1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMSubtarget.h" 21 #include "ARMConstantPoolValue.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/IntrinsicInst.h" 28 #include "llvm/Module.h" 29 #include "llvm/Operator.h" 30 #include "llvm/CodeGen/Analysis.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Support/CallSite.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/ErrorHandling.h" 42 #include "llvm/Support/GetElementPtrTypeIterator.h" 43 #include "llvm/Target/TargetData.h" 44 #include "llvm/Target/TargetInstrInfo.h" 45 #include "llvm/Target/TargetLowering.h" 46 #include "llvm/Target/TargetMachine.h" 47 #include "llvm/Target/TargetOptions.h" 48 using namespace llvm; 49 50 static cl::opt<bool> 51 DisableARMFastISel("disable-arm-fast-isel", 52 cl::desc("Turn off experimental ARM fast-isel support"), 53 cl::init(false), cl::Hidden); 54 55 extern cl::opt<bool> EnableARMLongCalls; 56 57 namespace { 58 59 // All possible address modes, plus some. 60 typedef struct Address { 61 enum { 62 RegBase, 63 FrameIndexBase 64 } BaseType; 65 66 union { 67 unsigned Reg; 68 int FI; 69 } Base; 70 71 int Offset; 72 73 // Innocuous defaults for our address. 74 Address() 75 : BaseType(RegBase), Offset(0) { 76 Base.Reg = 0; 77 } 78 } Address; 79 80 class ARMFastISel : public FastISel { 81 82 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 83 /// make the right decision when generating code for different targets. 84 const ARMSubtarget *Subtarget; 85 const TargetMachine &TM; 86 const TargetInstrInfo &TII; 87 const TargetLowering &TLI; 88 ARMFunctionInfo *AFI; 89 90 // Convenience variables to avoid some queries. 91 bool isThumb2; 92 LLVMContext *Context; 93 94 public: 95 explicit ARMFastISel(FunctionLoweringInfo &funcInfo) 96 : FastISel(funcInfo), 97 TM(funcInfo.MF->getTarget()), 98 TII(*TM.getInstrInfo()), 99 TLI(*TM.getTargetLowering()) { 100 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 101 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 102 isThumb2 = AFI->isThumbFunction(); 103 Context = &funcInfo.Fn->getContext(); 104 } 105 106 // Code from FastISel.cpp. 107 virtual unsigned FastEmitInst_(unsigned MachineInstOpcode, 108 const TargetRegisterClass *RC); 109 virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode, 110 const TargetRegisterClass *RC, 111 unsigned Op0, bool Op0IsKill); 112 virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, bool Op0IsKill, 115 unsigned Op1, bool Op1IsKill); 116 virtual unsigned FastEmitInst_rrr(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, 118 unsigned Op0, bool Op0IsKill, 119 unsigned Op1, bool Op1IsKill, 120 unsigned Op2, bool Op2IsKill); 121 virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 unsigned Op0, bool Op0IsKill, 124 uint64_t Imm); 125 virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode, 126 const TargetRegisterClass *RC, 127 unsigned Op0, bool Op0IsKill, 128 const ConstantFP *FPImm); 129 virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode, 130 const TargetRegisterClass *RC, 131 unsigned Op0, bool Op0IsKill, 132 unsigned Op1, bool Op1IsKill, 133 uint64_t Imm); 134 virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode, 135 const TargetRegisterClass *RC, 136 uint64_t Imm); 137 virtual unsigned FastEmitInst_ii(unsigned MachineInstOpcode, 138 const TargetRegisterClass *RC, 139 uint64_t Imm1, uint64_t Imm2); 140 141 virtual unsigned FastEmitInst_extractsubreg(MVT RetVT, 142 unsigned Op0, bool Op0IsKill, 143 uint32_t Idx); 144 145 // Backend specific FastISel code. 146 virtual bool TargetSelectInstruction(const Instruction *I); 147 virtual unsigned TargetMaterializeConstant(const Constant *C); 148 virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); 149 virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo, 150 const LoadInst *LI); 151 152 #include "ARMGenFastISel.inc" 153 154 // Instruction selection routines. 155 private: 156 bool SelectLoad(const Instruction *I); 157 bool SelectStore(const Instruction *I); 158 bool SelectBranch(const Instruction *I); 159 bool SelectIndirectBr(const Instruction *I); 160 bool SelectCmp(const Instruction *I); 161 bool SelectFPExt(const Instruction *I); 162 bool SelectFPTrunc(const Instruction *I); 163 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 164 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 165 bool SelectIToFP(const Instruction *I, bool isSigned); 166 bool SelectFPToI(const Instruction *I, bool isSigned); 167 bool SelectDiv(const Instruction *I, bool isSigned); 168 bool SelectRem(const Instruction *I, bool isSigned); 169 bool SelectCall(const Instruction *I, const char *IntrMemName); 170 bool SelectIntrinsicCall(const IntrinsicInst &I); 171 bool SelectSelect(const Instruction *I); 172 bool SelectRet(const Instruction *I); 173 bool SelectTrunc(const Instruction *I); 174 bool SelectIntExt(const Instruction *I); 175 176 // Utility routines. 177 private: 178 bool isTypeLegal(Type *Ty, MVT &VT); 179 bool isLoadTypeLegal(Type *Ty, MVT &VT); 180 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 181 bool isZExt); 182 bool ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr, 183 unsigned Alignment = 0, bool isZExt = true, 184 bool allocReg = true); 185 186 bool ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr, 187 unsigned Alignment = 0); 188 bool ARMComputeAddress(const Value *Obj, Address &Addr); 189 void ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3); 190 bool ARMIsMemCpySmall(uint64_t Len); 191 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len); 192 unsigned ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, bool isZExt); 193 unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT); 194 unsigned ARMMaterializeInt(const Constant *C, EVT VT); 195 unsigned ARMMaterializeGV(const GlobalValue *GV, EVT VT); 196 unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg); 197 unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg); 198 unsigned ARMSelectCallOp(const GlobalValue *GV); 199 200 // Call handling routines. 201 private: 202 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return); 203 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 204 SmallVectorImpl<unsigned> &ArgRegs, 205 SmallVectorImpl<MVT> &ArgVTs, 206 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 207 SmallVectorImpl<unsigned> &RegArgs, 208 CallingConv::ID CC, 209 unsigned &NumBytes); 210 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 211 const Instruction *I, CallingConv::ID CC, 212 unsigned &NumBytes); 213 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 214 215 // OptionalDef handling routines. 216 private: 217 bool isARMNEONPred(const MachineInstr *MI); 218 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 219 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 220 void AddLoadStoreOperands(EVT VT, Address &Addr, 221 const MachineInstrBuilder &MIB, 222 unsigned Flags, bool useAM3); 223 }; 224 225 } // end anonymous namespace 226 227 #include "ARMGenCallingConv.inc" 228 229 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 230 // we don't care about implicit defs here, just places we'll need to add a 231 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 232 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 233 if (!MI->hasOptionalDef()) 234 return false; 235 236 // Look to see if our OptionalDef is defining CPSR or CCR. 237 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 238 const MachineOperand &MO = MI->getOperand(i); 239 if (!MO.isReg() || !MO.isDef()) continue; 240 if (MO.getReg() == ARM::CPSR) 241 *CPSR = true; 242 } 243 return true; 244 } 245 246 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 247 const MCInstrDesc &MCID = MI->getDesc(); 248 249 // If we're a thumb2 or not NEON function we were handled via isPredicable. 250 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 251 AFI->isThumb2Function()) 252 return false; 253 254 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 255 if (MCID.OpInfo[i].isPredicate()) 256 return true; 257 258 return false; 259 } 260 261 // If the machine is predicable go ahead and add the predicate operands, if 262 // it needs default CC operands add those. 263 // TODO: If we want to support thumb1 then we'll need to deal with optional 264 // CPSR defs that need to be added before the remaining operands. See s_cc_out 265 // for descriptions why. 266 const MachineInstrBuilder & 267 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 268 MachineInstr *MI = &*MIB; 269 270 // Do we use a predicate? or... 271 // Are we NEON in ARM mode and have a predicate operand? If so, I know 272 // we're not predicable but add it anyways. 273 if (TII.isPredicable(MI) || isARMNEONPred(MI)) 274 AddDefaultPred(MIB); 275 276 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 277 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 278 bool CPSR = false; 279 if (DefinesOptionalPredicate(MI, &CPSR)) { 280 if (CPSR) 281 AddDefaultT1CC(MIB); 282 else 283 AddDefaultCC(MIB); 284 } 285 return MIB; 286 } 287 288 unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode, 289 const TargetRegisterClass* RC) { 290 unsigned ResultReg = createResultReg(RC); 291 const MCInstrDesc &II = TII.get(MachineInstOpcode); 292 293 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)); 294 return ResultReg; 295 } 296 297 unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode, 298 const TargetRegisterClass *RC, 299 unsigned Op0, bool Op0IsKill) { 300 unsigned ResultReg = createResultReg(RC); 301 const MCInstrDesc &II = TII.get(MachineInstOpcode); 302 303 if (II.getNumDefs() >= 1) { 304 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 305 .addReg(Op0, Op0IsKill * RegState::Kill)); 306 } else { 307 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 308 .addReg(Op0, Op0IsKill * RegState::Kill)); 309 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 310 TII.get(TargetOpcode::COPY), ResultReg) 311 .addReg(II.ImplicitDefs[0])); 312 } 313 return ResultReg; 314 } 315 316 unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 317 const TargetRegisterClass *RC, 318 unsigned Op0, bool Op0IsKill, 319 unsigned Op1, bool Op1IsKill) { 320 unsigned ResultReg = createResultReg(RC); 321 const MCInstrDesc &II = TII.get(MachineInstOpcode); 322 323 if (II.getNumDefs() >= 1) { 324 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 325 .addReg(Op0, Op0IsKill * RegState::Kill) 326 .addReg(Op1, Op1IsKill * RegState::Kill)); 327 } else { 328 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 329 .addReg(Op0, Op0IsKill * RegState::Kill) 330 .addReg(Op1, Op1IsKill * RegState::Kill)); 331 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 332 TII.get(TargetOpcode::COPY), ResultReg) 333 .addReg(II.ImplicitDefs[0])); 334 } 335 return ResultReg; 336 } 337 338 unsigned ARMFastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 339 const TargetRegisterClass *RC, 340 unsigned Op0, bool Op0IsKill, 341 unsigned Op1, bool Op1IsKill, 342 unsigned Op2, bool Op2IsKill) { 343 unsigned ResultReg = createResultReg(RC); 344 const MCInstrDesc &II = TII.get(MachineInstOpcode); 345 346 if (II.getNumDefs() >= 1) { 347 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 348 .addReg(Op0, Op0IsKill * RegState::Kill) 349 .addReg(Op1, Op1IsKill * RegState::Kill) 350 .addReg(Op2, Op2IsKill * RegState::Kill)); 351 } else { 352 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 353 .addReg(Op0, Op0IsKill * RegState::Kill) 354 .addReg(Op1, Op1IsKill * RegState::Kill) 355 .addReg(Op2, Op2IsKill * RegState::Kill)); 356 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 357 TII.get(TargetOpcode::COPY), ResultReg) 358 .addReg(II.ImplicitDefs[0])); 359 } 360 return ResultReg; 361 } 362 363 unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 364 const TargetRegisterClass *RC, 365 unsigned Op0, bool Op0IsKill, 366 uint64_t Imm) { 367 unsigned ResultReg = createResultReg(RC); 368 const MCInstrDesc &II = TII.get(MachineInstOpcode); 369 370 if (II.getNumDefs() >= 1) { 371 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 372 .addReg(Op0, Op0IsKill * RegState::Kill) 373 .addImm(Imm)); 374 } else { 375 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 376 .addReg(Op0, Op0IsKill * RegState::Kill) 377 .addImm(Imm)); 378 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 379 TII.get(TargetOpcode::COPY), ResultReg) 380 .addReg(II.ImplicitDefs[0])); 381 } 382 return ResultReg; 383 } 384 385 unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 386 const TargetRegisterClass *RC, 387 unsigned Op0, bool Op0IsKill, 388 const ConstantFP *FPImm) { 389 unsigned ResultReg = createResultReg(RC); 390 const MCInstrDesc &II = TII.get(MachineInstOpcode); 391 392 if (II.getNumDefs() >= 1) { 393 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 394 .addReg(Op0, Op0IsKill * RegState::Kill) 395 .addFPImm(FPImm)); 396 } else { 397 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 398 .addReg(Op0, Op0IsKill * RegState::Kill) 399 .addFPImm(FPImm)); 400 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 401 TII.get(TargetOpcode::COPY), ResultReg) 402 .addReg(II.ImplicitDefs[0])); 403 } 404 return ResultReg; 405 } 406 407 unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 408 const TargetRegisterClass *RC, 409 unsigned Op0, bool Op0IsKill, 410 unsigned Op1, bool Op1IsKill, 411 uint64_t Imm) { 412 unsigned ResultReg = createResultReg(RC); 413 const MCInstrDesc &II = TII.get(MachineInstOpcode); 414 415 if (II.getNumDefs() >= 1) { 416 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 417 .addReg(Op0, Op0IsKill * RegState::Kill) 418 .addReg(Op1, Op1IsKill * RegState::Kill) 419 .addImm(Imm)); 420 } else { 421 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 422 .addReg(Op0, Op0IsKill * RegState::Kill) 423 .addReg(Op1, Op1IsKill * RegState::Kill) 424 .addImm(Imm)); 425 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 426 TII.get(TargetOpcode::COPY), ResultReg) 427 .addReg(II.ImplicitDefs[0])); 428 } 429 return ResultReg; 430 } 431 432 unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode, 433 const TargetRegisterClass *RC, 434 uint64_t Imm) { 435 unsigned ResultReg = createResultReg(RC); 436 const MCInstrDesc &II = TII.get(MachineInstOpcode); 437 438 if (II.getNumDefs() >= 1) { 439 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 440 .addImm(Imm)); 441 } else { 442 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 443 .addImm(Imm)); 444 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 445 TII.get(TargetOpcode::COPY), ResultReg) 446 .addReg(II.ImplicitDefs[0])); 447 } 448 return ResultReg; 449 } 450 451 unsigned ARMFastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 452 const TargetRegisterClass *RC, 453 uint64_t Imm1, uint64_t Imm2) { 454 unsigned ResultReg = createResultReg(RC); 455 const MCInstrDesc &II = TII.get(MachineInstOpcode); 456 457 if (II.getNumDefs() >= 1) { 458 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg) 459 .addImm(Imm1).addImm(Imm2)); 460 } else { 461 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II) 462 .addImm(Imm1).addImm(Imm2)); 463 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 464 TII.get(TargetOpcode::COPY), 465 ResultReg) 466 .addReg(II.ImplicitDefs[0])); 467 } 468 return ResultReg; 469 } 470 471 unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT, 472 unsigned Op0, bool Op0IsKill, 473 uint32_t Idx) { 474 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 475 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 476 "Cannot yet extract from physregs"); 477 478 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 479 DL, TII.get(TargetOpcode::COPY), ResultReg) 480 .addReg(Op0, getKillRegState(Op0IsKill), Idx)); 481 return ResultReg; 482 } 483 484 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 485 // checks from the various callers. 486 unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) { 487 if (VT == MVT::f64) return 0; 488 489 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 490 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 491 TII.get(ARM::VMOVSR), MoveReg) 492 .addReg(SrcReg)); 493 return MoveReg; 494 } 495 496 unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) { 497 if (VT == MVT::i64) return 0; 498 499 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 500 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 501 TII.get(ARM::VMOVRS), MoveReg) 502 .addReg(SrcReg)); 503 return MoveReg; 504 } 505 506 // For double width floating point we need to materialize two constants 507 // (the high and the low) into integer registers then use a move to get 508 // the combined constant into an FP reg. 509 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) { 510 const APFloat Val = CFP->getValueAPF(); 511 bool is64bit = VT == MVT::f64; 512 513 // This checks to see if we can use VFP3 instructions to materialize 514 // a constant, otherwise we have to go through the constant pool. 515 if (TLI.isFPImmLegal(Val, VT)) { 516 int Imm; 517 unsigned Opc; 518 if (is64bit) { 519 Imm = ARM_AM::getFP64Imm(Val); 520 Opc = ARM::FCONSTD; 521 } else { 522 Imm = ARM_AM::getFP32Imm(Val); 523 Opc = ARM::FCONSTS; 524 } 525 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 526 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 527 DestReg) 528 .addImm(Imm)); 529 return DestReg; 530 } 531 532 // Require VFP2 for loading fp constants. 533 if (!Subtarget->hasVFP2()) return false; 534 535 // MachineConstantPool wants an explicit alignment. 536 unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); 537 if (Align == 0) { 538 // TODO: Figure out if this is correct. 539 Align = TD.getTypeAllocSize(CFP->getType()); 540 } 541 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 542 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 543 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 544 545 // The extra reg is for addrmode5. 546 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 547 DestReg) 548 .addConstantPoolIndex(Idx) 549 .addReg(0)); 550 return DestReg; 551 } 552 553 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, EVT VT) { 554 555 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 556 return false; 557 558 // If we can do this in a single instruction without a constant pool entry 559 // do so now. 560 const ConstantInt *CI = cast<ConstantInt>(C); 561 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 562 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 563 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 564 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 565 TII.get(Opc), ImmReg) 566 .addImm(CI->getZExtValue())); 567 return ImmReg; 568 } 569 570 // Use MVN to emit negative constants. 571 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 572 unsigned Imm = (unsigned)~(CI->getSExtValue()); 573 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 574 (ARM_AM::getSOImmVal(Imm) != -1); 575 if (UseImm) { 576 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 577 unsigned ImmReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 578 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 579 TII.get(Opc), ImmReg) 580 .addImm(Imm)); 581 return ImmReg; 582 } 583 } 584 585 // Load from constant pool. For now 32-bit only. 586 if (VT != MVT::i32) 587 return false; 588 589 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 590 591 // MachineConstantPool wants an explicit alignment. 592 unsigned Align = TD.getPrefTypeAlignment(C->getType()); 593 if (Align == 0) { 594 // TODO: Figure out if this is correct. 595 Align = TD.getTypeAllocSize(C->getType()); 596 } 597 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 598 599 if (isThumb2) 600 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 601 TII.get(ARM::t2LDRpci), DestReg) 602 .addConstantPoolIndex(Idx)); 603 else 604 // The extra immediate is for addrmode2. 605 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 606 TII.get(ARM::LDRcp), DestReg) 607 .addConstantPoolIndex(Idx) 608 .addImm(0)); 609 610 return DestReg; 611 } 612 613 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, EVT VT) { 614 // For now 32-bit only. 615 if (VT != MVT::i32) return 0; 616 617 Reloc::Model RelocM = TM.getRelocationModel(); 618 619 // TODO: Need more magic for ARM PIC. 620 if (!isThumb2 && (RelocM == Reloc::PIC_)) return 0; 621 622 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 623 624 // Use movw+movt when possible, it avoids constant pool entries. 625 // Darwin targets don't support movt with Reloc::Static, see 626 // ARMTargetLowering::LowerGlobalAddressDarwin. Other targets only support 627 // static movt relocations. 628 if (Subtarget->useMovt() && 629 Subtarget->isTargetDarwin() == (RelocM != Reloc::Static)) { 630 unsigned Opc; 631 switch (RelocM) { 632 case Reloc::PIC_: 633 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 634 break; 635 case Reloc::DynamicNoPIC: 636 Opc = isThumb2 ? ARM::t2MOV_ga_dyn : ARM::MOV_ga_dyn; 637 break; 638 default: 639 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 640 break; 641 } 642 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 643 DestReg).addGlobalAddress(GV)); 644 } else { 645 // MachineConstantPool wants an explicit alignment. 646 unsigned Align = TD.getPrefTypeAlignment(GV->getType()); 647 if (Align == 0) { 648 // TODO: Figure out if this is correct. 649 Align = TD.getTypeAllocSize(GV->getType()); 650 } 651 652 // Grab index. 653 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 654 (Subtarget->isThumb() ? 4 : 8); 655 unsigned Id = AFI->createPICLabelUId(); 656 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 657 ARMCP::CPValue, 658 PCAdj); 659 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 660 661 // Load value. 662 MachineInstrBuilder MIB; 663 if (isThumb2) { 664 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 665 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) 666 .addConstantPoolIndex(Idx); 667 if (RelocM == Reloc::PIC_) 668 MIB.addImm(Id); 669 } else { 670 // The extra immediate is for addrmode2. 671 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRcp), 672 DestReg) 673 .addConstantPoolIndex(Idx) 674 .addImm(0); 675 } 676 AddOptionalDefs(MIB); 677 } 678 679 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) { 680 MachineInstrBuilder MIB; 681 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 682 if (isThumb2) 683 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 684 TII.get(ARM::t2LDRi12), NewDestReg) 685 .addReg(DestReg) 686 .addImm(0); 687 else 688 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(ARM::LDRi12), 689 NewDestReg) 690 .addReg(DestReg) 691 .addImm(0); 692 DestReg = NewDestReg; 693 AddOptionalDefs(MIB); 694 } 695 696 return DestReg; 697 } 698 699 unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) { 700 EVT VT = TLI.getValueType(C->getType(), true); 701 702 // Only handle simple types. 703 if (!VT.isSimple()) return 0; 704 705 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 706 return ARMMaterializeFP(CFP, VT); 707 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 708 return ARMMaterializeGV(GV, VT); 709 else if (isa<ConstantInt>(C)) 710 return ARMMaterializeInt(C, VT); 711 712 return 0; 713 } 714 715 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 716 717 unsigned ARMFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { 718 // Don't handle dynamic allocas. 719 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 720 721 MVT VT; 722 if (!isLoadTypeLegal(AI->getType(), VT)) return false; 723 724 DenseMap<const AllocaInst*, int>::iterator SI = 725 FuncInfo.StaticAllocaMap.find(AI); 726 727 // This will get lowered later into the correct offsets and registers 728 // via rewriteXFrameIndex. 729 if (SI != FuncInfo.StaticAllocaMap.end()) { 730 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 731 unsigned ResultReg = createResultReg(RC); 732 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 733 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 734 TII.get(Opc), ResultReg) 735 .addFrameIndex(SI->second) 736 .addImm(0)); 737 return ResultReg; 738 } 739 740 return 0; 741 } 742 743 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 744 EVT evt = TLI.getValueType(Ty, true); 745 746 // Only handle simple types. 747 if (evt == MVT::Other || !evt.isSimple()) return false; 748 VT = evt.getSimpleVT(); 749 750 // Handle all legal types, i.e. a register that will directly hold this 751 // value. 752 return TLI.isTypeLegal(VT); 753 } 754 755 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 756 if (isTypeLegal(Ty, VT)) return true; 757 758 // If this is a type than can be sign or zero-extended to a basic operation 759 // go ahead and accept it now. 760 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 761 return true; 762 763 return false; 764 } 765 766 // Computes the address to get to an object. 767 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 768 // Some boilerplate from the X86 FastISel. 769 const User *U = NULL; 770 unsigned Opcode = Instruction::UserOp1; 771 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 772 // Don't walk into other basic blocks unless the object is an alloca from 773 // another block, otherwise it may not have a virtual register assigned. 774 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 775 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 776 Opcode = I->getOpcode(); 777 U = I; 778 } 779 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 780 Opcode = C->getOpcode(); 781 U = C; 782 } 783 784 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 785 if (Ty->getAddressSpace() > 255) 786 // Fast instruction selection doesn't support the special 787 // address spaces. 788 return false; 789 790 switch (Opcode) { 791 default: 792 break; 793 case Instruction::BitCast: { 794 // Look through bitcasts. 795 return ARMComputeAddress(U->getOperand(0), Addr); 796 } 797 case Instruction::IntToPtr: { 798 // Look past no-op inttoptrs. 799 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 800 return ARMComputeAddress(U->getOperand(0), Addr); 801 break; 802 } 803 case Instruction::PtrToInt: { 804 // Look past no-op ptrtoints. 805 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 806 return ARMComputeAddress(U->getOperand(0), Addr); 807 break; 808 } 809 case Instruction::GetElementPtr: { 810 Address SavedAddr = Addr; 811 int TmpOffset = Addr.Offset; 812 813 // Iterate through the GEP folding the constants into offsets where 814 // we can. 815 gep_type_iterator GTI = gep_type_begin(U); 816 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 817 i != e; ++i, ++GTI) { 818 const Value *Op = *i; 819 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 820 const StructLayout *SL = TD.getStructLayout(STy); 821 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 822 TmpOffset += SL->getElementOffset(Idx); 823 } else { 824 uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); 825 for (;;) { 826 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 827 // Constant-offset addressing. 828 TmpOffset += CI->getSExtValue() * S; 829 break; 830 } 831 if (isa<AddOperator>(Op) && 832 (!isa<Instruction>(Op) || 833 FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()] 834 == FuncInfo.MBB) && 835 isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { 836 // An add (in the same block) with a constant operand. Fold the 837 // constant. 838 ConstantInt *CI = 839 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 840 TmpOffset += CI->getSExtValue() * S; 841 // Iterate on the other operand. 842 Op = cast<AddOperator>(Op)->getOperand(0); 843 continue; 844 } 845 // Unsupported 846 goto unsupported_gep; 847 } 848 } 849 } 850 851 // Try to grab the base operand now. 852 Addr.Offset = TmpOffset; 853 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 854 855 // We failed, restore everything and try the other options. 856 Addr = SavedAddr; 857 858 unsupported_gep: 859 break; 860 } 861 case Instruction::Alloca: { 862 const AllocaInst *AI = cast<AllocaInst>(Obj); 863 DenseMap<const AllocaInst*, int>::iterator SI = 864 FuncInfo.StaticAllocaMap.find(AI); 865 if (SI != FuncInfo.StaticAllocaMap.end()) { 866 Addr.BaseType = Address::FrameIndexBase; 867 Addr.Base.FI = SI->second; 868 return true; 869 } 870 break; 871 } 872 } 873 874 // Try to get this in a register if nothing else has worked. 875 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 876 return Addr.Base.Reg != 0; 877 } 878 879 void ARMFastISel::ARMSimplifyAddress(Address &Addr, EVT VT, bool useAM3) { 880 881 assert(VT.isSimple() && "Non-simple types are invalid here!"); 882 883 bool needsLowering = false; 884 switch (VT.getSimpleVT().SimpleTy) { 885 default: llvm_unreachable("Unhandled load/store type!"); 886 case MVT::i1: 887 case MVT::i8: 888 case MVT::i16: 889 case MVT::i32: 890 if (!useAM3) { 891 // Integer loads/stores handle 12-bit offsets. 892 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 893 // Handle negative offsets. 894 if (needsLowering && isThumb2) 895 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 896 Addr.Offset > -256); 897 } else { 898 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 899 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 900 } 901 break; 902 case MVT::f32: 903 case MVT::f64: 904 // Floating point operands handle 8-bit offsets. 905 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 906 break; 907 } 908 909 // If this is a stack pointer and the offset needs to be simplified then 910 // put the alloca address into a register, set the base type back to 911 // register and continue. This should almost never happen. 912 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 913 const TargetRegisterClass *RC = isThumb2 ? 914 (const TargetRegisterClass*)&ARM::tGPRRegClass : 915 (const TargetRegisterClass*)&ARM::GPRRegClass; 916 unsigned ResultReg = createResultReg(RC); 917 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 918 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 919 TII.get(Opc), ResultReg) 920 .addFrameIndex(Addr.Base.FI) 921 .addImm(0)); 922 Addr.Base.Reg = ResultReg; 923 Addr.BaseType = Address::RegBase; 924 } 925 926 // Since the offset is too large for the load/store instruction 927 // get the reg+offset into a register. 928 if (needsLowering) { 929 Addr.Base.Reg = FastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 930 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 931 Addr.Offset = 0; 932 } 933 } 934 935 void ARMFastISel::AddLoadStoreOperands(EVT VT, Address &Addr, 936 const MachineInstrBuilder &MIB, 937 unsigned Flags, bool useAM3) { 938 // addrmode5 output depends on the selection dag addressing dividing the 939 // offset by 4 that it then later multiplies. Do this here as well. 940 if (VT.getSimpleVT().SimpleTy == MVT::f32 || 941 VT.getSimpleVT().SimpleTy == MVT::f64) 942 Addr.Offset /= 4; 943 944 // Frame base works a bit differently. Handle it separately. 945 if (Addr.BaseType == Address::FrameIndexBase) { 946 int FI = Addr.Base.FI; 947 int Offset = Addr.Offset; 948 MachineMemOperand *MMO = 949 FuncInfo.MF->getMachineMemOperand( 950 MachinePointerInfo::getFixedStack(FI, Offset), 951 Flags, 952 MFI.getObjectSize(FI), 953 MFI.getObjectAlignment(FI)); 954 // Now add the rest of the operands. 955 MIB.addFrameIndex(FI); 956 957 // ARM halfword load/stores and signed byte loads need an additional 958 // operand. 959 if (useAM3) { 960 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 961 MIB.addReg(0); 962 MIB.addImm(Imm); 963 } else { 964 MIB.addImm(Addr.Offset); 965 } 966 MIB.addMemOperand(MMO); 967 } else { 968 // Now add the rest of the operands. 969 MIB.addReg(Addr.Base.Reg); 970 971 // ARM halfword load/stores and signed byte loads need an additional 972 // operand. 973 if (useAM3) { 974 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 975 MIB.addReg(0); 976 MIB.addImm(Imm); 977 } else { 978 MIB.addImm(Addr.Offset); 979 } 980 } 981 AddOptionalDefs(MIB); 982 } 983 984 bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg, Address &Addr, 985 unsigned Alignment, bool isZExt, bool allocReg) { 986 assert(VT.isSimple() && "Non-simple types are invalid here!"); 987 unsigned Opc; 988 bool useAM3 = false; 989 bool needVMOV = false; 990 const TargetRegisterClass *RC; 991 switch (VT.getSimpleVT().SimpleTy) { 992 // This is mostly going to be Neon/vector support. 993 default: return false; 994 case MVT::i1: 995 case MVT::i8: 996 if (isThumb2) { 997 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 998 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 999 else 1000 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 1001 } else { 1002 if (isZExt) { 1003 Opc = ARM::LDRBi12; 1004 } else { 1005 Opc = ARM::LDRSB; 1006 useAM3 = true; 1007 } 1008 } 1009 RC = &ARM::GPRRegClass; 1010 break; 1011 case MVT::i16: 1012 if (isThumb2) { 1013 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1014 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 1015 else 1016 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 1017 } else { 1018 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 1019 useAM3 = true; 1020 } 1021 RC = &ARM::GPRRegClass; 1022 break; 1023 case MVT::i32: 1024 if (isThumb2) { 1025 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1026 Opc = ARM::t2LDRi8; 1027 else 1028 Opc = ARM::t2LDRi12; 1029 } else { 1030 Opc = ARM::LDRi12; 1031 } 1032 RC = &ARM::GPRRegClass; 1033 break; 1034 case MVT::f32: 1035 if (!Subtarget->hasVFP2()) return false; 1036 // Unaligned loads need special handling. Floats require word-alignment. 1037 if (Alignment && Alignment < 4) { 1038 needVMOV = true; 1039 VT = MVT::i32; 1040 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 1041 RC = &ARM::GPRRegClass; 1042 } else { 1043 Opc = ARM::VLDRS; 1044 RC = TLI.getRegClassFor(VT); 1045 } 1046 break; 1047 case MVT::f64: 1048 if (!Subtarget->hasVFP2()) return false; 1049 // FIXME: Unaligned loads need special handling. Doublewords require 1050 // word-alignment. 1051 if (Alignment && Alignment < 4) 1052 return false; 1053 1054 Opc = ARM::VLDRD; 1055 RC = TLI.getRegClassFor(VT); 1056 break; 1057 } 1058 // Simplify this down to something we can handle. 1059 ARMSimplifyAddress(Addr, VT, useAM3); 1060 1061 // Create the base instruction, then add the operands. 1062 if (allocReg) 1063 ResultReg = createResultReg(RC); 1064 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1065 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1066 TII.get(Opc), ResultReg); 1067 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1068 1069 // If we had an unaligned load of a float we've converted it to an regular 1070 // load. Now we must move from the GRP to the FP register. 1071 if (needVMOV) { 1072 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1073 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1074 TII.get(ARM::VMOVSR), MoveReg) 1075 .addReg(ResultReg)); 1076 ResultReg = MoveReg; 1077 } 1078 return true; 1079 } 1080 1081 bool ARMFastISel::SelectLoad(const Instruction *I) { 1082 // Atomic loads need special handling. 1083 if (cast<LoadInst>(I)->isAtomic()) 1084 return false; 1085 1086 // Verify we have a legal type before going any further. 1087 MVT VT; 1088 if (!isLoadTypeLegal(I->getType(), VT)) 1089 return false; 1090 1091 // See if we can handle this address. 1092 Address Addr; 1093 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1094 1095 unsigned ResultReg; 1096 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1097 return false; 1098 UpdateValueMap(I, ResultReg); 1099 return true; 1100 } 1101 1102 bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg, Address &Addr, 1103 unsigned Alignment) { 1104 unsigned StrOpc; 1105 bool useAM3 = false; 1106 switch (VT.getSimpleVT().SimpleTy) { 1107 // This is mostly going to be Neon/vector support. 1108 default: return false; 1109 case MVT::i1: { 1110 unsigned Res = createResultReg(isThumb2 ? 1111 (const TargetRegisterClass*)&ARM::tGPRRegClass : 1112 (const TargetRegisterClass*)&ARM::GPRRegClass); 1113 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1114 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1115 TII.get(Opc), Res) 1116 .addReg(SrcReg).addImm(1)); 1117 SrcReg = Res; 1118 } // Fallthrough here. 1119 case MVT::i8: 1120 if (isThumb2) { 1121 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1122 StrOpc = ARM::t2STRBi8; 1123 else 1124 StrOpc = ARM::t2STRBi12; 1125 } else { 1126 StrOpc = ARM::STRBi12; 1127 } 1128 break; 1129 case MVT::i16: 1130 if (isThumb2) { 1131 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1132 StrOpc = ARM::t2STRHi8; 1133 else 1134 StrOpc = ARM::t2STRHi12; 1135 } else { 1136 StrOpc = ARM::STRH; 1137 useAM3 = true; 1138 } 1139 break; 1140 case MVT::i32: 1141 if (isThumb2) { 1142 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1143 StrOpc = ARM::t2STRi8; 1144 else 1145 StrOpc = ARM::t2STRi12; 1146 } else { 1147 StrOpc = ARM::STRi12; 1148 } 1149 break; 1150 case MVT::f32: 1151 if (!Subtarget->hasVFP2()) return false; 1152 // Unaligned stores need special handling. Floats require word-alignment. 1153 if (Alignment && Alignment < 4) { 1154 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1155 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1156 TII.get(ARM::VMOVRS), MoveReg) 1157 .addReg(SrcReg)); 1158 SrcReg = MoveReg; 1159 VT = MVT::i32; 1160 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1161 } else { 1162 StrOpc = ARM::VSTRS; 1163 } 1164 break; 1165 case MVT::f64: 1166 if (!Subtarget->hasVFP2()) return false; 1167 // FIXME: Unaligned stores need special handling. Doublewords require 1168 // word-alignment. 1169 if (Alignment && Alignment < 4) 1170 return false; 1171 1172 StrOpc = ARM::VSTRD; 1173 break; 1174 } 1175 // Simplify this down to something we can handle. 1176 ARMSimplifyAddress(Addr, VT, useAM3); 1177 1178 // Create the base instruction, then add the operands. 1179 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1180 TII.get(StrOpc)) 1181 .addReg(SrcReg); 1182 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1183 return true; 1184 } 1185 1186 bool ARMFastISel::SelectStore(const Instruction *I) { 1187 Value *Op0 = I->getOperand(0); 1188 unsigned SrcReg = 0; 1189 1190 // Atomic stores need special handling. 1191 if (cast<StoreInst>(I)->isAtomic()) 1192 return false; 1193 1194 // Verify we have a legal type before going any further. 1195 MVT VT; 1196 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1197 return false; 1198 1199 // Get the value to be stored into a register. 1200 SrcReg = getRegForValue(Op0); 1201 if (SrcReg == 0) return false; 1202 1203 // See if we can handle this address. 1204 Address Addr; 1205 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1206 return false; 1207 1208 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1209 return false; 1210 return true; 1211 } 1212 1213 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1214 switch (Pred) { 1215 // Needs two compares... 1216 case CmpInst::FCMP_ONE: 1217 case CmpInst::FCMP_UEQ: 1218 default: 1219 // AL is our "false" for now. The other two need more compares. 1220 return ARMCC::AL; 1221 case CmpInst::ICMP_EQ: 1222 case CmpInst::FCMP_OEQ: 1223 return ARMCC::EQ; 1224 case CmpInst::ICMP_SGT: 1225 case CmpInst::FCMP_OGT: 1226 return ARMCC::GT; 1227 case CmpInst::ICMP_SGE: 1228 case CmpInst::FCMP_OGE: 1229 return ARMCC::GE; 1230 case CmpInst::ICMP_UGT: 1231 case CmpInst::FCMP_UGT: 1232 return ARMCC::HI; 1233 case CmpInst::FCMP_OLT: 1234 return ARMCC::MI; 1235 case CmpInst::ICMP_ULE: 1236 case CmpInst::FCMP_OLE: 1237 return ARMCC::LS; 1238 case CmpInst::FCMP_ORD: 1239 return ARMCC::VC; 1240 case CmpInst::FCMP_UNO: 1241 return ARMCC::VS; 1242 case CmpInst::FCMP_UGE: 1243 return ARMCC::PL; 1244 case CmpInst::ICMP_SLT: 1245 case CmpInst::FCMP_ULT: 1246 return ARMCC::LT; 1247 case CmpInst::ICMP_SLE: 1248 case CmpInst::FCMP_ULE: 1249 return ARMCC::LE; 1250 case CmpInst::FCMP_UNE: 1251 case CmpInst::ICMP_NE: 1252 return ARMCC::NE; 1253 case CmpInst::ICMP_UGE: 1254 return ARMCC::HS; 1255 case CmpInst::ICMP_ULT: 1256 return ARMCC::LO; 1257 } 1258 } 1259 1260 bool ARMFastISel::SelectBranch(const Instruction *I) { 1261 const BranchInst *BI = cast<BranchInst>(I); 1262 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1263 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1264 1265 // Simple branch support. 1266 1267 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1268 // behavior. 1269 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1270 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1271 1272 // Get the compare predicate. 1273 // Try to take advantage of fallthrough opportunities. 1274 CmpInst::Predicate Predicate = CI->getPredicate(); 1275 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1276 std::swap(TBB, FBB); 1277 Predicate = CmpInst::getInversePredicate(Predicate); 1278 } 1279 1280 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1281 1282 // We may not handle every CC for now. 1283 if (ARMPred == ARMCC::AL) return false; 1284 1285 // Emit the compare. 1286 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1287 return false; 1288 1289 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1290 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1291 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1292 FastEmitBranch(FBB, DL); 1293 FuncInfo.MBB->addSuccessor(TBB); 1294 return true; 1295 } 1296 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1297 MVT SourceVT; 1298 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1299 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1300 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1301 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1302 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1303 TII.get(TstOpc)) 1304 .addReg(OpReg).addImm(1)); 1305 1306 unsigned CCMode = ARMCC::NE; 1307 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1308 std::swap(TBB, FBB); 1309 CCMode = ARMCC::EQ; 1310 } 1311 1312 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1313 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1314 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1315 1316 FastEmitBranch(FBB, DL); 1317 FuncInfo.MBB->addSuccessor(TBB); 1318 return true; 1319 } 1320 } else if (const ConstantInt *CI = 1321 dyn_cast<ConstantInt>(BI->getCondition())) { 1322 uint64_t Imm = CI->getZExtValue(); 1323 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1324 FastEmitBranch(Target, DL); 1325 return true; 1326 } 1327 1328 unsigned CmpReg = getRegForValue(BI->getCondition()); 1329 if (CmpReg == 0) return false; 1330 1331 // We've been divorced from our compare! Our block was split, and 1332 // now our compare lives in a predecessor block. We musn't 1333 // re-compare here, as the children of the compare aren't guaranteed 1334 // live across the block boundary (we *could* check for this). 1335 // Regardless, the compare has been done in the predecessor block, 1336 // and it left a value for us in a virtual register. Ergo, we test 1337 // the one-bit value left in the virtual register. 1338 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1339 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TstOpc)) 1340 .addReg(CmpReg).addImm(1)); 1341 1342 unsigned CCMode = ARMCC::NE; 1343 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1344 std::swap(TBB, FBB); 1345 CCMode = ARMCC::EQ; 1346 } 1347 1348 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1349 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc)) 1350 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1351 FastEmitBranch(FBB, DL); 1352 FuncInfo.MBB->addSuccessor(TBB); 1353 return true; 1354 } 1355 1356 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1357 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1358 if (AddrReg == 0) return false; 1359 1360 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)) 1362 .addReg(AddrReg)); 1363 return true; 1364 } 1365 1366 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1367 bool isZExt) { 1368 Type *Ty = Src1Value->getType(); 1369 EVT SrcVT = TLI.getValueType(Ty, true); 1370 if (!SrcVT.isSimple()) return false; 1371 1372 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1373 if (isFloat && !Subtarget->hasVFP2()) 1374 return false; 1375 1376 // Check to see if the 2nd operand is a constant that we can encode directly 1377 // in the compare. 1378 int Imm = 0; 1379 bool UseImm = false; 1380 bool isNegativeImm = false; 1381 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1382 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1383 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1384 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1385 SrcVT == MVT::i1) { 1386 const APInt &CIVal = ConstInt->getValue(); 1387 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1388 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1389 // then a cmn, because there is no way to represent 2147483648 as a 1390 // signed 32-bit int. 1391 if (Imm < 0 && Imm != (int)0x80000000) { 1392 isNegativeImm = true; 1393 Imm = -Imm; 1394 } 1395 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1396 (ARM_AM::getSOImmVal(Imm) != -1); 1397 } 1398 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1399 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1400 if (ConstFP->isZero() && !ConstFP->isNegative()) 1401 UseImm = true; 1402 } 1403 1404 unsigned CmpOpc; 1405 bool isICmp = true; 1406 bool needsExt = false; 1407 switch (SrcVT.getSimpleVT().SimpleTy) { 1408 default: return false; 1409 // TODO: Verify compares. 1410 case MVT::f32: 1411 isICmp = false; 1412 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1413 break; 1414 case MVT::f64: 1415 isICmp = false; 1416 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1417 break; 1418 case MVT::i1: 1419 case MVT::i8: 1420 case MVT::i16: 1421 needsExt = true; 1422 // Intentional fall-through. 1423 case MVT::i32: 1424 if (isThumb2) { 1425 if (!UseImm) 1426 CmpOpc = ARM::t2CMPrr; 1427 else 1428 CmpOpc = isNegativeImm ? ARM::t2CMNzri : ARM::t2CMPri; 1429 } else { 1430 if (!UseImm) 1431 CmpOpc = ARM::CMPrr; 1432 else 1433 CmpOpc = isNegativeImm ? ARM::CMNzri : ARM::CMPri; 1434 } 1435 break; 1436 } 1437 1438 unsigned SrcReg1 = getRegForValue(Src1Value); 1439 if (SrcReg1 == 0) return false; 1440 1441 unsigned SrcReg2 = 0; 1442 if (!UseImm) { 1443 SrcReg2 = getRegForValue(Src2Value); 1444 if (SrcReg2 == 0) return false; 1445 } 1446 1447 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1448 if (needsExt) { 1449 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1450 if (SrcReg1 == 0) return false; 1451 if (!UseImm) { 1452 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1453 if (SrcReg2 == 0) return false; 1454 } 1455 } 1456 1457 if (!UseImm) { 1458 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1459 TII.get(CmpOpc)) 1460 .addReg(SrcReg1).addReg(SrcReg2)); 1461 } else { 1462 MachineInstrBuilder MIB; 1463 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1464 .addReg(SrcReg1); 1465 1466 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1467 if (isICmp) 1468 MIB.addImm(Imm); 1469 AddOptionalDefs(MIB); 1470 } 1471 1472 // For floating point we need to move the result to a comparison register 1473 // that we can then use for branches. 1474 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1475 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1476 TII.get(ARM::FMSTAT))); 1477 return true; 1478 } 1479 1480 bool ARMFastISel::SelectCmp(const Instruction *I) { 1481 const CmpInst *CI = cast<CmpInst>(I); 1482 1483 // Get the compare predicate. 1484 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1485 1486 // We may not handle every CC for now. 1487 if (ARMPred == ARMCC::AL) return false; 1488 1489 // Emit the compare. 1490 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1491 return false; 1492 1493 // Now set a register based on the comparison. Explicitly set the predicates 1494 // here. 1495 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1496 const TargetRegisterClass *RC = isThumb2 ? 1497 (const TargetRegisterClass*)&ARM::rGPRRegClass : 1498 (const TargetRegisterClass*)&ARM::GPRRegClass; 1499 unsigned DestReg = createResultReg(RC); 1500 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1501 unsigned ZeroReg = TargetMaterializeConstant(Zero); 1502 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1503 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), DestReg) 1504 .addReg(ZeroReg).addImm(1) 1505 .addImm(ARMPred).addReg(ARM::CPSR); 1506 1507 UpdateValueMap(I, DestReg); 1508 return true; 1509 } 1510 1511 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1512 // Make sure we have VFP and that we're extending float to double. 1513 if (!Subtarget->hasVFP2()) return false; 1514 1515 Value *V = I->getOperand(0); 1516 if (!I->getType()->isDoubleTy() || 1517 !V->getType()->isFloatTy()) return false; 1518 1519 unsigned Op = getRegForValue(V); 1520 if (Op == 0) return false; 1521 1522 unsigned Result = createResultReg(&ARM::DPRRegClass); 1523 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1524 TII.get(ARM::VCVTDS), Result) 1525 .addReg(Op)); 1526 UpdateValueMap(I, Result); 1527 return true; 1528 } 1529 1530 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1531 // Make sure we have VFP and that we're truncating double to float. 1532 if (!Subtarget->hasVFP2()) return false; 1533 1534 Value *V = I->getOperand(0); 1535 if (!(I->getType()->isFloatTy() && 1536 V->getType()->isDoubleTy())) return false; 1537 1538 unsigned Op = getRegForValue(V); 1539 if (Op == 0) return false; 1540 1541 unsigned Result = createResultReg(&ARM::SPRRegClass); 1542 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1543 TII.get(ARM::VCVTSD), Result) 1544 .addReg(Op)); 1545 UpdateValueMap(I, Result); 1546 return true; 1547 } 1548 1549 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1550 // Make sure we have VFP. 1551 if (!Subtarget->hasVFP2()) return false; 1552 1553 MVT DstVT; 1554 Type *Ty = I->getType(); 1555 if (!isTypeLegal(Ty, DstVT)) 1556 return false; 1557 1558 Value *Src = I->getOperand(0); 1559 EVT SrcVT = TLI.getValueType(Src->getType(), true); 1560 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1561 return false; 1562 1563 unsigned SrcReg = getRegForValue(Src); 1564 if (SrcReg == 0) return false; 1565 1566 // Handle sign-extension. 1567 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1568 EVT DestVT = MVT::i32; 1569 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, 1570 /*isZExt*/!isSigned); 1571 if (SrcReg == 0) return false; 1572 } 1573 1574 // The conversion routine works on fp-reg to fp-reg and the operand above 1575 // was an integer, move it to the fp registers if possible. 1576 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1577 if (FP == 0) return false; 1578 1579 unsigned Opc; 1580 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1581 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1582 else return false; 1583 1584 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1585 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1586 ResultReg) 1587 .addReg(FP)); 1588 UpdateValueMap(I, ResultReg); 1589 return true; 1590 } 1591 1592 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1593 // Make sure we have VFP. 1594 if (!Subtarget->hasVFP2()) return false; 1595 1596 MVT DstVT; 1597 Type *RetTy = I->getType(); 1598 if (!isTypeLegal(RetTy, DstVT)) 1599 return false; 1600 1601 unsigned Op = getRegForValue(I->getOperand(0)); 1602 if (Op == 0) return false; 1603 1604 unsigned Opc; 1605 Type *OpTy = I->getOperand(0)->getType(); 1606 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1607 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1608 else return false; 1609 1610 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1611 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1612 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), 1613 ResultReg) 1614 .addReg(Op)); 1615 1616 // This result needs to be in an integer register, but the conversion only 1617 // takes place in fp-regs. 1618 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1619 if (IntReg == 0) return false; 1620 1621 UpdateValueMap(I, IntReg); 1622 return true; 1623 } 1624 1625 bool ARMFastISel::SelectSelect(const Instruction *I) { 1626 MVT VT; 1627 if (!isTypeLegal(I->getType(), VT)) 1628 return false; 1629 1630 // Things need to be register sized for register moves. 1631 if (VT != MVT::i32) return false; 1632 const TargetRegisterClass *RC = TLI.getRegClassFor(VT); 1633 1634 unsigned CondReg = getRegForValue(I->getOperand(0)); 1635 if (CondReg == 0) return false; 1636 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1637 if (Op1Reg == 0) return false; 1638 1639 // Check to see if we can use an immediate in the conditional move. 1640 int Imm = 0; 1641 bool UseImm = false; 1642 bool isNegativeImm = false; 1643 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1644 assert (VT == MVT::i32 && "Expecting an i32."); 1645 Imm = (int)ConstInt->getValue().getZExtValue(); 1646 if (Imm < 0) { 1647 isNegativeImm = true; 1648 Imm = ~Imm; 1649 } 1650 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1651 (ARM_AM::getSOImmVal(Imm) != -1); 1652 } 1653 1654 unsigned Op2Reg = 0; 1655 if (!UseImm) { 1656 Op2Reg = getRegForValue(I->getOperand(2)); 1657 if (Op2Reg == 0) return false; 1658 } 1659 1660 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 1661 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc)) 1662 .addReg(CondReg).addImm(0)); 1663 1664 unsigned MovCCOpc; 1665 if (!UseImm) { 1666 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1667 } else { 1668 if (!isNegativeImm) { 1669 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1670 } else { 1671 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1672 } 1673 } 1674 unsigned ResultReg = createResultReg(RC); 1675 if (!UseImm) 1676 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1677 .addReg(Op2Reg).addReg(Op1Reg).addImm(ARMCC::NE).addReg(ARM::CPSR); 1678 else 1679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(MovCCOpc), ResultReg) 1680 .addReg(Op1Reg).addImm(Imm).addImm(ARMCC::EQ).addReg(ARM::CPSR); 1681 UpdateValueMap(I, ResultReg); 1682 return true; 1683 } 1684 1685 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1686 MVT VT; 1687 Type *Ty = I->getType(); 1688 if (!isTypeLegal(Ty, VT)) 1689 return false; 1690 1691 // If we have integer div support we should have selected this automagically. 1692 // In case we have a real miss go ahead and return false and we'll pick 1693 // it up later. 1694 if (Subtarget->hasDivide()) return false; 1695 1696 // Otherwise emit a libcall. 1697 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1698 if (VT == MVT::i8) 1699 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1700 else if (VT == MVT::i16) 1701 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1702 else if (VT == MVT::i32) 1703 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1704 else if (VT == MVT::i64) 1705 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1706 else if (VT == MVT::i128) 1707 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1708 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1709 1710 return ARMEmitLibcall(I, LC); 1711 } 1712 1713 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1714 MVT VT; 1715 Type *Ty = I->getType(); 1716 if (!isTypeLegal(Ty, VT)) 1717 return false; 1718 1719 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1720 if (VT == MVT::i8) 1721 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1722 else if (VT == MVT::i16) 1723 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1724 else if (VT == MVT::i32) 1725 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1726 else if (VT == MVT::i64) 1727 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1728 else if (VT == MVT::i128) 1729 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1730 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1731 1732 return ARMEmitLibcall(I, LC); 1733 } 1734 1735 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1736 EVT DestVT = TLI.getValueType(I->getType(), true); 1737 1738 // We can get here in the case when we have a binary operation on a non-legal 1739 // type and the target independent selector doesn't know how to handle it. 1740 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1741 return false; 1742 1743 unsigned Opc; 1744 switch (ISDOpcode) { 1745 default: return false; 1746 case ISD::ADD: 1747 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1748 break; 1749 case ISD::OR: 1750 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1751 break; 1752 case ISD::SUB: 1753 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1754 break; 1755 } 1756 1757 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1758 if (SrcReg1 == 0) return false; 1759 1760 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1761 // in the instruction, rather then materializing the value in a register. 1762 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1763 if (SrcReg2 == 0) return false; 1764 1765 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1766 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1767 TII.get(Opc), ResultReg) 1768 .addReg(SrcReg1).addReg(SrcReg2)); 1769 UpdateValueMap(I, ResultReg); 1770 return true; 1771 } 1772 1773 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1774 EVT VT = TLI.getValueType(I->getType(), true); 1775 1776 // We can get here in the case when we want to use NEON for our fp 1777 // operations, but can't figure out how to. Just use the vfp instructions 1778 // if we have them. 1779 // FIXME: It'd be nice to use NEON instructions. 1780 Type *Ty = I->getType(); 1781 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1782 if (isFloat && !Subtarget->hasVFP2()) 1783 return false; 1784 1785 unsigned Opc; 1786 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1787 switch (ISDOpcode) { 1788 default: return false; 1789 case ISD::FADD: 1790 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1791 break; 1792 case ISD::FSUB: 1793 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1794 break; 1795 case ISD::FMUL: 1796 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1797 break; 1798 } 1799 unsigned Op1 = getRegForValue(I->getOperand(0)); 1800 if (Op1 == 0) return false; 1801 1802 unsigned Op2 = getRegForValue(I->getOperand(1)); 1803 if (Op2 == 0) return false; 1804 1805 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); 1806 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1807 TII.get(Opc), ResultReg) 1808 .addReg(Op1).addReg(Op2)); 1809 UpdateValueMap(I, ResultReg); 1810 return true; 1811 } 1812 1813 // Call Handling Code 1814 1815 // This is largely taken directly from CCAssignFnForNode - we don't support 1816 // varargs in FastISel so that part has been removed. 1817 // TODO: We may not support all of this. 1818 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) { 1819 switch (CC) { 1820 default: 1821 llvm_unreachable("Unsupported calling convention"); 1822 case CallingConv::Fast: 1823 // Ignore fastcc. Silence compiler warnings. 1824 (void)RetFastCC_ARM_APCS; 1825 (void)FastCC_ARM_APCS; 1826 // Fallthrough 1827 case CallingConv::C: 1828 // Use target triple & subtarget features to do actual dispatch. 1829 if (Subtarget->isAAPCS_ABI()) { 1830 if (Subtarget->hasVFP2() && 1831 TM.Options.FloatABIType == FloatABI::Hard) 1832 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1833 else 1834 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1835 } else 1836 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1837 case CallingConv::ARM_AAPCS_VFP: 1838 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1839 case CallingConv::ARM_AAPCS: 1840 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1841 case CallingConv::ARM_APCS: 1842 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1843 } 1844 } 1845 1846 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1847 SmallVectorImpl<unsigned> &ArgRegs, 1848 SmallVectorImpl<MVT> &ArgVTs, 1849 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1850 SmallVectorImpl<unsigned> &RegArgs, 1851 CallingConv::ID CC, 1852 unsigned &NumBytes) { 1853 SmallVector<CCValAssign, 16> ArgLocs; 1854 CCState CCInfo(CC, false, *FuncInfo.MF, TM, ArgLocs, *Context); 1855 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false)); 1856 1857 // Check that we can handle all of the arguments. If we can't, then bail out 1858 // now before we add code to the MBB. 1859 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1860 CCValAssign &VA = ArgLocs[i]; 1861 MVT ArgVT = ArgVTs[VA.getValNo()]; 1862 1863 // We don't handle NEON/vector parameters yet. 1864 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1865 return false; 1866 1867 // Now copy/store arg to correct locations. 1868 if (VA.isRegLoc() && !VA.needsCustom()) { 1869 continue; 1870 } else if (VA.needsCustom()) { 1871 // TODO: We need custom lowering for vector (v2f64) args. 1872 if (VA.getLocVT() != MVT::f64 || 1873 // TODO: Only handle register args for now. 1874 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1875 return false; 1876 } else { 1877 switch (static_cast<EVT>(ArgVT).getSimpleVT().SimpleTy) { 1878 default: 1879 return false; 1880 case MVT::i1: 1881 case MVT::i8: 1882 case MVT::i16: 1883 case MVT::i32: 1884 break; 1885 case MVT::f32: 1886 if (!Subtarget->hasVFP2()) 1887 return false; 1888 break; 1889 case MVT::f64: 1890 if (!Subtarget->hasVFP2()) 1891 return false; 1892 break; 1893 } 1894 } 1895 } 1896 1897 // At the point, we are able to handle the call's arguments in fast isel. 1898 1899 // Get a count of how many bytes are to be pushed on the stack. 1900 NumBytes = CCInfo.getNextStackOffset(); 1901 1902 // Issue CALLSEQ_START 1903 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1904 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1905 TII.get(AdjStackDown)) 1906 .addImm(NumBytes)); 1907 1908 // Process the args. 1909 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1910 CCValAssign &VA = ArgLocs[i]; 1911 unsigned Arg = ArgRegs[VA.getValNo()]; 1912 MVT ArgVT = ArgVTs[VA.getValNo()]; 1913 1914 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1915 "We don't handle NEON/vector parameters yet."); 1916 1917 // Handle arg promotion, etc. 1918 switch (VA.getLocInfo()) { 1919 case CCValAssign::Full: break; 1920 case CCValAssign::SExt: { 1921 MVT DestVT = VA.getLocVT(); 1922 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1923 assert (Arg != 0 && "Failed to emit a sext"); 1924 ArgVT = DestVT; 1925 break; 1926 } 1927 case CCValAssign::AExt: 1928 // Intentional fall-through. Handle AExt and ZExt. 1929 case CCValAssign::ZExt: { 1930 MVT DestVT = VA.getLocVT(); 1931 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1932 assert (Arg != 0 && "Failed to emit a sext"); 1933 ArgVT = DestVT; 1934 break; 1935 } 1936 case CCValAssign::BCvt: { 1937 unsigned BC = FastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1938 /*TODO: Kill=*/false); 1939 assert(BC != 0 && "Failed to emit a bitcast!"); 1940 Arg = BC; 1941 ArgVT = VA.getLocVT(); 1942 break; 1943 } 1944 default: llvm_unreachable("Unknown arg promotion!"); 1945 } 1946 1947 // Now copy/store arg to correct locations. 1948 if (VA.isRegLoc() && !VA.needsCustom()) { 1949 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 1950 VA.getLocReg()) 1951 .addReg(Arg); 1952 RegArgs.push_back(VA.getLocReg()); 1953 } else if (VA.needsCustom()) { 1954 // TODO: We need custom lowering for vector (v2f64) args. 1955 assert(VA.getLocVT() == MVT::f64 && 1956 "Custom lowering for v2f64 args not available"); 1957 1958 CCValAssign &NextVA = ArgLocs[++i]; 1959 1960 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1961 "We only handle register args!"); 1962 1963 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1964 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1965 .addReg(NextVA.getLocReg(), RegState::Define) 1966 .addReg(Arg)); 1967 RegArgs.push_back(VA.getLocReg()); 1968 RegArgs.push_back(NextVA.getLocReg()); 1969 } else { 1970 assert(VA.isMemLoc()); 1971 // Need to store on the stack. 1972 Address Addr; 1973 Addr.BaseType = Address::RegBase; 1974 Addr.Base.Reg = ARM::SP; 1975 Addr.Offset = VA.getLocMemOffset(); 1976 1977 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 1978 assert(EmitRet && "Could not emit a store for argument!"); 1979 } 1980 } 1981 1982 return true; 1983 } 1984 1985 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 1986 const Instruction *I, CallingConv::ID CC, 1987 unsigned &NumBytes) { 1988 // Issue CALLSEQ_END 1989 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 1990 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 1991 TII.get(AdjStackUp)) 1992 .addImm(NumBytes).addImm(0)); 1993 1994 // Now the return value. 1995 if (RetVT != MVT::isVoid) { 1996 SmallVector<CCValAssign, 16> RVLocs; 1997 CCState CCInfo(CC, false, *FuncInfo.MF, TM, RVLocs, *Context); 1998 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true)); 1999 2000 // Copy all of the result registers out of their specified physreg. 2001 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2002 // For this move we copy into two registers and then move into the 2003 // double fp reg we want. 2004 EVT DestVT = RVLocs[0].getValVT(); 2005 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2006 unsigned ResultReg = createResultReg(DstRC); 2007 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2008 TII.get(ARM::VMOVDRR), ResultReg) 2009 .addReg(RVLocs[0].getLocReg()) 2010 .addReg(RVLocs[1].getLocReg())); 2011 2012 UsedRegs.push_back(RVLocs[0].getLocReg()); 2013 UsedRegs.push_back(RVLocs[1].getLocReg()); 2014 2015 // Finally update the result. 2016 UpdateValueMap(I, ResultReg); 2017 } else { 2018 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2019 EVT CopyVT = RVLocs[0].getValVT(); 2020 2021 // Special handling for extended integers. 2022 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2023 CopyVT = MVT::i32; 2024 2025 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2026 2027 unsigned ResultReg = createResultReg(DstRC); 2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2029 ResultReg).addReg(RVLocs[0].getLocReg()); 2030 UsedRegs.push_back(RVLocs[0].getLocReg()); 2031 2032 // Finally update the result. 2033 UpdateValueMap(I, ResultReg); 2034 } 2035 } 2036 2037 return true; 2038 } 2039 2040 bool ARMFastISel::SelectRet(const Instruction *I) { 2041 const ReturnInst *Ret = cast<ReturnInst>(I); 2042 const Function &F = *I->getParent()->getParent(); 2043 2044 if (!FuncInfo.CanLowerReturn) 2045 return false; 2046 2047 if (F.isVarArg()) 2048 return false; 2049 2050 CallingConv::ID CC = F.getCallingConv(); 2051 if (Ret->getNumOperands() > 0) { 2052 SmallVector<ISD::OutputArg, 4> Outs; 2053 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 2054 Outs, TLI); 2055 2056 // Analyze operands of the call, assigning locations to each operand. 2057 SmallVector<CCValAssign, 16> ValLocs; 2058 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,I->getContext()); 2059 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */)); 2060 2061 const Value *RV = Ret->getOperand(0); 2062 unsigned Reg = getRegForValue(RV); 2063 if (Reg == 0) 2064 return false; 2065 2066 // Only handle a single return value for now. 2067 if (ValLocs.size() != 1) 2068 return false; 2069 2070 CCValAssign &VA = ValLocs[0]; 2071 2072 // Don't bother handling odd stuff for now. 2073 if (VA.getLocInfo() != CCValAssign::Full) 2074 return false; 2075 // Only handle register returns for now. 2076 if (!VA.isRegLoc()) 2077 return false; 2078 2079 unsigned SrcReg = Reg + VA.getValNo(); 2080 EVT RVVT = TLI.getValueType(RV->getType()); 2081 EVT DestVT = VA.getValVT(); 2082 // Special handling for extended integers. 2083 if (RVVT != DestVT) { 2084 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2085 return false; 2086 2087 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2088 2089 // Perform extension if flagged as either zext or sext. Otherwise, do 2090 // nothing. 2091 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2092 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2093 if (SrcReg == 0) return false; 2094 } 2095 } 2096 2097 // Make the copy. 2098 unsigned DstReg = VA.getLocReg(); 2099 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2100 // Avoid a cross-class copy. This is very unlikely. 2101 if (!SrcRC->contains(DstReg)) 2102 return false; 2103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), 2104 DstReg).addReg(SrcReg); 2105 2106 // Mark the register as live out of the function. 2107 MRI.addLiveOut(VA.getLocReg()); 2108 } 2109 2110 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2111 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2112 TII.get(RetOpc))); 2113 return true; 2114 } 2115 2116 unsigned ARMFastISel::ARMSelectCallOp(const GlobalValue *GV) { 2117 if (isThumb2) { 2118 return ARM::tBL; 2119 } else { 2120 return ARM::BL; 2121 } 2122 } 2123 2124 // A quick function that will emit a call for a named libcall in F with the 2125 // vector of passed arguments for the Instruction in I. We can assume that we 2126 // can emit a call for any libcall we can produce. This is an abridged version 2127 // of the full call infrastructure since we won't need to worry about things 2128 // like computed function pointers or strange arguments at call sites. 2129 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2130 // with X86. 2131 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2132 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2133 2134 // Handle *simple* calls for now. 2135 Type *RetTy = I->getType(); 2136 MVT RetVT; 2137 if (RetTy->isVoidTy()) 2138 RetVT = MVT::isVoid; 2139 else if (!isTypeLegal(RetTy, RetVT)) 2140 return false; 2141 2142 // TODO: For now if we have long calls specified we don't handle the call. 2143 if (EnableARMLongCalls) return false; 2144 2145 // Set up the argument vectors. 2146 SmallVector<Value*, 8> Args; 2147 SmallVector<unsigned, 8> ArgRegs; 2148 SmallVector<MVT, 8> ArgVTs; 2149 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2150 Args.reserve(I->getNumOperands()); 2151 ArgRegs.reserve(I->getNumOperands()); 2152 ArgVTs.reserve(I->getNumOperands()); 2153 ArgFlags.reserve(I->getNumOperands()); 2154 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2155 Value *Op = I->getOperand(i); 2156 unsigned Arg = getRegForValue(Op); 2157 if (Arg == 0) return false; 2158 2159 Type *ArgTy = Op->getType(); 2160 MVT ArgVT; 2161 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2162 2163 ISD::ArgFlagsTy Flags; 2164 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2165 Flags.setOrigAlign(OriginalAlignment); 2166 2167 Args.push_back(Op); 2168 ArgRegs.push_back(Arg); 2169 ArgVTs.push_back(ArgVT); 2170 ArgFlags.push_back(Flags); 2171 } 2172 2173 // Handle the arguments now that we've gotten them. 2174 SmallVector<unsigned, 4> RegArgs; 2175 unsigned NumBytes; 2176 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes)) 2177 return false; 2178 2179 // Issue the call. 2180 MachineInstrBuilder MIB; 2181 unsigned CallOpc = ARMSelectCallOp(NULL); 2182 if (isThumb2) 2183 // Explicitly adding the predicate here. 2184 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2185 TII.get(CallOpc))) 2186 .addExternalSymbol(TLI.getLibcallName(Call)); 2187 else 2188 // Explicitly adding the predicate here. 2189 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2190 TII.get(CallOpc)) 2191 .addExternalSymbol(TLI.getLibcallName(Call))); 2192 2193 // Add implicit physical register uses to the call. 2194 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2195 MIB.addReg(RegArgs[i]); 2196 2197 // Add a register mask with the call-preserved registers. 2198 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2199 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2200 2201 // Finish off the call including any return values. 2202 SmallVector<unsigned, 4> UsedRegs; 2203 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false; 2204 2205 // Set all unused physreg defs as dead. 2206 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2207 2208 return true; 2209 } 2210 2211 bool ARMFastISel::SelectCall(const Instruction *I, 2212 const char *IntrMemName = 0) { 2213 const CallInst *CI = cast<CallInst>(I); 2214 const Value *Callee = CI->getCalledValue(); 2215 2216 // Can't handle inline asm. 2217 if (isa<InlineAsm>(Callee)) return false; 2218 2219 // Only handle global variable Callees. 2220 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2221 if (!GV) 2222 return false; 2223 2224 // Check the calling convention. 2225 ImmutableCallSite CS(CI); 2226 CallingConv::ID CC = CS.getCallingConv(); 2227 2228 // TODO: Avoid some calling conventions? 2229 2230 // Let SDISel handle vararg functions. 2231 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 2232 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 2233 if (FTy->isVarArg()) 2234 return false; 2235 2236 // Handle *simple* calls for now. 2237 Type *RetTy = I->getType(); 2238 MVT RetVT; 2239 if (RetTy->isVoidTy()) 2240 RetVT = MVT::isVoid; 2241 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2242 RetVT != MVT::i8 && RetVT != MVT::i1) 2243 return false; 2244 2245 // TODO: For now if we have long calls specified we don't handle the call. 2246 if (EnableARMLongCalls) return false; 2247 2248 // Set up the argument vectors. 2249 SmallVector<Value*, 8> Args; 2250 SmallVector<unsigned, 8> ArgRegs; 2251 SmallVector<MVT, 8> ArgVTs; 2252 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2253 unsigned arg_size = CS.arg_size(); 2254 Args.reserve(arg_size); 2255 ArgRegs.reserve(arg_size); 2256 ArgVTs.reserve(arg_size); 2257 ArgFlags.reserve(arg_size); 2258 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2259 i != e; ++i) { 2260 // If we're lowering a memory intrinsic instead of a regular call, skip the 2261 // last two arguments, which shouldn't be passed to the underlying function. 2262 if (IntrMemName && e-i <= 2) 2263 break; 2264 2265 ISD::ArgFlagsTy Flags; 2266 unsigned AttrInd = i - CS.arg_begin() + 1; 2267 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2268 Flags.setSExt(); 2269 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2270 Flags.setZExt(); 2271 2272 // FIXME: Only handle *easy* calls for now. 2273 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2274 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2275 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2276 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2277 return false; 2278 2279 Type *ArgTy = (*i)->getType(); 2280 MVT ArgVT; 2281 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2282 ArgVT != MVT::i1) 2283 return false; 2284 2285 unsigned Arg = getRegForValue(*i); 2286 if (Arg == 0) 2287 return false; 2288 2289 unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); 2290 Flags.setOrigAlign(OriginalAlignment); 2291 2292 Args.push_back(*i); 2293 ArgRegs.push_back(Arg); 2294 ArgVTs.push_back(ArgVT); 2295 ArgFlags.push_back(Flags); 2296 } 2297 2298 // Handle the arguments now that we've gotten them. 2299 SmallVector<unsigned, 4> RegArgs; 2300 unsigned NumBytes; 2301 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, RegArgs, CC, NumBytes)) 2302 return false; 2303 2304 // Issue the call. 2305 MachineInstrBuilder MIB; 2306 unsigned CallOpc = ARMSelectCallOp(GV); 2307 // Explicitly adding the predicate here. 2308 if(isThumb2) { 2309 // Explicitly adding the predicate here. 2310 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2311 TII.get(CallOpc))); 2312 if (!IntrMemName) 2313 MIB.addGlobalAddress(GV, 0, 0); 2314 else 2315 MIB.addExternalSymbol(IntrMemName, 0); 2316 } else { 2317 if (!IntrMemName) 2318 // Explicitly adding the predicate here. 2319 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2320 TII.get(CallOpc)) 2321 .addGlobalAddress(GV, 0, 0)); 2322 else 2323 MIB = AddDefaultPred(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, 2324 TII.get(CallOpc)) 2325 .addExternalSymbol(IntrMemName, 0)); 2326 } 2327 2328 // Add implicit physical register uses to the call. 2329 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2330 MIB.addReg(RegArgs[i]); 2331 2332 // Add a register mask with the call-preserved registers. 2333 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2334 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 2335 2336 // Finish off the call including any return values. 2337 SmallVector<unsigned, 4> UsedRegs; 2338 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes)) return false; 2339 2340 // Set all unused physreg defs as dead. 2341 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2342 2343 return true; 2344 } 2345 2346 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2347 return Len <= 16; 2348 } 2349 2350 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2351 uint64_t Len) { 2352 // Make sure we don't bloat code by inlining very large memcpy's. 2353 if (!ARMIsMemCpySmall(Len)) 2354 return false; 2355 2356 // We don't care about alignment here since we just emit integer accesses. 2357 while (Len) { 2358 MVT VT; 2359 if (Len >= 4) 2360 VT = MVT::i32; 2361 else if (Len >= 2) 2362 VT = MVT::i16; 2363 else { 2364 assert(Len == 1); 2365 VT = MVT::i8; 2366 } 2367 2368 bool RV; 2369 unsigned ResultReg; 2370 RV = ARMEmitLoad(VT, ResultReg, Src); 2371 assert (RV == true && "Should be able to handle this load."); 2372 RV = ARMEmitStore(VT, ResultReg, Dest); 2373 assert (RV == true && "Should be able to handle this store."); 2374 (void)RV; 2375 2376 unsigned Size = VT.getSizeInBits()/8; 2377 Len -= Size; 2378 Dest.Offset += Size; 2379 Src.Offset += Size; 2380 } 2381 2382 return true; 2383 } 2384 2385 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2386 // FIXME: Handle more intrinsics. 2387 switch (I.getIntrinsicID()) { 2388 default: return false; 2389 case Intrinsic::memcpy: 2390 case Intrinsic::memmove: { 2391 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2392 // Don't handle volatile. 2393 if (MTI.isVolatile()) 2394 return false; 2395 2396 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2397 // we would emit dead code because we don't currently handle memmoves. 2398 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2399 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2400 // Small memcpy's are common enough that we want to do them without a call 2401 // if possible. 2402 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2403 if (ARMIsMemCpySmall(Len)) { 2404 Address Dest, Src; 2405 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2406 !ARMComputeAddress(MTI.getRawSource(), Src)) 2407 return false; 2408 if (ARMTryEmitSmallMemCpy(Dest, Src, Len)) 2409 return true; 2410 } 2411 } 2412 2413 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2414 return false; 2415 2416 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2417 return false; 2418 2419 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2420 return SelectCall(&I, IntrMemName); 2421 } 2422 case Intrinsic::memset: { 2423 const MemSetInst &MSI = cast<MemSetInst>(I); 2424 // Don't handle volatile. 2425 if (MSI.isVolatile()) 2426 return false; 2427 2428 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2429 return false; 2430 2431 if (MSI.getDestAddressSpace() > 255) 2432 return false; 2433 2434 return SelectCall(&I, "memset"); 2435 } 2436 } 2437 } 2438 2439 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2440 // The high bits for a type smaller than the register size are assumed to be 2441 // undefined. 2442 Value *Op = I->getOperand(0); 2443 2444 EVT SrcVT, DestVT; 2445 SrcVT = TLI.getValueType(Op->getType(), true); 2446 DestVT = TLI.getValueType(I->getType(), true); 2447 2448 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2449 return false; 2450 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2451 return false; 2452 2453 unsigned SrcReg = getRegForValue(Op); 2454 if (!SrcReg) return false; 2455 2456 // Because the high bits are undefined, a truncate doesn't generate 2457 // any code. 2458 UpdateValueMap(I, SrcReg); 2459 return true; 2460 } 2461 2462 unsigned ARMFastISel::ARMEmitIntExt(EVT SrcVT, unsigned SrcReg, EVT DestVT, 2463 bool isZExt) { 2464 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2465 return 0; 2466 2467 unsigned Opc; 2468 bool isBoolZext = false; 2469 if (!SrcVT.isSimple()) return 0; 2470 switch (SrcVT.getSimpleVT().SimpleTy) { 2471 default: return 0; 2472 case MVT::i16: 2473 if (!Subtarget->hasV6Ops()) return 0; 2474 if (isZExt) 2475 Opc = isThumb2 ? ARM::t2UXTH : ARM::UXTH; 2476 else 2477 Opc = isThumb2 ? ARM::t2SXTH : ARM::SXTH; 2478 break; 2479 case MVT::i8: 2480 if (!Subtarget->hasV6Ops()) return 0; 2481 if (isZExt) 2482 Opc = isThumb2 ? ARM::t2UXTB : ARM::UXTB; 2483 else 2484 Opc = isThumb2 ? ARM::t2SXTB : ARM::SXTB; 2485 break; 2486 case MVT::i1: 2487 if (isZExt) { 2488 Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 2489 isBoolZext = true; 2490 break; 2491 } 2492 return 0; 2493 } 2494 2495 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 2496 MachineInstrBuilder MIB; 2497 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) 2498 .addReg(SrcReg); 2499 if (isBoolZext) 2500 MIB.addImm(1); 2501 else 2502 MIB.addImm(0); 2503 AddOptionalDefs(MIB); 2504 return ResultReg; 2505 } 2506 2507 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2508 // On ARM, in general, integer casts don't involve legal types; this code 2509 // handles promotable integers. 2510 Type *DestTy = I->getType(); 2511 Value *Src = I->getOperand(0); 2512 Type *SrcTy = Src->getType(); 2513 2514 EVT SrcVT, DestVT; 2515 SrcVT = TLI.getValueType(SrcTy, true); 2516 DestVT = TLI.getValueType(DestTy, true); 2517 2518 bool isZExt = isa<ZExtInst>(I); 2519 unsigned SrcReg = getRegForValue(Src); 2520 if (!SrcReg) return false; 2521 2522 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2523 if (ResultReg == 0) return false; 2524 UpdateValueMap(I, ResultReg); 2525 return true; 2526 } 2527 2528 // TODO: SoftFP support. 2529 bool ARMFastISel::TargetSelectInstruction(const Instruction *I) { 2530 2531 switch (I->getOpcode()) { 2532 case Instruction::Load: 2533 return SelectLoad(I); 2534 case Instruction::Store: 2535 return SelectStore(I); 2536 case Instruction::Br: 2537 return SelectBranch(I); 2538 case Instruction::IndirectBr: 2539 return SelectIndirectBr(I); 2540 case Instruction::ICmp: 2541 case Instruction::FCmp: 2542 return SelectCmp(I); 2543 case Instruction::FPExt: 2544 return SelectFPExt(I); 2545 case Instruction::FPTrunc: 2546 return SelectFPTrunc(I); 2547 case Instruction::SIToFP: 2548 return SelectIToFP(I, /*isSigned*/ true); 2549 case Instruction::UIToFP: 2550 return SelectIToFP(I, /*isSigned*/ false); 2551 case Instruction::FPToSI: 2552 return SelectFPToI(I, /*isSigned*/ true); 2553 case Instruction::FPToUI: 2554 return SelectFPToI(I, /*isSigned*/ false); 2555 case Instruction::Add: 2556 return SelectBinaryIntOp(I, ISD::ADD); 2557 case Instruction::Or: 2558 return SelectBinaryIntOp(I, ISD::OR); 2559 case Instruction::Sub: 2560 return SelectBinaryIntOp(I, ISD::SUB); 2561 case Instruction::FAdd: 2562 return SelectBinaryFPOp(I, ISD::FADD); 2563 case Instruction::FSub: 2564 return SelectBinaryFPOp(I, ISD::FSUB); 2565 case Instruction::FMul: 2566 return SelectBinaryFPOp(I, ISD::FMUL); 2567 case Instruction::SDiv: 2568 return SelectDiv(I, /*isSigned*/ true); 2569 case Instruction::UDiv: 2570 return SelectDiv(I, /*isSigned*/ false); 2571 case Instruction::SRem: 2572 return SelectRem(I, /*isSigned*/ true); 2573 case Instruction::URem: 2574 return SelectRem(I, /*isSigned*/ false); 2575 case Instruction::Call: 2576 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2577 return SelectIntrinsicCall(*II); 2578 return SelectCall(I); 2579 case Instruction::Select: 2580 return SelectSelect(I); 2581 case Instruction::Ret: 2582 return SelectRet(I); 2583 case Instruction::Trunc: 2584 return SelectTrunc(I); 2585 case Instruction::ZExt: 2586 case Instruction::SExt: 2587 return SelectIntExt(I); 2588 default: break; 2589 } 2590 return false; 2591 } 2592 2593 /// TryToFoldLoad - The specified machine instr operand is a vreg, and that 2594 /// vreg is being provided by the specified load instruction. If possible, 2595 /// try to fold the load as an operand to the instruction, returning true if 2596 /// successful. 2597 bool ARMFastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo, 2598 const LoadInst *LI) { 2599 // Verify we have a legal type before going any further. 2600 MVT VT; 2601 if (!isLoadTypeLegal(LI->getType(), VT)) 2602 return false; 2603 2604 // Combine load followed by zero- or sign-extend. 2605 // ldrb r1, [r0] ldrb r1, [r0] 2606 // uxtb r2, r1 => 2607 // mov r3, r2 mov r3, r1 2608 bool isZExt = true; 2609 switch(MI->getOpcode()) { 2610 default: return false; 2611 case ARM::SXTH: 2612 case ARM::t2SXTH: 2613 isZExt = false; 2614 case ARM::UXTH: 2615 case ARM::t2UXTH: 2616 if (VT != MVT::i16) 2617 return false; 2618 break; 2619 case ARM::SXTB: 2620 case ARM::t2SXTB: 2621 isZExt = false; 2622 case ARM::UXTB: 2623 case ARM::t2UXTB: 2624 if (VT != MVT::i8) 2625 return false; 2626 break; 2627 } 2628 // See if we can handle this address. 2629 Address Addr; 2630 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2631 2632 unsigned ResultReg = MI->getOperand(0).getReg(); 2633 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2634 return false; 2635 MI->eraseFromParent(); 2636 return true; 2637 } 2638 2639 namespace llvm { 2640 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) { 2641 // Completely untested on non-iOS. 2642 const TargetMachine &TM = funcInfo.MF->getTarget(); 2643 2644 // Darwin and thumb1 only for now. 2645 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 2646 if (Subtarget->isTargetIOS() && !Subtarget->isThumb1Only() && 2647 !DisableARMFastISel) 2648 return new ARMFastISel(funcInfo); 2649 return 0; 2650 } 2651 } 2652