1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMBasicBlockInfo.h" 19 #include "ARMMachineFunctionInfo.h" 20 #include "ARMSubtarget.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Thumb2InstrInfo.h" 23 #include "Utils/ARMBaseInfo.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/MC/MCInstrDesc.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/Format.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "arm-cp-islands" 60 61 #define ARM_CP_ISLANDS_OPT_NAME \ 62 "ARM constant island placement and branch shortening pass" 63 STATISTIC(NumCPEs, "Number of constpool entries"); 64 STATISTIC(NumSplit, "Number of uncond branches inserted"); 65 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 66 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 67 STATISTIC(NumTBs, "Number of table branches generated"); 68 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 69 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 70 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 71 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 72 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 73 74 static cl::opt<bool> 75 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 76 cl::desc("Adjust basic block layout to better use TB[BH]")); 77 78 static cl::opt<unsigned> 79 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 80 cl::desc("The max number of iteration for converge")); 81 82 static cl::opt<bool> SynthesizeThumb1TBB( 83 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 84 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 85 "equivalent to the TBB/TBH instructions")); 86 87 namespace { 88 89 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 90 /// requires constant pool entries to be scattered among the instructions 91 /// inside a function. To do this, it completely ignores the normal LLVM 92 /// constant pool; instead, it places constants wherever it feels like with 93 /// special instructions. 94 /// 95 /// The terminology used in this pass includes: 96 /// Islands - Clumps of constants placed in the function. 97 /// Water - Potential places where an island could be formed. 98 /// CPE - A constant pool entry that has been placed somewhere, which 99 /// tracks a list of users. 100 class ARMConstantIslands : public MachineFunctionPass { 101 std::vector<BasicBlockInfo> BBInfo; 102 103 /// WaterList - A sorted list of basic blocks where islands could be placed 104 /// (i.e. blocks that don't fall through to the following block, due 105 /// to a return, unreachable, or unconditional branch). 106 std::vector<MachineBasicBlock*> WaterList; 107 108 /// NewWaterList - The subset of WaterList that was created since the 109 /// previous iteration by inserting unconditional branches. 110 SmallSet<MachineBasicBlock*, 4> NewWaterList; 111 112 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 113 114 /// CPUser - One user of a constant pool, keeping the machine instruction 115 /// pointer, the constant pool being referenced, and the max displacement 116 /// allowed from the instruction to the CP. The HighWaterMark records the 117 /// highest basic block where a new CPEntry can be placed. To ensure this 118 /// pass terminates, the CP entries are initially placed at the end of the 119 /// function and then move monotonically to lower addresses. The 120 /// exception to this rule is when the current CP entry for a particular 121 /// CPUser is out of range, but there is another CP entry for the same 122 /// constant value in range. We want to use the existing in-range CP 123 /// entry, but if it later moves out of range, the search for new water 124 /// should resume where it left off. The HighWaterMark is used to record 125 /// that point. 126 struct CPUser { 127 MachineInstr *MI; 128 MachineInstr *CPEMI; 129 MachineBasicBlock *HighWaterMark; 130 unsigned MaxDisp; 131 bool NegOk; 132 bool IsSoImm; 133 bool KnownAlignment = false; 134 135 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 136 bool neg, bool soimm) 137 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 138 HighWaterMark = CPEMI->getParent(); 139 } 140 141 /// getMaxDisp - Returns the maximum displacement supported by MI. 142 /// Correct for unknown alignment. 143 /// Conservatively subtract 2 bytes to handle weird alignment effects. 144 unsigned getMaxDisp() const { 145 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 146 } 147 }; 148 149 /// CPUsers - Keep track of all of the machine instructions that use various 150 /// constant pools and their max displacement. 151 std::vector<CPUser> CPUsers; 152 153 /// CPEntry - One per constant pool entry, keeping the machine instruction 154 /// pointer, the constpool index, and the number of CPUser's which 155 /// reference this entry. 156 struct CPEntry { 157 MachineInstr *CPEMI; 158 unsigned CPI; 159 unsigned RefCount; 160 161 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 162 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 163 }; 164 165 /// CPEntries - Keep track of all of the constant pool entry machine 166 /// instructions. For each original constpool index (i.e. those that existed 167 /// upon entry to this pass), it keeps a vector of entries. Original 168 /// elements are cloned as we go along; the clones are put in the vector of 169 /// the original element, but have distinct CPIs. 170 /// 171 /// The first half of CPEntries contains generic constants, the second half 172 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 173 /// which vector it will be in here. 174 std::vector<std::vector<CPEntry>> CPEntries; 175 176 /// Maps a JT index to the offset in CPEntries containing copies of that 177 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 178 DenseMap<int, int> JumpTableEntryIndices; 179 180 /// Maps a JT index to the LEA that actually uses the index to calculate its 181 /// base address. 182 DenseMap<int, int> JumpTableUserIndices; 183 184 /// ImmBranch - One per immediate branch, keeping the machine instruction 185 /// pointer, conditional or unconditional, the max displacement, 186 /// and (if isCond is true) the corresponding unconditional branch 187 /// opcode. 188 struct ImmBranch { 189 MachineInstr *MI; 190 unsigned MaxDisp : 31; 191 bool isCond : 1; 192 unsigned UncondBr; 193 194 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 195 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 196 }; 197 198 /// ImmBranches - Keep track of all the immediate branch instructions. 199 std::vector<ImmBranch> ImmBranches; 200 201 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 202 SmallVector<MachineInstr*, 4> PushPopMIs; 203 204 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 205 SmallVector<MachineInstr*, 4> T2JumpTables; 206 207 /// HasFarJump - True if any far jump instruction has been emitted during 208 /// the branch fix up pass. 209 bool HasFarJump; 210 211 MachineFunction *MF; 212 MachineConstantPool *MCP; 213 const ARMBaseInstrInfo *TII; 214 const ARMSubtarget *STI; 215 ARMFunctionInfo *AFI; 216 bool isThumb; 217 bool isThumb1; 218 bool isThumb2; 219 bool isPositionIndependentOrROPI; 220 221 public: 222 static char ID; 223 224 ARMConstantIslands() : MachineFunctionPass(ID) {} 225 226 bool runOnMachineFunction(MachineFunction &MF) override; 227 228 MachineFunctionProperties getRequiredProperties() const override { 229 return MachineFunctionProperties().set( 230 MachineFunctionProperties::Property::NoVRegs); 231 } 232 233 StringRef getPassName() const override { 234 return ARM_CP_ISLANDS_OPT_NAME; 235 } 236 237 private: 238 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 239 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 240 bool BBHasFallthrough(MachineBasicBlock *MBB); 241 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 242 unsigned getCPELogAlign(const MachineInstr *CPEMI); 243 void scanFunctionJumpTables(); 244 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 245 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 246 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 247 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 248 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 249 unsigned getCombinedIndex(const MachineInstr *CPEMI); 250 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 251 bool findAvailableWater(CPUser&U, unsigned UserOffset, 252 water_iterator &WaterIter, bool CloserWater); 253 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 254 MachineBasicBlock *&NewMBB); 255 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 256 void removeDeadCPEMI(MachineInstr *CPEMI); 257 bool removeUnusedCPEntries(); 258 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 259 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 260 bool DoDump = false); 261 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 262 CPUser &U, unsigned &Growth); 263 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 264 bool fixupImmediateBr(ImmBranch &Br); 265 bool fixupConditionalBr(ImmBranch &Br); 266 bool fixupUnconditionalBr(ImmBranch &Br); 267 bool undoLRSpillRestore(); 268 bool optimizeThumb2Instructions(); 269 bool optimizeThumb2Branches(); 270 bool reorderThumb2JumpTables(); 271 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 272 unsigned &DeadSize, bool &CanDeleteLEA, 273 bool &BaseRegKill); 274 bool optimizeThumb2JumpTables(); 275 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 276 MachineBasicBlock *JTBB); 277 278 unsigned getOffsetOf(MachineInstr *MI) const; 279 unsigned getUserOffset(CPUser&) const; 280 void dumpBBs(); 281 void verify(); 282 283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 284 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 286 const CPUser &U) { 287 return isOffsetInRange(UserOffset, TrialOffset, 288 U.getMaxDisp(), U.NegOk, U.IsSoImm); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char ARMConstantIslands::ID = 0; 295 296 /// verify - check BBOffsets, BBSizes, alignment of islands 297 void ARMConstantIslands::verify() { 298 #ifndef NDEBUG 299 assert(std::is_sorted(MF->begin(), MF->end(), 300 [this](const MachineBasicBlock &LHS, 301 const MachineBasicBlock &RHS) { 302 return BBInfo[LHS.getNumber()].postOffset() < 303 BBInfo[RHS.getNumber()].postOffset(); 304 })); 305 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 306 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 307 CPUser &U = CPUsers[i]; 308 unsigned UserOffset = getUserOffset(U); 309 // Verify offset using the real max displacement without the safety 310 // adjustment. 311 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 312 /* DoDump = */ true)) { 313 DEBUG(dbgs() << "OK\n"); 314 continue; 315 } 316 DEBUG(dbgs() << "Out of range.\n"); 317 dumpBBs(); 318 DEBUG(MF->dump()); 319 llvm_unreachable("Constant pool entry out of range!"); 320 } 321 #endif 322 } 323 324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 325 /// print block size and offset information - debugging 326 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 327 DEBUG({ 328 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 329 const BasicBlockInfo &BBI = BBInfo[J]; 330 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 331 << " kb=" << unsigned(BBI.KnownBits) 332 << " ua=" << unsigned(BBI.Unalign) 333 << " pa=" << unsigned(BBI.PostAlign) 334 << format(" size=%#x\n", BBInfo[J].Size); 335 } 336 }); 337 } 338 #endif 339 340 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 341 MF = &mf; 342 MCP = mf.getConstantPool(); 343 344 DEBUG(dbgs() << "***** ARMConstantIslands: " 345 << MCP->getConstants().size() << " CP entries, aligned to " 346 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 347 348 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 349 TII = STI->getInstrInfo(); 350 isPositionIndependentOrROPI = 351 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 352 AFI = MF->getInfo<ARMFunctionInfo>(); 353 354 isThumb = AFI->isThumbFunction(); 355 isThumb1 = AFI->isThumb1OnlyFunction(); 356 isThumb2 = AFI->isThumb2Function(); 357 358 HasFarJump = false; 359 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 360 361 // This pass invalidates liveness information when it splits basic blocks. 362 MF->getRegInfo().invalidateLiveness(); 363 364 // Renumber all of the machine basic blocks in the function, guaranteeing that 365 // the numbers agree with the position of the block in the function. 366 MF->RenumberBlocks(); 367 368 // Try to reorder and otherwise adjust the block layout to make good use 369 // of the TB[BH] instructions. 370 bool MadeChange = false; 371 if (GenerateTBB && AdjustJumpTableBlocks) { 372 scanFunctionJumpTables(); 373 MadeChange |= reorderThumb2JumpTables(); 374 // Data is out of date, so clear it. It'll be re-computed later. 375 T2JumpTables.clear(); 376 // Blocks may have shifted around. Keep the numbering up to date. 377 MF->RenumberBlocks(); 378 } 379 380 // Perform the initial placement of the constant pool entries. To start with, 381 // we put them all at the end of the function. 382 std::vector<MachineInstr*> CPEMIs; 383 if (!MCP->isEmpty()) 384 doInitialConstPlacement(CPEMIs); 385 386 if (MF->getJumpTableInfo()) 387 doInitialJumpTablePlacement(CPEMIs); 388 389 /// The next UID to take is the first unused one. 390 AFI->initPICLabelUId(CPEMIs.size()); 391 392 // Do the initial scan of the function, building up information about the 393 // sizes of each block, the location of all the water, and finding all of the 394 // constant pool users. 395 initializeFunctionInfo(CPEMIs); 396 CPEMIs.clear(); 397 DEBUG(dumpBBs()); 398 399 // Functions with jump tables need an alignment of 4 because they use the ADR 400 // instruction, which aligns the PC to 4 bytes before adding an offset. 401 if (!T2JumpTables.empty()) 402 MF->ensureAlignment(2); 403 404 /// Remove dead constant pool entries. 405 MadeChange |= removeUnusedCPEntries(); 406 407 // Iteratively place constant pool entries and fix up branches until there 408 // is no change. 409 unsigned NoCPIters = 0, NoBRIters = 0; 410 while (true) { 411 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 412 bool CPChange = false; 413 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 414 // For most inputs, it converges in no more than 5 iterations. 415 // If it doesn't end in 10, the input may have huge BB or many CPEs. 416 // In this case, we will try different heuristics. 417 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 418 if (CPChange && ++NoCPIters > CPMaxIteration) 419 report_fatal_error("Constant Island pass failed to converge!"); 420 DEBUG(dumpBBs()); 421 422 // Clear NewWaterList now. If we split a block for branches, it should 423 // appear as "new water" for the next iteration of constant pool placement. 424 NewWaterList.clear(); 425 426 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 427 bool BRChange = false; 428 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 429 BRChange |= fixupImmediateBr(ImmBranches[i]); 430 if (BRChange && ++NoBRIters > 30) 431 report_fatal_error("Branch Fix Up pass failed to converge!"); 432 DEBUG(dumpBBs()); 433 434 if (!CPChange && !BRChange) 435 break; 436 MadeChange = true; 437 } 438 439 // Shrink 32-bit Thumb2 load and store instructions. 440 if (isThumb2 && !STI->prefers32BitThumb()) 441 MadeChange |= optimizeThumb2Instructions(); 442 443 // Shrink 32-bit branch instructions. 444 if (isThumb && STI->hasV8MBaselineOps()) 445 MadeChange |= optimizeThumb2Branches(); 446 447 // Optimize jump tables using TBB / TBH. 448 if (GenerateTBB && !STI->genExecuteOnly()) 449 MadeChange |= optimizeThumb2JumpTables(); 450 451 // After a while, this might be made debug-only, but it is not expensive. 452 verify(); 453 454 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 455 // undo the spill / restore of LR if possible. 456 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 457 MadeChange |= undoLRSpillRestore(); 458 459 // Save the mapping between original and cloned constpool entries. 460 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 461 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 462 const CPEntry & CPE = CPEntries[i][j]; 463 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 464 AFI->recordCPEClone(i, CPE.CPI); 465 } 466 } 467 468 DEBUG(dbgs() << '\n'; dumpBBs()); 469 470 BBInfo.clear(); 471 WaterList.clear(); 472 CPUsers.clear(); 473 CPEntries.clear(); 474 JumpTableEntryIndices.clear(); 475 JumpTableUserIndices.clear(); 476 ImmBranches.clear(); 477 PushPopMIs.clear(); 478 T2JumpTables.clear(); 479 480 return MadeChange; 481 } 482 483 /// Perform the initial placement of the regular constant pool entries. 484 /// To start with, we put them all at the end of the function. 485 void 486 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 487 // Create the basic block to hold the CPE's. 488 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 489 MF->push_back(BB); 490 491 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 492 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 493 494 // Mark the basic block as required by the const-pool. 495 BB->setAlignment(MaxAlign); 496 497 // The function needs to be as aligned as the basic blocks. The linker may 498 // move functions around based on their alignment. 499 MF->ensureAlignment(BB->getAlignment()); 500 501 // Order the entries in BB by descending alignment. That ensures correct 502 // alignment of all entries as long as BB is sufficiently aligned. Keep 503 // track of the insertion point for each alignment. We are going to bucket 504 // sort the entries as they are created. 505 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 506 507 // Add all of the constants from the constant pool to the end block, use an 508 // identity mapping of CPI's to CPE's. 509 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 510 511 const DataLayout &TD = MF->getDataLayout(); 512 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 513 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 514 unsigned Align = CPs[i].getAlignment(); 515 assert(isPowerOf2_32(Align) && "Invalid alignment"); 516 // Verify that all constant pool entries are a multiple of their alignment. 517 // If not, we would have to pad them out so that instructions stay aligned. 518 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 519 520 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 521 unsigned LogAlign = Log2_32(Align); 522 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 523 MachineInstr *CPEMI = 524 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 525 .addImm(i).addConstantPoolIndex(i).addImm(Size); 526 CPEMIs.push_back(CPEMI); 527 528 // Ensure that future entries with higher alignment get inserted before 529 // CPEMI. This is bucket sort with iterators. 530 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 531 if (InsPoint[a] == InsAt) 532 InsPoint[a] = CPEMI; 533 534 // Add a new CPEntry, but no corresponding CPUser yet. 535 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 536 ++NumCPEs; 537 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 538 << Size << ", align = " << Align <<'\n'); 539 } 540 DEBUG(BB->dump()); 541 } 542 543 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 544 /// instructions can be made more efficient if the jump table immediately 545 /// follows the instruction, it's best to place them immediately next to their 546 /// jumps to begin with. In almost all cases they'll never be moved from that 547 /// position. 548 void ARMConstantIslands::doInitialJumpTablePlacement( 549 std::vector<MachineInstr *> &CPEMIs) { 550 unsigned i = CPEntries.size(); 551 auto MJTI = MF->getJumpTableInfo(); 552 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 553 554 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 555 for (MachineBasicBlock &MBB : *MF) { 556 auto MI = MBB.getLastNonDebugInstr(); 557 if (MI == MBB.end()) 558 continue; 559 560 unsigned JTOpcode; 561 switch (MI->getOpcode()) { 562 default: 563 continue; 564 case ARM::BR_JTadd: 565 case ARM::BR_JTr: 566 case ARM::tBR_JTr: 567 case ARM::BR_JTm_i12: 568 case ARM::BR_JTm_rs: 569 JTOpcode = ARM::JUMPTABLE_ADDRS; 570 break; 571 case ARM::t2BR_JT: 572 JTOpcode = ARM::JUMPTABLE_INSTS; 573 break; 574 case ARM::tTBB_JT: 575 case ARM::t2TBB_JT: 576 JTOpcode = ARM::JUMPTABLE_TBB; 577 break; 578 case ARM::tTBH_JT: 579 case ARM::t2TBH_JT: 580 JTOpcode = ARM::JUMPTABLE_TBH; 581 break; 582 } 583 584 unsigned NumOps = MI->getDesc().getNumOperands(); 585 MachineOperand JTOp = 586 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 587 unsigned JTI = JTOp.getIndex(); 588 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 589 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 590 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 591 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 592 DebugLoc(), TII->get(JTOpcode)) 593 .addImm(i++) 594 .addJumpTableIndex(JTI) 595 .addImm(Size); 596 CPEMIs.push_back(CPEMI); 597 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 598 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 599 if (!LastCorrectlyNumberedBB) 600 LastCorrectlyNumberedBB = &MBB; 601 } 602 603 // If we did anything then we need to renumber the subsequent blocks. 604 if (LastCorrectlyNumberedBB) 605 MF->RenumberBlocks(LastCorrectlyNumberedBB); 606 } 607 608 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 609 /// into the block immediately after it. 610 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 611 // Get the next machine basic block in the function. 612 MachineFunction::iterator MBBI = MBB->getIterator(); 613 // Can't fall off end of function. 614 if (std::next(MBBI) == MBB->getParent()->end()) 615 return false; 616 617 MachineBasicBlock *NextBB = &*std::next(MBBI); 618 if (!MBB->isSuccessor(NextBB)) 619 return false; 620 621 // Try to analyze the end of the block. A potential fallthrough may already 622 // have an unconditional branch for whatever reason. 623 MachineBasicBlock *TBB, *FBB; 624 SmallVector<MachineOperand, 4> Cond; 625 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 626 return TooDifficult || FBB == nullptr; 627 } 628 629 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 630 /// look up the corresponding CPEntry. 631 ARMConstantIslands::CPEntry * 632 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 633 const MachineInstr *CPEMI) { 634 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 635 // Number of entries per constpool index should be small, just do a 636 // linear search. 637 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 638 if (CPEs[i].CPEMI == CPEMI) 639 return &CPEs[i]; 640 } 641 return nullptr; 642 } 643 644 /// getCPELogAlign - Returns the required alignment of the constant pool entry 645 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 646 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 647 switch (CPEMI->getOpcode()) { 648 case ARM::CONSTPOOL_ENTRY: 649 break; 650 case ARM::JUMPTABLE_TBB: 651 return isThumb1 ? 2 : 0; 652 case ARM::JUMPTABLE_TBH: 653 return isThumb1 ? 2 : 1; 654 case ARM::JUMPTABLE_INSTS: 655 return 1; 656 case ARM::JUMPTABLE_ADDRS: 657 return 2; 658 default: 659 llvm_unreachable("unknown constpool entry kind"); 660 } 661 662 unsigned CPI = getCombinedIndex(CPEMI); 663 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 664 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 665 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 666 return Log2_32(Align); 667 } 668 669 /// scanFunctionJumpTables - Do a scan of the function, building up 670 /// information about the sizes of each block and the locations of all 671 /// the jump tables. 672 void ARMConstantIslands::scanFunctionJumpTables() { 673 for (MachineBasicBlock &MBB : *MF) { 674 for (MachineInstr &I : MBB) 675 if (I.isBranch() && 676 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 677 T2JumpTables.push_back(&I); 678 } 679 } 680 681 /// initializeFunctionInfo - Do the initial scan of the function, building up 682 /// information about the sizes of each block, the location of all the water, 683 /// and finding all of the constant pool users. 684 void ARMConstantIslands:: 685 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 686 687 BBInfo = computeAllBlockSizes(MF); 688 689 // The known bits of the entry block offset are determined by the function 690 // alignment. 691 BBInfo.front().KnownBits = MF->getAlignment(); 692 693 // Compute block offsets and known bits. 694 adjustBBOffsetsAfter(&MF->front()); 695 696 // Now go back through the instructions and build up our data structures. 697 for (MachineBasicBlock &MBB : *MF) { 698 // If this block doesn't fall through into the next MBB, then this is 699 // 'water' that a constant pool island could be placed. 700 if (!BBHasFallthrough(&MBB)) 701 WaterList.push_back(&MBB); 702 703 for (MachineInstr &I : MBB) { 704 if (I.isDebugInstr()) 705 continue; 706 707 unsigned Opc = I.getOpcode(); 708 if (I.isBranch()) { 709 bool isCond = false; 710 unsigned Bits = 0; 711 unsigned Scale = 1; 712 int UOpc = Opc; 713 switch (Opc) { 714 default: 715 continue; // Ignore other JT branches 716 case ARM::t2BR_JT: 717 case ARM::tBR_JTr: 718 T2JumpTables.push_back(&I); 719 continue; // Does not get an entry in ImmBranches 720 case ARM::Bcc: 721 isCond = true; 722 UOpc = ARM::B; 723 LLVM_FALLTHROUGH; 724 case ARM::B: 725 Bits = 24; 726 Scale = 4; 727 break; 728 case ARM::tBcc: 729 isCond = true; 730 UOpc = ARM::tB; 731 Bits = 8; 732 Scale = 2; 733 break; 734 case ARM::tB: 735 Bits = 11; 736 Scale = 2; 737 break; 738 case ARM::t2Bcc: 739 isCond = true; 740 UOpc = ARM::t2B; 741 Bits = 20; 742 Scale = 2; 743 break; 744 case ARM::t2B: 745 Bits = 24; 746 Scale = 2; 747 break; 748 } 749 750 // Record this immediate branch. 751 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 752 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 753 } 754 755 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 756 PushPopMIs.push_back(&I); 757 758 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 759 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 760 Opc == ARM::JUMPTABLE_TBH) 761 continue; 762 763 // Scan the instructions for constant pool operands. 764 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 765 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 766 // We found one. The addressing mode tells us the max displacement 767 // from the PC that this instruction permits. 768 769 // Basic size info comes from the TSFlags field. 770 unsigned Bits = 0; 771 unsigned Scale = 1; 772 bool NegOk = false; 773 bool IsSoImm = false; 774 775 switch (Opc) { 776 default: 777 llvm_unreachable("Unknown addressing mode for CP reference!"); 778 779 // Taking the address of a CP entry. 780 case ARM::LEApcrel: 781 case ARM::LEApcrelJT: 782 // This takes a SoImm, which is 8 bit immediate rotated. We'll 783 // pretend the maximum offset is 255 * 4. Since each instruction 784 // 4 byte wide, this is always correct. We'll check for other 785 // displacements that fits in a SoImm as well. 786 Bits = 8; 787 Scale = 4; 788 NegOk = true; 789 IsSoImm = true; 790 break; 791 case ARM::t2LEApcrel: 792 case ARM::t2LEApcrelJT: 793 Bits = 12; 794 NegOk = true; 795 break; 796 case ARM::tLEApcrel: 797 case ARM::tLEApcrelJT: 798 Bits = 8; 799 Scale = 4; 800 break; 801 802 case ARM::LDRBi12: 803 case ARM::LDRi12: 804 case ARM::LDRcp: 805 case ARM::t2LDRpci: 806 case ARM::t2LDRHpci: 807 case ARM::t2LDRBpci: 808 Bits = 12; // +-offset_12 809 NegOk = true; 810 break; 811 812 case ARM::tLDRpci: 813 Bits = 8; 814 Scale = 4; // +(offset_8*4) 815 break; 816 817 case ARM::VLDRD: 818 case ARM::VLDRS: 819 Bits = 8; 820 Scale = 4; // +-(offset_8*4) 821 NegOk = true; 822 break; 823 case ARM::VLDRH: 824 Bits = 8; 825 Scale = 2; // +-(offset_8*2) 826 NegOk = true; 827 break; 828 829 case ARM::tLDRHi: 830 Bits = 5; 831 Scale = 2; // +(offset_5*2) 832 break; 833 } 834 835 // Remember that this is a user of a CP entry. 836 unsigned CPI = I.getOperand(op).getIndex(); 837 if (I.getOperand(op).isJTI()) { 838 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 839 CPI = JumpTableEntryIndices[CPI]; 840 } 841 842 MachineInstr *CPEMI = CPEMIs[CPI]; 843 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 844 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 845 846 // Increment corresponding CPEntry reference count. 847 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 848 assert(CPE && "Cannot find a corresponding CPEntry!"); 849 CPE->RefCount++; 850 851 // Instructions can only use one CP entry, don't bother scanning the 852 // rest of the operands. 853 break; 854 } 855 } 856 } 857 } 858 859 /// getOffsetOf - Return the current offset of the specified machine instruction 860 /// from the start of the function. This offset changes as stuff is moved 861 /// around inside the function. 862 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 863 MachineBasicBlock *MBB = MI->getParent(); 864 865 // The offset is composed of two things: the sum of the sizes of all MBB's 866 // before this instruction's block, and the offset from the start of the block 867 // it is in. 868 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 869 870 // Sum instructions before MI in MBB. 871 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 872 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 873 Offset += TII->getInstSizeInBytes(*I); 874 } 875 return Offset; 876 } 877 878 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 879 /// ID. 880 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 881 const MachineBasicBlock *RHS) { 882 return LHS->getNumber() < RHS->getNumber(); 883 } 884 885 /// updateForInsertedWaterBlock - When a block is newly inserted into the 886 /// machine function, it upsets all of the block numbers. Renumber the blocks 887 /// and update the arrays that parallel this numbering. 888 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 889 // Renumber the MBB's to keep them consecutive. 890 NewBB->getParent()->RenumberBlocks(NewBB); 891 892 // Insert an entry into BBInfo to align it properly with the (newly 893 // renumbered) block numbers. 894 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 895 896 // Next, update WaterList. Specifically, we need to add NewMBB as having 897 // available water after it. 898 water_iterator IP = 899 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 900 CompareMBBNumbers); 901 WaterList.insert(IP, NewBB); 902 } 903 904 /// Split the basic block containing MI into two blocks, which are joined by 905 /// an unconditional branch. Update data structures and renumber blocks to 906 /// account for this change and returns the newly created block. 907 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 908 MachineBasicBlock *OrigBB = MI->getParent(); 909 910 // Create a new MBB for the code after the OrigBB. 911 MachineBasicBlock *NewBB = 912 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 913 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 914 MF->insert(MBBI, NewBB); 915 916 // Splice the instructions starting with MI over to NewBB. 917 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 918 919 // Add an unconditional branch from OrigBB to NewBB. 920 // Note the new unconditional branch is not being recorded. 921 // There doesn't seem to be meaningful DebugInfo available; this doesn't 922 // correspond to anything in the source. 923 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 924 if (!isThumb) 925 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 926 else 927 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 928 .addMBB(NewBB) 929 .add(predOps(ARMCC::AL)); 930 ++NumSplit; 931 932 // Update the CFG. All succs of OrigBB are now succs of NewBB. 933 NewBB->transferSuccessors(OrigBB); 934 935 // OrigBB branches to NewBB. 936 OrigBB->addSuccessor(NewBB); 937 938 // Update internal data structures to account for the newly inserted MBB. 939 // This is almost the same as updateForInsertedWaterBlock, except that 940 // the Water goes after OrigBB, not NewBB. 941 MF->RenumberBlocks(NewBB); 942 943 // Insert an entry into BBInfo to align it properly with the (newly 944 // renumbered) block numbers. 945 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 946 947 // Next, update WaterList. Specifically, we need to add OrigMBB as having 948 // available water after it (but not if it's already there, which happens 949 // when splitting before a conditional branch that is followed by an 950 // unconditional branch - in that case we want to insert NewBB). 951 water_iterator IP = 952 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 953 CompareMBBNumbers); 954 MachineBasicBlock* WaterBB = *IP; 955 if (WaterBB == OrigBB) 956 WaterList.insert(std::next(IP), NewBB); 957 else 958 WaterList.insert(IP, OrigBB); 959 NewWaterList.insert(OrigBB); 960 961 // Figure out how large the OrigBB is. As the first half of the original 962 // block, it cannot contain a tablejump. The size includes 963 // the new jump we added. (It should be possible to do this without 964 // recounting everything, but it's very confusing, and this is rarely 965 // executed.) 966 computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]); 967 968 // Figure out how large the NewMBB is. As the second half of the original 969 // block, it may contain a tablejump. 970 computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]); 971 972 // All BBOffsets following these blocks must be modified. 973 adjustBBOffsetsAfter(OrigBB); 974 975 return NewBB; 976 } 977 978 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 979 /// displacement computation. Update U.KnownAlignment to match its current 980 /// basic block location. 981 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 982 unsigned UserOffset = getOffsetOf(U.MI); 983 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 984 unsigned KnownBits = BBI.internalKnownBits(); 985 986 // The value read from PC is offset from the actual instruction address. 987 UserOffset += (isThumb ? 4 : 8); 988 989 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 990 // Make sure U.getMaxDisp() returns a constrained range. 991 U.KnownAlignment = (KnownBits >= 2); 992 993 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 994 // purposes of the displacement computation; compensate for that here. 995 // For unknown alignments, getMaxDisp() constrains the range instead. 996 if (isThumb && U.KnownAlignment) 997 UserOffset &= ~3u; 998 999 return UserOffset; 1000 } 1001 1002 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1003 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1004 /// constant pool entry). 1005 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1006 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1007 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1008 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1009 unsigned TrialOffset, unsigned MaxDisp, 1010 bool NegativeOK, bool IsSoImm) { 1011 if (UserOffset <= TrialOffset) { 1012 // User before the Trial. 1013 if (TrialOffset - UserOffset <= MaxDisp) 1014 return true; 1015 // FIXME: Make use full range of soimm values. 1016 } else if (NegativeOK) { 1017 if (UserOffset - TrialOffset <= MaxDisp) 1018 return true; 1019 // FIXME: Make use full range of soimm values. 1020 } 1021 return false; 1022 } 1023 1024 /// isWaterInRange - Returns true if a CPE placed after the specified 1025 /// Water (a basic block) will be in range for the specific MI. 1026 /// 1027 /// Compute how much the function will grow by inserting a CPE after Water. 1028 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1029 MachineBasicBlock* Water, CPUser &U, 1030 unsigned &Growth) { 1031 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1032 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1033 unsigned NextBlockOffset, NextBlockAlignment; 1034 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1035 if (++NextBlock == MF->end()) { 1036 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1037 NextBlockAlignment = 0; 1038 } else { 1039 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1040 NextBlockAlignment = NextBlock->getAlignment(); 1041 } 1042 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1043 unsigned CPEEnd = CPEOffset + Size; 1044 1045 // The CPE may be able to hide in the alignment padding before the next 1046 // block. It may also cause more padding to be required if it is more aligned 1047 // that the next block. 1048 if (CPEEnd > NextBlockOffset) { 1049 Growth = CPEEnd - NextBlockOffset; 1050 // Compute the padding that would go at the end of the CPE to align the next 1051 // block. 1052 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1053 1054 // If the CPE is to be inserted before the instruction, that will raise 1055 // the offset of the instruction. Also account for unknown alignment padding 1056 // in blocks between CPE and the user. 1057 if (CPEOffset < UserOffset) 1058 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1059 } else 1060 // CPE fits in existing padding. 1061 Growth = 0; 1062 1063 return isOffsetInRange(UserOffset, CPEOffset, U); 1064 } 1065 1066 /// isCPEntryInRange - Returns true if the distance between specific MI and 1067 /// specific ConstPool entry instruction can fit in MI's displacement field. 1068 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1069 MachineInstr *CPEMI, unsigned MaxDisp, 1070 bool NegOk, bool DoDump) { 1071 unsigned CPEOffset = getOffsetOf(CPEMI); 1072 1073 if (DoDump) { 1074 DEBUG({ 1075 unsigned Block = MI->getParent()->getNumber(); 1076 const BasicBlockInfo &BBI = BBInfo[Block]; 1077 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1078 << " max delta=" << MaxDisp 1079 << format(" insn address=%#x", UserOffset) << " in " 1080 << printMBBReference(*MI->getParent()) << ": " 1081 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1082 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1083 int(CPEOffset - UserOffset)); 1084 }); 1085 } 1086 1087 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1088 } 1089 1090 #ifndef NDEBUG 1091 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1092 /// unconditionally branches to its only successor. 1093 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1094 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1095 return false; 1096 1097 MachineBasicBlock *Succ = *MBB->succ_begin(); 1098 MachineBasicBlock *Pred = *MBB->pred_begin(); 1099 MachineInstr *PredMI = &Pred->back(); 1100 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1101 || PredMI->getOpcode() == ARM::t2B) 1102 return PredMI->getOperand(0).getMBB() == Succ; 1103 return false; 1104 } 1105 #endif // NDEBUG 1106 1107 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1108 unsigned BBNum = BB->getNumber(); 1109 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1110 // Get the offset and known bits at the end of the layout predecessor. 1111 // Include the alignment of the current block. 1112 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1113 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1114 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1115 1116 // This is where block i begins. Stop if the offset is already correct, 1117 // and we have updated 2 blocks. This is the maximum number of blocks 1118 // changed before calling this function. 1119 if (i > BBNum + 2 && 1120 BBInfo[i].Offset == Offset && 1121 BBInfo[i].KnownBits == KnownBits) 1122 break; 1123 1124 BBInfo[i].Offset = Offset; 1125 BBInfo[i].KnownBits = KnownBits; 1126 } 1127 } 1128 1129 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1130 /// and instruction CPEMI, and decrement its refcount. If the refcount 1131 /// becomes 0 remove the entry and instruction. Returns true if we removed 1132 /// the entry, false if we didn't. 1133 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1134 MachineInstr *CPEMI) { 1135 // Find the old entry. Eliminate it if it is no longer used. 1136 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1137 assert(CPE && "Unexpected!"); 1138 if (--CPE->RefCount == 0) { 1139 removeDeadCPEMI(CPEMI); 1140 CPE->CPEMI = nullptr; 1141 --NumCPEs; 1142 return true; 1143 } 1144 return false; 1145 } 1146 1147 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1148 if (CPEMI->getOperand(1).isCPI()) 1149 return CPEMI->getOperand(1).getIndex(); 1150 1151 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1152 } 1153 1154 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1155 /// if not, see if an in-range clone of the CPE is in range, and if so, 1156 /// change the data structures so the user references the clone. Returns: 1157 /// 0 = no existing entry found 1158 /// 1 = entry found, and there were no code insertions or deletions 1159 /// 2 = entry found, and there were code insertions or deletions 1160 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1161 MachineInstr *UserMI = U.MI; 1162 MachineInstr *CPEMI = U.CPEMI; 1163 1164 // Check to see if the CPE is already in-range. 1165 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1166 true)) { 1167 DEBUG(dbgs() << "In range\n"); 1168 return 1; 1169 } 1170 1171 // No. Look for previously created clones of the CPE that are in range. 1172 unsigned CPI = getCombinedIndex(CPEMI); 1173 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1174 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1175 // We already tried this one 1176 if (CPEs[i].CPEMI == CPEMI) 1177 continue; 1178 // Removing CPEs can leave empty entries, skip 1179 if (CPEs[i].CPEMI == nullptr) 1180 continue; 1181 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1182 U.NegOk)) { 1183 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1184 << CPEs[i].CPI << "\n"); 1185 // Point the CPUser node to the replacement 1186 U.CPEMI = CPEs[i].CPEMI; 1187 // Change the CPI in the instruction operand to refer to the clone. 1188 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1189 if (UserMI->getOperand(j).isCPI()) { 1190 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1191 break; 1192 } 1193 // Adjust the refcount of the clone... 1194 CPEs[i].RefCount++; 1195 // ...and the original. If we didn't remove the old entry, none of the 1196 // addresses changed, so we don't need another pass. 1197 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1198 } 1199 } 1200 return 0; 1201 } 1202 1203 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1204 /// the specific unconditional branch instruction. 1205 static inline unsigned getUnconditionalBrDisp(int Opc) { 1206 switch (Opc) { 1207 case ARM::tB: 1208 return ((1<<10)-1)*2; 1209 case ARM::t2B: 1210 return ((1<<23)-1)*2; 1211 default: 1212 break; 1213 } 1214 1215 return ((1<<23)-1)*4; 1216 } 1217 1218 /// findAvailableWater - Look for an existing entry in the WaterList in which 1219 /// we can place the CPE referenced from U so it's within range of U's MI. 1220 /// Returns true if found, false if not. If it returns true, WaterIter 1221 /// is set to the WaterList entry. For Thumb, prefer water that will not 1222 /// introduce padding to water that will. To ensure that this pass 1223 /// terminates, the CPE location for a particular CPUser is only allowed to 1224 /// move to a lower address, so search backward from the end of the list and 1225 /// prefer the first water that is in range. 1226 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1227 water_iterator &WaterIter, 1228 bool CloserWater) { 1229 if (WaterList.empty()) 1230 return false; 1231 1232 unsigned BestGrowth = ~0u; 1233 // The nearest water without splitting the UserBB is right after it. 1234 // If the distance is still large (we have a big BB), then we need to split it 1235 // if we don't converge after certain iterations. This helps the following 1236 // situation to converge: 1237 // BB0: 1238 // Big BB 1239 // BB1: 1240 // Constant Pool 1241 // When a CP access is out of range, BB0 may be used as water. However, 1242 // inserting islands between BB0 and BB1 makes other accesses out of range. 1243 MachineBasicBlock *UserBB = U.MI->getParent(); 1244 unsigned MinNoSplitDisp = 1245 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1246 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1247 return false; 1248 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1249 --IP) { 1250 MachineBasicBlock* WaterBB = *IP; 1251 // Check if water is in range and is either at a lower address than the 1252 // current "high water mark" or a new water block that was created since 1253 // the previous iteration by inserting an unconditional branch. In the 1254 // latter case, we want to allow resetting the high water mark back to 1255 // this new water since we haven't seen it before. Inserting branches 1256 // should be relatively uncommon and when it does happen, we want to be 1257 // sure to take advantage of it for all the CPEs near that block, so that 1258 // we don't insert more branches than necessary. 1259 // When CloserWater is true, we try to find the lowest address after (or 1260 // equal to) user MI's BB no matter of padding growth. 1261 unsigned Growth; 1262 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1263 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1264 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1265 Growth < BestGrowth) { 1266 // This is the least amount of required padding seen so far. 1267 BestGrowth = Growth; 1268 WaterIter = IP; 1269 DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1270 << " Growth=" << Growth << '\n'); 1271 1272 if (CloserWater && WaterBB == U.MI->getParent()) 1273 return true; 1274 // Keep looking unless it is perfect and we're not looking for the lowest 1275 // possible address. 1276 if (!CloserWater && BestGrowth == 0) 1277 return true; 1278 } 1279 if (IP == B) 1280 break; 1281 } 1282 return BestGrowth != ~0u; 1283 } 1284 1285 /// createNewWater - No existing WaterList entry will work for 1286 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1287 /// block is used if in range, and the conditional branch munged so control 1288 /// flow is correct. Otherwise the block is split to create a hole with an 1289 /// unconditional branch around it. In either case NewMBB is set to a 1290 /// block following which the new island can be inserted (the WaterList 1291 /// is not adjusted). 1292 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1293 unsigned UserOffset, 1294 MachineBasicBlock *&NewMBB) { 1295 CPUser &U = CPUsers[CPUserIndex]; 1296 MachineInstr *UserMI = U.MI; 1297 MachineInstr *CPEMI = U.CPEMI; 1298 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1299 MachineBasicBlock *UserMBB = UserMI->getParent(); 1300 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1301 1302 // If the block does not end in an unconditional branch already, and if the 1303 // end of the block is within range, make new water there. (The addition 1304 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1305 // Thumb2, 2 on Thumb1. 1306 if (BBHasFallthrough(UserMBB)) { 1307 // Size of branch to insert. 1308 unsigned Delta = isThumb1 ? 2 : 4; 1309 // Compute the offset where the CPE will begin. 1310 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1311 1312 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1313 DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1314 << format(", expected CPE offset %#x\n", CPEOffset)); 1315 NewMBB = &*++UserMBB->getIterator(); 1316 // Add an unconditional branch from UserMBB to fallthrough block. Record 1317 // it for branch lengthening; this new branch will not get out of range, 1318 // but if the preceding conditional branch is out of range, the targets 1319 // will be exchanged, and the altered branch may be out of range, so the 1320 // machinery has to know about it. 1321 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1322 if (!isThumb) 1323 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1324 else 1325 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1326 .addMBB(NewMBB) 1327 .add(predOps(ARMCC::AL)); 1328 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1329 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1330 MaxDisp, false, UncondBr)); 1331 computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]); 1332 adjustBBOffsetsAfter(UserMBB); 1333 return; 1334 } 1335 } 1336 1337 // What a big block. Find a place within the block to split it. This is a 1338 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1339 // entries are 4 bytes: if instruction I references island CPE, and 1340 // instruction I+1 references CPE', it will not work well to put CPE as far 1341 // forward as possible, since then CPE' cannot immediately follow it (that 1342 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1343 // need to create a new island. So, we make a first guess, then walk through 1344 // the instructions between the one currently being looked at and the 1345 // possible insertion point, and make sure any other instructions that 1346 // reference CPEs will be able to use the same island area; if not, we back 1347 // up the insertion point. 1348 1349 // Try to split the block so it's fully aligned. Compute the latest split 1350 // point where we can add a 4-byte branch instruction, and then align to 1351 // LogAlign which is the largest possible alignment in the function. 1352 unsigned LogAlign = MF->getAlignment(); 1353 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1354 unsigned KnownBits = UserBBI.internalKnownBits(); 1355 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1356 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1357 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1358 BaseInsertOffset)); 1359 1360 // The 4 in the following is for the unconditional branch we'll be inserting 1361 // (allows for long branch on Thumb1). Alignment of the island is handled 1362 // inside isOffsetInRange. 1363 BaseInsertOffset -= 4; 1364 1365 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1366 << " la=" << LogAlign 1367 << " kb=" << KnownBits 1368 << " up=" << UPad << '\n'); 1369 1370 // This could point off the end of the block if we've already got constant 1371 // pool entries following this block; only the last one is in the water list. 1372 // Back past any possible branches (allow for a conditional and a maximally 1373 // long unconditional). 1374 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1375 // Ensure BaseInsertOffset is larger than the offset of the instruction 1376 // following UserMI so that the loop which searches for the split point 1377 // iterates at least once. 1378 BaseInsertOffset = 1379 std::max(UserBBI.postOffset() - UPad - 8, 1380 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1381 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1382 } 1383 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1384 CPEMI->getOperand(2).getImm(); 1385 MachineBasicBlock::iterator MI = UserMI; 1386 ++MI; 1387 unsigned CPUIndex = CPUserIndex+1; 1388 unsigned NumCPUsers = CPUsers.size(); 1389 MachineInstr *LastIT = nullptr; 1390 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1391 Offset < BaseInsertOffset; 1392 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1393 assert(MI != UserMBB->end() && "Fell off end of block"); 1394 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1395 CPUser &U = CPUsers[CPUIndex]; 1396 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1397 // Shift intertion point by one unit of alignment so it is within reach. 1398 BaseInsertOffset -= 1u << LogAlign; 1399 EndInsertOffset -= 1u << LogAlign; 1400 } 1401 // This is overly conservative, as we don't account for CPEMIs being 1402 // reused within the block, but it doesn't matter much. Also assume CPEs 1403 // are added in order with alignment padding. We may eventually be able 1404 // to pack the aligned CPEs better. 1405 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1406 CPUIndex++; 1407 } 1408 1409 // Remember the last IT instruction. 1410 if (MI->getOpcode() == ARM::t2IT) 1411 LastIT = &*MI; 1412 } 1413 1414 --MI; 1415 1416 // Avoid splitting an IT block. 1417 if (LastIT) { 1418 unsigned PredReg = 0; 1419 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1420 if (CC != ARMCC::AL) 1421 MI = LastIT; 1422 } 1423 1424 // We really must not split an IT block. 1425 DEBUG(unsigned PredReg; 1426 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1427 1428 NewMBB = splitBlockBeforeInstr(&*MI); 1429 } 1430 1431 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1432 /// is out-of-range. If so, pick up the constant pool value and move it some 1433 /// place in-range. Return true if we changed any addresses (thus must run 1434 /// another pass of branch lengthening), false otherwise. 1435 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1436 bool CloserWater) { 1437 CPUser &U = CPUsers[CPUserIndex]; 1438 MachineInstr *UserMI = U.MI; 1439 MachineInstr *CPEMI = U.CPEMI; 1440 unsigned CPI = getCombinedIndex(CPEMI); 1441 unsigned Size = CPEMI->getOperand(2).getImm(); 1442 // Compute this only once, it's expensive. 1443 unsigned UserOffset = getUserOffset(U); 1444 1445 // See if the current entry is within range, or there is a clone of it 1446 // in range. 1447 int result = findInRangeCPEntry(U, UserOffset); 1448 if (result==1) return false; 1449 else if (result==2) return true; 1450 1451 // No existing clone of this CPE is within range. 1452 // We will be generating a new clone. Get a UID for it. 1453 unsigned ID = AFI->createPICLabelUId(); 1454 1455 // Look for water where we can place this CPE. 1456 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1457 MachineBasicBlock *NewMBB; 1458 water_iterator IP; 1459 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1460 DEBUG(dbgs() << "Found water in range\n"); 1461 MachineBasicBlock *WaterBB = *IP; 1462 1463 // If the original WaterList entry was "new water" on this iteration, 1464 // propagate that to the new island. This is just keeping NewWaterList 1465 // updated to match the WaterList, which will be updated below. 1466 if (NewWaterList.erase(WaterBB)) 1467 NewWaterList.insert(NewIsland); 1468 1469 // The new CPE goes before the following block (NewMBB). 1470 NewMBB = &*++WaterBB->getIterator(); 1471 } else { 1472 // No water found. 1473 DEBUG(dbgs() << "No water found\n"); 1474 createNewWater(CPUserIndex, UserOffset, NewMBB); 1475 1476 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1477 // called while handling branches so that the water will be seen on the 1478 // next iteration for constant pools, but in this context, we don't want 1479 // it. Check for this so it will be removed from the WaterList. 1480 // Also remove any entry from NewWaterList. 1481 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1482 IP = find(WaterList, WaterBB); 1483 if (IP != WaterList.end()) 1484 NewWaterList.erase(WaterBB); 1485 1486 // We are adding new water. Update NewWaterList. 1487 NewWaterList.insert(NewIsland); 1488 } 1489 // Always align the new block because CP entries can be smaller than 4 1490 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1491 // be an already aligned constant pool block. 1492 const unsigned Align = isThumb ? 1 : 2; 1493 if (NewMBB->getAlignment() < Align) 1494 NewMBB->setAlignment(Align); 1495 1496 // Remove the original WaterList entry; we want subsequent insertions in 1497 // this vicinity to go after the one we're about to insert. This 1498 // considerably reduces the number of times we have to move the same CPE 1499 // more than once and is also important to ensure the algorithm terminates. 1500 if (IP != WaterList.end()) 1501 WaterList.erase(IP); 1502 1503 // Okay, we know we can put an island before NewMBB now, do it! 1504 MF->insert(NewMBB->getIterator(), NewIsland); 1505 1506 // Update internal data structures to account for the newly inserted MBB. 1507 updateForInsertedWaterBlock(NewIsland); 1508 1509 // Now that we have an island to add the CPE to, clone the original CPE and 1510 // add it to the island. 1511 U.HighWaterMark = NewIsland; 1512 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1513 .addImm(ID) 1514 .add(CPEMI->getOperand(1)) 1515 .addImm(Size); 1516 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1517 ++NumCPEs; 1518 1519 // Decrement the old entry, and remove it if refcount becomes 0. 1520 decrementCPEReferenceCount(CPI, CPEMI); 1521 1522 // Mark the basic block as aligned as required by the const-pool entry. 1523 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1524 1525 // Increase the size of the island block to account for the new entry. 1526 BBInfo[NewIsland->getNumber()].Size += Size; 1527 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1528 1529 // Finally, change the CPI in the instruction operand to be ID. 1530 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1531 if (UserMI->getOperand(i).isCPI()) { 1532 UserMI->getOperand(i).setIndex(ID); 1533 break; 1534 } 1535 1536 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1537 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1538 1539 return true; 1540 } 1541 1542 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1543 /// sizes and offsets of impacted basic blocks. 1544 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1545 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1546 unsigned Size = CPEMI->getOperand(2).getImm(); 1547 CPEMI->eraseFromParent(); 1548 BBInfo[CPEBB->getNumber()].Size -= Size; 1549 // All succeeding offsets have the current size value added in, fix this. 1550 if (CPEBB->empty()) { 1551 BBInfo[CPEBB->getNumber()].Size = 0; 1552 1553 // This block no longer needs to be aligned. 1554 CPEBB->setAlignment(0); 1555 } else 1556 // Entries are sorted by descending alignment, so realign from the front. 1557 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1558 1559 adjustBBOffsetsAfter(CPEBB); 1560 // An island has only one predecessor BB and one successor BB. Check if 1561 // this BB's predecessor jumps directly to this BB's successor. This 1562 // shouldn't happen currently. 1563 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1564 // FIXME: remove the empty blocks after all the work is done? 1565 } 1566 1567 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1568 /// are zero. 1569 bool ARMConstantIslands::removeUnusedCPEntries() { 1570 unsigned MadeChange = false; 1571 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1572 std::vector<CPEntry> &CPEs = CPEntries[i]; 1573 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1574 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1575 removeDeadCPEMI(CPEs[j].CPEMI); 1576 CPEs[j].CPEMI = nullptr; 1577 MadeChange = true; 1578 } 1579 } 1580 } 1581 return MadeChange; 1582 } 1583 1584 /// isBBInRange - Returns true if the distance between specific MI and 1585 /// specific BB can fit in MI's displacement field. 1586 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1587 unsigned MaxDisp) { 1588 unsigned PCAdj = isThumb ? 4 : 8; 1589 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1590 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1591 1592 DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1593 << " from " << printMBBReference(*MI->getParent()) 1594 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1595 << " to " << DestOffset << " offset " 1596 << int(DestOffset - BrOffset) << "\t" << *MI); 1597 1598 if (BrOffset <= DestOffset) { 1599 // Branch before the Dest. 1600 if (DestOffset-BrOffset <= MaxDisp) 1601 return true; 1602 } else { 1603 if (BrOffset-DestOffset <= MaxDisp) 1604 return true; 1605 } 1606 return false; 1607 } 1608 1609 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1610 /// away to fit in its displacement field. 1611 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1612 MachineInstr *MI = Br.MI; 1613 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1614 1615 // Check to see if the DestBB is already in-range. 1616 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1617 return false; 1618 1619 if (!Br.isCond) 1620 return fixupUnconditionalBr(Br); 1621 return fixupConditionalBr(Br); 1622 } 1623 1624 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1625 /// too far away to fit in its displacement field. If the LR register has been 1626 /// spilled in the epilogue, then we can use BL to implement a far jump. 1627 /// Otherwise, add an intermediate branch instruction to a branch. 1628 bool 1629 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1630 MachineInstr *MI = Br.MI; 1631 MachineBasicBlock *MBB = MI->getParent(); 1632 if (!isThumb1) 1633 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1634 1635 // Use BL to implement far jump. 1636 Br.MaxDisp = (1 << 21) * 2; 1637 MI->setDesc(TII->get(ARM::tBfar)); 1638 BBInfo[MBB->getNumber()].Size += 2; 1639 adjustBBOffsetsAfter(MBB); 1640 HasFarJump = true; 1641 ++NumUBrFixed; 1642 1643 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1644 1645 return true; 1646 } 1647 1648 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1649 /// far away to fit in its displacement field. It is converted to an inverse 1650 /// conditional branch + an unconditional branch to the destination. 1651 bool 1652 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1653 MachineInstr *MI = Br.MI; 1654 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1655 1656 // Add an unconditional branch to the destination and invert the branch 1657 // condition to jump over it: 1658 // blt L1 1659 // => 1660 // bge L2 1661 // b L1 1662 // L2: 1663 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1664 CC = ARMCC::getOppositeCondition(CC); 1665 unsigned CCReg = MI->getOperand(2).getReg(); 1666 1667 // If the branch is at the end of its MBB and that has a fall-through block, 1668 // direct the updated conditional branch to the fall-through block. Otherwise, 1669 // split the MBB before the next instruction. 1670 MachineBasicBlock *MBB = MI->getParent(); 1671 MachineInstr *BMI = &MBB->back(); 1672 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1673 1674 ++NumCBrFixed; 1675 if (BMI != MI) { 1676 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1677 BMI->getOpcode() == Br.UncondBr) { 1678 // Last MI in the BB is an unconditional branch. Can we simply invert the 1679 // condition and swap destinations: 1680 // beq L1 1681 // b L2 1682 // => 1683 // bne L2 1684 // b L1 1685 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1686 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1687 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1688 << *BMI); 1689 BMI->getOperand(0).setMBB(DestBB); 1690 MI->getOperand(0).setMBB(NewDest); 1691 MI->getOperand(1).setImm(CC); 1692 return true; 1693 } 1694 } 1695 } 1696 1697 if (NeedSplit) { 1698 splitBlockBeforeInstr(MI); 1699 // No need for the branch to the next block. We're adding an unconditional 1700 // branch to the destination. 1701 int delta = TII->getInstSizeInBytes(MBB->back()); 1702 BBInfo[MBB->getNumber()].Size -= delta; 1703 MBB->back().eraseFromParent(); 1704 1705 // The conditional successor will be swapped between the BBs after this, so 1706 // update CFG. 1707 MBB->addSuccessor(DestBB); 1708 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1709 1710 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1711 } 1712 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1713 1714 DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1715 << " also invert condition and change dest. to " 1716 << printMBBReference(*NextBB) << "\n"); 1717 1718 // Insert a new conditional branch and a new unconditional branch. 1719 // Also update the ImmBranch as well as adding a new entry for the new branch. 1720 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1721 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1722 Br.MI = &MBB->back(); 1723 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1724 if (isThumb) 1725 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1726 .addMBB(DestBB) 1727 .add(predOps(ARMCC::AL)); 1728 else 1729 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1730 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1731 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1732 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1733 1734 // Remove the old conditional branch. It may or may not still be in MBB. 1735 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1736 MI->eraseFromParent(); 1737 adjustBBOffsetsAfter(MBB); 1738 return true; 1739 } 1740 1741 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1742 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1743 /// to do this if tBfar is not used. 1744 bool ARMConstantIslands::undoLRSpillRestore() { 1745 bool MadeChange = false; 1746 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1747 MachineInstr *MI = PushPopMIs[i]; 1748 // First two operands are predicates. 1749 if (MI->getOpcode() == ARM::tPOP_RET && 1750 MI->getOperand(2).getReg() == ARM::PC && 1751 MI->getNumExplicitOperands() == 3) { 1752 // Create the new insn and copy the predicate from the old. 1753 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1754 .add(MI->getOperand(0)) 1755 .add(MI->getOperand(1)); 1756 MI->eraseFromParent(); 1757 MadeChange = true; 1758 } else if (MI->getOpcode() == ARM::tPUSH && 1759 MI->getOperand(2).getReg() == ARM::LR && 1760 MI->getNumExplicitOperands() == 3) { 1761 // Just remove the push. 1762 MI->eraseFromParent(); 1763 MadeChange = true; 1764 } 1765 } 1766 return MadeChange; 1767 } 1768 1769 bool ARMConstantIslands::optimizeThumb2Instructions() { 1770 bool MadeChange = false; 1771 1772 // Shrink ADR and LDR from constantpool. 1773 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1774 CPUser &U = CPUsers[i]; 1775 unsigned Opcode = U.MI->getOpcode(); 1776 unsigned NewOpc = 0; 1777 unsigned Scale = 1; 1778 unsigned Bits = 0; 1779 switch (Opcode) { 1780 default: break; 1781 case ARM::t2LEApcrel: 1782 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1783 NewOpc = ARM::tLEApcrel; 1784 Bits = 8; 1785 Scale = 4; 1786 } 1787 break; 1788 case ARM::t2LDRpci: 1789 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1790 NewOpc = ARM::tLDRpci; 1791 Bits = 8; 1792 Scale = 4; 1793 } 1794 break; 1795 } 1796 1797 if (!NewOpc) 1798 continue; 1799 1800 unsigned UserOffset = getUserOffset(U); 1801 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1802 1803 // Be conservative with inline asm. 1804 if (!U.KnownAlignment) 1805 MaxOffs -= 2; 1806 1807 // FIXME: Check if offset is multiple of scale if scale is not 4. 1808 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1809 DEBUG(dbgs() << "Shrink: " << *U.MI); 1810 U.MI->setDesc(TII->get(NewOpc)); 1811 MachineBasicBlock *MBB = U.MI->getParent(); 1812 BBInfo[MBB->getNumber()].Size -= 2; 1813 adjustBBOffsetsAfter(MBB); 1814 ++NumT2CPShrunk; 1815 MadeChange = true; 1816 } 1817 } 1818 1819 return MadeChange; 1820 } 1821 1822 bool ARMConstantIslands::optimizeThumb2Branches() { 1823 bool MadeChange = false; 1824 1825 // The order in which branches appear in ImmBranches is approximately their 1826 // order within the function body. By visiting later branches first, we reduce 1827 // the distance between earlier forward branches and their targets, making it 1828 // more likely that the cbn?z optimization, which can only apply to forward 1829 // branches, will succeed. 1830 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1831 ImmBranch &Br = ImmBranches[i-1]; 1832 unsigned Opcode = Br.MI->getOpcode(); 1833 unsigned NewOpc = 0; 1834 unsigned Scale = 1; 1835 unsigned Bits = 0; 1836 switch (Opcode) { 1837 default: break; 1838 case ARM::t2B: 1839 NewOpc = ARM::tB; 1840 Bits = 11; 1841 Scale = 2; 1842 break; 1843 case ARM::t2Bcc: 1844 NewOpc = ARM::tBcc; 1845 Bits = 8; 1846 Scale = 2; 1847 break; 1848 } 1849 if (NewOpc) { 1850 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1851 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1852 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1853 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1854 Br.MI->setDesc(TII->get(NewOpc)); 1855 MachineBasicBlock *MBB = Br.MI->getParent(); 1856 BBInfo[MBB->getNumber()].Size -= 2; 1857 adjustBBOffsetsAfter(MBB); 1858 ++NumT2BrShrunk; 1859 MadeChange = true; 1860 } 1861 } 1862 1863 Opcode = Br.MI->getOpcode(); 1864 if (Opcode != ARM::tBcc) 1865 continue; 1866 1867 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1868 // so this transformation is not safe. 1869 if (!Br.MI->killsRegister(ARM::CPSR)) 1870 continue; 1871 1872 NewOpc = 0; 1873 unsigned PredReg = 0; 1874 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1875 if (Pred == ARMCC::EQ) 1876 NewOpc = ARM::tCBZ; 1877 else if (Pred == ARMCC::NE) 1878 NewOpc = ARM::tCBNZ; 1879 if (!NewOpc) 1880 continue; 1881 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1882 // Check if the distance is within 126. Subtract starting offset by 2 1883 // because the cmp will be eliminated. 1884 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1885 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1886 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1887 MachineBasicBlock::iterator CmpMI = Br.MI; 1888 if (CmpMI != Br.MI->getParent()->begin()) { 1889 --CmpMI; 1890 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1891 unsigned Reg = CmpMI->getOperand(0).getReg(); 1892 Pred = getInstrPredicate(*CmpMI, PredReg); 1893 if (Pred == ARMCC::AL && 1894 CmpMI->getOperand(1).getImm() == 0 && 1895 isARMLowRegister(Reg)) { 1896 MachineBasicBlock *MBB = Br.MI->getParent(); 1897 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1898 MachineInstr *NewBR = 1899 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1900 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1901 CmpMI->eraseFromParent(); 1902 Br.MI->eraseFromParent(); 1903 Br.MI = NewBR; 1904 BBInfo[MBB->getNumber()].Size -= 2; 1905 adjustBBOffsetsAfter(MBB); 1906 ++NumCBZ; 1907 MadeChange = true; 1908 } 1909 } 1910 } 1911 } 1912 } 1913 1914 return MadeChange; 1915 } 1916 1917 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1918 unsigned BaseReg) { 1919 if (I.getOpcode() != ARM::t2ADDrs) 1920 return false; 1921 1922 if (I.getOperand(0).getReg() != EntryReg) 1923 return false; 1924 1925 if (I.getOperand(1).getReg() != BaseReg) 1926 return false; 1927 1928 // FIXME: what about CC and IdxReg? 1929 return true; 1930 } 1931 1932 /// While trying to form a TBB/TBH instruction, we may (if the table 1933 /// doesn't immediately follow the BR_JT) need access to the start of the 1934 /// jump-table. We know one instruction that produces such a register; this 1935 /// function works out whether that definition can be preserved to the BR_JT, 1936 /// possibly by removing an intervening addition (which is usually needed to 1937 /// calculate the actual entry to jump to). 1938 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1939 MachineInstr *LEAMI, 1940 unsigned &DeadSize, 1941 bool &CanDeleteLEA, 1942 bool &BaseRegKill) { 1943 if (JumpMI->getParent() != LEAMI->getParent()) 1944 return false; 1945 1946 // Now we hope that we have at least these instructions in the basic block: 1947 // BaseReg = t2LEA ... 1948 // [...] 1949 // EntryReg = t2ADDrs BaseReg, ... 1950 // [...] 1951 // t2BR_JT EntryReg 1952 // 1953 // We have to be very conservative about what we recognise here though. The 1954 // main perturbing factors to watch out for are: 1955 // + Spills at any point in the chain: not direct problems but we would 1956 // expect a blocking Def of the spilled register so in practice what we 1957 // can do is limited. 1958 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1959 // of BaseReg, but only if the t2ADDrs can be removed. 1960 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1961 // the wild, but we should be careful. 1962 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 1963 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 1964 1965 CanDeleteLEA = true; 1966 BaseRegKill = false; 1967 MachineInstr *RemovableAdd = nullptr; 1968 MachineBasicBlock::iterator I(LEAMI); 1969 for (++I; &*I != JumpMI; ++I) { 1970 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 1971 RemovableAdd = &*I; 1972 break; 1973 } 1974 1975 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1976 const MachineOperand &MO = I->getOperand(K); 1977 if (!MO.isReg() || !MO.getReg()) 1978 continue; 1979 if (MO.isDef() && MO.getReg() == BaseReg) 1980 return false; 1981 if (MO.isUse() && MO.getReg() == BaseReg) { 1982 BaseRegKill = BaseRegKill || MO.isKill(); 1983 CanDeleteLEA = false; 1984 } 1985 } 1986 } 1987 1988 if (!RemovableAdd) 1989 return true; 1990 1991 // Check the add really is removable, and that nothing else in the block 1992 // clobbers BaseReg. 1993 for (++I; &*I != JumpMI; ++I) { 1994 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1995 const MachineOperand &MO = I->getOperand(K); 1996 if (!MO.isReg() || !MO.getReg()) 1997 continue; 1998 if (MO.isDef() && MO.getReg() == BaseReg) 1999 return false; 2000 if (MO.isUse() && MO.getReg() == EntryReg) 2001 RemovableAdd = nullptr; 2002 } 2003 } 2004 2005 if (RemovableAdd) { 2006 RemovableAdd->eraseFromParent(); 2007 DeadSize += isThumb2 ? 4 : 2; 2008 } else if (BaseReg == EntryReg) { 2009 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2010 // preserve it. 2011 return false; 2012 } 2013 2014 // We reached the end of the block without seeing another definition of 2015 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2016 // used in the TBB/TBH if necessary. 2017 return true; 2018 } 2019 2020 /// Returns whether CPEMI is the first instruction in the block 2021 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2022 /// we can switch the first register to PC and usually remove the address 2023 /// calculation that preceded it. 2024 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2025 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2026 MachineFunction *MF = MBB->getParent(); 2027 ++MBB; 2028 2029 return MBB != MF->end() && MBB->begin() != MBB->end() && 2030 &*MBB->begin() == CPEMI; 2031 } 2032 2033 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2034 MachineInstr *JumpMI, 2035 unsigned &DeadSize) { 2036 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2037 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2038 // and is not clobbered / used. 2039 MachineInstr *RemovableAdd = nullptr; 2040 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 2041 2042 // Find the last ADD to set EntryReg 2043 MachineBasicBlock::iterator I(LEAMI); 2044 for (++I; &*I != JumpMI; ++I) { 2045 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2046 RemovableAdd = &*I; 2047 } 2048 2049 if (!RemovableAdd) 2050 return; 2051 2052 // Ensure EntryReg is not clobbered or used. 2053 MachineBasicBlock::iterator J(RemovableAdd); 2054 for (++J; &*J != JumpMI; ++J) { 2055 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2056 const MachineOperand &MO = J->getOperand(K); 2057 if (!MO.isReg() || !MO.getReg()) 2058 continue; 2059 if (MO.isDef() && MO.getReg() == EntryReg) 2060 return; 2061 if (MO.isUse() && MO.getReg() == EntryReg) 2062 return; 2063 } 2064 } 2065 2066 DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2067 RemovableAdd->eraseFromParent(); 2068 DeadSize += 4; 2069 } 2070 2071 static bool registerDefinedBetween(unsigned Reg, 2072 MachineBasicBlock::iterator From, 2073 MachineBasicBlock::iterator To, 2074 const TargetRegisterInfo *TRI) { 2075 for (auto I = From; I != To; ++I) 2076 if (I->modifiesRegister(Reg, TRI)) 2077 return true; 2078 return false; 2079 } 2080 2081 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2082 /// jumptables when it's possible. 2083 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2084 bool MadeChange = false; 2085 2086 // FIXME: After the tables are shrunk, can we get rid some of the 2087 // constantpool tables? 2088 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2089 if (!MJTI) return false; 2090 2091 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2092 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2093 MachineInstr *MI = T2JumpTables[i]; 2094 const MCInstrDesc &MCID = MI->getDesc(); 2095 unsigned NumOps = MCID.getNumOperands(); 2096 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2097 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2098 unsigned JTI = JTOP.getIndex(); 2099 assert(JTI < JT.size()); 2100 2101 bool ByteOk = true; 2102 bool HalfWordOk = true; 2103 unsigned JTOffset = getOffsetOf(MI) + 4; 2104 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2105 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2106 MachineBasicBlock *MBB = JTBBs[j]; 2107 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2108 // Negative offset is not ok. FIXME: We should change BB layout to make 2109 // sure all the branches are forward. 2110 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2111 ByteOk = false; 2112 unsigned TBHLimit = ((1<<16)-1)*2; 2113 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2114 HalfWordOk = false; 2115 if (!ByteOk && !HalfWordOk) 2116 break; 2117 } 2118 2119 if (!ByteOk && !HalfWordOk) 2120 continue; 2121 2122 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2123 MachineBasicBlock *MBB = MI->getParent(); 2124 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2125 continue; 2126 2127 unsigned DeadSize = 0; 2128 bool CanDeleteLEA = false; 2129 bool BaseRegKill = false; 2130 2131 unsigned IdxReg = ~0U; 2132 bool IdxRegKill = true; 2133 if (isThumb2) { 2134 IdxReg = MI->getOperand(1).getReg(); 2135 IdxRegKill = MI->getOperand(1).isKill(); 2136 2137 bool PreservedBaseReg = 2138 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2139 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2140 continue; 2141 } else { 2142 // We're in thumb-1 mode, so we must have something like: 2143 // %idx = tLSLri %idx, 2 2144 // %base = tLEApcrelJT 2145 // %t = tLDRr %base, %idx 2146 unsigned BaseReg = User.MI->getOperand(0).getReg(); 2147 2148 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2149 continue; 2150 MachineInstr *Shift = User.MI->getPrevNode(); 2151 if (Shift->getOpcode() != ARM::tLSLri || 2152 Shift->getOperand(3).getImm() != 2 || 2153 !Shift->getOperand(2).isKill()) 2154 continue; 2155 IdxReg = Shift->getOperand(2).getReg(); 2156 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg(); 2157 2158 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2159 // the range is checked later, but the LEA might still clobber it and not 2160 // actually get removed. 2161 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2162 continue; 2163 2164 MachineInstr *Load = User.MI->getNextNode(); 2165 if (Load->getOpcode() != ARM::tLDRr) 2166 continue; 2167 if (Load->getOperand(1).getReg() != BaseReg || 2168 Load->getOperand(2).getReg() != ShiftedIdxReg || 2169 !Load->getOperand(2).isKill()) 2170 continue; 2171 2172 // If we're in PIC mode, there should be another ADD following. 2173 auto *TRI = STI->getRegisterInfo(); 2174 2175 // %base cannot be redefined after the load as it will appear before 2176 // TBB/TBH like: 2177 // %base = 2178 // %base = 2179 // tBB %base, %idx 2180 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2181 continue; 2182 2183 if (isPositionIndependentOrROPI) { 2184 MachineInstr *Add = Load->getNextNode(); 2185 if (Add->getOpcode() != ARM::tADDrr || 2186 Add->getOperand(2).getReg() != BaseReg || 2187 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2188 !Add->getOperand(3).isKill()) 2189 continue; 2190 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2191 continue; 2192 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2193 // IdxReg gets redefined in the middle of the sequence. 2194 continue; 2195 Add->eraseFromParent(); 2196 DeadSize += 2; 2197 } else { 2198 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2199 continue; 2200 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2201 // IdxReg gets redefined in the middle of the sequence. 2202 continue; 2203 } 2204 2205 // Now safe to delete the load and lsl. The LEA will be removed later. 2206 CanDeleteLEA = true; 2207 Shift->eraseFromParent(); 2208 Load->eraseFromParent(); 2209 DeadSize += 4; 2210 } 2211 2212 DEBUG(dbgs() << "Shrink JT: " << *MI); 2213 MachineInstr *CPEMI = User.CPEMI; 2214 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2215 if (!isThumb2) 2216 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2217 2218 MachineBasicBlock::iterator MI_JT = MI; 2219 MachineInstr *NewJTMI = 2220 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2221 .addReg(User.MI->getOperand(0).getReg(), 2222 getKillRegState(BaseRegKill)) 2223 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2224 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2225 .addImm(CPEMI->getOperand(0).getImm()); 2226 DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2227 2228 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2229 CPEMI->setDesc(TII->get(JTOpc)); 2230 2231 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2232 NewJTMI->getOperand(0).setReg(ARM::PC); 2233 NewJTMI->getOperand(0).setIsKill(false); 2234 2235 if (CanDeleteLEA) { 2236 if (isThumb2) 2237 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2238 2239 User.MI->eraseFromParent(); 2240 DeadSize += isThumb2 ? 4 : 2; 2241 2242 // The LEA was eliminated, the TBB instruction becomes the only new user 2243 // of the jump table. 2244 User.MI = NewJTMI; 2245 User.MaxDisp = 4; 2246 User.NegOk = false; 2247 User.IsSoImm = false; 2248 User.KnownAlignment = false; 2249 } else { 2250 // The LEA couldn't be eliminated, so we must add another CPUser to 2251 // record the TBB or TBH use. 2252 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2253 auto &CPEs = CPEntries[CPEntryIdx]; 2254 auto Entry = 2255 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2256 ++Entry->RefCount; 2257 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2258 } 2259 } 2260 2261 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2262 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2263 MI->eraseFromParent(); 2264 2265 int Delta = OrigSize - NewSize + DeadSize; 2266 BBInfo[MBB->getNumber()].Size -= Delta; 2267 adjustBBOffsetsAfter(MBB); 2268 2269 ++NumTBs; 2270 MadeChange = true; 2271 } 2272 2273 return MadeChange; 2274 } 2275 2276 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2277 /// jump tables always branch forwards, since that's what tbb and tbh need. 2278 bool ARMConstantIslands::reorderThumb2JumpTables() { 2279 bool MadeChange = false; 2280 2281 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2282 if (!MJTI) return false; 2283 2284 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2285 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2286 MachineInstr *MI = T2JumpTables[i]; 2287 const MCInstrDesc &MCID = MI->getDesc(); 2288 unsigned NumOps = MCID.getNumOperands(); 2289 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2290 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2291 unsigned JTI = JTOP.getIndex(); 2292 assert(JTI < JT.size()); 2293 2294 // We prefer if target blocks for the jump table come after the jump 2295 // instruction so we can use TB[BH]. Loop through the target blocks 2296 // and try to adjust them such that that's true. 2297 int JTNumber = MI->getParent()->getNumber(); 2298 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2299 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2300 MachineBasicBlock *MBB = JTBBs[j]; 2301 int DTNumber = MBB->getNumber(); 2302 2303 if (DTNumber < JTNumber) { 2304 // The destination precedes the switch. Try to move the block forward 2305 // so we have a positive offset. 2306 MachineBasicBlock *NewBB = 2307 adjustJTTargetBlockForward(MBB, MI->getParent()); 2308 if (NewBB) 2309 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2310 MadeChange = true; 2311 } 2312 } 2313 } 2314 2315 return MadeChange; 2316 } 2317 2318 MachineBasicBlock *ARMConstantIslands:: 2319 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2320 // If the destination block is terminated by an unconditional branch, 2321 // try to move it; otherwise, create a new block following the jump 2322 // table that branches back to the actual target. This is a very simple 2323 // heuristic. FIXME: We can definitely improve it. 2324 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2325 SmallVector<MachineOperand, 4> Cond; 2326 SmallVector<MachineOperand, 4> CondPrior; 2327 MachineFunction::iterator BBi = BB->getIterator(); 2328 MachineFunction::iterator OldPrior = std::prev(BBi); 2329 2330 // If the block terminator isn't analyzable, don't try to move the block 2331 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2332 2333 // If the block ends in an unconditional branch, move it. The prior block 2334 // has to have an analyzable terminator for us to move this one. Be paranoid 2335 // and make sure we're not trying to move the entry block of the function. 2336 if (!B && Cond.empty() && BB != &MF->front() && 2337 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2338 BB->moveAfter(JTBB); 2339 OldPrior->updateTerminator(); 2340 BB->updateTerminator(); 2341 // Update numbering to account for the block being moved. 2342 MF->RenumberBlocks(); 2343 ++NumJTMoved; 2344 return nullptr; 2345 } 2346 2347 // Create a new MBB for the code after the jump BB. 2348 MachineBasicBlock *NewBB = 2349 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2350 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2351 MF->insert(MBBI, NewBB); 2352 2353 // Add an unconditional branch from NewBB to BB. 2354 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2355 // correspond directly to anything in the source. 2356 if (isThumb2) 2357 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2358 .addMBB(BB) 2359 .add(predOps(ARMCC::AL)); 2360 else 2361 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2362 .addMBB(BB) 2363 .add(predOps(ARMCC::AL)); 2364 2365 // Update internal data structures to account for the newly inserted MBB. 2366 MF->RenumberBlocks(NewBB); 2367 2368 // Update the CFG. 2369 NewBB->addSuccessor(BB); 2370 JTBB->replaceSuccessor(BB, NewBB); 2371 2372 ++NumJTInserted; 2373 return NewBB; 2374 } 2375 2376 /// createARMConstantIslandPass - returns an instance of the constpool 2377 /// island pass. 2378 FunctionPass *llvm::createARMConstantIslandPass() { 2379 return new ARMConstantIslands(); 2380 } 2381 2382 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2383 false, false) 2384