never be PC. 2612 // - For 16-bit Thumb are restricted to lower 8 registers. 2613 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2614 static const TargetRegisterClass *RCTbl[2][2] = { 2615 // Instructions: Two Single 2616 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2617 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2618 }; 2619 2620 // Table governing the instruction(s) to be emitted. 2621 static const struct InstructionTable { 2622 uint32_t Opc : 16; 2623 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2624 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2625 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2626 } IT[2][2][3][2] = { 2627 { // Two instructions (first is left shift, second is in this table). 2628 { // ARM Opc S Shift Imm 2629 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2630 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2631 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2632 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2633 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2634 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2635 }, 2636 { // Thumb Opc S Shift Imm 2637 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2638 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2639 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2640 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2641 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2642 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2643 } 2644 }, 2645 { // Single instruction. 2646 { // ARM Opc S Shift Imm 2647 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2648 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2649 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2650 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2651 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2652 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2653 }, 2654 { // Thumb Opc S Shift Imm 2655 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2656 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2657 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2658 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2659 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2660 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2661 } 2662 } 2663 }; 2664 2665 unsigned SrcBits = SrcVT.getSizeInBits(); 2666 unsigned DestBits = DestVT.getSizeInBits(); 2667 (void) DestBits; 2668 assert((SrcBits < DestBits) && "can only extend to larger types"); 2669 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2670 "other sizes unimplemented"); 2671 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2672 "other sizes unimplemented"); 2673 2674 bool hasV6Ops = Subtarget->hasV6Ops(); 2675 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2676 assert((Bitness < 3) && "sanity-check table bounds"); 2677 2678 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2679 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2680 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2681 unsigned Opc = ITP->Opc; 2682 assert(ARM::KILL != Opc && "Invalid table entry"); 2683 unsigned hasS = ITP->hasS; 2684 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2685 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2686 "only MOVsi has shift operand addressing mode"); 2687 unsigned Imm = ITP->Imm; 2688 2689 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2690 bool setsCPSR = &ARM::tGPRRegClass == RC; 2691 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2692 unsigned ResultReg; 2693 // MOVsi encodes shift and immediate in shift operand addressing mode. 2694 // The following condition has the same value when emitting two 2695 // instruction sequences: both are shifts. 2696 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2697 2698 // Either one or two instructions are emitted. 2699 // They're always of the form: 2700 // dst = in OP imm 2701 // CPSR is set only by 16-bit Thumb instructions. 2702 // Predicate, if any, is AL. 2703 // S bit, if available, is always 0. 2704 // When two are emitted the first's result will feed as the second's input, 2705 // that value is then dead. 2706 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2707 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2708 ResultReg = createResultReg(RC); 2709 bool isLsl = (0 == Instr) && !isSingleInstr; 2710 unsigned Opcode = isLsl ? LSLOpc : Opc; 2711 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2712 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2713 bool isKill = 1 == Instr; 2714 MachineInstrBuilder MIB = BuildMI( 2715 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2716 if (setsCPSR) 2717 MIB.addReg(ARM::CPSR, RegState::Define); 2718 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2719 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2720 if (hasS) 2721 AddDefaultCC(MIB); 2722 // Second instruction consumes the first's result. 2723 SrcReg = ResultReg; 2724 } 2725 2726 return ResultReg; 2727 } 2728 2729 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2730 // On ARM, in general, integer casts don't involve legal types; this code 2731 // handles promotable integers. 2732 Type *DestTy = I->getType(); 2733 Value *Src = I->getOperand(0); 2734 Type *SrcTy = Src->getType(); 2735 2736 bool isZExt = isa<ZExtInst>(I); 2737 unsigned SrcReg = getRegForValue(Src); 2738 if (!SrcReg) return false; 2739 2740 EVT SrcEVT, DestEVT; 2741 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2742 DestEVT = TLI.getValueType(DL, DestTy, true); 2743 if (!SrcEVT.isSimple()) return false; 2744 if (!DestEVT.isSimple()) return false; 2745 2746 MVT SrcVT = SrcEVT.getSimpleVT(); 2747 MVT DestVT = DestEVT.getSimpleVT(); 2748 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2749 if (ResultReg == 0) return false; 2750 updateValueMap(I, ResultReg); 2751 return true; 2752 } 2753 2754 bool ARMFastISel::SelectShift(const Instruction *I, 2755 ARM_AM::ShiftOpc ShiftTy) { 2756 // We handle thumb2 mode by target independent selector 2757 // or SelectionDAG ISel. 2758 if (isThumb2) 2759 return false; 2760 2761 // Only handle i32 now. 2762 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2763 if (DestVT != MVT::i32) 2764 return false; 2765 2766 unsigned Opc = ARM::MOVsr; 2767 unsigned ShiftImm; 2768 Value *Src2Value = I->getOperand(1); 2769 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2770 ShiftImm = CI->getZExtValue(); 2771 2772 // Fall back to selection DAG isel if the shift amount 2773 // is zero or greater than the width of the value type. 2774 if (ShiftImm == 0 || ShiftImm >=32) 2775 return false; 2776 2777 Opc = ARM::MOVsi; 2778 } 2779 2780 Value *Src1Value = I->getOperand(0); 2781 unsigned Reg1 = getRegForValue(Src1Value); 2782 if (Reg1 == 0) return false; 2783 2784 unsigned Reg2 = 0; 2785 if (Opc == ARM::MOVsr) { 2786 Reg2 = getRegForValue(Src2Value); 2787 if (Reg2 == 0) return false; 2788 } 2789 2790 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2791 if(ResultReg == 0) return false; 2792 2793 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2794 TII.get(Opc), ResultReg) 2795 .addReg(Reg1); 2796 2797 if (Opc == ARM::MOVsi) 2798 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2799 else if (Opc == ARM::MOVsr) { 2800 MIB.addReg(Reg2); 2801 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2802 } 2803 2804 AddOptionalDefs(MIB); 2805 updateValueMap(I, ResultReg); 2806 return true; 2807 } 2808 2809 // TODO: SoftFP support. 2810 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2811 2812 switch (I->getOpcode()) { 2813 case Instruction::Load: 2814 return SelectLoad(I); 2815 case Instruction::Store: 2816 return SelectStore(I); 2817 case Instruction::Br: 2818 return SelectBranch(I); 2819 case Instruction::IndirectBr: 2820 return SelectIndirectBr(I); 2821 case Instruction::ICmp: 2822 case Instruction::FCmp: 2823 return SelectCmp(I); 2824 case Instruction::FPExt: 2825 return SelectFPExt(I); 2826 case Instruction::FPTrunc: 2827 return SelectFPTrunc(I); 2828 case Instruction::SIToFP: 2829 return SelectIToFP(I, /*isSigned*/ true); 2830 case Instruction::UIToFP: 2831 return SelectIToFP(I, /*isSigned*/ false); 2832 case Instruction::FPToSI: 2833 return SelectFPToI(I, /*isSigned*/ true); 2834 case Instruction::FPToUI: 2835 return SelectFPToI(I, /*isSigned*/ false); 2836 case Instruction::Add: 2837 return SelectBinaryIntOp(I, ISD::ADD); 2838 case Instruction::Or: 2839 return SelectBinaryIntOp(I, ISD::OR); 2840 case Instruction::Sub: 2841 return SelectBinaryIntOp(I, ISD::SUB); 2842 case Instruction::FAdd: 2843 return SelectBinaryFPOp(I, ISD::FADD); 2844 case Instruction::FSub: 2845 return SelectBinaryFPOp(I, ISD::FSUB); 2846 case Instruction::FMul: 2847 return SelectBinaryFPOp(I, ISD::FMUL); 2848 case Instruction::SDiv: 2849 return SelectDiv(I, /*isSigned*/ true); 2850 case Instruction::UDiv: 2851 return SelectDiv(I, /*isSigned*/ false); 2852 case Instruction::SRem: 2853 return SelectRem(I, /*isSigned*/ true); 2854 case Instruction::URem: 2855 return SelectRem(I, /*isSigned*/ false); 2856 case Instruction::Call: 2857 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2858 return SelectIntrinsicCall(*II); 2859 return SelectCall(I); 2860 case Instruction::Select: 2861 return SelectSelect(I); 2862 case Instruction::Ret: 2863 return SelectRet(I); 2864 case Instruction::Trunc: 2865 return SelectTrunc(I); 2866 case Instruction::ZExt: 2867 case Instruction::SExt: 2868 return SelectIntExt(I); 2869 case Instruction::Shl: 2870 return SelectShift(I, ARM_AM::lsl); 2871 case Instruction::LShr: 2872 return SelectShift(I, ARM_AM::lsr); 2873 case Instruction::AShr: 2874 return SelectShift(I, ARM_AM::asr); 2875 default: break; 2876 } 2877 return false; 2878 } 2879 2880 namespace { 2881 // This table describes sign- and zero-extend instructions which can be 2882 // folded into a preceding load. All of these extends have an immediate 2883 // (sometimes a mask and sometimes a shift) that's applied after 2884 // extension. 2885 const struct FoldableLoadExtendsStruct { 2886 uint16_t Opc[2]; // ARM, Thumb. 2887 uint8_t ExpectedImm; 2888 uint8_t isZExt : 1; 2889 uint8_t ExpectedVT : 7; 2890 } FoldableLoadExtends[] = { 2891 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2892 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2893 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2894 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2895 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2896 }; 2897 } 2898 2899 /// \brief The specified machine instr operand is a vreg, and that 2900 /// vreg is being provided by the specified load instruction. If possible, 2901 /// try to fold the load as an operand to the instruction, returning true if 2902 /// successful. 2903 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2904 const LoadInst *LI) { 2905 // Verify we have a legal type before going any further. 2906 MVT VT; 2907 if (!isLoadTypeLegal(LI->getType(), VT)) 2908 return false; 2909 2910 // Combine load followed by zero- or sign-extend. 2911 // ldrb r1, [r0] ldrb r1, [r0] 2912 // uxtb r2, r1 => 2913 // mov r3, r2 mov r3, r1 2914 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2915 return false; 2916 const uint64_t Imm = MI->getOperand(2).getImm(); 2917 2918 bool Found = false; 2919 bool isZExt; 2920 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2921 i != e; ++i) { 2922 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 2923 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 2924 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 2925 Found = true; 2926 isZExt = FoldableLoadExtends[i].isZExt; 2927 } 2928 } 2929 if (!Found) return false; 2930 2931 // See if we can handle this address. 2932 Address Addr; 2933 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2934 2935 unsigned ResultReg = MI->getOperand(0).getReg(); 2936 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2937 return false; 2938 MI->eraseFromParent(); 2939 return true; 2940 } 2941 2942 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2943 unsigned Align, MVT VT) { 2944 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 2945 2946 LLVMContext *Context = &MF->getFunction()->getContext(); 2947 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2948 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2949 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2950 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2951 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2952 /*AddCurrentAddress=*/UseGOT_PREL); 2953 2954 unsigned ConstAlign = 2955 MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context)); 2956 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2957 2958 unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2959 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2960 MachineInstrBuilder MIB = 2961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) 2962 .addConstantPoolIndex(Idx); 2963 if (Opc == ARM::LDRcp) 2964 MIB.addImm(0); 2965 AddDefaultPred(MIB); 2966 2967 // Fix the address by adding pc. 2968 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 2969 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2970 : ARM::PICADD; 2971 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2972 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2973 .addReg(TempReg) 2974 .addImm(ARMPCLabelIndex); 2975 if (!Subtarget->isThumb()) 2976 AddDefaultPred(MIB); 2977 2978 if (UseGOT_PREL && Subtarget->isThumb()) { 2979 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2980 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2981 TII.get(ARM::t2LDRi12), NewDestReg) 2982 .addReg(DestReg) 2983 .addImm(0); 2984 DestReg = NewDestReg; 2985 AddOptionalDefs(MIB); 2986 } 2987 return DestReg; 2988 } 2989 2990 bool ARMFastISel::fastLowerArguments() { 2991 if (!FuncInfo.CanLowerReturn) 2992 return false; 2993 2994 const Function *F = FuncInfo.Fn; 2995 if (F->isVarArg()) 2996 return false; 2997 2998 CallingConv::ID CC = F->getCallingConv(); 2999 switch (CC) { 3000 default: 3001 return false; 3002 case CallingConv::Fast: 3003 case CallingConv::C: 3004 case CallingConv::ARM_AAPCS_VFP: 3005 case CallingConv::ARM_AAPCS: 3006 case CallingConv::ARM_APCS: 3007 case CallingConv::Swift: 3008 break; 3009 } 3010 3011 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3012 // which are passed in r0 - r3. 3013 unsigned Idx = 1; 3014 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3015 I != E; ++I, ++Idx) { 3016 if (Idx > 4) 3017 return false; 3018 3019 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3020 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3021 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) || 3022 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) || 3023 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3024 return false; 3025 3026 Type *ArgTy = I->getType(); 3027 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3028 return false; 3029 3030 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3031 if (!ArgVT.isSimple()) return false; 3032 switch (ArgVT.getSimpleVT().SimpleTy) { 3033 case MVT::i8: 3034 case MVT::i16: 3035 case MVT::i32: 3036 break; 3037 default: 3038 return false; 3039 } 3040 } 3041 3042 3043 static const MCPhysReg GPRArgRegs[] = { 3044 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3045 }; 3046 3047 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3048 Idx = 0; 3049 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3050 I != E; ++I, ++Idx) { 3051 unsigned SrcReg = GPRArgRegs[Idx]; 3052 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3053 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3054 // Without this, EmitLiveInCopies may eliminate the livein if its only 3055 // use is a bitcast (which isn't turned into an instruction). 3056 unsigned ResultReg = createResultReg(RC); 3057 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3058 TII.get(TargetOpcode::COPY), 3059 ResultReg).addReg(DstReg, getKillRegState(true)); 3060 updateValueMap(&*I, ResultReg); 3061 } 3062 3063 return true; 3064 } 3065 3066 namespace llvm { 3067 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3068 const TargetLibraryInfo *libInfo) { 3069 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3070 return new ARMFastISel(funcInfo, libInfo); 3071 3072 return nullptr; 3073 } 3074 } 3075