1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the ARM-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // ARMGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/Analysis.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/MachineConstantPool.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Operator.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 using namespace llvm;
51 
52 namespace {
53 
54   // All possible address modes, plus some.
55   typedef struct Address {
56     enum {
57       RegBase,
58       FrameIndexBase
59     } BaseType;
60 
61     union {
62       unsigned Reg;
63       int FI;
64     } Base;
65 
66     int Offset;
67 
68     // Innocuous defaults for our address.
69     Address()
70      : BaseType(RegBase), Offset(0) {
71        Base.Reg = 0;
72      }
73   } Address;
74 
75 class ARMFastISel final : public FastISel {
76 
77   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
78   /// make the right decision when generating code for different targets.
79   const ARMSubtarget *Subtarget;
80   Module &M;
81   const TargetMachine &TM;
82   const TargetInstrInfo &TII;
83   const TargetLowering &TLI;
84   ARMFunctionInfo *AFI;
85 
86   // Convenience variables to avoid some queries.
87   bool isThumb2;
88   LLVMContext *Context;
89 
90   public:
91     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
92                          const TargetLibraryInfo *libInfo)
93         : FastISel(funcInfo, libInfo),
94           Subtarget(
95               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
96           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
97           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
98           TLI(*Subtarget->getTargetLowering()) {
99       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
100       isThumb2 = AFI->isThumbFunction();
101       Context = &funcInfo.Fn->getContext();
102     }
103 
104     // Code from FastISel.cpp.
105   private:
106     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
107                             const TargetRegisterClass *RC,
108                             unsigned Op0, bool Op0IsKill);
109     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
110                              const TargetRegisterClass *RC,
111                              unsigned Op0, bool Op0IsKill,
112                              unsigned Op1, bool Op1IsKill);
113     unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
114                               const TargetRegisterClass *RC,
115                               unsigned Op0, bool Op0IsKill,
116                               unsigned Op1, bool Op1IsKill,
117                               unsigned Op2, bool Op2IsKill);
118     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
119                              const TargetRegisterClass *RC,
120                              unsigned Op0, bool Op0IsKill,
121                              uint64_t Imm);
122     unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
123                               const TargetRegisterClass *RC,
124                               unsigned Op0, bool Op0IsKill,
125                               unsigned Op1, bool Op1IsKill,
126                               uint64_t Imm);
127     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
128                             const TargetRegisterClass *RC,
129                             uint64_t Imm);
130 
131     // Backend specific FastISel code.
132   private:
133     bool fastSelectInstruction(const Instruction *I) override;
134     unsigned fastMaterializeConstant(const Constant *C) override;
135     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
136     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
137                              const LoadInst *LI) override;
138     bool fastLowerArguments() override;
139   private:
140   #include "ARMGenFastISel.inc"
141 
142     // Instruction selection routines.
143   private:
144     bool SelectLoad(const Instruction *I);
145     bool SelectStore(const Instruction *I);
146     bool SelectBranch(const Instruction *I);
147     bool SelectIndirectBr(const Instruction *I);
148     bool SelectCmp(const Instruction *I);
149     bool SelectFPExt(const Instruction *I);
150     bool SelectFPTrunc(const Instruction *I);
151     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
152     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
153     bool SelectIToFP(const Instruction *I, bool isSigned);
154     bool SelectFPToI(const Instruction *I, bool isSigned);
155     bool SelectDiv(const Instruction *I, bool isSigned);
156     bool SelectRem(const Instruction *I, bool isSigned);
157     bool SelectCall(const Instruction *I, const char *IntrMemName);
158     bool SelectIntrinsicCall(const IntrinsicInst &I);
159     bool SelectSelect(const Instruction *I);
160     bool SelectRet(const Instruction *I);
161     bool SelectTrunc(const Instruction *I);
162     bool SelectIntExt(const Instruction *I);
163     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
164 
165     // Utility routines.
166   private:
167     bool isTypeLegal(Type *Ty, MVT &VT);
168     bool isLoadTypeLegal(Type *Ty, MVT &VT);
169     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
170                     bool isZExt);
171     bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
172                      unsigned Alignment = 0, bool isZExt = true,
173                      bool allocReg = true);
174     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
175                       unsigned Alignment = 0);
176     bool ARMComputeAddress(const Value *Obj, Address &Addr);
177     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
178     bool ARMIsMemCpySmall(uint64_t Len);
179     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
180                                unsigned Alignment);
181     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
182     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
183     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
184     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
185     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
186     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
187     unsigned ARMSelectCallOp(bool UseReg);
188     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
189 
190     const TargetLowering *getTargetLowering() { return &TLI; }
191 
192     // Call handling routines.
193   private:
194     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
195                                   bool Return,
196                                   bool isVarArg);
197     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
198                          SmallVectorImpl<unsigned> &ArgRegs,
199                          SmallVectorImpl<MVT> &ArgVTs,
200                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
201                          SmallVectorImpl<unsigned> &RegArgs,
202                          CallingConv::ID CC,
203                          unsigned &NumBytes,
204                          bool isVarArg);
205     unsigned getLibcallReg(const Twine &Name);
206     bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
207                     const Instruction *I, CallingConv::ID CC,
208                     unsigned &NumBytes, bool isVarArg);
209     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
210 
211     // OptionalDef handling routines.
212   private:
213     bool isARMNEONPred(const MachineInstr *MI);
214     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
215     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
216     void AddLoadStoreOperands(MVT VT, Address &Addr,
217                               const MachineInstrBuilder &MIB,
218                               unsigned Flags, bool useAM3);
219 };
220 
221 } // end anonymous namespace
222 
223 #include "ARMGenCallingConv.inc"
224 
225 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
226 // we don't care about implicit defs here, just places we'll need to add a
227 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
228 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
229   if (!MI->hasOptionalDef())
230     return false;
231 
232   // Look to see if our OptionalDef is defining CPSR or CCR.
233   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
234     const MachineOperand &MO = MI->getOperand(i);
235     if (!MO.isReg() || !MO.isDef()) continue;
236     if (MO.getReg() == ARM::CPSR)
237       *CPSR = true;
238   }
239   return true;
240 }
241 
242 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
243   const MCInstrDesc &MCID = MI->getDesc();
244 
245   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
246   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
247        AFI->isThumb2Function())
248     return MI->isPredicable();
249 
250   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
251     if (MCID.OpInfo[i].isPredicate())
252       return true;
253 
254   return false;
255 }
256 
257 // If the machine is predicable go ahead and add the predicate operands, if
258 // it needs default CC operands add those.
259 // TODO: If we want to support thumb1 then we'll need to deal with optional
260 // CPSR defs that need to be added before the remaining operands. See s_cc_out
261 // for descriptions why.
262 const MachineInstrBuilder &
263 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
264   MachineInstr *MI = &*MIB;
265 
266   // Do we use a predicate? or...
267   // Are we NEON in ARM mode and have a predicate operand? If so, I know
268   // we're not predicable but add it anyways.
269   if (isARMNEONPred(MI))
270     AddDefaultPred(MIB);
271 
272   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
273   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
274   bool CPSR = false;
275   if (DefinesOptionalPredicate(MI, &CPSR)) {
276     if (CPSR)
277       AddDefaultT1CC(MIB);
278     else
279       AddDefaultCC(MIB);
280   }
281   return MIB;
282 }
283 
284 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
285                                      const TargetRegisterClass *RC,
286                                      unsigned Op0, bool Op0IsKill) {
287   unsigned ResultReg = createResultReg(RC);
288   const MCInstrDesc &II = TII.get(MachineInstOpcode);
289 
290   // Make sure the input operand is sufficiently constrained to be legal
291   // for this instruction.
292   Op0 = constrainOperandRegClass(II, Op0, 1);
293   if (II.getNumDefs() >= 1) {
294     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
295                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
296   } else {
297     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
298                    .addReg(Op0, Op0IsKill * RegState::Kill));
299     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
300                    TII.get(TargetOpcode::COPY), ResultReg)
301                    .addReg(II.ImplicitDefs[0]));
302   }
303   return ResultReg;
304 }
305 
306 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
307                                       const TargetRegisterClass *RC,
308                                       unsigned Op0, bool Op0IsKill,
309                                       unsigned Op1, bool Op1IsKill) {
310   unsigned ResultReg = createResultReg(RC);
311   const MCInstrDesc &II = TII.get(MachineInstOpcode);
312 
313   // Make sure the input operands are sufficiently constrained to be legal
314   // for this instruction.
315   Op0 = constrainOperandRegClass(II, Op0, 1);
316   Op1 = constrainOperandRegClass(II, Op1, 2);
317 
318   if (II.getNumDefs() >= 1) {
319     AddOptionalDefs(
320         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
321             .addReg(Op0, Op0IsKill * RegState::Kill)
322             .addReg(Op1, Op1IsKill * RegState::Kill));
323   } else {
324     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
325                    .addReg(Op0, Op0IsKill * RegState::Kill)
326                    .addReg(Op1, Op1IsKill * RegState::Kill));
327     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
328                            TII.get(TargetOpcode::COPY), ResultReg)
329                    .addReg(II.ImplicitDefs[0]));
330   }
331   return ResultReg;
332 }
333 
334 unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
335                                        const TargetRegisterClass *RC,
336                                        unsigned Op0, bool Op0IsKill,
337                                        unsigned Op1, bool Op1IsKill,
338                                        unsigned Op2, bool Op2IsKill) {
339   unsigned ResultReg = createResultReg(RC);
340   const MCInstrDesc &II = TII.get(MachineInstOpcode);
341 
342   // Make sure the input operands are sufficiently constrained to be legal
343   // for this instruction.
344   Op0 = constrainOperandRegClass(II, Op0, 1);
345   Op1 = constrainOperandRegClass(II, Op1, 2);
346   Op2 = constrainOperandRegClass(II, Op1, 3);
347 
348   if (II.getNumDefs() >= 1) {
349     AddOptionalDefs(
350         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
351             .addReg(Op0, Op0IsKill * RegState::Kill)
352             .addReg(Op1, Op1IsKill * RegState::Kill)
353             .addReg(Op2, Op2IsKill * RegState::Kill));
354   } else {
355     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
356                    .addReg(Op0, Op0IsKill * RegState::Kill)
357                    .addReg(Op1, Op1IsKill * RegState::Kill)
358                    .addReg(Op2, Op2IsKill * RegState::Kill));
359     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
360                            TII.get(TargetOpcode::COPY), ResultReg)
361                    .addReg(II.ImplicitDefs[0]));
362   }
363   return ResultReg;
364 }
365 
366 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
367                                       const TargetRegisterClass *RC,
368                                       unsigned Op0, bool Op0IsKill,
369                                       uint64_t Imm) {
370   unsigned ResultReg = createResultReg(RC);
371   const MCInstrDesc &II = TII.get(MachineInstOpcode);
372 
373   // Make sure the input operand is sufficiently constrained to be legal
374   // for this instruction.
375   Op0 = constrainOperandRegClass(II, Op0, 1);
376   if (II.getNumDefs() >= 1) {
377     AddOptionalDefs(
378         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
379             .addReg(Op0, Op0IsKill * RegState::Kill)
380             .addImm(Imm));
381   } else {
382     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
383                    .addReg(Op0, Op0IsKill * RegState::Kill)
384                    .addImm(Imm));
385     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
386                            TII.get(TargetOpcode::COPY), ResultReg)
387                    .addReg(II.ImplicitDefs[0]));
388   }
389   return ResultReg;
390 }
391 
392 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
393                                        const TargetRegisterClass *RC,
394                                        unsigned Op0, bool Op0IsKill,
395                                        unsigned Op1, bool Op1IsKill,
396                                        uint64_t Imm) {
397   unsigned ResultReg = createResultReg(RC);
398   const MCInstrDesc &II = TII.get(MachineInstOpcode);
399 
400   // Make sure the input operands are sufficiently constrained to be legal
401   // for this instruction.
402   Op0 = constrainOperandRegClass(II, Op0, 1);
403   Op1 = constrainOperandRegClass(II, Op1, 2);
404   if (II.getNumDefs() >= 1) {
405     AddOptionalDefs(
406         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
407             .addReg(Op0, Op0IsKill * RegState::Kill)
408             .addReg(Op1, Op1IsKill * RegState::Kill)
409             .addImm(Imm));
410   } else {
411     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
412                    .addReg(Op0, Op0IsKill * RegState::Kill)
413                    .addReg(Op1, Op1IsKill * RegState::Kill)
414                    .addImm(Imm));
415     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
416                            TII.get(TargetOpcode::COPY), ResultReg)
417                    .addReg(II.ImplicitDefs[0]));
418   }
419   return ResultReg;
420 }
421 
422 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
423                                      const TargetRegisterClass *RC,
424                                      uint64_t Imm) {
425   unsigned ResultReg = createResultReg(RC);
426   const MCInstrDesc &II = TII.get(MachineInstOpcode);
427 
428   if (II.getNumDefs() >= 1) {
429     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
430                             ResultReg).addImm(Imm));
431   } else {
432     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
433                    .addImm(Imm));
434     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
435                            TII.get(TargetOpcode::COPY), ResultReg)
436                    .addReg(II.ImplicitDefs[0]));
437   }
438   return ResultReg;
439 }
440 
441 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
442 // checks from the various callers.
443 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
444   if (VT == MVT::f64) return 0;
445 
446   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
447   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
448                           TII.get(ARM::VMOVSR), MoveReg)
449                   .addReg(SrcReg));
450   return MoveReg;
451 }
452 
453 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
454   if (VT == MVT::i64) return 0;
455 
456   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
457   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
458                           TII.get(ARM::VMOVRS), MoveReg)
459                   .addReg(SrcReg));
460   return MoveReg;
461 }
462 
463 // For double width floating point we need to materialize two constants
464 // (the high and the low) into integer registers then use a move to get
465 // the combined constant into an FP reg.
466 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
467   const APFloat Val = CFP->getValueAPF();
468   bool is64bit = VT == MVT::f64;
469 
470   // This checks to see if we can use VFP3 instructions to materialize
471   // a constant, otherwise we have to go through the constant pool.
472   if (TLI.isFPImmLegal(Val, VT)) {
473     int Imm;
474     unsigned Opc;
475     if (is64bit) {
476       Imm = ARM_AM::getFP64Imm(Val);
477       Opc = ARM::FCONSTD;
478     } else {
479       Imm = ARM_AM::getFP32Imm(Val);
480       Opc = ARM::FCONSTS;
481     }
482     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
483     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
484                             TII.get(Opc), DestReg).addImm(Imm));
485     return DestReg;
486   }
487 
488   // Require VFP2 for loading fp constants.
489   if (!Subtarget->hasVFP2()) return false;
490 
491   // MachineConstantPool wants an explicit alignment.
492   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
493   if (Align == 0) {
494     // TODO: Figure out if this is correct.
495     Align = DL.getTypeAllocSize(CFP->getType());
496   }
497   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
498   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
499   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
500 
501   // The extra reg is for addrmode5.
502   AddOptionalDefs(
503       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
504           .addConstantPoolIndex(Idx)
505           .addReg(0));
506   return DestReg;
507 }
508 
509 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
510 
511   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
512     return 0;
513 
514   // If we can do this in a single instruction without a constant pool entry
515   // do so now.
516   const ConstantInt *CI = cast<ConstantInt>(C);
517   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
518     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
519     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
520       &ARM::GPRRegClass;
521     unsigned ImmReg = createResultReg(RC);
522     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
523                             TII.get(Opc), ImmReg)
524                     .addImm(CI->getZExtValue()));
525     return ImmReg;
526   }
527 
528   // Use MVN to emit negative constants.
529   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
530     unsigned Imm = (unsigned)~(CI->getSExtValue());
531     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
532       (ARM_AM::getSOImmVal(Imm) != -1);
533     if (UseImm) {
534       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
535       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
536                                                  &ARM::GPRRegClass;
537       unsigned ImmReg = createResultReg(RC);
538       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
539                               TII.get(Opc), ImmReg)
540                       .addImm(Imm));
541       return ImmReg;
542     }
543   }
544 
545   unsigned ResultReg = 0;
546   if (Subtarget->useMovt(*FuncInfo.MF))
547     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
548 
549   if (ResultReg)
550     return ResultReg;
551 
552   // Load from constant pool.  For now 32-bit only.
553   if (VT != MVT::i32)
554     return 0;
555 
556   // MachineConstantPool wants an explicit alignment.
557   unsigned Align = DL.getPrefTypeAlignment(C->getType());
558   if (Align == 0) {
559     // TODO: Figure out if this is correct.
560     Align = DL.getTypeAllocSize(C->getType());
561   }
562   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
563   ResultReg = createResultReg(TLI.getRegClassFor(VT));
564   if (isThumb2)
565     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
566                             TII.get(ARM::t2LDRpci), ResultReg)
567                       .addConstantPoolIndex(Idx));
568   else {
569     // The extra immediate is for addrmode2.
570     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
571     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
572                             TII.get(ARM::LDRcp), ResultReg)
573                       .addConstantPoolIndex(Idx)
574                       .addImm(0));
575   }
576   return ResultReg;
577 }
578 
579 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
580   // For now 32-bit only.
581   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
582 
583   Reloc::Model RelocM = TM.getRelocationModel();
584   bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
585   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
586                                            : &ARM::GPRRegClass;
587   unsigned DestReg = createResultReg(RC);
588 
589   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
590   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
591   bool IsThreadLocal = GVar && GVar->isThreadLocal();
592   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
593 
594   // Use movw+movt when possible, it avoids constant pool entries.
595   // Non-darwin targets only support static movt relocations in FastISel.
596   if (Subtarget->useMovt(*FuncInfo.MF) &&
597       (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) {
598     unsigned Opc;
599     unsigned char TF = 0;
600     if (Subtarget->isTargetMachO())
601       TF = ARMII::MO_NONLAZY;
602 
603     switch (RelocM) {
604     case Reloc::PIC_:
605       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
606       break;
607     default:
608       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
609       break;
610     }
611     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
612                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
613   } else {
614     // MachineConstantPool wants an explicit alignment.
615     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
616     if (Align == 0) {
617       // TODO: Figure out if this is correct.
618       Align = DL.getTypeAllocSize(GV->getType());
619     }
620 
621     if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
622       return ARMLowerPICELF(GV, Align, VT);
623 
624     // Grab index.
625     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
626       (Subtarget->isThumb() ? 4 : 8);
627     unsigned Id = AFI->createPICLabelUId();
628     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
629                                                                 ARMCP::CPValue,
630                                                                 PCAdj);
631     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
632 
633     // Load value.
634     MachineInstrBuilder MIB;
635     if (isThumb2) {
636       unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
637       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
638                     DestReg).addConstantPoolIndex(Idx);
639       if (RelocM == Reloc::PIC_)
640         MIB.addImm(Id);
641       AddOptionalDefs(MIB);
642     } else {
643       // The extra immediate is for addrmode2.
644       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
645       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
646                     TII.get(ARM::LDRcp), DestReg)
647                 .addConstantPoolIndex(Idx)
648                 .addImm(0);
649       AddOptionalDefs(MIB);
650 
651       if (RelocM == Reloc::PIC_) {
652         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
653         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
654 
655         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
656                                           DbgLoc, TII.get(Opc), NewDestReg)
657                                   .addReg(DestReg)
658                                   .addImm(Id);
659         AddOptionalDefs(MIB);
660         return NewDestReg;
661       }
662     }
663   }
664 
665   if (IsIndirect) {
666     MachineInstrBuilder MIB;
667     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
668     if (isThumb2)
669       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
670                     TII.get(ARM::t2LDRi12), NewDestReg)
671             .addReg(DestReg)
672             .addImm(0);
673     else
674       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
675                     TII.get(ARM::LDRi12), NewDestReg)
676                 .addReg(DestReg)
677                 .addImm(0);
678     DestReg = NewDestReg;
679     AddOptionalDefs(MIB);
680   }
681 
682   return DestReg;
683 }
684 
685 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
686   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
687 
688   // Only handle simple types.
689   if (!CEVT.isSimple()) return 0;
690   MVT VT = CEVT.getSimpleVT();
691 
692   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
693     return ARMMaterializeFP(CFP, VT);
694   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
695     return ARMMaterializeGV(GV, VT);
696   else if (isa<ConstantInt>(C))
697     return ARMMaterializeInt(C, VT);
698 
699   return 0;
700 }
701 
702 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
703 
704 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
705   // Don't handle dynamic allocas.
706   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
707 
708   MVT VT;
709   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
710 
711   DenseMap<const AllocaInst*, int>::iterator SI =
712     FuncInfo.StaticAllocaMap.find(AI);
713 
714   // This will get lowered later into the correct offsets and registers
715   // via rewriteXFrameIndex.
716   if (SI != FuncInfo.StaticAllocaMap.end()) {
717     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
718     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
719     unsigned ResultReg = createResultReg(RC);
720     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
721 
722     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
723                             TII.get(Opc), ResultReg)
724                             .addFrameIndex(SI->second)
725                             .addImm(0));
726     return ResultReg;
727   }
728 
729   return 0;
730 }
731 
732 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
733   EVT evt = TLI.getValueType(DL, Ty, true);
734 
735   // Only handle simple types.
736   if (evt == MVT::Other || !evt.isSimple()) return false;
737   VT = evt.getSimpleVT();
738 
739   // Handle all legal types, i.e. a register that will directly hold this
740   // value.
741   return TLI.isTypeLegal(VT);
742 }
743 
744 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
745   if (isTypeLegal(Ty, VT)) return true;
746 
747   // If this is a type than can be sign or zero-extended to a basic operation
748   // go ahead and accept it now.
749   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
750     return true;
751 
752   return false;
753 }
754 
755 // Computes the address to get to an object.
756 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
757   // Some boilerplate from the X86 FastISel.
758   const User *U = nullptr;
759   unsigned Opcode = Instruction::UserOp1;
760   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
761     // Don't walk into other basic blocks unless the object is an alloca from
762     // another block, otherwise it may not have a virtual register assigned.
763     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
764         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
765       Opcode = I->getOpcode();
766       U = I;
767     }
768   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
769     Opcode = C->getOpcode();
770     U = C;
771   }
772 
773   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
774     if (Ty->getAddressSpace() > 255)
775       // Fast instruction selection doesn't support the special
776       // address spaces.
777       return false;
778 
779   switch (Opcode) {
780     default:
781     break;
782     case Instruction::BitCast:
783       // Look through bitcasts.
784       return ARMComputeAddress(U->getOperand(0), Addr);
785     case Instruction::IntToPtr:
786       // Look past no-op inttoptrs.
787       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
788           TLI.getPointerTy(DL))
789         return ARMComputeAddress(U->getOperand(0), Addr);
790       break;
791     case Instruction::PtrToInt:
792       // Look past no-op ptrtoints.
793       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
794         return ARMComputeAddress(U->getOperand(0), Addr);
795       break;
796     case Instruction::GetElementPtr: {
797       Address SavedAddr = Addr;
798       int TmpOffset = Addr.Offset;
799 
800       // Iterate through the GEP folding the constants into offsets where
801       // we can.
802       gep_type_iterator GTI = gep_type_begin(U);
803       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
804            i != e; ++i, ++GTI) {
805         const Value *Op = *i;
806         if (StructType *STy = dyn_cast<StructType>(*GTI)) {
807           const StructLayout *SL = DL.getStructLayout(STy);
808           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
809           TmpOffset += SL->getElementOffset(Idx);
810         } else {
811           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
812           for (;;) {
813             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
814               // Constant-offset addressing.
815               TmpOffset += CI->getSExtValue() * S;
816               break;
817             }
818             if (canFoldAddIntoGEP(U, Op)) {
819               // A compatible add with a constant operand. Fold the constant.
820               ConstantInt *CI =
821               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
822               TmpOffset += CI->getSExtValue() * S;
823               // Iterate on the other operand.
824               Op = cast<AddOperator>(Op)->getOperand(0);
825               continue;
826             }
827             // Unsupported
828             goto unsupported_gep;
829           }
830         }
831       }
832 
833       // Try to grab the base operand now.
834       Addr.Offset = TmpOffset;
835       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
836 
837       // We failed, restore everything and try the other options.
838       Addr = SavedAddr;
839 
840       unsupported_gep:
841       break;
842     }
843     case Instruction::Alloca: {
844       const AllocaInst *AI = cast<AllocaInst>(Obj);
845       DenseMap<const AllocaInst*, int>::iterator SI =
846         FuncInfo.StaticAllocaMap.find(AI);
847       if (SI != FuncInfo.StaticAllocaMap.end()) {
848         Addr.BaseType = Address::FrameIndexBase;
849         Addr.Base.FI = SI->second;
850         return true;
851       }
852       break;
853     }
854   }
855 
856   // Try to get this in a register if nothing else has worked.
857   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
858   return Addr.Base.Reg != 0;
859 }
860 
861 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
862   bool needsLowering = false;
863   switch (VT.SimpleTy) {
864     default: llvm_unreachable("Unhandled load/store type!");
865     case MVT::i1:
866     case MVT::i8:
867     case MVT::i16:
868     case MVT::i32:
869       if (!useAM3) {
870         // Integer loads/stores handle 12-bit offsets.
871         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
872         // Handle negative offsets.
873         if (needsLowering && isThumb2)
874           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
875                             Addr.Offset > -256);
876       } else {
877         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
878         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
879       }
880       break;
881     case MVT::f32:
882     case MVT::f64:
883       // Floating point operands handle 8-bit offsets.
884       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
885       break;
886   }
887 
888   // If this is a stack pointer and the offset needs to be simplified then
889   // put the alloca address into a register, set the base type back to
890   // register and continue. This should almost never happen.
891   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
892     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
893                                              : &ARM::GPRRegClass;
894     unsigned ResultReg = createResultReg(RC);
895     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
896     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
897                             TII.get(Opc), ResultReg)
898                             .addFrameIndex(Addr.Base.FI)
899                             .addImm(0));
900     Addr.Base.Reg = ResultReg;
901     Addr.BaseType = Address::RegBase;
902   }
903 
904   // Since the offset is too large for the load/store instruction
905   // get the reg+offset into a register.
906   if (needsLowering) {
907     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
908                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
909     Addr.Offset = 0;
910   }
911 }
912 
913 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
914                                        const MachineInstrBuilder &MIB,
915                                        unsigned Flags, bool useAM3) {
916   // addrmode5 output depends on the selection dag addressing dividing the
917   // offset by 4 that it then later multiplies. Do this here as well.
918   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
919     Addr.Offset /= 4;
920 
921   // Frame base works a bit differently. Handle it separately.
922   if (Addr.BaseType == Address::FrameIndexBase) {
923     int FI = Addr.Base.FI;
924     int Offset = Addr.Offset;
925     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
926         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
927         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
928     // Now add the rest of the operands.
929     MIB.addFrameIndex(FI);
930 
931     // ARM halfword load/stores and signed byte loads need an additional
932     // operand.
933     if (useAM3) {
934       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
935       MIB.addReg(0);
936       MIB.addImm(Imm);
937     } else {
938       MIB.addImm(Addr.Offset);
939     }
940     MIB.addMemOperand(MMO);
941   } else {
942     // Now add the rest of the operands.
943     MIB.addReg(Addr.Base.Reg);
944 
945     // ARM halfword load/stores and signed byte loads need an additional
946     // operand.
947     if (useAM3) {
948       signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
949       MIB.addReg(0);
950       MIB.addImm(Imm);
951     } else {
952       MIB.addImm(Addr.Offset);
953     }
954   }
955   AddOptionalDefs(MIB);
956 }
957 
958 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
959                               unsigned Alignment, bool isZExt, bool allocReg) {
960   unsigned Opc;
961   bool useAM3 = false;
962   bool needVMOV = false;
963   const TargetRegisterClass *RC;
964   switch (VT.SimpleTy) {
965     // This is mostly going to be Neon/vector support.
966     default: return false;
967     case MVT::i1:
968     case MVT::i8:
969       if (isThumb2) {
970         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
971           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
972         else
973           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
974       } else {
975         if (isZExt) {
976           Opc = ARM::LDRBi12;
977         } else {
978           Opc = ARM::LDRSB;
979           useAM3 = true;
980         }
981       }
982       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
983       break;
984     case MVT::i16:
985       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
986         return false;
987 
988       if (isThumb2) {
989         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
990           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
991         else
992           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
993       } else {
994         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
995         useAM3 = true;
996       }
997       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
998       break;
999     case MVT::i32:
1000       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1001         return false;
1002 
1003       if (isThumb2) {
1004         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1005           Opc = ARM::t2LDRi8;
1006         else
1007           Opc = ARM::t2LDRi12;
1008       } else {
1009         Opc = ARM::LDRi12;
1010       }
1011       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1012       break;
1013     case MVT::f32:
1014       if (!Subtarget->hasVFP2()) return false;
1015       // Unaligned loads need special handling. Floats require word-alignment.
1016       if (Alignment && Alignment < 4) {
1017         needVMOV = true;
1018         VT = MVT::i32;
1019         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
1020         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
1021       } else {
1022         Opc = ARM::VLDRS;
1023         RC = TLI.getRegClassFor(VT);
1024       }
1025       break;
1026     case MVT::f64:
1027       if (!Subtarget->hasVFP2()) return false;
1028       // FIXME: Unaligned loads need special handling.  Doublewords require
1029       // word-alignment.
1030       if (Alignment && Alignment < 4)
1031         return false;
1032 
1033       Opc = ARM::VLDRD;
1034       RC = TLI.getRegClassFor(VT);
1035       break;
1036   }
1037   // Simplify this down to something we can handle.
1038   ARMSimplifyAddress(Addr, VT, useAM3);
1039 
1040   // Create the base instruction, then add the operands.
1041   if (allocReg)
1042     ResultReg = createResultReg(RC);
1043   assert (ResultReg > 255 && "Expected an allocated virtual register.");
1044   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1045                                     TII.get(Opc), ResultReg);
1046   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1047 
1048   // If we had an unaligned load of a float we've converted it to an regular
1049   // load.  Now we must move from the GRP to the FP register.
1050   if (needVMOV) {
1051     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1052     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1053                             TII.get(ARM::VMOVSR), MoveReg)
1054                     .addReg(ResultReg));
1055     ResultReg = MoveReg;
1056   }
1057   return true;
1058 }
1059 
1060 bool ARMFastISel::SelectLoad(const Instruction *I) {
1061   // Atomic loads need special handling.
1062   if (cast<LoadInst>(I)->isAtomic())
1063     return false;
1064 
1065   const Value *SV = I->getOperand(0);
1066   if (TLI.supportSwiftError()) {
1067     // Swifterror values can come from either a function parameter with
1068     // swifterror attribute or an alloca with swifterror attribute.
1069     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1070       if (Arg->hasSwiftErrorAttr())
1071         return false;
1072     }
1073 
1074     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1075       if (Alloca->isSwiftError())
1076         return false;
1077     }
1078   }
1079 
1080   // Verify we have a legal type before going any further.
1081   MVT VT;
1082   if (!isLoadTypeLegal(I->getType(), VT))
1083     return false;
1084 
1085   // See if we can handle this address.
1086   Address Addr;
1087   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1088 
1089   unsigned ResultReg;
1090   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1091     return false;
1092   updateValueMap(I, ResultReg);
1093   return true;
1094 }
1095 
1096 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1097                                unsigned Alignment) {
1098   unsigned StrOpc;
1099   bool useAM3 = false;
1100   switch (VT.SimpleTy) {
1101     // This is mostly going to be Neon/vector support.
1102     default: return false;
1103     case MVT::i1: {
1104       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1105                                               : &ARM::GPRRegClass);
1106       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1107       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1108       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1109                               TII.get(Opc), Res)
1110                       .addReg(SrcReg).addImm(1));
1111       SrcReg = Res;
1112     } // Fallthrough here.
1113     case MVT::i8:
1114       if (isThumb2) {
1115         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1116           StrOpc = ARM::t2STRBi8;
1117         else
1118           StrOpc = ARM::t2STRBi12;
1119       } else {
1120         StrOpc = ARM::STRBi12;
1121       }
1122       break;
1123     case MVT::i16:
1124       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1125         return false;
1126 
1127       if (isThumb2) {
1128         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1129           StrOpc = ARM::t2STRHi8;
1130         else
1131           StrOpc = ARM::t2STRHi12;
1132       } else {
1133         StrOpc = ARM::STRH;
1134         useAM3 = true;
1135       }
1136       break;
1137     case MVT::i32:
1138       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1139         return false;
1140 
1141       if (isThumb2) {
1142         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1143           StrOpc = ARM::t2STRi8;
1144         else
1145           StrOpc = ARM::t2STRi12;
1146       } else {
1147         StrOpc = ARM::STRi12;
1148       }
1149       break;
1150     case MVT::f32:
1151       if (!Subtarget->hasVFP2()) return false;
1152       // Unaligned stores need special handling. Floats require word-alignment.
1153       if (Alignment && Alignment < 4) {
1154         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1155         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1156                                 TII.get(ARM::VMOVRS), MoveReg)
1157                         .addReg(SrcReg));
1158         SrcReg = MoveReg;
1159         VT = MVT::i32;
1160         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1161       } else {
1162         StrOpc = ARM::VSTRS;
1163       }
1164       break;
1165     case MVT::f64:
1166       if (!Subtarget->hasVFP2()) return false;
1167       // FIXME: Unaligned stores need special handling.  Doublewords require
1168       // word-alignment.
1169       if (Alignment && Alignment < 4)
1170           return false;
1171 
1172       StrOpc = ARM::VSTRD;
1173       break;
1174   }
1175   // Simplify this down to something we can handle.
1176   ARMSimplifyAddress(Addr, VT, useAM3);
1177 
1178   // Create the base instruction, then add the operands.
1179   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1180   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1181                                     TII.get(StrOpc))
1182                             .addReg(SrcReg);
1183   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1184   return true;
1185 }
1186 
1187 bool ARMFastISel::SelectStore(const Instruction *I) {
1188   Value *Op0 = I->getOperand(0);
1189   unsigned SrcReg = 0;
1190 
1191   // Atomic stores need special handling.
1192   if (cast<StoreInst>(I)->isAtomic())
1193     return false;
1194 
1195   const Value *PtrV = I->getOperand(1);
1196   if (TLI.supportSwiftError()) {
1197     // Swifterror values can come from either a function parameter with
1198     // swifterror attribute or an alloca with swifterror attribute.
1199     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1200       if (Arg->hasSwiftErrorAttr())
1201         return false;
1202     }
1203 
1204     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1205       if (Alloca->isSwiftError())
1206         return false;
1207     }
1208   }
1209 
1210   // Verify we have a legal type before going any further.
1211   MVT VT;
1212   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1213     return false;
1214 
1215   // Get the value to be stored into a register.
1216   SrcReg = getRegForValue(Op0);
1217   if (SrcReg == 0) return false;
1218 
1219   // See if we can handle this address.
1220   Address Addr;
1221   if (!ARMComputeAddress(I->getOperand(1), Addr))
1222     return false;
1223 
1224   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1225     return false;
1226   return true;
1227 }
1228 
1229 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1230   switch (Pred) {
1231     // Needs two compares...
1232     case CmpInst::FCMP_ONE:
1233     case CmpInst::FCMP_UEQ:
1234     default:
1235       // AL is our "false" for now. The other two need more compares.
1236       return ARMCC::AL;
1237     case CmpInst::ICMP_EQ:
1238     case CmpInst::FCMP_OEQ:
1239       return ARMCC::EQ;
1240     case CmpInst::ICMP_SGT:
1241     case CmpInst::FCMP_OGT:
1242       return ARMCC::GT;
1243     case CmpInst::ICMP_SGE:
1244     case CmpInst::FCMP_OGE:
1245       return ARMCC::GE;
1246     case CmpInst::ICMP_UGT:
1247     case CmpInst::FCMP_UGT:
1248       return ARMCC::HI;
1249     case CmpInst::FCMP_OLT:
1250       return ARMCC::MI;
1251     case CmpInst::ICMP_ULE:
1252     case CmpInst::FCMP_OLE:
1253       return ARMCC::LS;
1254     case CmpInst::FCMP_ORD:
1255       return ARMCC::VC;
1256     case CmpInst::FCMP_UNO:
1257       return ARMCC::VS;
1258     case CmpInst::FCMP_UGE:
1259       return ARMCC::PL;
1260     case CmpInst::ICMP_SLT:
1261     case CmpInst::FCMP_ULT:
1262       return ARMCC::LT;
1263     case CmpInst::ICMP_SLE:
1264     case CmpInst::FCMP_ULE:
1265       return ARMCC::LE;
1266     case CmpInst::FCMP_UNE:
1267     case CmpInst::ICMP_NE:
1268       return ARMCC::NE;
1269     case CmpInst::ICMP_UGE:
1270       return ARMCC::HS;
1271     case CmpInst::ICMP_ULT:
1272       return ARMCC::LO;
1273   }
1274 }
1275 
1276 bool ARMFastISel::SelectBranch(const Instruction *I) {
1277   const BranchInst *BI = cast<BranchInst>(I);
1278   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1279   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1280 
1281   // Simple branch support.
1282 
1283   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1284   // behavior.
1285   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1286     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1287 
1288       // Get the compare predicate.
1289       // Try to take advantage of fallthrough opportunities.
1290       CmpInst::Predicate Predicate = CI->getPredicate();
1291       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1292         std::swap(TBB, FBB);
1293         Predicate = CmpInst::getInversePredicate(Predicate);
1294       }
1295 
1296       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1297 
1298       // We may not handle every CC for now.
1299       if (ARMPred == ARMCC::AL) return false;
1300 
1301       // Emit the compare.
1302       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1303         return false;
1304 
1305       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1306       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1307       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1308       finishCondBranch(BI->getParent(), TBB, FBB);
1309       return true;
1310     }
1311   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1312     MVT SourceVT;
1313     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1314         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1315       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1316       unsigned OpReg = getRegForValue(TI->getOperand(0));
1317       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1318       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1319                               TII.get(TstOpc))
1320                       .addReg(OpReg).addImm(1));
1321 
1322       unsigned CCMode = ARMCC::NE;
1323       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1324         std::swap(TBB, FBB);
1325         CCMode = ARMCC::EQ;
1326       }
1327 
1328       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1329       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1330       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1331 
1332       finishCondBranch(BI->getParent(), TBB, FBB);
1333       return true;
1334     }
1335   } else if (const ConstantInt *CI =
1336              dyn_cast<ConstantInt>(BI->getCondition())) {
1337     uint64_t Imm = CI->getZExtValue();
1338     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1339     fastEmitBranch(Target, DbgLoc);
1340     return true;
1341   }
1342 
1343   unsigned CmpReg = getRegForValue(BI->getCondition());
1344   if (CmpReg == 0) return false;
1345 
1346   // We've been divorced from our compare!  Our block was split, and
1347   // now our compare lives in a predecessor block.  We musn't
1348   // re-compare here, as the children of the compare aren't guaranteed
1349   // live across the block boundary (we *could* check for this).
1350   // Regardless, the compare has been done in the predecessor block,
1351   // and it left a value for us in a virtual register.  Ergo, we test
1352   // the one-bit value left in the virtual register.
1353   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1354   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1355   AddOptionalDefs(
1356       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1357           .addReg(CmpReg)
1358           .addImm(1));
1359 
1360   unsigned CCMode = ARMCC::NE;
1361   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1362     std::swap(TBB, FBB);
1363     CCMode = ARMCC::EQ;
1364   }
1365 
1366   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1367   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1368                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1369   finishCondBranch(BI->getParent(), TBB, FBB);
1370   return true;
1371 }
1372 
1373 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1374   unsigned AddrReg = getRegForValue(I->getOperand(0));
1375   if (AddrReg == 0) return false;
1376 
1377   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1378   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1379                           TII.get(Opc)).addReg(AddrReg));
1380 
1381   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1382   for (const BasicBlock *SuccBB : IB->successors())
1383     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1384 
1385   return true;
1386 }
1387 
1388 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1389                              bool isZExt) {
1390   Type *Ty = Src1Value->getType();
1391   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1392   if (!SrcEVT.isSimple()) return false;
1393   MVT SrcVT = SrcEVT.getSimpleVT();
1394 
1395   bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
1396   if (isFloat && !Subtarget->hasVFP2())
1397     return false;
1398 
1399   // Check to see if the 2nd operand is a constant that we can encode directly
1400   // in the compare.
1401   int Imm = 0;
1402   bool UseImm = false;
1403   bool isNegativeImm = false;
1404   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1405   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1406   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1407     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1408         SrcVT == MVT::i1) {
1409       const APInt &CIVal = ConstInt->getValue();
1410       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1411       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1412       // then a cmn, because there is no way to represent 2147483648 as a
1413       // signed 32-bit int.
1414       if (Imm < 0 && Imm != (int)0x80000000) {
1415         isNegativeImm = true;
1416         Imm = -Imm;
1417       }
1418       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1419         (ARM_AM::getSOImmVal(Imm) != -1);
1420     }
1421   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1422     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1423       if (ConstFP->isZero() && !ConstFP->isNegative())
1424         UseImm = true;
1425   }
1426 
1427   unsigned CmpOpc;
1428   bool isICmp = true;
1429   bool needsExt = false;
1430   switch (SrcVT.SimpleTy) {
1431     default: return false;
1432     // TODO: Verify compares.
1433     case MVT::f32:
1434       isICmp = false;
1435       CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
1436       break;
1437     case MVT::f64:
1438       isICmp = false;
1439       CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
1440       break;
1441     case MVT::i1:
1442     case MVT::i8:
1443     case MVT::i16:
1444       needsExt = true;
1445     // Intentional fall-through.
1446     case MVT::i32:
1447       if (isThumb2) {
1448         if (!UseImm)
1449           CmpOpc = ARM::t2CMPrr;
1450         else
1451           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1452       } else {
1453         if (!UseImm)
1454           CmpOpc = ARM::CMPrr;
1455         else
1456           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1457       }
1458       break;
1459   }
1460 
1461   unsigned SrcReg1 = getRegForValue(Src1Value);
1462   if (SrcReg1 == 0) return false;
1463 
1464   unsigned SrcReg2 = 0;
1465   if (!UseImm) {
1466     SrcReg2 = getRegForValue(Src2Value);
1467     if (SrcReg2 == 0) return false;
1468   }
1469 
1470   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1471   if (needsExt) {
1472     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1473     if (SrcReg1 == 0) return false;
1474     if (!UseImm) {
1475       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1476       if (SrcReg2 == 0) return false;
1477     }
1478   }
1479 
1480   const MCInstrDesc &II = TII.get(CmpOpc);
1481   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1482   if (!UseImm) {
1483     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1484     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1485                     .addReg(SrcReg1).addReg(SrcReg2));
1486   } else {
1487     MachineInstrBuilder MIB;
1488     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1489       .addReg(SrcReg1);
1490 
1491     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1492     if (isICmp)
1493       MIB.addImm(Imm);
1494     AddOptionalDefs(MIB);
1495   }
1496 
1497   // For floating point we need to move the result to a comparison register
1498   // that we can then use for branches.
1499   if (Ty->isFloatTy() || Ty->isDoubleTy())
1500     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1501                             TII.get(ARM::FMSTAT)));
1502   return true;
1503 }
1504 
1505 bool ARMFastISel::SelectCmp(const Instruction *I) {
1506   const CmpInst *CI = cast<CmpInst>(I);
1507 
1508   // Get the compare predicate.
1509   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1510 
1511   // We may not handle every CC for now.
1512   if (ARMPred == ARMCC::AL) return false;
1513 
1514   // Emit the compare.
1515   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1516     return false;
1517 
1518   // Now set a register based on the comparison. Explicitly set the predicates
1519   // here.
1520   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1521   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1522                                            : &ARM::GPRRegClass;
1523   unsigned DestReg = createResultReg(RC);
1524   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1525   unsigned ZeroReg = fastMaterializeConstant(Zero);
1526   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1527   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1528           .addReg(ZeroReg).addImm(1)
1529           .addImm(ARMPred).addReg(ARM::CPSR);
1530 
1531   updateValueMap(I, DestReg);
1532   return true;
1533 }
1534 
1535 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1536   // Make sure we have VFP and that we're extending float to double.
1537   if (!Subtarget->hasVFP2()) return false;
1538 
1539   Value *V = I->getOperand(0);
1540   if (!I->getType()->isDoubleTy() ||
1541       !V->getType()->isFloatTy()) return false;
1542 
1543   unsigned Op = getRegForValue(V);
1544   if (Op == 0) return false;
1545 
1546   unsigned Result = createResultReg(&ARM::DPRRegClass);
1547   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1548                           TII.get(ARM::VCVTDS), Result)
1549                   .addReg(Op));
1550   updateValueMap(I, Result);
1551   return true;
1552 }
1553 
1554 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1555   // Make sure we have VFP and that we're truncating double to float.
1556   if (!Subtarget->hasVFP2()) return false;
1557 
1558   Value *V = I->getOperand(0);
1559   if (!(I->getType()->isFloatTy() &&
1560         V->getType()->isDoubleTy())) return false;
1561 
1562   unsigned Op = getRegForValue(V);
1563   if (Op == 0) return false;
1564 
1565   unsigned Result = createResultReg(&ARM::SPRRegClass);
1566   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1567                           TII.get(ARM::VCVTSD), Result)
1568                   .addReg(Op));
1569   updateValueMap(I, Result);
1570   return true;
1571 }
1572 
1573 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1574   // Make sure we have VFP.
1575   if (!Subtarget->hasVFP2()) return false;
1576 
1577   MVT DstVT;
1578   Type *Ty = I->getType();
1579   if (!isTypeLegal(Ty, DstVT))
1580     return false;
1581 
1582   Value *Src = I->getOperand(0);
1583   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1584   if (!SrcEVT.isSimple())
1585     return false;
1586   MVT SrcVT = SrcEVT.getSimpleVT();
1587   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1588     return false;
1589 
1590   unsigned SrcReg = getRegForValue(Src);
1591   if (SrcReg == 0) return false;
1592 
1593   // Handle sign-extension.
1594   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1595     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1596                                        /*isZExt*/!isSigned);
1597     if (SrcReg == 0) return false;
1598   }
1599 
1600   // The conversion routine works on fp-reg to fp-reg and the operand above
1601   // was an integer, move it to the fp registers if possible.
1602   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1603   if (FP == 0) return false;
1604 
1605   unsigned Opc;
1606   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1607   else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1608   else return false;
1609 
1610   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1611   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1612                           TII.get(Opc), ResultReg).addReg(FP));
1613   updateValueMap(I, ResultReg);
1614   return true;
1615 }
1616 
1617 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1618   // Make sure we have VFP.
1619   if (!Subtarget->hasVFP2()) return false;
1620 
1621   MVT DstVT;
1622   Type *RetTy = I->getType();
1623   if (!isTypeLegal(RetTy, DstVT))
1624     return false;
1625 
1626   unsigned Op = getRegForValue(I->getOperand(0));
1627   if (Op == 0) return false;
1628 
1629   unsigned Opc;
1630   Type *OpTy = I->getOperand(0)->getType();
1631   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1632   else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1633   else return false;
1634 
1635   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1636   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1637   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1638                           TII.get(Opc), ResultReg).addReg(Op));
1639 
1640   // This result needs to be in an integer register, but the conversion only
1641   // takes place in fp-regs.
1642   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1643   if (IntReg == 0) return false;
1644 
1645   updateValueMap(I, IntReg);
1646   return true;
1647 }
1648 
1649 bool ARMFastISel::SelectSelect(const Instruction *I) {
1650   MVT VT;
1651   if (!isTypeLegal(I->getType(), VT))
1652     return false;
1653 
1654   // Things need to be register sized for register moves.
1655   if (VT != MVT::i32) return false;
1656 
1657   unsigned CondReg = getRegForValue(I->getOperand(0));
1658   if (CondReg == 0) return false;
1659   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1660   if (Op1Reg == 0) return false;
1661 
1662   // Check to see if we can use an immediate in the conditional move.
1663   int Imm = 0;
1664   bool UseImm = false;
1665   bool isNegativeImm = false;
1666   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1667     assert (VT == MVT::i32 && "Expecting an i32.");
1668     Imm = (int)ConstInt->getValue().getZExtValue();
1669     if (Imm < 0) {
1670       isNegativeImm = true;
1671       Imm = ~Imm;
1672     }
1673     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1674       (ARM_AM::getSOImmVal(Imm) != -1);
1675   }
1676 
1677   unsigned Op2Reg = 0;
1678   if (!UseImm) {
1679     Op2Reg = getRegForValue(I->getOperand(2));
1680     if (Op2Reg == 0) return false;
1681   }
1682 
1683   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1684   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1685   AddOptionalDefs(
1686       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1687           .addReg(CondReg)
1688           .addImm(1));
1689 
1690   unsigned MovCCOpc;
1691   const TargetRegisterClass *RC;
1692   if (!UseImm) {
1693     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1694     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1695   } else {
1696     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1697     if (!isNegativeImm)
1698       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1699     else
1700       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1701   }
1702   unsigned ResultReg = createResultReg(RC);
1703   if (!UseImm) {
1704     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1705     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1706     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1707             ResultReg)
1708         .addReg(Op2Reg)
1709         .addReg(Op1Reg)
1710         .addImm(ARMCC::NE)
1711         .addReg(ARM::CPSR);
1712   } else {
1713     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1714     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1715             ResultReg)
1716         .addReg(Op1Reg)
1717         .addImm(Imm)
1718         .addImm(ARMCC::EQ)
1719         .addReg(ARM::CPSR);
1720   }
1721   updateValueMap(I, ResultReg);
1722   return true;
1723 }
1724 
1725 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1726   MVT VT;
1727   Type *Ty = I->getType();
1728   if (!isTypeLegal(Ty, VT))
1729     return false;
1730 
1731   // If we have integer div support we should have selected this automagically.
1732   // In case we have a real miss go ahead and return false and we'll pick
1733   // it up later.
1734   if (Subtarget->hasDivide()) return false;
1735 
1736   // Otherwise emit a libcall.
1737   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1738   if (VT == MVT::i8)
1739     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1740   else if (VT == MVT::i16)
1741     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1742   else if (VT == MVT::i32)
1743     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1744   else if (VT == MVT::i64)
1745     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1746   else if (VT == MVT::i128)
1747     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1748   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1749 
1750   return ARMEmitLibcall(I, LC);
1751 }
1752 
1753 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1754   MVT VT;
1755   Type *Ty = I->getType();
1756   if (!isTypeLegal(Ty, VT))
1757     return false;
1758 
1759   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1760   if (VT == MVT::i8)
1761     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1762   else if (VT == MVT::i16)
1763     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1764   else if (VT == MVT::i32)
1765     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1766   else if (VT == MVT::i64)
1767     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1768   else if (VT == MVT::i128)
1769     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1770   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1771 
1772   return ARMEmitLibcall(I, LC);
1773 }
1774 
1775 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1776   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1777 
1778   // We can get here in the case when we have a binary operation on a non-legal
1779   // type and the target independent selector doesn't know how to handle it.
1780   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1781     return false;
1782 
1783   unsigned Opc;
1784   switch (ISDOpcode) {
1785     default: return false;
1786     case ISD::ADD:
1787       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1788       break;
1789     case ISD::OR:
1790       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1791       break;
1792     case ISD::SUB:
1793       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1794       break;
1795   }
1796 
1797   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1798   if (SrcReg1 == 0) return false;
1799 
1800   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1801   // in the instruction, rather then materializing the value in a register.
1802   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1803   if (SrcReg2 == 0) return false;
1804 
1805   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1806   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1807   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1808   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1809                           TII.get(Opc), ResultReg)
1810                   .addReg(SrcReg1).addReg(SrcReg2));
1811   updateValueMap(I, ResultReg);
1812   return true;
1813 }
1814 
1815 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1816   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1817   if (!FPVT.isSimple()) return false;
1818   MVT VT = FPVT.getSimpleVT();
1819 
1820   // FIXME: Support vector types where possible.
1821   if (VT.isVector())
1822     return false;
1823 
1824   // We can get here in the case when we want to use NEON for our fp
1825   // operations, but can't figure out how to. Just use the vfp instructions
1826   // if we have them.
1827   // FIXME: It'd be nice to use NEON instructions.
1828   Type *Ty = I->getType();
1829   bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
1830   if (isFloat && !Subtarget->hasVFP2())
1831     return false;
1832 
1833   unsigned Opc;
1834   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1835   switch (ISDOpcode) {
1836     default: return false;
1837     case ISD::FADD:
1838       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1839       break;
1840     case ISD::FSUB:
1841       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1842       break;
1843     case ISD::FMUL:
1844       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1845       break;
1846   }
1847   unsigned Op1 = getRegForValue(I->getOperand(0));
1848   if (Op1 == 0) return false;
1849 
1850   unsigned Op2 = getRegForValue(I->getOperand(1));
1851   if (Op2 == 0) return false;
1852 
1853   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1854   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1855                           TII.get(Opc), ResultReg)
1856                   .addReg(Op1).addReg(Op2));
1857   updateValueMap(I, ResultReg);
1858   return true;
1859 }
1860 
1861 // Call Handling Code
1862 
1863 // This is largely taken directly from CCAssignFnForNode
1864 // TODO: We may not support all of this.
1865 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1866                                            bool Return,
1867                                            bool isVarArg) {
1868   switch (CC) {
1869   default:
1870     llvm_unreachable("Unsupported calling convention");
1871   case CallingConv::Fast:
1872     if (Subtarget->hasVFP2() && !isVarArg) {
1873       if (!Subtarget->isAAPCS_ABI())
1874         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1875       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1876       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1877     }
1878     // Fallthrough
1879   case CallingConv::C:
1880   case CallingConv::CXX_FAST_TLS:
1881     // Use target triple & subtarget features to do actual dispatch.
1882     if (Subtarget->isAAPCS_ABI()) {
1883       if (Subtarget->hasVFP2() &&
1884           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1885         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1886       else
1887         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1888     } else {
1889       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1890     }
1891   case CallingConv::ARM_AAPCS_VFP:
1892   case CallingConv::Swift:
1893     if (!isVarArg)
1894       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1895     // Fall through to soft float variant, variadic functions don't
1896     // use hard floating point ABI.
1897   case CallingConv::ARM_AAPCS:
1898     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1899   case CallingConv::ARM_APCS:
1900     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1901   case CallingConv::GHC:
1902     if (Return)
1903       llvm_unreachable("Can't return in GHC call convention");
1904     else
1905       return CC_ARM_APCS_GHC;
1906   }
1907 }
1908 
1909 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1910                                   SmallVectorImpl<unsigned> &ArgRegs,
1911                                   SmallVectorImpl<MVT> &ArgVTs,
1912                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1913                                   SmallVectorImpl<unsigned> &RegArgs,
1914                                   CallingConv::ID CC,
1915                                   unsigned &NumBytes,
1916                                   bool isVarArg) {
1917   SmallVector<CCValAssign, 16> ArgLocs;
1918   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1919   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1920                              CCAssignFnForCall(CC, false, isVarArg));
1921 
1922   // Check that we can handle all of the arguments. If we can't, then bail out
1923   // now before we add code to the MBB.
1924   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1925     CCValAssign &VA = ArgLocs[i];
1926     MVT ArgVT = ArgVTs[VA.getValNo()];
1927 
1928     // We don't handle NEON/vector parameters yet.
1929     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1930       return false;
1931 
1932     // Now copy/store arg to correct locations.
1933     if (VA.isRegLoc() && !VA.needsCustom()) {
1934       continue;
1935     } else if (VA.needsCustom()) {
1936       // TODO: We need custom lowering for vector (v2f64) args.
1937       if (VA.getLocVT() != MVT::f64 ||
1938           // TODO: Only handle register args for now.
1939           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1940         return false;
1941     } else {
1942       switch (ArgVT.SimpleTy) {
1943       default:
1944         return false;
1945       case MVT::i1:
1946       case MVT::i8:
1947       case MVT::i16:
1948       case MVT::i32:
1949         break;
1950       case MVT::f32:
1951         if (!Subtarget->hasVFP2())
1952           return false;
1953         break;
1954       case MVT::f64:
1955         if (!Subtarget->hasVFP2())
1956           return false;
1957         break;
1958       }
1959     }
1960   }
1961 
1962   // At the point, we are able to handle the call's arguments in fast isel.
1963 
1964   // Get a count of how many bytes are to be pushed on the stack.
1965   NumBytes = CCInfo.getNextStackOffset();
1966 
1967   // Issue CALLSEQ_START
1968   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1969   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1970                           TII.get(AdjStackDown))
1971                   .addImm(NumBytes));
1972 
1973   // Process the args.
1974   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1975     CCValAssign &VA = ArgLocs[i];
1976     const Value *ArgVal = Args[VA.getValNo()];
1977     unsigned Arg = ArgRegs[VA.getValNo()];
1978     MVT ArgVT = ArgVTs[VA.getValNo()];
1979 
1980     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1981            "We don't handle NEON/vector parameters yet.");
1982 
1983     // Handle arg promotion, etc.
1984     switch (VA.getLocInfo()) {
1985       case CCValAssign::Full: break;
1986       case CCValAssign::SExt: {
1987         MVT DestVT = VA.getLocVT();
1988         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1989         assert (Arg != 0 && "Failed to emit a sext");
1990         ArgVT = DestVT;
1991         break;
1992       }
1993       case CCValAssign::AExt:
1994         // Intentional fall-through.  Handle AExt and ZExt.
1995       case CCValAssign::ZExt: {
1996         MVT DestVT = VA.getLocVT();
1997         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1998         assert (Arg != 0 && "Failed to emit a zext");
1999         ArgVT = DestVT;
2000         break;
2001       }
2002       case CCValAssign::BCvt: {
2003         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
2004                                  /*TODO: Kill=*/false);
2005         assert(BC != 0 && "Failed to emit a bitcast!");
2006         Arg = BC;
2007         ArgVT = VA.getLocVT();
2008         break;
2009       }
2010       default: llvm_unreachable("Unknown arg promotion!");
2011     }
2012 
2013     // Now copy/store arg to correct locations.
2014     if (VA.isRegLoc() && !VA.needsCustom()) {
2015       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2016               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
2017       RegArgs.push_back(VA.getLocReg());
2018     } else if (VA.needsCustom()) {
2019       // TODO: We need custom lowering for vector (v2f64) args.
2020       assert(VA.getLocVT() == MVT::f64 &&
2021              "Custom lowering for v2f64 args not available");
2022 
2023       CCValAssign &NextVA = ArgLocs[++i];
2024 
2025       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2026              "We only handle register args!");
2027 
2028       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2029                               TII.get(ARM::VMOVRRD), VA.getLocReg())
2030                       .addReg(NextVA.getLocReg(), RegState::Define)
2031                       .addReg(Arg));
2032       RegArgs.push_back(VA.getLocReg());
2033       RegArgs.push_back(NextVA.getLocReg());
2034     } else {
2035       assert(VA.isMemLoc());
2036       // Need to store on the stack.
2037 
2038       // Don't emit stores for undef values.
2039       if (isa<UndefValue>(ArgVal))
2040         continue;
2041 
2042       Address Addr;
2043       Addr.BaseType = Address::RegBase;
2044       Addr.Base.Reg = ARM::SP;
2045       Addr.Offset = VA.getLocMemOffset();
2046 
2047       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2048       assert(EmitRet && "Could not emit a store for argument!");
2049     }
2050   }
2051 
2052   return true;
2053 }
2054 
2055 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
2056                              const Instruction *I, CallingConv::ID CC,
2057                              unsigned &NumBytes, bool isVarArg) {
2058   // Issue CALLSEQ_END
2059   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2060   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2061                           TII.get(AdjStackUp))
2062                   .addImm(NumBytes).addImm(0));
2063 
2064   // Now the return value.
2065   if (RetVT != MVT::isVoid) {
2066     SmallVector<CCValAssign, 16> RVLocs;
2067     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2068     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2069 
2070     // Copy all of the result registers out of their specified physreg.
2071     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2072       // For this move we copy into two registers and then move into the
2073       // double fp reg we want.
2074       MVT DestVT = RVLocs[0].getValVT();
2075       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2076       unsigned ResultReg = createResultReg(DstRC);
2077       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2078                               TII.get(ARM::VMOVDRR), ResultReg)
2079                       .addReg(RVLocs[0].getLocReg())
2080                       .addReg(RVLocs[1].getLocReg()));
2081 
2082       UsedRegs.push_back(RVLocs[0].getLocReg());
2083       UsedRegs.push_back(RVLocs[1].getLocReg());
2084 
2085       // Finally update the result.
2086       updateValueMap(I, ResultReg);
2087     } else {
2088       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2089       MVT CopyVT = RVLocs[0].getValVT();
2090 
2091       // Special handling for extended integers.
2092       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2093         CopyVT = MVT::i32;
2094 
2095       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2096 
2097       unsigned ResultReg = createResultReg(DstRC);
2098       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2099               TII.get(TargetOpcode::COPY),
2100               ResultReg).addReg(RVLocs[0].getLocReg());
2101       UsedRegs.push_back(RVLocs[0].getLocReg());
2102 
2103       // Finally update the result.
2104       updateValueMap(I, ResultReg);
2105     }
2106   }
2107 
2108   return true;
2109 }
2110 
2111 bool ARMFastISel::SelectRet(const Instruction *I) {
2112   const ReturnInst *Ret = cast<ReturnInst>(I);
2113   const Function &F = *I->getParent()->getParent();
2114 
2115   if (!FuncInfo.CanLowerReturn)
2116     return false;
2117 
2118   if (TLI.supportSwiftError() &&
2119       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2120     return false;
2121 
2122   if (TLI.supportSplitCSR(FuncInfo.MF))
2123     return false;
2124 
2125   // Build a list of return value registers.
2126   SmallVector<unsigned, 4> RetRegs;
2127 
2128   CallingConv::ID CC = F.getCallingConv();
2129   if (Ret->getNumOperands() > 0) {
2130     SmallVector<ISD::OutputArg, 4> Outs;
2131     GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2132 
2133     // Analyze operands of the call, assigning locations to each operand.
2134     SmallVector<CCValAssign, 16> ValLocs;
2135     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2136     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2137                                                  F.isVarArg()));
2138 
2139     const Value *RV = Ret->getOperand(0);
2140     unsigned Reg = getRegForValue(RV);
2141     if (Reg == 0)
2142       return false;
2143 
2144     // Only handle a single return value for now.
2145     if (ValLocs.size() != 1)
2146       return false;
2147 
2148     CCValAssign &VA = ValLocs[0];
2149 
2150     // Don't bother handling odd stuff for now.
2151     if (VA.getLocInfo() != CCValAssign::Full)
2152       return false;
2153     // Only handle register returns for now.
2154     if (!VA.isRegLoc())
2155       return false;
2156 
2157     unsigned SrcReg = Reg + VA.getValNo();
2158     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2159     if (!RVEVT.isSimple()) return false;
2160     MVT RVVT = RVEVT.getSimpleVT();
2161     MVT DestVT = VA.getValVT();
2162     // Special handling for extended integers.
2163     if (RVVT != DestVT) {
2164       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2165         return false;
2166 
2167       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2168 
2169       // Perform extension if flagged as either zext or sext.  Otherwise, do
2170       // nothing.
2171       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2172         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2173         if (SrcReg == 0) return false;
2174       }
2175     }
2176 
2177     // Make the copy.
2178     unsigned DstReg = VA.getLocReg();
2179     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2180     // Avoid a cross-class copy. This is very unlikely.
2181     if (!SrcRC->contains(DstReg))
2182       return false;
2183     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2184             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2185 
2186     // Add register to return instruction.
2187     RetRegs.push_back(VA.getLocReg());
2188   }
2189 
2190   unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
2191   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2192                                     TII.get(RetOpc));
2193   AddOptionalDefs(MIB);
2194   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
2195     MIB.addReg(RetRegs[i], RegState::Implicit);
2196   return true;
2197 }
2198 
2199 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2200   if (UseReg)
2201     return isThumb2 ? ARM::tBLXr : ARM::BLX;
2202   else
2203     return isThumb2 ? ARM::tBL : ARM::BL;
2204 }
2205 
2206 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2207   // Manually compute the global's type to avoid building it when unnecessary.
2208   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2209   EVT LCREVT = TLI.getValueType(DL, GVTy);
2210   if (!LCREVT.isSimple()) return 0;
2211 
2212   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2213                                        GlobalValue::ExternalLinkage, nullptr,
2214                                        Name);
2215   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2216   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2217 }
2218 
2219 // A quick function that will emit a call for a named libcall in F with the
2220 // vector of passed arguments for the Instruction in I. We can assume that we
2221 // can emit a call for any libcall we can produce. This is an abridged version
2222 // of the full call infrastructure since we won't need to worry about things
2223 // like computed function pointers or strange arguments at call sites.
2224 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2225 // with X86.
2226 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2227   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2228 
2229   // Handle *simple* calls for now.
2230   Type *RetTy = I->getType();
2231   MVT RetVT;
2232   if (RetTy->isVoidTy())
2233     RetVT = MVT::isVoid;
2234   else if (!isTypeLegal(RetTy, RetVT))
2235     return false;
2236 
2237   // Can't handle non-double multi-reg retvals.
2238   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2239     SmallVector<CCValAssign, 16> RVLocs;
2240     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2241     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2242     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2243       return false;
2244   }
2245 
2246   // Set up the argument vectors.
2247   SmallVector<Value*, 8> Args;
2248   SmallVector<unsigned, 8> ArgRegs;
2249   SmallVector<MVT, 8> ArgVTs;
2250   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2251   Args.reserve(I->getNumOperands());
2252   ArgRegs.reserve(I->getNumOperands());
2253   ArgVTs.reserve(I->getNumOperands());
2254   ArgFlags.reserve(I->getNumOperands());
2255   for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2256     Value *Op = I->getOperand(i);
2257     unsigned Arg = getRegForValue(Op);
2258     if (Arg == 0) return false;
2259 
2260     Type *ArgTy = Op->getType();
2261     MVT ArgVT;
2262     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2263 
2264     ISD::ArgFlagsTy Flags;
2265     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2266     Flags.setOrigAlign(OriginalAlignment);
2267 
2268     Args.push_back(Op);
2269     ArgRegs.push_back(Arg);
2270     ArgVTs.push_back(ArgVT);
2271     ArgFlags.push_back(Flags);
2272   }
2273 
2274   // Handle the arguments now that we've gotten them.
2275   SmallVector<unsigned, 4> RegArgs;
2276   unsigned NumBytes;
2277   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2278                        RegArgs, CC, NumBytes, false))
2279     return false;
2280 
2281   unsigned CalleeReg = 0;
2282   if (Subtarget->genLongCalls()) {
2283     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2284     if (CalleeReg == 0) return false;
2285   }
2286 
2287   // Issue the call.
2288   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2289   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2290                                     DbgLoc, TII.get(CallOpc));
2291   // BL / BLX don't take a predicate, but tBL / tBLX do.
2292   if (isThumb2)
2293     AddDefaultPred(MIB);
2294   if (Subtarget->genLongCalls())
2295     MIB.addReg(CalleeReg);
2296   else
2297     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2298 
2299   // Add implicit physical register uses to the call.
2300   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2301     MIB.addReg(RegArgs[i], RegState::Implicit);
2302 
2303   // Add a register mask with the call-preserved registers.
2304   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2305   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2306 
2307   // Finish off the call including any return values.
2308   SmallVector<unsigned, 4> UsedRegs;
2309   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2310 
2311   // Set all unused physreg defs as dead.
2312   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2313 
2314   return true;
2315 }
2316 
2317 bool ARMFastISel::SelectCall(const Instruction *I,
2318                              const char *IntrMemName = nullptr) {
2319   const CallInst *CI = cast<CallInst>(I);
2320   const Value *Callee = CI->getCalledValue();
2321 
2322   // Can't handle inline asm.
2323   if (isa<InlineAsm>(Callee)) return false;
2324 
2325   // Allow SelectionDAG isel to handle tail calls.
2326   if (CI->isTailCall()) return false;
2327 
2328   // Check the calling convention.
2329   ImmutableCallSite CS(CI);
2330   CallingConv::ID CC = CS.getCallingConv();
2331 
2332   // TODO: Avoid some calling conventions?
2333 
2334   FunctionType *FTy = CS.getFunctionType();
2335   bool isVarArg = FTy->isVarArg();
2336 
2337   // Handle *simple* calls for now.
2338   Type *RetTy = I->getType();
2339   MVT RetVT;
2340   if (RetTy->isVoidTy())
2341     RetVT = MVT::isVoid;
2342   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2343            RetVT != MVT::i8  && RetVT != MVT::i1)
2344     return false;
2345 
2346   // Can't handle non-double multi-reg retvals.
2347   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2348       RetVT != MVT::i16 && RetVT != MVT::i32) {
2349     SmallVector<CCValAssign, 16> RVLocs;
2350     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2351     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2352     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2353       return false;
2354   }
2355 
2356   // Set up the argument vectors.
2357   SmallVector<Value*, 8> Args;
2358   SmallVector<unsigned, 8> ArgRegs;
2359   SmallVector<MVT, 8> ArgVTs;
2360   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2361   unsigned arg_size = CS.arg_size();
2362   Args.reserve(arg_size);
2363   ArgRegs.reserve(arg_size);
2364   ArgVTs.reserve(arg_size);
2365   ArgFlags.reserve(arg_size);
2366   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2367        i != e; ++i) {
2368     // If we're lowering a memory intrinsic instead of a regular call, skip the
2369     // last two arguments, which shouldn't be passed to the underlying function.
2370     if (IntrMemName && e-i <= 2)
2371       break;
2372 
2373     ISD::ArgFlagsTy Flags;
2374     unsigned AttrInd = i - CS.arg_begin() + 1;
2375     if (CS.paramHasAttr(AttrInd, Attribute::SExt))
2376       Flags.setSExt();
2377     if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
2378       Flags.setZExt();
2379 
2380     // FIXME: Only handle *easy* calls for now.
2381     if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
2382         CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
2383         CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) ||
2384         CS.paramHasAttr(AttrInd, Attribute::SwiftError) ||
2385         CS.paramHasAttr(AttrInd, Attribute::Nest) ||
2386         CS.paramHasAttr(AttrInd, Attribute::ByVal))
2387       return false;
2388 
2389     Type *ArgTy = (*i)->getType();
2390     MVT ArgVT;
2391     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2392         ArgVT != MVT::i1)
2393       return false;
2394 
2395     unsigned Arg = getRegForValue(*i);
2396     if (Arg == 0)
2397       return false;
2398 
2399     unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
2400     Flags.setOrigAlign(OriginalAlignment);
2401 
2402     Args.push_back(*i);
2403     ArgRegs.push_back(Arg);
2404     ArgVTs.push_back(ArgVT);
2405     ArgFlags.push_back(Flags);
2406   }
2407 
2408   // Handle the arguments now that we've gotten them.
2409   SmallVector<unsigned, 4> RegArgs;
2410   unsigned NumBytes;
2411   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2412                        RegArgs, CC, NumBytes, isVarArg))
2413     return false;
2414 
2415   bool UseReg = false;
2416   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2417   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2418 
2419   unsigned CalleeReg = 0;
2420   if (UseReg) {
2421     if (IntrMemName)
2422       CalleeReg = getLibcallReg(IntrMemName);
2423     else
2424       CalleeReg = getRegForValue(Callee);
2425 
2426     if (CalleeReg == 0) return false;
2427   }
2428 
2429   // Issue the call.
2430   unsigned CallOpc = ARMSelectCallOp(UseReg);
2431   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2432                                     DbgLoc, TII.get(CallOpc));
2433 
2434   unsigned char OpFlags = 0;
2435 
2436   // Add MO_PLT for global address or external symbol in the PIC relocation
2437   // model.
2438   if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
2439     OpFlags = ARMII::MO_PLT;
2440 
2441   // ARM calls don't take a predicate, but tBL / tBLX do.
2442   if(isThumb2)
2443     AddDefaultPred(MIB);
2444   if (UseReg)
2445     MIB.addReg(CalleeReg);
2446   else if (!IntrMemName)
2447     MIB.addGlobalAddress(GV, 0, OpFlags);
2448   else
2449     MIB.addExternalSymbol(IntrMemName, OpFlags);
2450 
2451   // Add implicit physical register uses to the call.
2452   for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
2453     MIB.addReg(RegArgs[i], RegState::Implicit);
2454 
2455   // Add a register mask with the call-preserved registers.
2456   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2457   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2458 
2459   // Finish off the call including any return values.
2460   SmallVector<unsigned, 4> UsedRegs;
2461   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2462     return false;
2463 
2464   // Set all unused physreg defs as dead.
2465   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2466 
2467   return true;
2468 }
2469 
2470 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2471   return Len <= 16;
2472 }
2473 
2474 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2475                                         uint64_t Len, unsigned Alignment) {
2476   // Make sure we don't bloat code by inlining very large memcpy's.
2477   if (!ARMIsMemCpySmall(Len))
2478     return false;
2479 
2480   while (Len) {
2481     MVT VT;
2482     if (!Alignment || Alignment >= 4) {
2483       if (Len >= 4)
2484         VT = MVT::i32;
2485       else if (Len >= 2)
2486         VT = MVT::i16;
2487       else {
2488         assert (Len == 1 && "Expected a length of 1!");
2489         VT = MVT::i8;
2490       }
2491     } else {
2492       // Bound based on alignment.
2493       if (Len >= 2 && Alignment == 2)
2494         VT = MVT::i16;
2495       else {
2496         VT = MVT::i8;
2497       }
2498     }
2499 
2500     bool RV;
2501     unsigned ResultReg;
2502     RV = ARMEmitLoad(VT, ResultReg, Src);
2503     assert (RV == true && "Should be able to handle this load.");
2504     RV = ARMEmitStore(VT, ResultReg, Dest);
2505     assert (RV == true && "Should be able to handle this store.");
2506     (void)RV;
2507 
2508     unsigned Size = VT.getSizeInBits()/8;
2509     Len -= Size;
2510     Dest.Offset += Size;
2511     Src.Offset += Size;
2512   }
2513 
2514   return true;
2515 }
2516 
2517 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2518   // FIXME: Handle more intrinsics.
2519   switch (I.getIntrinsicID()) {
2520   default: return false;
2521   case Intrinsic::frameaddress: {
2522     MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
2523     MFI->setFrameAddressIsTaken(true);
2524 
2525     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2526     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2527                                              : &ARM::GPRRegClass;
2528 
2529     const ARMBaseRegisterInfo *RegInfo =
2530         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2531     unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2532     unsigned SrcReg = FramePtr;
2533 
2534     // Recursively load frame address
2535     // ldr r0 [fp]
2536     // ldr r0 [r0]
2537     // ldr r0 [r0]
2538     // ...
2539     unsigned DestReg;
2540     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2541     while (Depth--) {
2542       DestReg = createResultReg(RC);
2543       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2544                               TII.get(LdrOpc), DestReg)
2545                       .addReg(SrcReg).addImm(0));
2546       SrcReg = DestReg;
2547     }
2548     updateValueMap(&I, SrcReg);
2549     return true;
2550   }
2551   case Intrinsic::memcpy:
2552   case Intrinsic::memmove: {
2553     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2554     // Don't handle volatile.
2555     if (MTI.isVolatile())
2556       return false;
2557 
2558     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2559     // we would emit dead code because we don't currently handle memmoves.
2560     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2561     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2562       // Small memcpy's are common enough that we want to do them without a call
2563       // if possible.
2564       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2565       if (ARMIsMemCpySmall(Len)) {
2566         Address Dest, Src;
2567         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2568             !ARMComputeAddress(MTI.getRawSource(), Src))
2569           return false;
2570         unsigned Alignment = MTI.getAlignment();
2571         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2572           return true;
2573       }
2574     }
2575 
2576     if (!MTI.getLength()->getType()->isIntegerTy(32))
2577       return false;
2578 
2579     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2580       return false;
2581 
2582     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2583     return SelectCall(&I, IntrMemName);
2584   }
2585   case Intrinsic::memset: {
2586     const MemSetInst &MSI = cast<MemSetInst>(I);
2587     // Don't handle volatile.
2588     if (MSI.isVolatile())
2589       return false;
2590 
2591     if (!MSI.getLength()->getType()->isIntegerTy(32))
2592       return false;
2593 
2594     if (MSI.getDestAddressSpace() > 255)
2595       return false;
2596 
2597     return SelectCall(&I, "memset");
2598   }
2599   case Intrinsic::trap: {
2600     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2601       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2602     return true;
2603   }
2604   }
2605 }
2606 
2607 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2608   // The high bits for a type smaller than the register size are assumed to be
2609   // undefined.
2610   Value *Op = I->getOperand(0);
2611 
2612   EVT SrcVT, DestVT;
2613   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2614   DestVT = TLI.getValueType(DL, I->getType(), true);
2615 
2616   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2617     return false;
2618   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2619     return false;
2620 
2621   unsigned SrcReg = getRegForValue(Op);
2622   if (!SrcReg) return false;
2623 
2624   // Because the high bits are undefined, a truncate doesn't generate
2625   // any code.
2626   updateValueMap(I, SrcReg);
2627   return true;
2628 }
2629 
2630 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2631                                     bool isZExt) {
2632   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2633     return 0;
2634   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2635     return 0;
2636 
2637   // Table of which combinations can be emitted as a single instruction,
2638   // and which will require two.
2639   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2640     //            ARM                     Thumb
2641     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2642     //    ext:     s  z      s  z          s  z      s  z
2643     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2644     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2645     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2646   };
2647 
2648   // Target registers for:
2649   //  - For ARM can never be PC.
2650   //  - For 16-bit Thumb are restricted to lower 8 registers.
2651   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2652   static const TargetRegisterClass *RCTbl[2][2] = {
2653     // Instructions: Two                     Single
2654     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2655     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2656   };
2657 
2658   // Table governing the instruction(s) to be emitted.
2659   static const struct InstructionTable {
2660     uint32_t Opc   : 16;
2661     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2662     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2663     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2664   } IT[2][2][3][2] = {
2665     { // Two instructions (first is left shift, second is in this table).
2666       { // ARM                Opc           S  Shift             Imm
2667         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2668         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2669         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2670         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2671         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2672         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2673       },
2674       { // Thumb              Opc           S  Shift             Imm
2675         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2676         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2677         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2678         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2679         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2680         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2681       }
2682     },
2683     { // Single instruction.
2684       { // ARM                Opc           S  Shift             Imm
2685         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2686         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2687         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2688         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2689         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2690         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2691       },
2692       { // Thumb              Opc           S  Shift             Imm
2693         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2694         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2695         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2696         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2697         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2698         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2699       }
2700     }
2701   };
2702 
2703   unsigned SrcBits = SrcVT.getSizeInBits();
2704   unsigned DestBits = DestVT.getSizeInBits();
2705   (void) DestBits;
2706   assert((SrcBits < DestBits) && "can only extend to larger types");
2707   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2708          "other sizes unimplemented");
2709   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2710          "other sizes unimplemented");
2711 
2712   bool hasV6Ops = Subtarget->hasV6Ops();
2713   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2714   assert((Bitness < 3) && "sanity-check table bounds");
2715 
2716   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2717   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2718   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2719   unsigned Opc = ITP->Opc;
2720   assert(ARM::KILL != Opc && "Invalid table entry");
2721   unsigned hasS = ITP->hasS;
2722   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2723   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2724          "only MOVsi has shift operand addressing mode");
2725   unsigned Imm = ITP->Imm;
2726 
2727   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2728   bool setsCPSR = &ARM::tGPRRegClass == RC;
2729   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2730   unsigned ResultReg;
2731   // MOVsi encodes shift and immediate in shift operand addressing mode.
2732   // The following condition has the same value when emitting two
2733   // instruction sequences: both are shifts.
2734   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2735 
2736   // Either one or two instructions are emitted.
2737   // They're always of the form:
2738   //   dst = in OP imm
2739   // CPSR is set only by 16-bit Thumb instructions.
2740   // Predicate, if any, is AL.
2741   // S bit, if available, is always 0.
2742   // When two are emitted the first's result will feed as the second's input,
2743   // that value is then dead.
2744   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2745   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2746     ResultReg = createResultReg(RC);
2747     bool isLsl = (0 == Instr) && !isSingleInstr;
2748     unsigned Opcode = isLsl ? LSLOpc : Opc;
2749     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2750     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2751     bool isKill = 1 == Instr;
2752     MachineInstrBuilder MIB = BuildMI(
2753         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2754     if (setsCPSR)
2755       MIB.addReg(ARM::CPSR, RegState::Define);
2756     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2757     AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
2758     if (hasS)
2759       AddDefaultCC(MIB);
2760     // Second instruction consumes the first's result.
2761     SrcReg = ResultReg;
2762   }
2763 
2764   return ResultReg;
2765 }
2766 
2767 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2768   // On ARM, in general, integer casts don't involve legal types; this code
2769   // handles promotable integers.
2770   Type *DestTy = I->getType();
2771   Value *Src = I->getOperand(0);
2772   Type *SrcTy = Src->getType();
2773 
2774   bool isZExt = isa<ZExtInst>(I);
2775   unsigned SrcReg = getRegForValue(Src);
2776   if (!SrcReg) return false;
2777 
2778   EVT SrcEVT, DestEVT;
2779   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2780   DestEVT = TLI.getValueType(DL, DestTy, true);
2781   if (!SrcEVT.isSimple()) return false;
2782   if (!DestEVT.isSimple()) return false;
2783 
2784   MVT SrcVT = SrcEVT.getSimpleVT();
2785   MVT DestVT = DestEVT.getSimpleVT();
2786   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2787   if (ResultReg == 0) return false;
2788   updateValueMap(I, ResultReg);
2789   return true;
2790 }
2791 
2792 bool ARMFastISel::SelectShift(const Instruction *I,
2793                               ARM_AM::ShiftOpc ShiftTy) {
2794   // We handle thumb2 mode by target independent selector
2795   // or SelectionDAG ISel.
2796   if (isThumb2)
2797     return false;
2798 
2799   // Only handle i32 now.
2800   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2801   if (DestVT != MVT::i32)
2802     return false;
2803 
2804   unsigned Opc = ARM::MOVsr;
2805   unsigned ShiftImm;
2806   Value *Src2Value = I->getOperand(1);
2807   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2808     ShiftImm = CI->getZExtValue();
2809 
2810     // Fall back to selection DAG isel if the shift amount
2811     // is zero or greater than the width of the value type.
2812     if (ShiftImm == 0 || ShiftImm >=32)
2813       return false;
2814 
2815     Opc = ARM::MOVsi;
2816   }
2817 
2818   Value *Src1Value = I->getOperand(0);
2819   unsigned Reg1 = getRegForValue(Src1Value);
2820   if (Reg1 == 0) return false;
2821 
2822   unsigned Reg2 = 0;
2823   if (Opc == ARM::MOVsr) {
2824     Reg2 = getRegForValue(Src2Value);
2825     if (Reg2 == 0) return false;
2826   }
2827 
2828   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2829   if(ResultReg == 0) return false;
2830 
2831   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2832                                     TII.get(Opc), ResultReg)
2833                             .addReg(Reg1);
2834 
2835   if (Opc == ARM::MOVsi)
2836     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2837   else if (Opc == ARM::MOVsr) {
2838     MIB.addReg(Reg2);
2839     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2840   }
2841 
2842   AddOptionalDefs(MIB);
2843   updateValueMap(I, ResultReg);
2844   return true;
2845 }
2846 
2847 // TODO: SoftFP support.
2848 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2849 
2850   switch (I->getOpcode()) {
2851     case Instruction::Load:
2852       return SelectLoad(I);
2853     case Instruction::Store:
2854       return SelectStore(I);
2855     case Instruction::Br:
2856       return SelectBranch(I);
2857     case Instruction::IndirectBr:
2858       return SelectIndirectBr(I);
2859     case Instruction::ICmp:
2860     case Instruction::FCmp:
2861       return SelectCmp(I);
2862     case Instruction::FPExt:
2863       return SelectFPExt(I);
2864     case Instruction::FPTrunc:
2865       return SelectFPTrunc(I);
2866     case Instruction::SIToFP:
2867       return SelectIToFP(I, /*isSigned*/ true);
2868     case Instruction::UIToFP:
2869       return SelectIToFP(I, /*isSigned*/ false);
2870     case Instruction::FPToSI:
2871       return SelectFPToI(I, /*isSigned*/ true);
2872     case Instruction::FPToUI:
2873       return SelectFPToI(I, /*isSigned*/ false);
2874     case Instruction::Add:
2875       return SelectBinaryIntOp(I, ISD::ADD);
2876     case Instruction::Or:
2877       return SelectBinaryIntOp(I, ISD::OR);
2878     case Instruction::Sub:
2879       return SelectBinaryIntOp(I, ISD::SUB);
2880     case Instruction::FAdd:
2881       return SelectBinaryFPOp(I, ISD::FADD);
2882     case Instruction::FSub:
2883       return SelectBinaryFPOp(I, ISD::FSUB);
2884     case Instruction::FMul:
2885       return SelectBinaryFPOp(I, ISD::FMUL);
2886     case Instruction::SDiv:
2887       return SelectDiv(I, /*isSigned*/ true);
2888     case Instruction::UDiv:
2889       return SelectDiv(I, /*isSigned*/ false);
2890     case Instruction::SRem:
2891       return SelectRem(I, /*isSigned*/ true);
2892     case Instruction::URem:
2893       return SelectRem(I, /*isSigned*/ false);
2894     case Instruction::Call:
2895       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2896         return SelectIntrinsicCall(*II);
2897       return SelectCall(I);
2898     case Instruction::Select:
2899       return SelectSelect(I);
2900     case Instruction::Ret:
2901       return SelectRet(I);
2902     case Instruction::Trunc:
2903       return SelectTrunc(I);
2904     case Instruction::ZExt:
2905     case Instruction::SExt:
2906       return SelectIntExt(I);
2907     case Instruction::Shl:
2908       return SelectShift(I, ARM_AM::lsl);
2909     case Instruction::LShr:
2910       return SelectShift(I, ARM_AM::lsr);
2911     case Instruction::AShr:
2912       return SelectShift(I, ARM_AM::asr);
2913     default: break;
2914   }
2915   return false;
2916 }
2917 
2918 namespace {
2919 // This table describes sign- and zero-extend instructions which can be
2920 // folded into a preceding load. All of these extends have an immediate
2921 // (sometimes a mask and sometimes a shift) that's applied after
2922 // extension.
2923 const struct FoldableLoadExtendsStruct {
2924   uint16_t Opc[2];  // ARM, Thumb.
2925   uint8_t ExpectedImm;
2926   uint8_t isZExt     : 1;
2927   uint8_t ExpectedVT : 7;
2928 } FoldableLoadExtends[] = {
2929   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2930   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2931   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2932   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2933   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2934 };
2935 }
2936 
2937 /// \brief The specified machine instr operand is a vreg, and that
2938 /// vreg is being provided by the specified load instruction.  If possible,
2939 /// try to fold the load as an operand to the instruction, returning true if
2940 /// successful.
2941 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2942                                       const LoadInst *LI) {
2943   // Verify we have a legal type before going any further.
2944   MVT VT;
2945   if (!isLoadTypeLegal(LI->getType(), VT))
2946     return false;
2947 
2948   // Combine load followed by zero- or sign-extend.
2949   // ldrb r1, [r0]       ldrb r1, [r0]
2950   // uxtb r2, r1     =>
2951   // mov  r3, r2         mov  r3, r1
2952   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2953     return false;
2954   const uint64_t Imm = MI->getOperand(2).getImm();
2955 
2956   bool Found = false;
2957   bool isZExt;
2958   for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
2959        i != e; ++i) {
2960     if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
2961         (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
2962         MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
2963       Found = true;
2964       isZExt = FoldableLoadExtends[i].isZExt;
2965     }
2966   }
2967   if (!Found) return false;
2968 
2969   // See if we can handle this address.
2970   Address Addr;
2971   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2972 
2973   unsigned ResultReg = MI->getOperand(0).getReg();
2974   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2975     return false;
2976   MI->eraseFromParent();
2977   return true;
2978 }
2979 
2980 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2981                                      unsigned Align, MVT VT) {
2982   bool UseGOT_PREL =
2983       !(GV->hasHiddenVisibility() || GV->hasLocalLinkage());
2984 
2985   LLVMContext *Context = &MF->getFunction()->getContext();
2986   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2987   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2988   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2989       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2990       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2991       /*AddCurrentAddress=*/UseGOT_PREL);
2992 
2993   unsigned ConstAlign =
2994       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2995   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2996 
2997   unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2998   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2999   MachineInstrBuilder MIB =
3000       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
3001           .addConstantPoolIndex(Idx);
3002   if (Opc == ARM::LDRcp)
3003     MIB.addImm(0);
3004   AddDefaultPred(MIB);
3005 
3006   // Fix the address by adding pc.
3007   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
3008   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
3009                                                           : ARM::PICADD;
3010   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
3011   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
3012             .addReg(TempReg)
3013             .addImm(ARMPCLabelIndex);
3014   if (!Subtarget->isThumb())
3015     AddDefaultPred(MIB);
3016 
3017   if (UseGOT_PREL && Subtarget->isThumb()) {
3018     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
3019     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3020                   TII.get(ARM::t2LDRi12), NewDestReg)
3021               .addReg(DestReg)
3022               .addImm(0);
3023     DestReg = NewDestReg;
3024     AddOptionalDefs(MIB);
3025   }
3026   return DestReg;
3027 }
3028 
3029 bool ARMFastISel::fastLowerArguments() {
3030   if (!FuncInfo.CanLowerReturn)
3031     return false;
3032 
3033   const Function *F = FuncInfo.Fn;
3034   if (F->isVarArg())
3035     return false;
3036 
3037   CallingConv::ID CC = F->getCallingConv();
3038   switch (CC) {
3039   default:
3040     return false;
3041   case CallingConv::Fast:
3042   case CallingConv::C:
3043   case CallingConv::ARM_AAPCS_VFP:
3044   case CallingConv::ARM_AAPCS:
3045   case CallingConv::ARM_APCS:
3046   case CallingConv::Swift:
3047     break;
3048   }
3049 
3050   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3051   // which are passed in r0 - r3.
3052   unsigned Idx = 1;
3053   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3054        I != E; ++I, ++Idx) {
3055     if (Idx > 4)
3056       return false;
3057 
3058     if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
3059         F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
3060         F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
3061         F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
3062         F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
3063       return false;
3064 
3065     Type *ArgTy = I->getType();
3066     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3067       return false;
3068 
3069     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3070     if (!ArgVT.isSimple()) return false;
3071     switch (ArgVT.getSimpleVT().SimpleTy) {
3072     case MVT::i8:
3073     case MVT::i16:
3074     case MVT::i32:
3075       break;
3076     default:
3077       return false;
3078     }
3079   }
3080 
3081 
3082   static const MCPhysReg GPRArgRegs[] = {
3083     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3084   };
3085 
3086   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3087   Idx = 0;
3088   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
3089        I != E; ++I, ++Idx) {
3090     unsigned SrcReg = GPRArgRegs[Idx];
3091     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3092     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3093     // Without this, EmitLiveInCopies may eliminate the livein if its only
3094     // use is a bitcast (which isn't turned into an instruction).
3095     unsigned ResultReg = createResultReg(RC);
3096     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3097             TII.get(TargetOpcode::COPY),
3098             ResultReg).addReg(DstReg, getKillRegState(true));
3099     updateValueMap(&*I, ResultReg);
3100   }
3101 
3102   return true;
3103 }
3104 
3105 namespace llvm {
3106   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3107                                 const TargetLibraryInfo *libInfo) {
3108     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3109       return new ARMFastISel(funcInfo, libInfo);
3110 
3111     return nullptr;
3112   }
3113 }
3114