1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "arm-cp-islands" 61 62 #define ARM_CP_ISLANDS_OPT_NAME \ 63 "ARM constant island placement and branch shortening pass" 64 STATISTIC(NumCPEs, "Number of constpool entries"); 65 STATISTIC(NumSplit, "Number of uncond branches inserted"); 66 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 67 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 68 STATISTIC(NumTBs, "Number of table branches generated"); 69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 71 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 72 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 75 76 static cl::opt<bool> 77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 78 cl::desc("Adjust basic block layout to better use TB[BH]")); 79 80 static cl::opt<unsigned> 81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 82 cl::desc("The max number of iteration for converge")); 83 84 static cl::opt<bool> SynthesizeThumb1TBB( 85 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 87 "equivalent to the TBB/TBH instructions")); 88 89 namespace { 90 91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 92 /// requires constant pool entries to be scattered among the instructions 93 /// inside a function. To do this, it completely ignores the normal LLVM 94 /// constant pool; instead, it places constants wherever it feels like with 95 /// special instructions. 96 /// 97 /// The terminology used in this pass includes: 98 /// Islands - Clumps of constants placed in the function. 99 /// Water - Potential places where an island could be formed. 100 /// CPE - A constant pool entry that has been placed somewhere, which 101 /// tracks a list of users. 102 class ARMConstantIslands : public MachineFunctionPass { 103 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 104 105 /// WaterList - A sorted list of basic blocks where islands could be placed 106 /// (i.e. blocks that don't fall through to the following block, due 107 /// to a return, unreachable, or unconditional branch). 108 std::vector<MachineBasicBlock*> WaterList; 109 110 /// NewWaterList - The subset of WaterList that was created since the 111 /// previous iteration by inserting unconditional branches. 112 SmallSet<MachineBasicBlock*, 4> NewWaterList; 113 114 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 115 116 /// CPUser - One user of a constant pool, keeping the machine instruction 117 /// pointer, the constant pool being referenced, and the max displacement 118 /// allowed from the instruction to the CP. The HighWaterMark records the 119 /// highest basic block where a new CPEntry can be placed. To ensure this 120 /// pass terminates, the CP entries are initially placed at the end of the 121 /// function and then move monotonically to lower addresses. The 122 /// exception to this rule is when the current CP entry for a particular 123 /// CPUser is out of range, but there is another CP entry for the same 124 /// constant value in range. We want to use the existing in-range CP 125 /// entry, but if it later moves out of range, the search for new water 126 /// should resume where it left off. The HighWaterMark is used to record 127 /// that point. 128 struct CPUser { 129 MachineInstr *MI; 130 MachineInstr *CPEMI; 131 MachineBasicBlock *HighWaterMark; 132 unsigned MaxDisp; 133 bool NegOk; 134 bool IsSoImm; 135 bool KnownAlignment = false; 136 137 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 138 bool neg, bool soimm) 139 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 140 HighWaterMark = CPEMI->getParent(); 141 } 142 143 /// getMaxDisp - Returns the maximum displacement supported by MI. 144 /// Correct for unknown alignment. 145 /// Conservatively subtract 2 bytes to handle weird alignment effects. 146 unsigned getMaxDisp() const { 147 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 148 } 149 }; 150 151 /// CPUsers - Keep track of all of the machine instructions that use various 152 /// constant pools and their max displacement. 153 std::vector<CPUser> CPUsers; 154 155 /// CPEntry - One per constant pool entry, keeping the machine instruction 156 /// pointer, the constpool index, and the number of CPUser's which 157 /// reference this entry. 158 struct CPEntry { 159 MachineInstr *CPEMI; 160 unsigned CPI; 161 unsigned RefCount; 162 163 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 164 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 165 }; 166 167 /// CPEntries - Keep track of all of the constant pool entry machine 168 /// instructions. For each original constpool index (i.e. those that existed 169 /// upon entry to this pass), it keeps a vector of entries. Original 170 /// elements are cloned as we go along; the clones are put in the vector of 171 /// the original element, but have distinct CPIs. 172 /// 173 /// The first half of CPEntries contains generic constants, the second half 174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 175 /// which vector it will be in here. 176 std::vector<std::vector<CPEntry>> CPEntries; 177 178 /// Maps a JT index to the offset in CPEntries containing copies of that 179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 180 DenseMap<int, int> JumpTableEntryIndices; 181 182 /// Maps a JT index to the LEA that actually uses the index to calculate its 183 /// base address. 184 DenseMap<int, int> JumpTableUserIndices; 185 186 /// ImmBranch - One per immediate branch, keeping the machine instruction 187 /// pointer, conditional or unconditional, the max displacement, 188 /// and (if isCond is true) the corresponding unconditional branch 189 /// opcode. 190 struct ImmBranch { 191 MachineInstr *MI; 192 unsigned MaxDisp : 31; 193 bool isCond : 1; 194 unsigned UncondBr; 195 196 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 197 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 198 }; 199 200 /// ImmBranches - Keep track of all the immediate branch instructions. 201 std::vector<ImmBranch> ImmBranches; 202 203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 204 SmallVector<MachineInstr*, 4> PushPopMIs; 205 206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 207 SmallVector<MachineInstr*, 4> T2JumpTables; 208 209 MachineFunction *MF; 210 MachineConstantPool *MCP; 211 const ARMBaseInstrInfo *TII; 212 const ARMSubtarget *STI; 213 ARMFunctionInfo *AFI; 214 MachineDominatorTree *DT = nullptr; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 void getAnalysisUsage(AnalysisUsage &AU) const override { 228 AU.addRequired<MachineDominatorTree>(); 229 MachineFunctionPass::getAnalysisUsage(AU); 230 } 231 232 MachineFunctionProperties getRequiredProperties() const override { 233 return MachineFunctionProperties().set( 234 MachineFunctionProperties::Property::NoVRegs); 235 } 236 237 StringRef getPassName() const override { 238 return ARM_CP_ISLANDS_OPT_NAME; 239 } 240 241 private: 242 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 243 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 244 bool BBHasFallthrough(MachineBasicBlock *MBB); 245 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 246 Align getCPEAlign(const MachineInstr *CPEMI); 247 void scanFunctionJumpTables(); 248 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 249 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 250 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 251 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 252 unsigned getCombinedIndex(const MachineInstr *CPEMI); 253 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 254 bool findAvailableWater(CPUser&U, unsigned UserOffset, 255 water_iterator &WaterIter, bool CloserWater); 256 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 257 MachineBasicBlock *&NewMBB); 258 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 259 void removeDeadCPEMI(MachineInstr *CPEMI); 260 bool removeUnusedCPEntries(); 261 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 262 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 263 bool DoDump = false); 264 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 265 CPUser &U, unsigned &Growth); 266 bool fixupImmediateBr(ImmBranch &Br); 267 bool fixupConditionalBr(ImmBranch &Br); 268 bool fixupUnconditionalBr(ImmBranch &Br); 269 bool optimizeThumb2Instructions(); 270 bool optimizeThumb2Branches(); 271 bool reorderThumb2JumpTables(); 272 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 273 unsigned &DeadSize, bool &CanDeleteLEA, 274 bool &BaseRegKill); 275 bool optimizeThumb2JumpTables(); 276 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 277 MachineBasicBlock *JTBB); 278 279 unsigned getUserOffset(CPUser&) const; 280 void dumpBBs(); 281 void verify(); 282 283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 284 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 286 const CPUser &U) { 287 return isOffsetInRange(UserOffset, TrialOffset, 288 U.getMaxDisp(), U.NegOk, U.IsSoImm); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char ARMConstantIslands::ID = 0; 295 296 /// verify - check BBOffsets, BBSizes, alignment of islands 297 void ARMConstantIslands::verify() { 298 #ifndef NDEBUG 299 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 300 assert(std::is_sorted(MF->begin(), MF->end(), 301 [&BBInfo](const MachineBasicBlock &LHS, 302 const MachineBasicBlock &RHS) { 303 return BBInfo[LHS.getNumber()].postOffset() < 304 BBInfo[RHS.getNumber()].postOffset(); 305 })); 306 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 307 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 308 CPUser &U = CPUsers[i]; 309 unsigned UserOffset = getUserOffset(U); 310 // Verify offset using the real max displacement without the safety 311 // adjustment. 312 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 313 /* DoDump = */ true)) { 314 LLVM_DEBUG(dbgs() << "OK\n"); 315 continue; 316 } 317 LLVM_DEBUG(dbgs() << "Out of range.\n"); 318 dumpBBs(); 319 LLVM_DEBUG(MF->dump()); 320 llvm_unreachable("Constant pool entry out of range!"); 321 } 322 #endif 323 } 324 325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 326 /// print block size and offset information - debugging 327 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 328 LLVM_DEBUG({ 329 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 330 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 331 const BasicBlockInfo &BBI = BBInfo[J]; 332 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 333 << " kb=" << unsigned(BBI.KnownBits) 334 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 335 << format(" size=%#x\n", BBInfo[J].Size); 336 } 337 }); 338 } 339 #endif 340 341 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 342 MF = &mf; 343 MCP = mf.getConstantPool(); 344 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 345 346 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 347 << MCP->getConstants().size() << " CP entries, aligned to " 348 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 349 350 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 351 TII = STI->getInstrInfo(); 352 isPositionIndependentOrROPI = 353 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 354 AFI = MF->getInfo<ARMFunctionInfo>(); 355 DT = &getAnalysis<MachineDominatorTree>(); 356 357 isThumb = AFI->isThumbFunction(); 358 isThumb1 = AFI->isThumb1OnlyFunction(); 359 isThumb2 = AFI->isThumb2Function(); 360 361 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 362 363 // Renumber all of the machine basic blocks in the function, guaranteeing that 364 // the numbers agree with the position of the block in the function. 365 MF->RenumberBlocks(); 366 367 // Try to reorder and otherwise adjust the block layout to make good use 368 // of the TB[BH] instructions. 369 bool MadeChange = false; 370 if (GenerateTBB && AdjustJumpTableBlocks) { 371 scanFunctionJumpTables(); 372 MadeChange |= reorderThumb2JumpTables(); 373 // Data is out of date, so clear it. It'll be re-computed later. 374 T2JumpTables.clear(); 375 // Blocks may have shifted around. Keep the numbering up to date. 376 MF->RenumberBlocks(); 377 } 378 379 // Perform the initial placement of the constant pool entries. To start with, 380 // we put them all at the end of the function. 381 std::vector<MachineInstr*> CPEMIs; 382 if (!MCP->isEmpty()) 383 doInitialConstPlacement(CPEMIs); 384 385 if (MF->getJumpTableInfo()) 386 doInitialJumpTablePlacement(CPEMIs); 387 388 /// The next UID to take is the first unused one. 389 AFI->initPICLabelUId(CPEMIs.size()); 390 391 // Do the initial scan of the function, building up information about the 392 // sizes of each block, the location of all the water, and finding all of the 393 // constant pool users. 394 initializeFunctionInfo(CPEMIs); 395 CPEMIs.clear(); 396 LLVM_DEBUG(dumpBBs()); 397 398 // Functions with jump tables need an alignment of 4 because they use the ADR 399 // instruction, which aligns the PC to 4 bytes before adding an offset. 400 if (!T2JumpTables.empty()) 401 MF->ensureAlignment(Align(4)); 402 403 /// Remove dead constant pool entries. 404 MadeChange |= removeUnusedCPEntries(); 405 406 // Iteratively place constant pool entries and fix up branches until there 407 // is no change. 408 unsigned NoCPIters = 0, NoBRIters = 0; 409 while (true) { 410 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 411 bool CPChange = false; 412 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 413 // For most inputs, it converges in no more than 5 iterations. 414 // If it doesn't end in 10, the input may have huge BB or many CPEs. 415 // In this case, we will try different heuristics. 416 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 417 if (CPChange && ++NoCPIters > CPMaxIteration) 418 report_fatal_error("Constant Island pass failed to converge!"); 419 LLVM_DEBUG(dumpBBs()); 420 421 // Clear NewWaterList now. If we split a block for branches, it should 422 // appear as "new water" for the next iteration of constant pool placement. 423 NewWaterList.clear(); 424 425 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 426 bool BRChange = false; 427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 428 BRChange |= fixupImmediateBr(ImmBranches[i]); 429 if (BRChange && ++NoBRIters > 30) 430 report_fatal_error("Branch Fix Up pass failed to converge!"); 431 LLVM_DEBUG(dumpBBs()); 432 433 if (!CPChange && !BRChange) 434 break; 435 MadeChange = true; 436 } 437 438 // Shrink 32-bit Thumb2 load and store instructions. 439 if (isThumb2 && !STI->prefers32BitThumb()) 440 MadeChange |= optimizeThumb2Instructions(); 441 442 // Shrink 32-bit branch instructions. 443 if (isThumb && STI->hasV8MBaselineOps()) 444 MadeChange |= optimizeThumb2Branches(); 445 446 // Optimize jump tables using TBB / TBH. 447 if (GenerateTBB && !STI->genExecuteOnly()) 448 MadeChange |= optimizeThumb2JumpTables(); 449 450 // After a while, this might be made debug-only, but it is not expensive. 451 verify(); 452 453 // Save the mapping between original and cloned constpool entries. 454 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 455 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 456 const CPEntry & CPE = CPEntries[i][j]; 457 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 458 AFI->recordCPEClone(i, CPE.CPI); 459 } 460 } 461 462 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 463 464 BBUtils->clear(); 465 WaterList.clear(); 466 CPUsers.clear(); 467 CPEntries.clear(); 468 JumpTableEntryIndices.clear(); 469 JumpTableUserIndices.clear(); 470 ImmBranches.clear(); 471 PushPopMIs.clear(); 472 T2JumpTables.clear(); 473 474 return MadeChange; 475 } 476 477 /// Perform the initial placement of the regular constant pool entries. 478 /// To start with, we put them all at the end of the function. 479 void 480 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 481 // Create the basic block to hold the CPE's. 482 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 483 MF->push_back(BB); 484 485 // MachineConstantPool measures alignment in bytes. 486 const Align MaxAlign = MCP->getConstantPoolAlign(); 487 const unsigned MaxLogAlign = Log2(MaxAlign); 488 489 // Mark the basic block as required by the const-pool. 490 BB->setAlignment(MaxAlign); 491 492 // The function needs to be as aligned as the basic blocks. The linker may 493 // move functions around based on their alignment. 494 // Special case: halfword literals still need word alignment on the function. 495 Align FuncAlign = MaxAlign; 496 if (MaxAlign == 2) 497 FuncAlign = Align(4); 498 MF->ensureAlignment(FuncAlign); 499 500 // Order the entries in BB by descending alignment. That ensures correct 501 // alignment of all entries as long as BB is sufficiently aligned. Keep 502 // track of the insertion point for each alignment. We are going to bucket 503 // sort the entries as they are created. 504 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 505 BB->end()); 506 507 // Add all of the constants from the constant pool to the end block, use an 508 // identity mapping of CPI's to CPE's. 509 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 510 511 const DataLayout &TD = MF->getDataLayout(); 512 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 513 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 514 Align Alignment = CPs[i].getAlign(); 515 // Verify that all constant pool entries are a multiple of their alignment. 516 // If not, we would have to pad them out so that instructions stay aligned. 517 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 518 519 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 520 unsigned LogAlign = Log2(Alignment); 521 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 522 MachineInstr *CPEMI = 523 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 524 .addImm(i).addConstantPoolIndex(i).addImm(Size); 525 CPEMIs.push_back(CPEMI); 526 527 // Ensure that future entries with higher alignment get inserted before 528 // CPEMI. This is bucket sort with iterators. 529 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 530 if (InsPoint[a] == InsAt) 531 InsPoint[a] = CPEMI; 532 533 // Add a new CPEntry, but no corresponding CPUser yet. 534 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 535 ++NumCPEs; 536 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 537 << Size << ", align = " << Alignment.value() << '\n'); 538 } 539 LLVM_DEBUG(BB->dump()); 540 } 541 542 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 543 /// instructions can be made more efficient if the jump table immediately 544 /// follows the instruction, it's best to place them immediately next to their 545 /// jumps to begin with. In almost all cases they'll never be moved from that 546 /// position. 547 void ARMConstantIslands::doInitialJumpTablePlacement( 548 std::vector<MachineInstr *> &CPEMIs) { 549 unsigned i = CPEntries.size(); 550 auto MJTI = MF->getJumpTableInfo(); 551 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 552 553 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 554 for (MachineBasicBlock &MBB : *MF) { 555 auto MI = MBB.getLastNonDebugInstr(); 556 if (MI == MBB.end()) 557 continue; 558 559 unsigned JTOpcode; 560 switch (MI->getOpcode()) { 561 default: 562 continue; 563 case ARM::BR_JTadd: 564 case ARM::BR_JTr: 565 case ARM::tBR_JTr: 566 case ARM::BR_JTm_i12: 567 case ARM::BR_JTm_rs: 568 JTOpcode = ARM::JUMPTABLE_ADDRS; 569 break; 570 case ARM::t2BR_JT: 571 JTOpcode = ARM::JUMPTABLE_INSTS; 572 break; 573 case ARM::tTBB_JT: 574 case ARM::t2TBB_JT: 575 JTOpcode = ARM::JUMPTABLE_TBB; 576 break; 577 case ARM::tTBH_JT: 578 case ARM::t2TBH_JT: 579 JTOpcode = ARM::JUMPTABLE_TBH; 580 break; 581 } 582 583 unsigned NumOps = MI->getDesc().getNumOperands(); 584 MachineOperand JTOp = 585 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 586 unsigned JTI = JTOp.getIndex(); 587 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 588 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 589 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 590 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 591 DebugLoc(), TII->get(JTOpcode)) 592 .addImm(i++) 593 .addJumpTableIndex(JTI) 594 .addImm(Size); 595 CPEMIs.push_back(CPEMI); 596 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 597 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 598 if (!LastCorrectlyNumberedBB) 599 LastCorrectlyNumberedBB = &MBB; 600 } 601 602 // If we did anything then we need to renumber the subsequent blocks. 603 if (LastCorrectlyNumberedBB) 604 MF->RenumberBlocks(LastCorrectlyNumberedBB); 605 } 606 607 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 608 /// into the block immediately after it. 609 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 610 // Get the next machine basic block in the function. 611 MachineFunction::iterator MBBI = MBB->getIterator(); 612 // Can't fall off end of function. 613 if (std::next(MBBI) == MBB->getParent()->end()) 614 return false; 615 616 MachineBasicBlock *NextBB = &*std::next(MBBI); 617 if (!MBB->isSuccessor(NextBB)) 618 return false; 619 620 // Try to analyze the end of the block. A potential fallthrough may already 621 // have an unconditional branch for whatever reason. 622 MachineBasicBlock *TBB, *FBB; 623 SmallVector<MachineOperand, 4> Cond; 624 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 625 return TooDifficult || FBB == nullptr; 626 } 627 628 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 629 /// look up the corresponding CPEntry. 630 ARMConstantIslands::CPEntry * 631 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 632 const MachineInstr *CPEMI) { 633 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 634 // Number of entries per constpool index should be small, just do a 635 // linear search. 636 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 637 if (CPEs[i].CPEMI == CPEMI) 638 return &CPEs[i]; 639 } 640 return nullptr; 641 } 642 643 /// getCPEAlign - Returns the required alignment of the constant pool entry 644 /// represented by CPEMI. 645 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 646 switch (CPEMI->getOpcode()) { 647 case ARM::CONSTPOOL_ENTRY: 648 break; 649 case ARM::JUMPTABLE_TBB: 650 return isThumb1 ? Align(4) : Align(1); 651 case ARM::JUMPTABLE_TBH: 652 return isThumb1 ? Align(4) : Align(2); 653 case ARM::JUMPTABLE_INSTS: 654 return Align(2); 655 case ARM::JUMPTABLE_ADDRS: 656 return Align(4); 657 default: 658 llvm_unreachable("unknown constpool entry kind"); 659 } 660 661 unsigned CPI = getCombinedIndex(CPEMI); 662 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 663 return MCP->getConstants()[CPI].getAlign(); 664 } 665 666 /// scanFunctionJumpTables - Do a scan of the function, building up 667 /// information about the sizes of each block and the locations of all 668 /// the jump tables. 669 void ARMConstantIslands::scanFunctionJumpTables() { 670 for (MachineBasicBlock &MBB : *MF) { 671 for (MachineInstr &I : MBB) 672 if (I.isBranch() && 673 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 674 T2JumpTables.push_back(&I); 675 } 676 } 677 678 /// initializeFunctionInfo - Do the initial scan of the function, building up 679 /// information about the sizes of each block, the location of all the water, 680 /// and finding all of the constant pool users. 681 void ARMConstantIslands:: 682 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 683 684 BBUtils->computeAllBlockSizes(); 685 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 686 // The known bits of the entry block offset are determined by the function 687 // alignment. 688 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 689 690 // Compute block offsets and known bits. 691 BBUtils->adjustBBOffsetsAfter(&MF->front()); 692 693 // Now go back through the instructions and build up our data structures. 694 for (MachineBasicBlock &MBB : *MF) { 695 // If this block doesn't fall through into the next MBB, then this is 696 // 'water' that a constant pool island could be placed. 697 if (!BBHasFallthrough(&MBB)) 698 WaterList.push_back(&MBB); 699 700 for (MachineInstr &I : MBB) { 701 if (I.isDebugInstr()) 702 continue; 703 704 unsigned Opc = I.getOpcode(); 705 if (I.isBranch()) { 706 bool isCond = false; 707 unsigned Bits = 0; 708 unsigned Scale = 1; 709 int UOpc = Opc; 710 switch (Opc) { 711 default: 712 continue; // Ignore other JT branches 713 case ARM::t2BR_JT: 714 case ARM::tBR_JTr: 715 T2JumpTables.push_back(&I); 716 continue; // Does not get an entry in ImmBranches 717 case ARM::Bcc: 718 isCond = true; 719 UOpc = ARM::B; 720 LLVM_FALLTHROUGH; 721 case ARM::B: 722 Bits = 24; 723 Scale = 4; 724 break; 725 case ARM::tBcc: 726 isCond = true; 727 UOpc = ARM::tB; 728 Bits = 8; 729 Scale = 2; 730 break; 731 case ARM::tB: 732 Bits = 11; 733 Scale = 2; 734 break; 735 case ARM::t2Bcc: 736 isCond = true; 737 UOpc = ARM::t2B; 738 Bits = 20; 739 Scale = 2; 740 break; 741 case ARM::t2B: 742 Bits = 24; 743 Scale = 2; 744 break; 745 } 746 747 // Record this immediate branch. 748 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 749 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 750 } 751 752 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 753 PushPopMIs.push_back(&I); 754 755 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 756 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 757 Opc == ARM::JUMPTABLE_TBH) 758 continue; 759 760 // Scan the instructions for constant pool operands. 761 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 762 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 763 // We found one. The addressing mode tells us the max displacement 764 // from the PC that this instruction permits. 765 766 // Basic size info comes from the TSFlags field. 767 unsigned Bits = 0; 768 unsigned Scale = 1; 769 bool NegOk = false; 770 bool IsSoImm = false; 771 772 switch (Opc) { 773 default: 774 llvm_unreachable("Unknown addressing mode for CP reference!"); 775 776 // Taking the address of a CP entry. 777 case ARM::LEApcrel: 778 case ARM::LEApcrelJT: { 779 // This takes a SoImm, which is 8 bit immediate rotated. We'll 780 // pretend the maximum offset is 255 * 4. Since each instruction 781 // 4 byte wide, this is always correct. We'll check for other 782 // displacements that fits in a SoImm as well. 783 Bits = 8; 784 NegOk = true; 785 IsSoImm = true; 786 unsigned CPI = I.getOperand(op).getIndex(); 787 MachineInstr *CPEMI = CPEMIs[CPI]; 788 const Align CPEAlign = getCPEAlign(CPEMI); 789 const unsigned LogCPEAlign = Log2(CPEAlign); 790 if (LogCPEAlign >= 2) 791 Scale = 4; 792 else 793 // For constants with less than 4-byte alignment, 794 // we'll pretend the maximum offset is 255 * 1. 795 Scale = 1; 796 } 797 break; 798 case ARM::t2LEApcrel: 799 case ARM::t2LEApcrelJT: 800 Bits = 12; 801 NegOk = true; 802 break; 803 case ARM::tLEApcrel: 804 case ARM::tLEApcrelJT: 805 Bits = 8; 806 Scale = 4; 807 break; 808 809 case ARM::LDRBi12: 810 case ARM::LDRi12: 811 case ARM::LDRcp: 812 case ARM::t2LDRpci: 813 case ARM::t2LDRHpci: 814 case ARM::t2LDRBpci: 815 Bits = 12; // +-offset_12 816 NegOk = true; 817 break; 818 819 case ARM::tLDRpci: 820 Bits = 8; 821 Scale = 4; // +(offset_8*4) 822 break; 823 824 case ARM::VLDRD: 825 case ARM::VLDRS: 826 Bits = 8; 827 Scale = 4; // +-(offset_8*4) 828 NegOk = true; 829 break; 830 case ARM::VLDRH: 831 Bits = 8; 832 Scale = 2; // +-(offset_8*2) 833 NegOk = true; 834 break; 835 } 836 837 // Remember that this is a user of a CP entry. 838 unsigned CPI = I.getOperand(op).getIndex(); 839 if (I.getOperand(op).isJTI()) { 840 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 841 CPI = JumpTableEntryIndices[CPI]; 842 } 843 844 MachineInstr *CPEMI = CPEMIs[CPI]; 845 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 846 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 847 848 // Increment corresponding CPEntry reference count. 849 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 850 assert(CPE && "Cannot find a corresponding CPEntry!"); 851 CPE->RefCount++; 852 853 // Instructions can only use one CP entry, don't bother scanning the 854 // rest of the operands. 855 break; 856 } 857 } 858 } 859 } 860 861 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 862 /// ID. 863 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 864 const MachineBasicBlock *RHS) { 865 return LHS->getNumber() < RHS->getNumber(); 866 } 867 868 /// updateForInsertedWaterBlock - When a block is newly inserted into the 869 /// machine function, it upsets all of the block numbers. Renumber the blocks 870 /// and update the arrays that parallel this numbering. 871 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 872 // Renumber the MBB's to keep them consecutive. 873 NewBB->getParent()->RenumberBlocks(NewBB); 874 875 // Insert an entry into BBInfo to align it properly with the (newly 876 // renumbered) block numbers. 877 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 878 879 // Next, update WaterList. Specifically, we need to add NewMBB as having 880 // available water after it. 881 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 882 WaterList.insert(IP, NewBB); 883 } 884 885 /// Split the basic block containing MI into two blocks, which are joined by 886 /// an unconditional branch. Update data structures and renumber blocks to 887 /// account for this change and returns the newly created block. 888 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 889 MachineBasicBlock *OrigBB = MI->getParent(); 890 891 // Collect liveness information at MI. 892 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 893 LRs.addLiveOuts(*OrigBB); 894 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 895 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 896 LRs.stepBackward(LiveMI); 897 898 // Create a new MBB for the code after the OrigBB. 899 MachineBasicBlock *NewBB = 900 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 901 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 902 MF->insert(MBBI, NewBB); 903 904 // Splice the instructions starting with MI over to NewBB. 905 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 906 907 // Add an unconditional branch from OrigBB to NewBB. 908 // Note the new unconditional branch is not being recorded. 909 // There doesn't seem to be meaningful DebugInfo available; this doesn't 910 // correspond to anything in the source. 911 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 912 if (!isThumb) 913 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 914 else 915 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 916 .addMBB(NewBB) 917 .add(predOps(ARMCC::AL)); 918 ++NumSplit; 919 920 // Update the CFG. All succs of OrigBB are now succs of NewBB. 921 NewBB->transferSuccessors(OrigBB); 922 923 // OrigBB branches to NewBB. 924 OrigBB->addSuccessor(NewBB); 925 926 // Update live-in information in the new block. 927 MachineRegisterInfo &MRI = MF->getRegInfo(); 928 for (MCPhysReg L : LRs) 929 if (!MRI.isReserved(L)) 930 NewBB->addLiveIn(L); 931 932 // Update internal data structures to account for the newly inserted MBB. 933 // This is almost the same as updateForInsertedWaterBlock, except that 934 // the Water goes after OrigBB, not NewBB. 935 MF->RenumberBlocks(NewBB); 936 937 // Insert an entry into BBInfo to align it properly with the (newly 938 // renumbered) block numbers. 939 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 940 941 // Next, update WaterList. Specifically, we need to add OrigMBB as having 942 // available water after it (but not if it's already there, which happens 943 // when splitting before a conditional branch that is followed by an 944 // unconditional branch - in that case we want to insert NewBB). 945 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 946 MachineBasicBlock* WaterBB = *IP; 947 if (WaterBB == OrigBB) 948 WaterList.insert(std::next(IP), NewBB); 949 else 950 WaterList.insert(IP, OrigBB); 951 NewWaterList.insert(OrigBB); 952 953 // Figure out how large the OrigBB is. As the first half of the original 954 // block, it cannot contain a tablejump. The size includes 955 // the new jump we added. (It should be possible to do this without 956 // recounting everything, but it's very confusing, and this is rarely 957 // executed.) 958 BBUtils->computeBlockSize(OrigBB); 959 960 // Figure out how large the NewMBB is. As the second half of the original 961 // block, it may contain a tablejump. 962 BBUtils->computeBlockSize(NewBB); 963 964 // All BBOffsets following these blocks must be modified. 965 BBUtils->adjustBBOffsetsAfter(OrigBB); 966 967 return NewBB; 968 } 969 970 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 971 /// displacement computation. Update U.KnownAlignment to match its current 972 /// basic block location. 973 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 974 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 975 976 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 977 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 978 unsigned KnownBits = BBI.internalKnownBits(); 979 980 // The value read from PC is offset from the actual instruction address. 981 UserOffset += (isThumb ? 4 : 8); 982 983 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 984 // Make sure U.getMaxDisp() returns a constrained range. 985 U.KnownAlignment = (KnownBits >= 2); 986 987 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 988 // purposes of the displacement computation; compensate for that here. 989 // For unknown alignments, getMaxDisp() constrains the range instead. 990 if (isThumb && U.KnownAlignment) 991 UserOffset &= ~3u; 992 993 return UserOffset; 994 } 995 996 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 997 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 998 /// constant pool entry). 999 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1000 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1001 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1002 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1003 unsigned TrialOffset, unsigned MaxDisp, 1004 bool NegativeOK, bool IsSoImm) { 1005 if (UserOffset <= TrialOffset) { 1006 // User before the Trial. 1007 if (TrialOffset - UserOffset <= MaxDisp) 1008 return true; 1009 // FIXME: Make use full range of soimm values. 1010 } else if (NegativeOK) { 1011 if (UserOffset - TrialOffset <= MaxDisp) 1012 return true; 1013 // FIXME: Make use full range of soimm values. 1014 } 1015 return false; 1016 } 1017 1018 /// isWaterInRange - Returns true if a CPE placed after the specified 1019 /// Water (a basic block) will be in range for the specific MI. 1020 /// 1021 /// Compute how much the function will grow by inserting a CPE after Water. 1022 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1023 MachineBasicBlock* Water, CPUser &U, 1024 unsigned &Growth) { 1025 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1026 const Align CPEAlign = getCPEAlign(U.CPEMI); 1027 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1028 unsigned NextBlockOffset; 1029 Align NextBlockAlignment; 1030 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1031 if (++NextBlock == MF->end()) { 1032 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1033 } else { 1034 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1035 NextBlockAlignment = NextBlock->getAlignment(); 1036 } 1037 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1038 unsigned CPEEnd = CPEOffset + Size; 1039 1040 // The CPE may be able to hide in the alignment padding before the next 1041 // block. It may also cause more padding to be required if it is more aligned 1042 // that the next block. 1043 if (CPEEnd > NextBlockOffset) { 1044 Growth = CPEEnd - NextBlockOffset; 1045 // Compute the padding that would go at the end of the CPE to align the next 1046 // block. 1047 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1048 1049 // If the CPE is to be inserted before the instruction, that will raise 1050 // the offset of the instruction. Also account for unknown alignment padding 1051 // in blocks between CPE and the user. 1052 if (CPEOffset < UserOffset) 1053 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1054 } else 1055 // CPE fits in existing padding. 1056 Growth = 0; 1057 1058 return isOffsetInRange(UserOffset, CPEOffset, U); 1059 } 1060 1061 /// isCPEntryInRange - Returns true if the distance between specific MI and 1062 /// specific ConstPool entry instruction can fit in MI's displacement field. 1063 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1064 MachineInstr *CPEMI, unsigned MaxDisp, 1065 bool NegOk, bool DoDump) { 1066 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1067 1068 if (DoDump) { 1069 LLVM_DEBUG({ 1070 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1071 unsigned Block = MI->getParent()->getNumber(); 1072 const BasicBlockInfo &BBI = BBInfo[Block]; 1073 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1074 << " max delta=" << MaxDisp 1075 << format(" insn address=%#x", UserOffset) << " in " 1076 << printMBBReference(*MI->getParent()) << ": " 1077 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1078 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1079 int(CPEOffset - UserOffset)); 1080 }); 1081 } 1082 1083 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1084 } 1085 1086 #ifndef NDEBUG 1087 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1088 /// unconditionally branches to its only successor. 1089 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1090 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1091 return false; 1092 1093 MachineBasicBlock *Succ = *MBB->succ_begin(); 1094 MachineBasicBlock *Pred = *MBB->pred_begin(); 1095 MachineInstr *PredMI = &Pred->back(); 1096 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1097 || PredMI->getOpcode() == ARM::t2B) 1098 return PredMI->getOperand(0).getMBB() == Succ; 1099 return false; 1100 } 1101 #endif // NDEBUG 1102 1103 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1104 /// and instruction CPEMI, and decrement its refcount. If the refcount 1105 /// becomes 0 remove the entry and instruction. Returns true if we removed 1106 /// the entry, false if we didn't. 1107 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1108 MachineInstr *CPEMI) { 1109 // Find the old entry. Eliminate it if it is no longer used. 1110 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1111 assert(CPE && "Unexpected!"); 1112 if (--CPE->RefCount == 0) { 1113 removeDeadCPEMI(CPEMI); 1114 CPE->CPEMI = nullptr; 1115 --NumCPEs; 1116 return true; 1117 } 1118 return false; 1119 } 1120 1121 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1122 if (CPEMI->getOperand(1).isCPI()) 1123 return CPEMI->getOperand(1).getIndex(); 1124 1125 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1126 } 1127 1128 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1129 /// if not, see if an in-range clone of the CPE is in range, and if so, 1130 /// change the data structures so the user references the clone. Returns: 1131 /// 0 = no existing entry found 1132 /// 1 = entry found, and there were no code insertions or deletions 1133 /// 2 = entry found, and there were code insertions or deletions 1134 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1135 MachineInstr *UserMI = U.MI; 1136 MachineInstr *CPEMI = U.CPEMI; 1137 1138 // Check to see if the CPE is already in-range. 1139 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1140 true)) { 1141 LLVM_DEBUG(dbgs() << "In range\n"); 1142 return 1; 1143 } 1144 1145 // No. Look for previously created clones of the CPE that are in range. 1146 unsigned CPI = getCombinedIndex(CPEMI); 1147 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1148 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1149 // We already tried this one 1150 if (CPEs[i].CPEMI == CPEMI) 1151 continue; 1152 // Removing CPEs can leave empty entries, skip 1153 if (CPEs[i].CPEMI == nullptr) 1154 continue; 1155 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1156 U.NegOk)) { 1157 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1158 << CPEs[i].CPI << "\n"); 1159 // Point the CPUser node to the replacement 1160 U.CPEMI = CPEs[i].CPEMI; 1161 // Change the CPI in the instruction operand to refer to the clone. 1162 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1163 if (UserMI->getOperand(j).isCPI()) { 1164 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1165 break; 1166 } 1167 // Adjust the refcount of the clone... 1168 CPEs[i].RefCount++; 1169 // ...and the original. If we didn't remove the old entry, none of the 1170 // addresses changed, so we don't need another pass. 1171 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1172 } 1173 } 1174 return 0; 1175 } 1176 1177 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1178 /// the specific unconditional branch instruction. 1179 static inline unsigned getUnconditionalBrDisp(int Opc) { 1180 switch (Opc) { 1181 case ARM::tB: 1182 return ((1<<10)-1)*2; 1183 case ARM::t2B: 1184 return ((1<<23)-1)*2; 1185 default: 1186 break; 1187 } 1188 1189 return ((1<<23)-1)*4; 1190 } 1191 1192 /// findAvailableWater - Look for an existing entry in the WaterList in which 1193 /// we can place the CPE referenced from U so it's within range of U's MI. 1194 /// Returns true if found, false if not. If it returns true, WaterIter 1195 /// is set to the WaterList entry. For Thumb, prefer water that will not 1196 /// introduce padding to water that will. To ensure that this pass 1197 /// terminates, the CPE location for a particular CPUser is only allowed to 1198 /// move to a lower address, so search backward from the end of the list and 1199 /// prefer the first water that is in range. 1200 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1201 water_iterator &WaterIter, 1202 bool CloserWater) { 1203 if (WaterList.empty()) 1204 return false; 1205 1206 unsigned BestGrowth = ~0u; 1207 // The nearest water without splitting the UserBB is right after it. 1208 // If the distance is still large (we have a big BB), then we need to split it 1209 // if we don't converge after certain iterations. This helps the following 1210 // situation to converge: 1211 // BB0: 1212 // Big BB 1213 // BB1: 1214 // Constant Pool 1215 // When a CP access is out of range, BB0 may be used as water. However, 1216 // inserting islands between BB0 and BB1 makes other accesses out of range. 1217 MachineBasicBlock *UserBB = U.MI->getParent(); 1218 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1219 const Align CPEAlign = getCPEAlign(U.CPEMI); 1220 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1221 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1222 return false; 1223 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1224 --IP) { 1225 MachineBasicBlock* WaterBB = *IP; 1226 // Check if water is in range and is either at a lower address than the 1227 // current "high water mark" or a new water block that was created since 1228 // the previous iteration by inserting an unconditional branch. In the 1229 // latter case, we want to allow resetting the high water mark back to 1230 // this new water since we haven't seen it before. Inserting branches 1231 // should be relatively uncommon and when it does happen, we want to be 1232 // sure to take advantage of it for all the CPEs near that block, so that 1233 // we don't insert more branches than necessary. 1234 // When CloserWater is true, we try to find the lowest address after (or 1235 // equal to) user MI's BB no matter of padding growth. 1236 unsigned Growth; 1237 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1238 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1239 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1240 Growth < BestGrowth) { 1241 // This is the least amount of required padding seen so far. 1242 BestGrowth = Growth; 1243 WaterIter = IP; 1244 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1245 << " Growth=" << Growth << '\n'); 1246 1247 if (CloserWater && WaterBB == U.MI->getParent()) 1248 return true; 1249 // Keep looking unless it is perfect and we're not looking for the lowest 1250 // possible address. 1251 if (!CloserWater && BestGrowth == 0) 1252 return true; 1253 } 1254 if (IP == B) 1255 break; 1256 } 1257 return BestGrowth != ~0u; 1258 } 1259 1260 /// createNewWater - No existing WaterList entry will work for 1261 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1262 /// block is used if in range, and the conditional branch munged so control 1263 /// flow is correct. Otherwise the block is split to create a hole with an 1264 /// unconditional branch around it. In either case NewMBB is set to a 1265 /// block following which the new island can be inserted (the WaterList 1266 /// is not adjusted). 1267 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1268 unsigned UserOffset, 1269 MachineBasicBlock *&NewMBB) { 1270 CPUser &U = CPUsers[CPUserIndex]; 1271 MachineInstr *UserMI = U.MI; 1272 MachineInstr *CPEMI = U.CPEMI; 1273 const Align CPEAlign = getCPEAlign(CPEMI); 1274 MachineBasicBlock *UserMBB = UserMI->getParent(); 1275 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1276 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1277 1278 // If the block does not end in an unconditional branch already, and if the 1279 // end of the block is within range, make new water there. (The addition 1280 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1281 // Thumb2, 2 on Thumb1. 1282 if (BBHasFallthrough(UserMBB)) { 1283 // Size of branch to insert. 1284 unsigned Delta = isThumb1 ? 2 : 4; 1285 // Compute the offset where the CPE will begin. 1286 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1287 1288 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1289 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1290 << format(", expected CPE offset %#x\n", CPEOffset)); 1291 NewMBB = &*++UserMBB->getIterator(); 1292 // Add an unconditional branch from UserMBB to fallthrough block. Record 1293 // it for branch lengthening; this new branch will not get out of range, 1294 // but if the preceding conditional branch is out of range, the targets 1295 // will be exchanged, and the altered branch may be out of range, so the 1296 // machinery has to know about it. 1297 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1298 if (!isThumb) 1299 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1300 else 1301 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1302 .addMBB(NewMBB) 1303 .add(predOps(ARMCC::AL)); 1304 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1305 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1306 MaxDisp, false, UncondBr)); 1307 BBUtils->computeBlockSize(UserMBB); 1308 BBUtils->adjustBBOffsetsAfter(UserMBB); 1309 return; 1310 } 1311 } 1312 1313 // What a big block. Find a place within the block to split it. This is a 1314 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1315 // entries are 4 bytes: if instruction I references island CPE, and 1316 // instruction I+1 references CPE', it will not work well to put CPE as far 1317 // forward as possible, since then CPE' cannot immediately follow it (that 1318 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1319 // need to create a new island. So, we make a first guess, then walk through 1320 // the instructions between the one currently being looked at and the 1321 // possible insertion point, and make sure any other instructions that 1322 // reference CPEs will be able to use the same island area; if not, we back 1323 // up the insertion point. 1324 1325 // Try to split the block so it's fully aligned. Compute the latest split 1326 // point where we can add a 4-byte branch instruction, and then align to 1327 // Align which is the largest possible alignment in the function. 1328 const Align Align = MF->getAlignment(); 1329 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1330 unsigned KnownBits = UserBBI.internalKnownBits(); 1331 unsigned UPad = UnknownPadding(Align, KnownBits); 1332 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1333 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1334 BaseInsertOffset)); 1335 1336 // The 4 in the following is for the unconditional branch we'll be inserting 1337 // (allows for long branch on Thumb1). Alignment of the island is handled 1338 // inside isOffsetInRange. 1339 BaseInsertOffset -= 4; 1340 1341 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1342 << " la=" << Log2(Align) << " kb=" << KnownBits 1343 << " up=" << UPad << '\n'); 1344 1345 // This could point off the end of the block if we've already got constant 1346 // pool entries following this block; only the last one is in the water list. 1347 // Back past any possible branches (allow for a conditional and a maximally 1348 // long unconditional). 1349 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1350 // Ensure BaseInsertOffset is larger than the offset of the instruction 1351 // following UserMI so that the loop which searches for the split point 1352 // iterates at least once. 1353 BaseInsertOffset = 1354 std::max(UserBBI.postOffset() - UPad - 8, 1355 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1356 // If the CP is referenced(ie, UserOffset) is in first four instructions 1357 // after IT, this recalculated BaseInsertOffset could be in the middle of 1358 // an IT block. If it is, change the BaseInsertOffset to just after the 1359 // IT block. This still make the CP Entry is in range becuase of the 1360 // following reasons. 1361 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1362 // U.getMaxDisp() - UPad). 1363 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1364 // bytes). 1365 // 3. All the relevant instructions support much larger Maximum 1366 // displacement. 1367 MachineBasicBlock::iterator I = UserMI; 1368 ++I; 1369 Register PredReg; 1370 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1371 I->getOpcode() != ARM::t2IT && 1372 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1373 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1374 BaseInsertOffset = 1375 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1376 assert(I != UserMBB->end() && "Fell off end of block"); 1377 } 1378 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1379 } 1380 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1381 CPEMI->getOperand(2).getImm(); 1382 MachineBasicBlock::iterator MI = UserMI; 1383 ++MI; 1384 unsigned CPUIndex = CPUserIndex+1; 1385 unsigned NumCPUsers = CPUsers.size(); 1386 MachineInstr *LastIT = nullptr; 1387 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1388 Offset < BaseInsertOffset; 1389 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1390 assert(MI != UserMBB->end() && "Fell off end of block"); 1391 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1392 CPUser &U = CPUsers[CPUIndex]; 1393 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1394 // Shift intertion point by one unit of alignment so it is within reach. 1395 BaseInsertOffset -= Align.value(); 1396 EndInsertOffset -= Align.value(); 1397 } 1398 // This is overly conservative, as we don't account for CPEMIs being 1399 // reused within the block, but it doesn't matter much. Also assume CPEs 1400 // are added in order with alignment padding. We may eventually be able 1401 // to pack the aligned CPEs better. 1402 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1403 CPUIndex++; 1404 } 1405 1406 // Remember the last IT instruction. 1407 if (MI->getOpcode() == ARM::t2IT) 1408 LastIT = &*MI; 1409 } 1410 1411 --MI; 1412 1413 // Avoid splitting an IT block. 1414 if (LastIT) { 1415 Register PredReg; 1416 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1417 if (CC != ARMCC::AL) 1418 MI = LastIT; 1419 } 1420 1421 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1422 // On Windows, this instruction pair is covered by one single 1423 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1424 // constant island is injected inbetween them, the relocation will clobber 1425 // the instruction and fail to update the MOVT instruction. 1426 // (These instructions are bundled up until right before the ConstantIslands 1427 // pass.) 1428 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1429 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1430 ARMII::MO_HI16) { 1431 --MI; 1432 assert(MI->getOpcode() == ARM::t2MOVi16 && 1433 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1434 ARMII::MO_LO16); 1435 } 1436 1437 // We really must not split an IT block. 1438 #ifndef NDEBUG 1439 Register PredReg; 1440 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1441 #endif 1442 NewMBB = splitBlockBeforeInstr(&*MI); 1443 } 1444 1445 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1446 /// is out-of-range. If so, pick up the constant pool value and move it some 1447 /// place in-range. Return true if we changed any addresses (thus must run 1448 /// another pass of branch lengthening), false otherwise. 1449 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1450 bool CloserWater) { 1451 CPUser &U = CPUsers[CPUserIndex]; 1452 MachineInstr *UserMI = U.MI; 1453 MachineInstr *CPEMI = U.CPEMI; 1454 unsigned CPI = getCombinedIndex(CPEMI); 1455 unsigned Size = CPEMI->getOperand(2).getImm(); 1456 // Compute this only once, it's expensive. 1457 unsigned UserOffset = getUserOffset(U); 1458 1459 // See if the current entry is within range, or there is a clone of it 1460 // in range. 1461 int result = findInRangeCPEntry(U, UserOffset); 1462 if (result==1) return false; 1463 else if (result==2) return true; 1464 1465 // No existing clone of this CPE is within range. 1466 // We will be generating a new clone. Get a UID for it. 1467 unsigned ID = AFI->createPICLabelUId(); 1468 1469 // Look for water where we can place this CPE. 1470 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1471 MachineBasicBlock *NewMBB; 1472 water_iterator IP; 1473 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1474 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1475 MachineBasicBlock *WaterBB = *IP; 1476 1477 // If the original WaterList entry was "new water" on this iteration, 1478 // propagate that to the new island. This is just keeping NewWaterList 1479 // updated to match the WaterList, which will be updated below. 1480 if (NewWaterList.erase(WaterBB)) 1481 NewWaterList.insert(NewIsland); 1482 1483 // The new CPE goes before the following block (NewMBB). 1484 NewMBB = &*++WaterBB->getIterator(); 1485 } else { 1486 // No water found. 1487 LLVM_DEBUG(dbgs() << "No water found\n"); 1488 createNewWater(CPUserIndex, UserOffset, NewMBB); 1489 1490 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1491 // called while handling branches so that the water will be seen on the 1492 // next iteration for constant pools, but in this context, we don't want 1493 // it. Check for this so it will be removed from the WaterList. 1494 // Also remove any entry from NewWaterList. 1495 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1496 IP = find(WaterList, WaterBB); 1497 if (IP != WaterList.end()) 1498 NewWaterList.erase(WaterBB); 1499 1500 // We are adding new water. Update NewWaterList. 1501 NewWaterList.insert(NewIsland); 1502 } 1503 // Always align the new block because CP entries can be smaller than 4 1504 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1505 // be an already aligned constant pool block. 1506 const Align Alignment = isThumb ? Align(2) : Align(4); 1507 if (NewMBB->getAlignment() < Alignment) 1508 NewMBB->setAlignment(Alignment); 1509 1510 // Remove the original WaterList entry; we want subsequent insertions in 1511 // this vicinity to go after the one we're about to insert. This 1512 // considerably reduces the number of times we have to move the same CPE 1513 // more than once and is also important to ensure the algorithm terminates. 1514 if (IP != WaterList.end()) 1515 WaterList.erase(IP); 1516 1517 // Okay, we know we can put an island before NewMBB now, do it! 1518 MF->insert(NewMBB->getIterator(), NewIsland); 1519 1520 // Update internal data structures to account for the newly inserted MBB. 1521 updateForInsertedWaterBlock(NewIsland); 1522 1523 // Now that we have an island to add the CPE to, clone the original CPE and 1524 // add it to the island. 1525 U.HighWaterMark = NewIsland; 1526 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1527 .addImm(ID) 1528 .add(CPEMI->getOperand(1)) 1529 .addImm(Size); 1530 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1531 ++NumCPEs; 1532 1533 // Decrement the old entry, and remove it if refcount becomes 0. 1534 decrementCPEReferenceCount(CPI, CPEMI); 1535 1536 // Mark the basic block as aligned as required by the const-pool entry. 1537 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1538 1539 // Increase the size of the island block to account for the new entry. 1540 BBUtils->adjustBBSize(NewIsland, Size); 1541 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1542 1543 // Finally, change the CPI in the instruction operand to be ID. 1544 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1545 if (UserMI->getOperand(i).isCPI()) { 1546 UserMI->getOperand(i).setIndex(ID); 1547 break; 1548 } 1549 1550 LLVM_DEBUG( 1551 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1552 << format(" offset=%#x\n", 1553 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1554 1555 return true; 1556 } 1557 1558 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1559 /// sizes and offsets of impacted basic blocks. 1560 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1561 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1562 unsigned Size = CPEMI->getOperand(2).getImm(); 1563 CPEMI->eraseFromParent(); 1564 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1565 BBUtils->adjustBBSize(CPEBB, -Size); 1566 // All succeeding offsets have the current size value added in, fix this. 1567 if (CPEBB->empty()) { 1568 BBInfo[CPEBB->getNumber()].Size = 0; 1569 1570 // This block no longer needs to be aligned. 1571 CPEBB->setAlignment(Align(1)); 1572 } else { 1573 // Entries are sorted by descending alignment, so realign from the front. 1574 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1575 } 1576 1577 BBUtils->adjustBBOffsetsAfter(CPEBB); 1578 // An island has only one predecessor BB and one successor BB. Check if 1579 // this BB's predecessor jumps directly to this BB's successor. This 1580 // shouldn't happen currently. 1581 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1582 // FIXME: remove the empty blocks after all the work is done? 1583 } 1584 1585 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1586 /// are zero. 1587 bool ARMConstantIslands::removeUnusedCPEntries() { 1588 unsigned MadeChange = false; 1589 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1590 std::vector<CPEntry> &CPEs = CPEntries[i]; 1591 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1592 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1593 removeDeadCPEMI(CPEs[j].CPEMI); 1594 CPEs[j].CPEMI = nullptr; 1595 MadeChange = true; 1596 } 1597 } 1598 } 1599 return MadeChange; 1600 } 1601 1602 1603 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1604 /// away to fit in its displacement field. 1605 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1606 MachineInstr *MI = Br.MI; 1607 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1608 1609 // Check to see if the DestBB is already in-range. 1610 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1611 return false; 1612 1613 if (!Br.isCond) 1614 return fixupUnconditionalBr(Br); 1615 return fixupConditionalBr(Br); 1616 } 1617 1618 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1619 /// too far away to fit in its displacement field. If the LR register has been 1620 /// spilled in the epilogue, then we can use BL to implement a far jump. 1621 /// Otherwise, add an intermediate branch instruction to a branch. 1622 bool 1623 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1624 MachineInstr *MI = Br.MI; 1625 MachineBasicBlock *MBB = MI->getParent(); 1626 if (!isThumb1) 1627 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1628 1629 if (!AFI->isLRSpilled()) 1630 report_fatal_error("underestimated function size"); 1631 1632 // Use BL to implement far jump. 1633 Br.MaxDisp = (1 << 21) * 2; 1634 MI->setDesc(TII->get(ARM::tBfar)); 1635 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1636 BBInfo[MBB->getNumber()].Size += 2; 1637 BBUtils->adjustBBOffsetsAfter(MBB); 1638 ++NumUBrFixed; 1639 1640 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1641 1642 return true; 1643 } 1644 1645 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1646 /// far away to fit in its displacement field. It is converted to an inverse 1647 /// conditional branch + an unconditional branch to the destination. 1648 bool 1649 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1650 MachineInstr *MI = Br.MI; 1651 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1652 1653 // Add an unconditional branch to the destination and invert the branch 1654 // condition to jump over it: 1655 // blt L1 1656 // => 1657 // bge L2 1658 // b L1 1659 // L2: 1660 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1661 CC = ARMCC::getOppositeCondition(CC); 1662 Register CCReg = MI->getOperand(2).getReg(); 1663 1664 // If the branch is at the end of its MBB and that has a fall-through block, 1665 // direct the updated conditional branch to the fall-through block. Otherwise, 1666 // split the MBB before the next instruction. 1667 MachineBasicBlock *MBB = MI->getParent(); 1668 MachineInstr *BMI = &MBB->back(); 1669 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1670 1671 ++NumCBrFixed; 1672 if (BMI != MI) { 1673 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1674 BMI->getOpcode() == Br.UncondBr) { 1675 // Last MI in the BB is an unconditional branch. Can we simply invert the 1676 // condition and swap destinations: 1677 // beq L1 1678 // b L2 1679 // => 1680 // bne L2 1681 // b L1 1682 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1683 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1684 LLVM_DEBUG( 1685 dbgs() << " Invert Bcc condition and swap its destination with " 1686 << *BMI); 1687 BMI->getOperand(0).setMBB(DestBB); 1688 MI->getOperand(0).setMBB(NewDest); 1689 MI->getOperand(1).setImm(CC); 1690 return true; 1691 } 1692 } 1693 } 1694 1695 if (NeedSplit) { 1696 splitBlockBeforeInstr(MI); 1697 // No need for the branch to the next block. We're adding an unconditional 1698 // branch to the destination. 1699 int delta = TII->getInstSizeInBytes(MBB->back()); 1700 BBUtils->adjustBBSize(MBB, -delta); 1701 MBB->back().eraseFromParent(); 1702 1703 // The conditional successor will be swapped between the BBs after this, so 1704 // update CFG. 1705 MBB->addSuccessor(DestBB); 1706 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1707 1708 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1709 } 1710 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1711 1712 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1713 << " also invert condition and change dest. to " 1714 << printMBBReference(*NextBB) << "\n"); 1715 1716 // Insert a new conditional branch and a new unconditional branch. 1717 // Also update the ImmBranch as well as adding a new entry for the new branch. 1718 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1719 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1720 Br.MI = &MBB->back(); 1721 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1722 if (isThumb) 1723 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1724 .addMBB(DestBB) 1725 .add(predOps(ARMCC::AL)); 1726 else 1727 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1728 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1729 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1730 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1731 1732 // Remove the old conditional branch. It may or may not still be in MBB. 1733 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1734 MI->eraseFromParent(); 1735 BBUtils->adjustBBOffsetsAfter(MBB); 1736 return true; 1737 } 1738 1739 bool ARMConstantIslands::optimizeThumb2Instructions() { 1740 bool MadeChange = false; 1741 1742 // Shrink ADR and LDR from constantpool. 1743 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1744 CPUser &U = CPUsers[i]; 1745 unsigned Opcode = U.MI->getOpcode(); 1746 unsigned NewOpc = 0; 1747 unsigned Scale = 1; 1748 unsigned Bits = 0; 1749 switch (Opcode) { 1750 default: break; 1751 case ARM::t2LEApcrel: 1752 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1753 NewOpc = ARM::tLEApcrel; 1754 Bits = 8; 1755 Scale = 4; 1756 } 1757 break; 1758 case ARM::t2LDRpci: 1759 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1760 NewOpc = ARM::tLDRpci; 1761 Bits = 8; 1762 Scale = 4; 1763 } 1764 break; 1765 } 1766 1767 if (!NewOpc) 1768 continue; 1769 1770 unsigned UserOffset = getUserOffset(U); 1771 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1772 1773 // Be conservative with inline asm. 1774 if (!U.KnownAlignment) 1775 MaxOffs -= 2; 1776 1777 // FIXME: Check if offset is multiple of scale if scale is not 4. 1778 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1779 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1780 U.MI->setDesc(TII->get(NewOpc)); 1781 MachineBasicBlock *MBB = U.MI->getParent(); 1782 BBUtils->adjustBBSize(MBB, -2); 1783 BBUtils->adjustBBOffsetsAfter(MBB); 1784 ++NumT2CPShrunk; 1785 MadeChange = true; 1786 } 1787 } 1788 1789 return MadeChange; 1790 } 1791 1792 1793 bool ARMConstantIslands::optimizeThumb2Branches() { 1794 1795 auto TryShrinkBranch = [this](ImmBranch &Br) { 1796 unsigned Opcode = Br.MI->getOpcode(); 1797 unsigned NewOpc = 0; 1798 unsigned Scale = 1; 1799 unsigned Bits = 0; 1800 switch (Opcode) { 1801 default: break; 1802 case ARM::t2B: 1803 NewOpc = ARM::tB; 1804 Bits = 11; 1805 Scale = 2; 1806 break; 1807 case ARM::t2Bcc: 1808 NewOpc = ARM::tBcc; 1809 Bits = 8; 1810 Scale = 2; 1811 break; 1812 } 1813 if (NewOpc) { 1814 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1815 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1816 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1817 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1818 Br.MI->setDesc(TII->get(NewOpc)); 1819 MachineBasicBlock *MBB = Br.MI->getParent(); 1820 BBUtils->adjustBBSize(MBB, -2); 1821 BBUtils->adjustBBOffsetsAfter(MBB); 1822 ++NumT2BrShrunk; 1823 return true; 1824 } 1825 } 1826 return false; 1827 }; 1828 1829 struct ImmCompare { 1830 MachineInstr* MI = nullptr; 1831 unsigned NewOpc = 0; 1832 }; 1833 1834 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1835 MachineBasicBlock *DestBB) { 1836 ImmCmp.MI = nullptr; 1837 ImmCmp.NewOpc = 0; 1838 1839 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1840 // so this transformation is not safe. 1841 if (!Br.MI->killsRegister(ARM::CPSR)) 1842 return false; 1843 1844 Register PredReg; 1845 unsigned NewOpc = 0; 1846 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1847 if (Pred == ARMCC::EQ) 1848 NewOpc = ARM::tCBZ; 1849 else if (Pred == ARMCC::NE) 1850 NewOpc = ARM::tCBNZ; 1851 else 1852 return false; 1853 1854 // Check if the distance is within 126. Subtract starting offset by 2 1855 // because the cmp will be eliminated. 1856 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1857 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1858 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1859 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1860 return false; 1861 1862 // Search backwards to find a tCMPi8 1863 auto *TRI = STI->getRegisterInfo(); 1864 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1865 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1866 return false; 1867 1868 ImmCmp.MI = CmpMI; 1869 ImmCmp.NewOpc = NewOpc; 1870 return true; 1871 }; 1872 1873 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1874 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1875 STI->hasMinSize()) 1876 return false; 1877 1878 MachineBasicBlock *MBB = Br.MI->getParent(); 1879 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1880 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1881 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1882 return false; 1883 1884 if (!DT->dominates(DestBB, MBB)) 1885 return false; 1886 1887 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1888 // target of Br. So now we need to reverse the condition. 1889 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1890 1891 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1892 TII->get(ARM::t2LE)); 1893 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1894 MIB.add(Br.MI->getOperand(0)); 1895 Br.MI->eraseFromParent(); 1896 Br.MI = MIB; 1897 ++NumLEInserted; 1898 return true; 1899 }; 1900 1901 bool MadeChange = false; 1902 1903 // The order in which branches appear in ImmBranches is approximately their 1904 // order within the function body. By visiting later branches first, we reduce 1905 // the distance between earlier forward branches and their targets, making it 1906 // more likely that the cbn?z optimization, which can only apply to forward 1907 // branches, will succeed. 1908 for (ImmBranch &Br : reverse(ImmBranches)) { 1909 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1910 MachineBasicBlock *MBB = Br.MI->getParent(); 1911 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 1912 MBB->getFallThrough() : 1913 MBB->back().getOperand(0).getMBB(); 1914 1915 ImmCompare Cmp; 1916 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 1917 DestBB = ExitBB; 1918 MadeChange = true; 1919 } else { 1920 FindCmpForCBZ(Br, Cmp, DestBB); 1921 MadeChange |= TryShrinkBranch(Br); 1922 } 1923 1924 unsigned Opcode = Br.MI->getOpcode(); 1925 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 1926 continue; 1927 1928 Register Reg = Cmp.MI->getOperand(0).getReg(); 1929 1930 // Check for Kill flags on Reg. If they are present remove them and set kill 1931 // on the new CBZ. 1932 auto *TRI = STI->getRegisterInfo(); 1933 MachineBasicBlock::iterator KillMI = Br.MI; 1934 bool RegKilled = false; 1935 do { 1936 --KillMI; 1937 if (KillMI->killsRegister(Reg, TRI)) { 1938 KillMI->clearRegisterKills(Reg, TRI); 1939 RegKilled = true; 1940 break; 1941 } 1942 } while (KillMI != Cmp.MI); 1943 1944 // Create the new CBZ/CBNZ 1945 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 1946 MachineInstr *NewBR = 1947 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 1948 .addReg(Reg, getKillRegState(RegKilled)) 1949 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1950 1951 Cmp.MI->eraseFromParent(); 1952 1953 if (Br.MI->getOpcode() == ARM::tBcc) { 1954 Br.MI->eraseFromParent(); 1955 Br.MI = NewBR; 1956 BBUtils->adjustBBSize(MBB, -2); 1957 } else if (MBB->back().getOpcode() != ARM::t2LE) { 1958 // An LE has been generated, but it's not the terminator - that is an 1959 // unconditional branch. However, the logic has now been reversed with the 1960 // CBN?Z being the conditional branch and the LE being the unconditional 1961 // branch. So this means we can remove the redundant unconditional branch 1962 // at the end of the block. 1963 MachineInstr *LastMI = &MBB->back(); 1964 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 1965 LastMI->eraseFromParent(); 1966 } 1967 BBUtils->adjustBBOffsetsAfter(MBB); 1968 ++NumCBZ; 1969 MadeChange = true; 1970 } 1971 1972 return MadeChange; 1973 } 1974 1975 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1976 unsigned BaseReg) { 1977 if (I.getOpcode() != ARM::t2ADDrs) 1978 return false; 1979 1980 if (I.getOperand(0).getReg() != EntryReg) 1981 return false; 1982 1983 if (I.getOperand(1).getReg() != BaseReg) 1984 return false; 1985 1986 // FIXME: what about CC and IdxReg? 1987 return true; 1988 } 1989 1990 /// While trying to form a TBB/TBH instruction, we may (if the table 1991 /// doesn't immediately follow the BR_JT) need access to the start of the 1992 /// jump-table. We know one instruction that produces such a register; this 1993 /// function works out whether that definition can be preserved to the BR_JT, 1994 /// possibly by removing an intervening addition (which is usually needed to 1995 /// calculate the actual entry to jump to). 1996 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1997 MachineInstr *LEAMI, 1998 unsigned &DeadSize, 1999 bool &CanDeleteLEA, 2000 bool &BaseRegKill) { 2001 if (JumpMI->getParent() != LEAMI->getParent()) 2002 return false; 2003 2004 // Now we hope that we have at least these instructions in the basic block: 2005 // BaseReg = t2LEA ... 2006 // [...] 2007 // EntryReg = t2ADDrs BaseReg, ... 2008 // [...] 2009 // t2BR_JT EntryReg 2010 // 2011 // We have to be very conservative about what we recognise here though. The 2012 // main perturbing factors to watch out for are: 2013 // + Spills at any point in the chain: not direct problems but we would 2014 // expect a blocking Def of the spilled register so in practice what we 2015 // can do is limited. 2016 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2017 // of BaseReg, but only if the t2ADDrs can be removed. 2018 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2019 // the wild, but we should be careful. 2020 Register EntryReg = JumpMI->getOperand(0).getReg(); 2021 Register BaseReg = LEAMI->getOperand(0).getReg(); 2022 2023 CanDeleteLEA = true; 2024 BaseRegKill = false; 2025 MachineInstr *RemovableAdd = nullptr; 2026 MachineBasicBlock::iterator I(LEAMI); 2027 for (++I; &*I != JumpMI; ++I) { 2028 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2029 RemovableAdd = &*I; 2030 break; 2031 } 2032 2033 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2034 const MachineOperand &MO = I->getOperand(K); 2035 if (!MO.isReg() || !MO.getReg()) 2036 continue; 2037 if (MO.isDef() && MO.getReg() == BaseReg) 2038 return false; 2039 if (MO.isUse() && MO.getReg() == BaseReg) { 2040 BaseRegKill = BaseRegKill || MO.isKill(); 2041 CanDeleteLEA = false; 2042 } 2043 } 2044 } 2045 2046 if (!RemovableAdd) 2047 return true; 2048 2049 // Check the add really is removable, and that nothing else in the block 2050 // clobbers BaseReg. 2051 for (++I; &*I != JumpMI; ++I) { 2052 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2053 const MachineOperand &MO = I->getOperand(K); 2054 if (!MO.isReg() || !MO.getReg()) 2055 continue; 2056 if (MO.isDef() && MO.getReg() == BaseReg) 2057 return false; 2058 if (MO.isUse() && MO.getReg() == EntryReg) 2059 RemovableAdd = nullptr; 2060 } 2061 } 2062 2063 if (RemovableAdd) { 2064 RemovableAdd->eraseFromParent(); 2065 DeadSize += isThumb2 ? 4 : 2; 2066 } else if (BaseReg == EntryReg) { 2067 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2068 // preserve it. 2069 return false; 2070 } 2071 2072 // We reached the end of the block without seeing another definition of 2073 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2074 // used in the TBB/TBH if necessary. 2075 return true; 2076 } 2077 2078 /// Returns whether CPEMI is the first instruction in the block 2079 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2080 /// we can switch the first register to PC and usually remove the address 2081 /// calculation that preceded it. 2082 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2083 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2084 MachineFunction *MF = MBB->getParent(); 2085 ++MBB; 2086 2087 return MBB != MF->end() && MBB->begin() != MBB->end() && 2088 &*MBB->begin() == CPEMI; 2089 } 2090 2091 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2092 MachineInstr *JumpMI, 2093 unsigned &DeadSize) { 2094 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2095 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2096 // and is not clobbered / used. 2097 MachineInstr *RemovableAdd = nullptr; 2098 Register EntryReg = JumpMI->getOperand(0).getReg(); 2099 2100 // Find the last ADD to set EntryReg 2101 MachineBasicBlock::iterator I(LEAMI); 2102 for (++I; &*I != JumpMI; ++I) { 2103 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2104 RemovableAdd = &*I; 2105 } 2106 2107 if (!RemovableAdd) 2108 return; 2109 2110 // Ensure EntryReg is not clobbered or used. 2111 MachineBasicBlock::iterator J(RemovableAdd); 2112 for (++J; &*J != JumpMI; ++J) { 2113 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2114 const MachineOperand &MO = J->getOperand(K); 2115 if (!MO.isReg() || !MO.getReg()) 2116 continue; 2117 if (MO.isDef() && MO.getReg() == EntryReg) 2118 return; 2119 if (MO.isUse() && MO.getReg() == EntryReg) 2120 return; 2121 } 2122 } 2123 2124 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2125 RemovableAdd->eraseFromParent(); 2126 DeadSize += 4; 2127 } 2128 2129 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2130 /// jumptables when it's possible. 2131 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2132 bool MadeChange = false; 2133 2134 // FIXME: After the tables are shrunk, can we get rid some of the 2135 // constantpool tables? 2136 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2137 if (!MJTI) return false; 2138 2139 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2140 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2141 MachineInstr *MI = T2JumpTables[i]; 2142 const MCInstrDesc &MCID = MI->getDesc(); 2143 unsigned NumOps = MCID.getNumOperands(); 2144 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2145 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2146 unsigned JTI = JTOP.getIndex(); 2147 assert(JTI < JT.size()); 2148 2149 bool ByteOk = true; 2150 bool HalfWordOk = true; 2151 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2152 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2153 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2154 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2155 MachineBasicBlock *MBB = JTBBs[j]; 2156 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2157 // Negative offset is not ok. FIXME: We should change BB layout to make 2158 // sure all the branches are forward. 2159 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2160 ByteOk = false; 2161 unsigned TBHLimit = ((1<<16)-1)*2; 2162 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2163 HalfWordOk = false; 2164 if (!ByteOk && !HalfWordOk) 2165 break; 2166 } 2167 2168 if (!ByteOk && !HalfWordOk) 2169 continue; 2170 2171 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2172 MachineBasicBlock *MBB = MI->getParent(); 2173 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2174 continue; 2175 2176 unsigned DeadSize = 0; 2177 bool CanDeleteLEA = false; 2178 bool BaseRegKill = false; 2179 2180 unsigned IdxReg = ~0U; 2181 bool IdxRegKill = true; 2182 if (isThumb2) { 2183 IdxReg = MI->getOperand(1).getReg(); 2184 IdxRegKill = MI->getOperand(1).isKill(); 2185 2186 bool PreservedBaseReg = 2187 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2188 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2189 continue; 2190 } else { 2191 // We're in thumb-1 mode, so we must have something like: 2192 // %idx = tLSLri %idx, 2 2193 // %base = tLEApcrelJT 2194 // %t = tLDRr %base, %idx 2195 Register BaseReg = User.MI->getOperand(0).getReg(); 2196 2197 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2198 continue; 2199 MachineInstr *Shift = User.MI->getPrevNode(); 2200 if (Shift->getOpcode() != ARM::tLSLri || 2201 Shift->getOperand(3).getImm() != 2 || 2202 !Shift->getOperand(2).isKill()) 2203 continue; 2204 IdxReg = Shift->getOperand(2).getReg(); 2205 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2206 2207 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2208 // the range is checked later, but the LEA might still clobber it and not 2209 // actually get removed. 2210 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2211 continue; 2212 2213 MachineInstr *Load = User.MI->getNextNode(); 2214 if (Load->getOpcode() != ARM::tLDRr) 2215 continue; 2216 if (Load->getOperand(1).getReg() != BaseReg || 2217 Load->getOperand(2).getReg() != ShiftedIdxReg || 2218 !Load->getOperand(2).isKill()) 2219 continue; 2220 2221 // If we're in PIC mode, there should be another ADD following. 2222 auto *TRI = STI->getRegisterInfo(); 2223 2224 // %base cannot be redefined after the load as it will appear before 2225 // TBB/TBH like: 2226 // %base = 2227 // %base = 2228 // tBB %base, %idx 2229 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2230 continue; 2231 2232 if (isPositionIndependentOrROPI) { 2233 MachineInstr *Add = Load->getNextNode(); 2234 if (Add->getOpcode() != ARM::tADDrr || 2235 Add->getOperand(2).getReg() != BaseReg || 2236 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2237 !Add->getOperand(3).isKill()) 2238 continue; 2239 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2240 continue; 2241 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2242 // IdxReg gets redefined in the middle of the sequence. 2243 continue; 2244 Add->eraseFromParent(); 2245 DeadSize += 2; 2246 } else { 2247 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2248 continue; 2249 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2250 // IdxReg gets redefined in the middle of the sequence. 2251 continue; 2252 } 2253 2254 // Now safe to delete the load and lsl. The LEA will be removed later. 2255 CanDeleteLEA = true; 2256 Shift->eraseFromParent(); 2257 Load->eraseFromParent(); 2258 DeadSize += 4; 2259 } 2260 2261 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2262 MachineInstr *CPEMI = User.CPEMI; 2263 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2264 if (!isThumb2) 2265 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2266 2267 MachineBasicBlock::iterator MI_JT = MI; 2268 MachineInstr *NewJTMI = 2269 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2270 .addReg(User.MI->getOperand(0).getReg(), 2271 getKillRegState(BaseRegKill)) 2272 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2273 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2274 .addImm(CPEMI->getOperand(0).getImm()); 2275 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2276 2277 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2278 CPEMI->setDesc(TII->get(JTOpc)); 2279 2280 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2281 NewJTMI->getOperand(0).setReg(ARM::PC); 2282 NewJTMI->getOperand(0).setIsKill(false); 2283 2284 if (CanDeleteLEA) { 2285 if (isThumb2) 2286 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2287 2288 User.MI->eraseFromParent(); 2289 DeadSize += isThumb2 ? 4 : 2; 2290 2291 // The LEA was eliminated, the TBB instruction becomes the only new user 2292 // of the jump table. 2293 User.MI = NewJTMI; 2294 User.MaxDisp = 4; 2295 User.NegOk = false; 2296 User.IsSoImm = false; 2297 User.KnownAlignment = false; 2298 } else { 2299 // The LEA couldn't be eliminated, so we must add another CPUser to 2300 // record the TBB or TBH use. 2301 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2302 auto &CPEs = CPEntries[CPEntryIdx]; 2303 auto Entry = 2304 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2305 ++Entry->RefCount; 2306 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2307 } 2308 } 2309 2310 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2311 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2312 MI->eraseFromParent(); 2313 2314 int Delta = OrigSize - NewSize + DeadSize; 2315 BBInfo[MBB->getNumber()].Size -= Delta; 2316 BBUtils->adjustBBOffsetsAfter(MBB); 2317 2318 ++NumTBs; 2319 MadeChange = true; 2320 } 2321 2322 return MadeChange; 2323 } 2324 2325 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2326 /// jump tables always branch forwards, since that's what tbb and tbh need. 2327 bool ARMConstantIslands::reorderThumb2JumpTables() { 2328 bool MadeChange = false; 2329 2330 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2331 if (!MJTI) return false; 2332 2333 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2334 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2335 MachineInstr *MI = T2JumpTables[i]; 2336 const MCInstrDesc &MCID = MI->getDesc(); 2337 unsigned NumOps = MCID.getNumOperands(); 2338 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2339 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2340 unsigned JTI = JTOP.getIndex(); 2341 assert(JTI < JT.size()); 2342 2343 // We prefer if target blocks for the jump table come after the jump 2344 // instruction so we can use TB[BH]. Loop through the target blocks 2345 // and try to adjust them such that that's true. 2346 int JTNumber = MI->getParent()->getNumber(); 2347 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2348 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2349 MachineBasicBlock *MBB = JTBBs[j]; 2350 int DTNumber = MBB->getNumber(); 2351 2352 if (DTNumber < JTNumber) { 2353 // The destination precedes the switch. Try to move the block forward 2354 // so we have a positive offset. 2355 MachineBasicBlock *NewBB = 2356 adjustJTTargetBlockForward(MBB, MI->getParent()); 2357 if (NewBB) 2358 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2359 MadeChange = true; 2360 } 2361 } 2362 } 2363 2364 return MadeChange; 2365 } 2366 2367 MachineBasicBlock *ARMConstantIslands:: 2368 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2369 // If the destination block is terminated by an unconditional branch, 2370 // try to move it; otherwise, create a new block following the jump 2371 // table that branches back to the actual target. This is a very simple 2372 // heuristic. FIXME: We can definitely improve it. 2373 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2374 SmallVector<MachineOperand, 4> Cond; 2375 SmallVector<MachineOperand, 4> CondPrior; 2376 MachineFunction::iterator BBi = BB->getIterator(); 2377 MachineFunction::iterator OldPrior = std::prev(BBi); 2378 MachineFunction::iterator OldNext = std::next(BBi); 2379 2380 // If the block terminator isn't analyzable, don't try to move the block 2381 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2382 2383 // If the block ends in an unconditional branch, move it. The prior block 2384 // has to have an analyzable terminator for us to move this one. Be paranoid 2385 // and make sure we're not trying to move the entry block of the function. 2386 if (!B && Cond.empty() && BB != &MF->front() && 2387 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2388 BB->moveAfter(JTBB); 2389 OldPrior->updateTerminator(BB); 2390 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr); 2391 // Update numbering to account for the block being moved. 2392 MF->RenumberBlocks(); 2393 ++NumJTMoved; 2394 return nullptr; 2395 } 2396 2397 // Create a new MBB for the code after the jump BB. 2398 MachineBasicBlock *NewBB = 2399 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2400 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2401 MF->insert(MBBI, NewBB); 2402 2403 // Copy live-in information to new block. 2404 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2405 NewBB->addLiveIn(RegMaskPair); 2406 2407 // Add an unconditional branch from NewBB to BB. 2408 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2409 // correspond directly to anything in the source. 2410 if (isThumb2) 2411 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2412 .addMBB(BB) 2413 .add(predOps(ARMCC::AL)); 2414 else 2415 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2416 .addMBB(BB) 2417 .add(predOps(ARMCC::AL)); 2418 2419 // Update internal data structures to account for the newly inserted MBB. 2420 MF->RenumberBlocks(NewBB); 2421 2422 // Update the CFG. 2423 NewBB->addSuccessor(BB); 2424 JTBB->replaceSuccessor(BB, NewBB); 2425 2426 ++NumJTInserted; 2427 return NewBB; 2428 } 2429 2430 /// createARMConstantIslandPass - returns an instance of the constpool 2431 /// island pass. 2432 FunctionPass *llvm::createARMConstantIslandPass() { 2433 return new ARMConstantIslands(); 2434 } 2435 2436 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2437 false, false) 2438