1 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ARM-specific support for the FastISel class. Some 11 // of the target-specific code is generated by tablegen in the file 12 // ARMGenFastISel.inc, which is #included here. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/MachineConstantPool.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineMemOperand.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Target/TargetInstrInfo.h" 46 #include "llvm/Target/TargetLowering.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 using namespace llvm; 50 51 namespace { 52 53 // All possible address modes, plus some. 54 typedef struct Address { 55 enum { 56 RegBase, 57 FrameIndexBase 58 } BaseType; 59 60 union { 61 unsigned Reg; 62 int FI; 63 } Base; 64 65 int Offset; 66 67 // Innocuous defaults for our address. 68 Address() 69 : BaseType(RegBase), Offset(0) { 70 Base.Reg = 0; 71 } 72 } Address; 73 74 class ARMFastISel final : public FastISel { 75 76 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 77 /// make the right decision when generating code for different targets. 78 const ARMSubtarget *Subtarget; 79 Module &M; 80 const TargetMachine &TM; 81 const TargetInstrInfo &TII; 82 const TargetLowering &TLI; 83 ARMFunctionInfo *AFI; 84 85 // Convenience variables to avoid some queries. 86 bool isThumb2; 87 LLVMContext *Context; 88 89 public: 90 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 91 const TargetLibraryInfo *libInfo) 92 : FastISel(funcInfo, libInfo), 93 Subtarget( 94 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 95 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 96 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 97 TLI(*Subtarget->getTargetLowering()) { 98 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 99 isThumb2 = AFI->isThumbFunction(); 100 Context = &funcInfo.Fn->getContext(); 101 } 102 103 // Code from FastISel.cpp. 104 private: 105 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 106 const TargetRegisterClass *RC, 107 unsigned Op0, bool Op0IsKill); 108 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 109 const TargetRegisterClass *RC, 110 unsigned Op0, bool Op0IsKill, 111 unsigned Op1, bool Op1IsKill); 112 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 113 const TargetRegisterClass *RC, 114 unsigned Op0, bool Op0IsKill, 115 uint64_t Imm); 116 unsigned fastEmitInst_rri(unsigned MachineInstOpcode, 117 const TargetRegisterClass *RC, 118 unsigned Op0, bool Op0IsKill, 119 unsigned Op1, bool Op1IsKill, 120 uint64_t Imm); 121 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 122 const TargetRegisterClass *RC, 123 uint64_t Imm); 124 125 // Backend specific FastISel code. 126 private: 127 bool fastSelectInstruction(const Instruction *I) override; 128 unsigned fastMaterializeConstant(const Constant *C) override; 129 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 130 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 131 const LoadInst *LI) override; 132 bool fastLowerArguments() override; 133 private: 134 #include "ARMGenFastISel.inc" 135 136 // Instruction selection routines. 137 private: 138 bool SelectLoad(const Instruction *I); 139 bool SelectStore(const Instruction *I); 140 bool SelectBranch(const Instruction *I); 141 bool SelectIndirectBr(const Instruction *I); 142 bool SelectCmp(const Instruction *I); 143 bool SelectFPExt(const Instruction *I); 144 bool SelectFPTrunc(const Instruction *I); 145 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 146 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 147 bool SelectIToFP(const Instruction *I, bool isSigned); 148 bool SelectFPToI(const Instruction *I, bool isSigned); 149 bool SelectDiv(const Instruction *I, bool isSigned); 150 bool SelectRem(const Instruction *I, bool isSigned); 151 bool SelectCall(const Instruction *I, const char *IntrMemName); 152 bool SelectIntrinsicCall(const IntrinsicInst &I); 153 bool SelectSelect(const Instruction *I); 154 bool SelectRet(const Instruction *I); 155 bool SelectTrunc(const Instruction *I); 156 bool SelectIntExt(const Instruction *I); 157 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 158 159 // Utility routines. 160 private: 161 bool isPositionIndependent() const; 162 bool isTypeLegal(Type *Ty, MVT &VT); 163 bool isLoadTypeLegal(Type *Ty, MVT &VT); 164 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 165 bool isZExt); 166 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 167 unsigned Alignment = 0, bool isZExt = true, 168 bool allocReg = true); 169 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 170 unsigned Alignment = 0); 171 bool ARMComputeAddress(const Value *Obj, Address &Addr); 172 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 173 bool ARMIsMemCpySmall(uint64_t Len); 174 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 175 unsigned Alignment); 176 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 177 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 178 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 179 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 180 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 181 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 182 unsigned ARMSelectCallOp(bool UseReg); 183 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 184 185 const TargetLowering *getTargetLowering() { return &TLI; } 186 187 // Call handling routines. 188 private: 189 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 190 bool Return, 191 bool isVarArg); 192 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 193 SmallVectorImpl<unsigned> &ArgRegs, 194 SmallVectorImpl<MVT> &ArgVTs, 195 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 196 SmallVectorImpl<unsigned> &RegArgs, 197 CallingConv::ID CC, 198 unsigned &NumBytes, 199 bool isVarArg); 200 unsigned getLibcallReg(const Twine &Name); 201 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 202 const Instruction *I, CallingConv::ID CC, 203 unsigned &NumBytes, bool isVarArg); 204 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 205 206 // OptionalDef handling routines. 207 private: 208 bool isARMNEONPred(const MachineInstr *MI); 209 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 210 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 211 void AddLoadStoreOperands(MVT VT, Address &Addr, 212 const MachineInstrBuilder &MIB, 213 unsigned Flags, bool useAM3); 214 }; 215 216 } // end anonymous namespace 217 218 #include "ARMGenCallingConv.inc" 219 220 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 221 // we don't care about implicit defs here, just places we'll need to add a 222 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 223 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 224 if (!MI->hasOptionalDef()) 225 return false; 226 227 // Look to see if our OptionalDef is defining CPSR or CCR. 228 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 229 const MachineOperand &MO = MI->getOperand(i); 230 if (!MO.isReg() || !MO.isDef()) continue; 231 if (MO.getReg() == ARM::CPSR) 232 *CPSR = true; 233 } 234 return true; 235 } 236 237 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 238 const MCInstrDesc &MCID = MI->getDesc(); 239 240 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 241 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 242 AFI->isThumb2Function()) 243 return MI->isPredicable(); 244 245 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 246 if (MCID.OpInfo[i].isPredicate()) 247 return true; 248 249 return false; 250 } 251 252 // If the machine is predicable go ahead and add the predicate operands, if 253 // it needs default CC operands add those. 254 // TODO: If we want to support thumb1 then we'll need to deal with optional 255 // CPSR defs that need to be added before the remaining operands. See s_cc_out 256 // for descriptions why. 257 const MachineInstrBuilder & 258 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 259 MachineInstr *MI = &*MIB; 260 261 // Do we use a predicate? or... 262 // Are we NEON in ARM mode and have a predicate operand? If so, I know 263 // we're not predicable but add it anyways. 264 if (isARMNEONPred(MI)) 265 AddDefaultPred(MIB); 266 267 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 268 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 269 bool CPSR = false; 270 if (DefinesOptionalPredicate(MI, &CPSR)) { 271 if (CPSR) 272 AddDefaultT1CC(MIB); 273 else 274 AddDefaultCC(MIB); 275 } 276 return MIB; 277 } 278 279 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 280 const TargetRegisterClass *RC, 281 unsigned Op0, bool Op0IsKill) { 282 unsigned ResultReg = createResultReg(RC); 283 const MCInstrDesc &II = TII.get(MachineInstOpcode); 284 285 // Make sure the input operand is sufficiently constrained to be legal 286 // for this instruction. 287 Op0 = constrainOperandRegClass(II, Op0, 1); 288 if (II.getNumDefs() >= 1) { 289 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 290 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 291 } else { 292 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 293 .addReg(Op0, Op0IsKill * RegState::Kill)); 294 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 295 TII.get(TargetOpcode::COPY), ResultReg) 296 .addReg(II.ImplicitDefs[0])); 297 } 298 return ResultReg; 299 } 300 301 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 302 const TargetRegisterClass *RC, 303 unsigned Op0, bool Op0IsKill, 304 unsigned Op1, bool Op1IsKill) { 305 unsigned ResultReg = createResultReg(RC); 306 const MCInstrDesc &II = TII.get(MachineInstOpcode); 307 308 // Make sure the input operands are sufficiently constrained to be legal 309 // for this instruction. 310 Op0 = constrainOperandRegClass(II, Op0, 1); 311 Op1 = constrainOperandRegClass(II, Op1, 2); 312 313 if (II.getNumDefs() >= 1) { 314 AddOptionalDefs( 315 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 316 .addReg(Op0, Op0IsKill * RegState::Kill) 317 .addReg(Op1, Op1IsKill * RegState::Kill)); 318 } else { 319 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 320 .addReg(Op0, Op0IsKill * RegState::Kill) 321 .addReg(Op1, Op1IsKill * RegState::Kill)); 322 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 323 TII.get(TargetOpcode::COPY), ResultReg) 324 .addReg(II.ImplicitDefs[0])); 325 } 326 return ResultReg; 327 } 328 329 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 330 const TargetRegisterClass *RC, 331 unsigned Op0, bool Op0IsKill, 332 uint64_t Imm) { 333 unsigned ResultReg = createResultReg(RC); 334 const MCInstrDesc &II = TII.get(MachineInstOpcode); 335 336 // Make sure the input operand is sufficiently constrained to be legal 337 // for this instruction. 338 Op0 = constrainOperandRegClass(II, Op0, 1); 339 if (II.getNumDefs() >= 1) { 340 AddOptionalDefs( 341 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 342 .addReg(Op0, Op0IsKill * RegState::Kill) 343 .addImm(Imm)); 344 } else { 345 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 346 .addReg(Op0, Op0IsKill * RegState::Kill) 347 .addImm(Imm)); 348 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 349 TII.get(TargetOpcode::COPY), ResultReg) 350 .addReg(II.ImplicitDefs[0])); 351 } 352 return ResultReg; 353 } 354 355 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 356 const TargetRegisterClass *RC, 357 unsigned Op0, bool Op0IsKill, 358 unsigned Op1, bool Op1IsKill, 359 uint64_t Imm) { 360 unsigned ResultReg = createResultReg(RC); 361 const MCInstrDesc &II = TII.get(MachineInstOpcode); 362 363 // Make sure the input operands are sufficiently constrained to be legal 364 // for this instruction. 365 Op0 = constrainOperandRegClass(II, Op0, 1); 366 Op1 = constrainOperandRegClass(II, Op1, 2); 367 if (II.getNumDefs() >= 1) { 368 AddOptionalDefs( 369 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 370 .addReg(Op0, Op0IsKill * RegState::Kill) 371 .addReg(Op1, Op1IsKill * RegState::Kill) 372 .addImm(Imm)); 373 } else { 374 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 375 .addReg(Op0, Op0IsKill * RegState::Kill) 376 .addReg(Op1, Op1IsKill * RegState::Kill) 377 .addImm(Imm)); 378 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 379 TII.get(TargetOpcode::COPY), ResultReg) 380 .addReg(II.ImplicitDefs[0])); 381 } 382 return ResultReg; 383 } 384 385 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 386 const TargetRegisterClass *RC, 387 uint64_t Imm) { 388 unsigned ResultReg = createResultReg(RC); 389 const MCInstrDesc &II = TII.get(MachineInstOpcode); 390 391 if (II.getNumDefs() >= 1) { 392 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 393 ResultReg).addImm(Imm)); 394 } else { 395 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 396 .addImm(Imm)); 397 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 398 TII.get(TargetOpcode::COPY), ResultReg) 399 .addReg(II.ImplicitDefs[0])); 400 } 401 return ResultReg; 402 } 403 404 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 405 // checks from the various callers. 406 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 407 if (VT == MVT::f64) return 0; 408 409 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 410 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 411 TII.get(ARM::VMOVSR), MoveReg) 412 .addReg(SrcReg)); 413 return MoveReg; 414 } 415 416 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 417 if (VT == MVT::i64) return 0; 418 419 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 420 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 421 TII.get(ARM::VMOVRS), MoveReg) 422 .addReg(SrcReg)); 423 return MoveReg; 424 } 425 426 // For double width floating point we need to materialize two constants 427 // (the high and the low) into integer registers then use a move to get 428 // the combined constant into an FP reg. 429 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 430 const APFloat Val = CFP->getValueAPF(); 431 bool is64bit = VT == MVT::f64; 432 433 // This checks to see if we can use VFP3 instructions to materialize 434 // a constant, otherwise we have to go through the constant pool. 435 if (TLI.isFPImmLegal(Val, VT)) { 436 int Imm; 437 unsigned Opc; 438 if (is64bit) { 439 Imm = ARM_AM::getFP64Imm(Val); 440 Opc = ARM::FCONSTD; 441 } else { 442 Imm = ARM_AM::getFP32Imm(Val); 443 Opc = ARM::FCONSTS; 444 } 445 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 446 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 447 TII.get(Opc), DestReg).addImm(Imm)); 448 return DestReg; 449 } 450 451 // Require VFP2 for loading fp constants. 452 if (!Subtarget->hasVFP2()) return false; 453 454 // MachineConstantPool wants an explicit alignment. 455 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 456 if (Align == 0) { 457 // TODO: Figure out if this is correct. 458 Align = DL.getTypeAllocSize(CFP->getType()); 459 } 460 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 461 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 462 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 463 464 // The extra reg is for addrmode5. 465 AddOptionalDefs( 466 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 467 .addConstantPoolIndex(Idx) 468 .addReg(0)); 469 return DestReg; 470 } 471 472 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 473 474 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 475 return 0; 476 477 // If we can do this in a single instruction without a constant pool entry 478 // do so now. 479 const ConstantInt *CI = cast<ConstantInt>(C); 480 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 481 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 482 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 483 &ARM::GPRRegClass; 484 unsigned ImmReg = createResultReg(RC); 485 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 486 TII.get(Opc), ImmReg) 487 .addImm(CI->getZExtValue())); 488 return ImmReg; 489 } 490 491 // Use MVN to emit negative constants. 492 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 493 unsigned Imm = (unsigned)~(CI->getSExtValue()); 494 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 495 (ARM_AM::getSOImmVal(Imm) != -1); 496 if (UseImm) { 497 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 498 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 499 &ARM::GPRRegClass; 500 unsigned ImmReg = createResultReg(RC); 501 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 502 TII.get(Opc), ImmReg) 503 .addImm(Imm)); 504 return ImmReg; 505 } 506 } 507 508 unsigned ResultReg = 0; 509 if (Subtarget->useMovt(*FuncInfo.MF)) 510 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 511 512 if (ResultReg) 513 return ResultReg; 514 515 // Load from constant pool. For now 32-bit only. 516 if (VT != MVT::i32) 517 return 0; 518 519 // MachineConstantPool wants an explicit alignment. 520 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 521 if (Align == 0) { 522 // TODO: Figure out if this is correct. 523 Align = DL.getTypeAllocSize(C->getType()); 524 } 525 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 526 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 527 if (isThumb2) 528 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 529 TII.get(ARM::t2LDRpci), ResultReg) 530 .addConstantPoolIndex(Idx)); 531 else { 532 // The extra immediate is for addrmode2. 533 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 534 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 535 TII.get(ARM::LDRcp), ResultReg) 536 .addConstantPoolIndex(Idx) 537 .addImm(0)); 538 } 539 return ResultReg; 540 } 541 542 bool ARMFastISel::isPositionIndependent() const { 543 return TM.getRelocationModel() == Reloc::PIC_; 544 } 545 546 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 547 // For now 32-bit only. 548 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 549 550 Reloc::Model RelocM = TM.getRelocationModel(); 551 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 552 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 553 : &ARM::GPRRegClass; 554 unsigned DestReg = createResultReg(RC); 555 556 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 557 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 558 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 559 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 560 561 bool IsPositionIndependent = isPositionIndependent(); 562 // Use movw+movt when possible, it avoids constant pool entries. 563 // Non-darwin targets only support static movt relocations in FastISel. 564 if (Subtarget->useMovt(*FuncInfo.MF) && 565 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 566 unsigned Opc; 567 unsigned char TF = 0; 568 if (Subtarget->isTargetMachO()) 569 TF = ARMII::MO_NONLAZY; 570 571 if (IsPositionIndependent) 572 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 573 else 574 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 575 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 576 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 577 } else { 578 // MachineConstantPool wants an explicit alignment. 579 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 580 if (Align == 0) { 581 // TODO: Figure out if this is correct. 582 Align = DL.getTypeAllocSize(GV->getType()); 583 } 584 585 if (Subtarget->isTargetELF() && IsPositionIndependent) 586 return ARMLowerPICELF(GV, Align, VT); 587 588 // Grab index. 589 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 590 unsigned Id = AFI->createPICLabelUId(); 591 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 592 ARMCP::CPValue, 593 PCAdj); 594 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 595 596 // Load value. 597 MachineInstrBuilder MIB; 598 if (isThumb2) { 599 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 600 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 601 DestReg).addConstantPoolIndex(Idx); 602 if (IsPositionIndependent) 603 MIB.addImm(Id); 604 AddOptionalDefs(MIB); 605 } else { 606 // The extra immediate is for addrmode2. 607 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 608 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 609 TII.get(ARM::LDRcp), DestReg) 610 .addConstantPoolIndex(Idx) 611 .addImm(0); 612 AddOptionalDefs(MIB); 613 614 if (IsPositionIndependent) { 615 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 616 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 617 618 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 619 DbgLoc, TII.get(Opc), NewDestReg) 620 .addReg(DestReg) 621 .addImm(Id); 622 AddOptionalDefs(MIB); 623 return NewDestReg; 624 } 625 } 626 } 627 628 if (IsIndirect) { 629 MachineInstrBuilder MIB; 630 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 631 if (isThumb2) 632 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 633 TII.get(ARM::t2LDRi12), NewDestReg) 634 .addReg(DestReg) 635 .addImm(0); 636 else 637 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 638 TII.get(ARM::LDRi12), NewDestReg) 639 .addReg(DestReg) 640 .addImm(0); 641 DestReg = NewDestReg; 642 AddOptionalDefs(MIB); 643 } 644 645 return DestReg; 646 } 647 648 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 649 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 650 651 // Only handle simple types. 652 if (!CEVT.isSimple()) return 0; 653 MVT VT = CEVT.getSimpleVT(); 654 655 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 656 return ARMMaterializeFP(CFP, VT); 657 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 658 return ARMMaterializeGV(GV, VT); 659 else if (isa<ConstantInt>(C)) 660 return ARMMaterializeInt(C, VT); 661 662 return 0; 663 } 664 665 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 666 667 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 668 // Don't handle dynamic allocas. 669 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 670 671 MVT VT; 672 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 673 674 DenseMap<const AllocaInst*, int>::iterator SI = 675 FuncInfo.StaticAllocaMap.find(AI); 676 677 // This will get lowered later into the correct offsets and registers 678 // via rewriteXFrameIndex. 679 if (SI != FuncInfo.StaticAllocaMap.end()) { 680 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 681 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 682 unsigned ResultReg = createResultReg(RC); 683 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 684 685 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 686 TII.get(Opc), ResultReg) 687 .addFrameIndex(SI->second) 688 .addImm(0)); 689 return ResultReg; 690 } 691 692 return 0; 693 } 694 695 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 696 EVT evt = TLI.getValueType(DL, Ty, true); 697 698 // Only handle simple types. 699 if (evt == MVT::Other || !evt.isSimple()) return false; 700 VT = evt.getSimpleVT(); 701 702 // Handle all legal types, i.e. a register that will directly hold this 703 // value. 704 return TLI.isTypeLegal(VT); 705 } 706 707 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 708 if (isTypeLegal(Ty, VT)) return true; 709 710 // If this is a type than can be sign or zero-extended to a basic operation 711 // go ahead and accept it now. 712 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 713 return true; 714 715 return false; 716 } 717 718 // Computes the address to get to an object. 719 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 720 // Some boilerplate from the X86 FastISel. 721 const User *U = nullptr; 722 unsigned Opcode = Instruction::UserOp1; 723 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 724 // Don't walk into other basic blocks unless the object is an alloca from 725 // another block, otherwise it may not have a virtual register assigned. 726 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 727 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 728 Opcode = I->getOpcode(); 729 U = I; 730 } 731 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 732 Opcode = C->getOpcode(); 733 U = C; 734 } 735 736 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 737 if (Ty->getAddressSpace() > 255) 738 // Fast instruction selection doesn't support the special 739 // address spaces. 740 return false; 741 742 switch (Opcode) { 743 default: 744 break; 745 case Instruction::BitCast: 746 // Look through bitcasts. 747 return ARMComputeAddress(U->getOperand(0), Addr); 748 case Instruction::IntToPtr: 749 // Look past no-op inttoptrs. 750 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 751 TLI.getPointerTy(DL)) 752 return ARMComputeAddress(U->getOperand(0), Addr); 753 break; 754 case Instruction::PtrToInt: 755 // Look past no-op ptrtoints. 756 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 757 return ARMComputeAddress(U->getOperand(0), Addr); 758 break; 759 case Instruction::GetElementPtr: { 760 Address SavedAddr = Addr; 761 int TmpOffset = Addr.Offset; 762 763 // Iterate through the GEP folding the constants into offsets where 764 // we can. 765 gep_type_iterator GTI = gep_type_begin(U); 766 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 767 i != e; ++i, ++GTI) { 768 const Value *Op = *i; 769 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 770 const StructLayout *SL = DL.getStructLayout(STy); 771 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 772 TmpOffset += SL->getElementOffset(Idx); 773 } else { 774 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 775 for (;;) { 776 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 777 // Constant-offset addressing. 778 TmpOffset += CI->getSExtValue() * S; 779 break; 780 } 781 if (canFoldAddIntoGEP(U, Op)) { 782 // A compatible add with a constant operand. Fold the constant. 783 ConstantInt *CI = 784 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 785 TmpOffset += CI->getSExtValue() * S; 786 // Iterate on the other operand. 787 Op = cast<AddOperator>(Op)->getOperand(0); 788 continue; 789 } 790 // Unsupported 791 goto unsupported_gep; 792 } 793 } 794 } 795 796 // Try to grab the base operand now. 797 Addr.Offset = TmpOffset; 798 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 799 800 // We failed, restore everything and try the other options. 801 Addr = SavedAddr; 802 803 unsupported_gep: 804 break; 805 } 806 case Instruction::Alloca: { 807 const AllocaInst *AI = cast<AllocaInst>(Obj); 808 DenseMap<const AllocaInst*, int>::iterator SI = 809 FuncInfo.StaticAllocaMap.find(AI); 810 if (SI != FuncInfo.StaticAllocaMap.end()) { 811 Addr.BaseType = Address::FrameIndexBase; 812 Addr.Base.FI = SI->second; 813 return true; 814 } 815 break; 816 } 817 } 818 819 // Try to get this in a register if nothing else has worked. 820 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 821 return Addr.Base.Reg != 0; 822 } 823 824 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 825 bool needsLowering = false; 826 switch (VT.SimpleTy) { 827 default: llvm_unreachable("Unhandled load/store type!"); 828 case MVT::i1: 829 case MVT::i8: 830 case MVT::i16: 831 case MVT::i32: 832 if (!useAM3) { 833 // Integer loads/stores handle 12-bit offsets. 834 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 835 // Handle negative offsets. 836 if (needsLowering && isThumb2) 837 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 838 Addr.Offset > -256); 839 } else { 840 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 841 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 842 } 843 break; 844 case MVT::f32: 845 case MVT::f64: 846 // Floating point operands handle 8-bit offsets. 847 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 848 break; 849 } 850 851 // If this is a stack pointer and the offset needs to be simplified then 852 // put the alloca address into a register, set the base type back to 853 // register and continue. This should almost never happen. 854 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 855 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 856 : &ARM::GPRRegClass; 857 unsigned ResultReg = createResultReg(RC); 858 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 859 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 860 TII.get(Opc), ResultReg) 861 .addFrameIndex(Addr.Base.FI) 862 .addImm(0)); 863 Addr.Base.Reg = ResultReg; 864 Addr.BaseType = Address::RegBase; 865 } 866 867 // Since the offset is too large for the load/store instruction 868 // get the reg+offset into a register. 869 if (needsLowering) { 870 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 871 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 872 Addr.Offset = 0; 873 } 874 } 875 876 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 877 const MachineInstrBuilder &MIB, 878 unsigned Flags, bool useAM3) { 879 // addrmode5 output depends on the selection dag addressing dividing the 880 // offset by 4 that it then later multiplies. Do this here as well. 881 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 882 Addr.Offset /= 4; 883 884 // Frame base works a bit differently. Handle it separately. 885 if (Addr.BaseType == Address::FrameIndexBase) { 886 int FI = Addr.Base.FI; 887 int Offset = Addr.Offset; 888 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 889 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 890 MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); 891 // Now add the rest of the operands. 892 MIB.addFrameIndex(FI); 893 894 // ARM halfword load/stores and signed byte loads need an additional 895 // operand. 896 if (useAM3) { 897 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 898 MIB.addReg(0); 899 MIB.addImm(Imm); 900 } else { 901 MIB.addImm(Addr.Offset); 902 } 903 MIB.addMemOperand(MMO); 904 } else { 905 // Now add the rest of the operands. 906 MIB.addReg(Addr.Base.Reg); 907 908 // ARM halfword load/stores and signed byte loads need an additional 909 // operand. 910 if (useAM3) { 911 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 912 MIB.addReg(0); 913 MIB.addImm(Imm); 914 } else { 915 MIB.addImm(Addr.Offset); 916 } 917 } 918 AddOptionalDefs(MIB); 919 } 920 921 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 922 unsigned Alignment, bool isZExt, bool allocReg) { 923 unsigned Opc; 924 bool useAM3 = false; 925 bool needVMOV = false; 926 const TargetRegisterClass *RC; 927 switch (VT.SimpleTy) { 928 // This is mostly going to be Neon/vector support. 929 default: return false; 930 case MVT::i1: 931 case MVT::i8: 932 if (isThumb2) { 933 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 934 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 935 else 936 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 937 } else { 938 if (isZExt) { 939 Opc = ARM::LDRBi12; 940 } else { 941 Opc = ARM::LDRSB; 942 useAM3 = true; 943 } 944 } 945 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 946 break; 947 case MVT::i16: 948 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 949 return false; 950 951 if (isThumb2) { 952 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 953 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 954 else 955 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 956 } else { 957 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 958 useAM3 = true; 959 } 960 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 961 break; 962 case MVT::i32: 963 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 964 return false; 965 966 if (isThumb2) { 967 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 968 Opc = ARM::t2LDRi8; 969 else 970 Opc = ARM::t2LDRi12; 971 } else { 972 Opc = ARM::LDRi12; 973 } 974 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 975 break; 976 case MVT::f32: 977 if (!Subtarget->hasVFP2()) return false; 978 // Unaligned loads need special handling. Floats require word-alignment. 979 if (Alignment && Alignment < 4) { 980 needVMOV = true; 981 VT = MVT::i32; 982 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 983 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 984 } else { 985 Opc = ARM::VLDRS; 986 RC = TLI.getRegClassFor(VT); 987 } 988 break; 989 case MVT::f64: 990 if (!Subtarget->hasVFP2()) return false; 991 // FIXME: Unaligned loads need special handling. Doublewords require 992 // word-alignment. 993 if (Alignment && Alignment < 4) 994 return false; 995 996 Opc = ARM::VLDRD; 997 RC = TLI.getRegClassFor(VT); 998 break; 999 } 1000 // Simplify this down to something we can handle. 1001 ARMSimplifyAddress(Addr, VT, useAM3); 1002 1003 // Create the base instruction, then add the operands. 1004 if (allocReg) 1005 ResultReg = createResultReg(RC); 1006 assert (ResultReg > 255 && "Expected an allocated virtual register."); 1007 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1008 TII.get(Opc), ResultReg); 1009 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 1010 1011 // If we had an unaligned load of a float we've converted it to an regular 1012 // load. Now we must move from the GRP to the FP register. 1013 if (needVMOV) { 1014 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1015 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1016 TII.get(ARM::VMOVSR), MoveReg) 1017 .addReg(ResultReg)); 1018 ResultReg = MoveReg; 1019 } 1020 return true; 1021 } 1022 1023 bool ARMFastISel::SelectLoad(const Instruction *I) { 1024 // Atomic loads need special handling. 1025 if (cast<LoadInst>(I)->isAtomic()) 1026 return false; 1027 1028 const Value *SV = I->getOperand(0); 1029 if (TLI.supportSwiftError()) { 1030 // Swifterror values can come from either a function parameter with 1031 // swifterror attribute or an alloca with swifterror attribute. 1032 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1033 if (Arg->hasSwiftErrorAttr()) 1034 return false; 1035 } 1036 1037 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1038 if (Alloca->isSwiftError()) 1039 return false; 1040 } 1041 } 1042 1043 // Verify we have a legal type before going any further. 1044 MVT VT; 1045 if (!isLoadTypeLegal(I->getType(), VT)) 1046 return false; 1047 1048 // See if we can handle this address. 1049 Address Addr; 1050 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1051 1052 unsigned ResultReg; 1053 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1054 return false; 1055 updateValueMap(I, ResultReg); 1056 return true; 1057 } 1058 1059 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1060 unsigned Alignment) { 1061 unsigned StrOpc; 1062 bool useAM3 = false; 1063 switch (VT.SimpleTy) { 1064 // This is mostly going to be Neon/vector support. 1065 default: return false; 1066 case MVT::i1: { 1067 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1068 : &ARM::GPRRegClass); 1069 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1070 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1071 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1072 TII.get(Opc), Res) 1073 .addReg(SrcReg).addImm(1)); 1074 SrcReg = Res; 1075 } // Fallthrough here. 1076 case MVT::i8: 1077 if (isThumb2) { 1078 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1079 StrOpc = ARM::t2STRBi8; 1080 else 1081 StrOpc = ARM::t2STRBi12; 1082 } else { 1083 StrOpc = ARM::STRBi12; 1084 } 1085 break; 1086 case MVT::i16: 1087 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1088 return false; 1089 1090 if (isThumb2) { 1091 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1092 StrOpc = ARM::t2STRHi8; 1093 else 1094 StrOpc = ARM::t2STRHi12; 1095 } else { 1096 StrOpc = ARM::STRH; 1097 useAM3 = true; 1098 } 1099 break; 1100 case MVT::i32: 1101 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1102 return false; 1103 1104 if (isThumb2) { 1105 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1106 StrOpc = ARM::t2STRi8; 1107 else 1108 StrOpc = ARM::t2STRi12; 1109 } else { 1110 StrOpc = ARM::STRi12; 1111 } 1112 break; 1113 case MVT::f32: 1114 if (!Subtarget->hasVFP2()) return false; 1115 // Unaligned stores need special handling. Floats require word-alignment. 1116 if (Alignment && Alignment < 4) { 1117 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1118 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1119 TII.get(ARM::VMOVRS), MoveReg) 1120 .addReg(SrcReg)); 1121 SrcReg = MoveReg; 1122 VT = MVT::i32; 1123 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1124 } else { 1125 StrOpc = ARM::VSTRS; 1126 } 1127 break; 1128 case MVT::f64: 1129 if (!Subtarget->hasVFP2()) return false; 1130 // FIXME: Unaligned stores need special handling. Doublewords require 1131 // word-alignment. 1132 if (Alignment && Alignment < 4) 1133 return false; 1134 1135 StrOpc = ARM::VSTRD; 1136 break; 1137 } 1138 // Simplify this down to something we can handle. 1139 ARMSimplifyAddress(Addr, VT, useAM3); 1140 1141 // Create the base instruction, then add the operands. 1142 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1143 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1144 TII.get(StrOpc)) 1145 .addReg(SrcReg); 1146 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1147 return true; 1148 } 1149 1150 bool ARMFastISel::SelectStore(const Instruction *I) { 1151 Value *Op0 = I->getOperand(0); 1152 unsigned SrcReg = 0; 1153 1154 // Atomic stores need special handling. 1155 if (cast<StoreInst>(I)->isAtomic()) 1156 return false; 1157 1158 const Value *PtrV = I->getOperand(1); 1159 if (TLI.supportSwiftError()) { 1160 // Swifterror values can come from either a function parameter with 1161 // swifterror attribute or an alloca with swifterror attribute. 1162 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1163 if (Arg->hasSwiftErrorAttr()) 1164 return false; 1165 } 1166 1167 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1168 if (Alloca->isSwiftError()) 1169 return false; 1170 } 1171 } 1172 1173 // Verify we have a legal type before going any further. 1174 MVT VT; 1175 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1176 return false; 1177 1178 // Get the value to be stored into a register. 1179 SrcReg = getRegForValue(Op0); 1180 if (SrcReg == 0) return false; 1181 1182 // See if we can handle this address. 1183 Address Addr; 1184 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1185 return false; 1186 1187 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1188 return false; 1189 return true; 1190 } 1191 1192 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1193 switch (Pred) { 1194 // Needs two compares... 1195 case CmpInst::FCMP_ONE: 1196 case CmpInst::FCMP_UEQ: 1197 default: 1198 // AL is our "false" for now. The other two need more compares. 1199 return ARMCC::AL; 1200 case CmpInst::ICMP_EQ: 1201 case CmpInst::FCMP_OEQ: 1202 return ARMCC::EQ; 1203 case CmpInst::ICMP_SGT: 1204 case CmpInst::FCMP_OGT: 1205 return ARMCC::GT; 1206 case CmpInst::ICMP_SGE: 1207 case CmpInst::FCMP_OGE: 1208 return ARMCC::GE; 1209 case CmpInst::ICMP_UGT: 1210 case CmpInst::FCMP_UGT: 1211 return ARMCC::HI; 1212 case CmpInst::FCMP_OLT: 1213 return ARMCC::MI; 1214 case CmpInst::ICMP_ULE: 1215 case CmpInst::FCMP_OLE: 1216 return ARMCC::LS; 1217 case CmpInst::FCMP_ORD: 1218 return ARMCC::VC; 1219 case CmpInst::FCMP_UNO: 1220 return ARMCC::VS; 1221 case CmpInst::FCMP_UGE: 1222 return ARMCC::PL; 1223 case CmpInst::ICMP_SLT: 1224 case CmpInst::FCMP_ULT: 1225 return ARMCC::LT; 1226 case CmpInst::ICMP_SLE: 1227 case CmpInst::FCMP_ULE: 1228 return ARMCC::LE; 1229 case CmpInst::FCMP_UNE: 1230 case CmpInst::ICMP_NE: 1231 return ARMCC::NE; 1232 case CmpInst::ICMP_UGE: 1233 return ARMCC::HS; 1234 case CmpInst::ICMP_ULT: 1235 return ARMCC::LO; 1236 } 1237 } 1238 1239 bool ARMFastISel::SelectBranch(const Instruction *I) { 1240 const BranchInst *BI = cast<BranchInst>(I); 1241 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1242 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1243 1244 // Simple branch support. 1245 1246 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1247 // behavior. 1248 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1249 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1250 1251 // Get the compare predicate. 1252 // Try to take advantage of fallthrough opportunities. 1253 CmpInst::Predicate Predicate = CI->getPredicate(); 1254 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1255 std::swap(TBB, FBB); 1256 Predicate = CmpInst::getInversePredicate(Predicate); 1257 } 1258 1259 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1260 1261 // We may not handle every CC for now. 1262 if (ARMPred == ARMCC::AL) return false; 1263 1264 // Emit the compare. 1265 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1266 return false; 1267 1268 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1269 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1270 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1271 finishCondBranch(BI->getParent(), TBB, FBB); 1272 return true; 1273 } 1274 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1275 MVT SourceVT; 1276 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1277 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1278 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1279 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1280 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1281 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1282 TII.get(TstOpc)) 1283 .addReg(OpReg).addImm(1)); 1284 1285 unsigned CCMode = ARMCC::NE; 1286 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1287 std::swap(TBB, FBB); 1288 CCMode = ARMCC::EQ; 1289 } 1290 1291 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1292 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1293 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1294 1295 finishCondBranch(BI->getParent(), TBB, FBB); 1296 return true; 1297 } 1298 } else if (const ConstantInt *CI = 1299 dyn_cast<ConstantInt>(BI->getCondition())) { 1300 uint64_t Imm = CI->getZExtValue(); 1301 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1302 fastEmitBranch(Target, DbgLoc); 1303 return true; 1304 } 1305 1306 unsigned CmpReg = getRegForValue(BI->getCondition()); 1307 if (CmpReg == 0) return false; 1308 1309 // We've been divorced from our compare! Our block was split, and 1310 // now our compare lives in a predecessor block. We musn't 1311 // re-compare here, as the children of the compare aren't guaranteed 1312 // live across the block boundary (we *could* check for this). 1313 // Regardless, the compare has been done in the predecessor block, 1314 // and it left a value for us in a virtual register. Ergo, we test 1315 // the one-bit value left in the virtual register. 1316 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1317 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1318 AddOptionalDefs( 1319 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1320 .addReg(CmpReg) 1321 .addImm(1)); 1322 1323 unsigned CCMode = ARMCC::NE; 1324 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1325 std::swap(TBB, FBB); 1326 CCMode = ARMCC::EQ; 1327 } 1328 1329 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1330 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1331 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1332 finishCondBranch(BI->getParent(), TBB, FBB); 1333 return true; 1334 } 1335 1336 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1337 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1338 if (AddrReg == 0) return false; 1339 1340 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1341 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1342 TII.get(Opc)).addReg(AddrReg)); 1343 1344 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1345 for (const BasicBlock *SuccBB : IB->successors()) 1346 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1347 1348 return true; 1349 } 1350 1351 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1352 bool isZExt) { 1353 Type *Ty = Src1Value->getType(); 1354 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1355 if (!SrcEVT.isSimple()) return false; 1356 MVT SrcVT = SrcEVT.getSimpleVT(); 1357 1358 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 1359 if (isFloat && !Subtarget->hasVFP2()) 1360 return false; 1361 1362 // Check to see if the 2nd operand is a constant that we can encode directly 1363 // in the compare. 1364 int Imm = 0; 1365 bool UseImm = false; 1366 bool isNegativeImm = false; 1367 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1368 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1369 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1370 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1371 SrcVT == MVT::i1) { 1372 const APInt &CIVal = ConstInt->getValue(); 1373 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1374 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1375 // then a cmn, because there is no way to represent 2147483648 as a 1376 // signed 32-bit int. 1377 if (Imm < 0 && Imm != (int)0x80000000) { 1378 isNegativeImm = true; 1379 Imm = -Imm; 1380 } 1381 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1382 (ARM_AM::getSOImmVal(Imm) != -1); 1383 } 1384 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1385 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1386 if (ConstFP->isZero() && !ConstFP->isNegative()) 1387 UseImm = true; 1388 } 1389 1390 unsigned CmpOpc; 1391 bool isICmp = true; 1392 bool needsExt = false; 1393 switch (SrcVT.SimpleTy) { 1394 default: return false; 1395 // TODO: Verify compares. 1396 case MVT::f32: 1397 isICmp = false; 1398 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 1399 break; 1400 case MVT::f64: 1401 isICmp = false; 1402 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 1403 break; 1404 case MVT::i1: 1405 case MVT::i8: 1406 case MVT::i16: 1407 needsExt = true; 1408 // Intentional fall-through. 1409 case MVT::i32: 1410 if (isThumb2) { 1411 if (!UseImm) 1412 CmpOpc = ARM::t2CMPrr; 1413 else 1414 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1415 } else { 1416 if (!UseImm) 1417 CmpOpc = ARM::CMPrr; 1418 else 1419 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1420 } 1421 break; 1422 } 1423 1424 unsigned SrcReg1 = getRegForValue(Src1Value); 1425 if (SrcReg1 == 0) return false; 1426 1427 unsigned SrcReg2 = 0; 1428 if (!UseImm) { 1429 SrcReg2 = getRegForValue(Src2Value); 1430 if (SrcReg2 == 0) return false; 1431 } 1432 1433 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1434 if (needsExt) { 1435 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1436 if (SrcReg1 == 0) return false; 1437 if (!UseImm) { 1438 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1439 if (SrcReg2 == 0) return false; 1440 } 1441 } 1442 1443 const MCInstrDesc &II = TII.get(CmpOpc); 1444 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1445 if (!UseImm) { 1446 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1447 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1448 .addReg(SrcReg1).addReg(SrcReg2)); 1449 } else { 1450 MachineInstrBuilder MIB; 1451 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1452 .addReg(SrcReg1); 1453 1454 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1455 if (isICmp) 1456 MIB.addImm(Imm); 1457 AddOptionalDefs(MIB); 1458 } 1459 1460 // For floating point we need to move the result to a comparison register 1461 // that we can then use for branches. 1462 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1463 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1464 TII.get(ARM::FMSTAT))); 1465 return true; 1466 } 1467 1468 bool ARMFastISel::SelectCmp(const Instruction *I) { 1469 const CmpInst *CI = cast<CmpInst>(I); 1470 1471 // Get the compare predicate. 1472 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1473 1474 // We may not handle every CC for now. 1475 if (ARMPred == ARMCC::AL) return false; 1476 1477 // Emit the compare. 1478 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1479 return false; 1480 1481 // Now set a register based on the comparison. Explicitly set the predicates 1482 // here. 1483 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1484 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1485 : &ARM::GPRRegClass; 1486 unsigned DestReg = createResultReg(RC); 1487 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1488 unsigned ZeroReg = fastMaterializeConstant(Zero); 1489 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1490 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1491 .addReg(ZeroReg).addImm(1) 1492 .addImm(ARMPred).addReg(ARM::CPSR); 1493 1494 updateValueMap(I, DestReg); 1495 return true; 1496 } 1497 1498 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1499 // Make sure we have VFP and that we're extending float to double. 1500 if (!Subtarget->hasVFP2()) return false; 1501 1502 Value *V = I->getOperand(0); 1503 if (!I->getType()->isDoubleTy() || 1504 !V->getType()->isFloatTy()) return false; 1505 1506 unsigned Op = getRegForValue(V); 1507 if (Op == 0) return false; 1508 1509 unsigned Result = createResultReg(&ARM::DPRRegClass); 1510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1511 TII.get(ARM::VCVTDS), Result) 1512 .addReg(Op)); 1513 updateValueMap(I, Result); 1514 return true; 1515 } 1516 1517 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1518 // Make sure we have VFP and that we're truncating double to float. 1519 if (!Subtarget->hasVFP2()) return false; 1520 1521 Value *V = I->getOperand(0); 1522 if (!(I->getType()->isFloatTy() && 1523 V->getType()->isDoubleTy())) return false; 1524 1525 unsigned Op = getRegForValue(V); 1526 if (Op == 0) return false; 1527 1528 unsigned Result = createResultReg(&ARM::SPRRegClass); 1529 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1530 TII.get(ARM::VCVTSD), Result) 1531 .addReg(Op)); 1532 updateValueMap(I, Result); 1533 return true; 1534 } 1535 1536 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1537 // Make sure we have VFP. 1538 if (!Subtarget->hasVFP2()) return false; 1539 1540 MVT DstVT; 1541 Type *Ty = I->getType(); 1542 if (!isTypeLegal(Ty, DstVT)) 1543 return false; 1544 1545 Value *Src = I->getOperand(0); 1546 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1547 if (!SrcEVT.isSimple()) 1548 return false; 1549 MVT SrcVT = SrcEVT.getSimpleVT(); 1550 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1551 return false; 1552 1553 unsigned SrcReg = getRegForValue(Src); 1554 if (SrcReg == 0) return false; 1555 1556 // Handle sign-extension. 1557 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1558 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1559 /*isZExt*/!isSigned); 1560 if (SrcReg == 0) return false; 1561 } 1562 1563 // The conversion routine works on fp-reg to fp-reg and the operand above 1564 // was an integer, move it to the fp registers if possible. 1565 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1566 if (FP == 0) return false; 1567 1568 unsigned Opc; 1569 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1570 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1571 else return false; 1572 1573 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1574 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1575 TII.get(Opc), ResultReg).addReg(FP)); 1576 updateValueMap(I, ResultReg); 1577 return true; 1578 } 1579 1580 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1581 // Make sure we have VFP. 1582 if (!Subtarget->hasVFP2()) return false; 1583 1584 MVT DstVT; 1585 Type *RetTy = I->getType(); 1586 if (!isTypeLegal(RetTy, DstVT)) 1587 return false; 1588 1589 unsigned Op = getRegForValue(I->getOperand(0)); 1590 if (Op == 0) return false; 1591 1592 unsigned Opc; 1593 Type *OpTy = I->getOperand(0)->getType(); 1594 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1595 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1596 else return false; 1597 1598 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1599 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1600 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1601 TII.get(Opc), ResultReg).addReg(Op)); 1602 1603 // This result needs to be in an integer register, but the conversion only 1604 // takes place in fp-regs. 1605 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1606 if (IntReg == 0) return false; 1607 1608 updateValueMap(I, IntReg); 1609 return true; 1610 } 1611 1612 bool ARMFastISel::SelectSelect(const Instruction *I) { 1613 MVT VT; 1614 if (!isTypeLegal(I->getType(), VT)) 1615 return false; 1616 1617 // Things need to be register sized for register moves. 1618 if (VT != MVT::i32) return false; 1619 1620 unsigned CondReg = getRegForValue(I->getOperand(0)); 1621 if (CondReg == 0) return false; 1622 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1623 if (Op1Reg == 0) return false; 1624 1625 // Check to see if we can use an immediate in the conditional move. 1626 int Imm = 0; 1627 bool UseImm = false; 1628 bool isNegativeImm = false; 1629 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1630 assert (VT == MVT::i32 && "Expecting an i32."); 1631 Imm = (int)ConstInt->getValue().getZExtValue(); 1632 if (Imm < 0) { 1633 isNegativeImm = true; 1634 Imm = ~Imm; 1635 } 1636 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1637 (ARM_AM::getSOImmVal(Imm) != -1); 1638 } 1639 1640 unsigned Op2Reg = 0; 1641 if (!UseImm) { 1642 Op2Reg = getRegForValue(I->getOperand(2)); 1643 if (Op2Reg == 0) return false; 1644 } 1645 1646 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1647 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1648 AddOptionalDefs( 1649 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1650 .addReg(CondReg) 1651 .addImm(1)); 1652 1653 unsigned MovCCOpc; 1654 const TargetRegisterClass *RC; 1655 if (!UseImm) { 1656 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1657 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1658 } else { 1659 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1660 if (!isNegativeImm) 1661 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1662 else 1663 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1664 } 1665 unsigned ResultReg = createResultReg(RC); 1666 if (!UseImm) { 1667 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1668 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1669 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1670 ResultReg) 1671 .addReg(Op2Reg) 1672 .addReg(Op1Reg) 1673 .addImm(ARMCC::NE) 1674 .addReg(ARM::CPSR); 1675 } else { 1676 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1677 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1678 ResultReg) 1679 .addReg(Op1Reg) 1680 .addImm(Imm) 1681 .addImm(ARMCC::EQ) 1682 .addReg(ARM::CPSR); 1683 } 1684 updateValueMap(I, ResultReg); 1685 return true; 1686 } 1687 1688 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1689 MVT VT; 1690 Type *Ty = I->getType(); 1691 if (!isTypeLegal(Ty, VT)) 1692 return false; 1693 1694 // If we have integer div support we should have selected this automagically. 1695 // In case we have a real miss go ahead and return false and we'll pick 1696 // it up later. 1697 if (Subtarget->hasDivide()) return false; 1698 1699 // Otherwise emit a libcall. 1700 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1701 if (VT == MVT::i8) 1702 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1703 else if (VT == MVT::i16) 1704 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1705 else if (VT == MVT::i32) 1706 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1707 else if (VT == MVT::i64) 1708 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1709 else if (VT == MVT::i128) 1710 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1711 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1712 1713 return ARMEmitLibcall(I, LC); 1714 } 1715 1716 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1717 MVT VT; 1718 Type *Ty = I->getType(); 1719 if (!isTypeLegal(Ty, VT)) 1720 return false; 1721 1722 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1723 if (VT == MVT::i8) 1724 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1725 else if (VT == MVT::i16) 1726 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1727 else if (VT == MVT::i32) 1728 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1729 else if (VT == MVT::i64) 1730 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1731 else if (VT == MVT::i128) 1732 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1733 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1734 1735 return ARMEmitLibcall(I, LC); 1736 } 1737 1738 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1739 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1740 1741 // We can get here in the case when we have a binary operation on a non-legal 1742 // type and the target independent selector doesn't know how to handle it. 1743 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1744 return false; 1745 1746 unsigned Opc; 1747 switch (ISDOpcode) { 1748 default: return false; 1749 case ISD::ADD: 1750 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1751 break; 1752 case ISD::OR: 1753 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1754 break; 1755 case ISD::SUB: 1756 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1757 break; 1758 } 1759 1760 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1761 if (SrcReg1 == 0) return false; 1762 1763 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1764 // in the instruction, rather then materializing the value in a register. 1765 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1766 if (SrcReg2 == 0) return false; 1767 1768 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1769 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1770 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1771 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1772 TII.get(Opc), ResultReg) 1773 .addReg(SrcReg1).addReg(SrcReg2)); 1774 updateValueMap(I, ResultReg); 1775 return true; 1776 } 1777 1778 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1779 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1780 if (!FPVT.isSimple()) return false; 1781 MVT VT = FPVT.getSimpleVT(); 1782 1783 // FIXME: Support vector types where possible. 1784 if (VT.isVector()) 1785 return false; 1786 1787 // We can get here in the case when we want to use NEON for our fp 1788 // operations, but can't figure out how to. Just use the vfp instructions 1789 // if we have them. 1790 // FIXME: It'd be nice to use NEON instructions. 1791 Type *Ty = I->getType(); 1792 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 1793 if (isFloat && !Subtarget->hasVFP2()) 1794 return false; 1795 1796 unsigned Opc; 1797 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1798 switch (ISDOpcode) { 1799 default: return false; 1800 case ISD::FADD: 1801 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1802 break; 1803 case ISD::FSUB: 1804 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1805 break; 1806 case ISD::FMUL: 1807 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1808 break; 1809 } 1810 unsigned Op1 = getRegForValue(I->getOperand(0)); 1811 if (Op1 == 0) return false; 1812 1813 unsigned Op2 = getRegForValue(I->getOperand(1)); 1814 if (Op2 == 0) return false; 1815 1816 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1817 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1818 TII.get(Opc), ResultReg) 1819 .addReg(Op1).addReg(Op2)); 1820 updateValueMap(I, ResultReg); 1821 return true; 1822 } 1823 1824 // Call Handling Code 1825 1826 // This is largely taken directly from CCAssignFnForNode 1827 // TODO: We may not support all of this. 1828 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1829 bool Return, 1830 bool isVarArg) { 1831 switch (CC) { 1832 default: 1833 llvm_unreachable("Unsupported calling convention"); 1834 case CallingConv::Fast: 1835 if (Subtarget->hasVFP2() && !isVarArg) { 1836 if (!Subtarget->isAAPCS_ABI()) 1837 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1838 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1839 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1840 } 1841 // Fallthrough 1842 case CallingConv::C: 1843 case CallingConv::CXX_FAST_TLS: 1844 // Use target triple & subtarget features to do actual dispatch. 1845 if (Subtarget->isAAPCS_ABI()) { 1846 if (Subtarget->hasVFP2() && 1847 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1848 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1849 else 1850 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1851 } else { 1852 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1853 } 1854 case CallingConv::ARM_AAPCS_VFP: 1855 case CallingConv::Swift: 1856 if (!isVarArg) 1857 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1858 // Fall through to soft float variant, variadic functions don't 1859 // use hard floating point ABI. 1860 case CallingConv::ARM_AAPCS: 1861 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1862 case CallingConv::ARM_APCS: 1863 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1864 case CallingConv::GHC: 1865 if (Return) 1866 llvm_unreachable("Can't return in GHC call convention"); 1867 else 1868 return CC_ARM_APCS_GHC; 1869 } 1870 } 1871 1872 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1873 SmallVectorImpl<unsigned> &ArgRegs, 1874 SmallVectorImpl<MVT> &ArgVTs, 1875 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1876 SmallVectorImpl<unsigned> &RegArgs, 1877 CallingConv::ID CC, 1878 unsigned &NumBytes, 1879 bool isVarArg) { 1880 SmallVector<CCValAssign, 16> ArgLocs; 1881 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1882 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1883 CCAssignFnForCall(CC, false, isVarArg)); 1884 1885 // Check that we can handle all of the arguments. If we can't, then bail out 1886 // now before we add code to the MBB. 1887 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1888 CCValAssign &VA = ArgLocs[i]; 1889 MVT ArgVT = ArgVTs[VA.getValNo()]; 1890 1891 // We don't handle NEON/vector parameters yet. 1892 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1893 return false; 1894 1895 // Now copy/store arg to correct locations. 1896 if (VA.isRegLoc() && !VA.needsCustom()) { 1897 continue; 1898 } else if (VA.needsCustom()) { 1899 // TODO: We need custom lowering for vector (v2f64) args. 1900 if (VA.getLocVT() != MVT::f64 || 1901 // TODO: Only handle register args for now. 1902 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1903 return false; 1904 } else { 1905 switch (ArgVT.SimpleTy) { 1906 default: 1907 return false; 1908 case MVT::i1: 1909 case MVT::i8: 1910 case MVT::i16: 1911 case MVT::i32: 1912 break; 1913 case MVT::f32: 1914 if (!Subtarget->hasVFP2()) 1915 return false; 1916 break; 1917 case MVT::f64: 1918 if (!Subtarget->hasVFP2()) 1919 return false; 1920 break; 1921 } 1922 } 1923 } 1924 1925 // At the point, we are able to handle the call's arguments in fast isel. 1926 1927 // Get a count of how many bytes are to be pushed on the stack. 1928 NumBytes = CCInfo.getNextStackOffset(); 1929 1930 // Issue CALLSEQ_START 1931 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1932 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1933 TII.get(AdjStackDown)) 1934 .addImm(NumBytes)); 1935 1936 // Process the args. 1937 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1938 CCValAssign &VA = ArgLocs[i]; 1939 const Value *ArgVal = Args[VA.getValNo()]; 1940 unsigned Arg = ArgRegs[VA.getValNo()]; 1941 MVT ArgVT = ArgVTs[VA.getValNo()]; 1942 1943 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1944 "We don't handle NEON/vector parameters yet."); 1945 1946 // Handle arg promotion, etc. 1947 switch (VA.getLocInfo()) { 1948 case CCValAssign::Full: break; 1949 case CCValAssign::SExt: { 1950 MVT DestVT = VA.getLocVT(); 1951 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1952 assert (Arg != 0 && "Failed to emit a sext"); 1953 ArgVT = DestVT; 1954 break; 1955 } 1956 case CCValAssign::AExt: 1957 // Intentional fall-through. Handle AExt and ZExt. 1958 case CCValAssign::ZExt: { 1959 MVT DestVT = VA.getLocVT(); 1960 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1961 assert (Arg != 0 && "Failed to emit a zext"); 1962 ArgVT = DestVT; 1963 break; 1964 } 1965 case CCValAssign::BCvt: { 1966 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1967 /*TODO: Kill=*/false); 1968 assert(BC != 0 && "Failed to emit a bitcast!"); 1969 Arg = BC; 1970 ArgVT = VA.getLocVT(); 1971 break; 1972 } 1973 default: llvm_unreachable("Unknown arg promotion!"); 1974 } 1975 1976 // Now copy/store arg to correct locations. 1977 if (VA.isRegLoc() && !VA.needsCustom()) { 1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1979 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1980 RegArgs.push_back(VA.getLocReg()); 1981 } else if (VA.needsCustom()) { 1982 // TODO: We need custom lowering for vector (v2f64) args. 1983 assert(VA.getLocVT() == MVT::f64 && 1984 "Custom lowering for v2f64 args not available"); 1985 1986 CCValAssign &NextVA = ArgLocs[++i]; 1987 1988 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1989 "We only handle register args!"); 1990 1991 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1992 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1993 .addReg(NextVA.getLocReg(), RegState::Define) 1994 .addReg(Arg)); 1995 RegArgs.push_back(VA.getLocReg()); 1996 RegArgs.push_back(NextVA.getLocReg()); 1997 } else { 1998 assert(VA.isMemLoc()); 1999 // Need to store on the stack. 2000 2001 // Don't emit stores for undef values. 2002 if (isa<UndefValue>(ArgVal)) 2003 continue; 2004 2005 Address Addr; 2006 Addr.BaseType = Address::RegBase; 2007 Addr.Base.Reg = ARM::SP; 2008 Addr.Offset = VA.getLocMemOffset(); 2009 2010 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2011 assert(EmitRet && "Could not emit a store for argument!"); 2012 } 2013 } 2014 2015 return true; 2016 } 2017 2018 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 2019 const Instruction *I, CallingConv::ID CC, 2020 unsigned &NumBytes, bool isVarArg) { 2021 // Issue CALLSEQ_END 2022 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2023 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2024 TII.get(AdjStackUp)) 2025 .addImm(NumBytes).addImm(0)); 2026 2027 // Now the return value. 2028 if (RetVT != MVT::isVoid) { 2029 SmallVector<CCValAssign, 16> RVLocs; 2030 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2031 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2032 2033 // Copy all of the result registers out of their specified physreg. 2034 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2035 // For this move we copy into two registers and then move into the 2036 // double fp reg we want. 2037 MVT DestVT = RVLocs[0].getValVT(); 2038 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2039 unsigned ResultReg = createResultReg(DstRC); 2040 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2041 TII.get(ARM::VMOVDRR), ResultReg) 2042 .addReg(RVLocs[0].getLocReg()) 2043 .addReg(RVLocs[1].getLocReg())); 2044 2045 UsedRegs.push_back(RVLocs[0].getLocReg()); 2046 UsedRegs.push_back(RVLocs[1].getLocReg()); 2047 2048 // Finally update the result. 2049 updateValueMap(I, ResultReg); 2050 } else { 2051 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2052 MVT CopyVT = RVLocs[0].getValVT(); 2053 2054 // Special handling for extended integers. 2055 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2056 CopyVT = MVT::i32; 2057 2058 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2059 2060 unsigned ResultReg = createResultReg(DstRC); 2061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2062 TII.get(TargetOpcode::COPY), 2063 ResultReg).addReg(RVLocs[0].getLocReg()); 2064 UsedRegs.push_back(RVLocs[0].getLocReg()); 2065 2066 // Finally update the result. 2067 updateValueMap(I, ResultReg); 2068 } 2069 } 2070 2071 return true; 2072 } 2073 2074 bool ARMFastISel::SelectRet(const Instruction *I) { 2075 const ReturnInst *Ret = cast<ReturnInst>(I); 2076 const Function &F = *I->getParent()->getParent(); 2077 2078 if (!FuncInfo.CanLowerReturn) 2079 return false; 2080 2081 if (TLI.supportSwiftError() && 2082 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2083 return false; 2084 2085 if (TLI.supportSplitCSR(FuncInfo.MF)) 2086 return false; 2087 2088 // Build a list of return value registers. 2089 SmallVector<unsigned, 4> RetRegs; 2090 2091 CallingConv::ID CC = F.getCallingConv(); 2092 if (Ret->getNumOperands() > 0) { 2093 SmallVector<ISD::OutputArg, 4> Outs; 2094 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2095 2096 // Analyze operands of the call, assigning locations to each operand. 2097 SmallVector<CCValAssign, 16> ValLocs; 2098 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2099 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2100 F.isVarArg())); 2101 2102 const Value *RV = Ret->getOperand(0); 2103 unsigned Reg = getRegForValue(RV); 2104 if (Reg == 0) 2105 return false; 2106 2107 // Only handle a single return value for now. 2108 if (ValLocs.size() != 1) 2109 return false; 2110 2111 CCValAssign &VA = ValLocs[0]; 2112 2113 // Don't bother handling odd stuff for now. 2114 if (VA.getLocInfo() != CCValAssign::Full) 2115 return false; 2116 // Only handle register returns for now. 2117 if (!VA.isRegLoc()) 2118 return false; 2119 2120 unsigned SrcReg = Reg + VA.getValNo(); 2121 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2122 if (!RVEVT.isSimple()) return false; 2123 MVT RVVT = RVEVT.getSimpleVT(); 2124 MVT DestVT = VA.getValVT(); 2125 // Special handling for extended integers. 2126 if (RVVT != DestVT) { 2127 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2128 return false; 2129 2130 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2131 2132 // Perform extension if flagged as either zext or sext. Otherwise, do 2133 // nothing. 2134 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2135 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2136 if (SrcReg == 0) return false; 2137 } 2138 } 2139 2140 // Make the copy. 2141 unsigned DstReg = VA.getLocReg(); 2142 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2143 // Avoid a cross-class copy. This is very unlikely. 2144 if (!SrcRC->contains(DstReg)) 2145 return false; 2146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2147 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2148 2149 // Add register to return instruction. 2150 RetRegs.push_back(VA.getLocReg()); 2151 } 2152 2153 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 2154 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2155 TII.get(RetOpc)); 2156 AddOptionalDefs(MIB); 2157 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 2158 MIB.addReg(RetRegs[i], RegState::Implicit); 2159 return true; 2160 } 2161 2162 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2163 if (UseReg) 2164 return isThumb2 ? ARM::tBLXr : ARM::BLX; 2165 else 2166 return isThumb2 ? ARM::tBL : ARM::BL; 2167 } 2168 2169 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2170 // Manually compute the global's type to avoid building it when unnecessary. 2171 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2172 EVT LCREVT = TLI.getValueType(DL, GVTy); 2173 if (!LCREVT.isSimple()) return 0; 2174 2175 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2176 GlobalValue::ExternalLinkage, nullptr, 2177 Name); 2178 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2179 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2180 } 2181 2182 // A quick function that will emit a call for a named libcall in F with the 2183 // vector of passed arguments for the Instruction in I. We can assume that we 2184 // can emit a call for any libcall we can produce. This is an abridged version 2185 // of the full call infrastructure since we won't need to worry about things 2186 // like computed function pointers or strange arguments at call sites. 2187 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2188 // with X86. 2189 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2190 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2191 2192 // Handle *simple* calls for now. 2193 Type *RetTy = I->getType(); 2194 MVT RetVT; 2195 if (RetTy->isVoidTy()) 2196 RetVT = MVT::isVoid; 2197 else if (!isTypeLegal(RetTy, RetVT)) 2198 return false; 2199 2200 // Can't handle non-double multi-reg retvals. 2201 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2202 SmallVector<CCValAssign, 16> RVLocs; 2203 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2204 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2205 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2206 return false; 2207 } 2208 2209 // Set up the argument vectors. 2210 SmallVector<Value*, 8> Args; 2211 SmallVector<unsigned, 8> ArgRegs; 2212 SmallVector<MVT, 8> ArgVTs; 2213 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2214 Args.reserve(I->getNumOperands()); 2215 ArgRegs.reserve(I->getNumOperands()); 2216 ArgVTs.reserve(I->getNumOperands()); 2217 ArgFlags.reserve(I->getNumOperands()); 2218 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 2219 Value *Op = I->getOperand(i); 2220 unsigned Arg = getRegForValue(Op); 2221 if (Arg == 0) return false; 2222 2223 Type *ArgTy = Op->getType(); 2224 MVT ArgVT; 2225 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2226 2227 ISD::ArgFlagsTy Flags; 2228 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2229 Flags.setOrigAlign(OriginalAlignment); 2230 2231 Args.push_back(Op); 2232 ArgRegs.push_back(Arg); 2233 ArgVTs.push_back(ArgVT); 2234 ArgFlags.push_back(Flags); 2235 } 2236 2237 // Handle the arguments now that we've gotten them. 2238 SmallVector<unsigned, 4> RegArgs; 2239 unsigned NumBytes; 2240 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2241 RegArgs, CC, NumBytes, false)) 2242 return false; 2243 2244 unsigned CalleeReg = 0; 2245 if (Subtarget->genLongCalls()) { 2246 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2247 if (CalleeReg == 0) return false; 2248 } 2249 2250 // Issue the call. 2251 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2252 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2253 DbgLoc, TII.get(CallOpc)); 2254 // BL / BLX don't take a predicate, but tBL / tBLX do. 2255 if (isThumb2) 2256 AddDefaultPred(MIB); 2257 if (Subtarget->genLongCalls()) 2258 MIB.addReg(CalleeReg); 2259 else 2260 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2261 2262 // Add implicit physical register uses to the call. 2263 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2264 MIB.addReg(RegArgs[i], RegState::Implicit); 2265 2266 // Add a register mask with the call-preserved registers. 2267 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2268 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2269 2270 // Finish off the call including any return values. 2271 SmallVector<unsigned, 4> UsedRegs; 2272 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2273 2274 // Set all unused physreg defs as dead. 2275 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2276 2277 return true; 2278 } 2279 2280 bool ARMFastISel::SelectCall(const Instruction *I, 2281 const char *IntrMemName = nullptr) { 2282 const CallInst *CI = cast<CallInst>(I); 2283 const Value *Callee = CI->getCalledValue(); 2284 2285 // Can't handle inline asm. 2286 if (isa<InlineAsm>(Callee)) return false; 2287 2288 // Allow SelectionDAG isel to handle tail calls. 2289 if (CI->isTailCall()) return false; 2290 2291 // Check the calling convention. 2292 ImmutableCallSite CS(CI); 2293 CallingConv::ID CC = CS.getCallingConv(); 2294 2295 // TODO: Avoid some calling conventions? 2296 2297 FunctionType *FTy = CS.getFunctionType(); 2298 bool isVarArg = FTy->isVarArg(); 2299 2300 // Handle *simple* calls for now. 2301 Type *RetTy = I->getType(); 2302 MVT RetVT; 2303 if (RetTy->isVoidTy()) 2304 RetVT = MVT::isVoid; 2305 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2306 RetVT != MVT::i8 && RetVT != MVT::i1) 2307 return false; 2308 2309 // Can't handle non-double multi-reg retvals. 2310 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2311 RetVT != MVT::i16 && RetVT != MVT::i32) { 2312 SmallVector<CCValAssign, 16> RVLocs; 2313 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2314 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2315 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2316 return false; 2317 } 2318 2319 // Set up the argument vectors. 2320 SmallVector<Value*, 8> Args; 2321 SmallVector<unsigned, 8> ArgRegs; 2322 SmallVector<MVT, 8> ArgVTs; 2323 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2324 unsigned arg_size = CS.arg_size(); 2325 Args.reserve(arg_size); 2326 ArgRegs.reserve(arg_size); 2327 ArgVTs.reserve(arg_size); 2328 ArgFlags.reserve(arg_size); 2329 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 2330 i != e; ++i) { 2331 // If we're lowering a memory intrinsic instead of a regular call, skip the 2332 // last two arguments, which shouldn't be passed to the underlying function. 2333 if (IntrMemName && e-i <= 2) 2334 break; 2335 2336 ISD::ArgFlagsTy Flags; 2337 unsigned AttrInd = i - CS.arg_begin() + 1; 2338 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 2339 Flags.setSExt(); 2340 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 2341 Flags.setZExt(); 2342 2343 // FIXME: Only handle *easy* calls for now. 2344 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 2345 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 2346 CS.paramHasAttr(AttrInd, Attribute::SwiftSelf) || 2347 CS.paramHasAttr(AttrInd, Attribute::SwiftError) || 2348 CS.paramHasAttr(AttrInd, Attribute::Nest) || 2349 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 2350 return false; 2351 2352 Type *ArgTy = (*i)->getType(); 2353 MVT ArgVT; 2354 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2355 ArgVT != MVT::i1) 2356 return false; 2357 2358 unsigned Arg = getRegForValue(*i); 2359 if (Arg == 0) 2360 return false; 2361 2362 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 2363 Flags.setOrigAlign(OriginalAlignment); 2364 2365 Args.push_back(*i); 2366 ArgRegs.push_back(Arg); 2367 ArgVTs.push_back(ArgVT); 2368 ArgFlags.push_back(Flags); 2369 } 2370 2371 // Handle the arguments now that we've gotten them. 2372 SmallVector<unsigned, 4> RegArgs; 2373 unsigned NumBytes; 2374 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2375 RegArgs, CC, NumBytes, isVarArg)) 2376 return false; 2377 2378 bool UseReg = false; 2379 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2380 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2381 2382 unsigned CalleeReg = 0; 2383 if (UseReg) { 2384 if (IntrMemName) 2385 CalleeReg = getLibcallReg(IntrMemName); 2386 else 2387 CalleeReg = getRegForValue(Callee); 2388 2389 if (CalleeReg == 0) return false; 2390 } 2391 2392 // Issue the call. 2393 unsigned CallOpc = ARMSelectCallOp(UseReg); 2394 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2395 DbgLoc, TII.get(CallOpc)); 2396 2397 // ARM calls don't take a predicate, but tBL / tBLX do. 2398 if(isThumb2) 2399 AddDefaultPred(MIB); 2400 if (UseReg) 2401 MIB.addReg(CalleeReg); 2402 else if (!IntrMemName) 2403 MIB.addGlobalAddress(GV, 0, 0); 2404 else 2405 MIB.addExternalSymbol(IntrMemName, 0); 2406 2407 // Add implicit physical register uses to the call. 2408 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 2409 MIB.addReg(RegArgs[i], RegState::Implicit); 2410 2411 // Add a register mask with the call-preserved registers. 2412 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2413 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2414 2415 // Finish off the call including any return values. 2416 SmallVector<unsigned, 4> UsedRegs; 2417 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2418 return false; 2419 2420 // Set all unused physreg defs as dead. 2421 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2422 2423 return true; 2424 } 2425 2426 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2427 return Len <= 16; 2428 } 2429 2430 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2431 uint64_t Len, unsigned Alignment) { 2432 // Make sure we don't bloat code by inlining very large memcpy's. 2433 if (!ARMIsMemCpySmall(Len)) 2434 return false; 2435 2436 while (Len) { 2437 MVT VT; 2438 if (!Alignment || Alignment >= 4) { 2439 if (Len >= 4) 2440 VT = MVT::i32; 2441 else if (Len >= 2) 2442 VT = MVT::i16; 2443 else { 2444 assert (Len == 1 && "Expected a length of 1!"); 2445 VT = MVT::i8; 2446 } 2447 } else { 2448 // Bound based on alignment. 2449 if (Len >= 2 && Alignment == 2) 2450 VT = MVT::i16; 2451 else { 2452 VT = MVT::i8; 2453 } 2454 } 2455 2456 bool RV; 2457 unsigned ResultReg; 2458 RV = ARMEmitLoad(VT, ResultReg, Src); 2459 assert (RV == true && "Should be able to handle this load."); 2460 RV = ARMEmitStore(VT, ResultReg, Dest); 2461 assert (RV == true && "Should be able to handle this store."); 2462 (void)RV; 2463 2464 unsigned Size = VT.getSizeInBits()/8; 2465 Len -= Size; 2466 Dest.Offset += Size; 2467 Src.Offset += Size; 2468 } 2469 2470 return true; 2471 } 2472 2473 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2474 // FIXME: Handle more intrinsics. 2475 switch (I.getIntrinsicID()) { 2476 default: return false; 2477 case Intrinsic::frameaddress: { 2478 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 2479 MFI->setFrameAddressIsTaken(true); 2480 2481 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2482 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2483 : &ARM::GPRRegClass; 2484 2485 const ARMBaseRegisterInfo *RegInfo = 2486 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2487 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2488 unsigned SrcReg = FramePtr; 2489 2490 // Recursively load frame address 2491 // ldr r0 [fp] 2492 // ldr r0 [r0] 2493 // ldr r0 [r0] 2494 // ... 2495 unsigned DestReg; 2496 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2497 while (Depth--) { 2498 DestReg = createResultReg(RC); 2499 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2500 TII.get(LdrOpc), DestReg) 2501 .addReg(SrcReg).addImm(0)); 2502 SrcReg = DestReg; 2503 } 2504 updateValueMap(&I, SrcReg); 2505 return true; 2506 } 2507 case Intrinsic::memcpy: 2508 case Intrinsic::memmove: { 2509 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2510 // Don't handle volatile. 2511 if (MTI.isVolatile()) 2512 return false; 2513 2514 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2515 // we would emit dead code because we don't currently handle memmoves. 2516 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2517 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2518 // Small memcpy's are common enough that we want to do them without a call 2519 // if possible. 2520 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2521 if (ARMIsMemCpySmall(Len)) { 2522 Address Dest, Src; 2523 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2524 !ARMComputeAddress(MTI.getRawSource(), Src)) 2525 return false; 2526 unsigned Alignment = MTI.getAlignment(); 2527 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2528 return true; 2529 } 2530 } 2531 2532 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2533 return false; 2534 2535 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2536 return false; 2537 2538 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2539 return SelectCall(&I, IntrMemName); 2540 } 2541 case Intrinsic::memset: { 2542 const MemSetInst &MSI = cast<MemSetInst>(I); 2543 // Don't handle volatile. 2544 if (MSI.isVolatile()) 2545 return false; 2546 2547 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2548 return false; 2549 2550 if (MSI.getDestAddressSpace() > 255) 2551 return false; 2552 2553 return SelectCall(&I, "memset"); 2554 } 2555 case Intrinsic::trap: { 2556 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 2557 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 2558 return true; 2559 } 2560 } 2561 } 2562 2563 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2564 // The high bits for a type smaller than the register size are assumed to be 2565 // undefined. 2566 Value *Op = I->getOperand(0); 2567 2568 EVT SrcVT, DestVT; 2569 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2570 DestVT = TLI.getValueType(DL, I->getType(), true); 2571 2572 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2573 return false; 2574 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2575 return false; 2576 2577 unsigned SrcReg = getRegForValue(Op); 2578 if (!SrcReg) return false; 2579 2580 // Because the high bits are undefined, a truncate doesn't generate 2581 // any code. 2582 updateValueMap(I, SrcReg); 2583 return true; 2584 } 2585 2586 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2587 bool isZExt) { 2588 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2589 return 0; 2590 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2591 return 0; 2592 2593 // Table of which combinations can be emitted as a single instruction, 2594 // and which will require two. 2595 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2596 // ARM Thumb 2597 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2598 // ext: s z s z s z s z 2599 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2600 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2601 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2602 }; 2603 2604 // Target registers for: 2605 // - For ARM can never be PC. 2606 // - For 16-bit Thumb are restricted to lower 8 registers. 2607 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2608 static const TargetRegisterClass *RCTbl[2][2] = { 2609 // Instructions: Two Single 2610 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2611 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2612 }; 2613 2614 // Table governing the instruction(s) to be emitted. 2615 static const struct InstructionTable { 2616 uint32_t Opc : 16; 2617 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2618 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2619 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2620 } IT[2][2][3][2] = { 2621 { // Two instructions (first is left shift, second is in this table). 2622 { // ARM Opc S Shift Imm 2623 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2624 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2625 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2626 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2627 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2628 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2629 }, 2630 { // Thumb Opc S Shift Imm 2631 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2632 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2633 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2634 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2635 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2636 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2637 } 2638 }, 2639 { // Single instruction. 2640 { // ARM Opc S Shift Imm 2641 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2642 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2643 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2644 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2645 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2646 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2647 }, 2648 { // Thumb Opc S Shift Imm 2649 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2650 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2651 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2652 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2653 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2654 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2655 } 2656 } 2657 }; 2658 2659 unsigned SrcBits = SrcVT.getSizeInBits(); 2660 unsigned DestBits = DestVT.getSizeInBits(); 2661 (void) DestBits; 2662 assert((SrcBits < DestBits) && "can only extend to larger types"); 2663 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2664 "other sizes unimplemented"); 2665 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2666 "other sizes unimplemented"); 2667 2668 bool hasV6Ops = Subtarget->hasV6Ops(); 2669 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2670 assert((Bitness < 3) && "sanity-check table bounds"); 2671 2672 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2673 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2674 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2675 unsigned Opc = ITP->Opc; 2676 assert(ARM::KILL != Opc && "Invalid table entry"); 2677 unsigned hasS = ITP->hasS; 2678 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2679 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2680 "only MOVsi has shift operand addressing mode"); 2681 unsigned Imm = ITP->Imm; 2682 2683 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2684 bool setsCPSR = &ARM::tGPRRegClass == RC; 2685 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2686 unsigned ResultReg; 2687 // MOVsi encodes shift and immediate in shift operand addressing mode. 2688 // The following condition has the same value when emitting two 2689 // instruction sequences: both are shifts. 2690 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2691 2692 // Either one or two instructions are emitted. 2693 // They're always of the form: 2694 // dst = in OP imm 2695 // CPSR is set only by 16-bit Thumb instructions. 2696 // Predicate, if any, is AL. 2697 // S bit, if available, is always 0. 2698 // When two are emitted the first's result will feed as the second's input, 2699 // that value is then dead. 2700 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2701 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2702 ResultReg = createResultReg(RC); 2703 bool isLsl = (0 == Instr) && !isSingleInstr; 2704 unsigned Opcode = isLsl ? LSLOpc : Opc; 2705 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2706 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2707 bool isKill = 1 == Instr; 2708 MachineInstrBuilder MIB = BuildMI( 2709 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2710 if (setsCPSR) 2711 MIB.addReg(ARM::CPSR, RegState::Define); 2712 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2713 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 2714 if (hasS) 2715 AddDefaultCC(MIB); 2716 // Second instruction consumes the first's result. 2717 SrcReg = ResultReg; 2718 } 2719 2720 return ResultReg; 2721 } 2722 2723 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2724 // On ARM, in general, integer casts don't involve legal types; this code 2725 // handles promotable integers. 2726 Type *DestTy = I->getType(); 2727 Value *Src = I->getOperand(0); 2728 Type *SrcTy = Src->getType(); 2729 2730 bool isZExt = isa<ZExtInst>(I); 2731 unsigned SrcReg = getRegForValue(Src); 2732 if (!SrcReg) return false; 2733 2734 EVT SrcEVT, DestEVT; 2735 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2736 DestEVT = TLI.getValueType(DL, DestTy, true); 2737 if (!SrcEVT.isSimple()) return false; 2738 if (!DestEVT.isSimple()) return false; 2739 2740 MVT SrcVT = SrcEVT.getSimpleVT(); 2741 MVT DestVT = DestEVT.getSimpleVT(); 2742 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2743 if (ResultReg == 0) return false; 2744 updateValueMap(I, ResultReg); 2745 return true; 2746 } 2747 2748 bool ARMFastISel::SelectShift(const Instruction *I, 2749 ARM_AM::ShiftOpc ShiftTy) { 2750 // We handle thumb2 mode by target independent selector 2751 // or SelectionDAG ISel. 2752 if (isThumb2) 2753 return false; 2754 2755 // Only handle i32 now. 2756 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2757 if (DestVT != MVT::i32) 2758 return false; 2759 2760 unsigned Opc = ARM::MOVsr; 2761 unsigned ShiftImm; 2762 Value *Src2Value = I->getOperand(1); 2763 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2764 ShiftImm = CI->getZExtValue(); 2765 2766 // Fall back to selection DAG isel if the shift amount 2767 // is zero or greater than the width of the value type. 2768 if (ShiftImm == 0 || ShiftImm >=32) 2769 return false; 2770 2771 Opc = ARM::MOVsi; 2772 } 2773 2774 Value *Src1Value = I->getOperand(0); 2775 unsigned Reg1 = getRegForValue(Src1Value); 2776 if (Reg1 == 0) return false; 2777 2778 unsigned Reg2 = 0; 2779 if (Opc == ARM::MOVsr) { 2780 Reg2 = getRegForValue(Src2Value); 2781 if (Reg2 == 0) return false; 2782 } 2783 2784 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2785 if(ResultReg == 0) return false; 2786 2787 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2788 TII.get(Opc), ResultReg) 2789 .addReg(Reg1); 2790 2791 if (Opc == ARM::MOVsi) 2792 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2793 else if (Opc == ARM::MOVsr) { 2794 MIB.addReg(Reg2); 2795 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2796 } 2797 2798 AddOptionalDefs(MIB); 2799 updateValueMap(I, ResultReg); 2800 return true; 2801 } 2802 2803 // TODO: SoftFP support. 2804 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2805 2806 switch (I->getOpcode()) { 2807 case Instruction::Load: 2808 return SelectLoad(I); 2809 case Instruction::Store: 2810 return SelectStore(I); 2811 case Instruction::Br: 2812 return SelectBranch(I); 2813 case Instruction::IndirectBr: 2814 return SelectIndirectBr(I); 2815 case Instruction::ICmp: 2816 case Instruction::FCmp: 2817 return SelectCmp(I); 2818 case Instruction::FPExt: 2819 return SelectFPExt(I); 2820 case Instruction::FPTrunc: 2821 return SelectFPTrunc(I); 2822 case Instruction::SIToFP: 2823 return SelectIToFP(I, /*isSigned*/ true); 2824 case Instruction::UIToFP: 2825 return SelectIToFP(I, /*isSigned*/ false); 2826 case Instruction::FPToSI: 2827 return SelectFPToI(I, /*isSigned*/ true); 2828 case Instruction::FPToUI: 2829 return SelectFPToI(I, /*isSigned*/ false); 2830 case Instruction::Add: 2831 return SelectBinaryIntOp(I, ISD::ADD); 2832 case Instruction::Or: 2833 return SelectBinaryIntOp(I, ISD::OR); 2834 case Instruction::Sub: 2835 return SelectBinaryIntOp(I, ISD::SUB); 2836 case Instruction::FAdd: 2837 return SelectBinaryFPOp(I, ISD::FADD); 2838 case Instruction::FSub: 2839 return SelectBinaryFPOp(I, ISD::FSUB); 2840 case Instruction::FMul: 2841 return SelectBinaryFPOp(I, ISD::FMUL); 2842 case Instruction::SDiv: 2843 return SelectDiv(I, /*isSigned*/ true); 2844 case Instruction::UDiv: 2845 return SelectDiv(I, /*isSigned*/ false); 2846 case Instruction::SRem: 2847 return SelectRem(I, /*isSigned*/ true); 2848 case Instruction::URem: 2849 return SelectRem(I, /*isSigned*/ false); 2850 case Instruction::Call: 2851 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2852 return SelectIntrinsicCall(*II); 2853 return SelectCall(I); 2854 case Instruction::Select: 2855 return SelectSelect(I); 2856 case Instruction::Ret: 2857 return SelectRet(I); 2858 case Instruction::Trunc: 2859 return SelectTrunc(I); 2860 case Instruction::ZExt: 2861 case Instruction::SExt: 2862 return SelectIntExt(I); 2863 case Instruction::Shl: 2864 return SelectShift(I, ARM_AM::lsl); 2865 case Instruction::LShr: 2866 return SelectShift(I, ARM_AM::lsr); 2867 case Instruction::AShr: 2868 return SelectShift(I, ARM_AM::asr); 2869 default: break; 2870 } 2871 return false; 2872 } 2873 2874 namespace { 2875 // This table describes sign- and zero-extend instructions which can be 2876 // folded into a preceding load. All of these extends have an immediate 2877 // (sometimes a mask and sometimes a shift) that's applied after 2878 // extension. 2879 const struct FoldableLoadExtendsStruct { 2880 uint16_t Opc[2]; // ARM, Thumb. 2881 uint8_t ExpectedImm; 2882 uint8_t isZExt : 1; 2883 uint8_t ExpectedVT : 7; 2884 } FoldableLoadExtends[] = { 2885 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2886 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2887 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2888 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2889 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2890 }; 2891 } 2892 2893 /// \brief The specified machine instr operand is a vreg, and that 2894 /// vreg is being provided by the specified load instruction. If possible, 2895 /// try to fold the load as an operand to the instruction, returning true if 2896 /// successful. 2897 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2898 const LoadInst *LI) { 2899 // Verify we have a legal type before going any further. 2900 MVT VT; 2901 if (!isLoadTypeLegal(LI->getType(), VT)) 2902 return false; 2903 2904 // Combine load followed by zero- or sign-extend. 2905 // ldrb r1, [r0] ldrb r1, [r0] 2906 // uxtb r2, r1 => 2907 // mov r3, r2 mov r3, r1 2908 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2909 return false; 2910 const uint64_t Imm = MI->getOperand(2).getImm(); 2911 2912 bool Found = false; 2913 bool isZExt; 2914 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 2915 i != e; ++i) { 2916 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 2917 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 2918 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 2919 Found = true; 2920 isZExt = FoldableLoadExtends[i].isZExt; 2921 } 2922 } 2923 if (!Found) return false; 2924 2925 // See if we can handle this address. 2926 Address Addr; 2927 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2928 2929 unsigned ResultReg = MI->getOperand(0).getReg(); 2930 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2931 return false; 2932 MI->eraseFromParent(); 2933 return true; 2934 } 2935 2936 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 2937 unsigned Align, MVT VT) { 2938 Reloc::Model RM = TM.getRelocationModel(); 2939 const Triple &TargetTriple = TM.getTargetTriple(); 2940 bool UseGOT_PREL = 2941 !shouldAssumeDSOLocal(RM, TargetTriple, *GV->getParent(), GV); 2942 2943 LLVMContext *Context = &MF->getFunction()->getContext(); 2944 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2945 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2946 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2947 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2948 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2949 /*AddCurrentAddress=*/UseGOT_PREL); 2950 2951 unsigned ConstAlign = 2952 MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context)); 2953 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2954 2955 unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2956 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2957 MachineInstrBuilder MIB = 2958 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) 2959 .addConstantPoolIndex(Idx); 2960 if (Opc == ARM::LDRcp) 2961 MIB.addImm(0); 2962 AddDefaultPred(MIB); 2963 2964 // Fix the address by adding pc. 2965 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 2966 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2967 : ARM::PICADD; 2968 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2969 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2970 .addReg(TempReg) 2971 .addImm(ARMPCLabelIndex); 2972 if (!Subtarget->isThumb()) 2973 AddDefaultPred(MIB); 2974 2975 if (UseGOT_PREL && Subtarget->isThumb()) { 2976 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2977 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2978 TII.get(ARM::t2LDRi12), NewDestReg) 2979 .addReg(DestReg) 2980 .addImm(0); 2981 DestReg = NewDestReg; 2982 AddOptionalDefs(MIB); 2983 } 2984 return DestReg; 2985 } 2986 2987 bool ARMFastISel::fastLowerArguments() { 2988 if (!FuncInfo.CanLowerReturn) 2989 return false; 2990 2991 const Function *F = FuncInfo.Fn; 2992 if (F->isVarArg()) 2993 return false; 2994 2995 CallingConv::ID CC = F->getCallingConv(); 2996 switch (CC) { 2997 default: 2998 return false; 2999 case CallingConv::Fast: 3000 case CallingConv::C: 3001 case CallingConv::ARM_AAPCS_VFP: 3002 case CallingConv::ARM_AAPCS: 3003 case CallingConv::ARM_APCS: 3004 case CallingConv::Swift: 3005 break; 3006 } 3007 3008 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3009 // which are passed in r0 - r3. 3010 unsigned Idx = 1; 3011 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3012 I != E; ++I, ++Idx) { 3013 if (Idx > 4) 3014 return false; 3015 3016 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 3017 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 3018 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) || 3019 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) || 3020 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 3021 return false; 3022 3023 Type *ArgTy = I->getType(); 3024 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3025 return false; 3026 3027 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3028 if (!ArgVT.isSimple()) return false; 3029 switch (ArgVT.getSimpleVT().SimpleTy) { 3030 case MVT::i8: 3031 case MVT::i16: 3032 case MVT::i32: 3033 break; 3034 default: 3035 return false; 3036 } 3037 } 3038 3039 3040 static const MCPhysReg GPRArgRegs[] = { 3041 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3042 }; 3043 3044 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3045 Idx = 0; 3046 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 3047 I != E; ++I, ++Idx) { 3048 unsigned SrcReg = GPRArgRegs[Idx]; 3049 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3050 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3051 // Without this, EmitLiveInCopies may eliminate the livein if its only 3052 // use is a bitcast (which isn't turned into an instruction). 3053 unsigned ResultReg = createResultReg(RC); 3054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3055 TII.get(TargetOpcode::COPY), 3056 ResultReg).addReg(DstReg, getKillRegState(true)); 3057 updateValueMap(&*I, ResultReg); 3058 } 3059 3060 return true; 3061 } 3062 3063 namespace llvm { 3064 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3065 const TargetLibraryInfo *libInfo) { 3066 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3067 return new ARMFastISel(funcInfo, libInfo); 3068 3069 return nullptr; 3070 } 3071 } 3072