1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "arm-cp-islands" 17 #include "ARM.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMInstrInfo.h" 20 #include "Thumb2InstrInfo.h" 21 #include "MCTargetDesc/ARMAddressingModes.h" 22 #include "llvm/CodeGen/MachineConstantPool.h" 23 #include "llvm/CodeGen/MachineFunctionPass.h" 24 #include "llvm/CodeGen/MachineJumpTableInfo.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/Target/TargetMachine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/Format.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Support/CommandLine.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 STATISTIC(NumCPEs, "Number of constpool entries"); 40 STATISTIC(NumSplit, "Number of uncond branches inserted"); 41 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 42 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 43 STATISTIC(NumTBs, "Number of table branches generated"); 44 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 45 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 46 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 47 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 48 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 49 50 51 static cl::opt<bool> 52 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 53 cl::desc("Adjust basic block layout to better use TB[BH]")); 54 55 // FIXME: This option should be removed once it has received sufficient testing. 56 static cl::opt<bool> 57 AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), 58 cl::desc("Align constant islands in code")); 59 60 /// UnknownPadding - Return the worst case padding that could result from 61 /// unknown offset bits. This does not include alignment padding caused by 62 /// known offset bits. 63 /// 64 /// @param LogAlign log2(alignment) 65 /// @param KnownBits Number of known low offset bits. 66 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { 67 if (KnownBits < LogAlign) 68 return (1u << LogAlign) - (1u << KnownBits); 69 return 0; 70 } 71 72 /// WorstCaseAlign - Assuming only the low KnownBits bits in Offset are exact, 73 /// add padding such that: 74 /// 75 /// 1. The result is aligned to 1 << LogAlign. 76 /// 77 /// 2. No other value of the unknown bits would require more padding. 78 /// 79 /// This may add more padding than is required to satisfy just one of the 80 /// constraints. It is necessary to compute alignment this way to guarantee 81 /// that we don't underestimate the padding before an aligned block. If the 82 /// real padding before a block is larger than we think, constant pool entries 83 /// may go out of range. 84 static inline unsigned WorstCaseAlign(unsigned Offset, unsigned LogAlign, 85 unsigned KnownBits) { 86 // Add the worst possible padding that the unknown bits could cause. 87 Offset += UnknownPadding(LogAlign, KnownBits); 88 89 // Then align the result. 90 return RoundUpToAlignment(Offset, 1u << LogAlign); 91 } 92 93 namespace { 94 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 95 /// requires constant pool entries to be scattered among the instructions 96 /// inside a function. To do this, it completely ignores the normal LLVM 97 /// constant pool; instead, it places constants wherever it feels like with 98 /// special instructions. 99 /// 100 /// The terminology used in this pass includes: 101 /// Islands - Clumps of constants placed in the function. 102 /// Water - Potential places where an island could be formed. 103 /// CPE - A constant pool entry that has been placed somewhere, which 104 /// tracks a list of users. 105 class ARMConstantIslands : public MachineFunctionPass { 106 /// BasicBlockInfo - Information about the offset and size of a single 107 /// basic block. 108 struct BasicBlockInfo { 109 /// Offset - Distance from the beginning of the function to the beginning 110 /// of this basic block. 111 /// 112 /// The offset is always aligned as required by the basic block. 113 unsigned Offset; 114 115 /// Size - Size of the basic block in bytes. If the block contains 116 /// inline assembly, this is a worst case estimate. 117 /// 118 /// The size does not include any alignment padding whether from the 119 /// beginning of the block, or from an aligned jump table at the end. 120 unsigned Size; 121 122 /// KnownBits - The number of low bits in Offset that are known to be 123 /// exact. The remaining bits of Offset are an upper bound. 124 uint8_t KnownBits; 125 126 /// Unalign - When non-zero, the block contains instructions (inline asm) 127 /// of unknown size. The real size may be smaller than Size bytes by a 128 /// multiple of 1 << Unalign. 129 uint8_t Unalign; 130 131 /// PostAlign - When non-zero, the block terminator contains a .align 132 /// directive, so the end of the block is aligned to 1 << PostAlign 133 /// bytes. 134 uint8_t PostAlign; 135 136 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), 137 PostAlign(0) {} 138 139 /// Compute the number of known offset bits internally to this block. 140 /// This number should be used to predict worst case padding when 141 /// splitting the block. 142 unsigned internalKnownBits() const { 143 return Unalign ? Unalign : KnownBits; 144 } 145 146 /// Compute the offset immediately following this block. If LogAlign is 147 /// specified, return the offset the successor block will get if it has 148 /// this alignment. 149 unsigned postOffset(unsigned LogAlign = 0) const { 150 unsigned PO = Offset + Size; 151 unsigned LA = std::max(unsigned(PostAlign), LogAlign); 152 if (!LA) 153 return PO; 154 // Add alignment padding from the terminator. 155 return WorstCaseAlign(PO, LA, internalKnownBits()); 156 } 157 158 /// Compute the number of known low bits of postOffset. If this block 159 /// contains inline asm, the number of known bits drops to the 160 /// instruction alignment. An aligned terminator may increase the number 161 /// of know bits. 162 /// If LogAlign is given, also consider the alignment of the next block. 163 unsigned postKnownBits(unsigned LogAlign = 0) const { 164 return std::max(std::max(unsigned(PostAlign), LogAlign), 165 internalKnownBits()); 166 } 167 }; 168 169 std::vector<BasicBlockInfo> BBInfo; 170 171 /// WaterList - A sorted list of basic blocks where islands could be placed 172 /// (i.e. blocks that don't fall through to the following block, due 173 /// to a return, unreachable, or unconditional branch). 174 std::vector<MachineBasicBlock*> WaterList; 175 176 /// NewWaterList - The subset of WaterList that was created since the 177 /// previous iteration by inserting unconditional branches. 178 SmallSet<MachineBasicBlock*, 4> NewWaterList; 179 180 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 181 182 /// CPUser - One user of a constant pool, keeping the machine instruction 183 /// pointer, the constant pool being referenced, and the max displacement 184 /// allowed from the instruction to the CP. The HighWaterMark records the 185 /// highest basic block where a new CPEntry can be placed. To ensure this 186 /// pass terminates, the CP entries are initially placed at the end of the 187 /// function and then move monotonically to lower addresses. The 188 /// exception to this rule is when the current CP entry for a particular 189 /// CPUser is out of range, but there is another CP entry for the same 190 /// constant value in range. We want to use the existing in-range CP 191 /// entry, but if it later moves out of range, the search for new water 192 /// should resume where it left off. The HighWaterMark is used to record 193 /// that point. 194 struct CPUser { 195 MachineInstr *MI; 196 MachineInstr *CPEMI; 197 MachineBasicBlock *HighWaterMark; 198 private: 199 unsigned MaxDisp; 200 public: 201 bool NegOk; 202 bool IsSoImm; 203 bool KnownAlignment; 204 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 205 bool neg, bool soimm) 206 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 207 KnownAlignment(false) { 208 HighWaterMark = CPEMI->getParent(); 209 } 210 /// getMaxDisp - Returns the maximum displacement supported by MI. 211 /// Correct for unknown alignment. 212 unsigned getMaxDisp() const { 213 return KnownAlignment ? MaxDisp : MaxDisp - 2; 214 } 215 }; 216 217 /// CPUsers - Keep track of all of the machine instructions that use various 218 /// constant pools and their max displacement. 219 std::vector<CPUser> CPUsers; 220 221 /// CPEntry - One per constant pool entry, keeping the machine instruction 222 /// pointer, the constpool index, and the number of CPUser's which 223 /// reference this entry. 224 struct CPEntry { 225 MachineInstr *CPEMI; 226 unsigned CPI; 227 unsigned RefCount; 228 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 229 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 230 }; 231 232 /// CPEntries - Keep track of all of the constant pool entry machine 233 /// instructions. For each original constpool index (i.e. those that 234 /// existed upon entry to this pass), it keeps a vector of entries. 235 /// Original elements are cloned as we go along; the clones are 236 /// put in the vector of the original element, but have distinct CPIs. 237 std::vector<std::vector<CPEntry> > CPEntries; 238 239 /// ImmBranch - One per immediate branch, keeping the machine instruction 240 /// pointer, conditional or unconditional, the max displacement, 241 /// and (if isCond is true) the corresponding unconditional branch 242 /// opcode. 243 struct ImmBranch { 244 MachineInstr *MI; 245 unsigned MaxDisp : 31; 246 bool isCond : 1; 247 int UncondBr; 248 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 249 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 250 }; 251 252 /// ImmBranches - Keep track of all the immediate branch instructions. 253 /// 254 std::vector<ImmBranch> ImmBranches; 255 256 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 257 /// 258 SmallVector<MachineInstr*, 4> PushPopMIs; 259 260 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 261 SmallVector<MachineInstr*, 4> T2JumpTables; 262 263 /// HasFarJump - True if any far jump instruction has been emitted during 264 /// the branch fix up pass. 265 bool HasFarJump; 266 267 MachineFunction *MF; 268 MachineConstantPool *MCP; 269 const ARMInstrInfo *TII; 270 const ARMSubtarget *STI; 271 ARMFunctionInfo *AFI; 272 bool isThumb; 273 bool isThumb1; 274 bool isThumb2; 275 public: 276 static char ID; 277 ARMConstantIslands() : MachineFunctionPass(ID) {} 278 279 virtual bool runOnMachineFunction(MachineFunction &MF); 280 281 virtual const char *getPassName() const { 282 return "ARM constant island placement and branch shortening pass"; 283 } 284 285 private: 286 void DoInitialPlacement(std::vector<MachineInstr*> &CPEMIs); 287 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 288 unsigned getCPELogAlign(const MachineInstr *CPEMI); 289 void JumpTableFunctionScan(); 290 void InitialFunctionScan(const std::vector<MachineInstr*> &CPEMIs); 291 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); 292 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); 293 void AdjustBBOffsetsAfter(MachineBasicBlock *BB); 294 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); 295 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); 296 bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); 297 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, 298 MachineBasicBlock *&NewMBB); 299 bool HandleConstantPoolUser(unsigned CPUserIndex); 300 void RemoveDeadCPEMI(MachineInstr *CPEMI); 301 bool RemoveUnusedCPEntries(); 302 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 303 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 304 bool DoDump = false); 305 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, 306 CPUser &U, unsigned &Growth); 307 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 308 bool FixUpImmediateBr(ImmBranch &Br); 309 bool FixUpConditionalBr(ImmBranch &Br); 310 bool FixUpUnconditionalBr(ImmBranch &Br); 311 bool UndoLRSpillRestore(); 312 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; 313 bool OptimizeThumb2Instructions(); 314 bool OptimizeThumb2Branches(); 315 bool ReorderThumb2JumpTables(); 316 bool OptimizeThumb2JumpTables(); 317 MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, 318 MachineBasicBlock *JTBB); 319 320 void ComputeBlockSize(MachineBasicBlock *MBB); 321 unsigned GetOffsetOf(MachineInstr *MI) const; 322 unsigned GetUserOffset(CPUser&) const; 323 void dumpBBs(); 324 void verify(); 325 326 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 327 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 328 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, 329 const CPUser &U) { 330 return OffsetIsInRange(UserOffset, TrialOffset, 331 U.getMaxDisp(), U.NegOk, U.IsSoImm); 332 } 333 }; 334 char ARMConstantIslands::ID = 0; 335 } 336 337 /// verify - check BBOffsets, BBSizes, alignment of islands 338 void ARMConstantIslands::verify() { 339 #ifndef NDEBUG 340 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 341 MBBI != E; ++MBBI) { 342 MachineBasicBlock *MBB = MBBI; 343 unsigned Align = MBB->getAlignment(); 344 unsigned MBBId = MBB->getNumber(); 345 assert(BBInfo[MBBId].Offset % (1u << Align) == 0); 346 assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); 347 } 348 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 349 CPUser &U = CPUsers[i]; 350 unsigned UserOffset = GetUserOffset(U); 351 assert(CPEIsInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp(), U.NegOk) && 352 "Constant pool entry out of range!"); 353 } 354 #endif 355 } 356 357 /// print block size and offset information - debugging 358 void ARMConstantIslands::dumpBBs() { 359 DEBUG({ 360 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 361 const BasicBlockInfo &BBI = BBInfo[J]; 362 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 363 << " kb=" << unsigned(BBI.KnownBits) 364 << " ua=" << unsigned(BBI.Unalign) 365 << " pa=" << unsigned(BBI.PostAlign) 366 << format(" size=%#x\n", BBInfo[J].Size); 367 } 368 }); 369 } 370 371 /// createARMConstantIslandPass - returns an instance of the constpool 372 /// island pass. 373 FunctionPass *llvm::createARMConstantIslandPass() { 374 return new ARMConstantIslands(); 375 } 376 377 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 378 MF = &mf; 379 MCP = mf.getConstantPool(); 380 381 DEBUG(dbgs() << "***** ARMConstantIslands: " 382 << MCP->getConstants().size() << " CP entries, aligned to " 383 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 384 385 TII = (const ARMInstrInfo*)MF->getTarget().getInstrInfo(); 386 AFI = MF->getInfo<ARMFunctionInfo>(); 387 STI = &MF->getTarget().getSubtarget<ARMSubtarget>(); 388 389 isThumb = AFI->isThumbFunction(); 390 isThumb1 = AFI->isThumb1OnlyFunction(); 391 isThumb2 = AFI->isThumb2Function(); 392 393 HasFarJump = false; 394 395 // Renumber all of the machine basic blocks in the function, guaranteeing that 396 // the numbers agree with the position of the block in the function. 397 MF->RenumberBlocks(); 398 399 // Try to reorder and otherwise adjust the block layout to make good use 400 // of the TB[BH] instructions. 401 bool MadeChange = false; 402 if (isThumb2 && AdjustJumpTableBlocks) { 403 JumpTableFunctionScan(); 404 MadeChange |= ReorderThumb2JumpTables(); 405 // Data is out of date, so clear it. It'll be re-computed later. 406 T2JumpTables.clear(); 407 // Blocks may have shifted around. Keep the numbering up to date. 408 MF->RenumberBlocks(); 409 } 410 411 // Thumb1 functions containing constant pools get 4-byte alignment. 412 // This is so we can keep exact track of where the alignment padding goes. 413 414 // ARM and Thumb2 functions need to be 4-byte aligned. 415 if (!isThumb1) 416 MF->EnsureAlignment(2); // 2 = log2(4) 417 418 // Perform the initial placement of the constant pool entries. To start with, 419 // we put them all at the end of the function. 420 std::vector<MachineInstr*> CPEMIs; 421 if (!MCP->isEmpty()) 422 DoInitialPlacement(CPEMIs); 423 424 /// The next UID to take is the first unused one. 425 AFI->initPICLabelUId(CPEMIs.size()); 426 427 // Do the initial scan of the function, building up information about the 428 // sizes of each block, the location of all the water, and finding all of the 429 // constant pool users. 430 InitialFunctionScan(CPEMIs); 431 CPEMIs.clear(); 432 DEBUG(dumpBBs()); 433 434 435 /// Remove dead constant pool entries. 436 MadeChange |= RemoveUnusedCPEntries(); 437 438 // Iteratively place constant pool entries and fix up branches until there 439 // is no change. 440 unsigned NoCPIters = 0, NoBRIters = 0; 441 while (true) { 442 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 443 bool CPChange = false; 444 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 445 CPChange |= HandleConstantPoolUser(i); 446 if (CPChange && ++NoCPIters > 30) 447 report_fatal_error("Constant Island pass failed to converge!"); 448 DEBUG(dumpBBs()); 449 450 // Clear NewWaterList now. If we split a block for branches, it should 451 // appear as "new water" for the next iteration of constant pool placement. 452 NewWaterList.clear(); 453 454 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 455 bool BRChange = false; 456 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 457 BRChange |= FixUpImmediateBr(ImmBranches[i]); 458 if (BRChange && ++NoBRIters > 30) 459 report_fatal_error("Branch Fix Up pass failed to converge!"); 460 DEBUG(dumpBBs()); 461 462 if (!CPChange && !BRChange) 463 break; 464 MadeChange = true; 465 } 466 467 // Shrink 32-bit Thumb2 branch, load, and store instructions. 468 if (isThumb2 && !STI->prefers32BitThumb()) 469 MadeChange |= OptimizeThumb2Instructions(); 470 471 // After a while, this might be made debug-only, but it is not expensive. 472 verify(); 473 474 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 475 // undo the spill / restore of LR if possible. 476 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 477 MadeChange |= UndoLRSpillRestore(); 478 479 // Save the mapping between original and cloned constpool entries. 480 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 481 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 482 const CPEntry & CPE = CPEntries[i][j]; 483 AFI->recordCPEClone(i, CPE.CPI); 484 } 485 } 486 487 DEBUG(dbgs() << '\n'; dumpBBs()); 488 489 BBInfo.clear(); 490 WaterList.clear(); 491 CPUsers.clear(); 492 CPEntries.clear(); 493 ImmBranches.clear(); 494 PushPopMIs.clear(); 495 T2JumpTables.clear(); 496 497 return MadeChange; 498 } 499 500 /// DoInitialPlacement - Perform the initial placement of the constant pool 501 /// entries. To start with, we put them all at the end of the function. 502 void 503 ARMConstantIslands::DoInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { 504 // Create the basic block to hold the CPE's. 505 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 506 MF->push_back(BB); 507 508 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 509 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 510 511 // Mark the basic block as required by the const-pool. 512 // If AlignConstantIslands isn't set, use 4-byte alignment for everything. 513 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); 514 515 // The function needs to be as aligned as the basic blocks. The linker may 516 // move functions around based on their alignment. 517 MF->EnsureAlignment(BB->getAlignment()); 518 519 // Order the entries in BB by descending alignment. That ensures correct 520 // alignment of all entries as long as BB is sufficiently aligned. Keep 521 // track of the insertion point for each alignment. We are going to bucket 522 // sort the entries as they are created. 523 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 524 525 // Add all of the constants from the constant pool to the end block, use an 526 // identity mapping of CPI's to CPE's. 527 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 528 529 const TargetData &TD = *MF->getTarget().getTargetData(); 530 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 531 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 532 assert(Size >= 4 && "Too small constant pool entry"); 533 unsigned Align = CPs[i].getAlignment(); 534 assert(isPowerOf2_32(Align) && "Invalid alignment"); 535 // Verify that all constant pool entries are a multiple of their alignment. 536 // If not, we would have to pad them out so that instructions stay aligned. 537 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 538 539 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 540 unsigned LogAlign = Log2_32(Align); 541 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 542 MachineInstr *CPEMI = 543 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 544 .addImm(i).addConstantPoolIndex(i).addImm(Size); 545 CPEMIs.push_back(CPEMI); 546 547 // Ensure that future entries with higher alignment get inserted before 548 // CPEMI. This is bucket sort with iterators. 549 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 550 if (InsPoint[a] == InsAt) 551 InsPoint[a] = CPEMI; 552 553 // Add a new CPEntry, but no corresponding CPUser yet. 554 std::vector<CPEntry> CPEs; 555 CPEs.push_back(CPEntry(CPEMI, i)); 556 CPEntries.push_back(CPEs); 557 ++NumCPEs; 558 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 559 << Size << ", align = " << Align <<'\n'); 560 } 561 DEBUG(BB->dump()); 562 } 563 564 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 565 /// into the block immediately after it. 566 static bool BBHasFallthrough(MachineBasicBlock *MBB) { 567 // Get the next machine basic block in the function. 568 MachineFunction::iterator MBBI = MBB; 569 // Can't fall off end of function. 570 if (llvm::next(MBBI) == MBB->getParent()->end()) 571 return false; 572 573 MachineBasicBlock *NextBB = llvm::next(MBBI); 574 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 575 E = MBB->succ_end(); I != E; ++I) 576 if (*I == NextBB) 577 return true; 578 579 return false; 580 } 581 582 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 583 /// look up the corresponding CPEntry. 584 ARMConstantIslands::CPEntry 585 *ARMConstantIslands::findConstPoolEntry(unsigned CPI, 586 const MachineInstr *CPEMI) { 587 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 588 // Number of entries per constpool index should be small, just do a 589 // linear search. 590 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 591 if (CPEs[i].CPEMI == CPEMI) 592 return &CPEs[i]; 593 } 594 return NULL; 595 } 596 597 /// getCPELogAlign - Returns the required alignment of the constant pool entry 598 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 599 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 600 assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY); 601 602 // Everything is 4-byte aligned unless AlignConstantIslands is set. 603 if (!AlignConstantIslands) 604 return 2; 605 606 unsigned CPI = CPEMI->getOperand(1).getIndex(); 607 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 608 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 609 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 610 return Log2_32(Align); 611 } 612 613 /// JumpTableFunctionScan - Do a scan of the function, building up 614 /// information about the sizes of each block and the locations of all 615 /// the jump tables. 616 void ARMConstantIslands::JumpTableFunctionScan() { 617 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 618 MBBI != E; ++MBBI) { 619 MachineBasicBlock &MBB = *MBBI; 620 621 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 622 I != E; ++I) 623 if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) 624 T2JumpTables.push_back(I); 625 } 626 } 627 628 /// InitialFunctionScan - Do the initial scan of the function, building up 629 /// information about the sizes of each block, the location of all the water, 630 /// and finding all of the constant pool users. 631 void ARMConstantIslands:: 632 InitialFunctionScan(const std::vector<MachineInstr*> &CPEMIs) { 633 BBInfo.clear(); 634 BBInfo.resize(MF->getNumBlockIDs()); 635 636 // First thing, compute the size of all basic blocks, and see if the function 637 // has any inline assembly in it. If so, we have to be conservative about 638 // alignment assumptions, as we don't know for sure the size of any 639 // instructions in the inline assembly. 640 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 641 ComputeBlockSize(I); 642 643 // The known bits of the entry block offset are determined by the function 644 // alignment. 645 BBInfo.front().KnownBits = MF->getAlignment(); 646 647 // Compute block offsets and known bits. 648 AdjustBBOffsetsAfter(MF->begin()); 649 650 // Now go back through the instructions and build up our data structures. 651 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 652 MBBI != E; ++MBBI) { 653 MachineBasicBlock &MBB = *MBBI; 654 655 // If this block doesn't fall through into the next MBB, then this is 656 // 'water' that a constant pool island could be placed. 657 if (!BBHasFallthrough(&MBB)) 658 WaterList.push_back(&MBB); 659 660 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 661 I != E; ++I) { 662 if (I->isDebugValue()) 663 continue; 664 665 int Opc = I->getOpcode(); 666 if (I->isBranch()) { 667 bool isCond = false; 668 unsigned Bits = 0; 669 unsigned Scale = 1; 670 int UOpc = Opc; 671 switch (Opc) { 672 default: 673 continue; // Ignore other JT branches 674 case ARM::t2BR_JT: 675 T2JumpTables.push_back(I); 676 continue; // Does not get an entry in ImmBranches 677 case ARM::Bcc: 678 isCond = true; 679 UOpc = ARM::B; 680 // Fallthrough 681 case ARM::B: 682 Bits = 24; 683 Scale = 4; 684 break; 685 case ARM::tBcc: 686 isCond = true; 687 UOpc = ARM::tB; 688 Bits = 8; 689 Scale = 2; 690 break; 691 case ARM::tB: 692 Bits = 11; 693 Scale = 2; 694 break; 695 case ARM::t2Bcc: 696 isCond = true; 697 UOpc = ARM::t2B; 698 Bits = 20; 699 Scale = 2; 700 break; 701 case ARM::t2B: 702 Bits = 24; 703 Scale = 2; 704 break; 705 } 706 707 // Record this immediate branch. 708 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 709 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 710 } 711 712 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 713 PushPopMIs.push_back(I); 714 715 if (Opc == ARM::CONSTPOOL_ENTRY) 716 continue; 717 718 // Scan the instructions for constant pool operands. 719 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 720 if (I->getOperand(op).isCPI()) { 721 // We found one. The addressing mode tells us the max displacement 722 // from the PC that this instruction permits. 723 724 // Basic size info comes from the TSFlags field. 725 unsigned Bits = 0; 726 unsigned Scale = 1; 727 bool NegOk = false; 728 bool IsSoImm = false; 729 730 switch (Opc) { 731 default: 732 llvm_unreachable("Unknown addressing mode for CP reference!"); 733 734 // Taking the address of a CP entry. 735 case ARM::LEApcrel: 736 // This takes a SoImm, which is 8 bit immediate rotated. We'll 737 // pretend the maximum offset is 255 * 4. Since each instruction 738 // 4 byte wide, this is always correct. We'll check for other 739 // displacements that fits in a SoImm as well. 740 Bits = 8; 741 Scale = 4; 742 NegOk = true; 743 IsSoImm = true; 744 break; 745 case ARM::t2LEApcrel: 746 Bits = 12; 747 NegOk = true; 748 break; 749 case ARM::tLEApcrel: 750 Bits = 8; 751 Scale = 4; 752 break; 753 754 case ARM::LDRi12: 755 case ARM::LDRcp: 756 case ARM::t2LDRpci: 757 Bits = 12; // +-offset_12 758 NegOk = true; 759 break; 760 761 case ARM::tLDRpci: 762 Bits = 8; 763 Scale = 4; // +(offset_8*4) 764 break; 765 766 case ARM::VLDRD: 767 case ARM::VLDRS: 768 Bits = 8; 769 Scale = 4; // +-(offset_8*4) 770 NegOk = true; 771 break; 772 } 773 774 // Remember that this is a user of a CP entry. 775 unsigned CPI = I->getOperand(op).getIndex(); 776 MachineInstr *CPEMI = CPEMIs[CPI]; 777 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 778 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 779 780 // Increment corresponding CPEntry reference count. 781 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 782 assert(CPE && "Cannot find a corresponding CPEntry!"); 783 CPE->RefCount++; 784 785 // Instructions can only use one CP entry, don't bother scanning the 786 // rest of the operands. 787 break; 788 } 789 } 790 } 791 } 792 793 /// ComputeBlockSize - Compute the size and some alignment information for MBB. 794 /// This function updates BBInfo directly. 795 void ARMConstantIslands::ComputeBlockSize(MachineBasicBlock *MBB) { 796 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 797 BBI.Size = 0; 798 BBI.Unalign = 0; 799 BBI.PostAlign = 0; 800 801 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 802 ++I) { 803 BBI.Size += TII->GetInstSizeInBytes(I); 804 // For inline asm, GetInstSizeInBytes returns a conservative estimate. 805 // The actual size may be smaller, but still a multiple of the instr size. 806 if (I->isInlineAsm()) 807 BBI.Unalign = isThumb ? 1 : 2; 808 // Also consider instructions that may be shrunk later. 809 else if (isThumb && mayOptimizeThumb2Instruction(I)) 810 BBI.Unalign = 1; 811 } 812 813 // tBR_JTr contains a .align 2 directive. 814 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { 815 BBI.PostAlign = 2; 816 MBB->getParent()->EnsureAlignment(2); 817 } 818 } 819 820 /// GetOffsetOf - Return the current offset of the specified machine instruction 821 /// from the start of the function. This offset changes as stuff is moved 822 /// around inside the function. 823 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { 824 MachineBasicBlock *MBB = MI->getParent(); 825 826 // The offset is composed of two things: the sum of the sizes of all MBB's 827 // before this instruction's block, and the offset from the start of the block 828 // it is in. 829 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 830 831 // Sum instructions before MI in MBB. 832 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 833 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 834 Offset += TII->GetInstSizeInBytes(I); 835 } 836 return Offset; 837 } 838 839 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 840 /// ID. 841 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 842 const MachineBasicBlock *RHS) { 843 return LHS->getNumber() < RHS->getNumber(); 844 } 845 846 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the 847 /// machine function, it upsets all of the block numbers. Renumber the blocks 848 /// and update the arrays that parallel this numbering. 849 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 850 // Renumber the MBB's to keep them consecutive. 851 NewBB->getParent()->RenumberBlocks(NewBB); 852 853 // Insert an entry into BBInfo to align it properly with the (newly 854 // renumbered) block numbers. 855 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 856 857 // Next, update WaterList. Specifically, we need to add NewMBB as having 858 // available water after it. 859 water_iterator IP = 860 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 861 CompareMBBNumbers); 862 WaterList.insert(IP, NewBB); 863 } 864 865 866 /// Split the basic block containing MI into two blocks, which are joined by 867 /// an unconditional branch. Update data structures and renumber blocks to 868 /// account for this change and returns the newly created block. 869 MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { 870 MachineBasicBlock *OrigBB = MI->getParent(); 871 872 // Create a new MBB for the code after the OrigBB. 873 MachineBasicBlock *NewBB = 874 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 875 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 876 MF->insert(MBBI, NewBB); 877 878 // Splice the instructions starting with MI over to NewBB. 879 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 880 881 // Add an unconditional branch from OrigBB to NewBB. 882 // Note the new unconditional branch is not being recorded. 883 // There doesn't seem to be meaningful DebugInfo available; this doesn't 884 // correspond to anything in the source. 885 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 886 if (!isThumb) 887 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 888 else 889 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 890 .addImm(ARMCC::AL).addReg(0); 891 ++NumSplit; 892 893 // Update the CFG. All succs of OrigBB are now succs of NewBB. 894 NewBB->transferSuccessors(OrigBB); 895 896 // OrigBB branches to NewBB. 897 OrigBB->addSuccessor(NewBB); 898 899 // Update internal data structures to account for the newly inserted MBB. 900 // This is almost the same as UpdateForInsertedWaterBlock, except that 901 // the Water goes after OrigBB, not NewBB. 902 MF->RenumberBlocks(NewBB); 903 904 // Insert an entry into BBInfo to align it properly with the (newly 905 // renumbered) block numbers. 906 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 907 908 // Next, update WaterList. Specifically, we need to add OrigMBB as having 909 // available water after it (but not if it's already there, which happens 910 // when splitting before a conditional branch that is followed by an 911 // unconditional branch - in that case we want to insert NewBB). 912 water_iterator IP = 913 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 914 CompareMBBNumbers); 915 MachineBasicBlock* WaterBB = *IP; 916 if (WaterBB == OrigBB) 917 WaterList.insert(llvm::next(IP), NewBB); 918 else 919 WaterList.insert(IP, OrigBB); 920 NewWaterList.insert(OrigBB); 921 922 // Figure out how large the OrigBB is. As the first half of the original 923 // block, it cannot contain a tablejump. The size includes 924 // the new jump we added. (It should be possible to do this without 925 // recounting everything, but it's very confusing, and this is rarely 926 // executed.) 927 ComputeBlockSize(OrigBB); 928 929 // Figure out how large the NewMBB is. As the second half of the original 930 // block, it may contain a tablejump. 931 ComputeBlockSize(NewBB); 932 933 // All BBOffsets following these blocks must be modified. 934 AdjustBBOffsetsAfter(OrigBB); 935 936 return NewBB; 937 } 938 939 /// GetUserOffset - Compute the offset of U.MI as seen by the hardware 940 /// displacement computation. Update U.KnownAlignment to match its current 941 /// basic block location. 942 unsigned ARMConstantIslands::GetUserOffset(CPUser &U) const { 943 unsigned UserOffset = GetOffsetOf(U.MI); 944 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 945 unsigned KnownBits = BBI.internalKnownBits(); 946 947 // The value read from PC is offset from the actual instruction address. 948 UserOffset += (isThumb ? 4 : 8); 949 950 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 951 // Make sure U.getMaxDisp() returns a constrained range. 952 U.KnownAlignment = (KnownBits >= 2); 953 954 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 955 // purposes of the displacement computation; compensate for that here. 956 // For unknown alignments, getMaxDisp() constrains the range instead. 957 if (isThumb && U.KnownAlignment) 958 UserOffset &= ~3u; 959 960 return UserOffset; 961 } 962 963 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool 964 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 965 /// constant pool entry). 966 /// UserOffset is computed by GetUserOffset above to include PC adjustments. If 967 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 968 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 969 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, 970 unsigned TrialOffset, unsigned MaxDisp, 971 bool NegativeOK, bool IsSoImm) { 972 if (UserOffset <= TrialOffset) { 973 // User before the Trial. 974 if (TrialOffset - UserOffset <= MaxDisp) 975 return true; 976 // FIXME: Make use full range of soimm values. 977 } else if (NegativeOK) { 978 if (UserOffset - TrialOffset <= MaxDisp) 979 return true; 980 // FIXME: Make use full range of soimm values. 981 } 982 return false; 983 } 984 985 /// WaterIsInRange - Returns true if a CPE placed after the specified 986 /// Water (a basic block) will be in range for the specific MI. 987 /// 988 /// Compute how much the function will grow by inserting a CPE after Water. 989 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, 990 MachineBasicBlock* Water, CPUser &U, 991 unsigned &Growth) { 992 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 993 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 994 unsigned NextBlockOffset, NextBlockAlignment; 995 MachineFunction::const_iterator NextBlock = Water; 996 if (++NextBlock == MF->end()) { 997 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 998 NextBlockAlignment = 0; 999 } else { 1000 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1001 NextBlockAlignment = NextBlock->getAlignment(); 1002 } 1003 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1004 unsigned CPEEnd = CPEOffset + Size; 1005 1006 // The CPE may be able to hide in the alignment padding before the next 1007 // block. It may also cause more padding to be required if it is more aligned 1008 // that the next block. 1009 if (CPEEnd > NextBlockOffset) { 1010 Growth = CPEEnd - NextBlockOffset; 1011 // Compute the padding that would go at the end of the CPE to align the next 1012 // block. 1013 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); 1014 1015 // If the CPE is to be inserted before the instruction, that will raise 1016 // the offset of the instruction. Also account for unknown alignment padding 1017 // in blocks between CPE and the user. 1018 if (CPEOffset < UserOffset) 1019 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1020 } else 1021 // CPE fits in existing padding. 1022 Growth = 0; 1023 1024 return OffsetIsInRange(UserOffset, CPEOffset, U); 1025 } 1026 1027 /// CPEIsInRange - Returns true if the distance between specific MI and 1028 /// specific ConstPool entry instruction can fit in MI's displacement field. 1029 bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, 1030 MachineInstr *CPEMI, unsigned MaxDisp, 1031 bool NegOk, bool DoDump) { 1032 unsigned CPEOffset = GetOffsetOf(CPEMI); 1033 assert(CPEOffset % 4 == 0 && "Misaligned CPE"); 1034 1035 if (DoDump) { 1036 DEBUG({ 1037 unsigned Block = MI->getParent()->getNumber(); 1038 const BasicBlockInfo &BBI = BBInfo[Block]; 1039 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1040 << " max delta=" << MaxDisp 1041 << format(" insn address=%#x", UserOffset) 1042 << " in BB#" << Block << ": " 1043 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1044 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1045 int(CPEOffset-UserOffset)); 1046 }); 1047 } 1048 1049 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1050 } 1051 1052 #ifndef NDEBUG 1053 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1054 /// unconditionally branches to its only successor. 1055 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1056 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1057 return false; 1058 1059 MachineBasicBlock *Succ = *MBB->succ_begin(); 1060 MachineBasicBlock *Pred = *MBB->pred_begin(); 1061 MachineInstr *PredMI = &Pred->back(); 1062 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1063 || PredMI->getOpcode() == ARM::t2B) 1064 return PredMI->getOperand(0).getMBB() == Succ; 1065 return false; 1066 } 1067 #endif // NDEBUG 1068 1069 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB) { 1070 unsigned BBNum = BB->getNumber(); 1071 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1072 // Get the offset and known bits at the end of the layout predecessor. 1073 // Include the alignment of the current block. 1074 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1075 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1076 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1077 1078 // This is where block i begins. Stop if the offset is already correct, 1079 // and we have updated 2 blocks. This is the maximum number of blocks 1080 // changed before calling this function. 1081 if (i > BBNum + 2 && 1082 BBInfo[i].Offset == Offset && 1083 BBInfo[i].KnownBits == KnownBits) 1084 break; 1085 1086 BBInfo[i].Offset = Offset; 1087 BBInfo[i].KnownBits = KnownBits; 1088 } 1089 } 1090 1091 /// DecrementOldEntry - find the constant pool entry with index CPI 1092 /// and instruction CPEMI, and decrement its refcount. If the refcount 1093 /// becomes 0 remove the entry and instruction. Returns true if we removed 1094 /// the entry, false if we didn't. 1095 1096 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { 1097 // Find the old entry. Eliminate it if it is no longer used. 1098 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1099 assert(CPE && "Unexpected!"); 1100 if (--CPE->RefCount == 0) { 1101 RemoveDeadCPEMI(CPEMI); 1102 CPE->CPEMI = NULL; 1103 --NumCPEs; 1104 return true; 1105 } 1106 return false; 1107 } 1108 1109 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1110 /// if not, see if an in-range clone of the CPE is in range, and if so, 1111 /// change the data structures so the user references the clone. Returns: 1112 /// 0 = no existing entry found 1113 /// 1 = entry found, and there were no code insertions or deletions 1114 /// 2 = entry found, and there were code insertions or deletions 1115 int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) 1116 { 1117 MachineInstr *UserMI = U.MI; 1118 MachineInstr *CPEMI = U.CPEMI; 1119 1120 // Check to see if the CPE is already in-range. 1121 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, true)) { 1122 DEBUG(dbgs() << "In range\n"); 1123 return 1; 1124 } 1125 1126 // No. Look for previously created clones of the CPE that are in range. 1127 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1128 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1129 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1130 // We already tried this one 1131 if (CPEs[i].CPEMI == CPEMI) 1132 continue; 1133 // Removing CPEs can leave empty entries, skip 1134 if (CPEs[i].CPEMI == NULL) 1135 continue; 1136 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1137 U.NegOk)) { 1138 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1139 << CPEs[i].CPI << "\n"); 1140 // Point the CPUser node to the replacement 1141 U.CPEMI = CPEs[i].CPEMI; 1142 // Change the CPI in the instruction operand to refer to the clone. 1143 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1144 if (UserMI->getOperand(j).isCPI()) { 1145 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1146 break; 1147 } 1148 // Adjust the refcount of the clone... 1149 CPEs[i].RefCount++; 1150 // ...and the original. If we didn't remove the old entry, none of the 1151 // addresses changed, so we don't need another pass. 1152 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; 1153 } 1154 } 1155 return 0; 1156 } 1157 1158 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1159 /// the specific unconditional branch instruction. 1160 static inline unsigned getUnconditionalBrDisp(int Opc) { 1161 switch (Opc) { 1162 case ARM::tB: 1163 return ((1<<10)-1)*2; 1164 case ARM::t2B: 1165 return ((1<<23)-1)*2; 1166 default: 1167 break; 1168 } 1169 1170 return ((1<<23)-1)*4; 1171 } 1172 1173 /// LookForWater - Look for an existing entry in the WaterList in which 1174 /// we can place the CPE referenced from U so it's within range of U's MI. 1175 /// Returns true if found, false if not. If it returns true, WaterIter 1176 /// is set to the WaterList entry. For Thumb, prefer water that will not 1177 /// introduce padding to water that will. To ensure that this pass 1178 /// terminates, the CPE location for a particular CPUser is only allowed to 1179 /// move to a lower address, so search backward from the end of the list and 1180 /// prefer the first water that is in range. 1181 bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, 1182 water_iterator &WaterIter) { 1183 if (WaterList.empty()) 1184 return false; 1185 1186 unsigned BestGrowth = ~0u; 1187 for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();; 1188 --IP) { 1189 MachineBasicBlock* WaterBB = *IP; 1190 // Check if water is in range and is either at a lower address than the 1191 // current "high water mark" or a new water block that was created since 1192 // the previous iteration by inserting an unconditional branch. In the 1193 // latter case, we want to allow resetting the high water mark back to 1194 // this new water since we haven't seen it before. Inserting branches 1195 // should be relatively uncommon and when it does happen, we want to be 1196 // sure to take advantage of it for all the CPEs near that block, so that 1197 // we don't insert more branches than necessary. 1198 unsigned Growth; 1199 if (WaterIsInRange(UserOffset, WaterBB, U, Growth) && 1200 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1201 NewWaterList.count(WaterBB)) && Growth < BestGrowth) { 1202 // This is the least amount of required padding seen so far. 1203 BestGrowth = Growth; 1204 WaterIter = IP; 1205 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1206 << " Growth=" << Growth << '\n'); 1207 1208 // Keep looking unless it is perfect. 1209 if (BestGrowth == 0) 1210 return true; 1211 } 1212 if (IP == B) 1213 break; 1214 } 1215 return BestGrowth != ~0u; 1216 } 1217 1218 /// CreateNewWater - No existing WaterList entry will work for 1219 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1220 /// block is used if in range, and the conditional branch munged so control 1221 /// flow is correct. Otherwise the block is split to create a hole with an 1222 /// unconditional branch around it. In either case NewMBB is set to a 1223 /// block following which the new island can be inserted (the WaterList 1224 /// is not adjusted). 1225 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, 1226 unsigned UserOffset, 1227 MachineBasicBlock *&NewMBB) { 1228 CPUser &U = CPUsers[CPUserIndex]; 1229 MachineInstr *UserMI = U.MI; 1230 MachineInstr *CPEMI = U.CPEMI; 1231 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1232 MachineBasicBlock *UserMBB = UserMI->getParent(); 1233 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1234 1235 // If the block does not end in an unconditional branch already, and if the 1236 // end of the block is within range, make new water there. (The addition 1237 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1238 // Thumb2, 2 on Thumb1. 1239 if (BBHasFallthrough(UserMBB)) { 1240 // Size of branch to insert. 1241 unsigned Delta = isThumb1 ? 2 : 4; 1242 // End of UserBlock after adding a branch. 1243 unsigned UserBlockEnd = UserBBI.postOffset() + Delta; 1244 // Compute the offset where the CPE will begin. 1245 unsigned CPEOffset = WorstCaseAlign(UserBlockEnd, CPELogAlign, 1246 UserBBI.postKnownBits()); 1247 1248 if (OffsetIsInRange(UserOffset, CPEOffset, U)) { 1249 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1250 << format(", expected CPE offset %#x\n", CPEOffset)); 1251 NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); 1252 // Add an unconditional branch from UserMBB to fallthrough block. Record 1253 // it for branch lengthening; this new branch will not get out of range, 1254 // but if the preceding conditional branch is out of range, the targets 1255 // will be exchanged, and the altered branch may be out of range, so the 1256 // machinery has to know about it. 1257 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1258 if (!isThumb) 1259 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1260 else 1261 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1262 .addImm(ARMCC::AL).addReg(0); 1263 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1264 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1265 MaxDisp, false, UncondBr)); 1266 BBInfo[UserMBB->getNumber()].Size += Delta; 1267 AdjustBBOffsetsAfter(UserMBB); 1268 return; 1269 } 1270 } 1271 1272 // What a big block. Find a place within the block to split it. This is a 1273 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1274 // entries are 4 bytes: if instruction I references island CPE, and 1275 // instruction I+1 references CPE', it will not work well to put CPE as far 1276 // forward as possible, since then CPE' cannot immediately follow it (that 1277 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1278 // need to create a new island. So, we make a first guess, then walk through 1279 // the instructions between the one currently being looked at and the 1280 // possible insertion point, and make sure any other instructions that 1281 // reference CPEs will be able to use the same island area; if not, we back 1282 // up the insertion point. 1283 1284 // Try to split the block so it's fully aligned. Compute the latest split 1285 // point where we can add a 4-byte branch instruction, and then 1286 // WorstCaseAlign to LogAlign. 1287 unsigned LogAlign = MF->getAlignment(); 1288 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1289 unsigned KnownBits = UserBBI.internalKnownBits(); 1290 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1291 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp(); 1292 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1293 BaseInsertOffset)); 1294 1295 // Account for alignment and unknown padding. 1296 BaseInsertOffset &= ~((1u << LogAlign) - 1); 1297 BaseInsertOffset -= UPad; 1298 1299 // The 4 in the following is for the unconditional branch we'll be inserting 1300 // (allows for long branch on Thumb1). Alignment of the island is handled 1301 // inside OffsetIsInRange. 1302 BaseInsertOffset -= 4; 1303 1304 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1305 << " la=" << LogAlign 1306 << " kb=" << KnownBits 1307 << " up=" << UPad << '\n'); 1308 1309 // This could point off the end of the block if we've already got constant 1310 // pool entries following this block; only the last one is in the water list. 1311 // Back past any possible branches (allow for a conditional and a maximally 1312 // long unconditional). 1313 if (BaseInsertOffset >= BBInfo[UserMBB->getNumber()+1].Offset) 1314 BaseInsertOffset = BBInfo[UserMBB->getNumber()+1].Offset - 1315 (isThumb1 ? 6 : 8); 1316 unsigned EndInsertOffset = 1317 WorstCaseAlign(BaseInsertOffset + 4, LogAlign, KnownBits) + 1318 CPEMI->getOperand(2).getImm(); 1319 MachineBasicBlock::iterator MI = UserMI; 1320 ++MI; 1321 unsigned CPUIndex = CPUserIndex+1; 1322 unsigned NumCPUsers = CPUsers.size(); 1323 MachineInstr *LastIT = 0; 1324 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1325 Offset < BaseInsertOffset; 1326 Offset += TII->GetInstSizeInBytes(MI), 1327 MI = llvm::next(MI)) { 1328 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1329 CPUser &U = CPUsers[CPUIndex]; 1330 if (!OffsetIsInRange(Offset, EndInsertOffset, U)) { 1331 // Shift intertion point by one unit of alignment so it is within reach. 1332 BaseInsertOffset -= 1u << LogAlign; 1333 EndInsertOffset -= 1u << LogAlign; 1334 } 1335 // This is overly conservative, as we don't account for CPEMIs being 1336 // reused within the block, but it doesn't matter much. Also assume CPEs 1337 // are added in order with alignment padding. We may eventually be able 1338 // to pack the aligned CPEs better. 1339 EndInsertOffset = RoundUpToAlignment(EndInsertOffset, 1340 1u << getCPELogAlign(U.CPEMI)) + 1341 U.CPEMI->getOperand(2).getImm(); 1342 CPUIndex++; 1343 } 1344 1345 // Remember the last IT instruction. 1346 if (MI->getOpcode() == ARM::t2IT) 1347 LastIT = MI; 1348 } 1349 1350 --MI; 1351 1352 // Avoid splitting an IT block. 1353 if (LastIT) { 1354 unsigned PredReg = 0; 1355 ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg); 1356 if (CC != ARMCC::AL) 1357 MI = LastIT; 1358 } 1359 NewMBB = SplitBlockBeforeInstr(MI); 1360 } 1361 1362 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it 1363 /// is out-of-range. If so, pick up the constant pool value and move it some 1364 /// place in-range. Return true if we changed any addresses (thus must run 1365 /// another pass of branch lengthening), false otherwise. 1366 bool ARMConstantIslands::HandleConstantPoolUser(unsigned CPUserIndex) { 1367 CPUser &U = CPUsers[CPUserIndex]; 1368 MachineInstr *UserMI = U.MI; 1369 MachineInstr *CPEMI = U.CPEMI; 1370 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1371 unsigned Size = CPEMI->getOperand(2).getImm(); 1372 // Compute this only once, it's expensive. 1373 unsigned UserOffset = GetUserOffset(U); 1374 1375 // See if the current entry is within range, or there is a clone of it 1376 // in range. 1377 int result = LookForExistingCPEntry(U, UserOffset); 1378 if (result==1) return false; 1379 else if (result==2) return true; 1380 1381 // No existing clone of this CPE is within range. 1382 // We will be generating a new clone. Get a UID for it. 1383 unsigned ID = AFI->createPICLabelUId(); 1384 1385 // Look for water where we can place this CPE. 1386 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1387 MachineBasicBlock *NewMBB; 1388 water_iterator IP; 1389 if (LookForWater(U, UserOffset, IP)) { 1390 DEBUG(dbgs() << "Found water in range\n"); 1391 MachineBasicBlock *WaterBB = *IP; 1392 1393 // If the original WaterList entry was "new water" on this iteration, 1394 // propagate that to the new island. This is just keeping NewWaterList 1395 // updated to match the WaterList, which will be updated below. 1396 if (NewWaterList.count(WaterBB)) { 1397 NewWaterList.erase(WaterBB); 1398 NewWaterList.insert(NewIsland); 1399 } 1400 // The new CPE goes before the following block (NewMBB). 1401 NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); 1402 1403 } else { 1404 // No water found. 1405 DEBUG(dbgs() << "No water found\n"); 1406 CreateNewWater(CPUserIndex, UserOffset, NewMBB); 1407 1408 // SplitBlockBeforeInstr adds to WaterList, which is important when it is 1409 // called while handling branches so that the water will be seen on the 1410 // next iteration for constant pools, but in this context, we don't want 1411 // it. Check for this so it will be removed from the WaterList. 1412 // Also remove any entry from NewWaterList. 1413 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); 1414 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1415 if (IP != WaterList.end()) 1416 NewWaterList.erase(WaterBB); 1417 1418 // We are adding new water. Update NewWaterList. 1419 NewWaterList.insert(NewIsland); 1420 } 1421 1422 // Remove the original WaterList entry; we want subsequent insertions in 1423 // this vicinity to go after the one we're about to insert. This 1424 // considerably reduces the number of times we have to move the same CPE 1425 // more than once and is also important to ensure the algorithm terminates. 1426 if (IP != WaterList.end()) 1427 WaterList.erase(IP); 1428 1429 // Okay, we know we can put an island before NewMBB now, do it! 1430 MF->insert(NewMBB, NewIsland); 1431 1432 // Update internal data structures to account for the newly inserted MBB. 1433 UpdateForInsertedWaterBlock(NewIsland); 1434 1435 // Decrement the old entry, and remove it if refcount becomes 0. 1436 DecrementOldEntry(CPI, CPEMI); 1437 1438 // Now that we have an island to add the CPE to, clone the original CPE and 1439 // add it to the island. 1440 U.HighWaterMark = NewIsland; 1441 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1442 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1443 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1444 ++NumCPEs; 1445 1446 // Mark the basic block as aligned as required by the const-pool entry. 1447 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1448 1449 // Increase the size of the island block to account for the new entry. 1450 BBInfo[NewIsland->getNumber()].Size += Size; 1451 AdjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland))); 1452 1453 // Finally, change the CPI in the instruction operand to be ID. 1454 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1455 if (UserMI->getOperand(i).isCPI()) { 1456 UserMI->getOperand(i).setIndex(ID); 1457 break; 1458 } 1459 1460 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1461 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1462 1463 return true; 1464 } 1465 1466 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update 1467 /// sizes and offsets of impacted basic blocks. 1468 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { 1469 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1470 unsigned Size = CPEMI->getOperand(2).getImm(); 1471 CPEMI->eraseFromParent(); 1472 BBInfo[CPEBB->getNumber()].Size -= Size; 1473 // All succeeding offsets have the current size value added in, fix this. 1474 if (CPEBB->empty()) { 1475 BBInfo[CPEBB->getNumber()].Size = 0; 1476 1477 // This block no longer needs to be aligned. <rdar://problem/10534709>. 1478 CPEBB->setAlignment(0); 1479 } else 1480 // Entries are sorted by descending alignment, so realign from the front. 1481 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); 1482 1483 AdjustBBOffsetsAfter(CPEBB); 1484 // An island has only one predecessor BB and one successor BB. Check if 1485 // this BB's predecessor jumps directly to this BB's successor. This 1486 // shouldn't happen currently. 1487 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1488 // FIXME: remove the empty blocks after all the work is done? 1489 } 1490 1491 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts 1492 /// are zero. 1493 bool ARMConstantIslands::RemoveUnusedCPEntries() { 1494 unsigned MadeChange = false; 1495 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1496 std::vector<CPEntry> &CPEs = CPEntries[i]; 1497 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1498 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1499 RemoveDeadCPEMI(CPEs[j].CPEMI); 1500 CPEs[j].CPEMI = NULL; 1501 MadeChange = true; 1502 } 1503 } 1504 } 1505 return MadeChange; 1506 } 1507 1508 /// BBIsInRange - Returns true if the distance between specific MI and 1509 /// specific BB can fit in MI's displacement field. 1510 bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1511 unsigned MaxDisp) { 1512 unsigned PCAdj = isThumb ? 4 : 8; 1513 unsigned BrOffset = GetOffsetOf(MI) + PCAdj; 1514 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1515 1516 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1517 << " from BB#" << MI->getParent()->getNumber() 1518 << " max delta=" << MaxDisp 1519 << " from " << GetOffsetOf(MI) << " to " << DestOffset 1520 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1521 1522 if (BrOffset <= DestOffset) { 1523 // Branch before the Dest. 1524 if (DestOffset-BrOffset <= MaxDisp) 1525 return true; 1526 } else { 1527 if (BrOffset-DestOffset <= MaxDisp) 1528 return true; 1529 } 1530 return false; 1531 } 1532 1533 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far 1534 /// away to fit in its displacement field. 1535 bool ARMConstantIslands::FixUpImmediateBr(ImmBranch &Br) { 1536 MachineInstr *MI = Br.MI; 1537 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1538 1539 // Check to see if the DestBB is already in-range. 1540 if (BBIsInRange(MI, DestBB, Br.MaxDisp)) 1541 return false; 1542 1543 if (!Br.isCond) 1544 return FixUpUnconditionalBr(Br); 1545 return FixUpConditionalBr(Br); 1546 } 1547 1548 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is 1549 /// too far away to fit in its displacement field. If the LR register has been 1550 /// spilled in the epilogue, then we can use BL to implement a far jump. 1551 /// Otherwise, add an intermediate branch instruction to a branch. 1552 bool 1553 ARMConstantIslands::FixUpUnconditionalBr(ImmBranch &Br) { 1554 MachineInstr *MI = Br.MI; 1555 MachineBasicBlock *MBB = MI->getParent(); 1556 if (!isThumb1) 1557 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); 1558 1559 // Use BL to implement far jump. 1560 Br.MaxDisp = (1 << 21) * 2; 1561 MI->setDesc(TII->get(ARM::tBfar)); 1562 BBInfo[MBB->getNumber()].Size += 2; 1563 AdjustBBOffsetsAfter(MBB); 1564 HasFarJump = true; 1565 ++NumUBrFixed; 1566 1567 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1568 1569 return true; 1570 } 1571 1572 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too 1573 /// far away to fit in its displacement field. It is converted to an inverse 1574 /// conditional branch + an unconditional branch to the destination. 1575 bool 1576 ARMConstantIslands::FixUpConditionalBr(ImmBranch &Br) { 1577 MachineInstr *MI = Br.MI; 1578 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1579 1580 // Add an unconditional branch to the destination and invert the branch 1581 // condition to jump over it: 1582 // blt L1 1583 // => 1584 // bge L2 1585 // b L1 1586 // L2: 1587 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1588 CC = ARMCC::getOppositeCondition(CC); 1589 unsigned CCReg = MI->getOperand(2).getReg(); 1590 1591 // If the branch is at the end of its MBB and that has a fall-through block, 1592 // direct the updated conditional branch to the fall-through block. Otherwise, 1593 // split the MBB before the next instruction. 1594 MachineBasicBlock *MBB = MI->getParent(); 1595 MachineInstr *BMI = &MBB->back(); 1596 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1597 1598 ++NumCBrFixed; 1599 if (BMI != MI) { 1600 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && 1601 BMI->getOpcode() == Br.UncondBr) { 1602 // Last MI in the BB is an unconditional branch. Can we simply invert the 1603 // condition and swap destinations: 1604 // beq L1 1605 // b L2 1606 // => 1607 // bne L2 1608 // b L1 1609 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1610 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { 1611 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1612 << *BMI); 1613 BMI->getOperand(0).setMBB(DestBB); 1614 MI->getOperand(0).setMBB(NewDest); 1615 MI->getOperand(1).setImm(CC); 1616 return true; 1617 } 1618 } 1619 } 1620 1621 if (NeedSplit) { 1622 SplitBlockBeforeInstr(MI); 1623 // No need for the branch to the next block. We're adding an unconditional 1624 // branch to the destination. 1625 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1626 BBInfo[MBB->getNumber()].Size -= delta; 1627 MBB->back().eraseFromParent(); 1628 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1629 } 1630 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); 1631 1632 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1633 << " also invert condition and change dest. to BB#" 1634 << NextBB->getNumber() << "\n"); 1635 1636 // Insert a new conditional branch and a new unconditional branch. 1637 // Also update the ImmBranch as well as adding a new entry for the new branch. 1638 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1639 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1640 Br.MI = &MBB->back(); 1641 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1642 if (isThumb) 1643 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1644 .addImm(ARMCC::AL).addReg(0); 1645 else 1646 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1647 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1648 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1649 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1650 1651 // Remove the old conditional branch. It may or may not still be in MBB. 1652 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); 1653 MI->eraseFromParent(); 1654 AdjustBBOffsetsAfter(MBB); 1655 return true; 1656 } 1657 1658 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1659 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1660 /// to do this if tBfar is not used. 1661 bool ARMConstantIslands::UndoLRSpillRestore() { 1662 bool MadeChange = false; 1663 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1664 MachineInstr *MI = PushPopMIs[i]; 1665 // First two operands are predicates. 1666 if (MI->getOpcode() == ARM::tPOP_RET && 1667 MI->getOperand(2).getReg() == ARM::PC && 1668 MI->getNumExplicitOperands() == 3) { 1669 // Create the new insn and copy the predicate from the old. 1670 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1671 .addOperand(MI->getOperand(0)) 1672 .addOperand(MI->getOperand(1)); 1673 MI->eraseFromParent(); 1674 MadeChange = true; 1675 } 1676 } 1677 return MadeChange; 1678 } 1679 1680 // mayOptimizeThumb2Instruction - Returns true if OptimizeThumb2Instructions 1681 // below may shrink MI. 1682 bool 1683 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { 1684 switch(MI->getOpcode()) { 1685 // OptimizeThumb2Instructions. 1686 case ARM::t2LEApcrel: 1687 case ARM::t2LDRpci: 1688 // OptimizeThumb2Branches. 1689 case ARM::t2B: 1690 case ARM::t2Bcc: 1691 case ARM::tBcc: 1692 // OptimizeThumb2JumpTables. 1693 case ARM::t2BR_JT: 1694 return true; 1695 } 1696 return false; 1697 } 1698 1699 bool ARMConstantIslands::OptimizeThumb2Instructions() { 1700 bool MadeChange = false; 1701 1702 // Shrink ADR and LDR from constantpool. 1703 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1704 CPUser &U = CPUsers[i]; 1705 unsigned Opcode = U.MI->getOpcode(); 1706 unsigned NewOpc = 0; 1707 unsigned Scale = 1; 1708 unsigned Bits = 0; 1709 switch (Opcode) { 1710 default: break; 1711 case ARM::t2LEApcrel: 1712 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1713 NewOpc = ARM::tLEApcrel; 1714 Bits = 8; 1715 Scale = 4; 1716 } 1717 break; 1718 case ARM::t2LDRpci: 1719 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1720 NewOpc = ARM::tLDRpci; 1721 Bits = 8; 1722 Scale = 4; 1723 } 1724 break; 1725 } 1726 1727 if (!NewOpc) 1728 continue; 1729 1730 unsigned UserOffset = GetUserOffset(U); 1731 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1732 1733 // Be conservative with inline asm. 1734 if (!U.KnownAlignment) 1735 MaxOffs -= 2; 1736 1737 // FIXME: Check if offset is multiple of scale if scale is not 4. 1738 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1739 U.MI->setDesc(TII->get(NewOpc)); 1740 MachineBasicBlock *MBB = U.MI->getParent(); 1741 BBInfo[MBB->getNumber()].Size -= 2; 1742 AdjustBBOffsetsAfter(MBB); 1743 ++NumT2CPShrunk; 1744 MadeChange = true; 1745 } 1746 } 1747 1748 MadeChange |= OptimizeThumb2Branches(); 1749 MadeChange |= OptimizeThumb2JumpTables(); 1750 return MadeChange; 1751 } 1752 1753 bool ARMConstantIslands::OptimizeThumb2Branches() { 1754 bool MadeChange = false; 1755 1756 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1757 ImmBranch &Br = ImmBranches[i]; 1758 unsigned Opcode = Br.MI->getOpcode(); 1759 unsigned NewOpc = 0; 1760 unsigned Scale = 1; 1761 unsigned Bits = 0; 1762 switch (Opcode) { 1763 default: break; 1764 case ARM::t2B: 1765 NewOpc = ARM::tB; 1766 Bits = 11; 1767 Scale = 2; 1768 break; 1769 case ARM::t2Bcc: { 1770 NewOpc = ARM::tBcc; 1771 Bits = 8; 1772 Scale = 2; 1773 break; 1774 } 1775 } 1776 if (NewOpc) { 1777 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1778 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1779 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { 1780 Br.MI->setDesc(TII->get(NewOpc)); 1781 MachineBasicBlock *MBB = Br.MI->getParent(); 1782 BBInfo[MBB->getNumber()].Size -= 2; 1783 AdjustBBOffsetsAfter(MBB); 1784 ++NumT2BrShrunk; 1785 MadeChange = true; 1786 } 1787 } 1788 1789 Opcode = Br.MI->getOpcode(); 1790 if (Opcode != ARM::tBcc) 1791 continue; 1792 1793 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1794 // so this transformation is not safe. 1795 if (!Br.MI->killsRegister(ARM::CPSR)) 1796 continue; 1797 1798 NewOpc = 0; 1799 unsigned PredReg = 0; 1800 ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); 1801 if (Pred == ARMCC::EQ) 1802 NewOpc = ARM::tCBZ; 1803 else if (Pred == ARMCC::NE) 1804 NewOpc = ARM::tCBNZ; 1805 if (!NewOpc) 1806 continue; 1807 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1808 // Check if the distance is within 126. Subtract starting offset by 2 1809 // because the cmp will be eliminated. 1810 unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; 1811 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1812 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1813 MachineBasicBlock::iterator CmpMI = Br.MI; 1814 if (CmpMI != Br.MI->getParent()->begin()) { 1815 --CmpMI; 1816 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1817 unsigned Reg = CmpMI->getOperand(0).getReg(); 1818 Pred = llvm::getInstrPredicate(CmpMI, PredReg); 1819 if (Pred == ARMCC::AL && 1820 CmpMI->getOperand(1).getImm() == 0 && 1821 isARMLowRegister(Reg)) { 1822 MachineBasicBlock *MBB = Br.MI->getParent(); 1823 MachineInstr *NewBR = 1824 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1825 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1826 CmpMI->eraseFromParent(); 1827 Br.MI->eraseFromParent(); 1828 Br.MI = NewBR; 1829 BBInfo[MBB->getNumber()].Size -= 2; 1830 AdjustBBOffsetsAfter(MBB); 1831 ++NumCBZ; 1832 MadeChange = true; 1833 } 1834 } 1835 } 1836 } 1837 } 1838 1839 return MadeChange; 1840 } 1841 1842 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1843 /// jumptables when it's possible. 1844 bool ARMConstantIslands::OptimizeThumb2JumpTables() { 1845 bool MadeChange = false; 1846 1847 // FIXME: After the tables are shrunk, can we get rid some of the 1848 // constantpool tables? 1849 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1850 if (MJTI == 0) return false; 1851 1852 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1853 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1854 MachineInstr *MI = T2JumpTables[i]; 1855 const MCInstrDesc &MCID = MI->getDesc(); 1856 unsigned NumOps = MCID.getNumOperands(); 1857 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1858 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1859 unsigned JTI = JTOP.getIndex(); 1860 assert(JTI < JT.size()); 1861 1862 bool ByteOk = true; 1863 bool HalfWordOk = true; 1864 unsigned JTOffset = GetOffsetOf(MI) + 4; 1865 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1866 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1867 MachineBasicBlock *MBB = JTBBs[j]; 1868 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 1869 // Negative offset is not ok. FIXME: We should change BB layout to make 1870 // sure all the branches are forward. 1871 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1872 ByteOk = false; 1873 unsigned TBHLimit = ((1<<16)-1)*2; 1874 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1875 HalfWordOk = false; 1876 if (!ByteOk && !HalfWordOk) 1877 break; 1878 } 1879 1880 if (ByteOk || HalfWordOk) { 1881 MachineBasicBlock *MBB = MI->getParent(); 1882 unsigned BaseReg = MI->getOperand(0).getReg(); 1883 bool BaseRegKill = MI->getOperand(0).isKill(); 1884 if (!BaseRegKill) 1885 continue; 1886 unsigned IdxReg = MI->getOperand(1).getReg(); 1887 bool IdxRegKill = MI->getOperand(1).isKill(); 1888 1889 // Scan backwards to find the instruction that defines the base 1890 // register. Due to post-RA scheduling, we can't count on it 1891 // immediately preceding the branch instruction. 1892 MachineBasicBlock::iterator PrevI = MI; 1893 MachineBasicBlock::iterator B = MBB->begin(); 1894 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1895 --PrevI; 1896 1897 // If for some reason we didn't find it, we can't do anything, so 1898 // just skip this one. 1899 if (!PrevI->definesRegister(BaseReg)) 1900 continue; 1901 1902 MachineInstr *AddrMI = PrevI; 1903 bool OptOk = true; 1904 // Examine the instruction that calculates the jumptable entry address. 1905 // Make sure it only defines the base register and kills any uses 1906 // other than the index register. 1907 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1908 const MachineOperand &MO = AddrMI->getOperand(k); 1909 if (!MO.isReg() || !MO.getReg()) 1910 continue; 1911 if (MO.isDef() && MO.getReg() != BaseReg) { 1912 OptOk = false; 1913 break; 1914 } 1915 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1916 OptOk = false; 1917 break; 1918 } 1919 } 1920 if (!OptOk) 1921 continue; 1922 1923 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1924 // that gave us the initial base register definition. 1925 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1926 ; 1927 1928 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1929 // to delete it as well. 1930 MachineInstr *LeaMI = PrevI; 1931 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1932 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1933 LeaMI->getOperand(0).getReg() != BaseReg) 1934 OptOk = false; 1935 1936 if (!OptOk) 1937 continue; 1938 1939 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1940 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1941 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1942 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1943 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1944 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1945 // is 2-byte aligned. For now, asm printer will fix it up. 1946 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1947 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1948 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1949 OrigSize += TII->GetInstSizeInBytes(MI); 1950 1951 AddrMI->eraseFromParent(); 1952 LeaMI->eraseFromParent(); 1953 MI->eraseFromParent(); 1954 1955 int delta = OrigSize - NewSize; 1956 BBInfo[MBB->getNumber()].Size -= delta; 1957 AdjustBBOffsetsAfter(MBB); 1958 1959 ++NumTBs; 1960 MadeChange = true; 1961 } 1962 } 1963 1964 return MadeChange; 1965 } 1966 1967 /// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that 1968 /// jump tables always branch forwards, since that's what tbb and tbh need. 1969 bool ARMConstantIslands::ReorderThumb2JumpTables() { 1970 bool MadeChange = false; 1971 1972 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1973 if (MJTI == 0) return false; 1974 1975 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1976 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1977 MachineInstr *MI = T2JumpTables[i]; 1978 const MCInstrDesc &MCID = MI->getDesc(); 1979 unsigned NumOps = MCID.getNumOperands(); 1980 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1981 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1982 unsigned JTI = JTOP.getIndex(); 1983 assert(JTI < JT.size()); 1984 1985 // We prefer if target blocks for the jump table come after the jump 1986 // instruction so we can use TB[BH]. Loop through the target blocks 1987 // and try to adjust them such that that's true. 1988 int JTNumber = MI->getParent()->getNumber(); 1989 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1990 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1991 MachineBasicBlock *MBB = JTBBs[j]; 1992 int DTNumber = MBB->getNumber(); 1993 1994 if (DTNumber < JTNumber) { 1995 // The destination precedes the switch. Try to move the block forward 1996 // so we have a positive offset. 1997 MachineBasicBlock *NewBB = 1998 AdjustJTTargetBlockForward(MBB, MI->getParent()); 1999 if (NewBB) 2000 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2001 MadeChange = true; 2002 } 2003 } 2004 } 2005 2006 return MadeChange; 2007 } 2008 2009 MachineBasicBlock *ARMConstantIslands:: 2010 AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) 2011 { 2012 // If the destination block is terminated by an unconditional branch, 2013 // try to move it; otherwise, create a new block following the jump 2014 // table that branches back to the actual target. This is a very simple 2015 // heuristic. FIXME: We can definitely improve it. 2016 MachineBasicBlock *TBB = 0, *FBB = 0; 2017 SmallVector<MachineOperand, 4> Cond; 2018 SmallVector<MachineOperand, 4> CondPrior; 2019 MachineFunction::iterator BBi = BB; 2020 MachineFunction::iterator OldPrior = prior(BBi); 2021 2022 // If the block terminator isn't analyzable, don't try to move the block 2023 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 2024 2025 // If the block ends in an unconditional branch, move it. The prior block 2026 // has to have an analyzable terminator for us to move this one. Be paranoid 2027 // and make sure we're not trying to move the entry block of the function. 2028 if (!B && Cond.empty() && BB != MF->begin() && 2029 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2030 BB->moveAfter(JTBB); 2031 OldPrior->updateTerminator(); 2032 BB->updateTerminator(); 2033 // Update numbering to account for the block being moved. 2034 MF->RenumberBlocks(); 2035 ++NumJTMoved; 2036 return NULL; 2037 } 2038 2039 // Create a new MBB for the code after the jump BB. 2040 MachineBasicBlock *NewBB = 2041 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2042 MachineFunction::iterator MBBI = JTBB; ++MBBI; 2043 MF->insert(MBBI, NewBB); 2044 2045 // Add an unconditional branch from NewBB to BB. 2046 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2047 // correspond directly to anything in the source. 2048 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 2049 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 2050 .addImm(ARMCC::AL).addReg(0); 2051 2052 // Update internal data structures to account for the newly inserted MBB. 2053 MF->RenumberBlocks(NewBB); 2054 2055 // Update the CFG. 2056 NewBB->addSuccessor(BB); 2057 JTBB->removeSuccessor(BB); 2058 JTBB->addSuccessor(NewBB); 2059 2060 ++NumJTInserted; 2061 return NewBB; 2062 } 2063