1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "MCTargetDesc/ARMAddressingModes.h" 20 #include "Thumb2InstrInfo.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/Format.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <algorithm> 37 using namespace llvm; 38 39 #define DEBUG_TYPE "arm-cp-islands" 40 41 STATISTIC(NumCPEs, "Number of constpool entries"); 42 STATISTIC(NumSplit, "Number of uncond branches inserted"); 43 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 44 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 45 STATISTIC(NumTBs, "Number of table branches generated"); 46 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 47 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 48 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 49 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 50 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 51 52 53 static cl::opt<bool> 54 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 55 cl::desc("Adjust basic block layout to better use TB[BH]")); 56 57 static cl::opt<unsigned> 58 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 59 cl::desc("The max number of iteration for converge")); 60 61 static cl::opt<bool> SynthesizeThumb1TBB( 62 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 63 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 64 "equivalent to the TBB/TBH instructions")); 65 66 namespace { 67 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 68 /// requires constant pool entries to be scattered among the instructions 69 /// inside a function. To do this, it completely ignores the normal LLVM 70 /// constant pool; instead, it places constants wherever it feels like with 71 /// special instructions. 72 /// 73 /// The terminology used in this pass includes: 74 /// Islands - Clumps of constants placed in the function. 75 /// Water - Potential places where an island could be formed. 76 /// CPE - A constant pool entry that has been placed somewhere, which 77 /// tracks a list of users. 78 class ARMConstantIslands : public MachineFunctionPass { 79 80 std::vector<BasicBlockInfo> BBInfo; 81 82 /// WaterList - A sorted list of basic blocks where islands could be placed 83 /// (i.e. blocks that don't fall through to the following block, due 84 /// to a return, unreachable, or unconditional branch). 85 std::vector<MachineBasicBlock*> WaterList; 86 87 /// NewWaterList - The subset of WaterList that was created since the 88 /// previous iteration by inserting unconditional branches. 89 SmallSet<MachineBasicBlock*, 4> NewWaterList; 90 91 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 92 93 /// CPUser - One user of a constant pool, keeping the machine instruction 94 /// pointer, the constant pool being referenced, and the max displacement 95 /// allowed from the instruction to the CP. The HighWaterMark records the 96 /// highest basic block where a new CPEntry can be placed. To ensure this 97 /// pass terminates, the CP entries are initially placed at the end of the 98 /// function and then move monotonically to lower addresses. The 99 /// exception to this rule is when the current CP entry for a particular 100 /// CPUser is out of range, but there is another CP entry for the same 101 /// constant value in range. We want to use the existing in-range CP 102 /// entry, but if it later moves out of range, the search for new water 103 /// should resume where it left off. The HighWaterMark is used to record 104 /// that point. 105 struct CPUser { 106 MachineInstr *MI; 107 MachineInstr *CPEMI; 108 MachineBasicBlock *HighWaterMark; 109 unsigned MaxDisp; 110 bool NegOk; 111 bool IsSoImm; 112 bool KnownAlignment; 113 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 114 bool neg, bool soimm) 115 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 116 KnownAlignment(false) { 117 HighWaterMark = CPEMI->getParent(); 118 } 119 /// getMaxDisp - Returns the maximum displacement supported by MI. 120 /// Correct for unknown alignment. 121 /// Conservatively subtract 2 bytes to handle weird alignment effects. 122 unsigned getMaxDisp() const { 123 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 124 } 125 }; 126 127 /// CPUsers - Keep track of all of the machine instructions that use various 128 /// constant pools and their max displacement. 129 std::vector<CPUser> CPUsers; 130 131 /// CPEntry - One per constant pool entry, keeping the machine instruction 132 /// pointer, the constpool index, and the number of CPUser's which 133 /// reference this entry. 134 struct CPEntry { 135 MachineInstr *CPEMI; 136 unsigned CPI; 137 unsigned RefCount; 138 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 139 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 140 }; 141 142 /// CPEntries - Keep track of all of the constant pool entry machine 143 /// instructions. For each original constpool index (i.e. those that existed 144 /// upon entry to this pass), it keeps a vector of entries. Original 145 /// elements are cloned as we go along; the clones are put in the vector of 146 /// the original element, but have distinct CPIs. 147 /// 148 /// The first half of CPEntries contains generic constants, the second half 149 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 150 /// which vector it will be in here. 151 std::vector<std::vector<CPEntry> > CPEntries; 152 153 /// Maps a JT index to the offset in CPEntries containing copies of that 154 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 155 DenseMap<int, int> JumpTableEntryIndices; 156 157 /// Maps a JT index to the LEA that actually uses the index to calculate its 158 /// base address. 159 DenseMap<int, int> JumpTableUserIndices; 160 161 /// ImmBranch - One per immediate branch, keeping the machine instruction 162 /// pointer, conditional or unconditional, the max displacement, 163 /// and (if isCond is true) the corresponding unconditional branch 164 /// opcode. 165 struct ImmBranch { 166 MachineInstr *MI; 167 unsigned MaxDisp : 31; 168 bool isCond : 1; 169 unsigned UncondBr; 170 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 171 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 172 }; 173 174 /// ImmBranches - Keep track of all the immediate branch instructions. 175 /// 176 std::vector<ImmBranch> ImmBranches; 177 178 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 179 /// 180 SmallVector<MachineInstr*, 4> PushPopMIs; 181 182 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 183 SmallVector<MachineInstr*, 4> T2JumpTables; 184 185 /// HasFarJump - True if any far jump instruction has been emitted during 186 /// the branch fix up pass. 187 bool HasFarJump; 188 189 MachineFunction *MF; 190 MachineConstantPool *MCP; 191 const ARMBaseInstrInfo *TII; 192 const ARMSubtarget *STI; 193 ARMFunctionInfo *AFI; 194 bool isThumb; 195 bool isThumb1; 196 bool isThumb2; 197 bool isPositionIndependentOrROPI; 198 public: 199 static char ID; 200 ARMConstantIslands() : MachineFunctionPass(ID) {} 201 202 bool runOnMachineFunction(MachineFunction &MF) override; 203 204 MachineFunctionProperties getRequiredProperties() const override { 205 return MachineFunctionProperties().set( 206 MachineFunctionProperties::Property::NoVRegs); 207 } 208 209 StringRef getPassName() const override { 210 return "ARM constant island placement and branch shortening pass"; 211 } 212 213 private: 214 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 215 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 216 bool BBHasFallthrough(MachineBasicBlock *MBB); 217 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 218 unsigned getCPELogAlign(const MachineInstr *CPEMI); 219 void scanFunctionJumpTables(); 220 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 221 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 222 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 223 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 224 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 225 unsigned getCombinedIndex(const MachineInstr *CPEMI); 226 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 227 bool findAvailableWater(CPUser&U, unsigned UserOffset, 228 water_iterator &WaterIter, bool CloserWater); 229 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 230 MachineBasicBlock *&NewMBB); 231 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 232 void removeDeadCPEMI(MachineInstr *CPEMI); 233 bool removeUnusedCPEntries(); 234 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 235 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 236 bool DoDump = false); 237 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 238 CPUser &U, unsigned &Growth); 239 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 240 bool fixupImmediateBr(ImmBranch &Br); 241 bool fixupConditionalBr(ImmBranch &Br); 242 bool fixupUnconditionalBr(ImmBranch &Br); 243 bool undoLRSpillRestore(); 244 bool optimizeThumb2Instructions(); 245 bool optimizeThumb2Branches(); 246 bool reorderThumb2JumpTables(); 247 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 248 unsigned &DeadSize, bool &CanDeleteLEA, 249 bool &BaseRegKill); 250 bool optimizeThumb2JumpTables(); 251 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 252 MachineBasicBlock *JTBB); 253 254 unsigned getOffsetOf(MachineInstr *MI) const; 255 unsigned getUserOffset(CPUser&) const; 256 void dumpBBs(); 257 void verify(); 258 259 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 260 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 261 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 262 const CPUser &U) { 263 return isOffsetInRange(UserOffset, TrialOffset, 264 U.getMaxDisp(), U.NegOk, U.IsSoImm); 265 } 266 }; 267 char ARMConstantIslands::ID = 0; 268 } 269 270 /// verify - check BBOffsets, BBSizes, alignment of islands 271 void ARMConstantIslands::verify() { 272 #ifndef NDEBUG 273 assert(std::is_sorted(MF->begin(), MF->end(), 274 [this](const MachineBasicBlock &LHS, 275 const MachineBasicBlock &RHS) { 276 return BBInfo[LHS.getNumber()].postOffset() < 277 BBInfo[RHS.getNumber()].postOffset(); 278 })); 279 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 280 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 281 CPUser &U = CPUsers[i]; 282 unsigned UserOffset = getUserOffset(U); 283 // Verify offset using the real max displacement without the safety 284 // adjustment. 285 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 286 /* DoDump = */ true)) { 287 DEBUG(dbgs() << "OK\n"); 288 continue; 289 } 290 DEBUG(dbgs() << "Out of range.\n"); 291 dumpBBs(); 292 DEBUG(MF->dump()); 293 llvm_unreachable("Constant pool entry out of range!"); 294 } 295 #endif 296 } 297 298 /// print block size and offset information - debugging 299 void ARMConstantIslands::dumpBBs() { 300 DEBUG({ 301 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 302 const BasicBlockInfo &BBI = BBInfo[J]; 303 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 304 << " kb=" << unsigned(BBI.KnownBits) 305 << " ua=" << unsigned(BBI.Unalign) 306 << " pa=" << unsigned(BBI.PostAlign) 307 << format(" size=%#x\n", BBInfo[J].Size); 308 } 309 }); 310 } 311 312 /// createARMConstantIslandPass - returns an instance of the constpool 313 /// island pass. 314 FunctionPass *llvm::createARMConstantIslandPass() { 315 return new ARMConstantIslands(); 316 } 317 318 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 319 MF = &mf; 320 MCP = mf.getConstantPool(); 321 322 DEBUG(dbgs() << "***** ARMConstantIslands: " 323 << MCP->getConstants().size() << " CP entries, aligned to " 324 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 325 326 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 327 TII = STI->getInstrInfo(); 328 isPositionIndependentOrROPI = 329 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 330 AFI = MF->getInfo<ARMFunctionInfo>(); 331 332 isThumb = AFI->isThumbFunction(); 333 isThumb1 = AFI->isThumb1OnlyFunction(); 334 isThumb2 = AFI->isThumb2Function(); 335 336 HasFarJump = false; 337 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 338 339 // This pass invalidates liveness information when it splits basic blocks. 340 MF->getRegInfo().invalidateLiveness(); 341 342 // Renumber all of the machine basic blocks in the function, guaranteeing that 343 // the numbers agree with the position of the block in the function. 344 MF->RenumberBlocks(); 345 346 // Try to reorder and otherwise adjust the block layout to make good use 347 // of the TB[BH] instructions. 348 bool MadeChange = false; 349 if (GenerateTBB && AdjustJumpTableBlocks) { 350 scanFunctionJumpTables(); 351 MadeChange |= reorderThumb2JumpTables(); 352 // Data is out of date, so clear it. It'll be re-computed later. 353 T2JumpTables.clear(); 354 // Blocks may have shifted around. Keep the numbering up to date. 355 MF->RenumberBlocks(); 356 } 357 358 // Perform the initial placement of the constant pool entries. To start with, 359 // we put them all at the end of the function. 360 std::vector<MachineInstr*> CPEMIs; 361 if (!MCP->isEmpty()) 362 doInitialConstPlacement(CPEMIs); 363 364 if (MF->getJumpTableInfo()) 365 doInitialJumpTablePlacement(CPEMIs); 366 367 /// The next UID to take is the first unused one. 368 AFI->initPICLabelUId(CPEMIs.size()); 369 370 // Do the initial scan of the function, building up information about the 371 // sizes of each block, the location of all the water, and finding all of the 372 // constant pool users. 373 initializeFunctionInfo(CPEMIs); 374 CPEMIs.clear(); 375 DEBUG(dumpBBs()); 376 377 // Functions with jump tables need an alignment of 4 because they use the ADR 378 // instruction, which aligns the PC to 4 bytes before adding an offset. 379 if (!T2JumpTables.empty()) 380 MF->ensureAlignment(2); 381 382 /// Remove dead constant pool entries. 383 MadeChange |= removeUnusedCPEntries(); 384 385 // Iteratively place constant pool entries and fix up branches until there 386 // is no change. 387 unsigned NoCPIters = 0, NoBRIters = 0; 388 while (true) { 389 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 390 bool CPChange = false; 391 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 392 // For most inputs, it converges in no more than 5 iterations. 393 // If it doesn't end in 10, the input may have huge BB or many CPEs. 394 // In this case, we will try different heuristics. 395 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 396 if (CPChange && ++NoCPIters > CPMaxIteration) 397 report_fatal_error("Constant Island pass failed to converge!"); 398 DEBUG(dumpBBs()); 399 400 // Clear NewWaterList now. If we split a block for branches, it should 401 // appear as "new water" for the next iteration of constant pool placement. 402 NewWaterList.clear(); 403 404 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 405 bool BRChange = false; 406 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 407 BRChange |= fixupImmediateBr(ImmBranches[i]); 408 if (BRChange && ++NoBRIters > 30) 409 report_fatal_error("Branch Fix Up pass failed to converge!"); 410 DEBUG(dumpBBs()); 411 412 if (!CPChange && !BRChange) 413 break; 414 MadeChange = true; 415 } 416 417 // Shrink 32-bit Thumb2 load and store instructions. 418 if (isThumb2 && !STI->prefers32BitThumb()) 419 MadeChange |= optimizeThumb2Instructions(); 420 421 // Shrink 32-bit branch instructions. 422 if (isThumb && STI->hasV8MBaselineOps()) 423 MadeChange |= optimizeThumb2Branches(); 424 425 // Optimize jump tables using TBB / TBH. 426 if (GenerateTBB) 427 MadeChange |= optimizeThumb2JumpTables(); 428 429 // After a while, this might be made debug-only, but it is not expensive. 430 verify(); 431 432 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 433 // undo the spill / restore of LR if possible. 434 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 435 MadeChange |= undoLRSpillRestore(); 436 437 // Save the mapping between original and cloned constpool entries. 438 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 439 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 440 const CPEntry & CPE = CPEntries[i][j]; 441 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 442 AFI->recordCPEClone(i, CPE.CPI); 443 } 444 } 445 446 DEBUG(dbgs() << '\n'; dumpBBs()); 447 448 BBInfo.clear(); 449 WaterList.clear(); 450 CPUsers.clear(); 451 CPEntries.clear(); 452 JumpTableEntryIndices.clear(); 453 JumpTableUserIndices.clear(); 454 ImmBranches.clear(); 455 PushPopMIs.clear(); 456 T2JumpTables.clear(); 457 458 return MadeChange; 459 } 460 461 /// \brief Perform the initial placement of the regular constant pool entries. 462 /// To start with, we put them all at the end of the function. 463 void 464 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 465 // Create the basic block to hold the CPE's. 466 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 467 MF->push_back(BB); 468 469 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 470 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 471 472 // Mark the basic block as required by the const-pool. 473 BB->setAlignment(MaxAlign); 474 475 // The function needs to be as aligned as the basic blocks. The linker may 476 // move functions around based on their alignment. 477 MF->ensureAlignment(BB->getAlignment()); 478 479 // Order the entries in BB by descending alignment. That ensures correct 480 // alignment of all entries as long as BB is sufficiently aligned. Keep 481 // track of the insertion point for each alignment. We are going to bucket 482 // sort the entries as they are created. 483 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 484 485 // Add all of the constants from the constant pool to the end block, use an 486 // identity mapping of CPI's to CPE's. 487 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 488 489 const DataLayout &TD = MF->getDataLayout(); 490 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 491 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 492 assert(Size >= 4 && "Too small constant pool entry"); 493 unsigned Align = CPs[i].getAlignment(); 494 assert(isPowerOf2_32(Align) && "Invalid alignment"); 495 // Verify that all constant pool entries are a multiple of their alignment. 496 // If not, we would have to pad them out so that instructions stay aligned. 497 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 498 499 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 500 unsigned LogAlign = Log2_32(Align); 501 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 502 MachineInstr *CPEMI = 503 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 504 .addImm(i).addConstantPoolIndex(i).addImm(Size); 505 CPEMIs.push_back(CPEMI); 506 507 // Ensure that future entries with higher alignment get inserted before 508 // CPEMI. This is bucket sort with iterators. 509 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 510 if (InsPoint[a] == InsAt) 511 InsPoint[a] = CPEMI; 512 513 // Add a new CPEntry, but no corresponding CPUser yet. 514 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 515 ++NumCPEs; 516 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 517 << Size << ", align = " << Align <<'\n'); 518 } 519 DEBUG(BB->dump()); 520 } 521 522 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH 523 /// instructions can be made more efficient if the jump table immediately 524 /// follows the instruction, it's best to place them immediately next to their 525 /// jumps to begin with. In almost all cases they'll never be moved from that 526 /// position. 527 void ARMConstantIslands::doInitialJumpTablePlacement( 528 std::vector<MachineInstr *> &CPEMIs) { 529 unsigned i = CPEntries.size(); 530 auto MJTI = MF->getJumpTableInfo(); 531 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 532 533 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 534 for (MachineBasicBlock &MBB : *MF) { 535 auto MI = MBB.getLastNonDebugInstr(); 536 if (MI == MBB.end()) 537 continue; 538 539 unsigned JTOpcode; 540 switch (MI->getOpcode()) { 541 default: 542 continue; 543 case ARM::BR_JTadd: 544 case ARM::BR_JTr: 545 case ARM::tBR_JTr: 546 case ARM::BR_JTm: 547 JTOpcode = ARM::JUMPTABLE_ADDRS; 548 break; 549 case ARM::t2BR_JT: 550 JTOpcode = ARM::JUMPTABLE_INSTS; 551 break; 552 case ARM::tTBB_JT: 553 case ARM::t2TBB_JT: 554 JTOpcode = ARM::JUMPTABLE_TBB; 555 break; 556 case ARM::tTBH_JT: 557 case ARM::t2TBH_JT: 558 JTOpcode = ARM::JUMPTABLE_TBH; 559 break; 560 } 561 562 unsigned NumOps = MI->getDesc().getNumOperands(); 563 MachineOperand JTOp = 564 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 565 unsigned JTI = JTOp.getIndex(); 566 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 567 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 568 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 569 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 570 DebugLoc(), TII->get(JTOpcode)) 571 .addImm(i++) 572 .addJumpTableIndex(JTI) 573 .addImm(Size); 574 CPEMIs.push_back(CPEMI); 575 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 576 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 577 if (!LastCorrectlyNumberedBB) 578 LastCorrectlyNumberedBB = &MBB; 579 } 580 581 // If we did anything then we need to renumber the subsequent blocks. 582 if (LastCorrectlyNumberedBB) 583 MF->RenumberBlocks(LastCorrectlyNumberedBB); 584 } 585 586 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 587 /// into the block immediately after it. 588 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 589 // Get the next machine basic block in the function. 590 MachineFunction::iterator MBBI = MBB->getIterator(); 591 // Can't fall off end of function. 592 if (std::next(MBBI) == MBB->getParent()->end()) 593 return false; 594 595 MachineBasicBlock *NextBB = &*std::next(MBBI); 596 if (!MBB->isSuccessor(NextBB)) 597 return false; 598 599 // Try to analyze the end of the block. A potential fallthrough may already 600 // have an unconditional branch for whatever reason. 601 MachineBasicBlock *TBB, *FBB; 602 SmallVector<MachineOperand, 4> Cond; 603 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 604 return TooDifficult || FBB == nullptr; 605 } 606 607 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 608 /// look up the corresponding CPEntry. 609 ARMConstantIslands::CPEntry 610 *ARMConstantIslands::findConstPoolEntry(unsigned CPI, 611 const MachineInstr *CPEMI) { 612 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 613 // Number of entries per constpool index should be small, just do a 614 // linear search. 615 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 616 if (CPEs[i].CPEMI == CPEMI) 617 return &CPEs[i]; 618 } 619 return nullptr; 620 } 621 622 /// getCPELogAlign - Returns the required alignment of the constant pool entry 623 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 624 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 625 switch (CPEMI->getOpcode()) { 626 case ARM::CONSTPOOL_ENTRY: 627 break; 628 case ARM::JUMPTABLE_TBB: 629 return 0; 630 case ARM::JUMPTABLE_TBH: 631 case ARM::JUMPTABLE_INSTS: 632 return 1; 633 case ARM::JUMPTABLE_ADDRS: 634 return 2; 635 default: 636 llvm_unreachable("unknown constpool entry kind"); 637 } 638 639 unsigned CPI = getCombinedIndex(CPEMI); 640 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 641 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 642 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 643 return Log2_32(Align); 644 } 645 646 /// scanFunctionJumpTables - Do a scan of the function, building up 647 /// information about the sizes of each block and the locations of all 648 /// the jump tables. 649 void ARMConstantIslands::scanFunctionJumpTables() { 650 for (MachineBasicBlock &MBB : *MF) { 651 for (MachineInstr &I : MBB) 652 if (I.isBranch() && 653 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 654 T2JumpTables.push_back(&I); 655 } 656 } 657 658 /// initializeFunctionInfo - Do the initial scan of the function, building up 659 /// information about the sizes of each block, the location of all the water, 660 /// and finding all of the constant pool users. 661 void ARMConstantIslands:: 662 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 663 664 BBInfo = computeAllBlockSizes(MF); 665 666 // The known bits of the entry block offset are determined by the function 667 // alignment. 668 BBInfo.front().KnownBits = MF->getAlignment(); 669 670 // Compute block offsets and known bits. 671 adjustBBOffsetsAfter(&MF->front()); 672 673 // Now go back through the instructions and build up our data structures. 674 for (MachineBasicBlock &MBB : *MF) { 675 // If this block doesn't fall through into the next MBB, then this is 676 // 'water' that a constant pool island could be placed. 677 if (!BBHasFallthrough(&MBB)) 678 WaterList.push_back(&MBB); 679 680 for (MachineInstr &I : MBB) { 681 if (I.isDebugValue()) 682 continue; 683 684 unsigned Opc = I.getOpcode(); 685 if (I.isBranch()) { 686 bool isCond = false; 687 unsigned Bits = 0; 688 unsigned Scale = 1; 689 int UOpc = Opc; 690 switch (Opc) { 691 default: 692 continue; // Ignore other JT branches 693 case ARM::t2BR_JT: 694 case ARM::tBR_JTr: 695 T2JumpTables.push_back(&I); 696 continue; // Does not get an entry in ImmBranches 697 case ARM::Bcc: 698 isCond = true; 699 UOpc = ARM::B; 700 LLVM_FALLTHROUGH; 701 case ARM::B: 702 Bits = 24; 703 Scale = 4; 704 break; 705 case ARM::tBcc: 706 isCond = true; 707 UOpc = ARM::tB; 708 Bits = 8; 709 Scale = 2; 710 break; 711 case ARM::tB: 712 Bits = 11; 713 Scale = 2; 714 break; 715 case ARM::t2Bcc: 716 isCond = true; 717 UOpc = ARM::t2B; 718 Bits = 20; 719 Scale = 2; 720 break; 721 case ARM::t2B: 722 Bits = 24; 723 Scale = 2; 724 break; 725 } 726 727 // Record this immediate branch. 728 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 729 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 730 } 731 732 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 733 PushPopMIs.push_back(&I); 734 735 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 736 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 737 Opc == ARM::JUMPTABLE_TBH) 738 continue; 739 740 // Scan the instructions for constant pool operands. 741 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 742 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 743 // We found one. The addressing mode tells us the max displacement 744 // from the PC that this instruction permits. 745 746 // Basic size info comes from the TSFlags field. 747 unsigned Bits = 0; 748 unsigned Scale = 1; 749 bool NegOk = false; 750 bool IsSoImm = false; 751 752 switch (Opc) { 753 default: 754 llvm_unreachable("Unknown addressing mode for CP reference!"); 755 756 // Taking the address of a CP entry. 757 case ARM::LEApcrel: 758 case ARM::LEApcrelJT: 759 // This takes a SoImm, which is 8 bit immediate rotated. We'll 760 // pretend the maximum offset is 255 * 4. Since each instruction 761 // 4 byte wide, this is always correct. We'll check for other 762 // displacements that fits in a SoImm as well. 763 Bits = 8; 764 Scale = 4; 765 NegOk = true; 766 IsSoImm = true; 767 break; 768 case ARM::t2LEApcrel: 769 case ARM::t2LEApcrelJT: 770 Bits = 12; 771 NegOk = true; 772 break; 773 case ARM::tLEApcrel: 774 case ARM::tLEApcrelJT: 775 Bits = 8; 776 Scale = 4; 777 break; 778 779 case ARM::LDRBi12: 780 case ARM::LDRi12: 781 case ARM::LDRcp: 782 case ARM::t2LDRpci: 783 case ARM::t2LDRHpci: 784 Bits = 12; // +-offset_12 785 NegOk = true; 786 break; 787 788 case ARM::tLDRpci: 789 Bits = 8; 790 Scale = 4; // +(offset_8*4) 791 break; 792 793 case ARM::VLDRD: 794 case ARM::VLDRS: 795 Bits = 8; 796 Scale = 4; // +-(offset_8*4) 797 NegOk = true; 798 break; 799 800 case ARM::tLDRHi: 801 Bits = 5; 802 Scale = 2; // +(offset_5*2) 803 break; 804 } 805 806 // Remember that this is a user of a CP entry. 807 unsigned CPI = I.getOperand(op).getIndex(); 808 if (I.getOperand(op).isJTI()) { 809 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 810 CPI = JumpTableEntryIndices[CPI]; 811 } 812 813 MachineInstr *CPEMI = CPEMIs[CPI]; 814 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 815 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 816 817 // Increment corresponding CPEntry reference count. 818 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 819 assert(CPE && "Cannot find a corresponding CPEntry!"); 820 CPE->RefCount++; 821 822 // Instructions can only use one CP entry, don't bother scanning the 823 // rest of the operands. 824 break; 825 } 826 } 827 } 828 } 829 830 /// getOffsetOf - Return the current offset of the specified machine instruction 831 /// from the start of the function. This offset changes as stuff is moved 832 /// around inside the function. 833 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 834 MachineBasicBlock *MBB = MI->getParent(); 835 836 // The offset is composed of two things: the sum of the sizes of all MBB's 837 // before this instruction's block, and the offset from the start of the block 838 // it is in. 839 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 840 841 // Sum instructions before MI in MBB. 842 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 843 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 844 Offset += TII->getInstSizeInBytes(*I); 845 } 846 return Offset; 847 } 848 849 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 850 /// ID. 851 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 852 const MachineBasicBlock *RHS) { 853 return LHS->getNumber() < RHS->getNumber(); 854 } 855 856 /// updateForInsertedWaterBlock - When a block is newly inserted into the 857 /// machine function, it upsets all of the block numbers. Renumber the blocks 858 /// and update the arrays that parallel this numbering. 859 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 860 // Renumber the MBB's to keep them consecutive. 861 NewBB->getParent()->RenumberBlocks(NewBB); 862 863 // Insert an entry into BBInfo to align it properly with the (newly 864 // renumbered) block numbers. 865 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 866 867 // Next, update WaterList. Specifically, we need to add NewMBB as having 868 // available water after it. 869 water_iterator IP = 870 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 871 CompareMBBNumbers); 872 WaterList.insert(IP, NewBB); 873 } 874 875 876 /// Split the basic block containing MI into two blocks, which are joined by 877 /// an unconditional branch. Update data structures and renumber blocks to 878 /// account for this change and returns the newly created block. 879 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 880 MachineBasicBlock *OrigBB = MI->getParent(); 881 882 // Create a new MBB for the code after the OrigBB. 883 MachineBasicBlock *NewBB = 884 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 885 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 886 MF->insert(MBBI, NewBB); 887 888 // Splice the instructions starting with MI over to NewBB. 889 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 890 891 // Add an unconditional branch from OrigBB to NewBB. 892 // Note the new unconditional branch is not being recorded. 893 // There doesn't seem to be meaningful DebugInfo available; this doesn't 894 // correspond to anything in the source. 895 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 896 if (!isThumb) 897 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 898 else 899 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 900 .addImm(ARMCC::AL).addReg(0); 901 ++NumSplit; 902 903 // Update the CFG. All succs of OrigBB are now succs of NewBB. 904 NewBB->transferSuccessors(OrigBB); 905 906 // OrigBB branches to NewBB. 907 OrigBB->addSuccessor(NewBB); 908 909 // Update internal data structures to account for the newly inserted MBB. 910 // This is almost the same as updateForInsertedWaterBlock, except that 911 // the Water goes after OrigBB, not NewBB. 912 MF->RenumberBlocks(NewBB); 913 914 // Insert an entry into BBInfo to align it properly with the (newly 915 // renumbered) block numbers. 916 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 917 918 // Next, update WaterList. Specifically, we need to add OrigMBB as having 919 // available water after it (but not if it's already there, which happens 920 // when splitting before a conditional branch that is followed by an 921 // unconditional branch - in that case we want to insert NewBB). 922 water_iterator IP = 923 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 924 CompareMBBNumbers); 925 MachineBasicBlock* WaterBB = *IP; 926 if (WaterBB == OrigBB) 927 WaterList.insert(std::next(IP), NewBB); 928 else 929 WaterList.insert(IP, OrigBB); 930 NewWaterList.insert(OrigBB); 931 932 // Figure out how large the OrigBB is. As the first half of the original 933 // block, it cannot contain a tablejump. The size includes 934 // the new jump we added. (It should be possible to do this without 935 // recounting everything, but it's very confusing, and this is rarely 936 // executed.) 937 computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]); 938 939 // Figure out how large the NewMBB is. As the second half of the original 940 // block, it may contain a tablejump. 941 computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]); 942 943 // All BBOffsets following these blocks must be modified. 944 adjustBBOffsetsAfter(OrigBB); 945 946 return NewBB; 947 } 948 949 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 950 /// displacement computation. Update U.KnownAlignment to match its current 951 /// basic block location. 952 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 953 unsigned UserOffset = getOffsetOf(U.MI); 954 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 955 unsigned KnownBits = BBI.internalKnownBits(); 956 957 // The value read from PC is offset from the actual instruction address. 958 UserOffset += (isThumb ? 4 : 8); 959 960 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 961 // Make sure U.getMaxDisp() returns a constrained range. 962 U.KnownAlignment = (KnownBits >= 2); 963 964 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 965 // purposes of the displacement computation; compensate for that here. 966 // For unknown alignments, getMaxDisp() constrains the range instead. 967 if (isThumb && U.KnownAlignment) 968 UserOffset &= ~3u; 969 970 return UserOffset; 971 } 972 973 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 974 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 975 /// constant pool entry). 976 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 977 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 978 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 979 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 980 unsigned TrialOffset, unsigned MaxDisp, 981 bool NegativeOK, bool IsSoImm) { 982 if (UserOffset <= TrialOffset) { 983 // User before the Trial. 984 if (TrialOffset - UserOffset <= MaxDisp) 985 return true; 986 // FIXME: Make use full range of soimm values. 987 } else if (NegativeOK) { 988 if (UserOffset - TrialOffset <= MaxDisp) 989 return true; 990 // FIXME: Make use full range of soimm values. 991 } 992 return false; 993 } 994 995 /// isWaterInRange - Returns true if a CPE placed after the specified 996 /// Water (a basic block) will be in range for the specific MI. 997 /// 998 /// Compute how much the function will grow by inserting a CPE after Water. 999 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1000 MachineBasicBlock* Water, CPUser &U, 1001 unsigned &Growth) { 1002 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1003 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1004 unsigned NextBlockOffset, NextBlockAlignment; 1005 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1006 if (++NextBlock == MF->end()) { 1007 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1008 NextBlockAlignment = 0; 1009 } else { 1010 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1011 NextBlockAlignment = NextBlock->getAlignment(); 1012 } 1013 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1014 unsigned CPEEnd = CPEOffset + Size; 1015 1016 // The CPE may be able to hide in the alignment padding before the next 1017 // block. It may also cause more padding to be required if it is more aligned 1018 // that the next block. 1019 if (CPEEnd > NextBlockOffset) { 1020 Growth = CPEEnd - NextBlockOffset; 1021 // Compute the padding that would go at the end of the CPE to align the next 1022 // block. 1023 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1024 1025 // If the CPE is to be inserted before the instruction, that will raise 1026 // the offset of the instruction. Also account for unknown alignment padding 1027 // in blocks between CPE and the user. 1028 if (CPEOffset < UserOffset) 1029 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1030 } else 1031 // CPE fits in existing padding. 1032 Growth = 0; 1033 1034 return isOffsetInRange(UserOffset, CPEOffset, U); 1035 } 1036 1037 /// isCPEntryInRange - Returns true if the distance between specific MI and 1038 /// specific ConstPool entry instruction can fit in MI's displacement field. 1039 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1040 MachineInstr *CPEMI, unsigned MaxDisp, 1041 bool NegOk, bool DoDump) { 1042 unsigned CPEOffset = getOffsetOf(CPEMI); 1043 1044 if (DoDump) { 1045 DEBUG({ 1046 unsigned Block = MI->getParent()->getNumber(); 1047 const BasicBlockInfo &BBI = BBInfo[Block]; 1048 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1049 << " max delta=" << MaxDisp 1050 << format(" insn address=%#x", UserOffset) 1051 << " in BB#" << Block << ": " 1052 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1053 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1054 int(CPEOffset-UserOffset)); 1055 }); 1056 } 1057 1058 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1059 } 1060 1061 #ifndef NDEBUG 1062 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1063 /// unconditionally branches to its only successor. 1064 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1065 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1066 return false; 1067 1068 MachineBasicBlock *Succ = *MBB->succ_begin(); 1069 MachineBasicBlock *Pred = *MBB->pred_begin(); 1070 MachineInstr *PredMI = &Pred->back(); 1071 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1072 || PredMI->getOpcode() == ARM::t2B) 1073 return PredMI->getOperand(0).getMBB() == Succ; 1074 return false; 1075 } 1076 #endif // NDEBUG 1077 1078 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1079 unsigned BBNum = BB->getNumber(); 1080 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1081 // Get the offset and known bits at the end of the layout predecessor. 1082 // Include the alignment of the current block. 1083 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1084 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1085 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1086 1087 // This is where block i begins. Stop if the offset is already correct, 1088 // and we have updated 2 blocks. This is the maximum number of blocks 1089 // changed before calling this function. 1090 if (i > BBNum + 2 && 1091 BBInfo[i].Offset == Offset && 1092 BBInfo[i].KnownBits == KnownBits) 1093 break; 1094 1095 BBInfo[i].Offset = Offset; 1096 BBInfo[i].KnownBits = KnownBits; 1097 } 1098 } 1099 1100 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1101 /// and instruction CPEMI, and decrement its refcount. If the refcount 1102 /// becomes 0 remove the entry and instruction. Returns true if we removed 1103 /// the entry, false if we didn't. 1104 1105 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1106 MachineInstr *CPEMI) { 1107 // Find the old entry. Eliminate it if it is no longer used. 1108 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1109 assert(CPE && "Unexpected!"); 1110 if (--CPE->RefCount == 0) { 1111 removeDeadCPEMI(CPEMI); 1112 CPE->CPEMI = nullptr; 1113 --NumCPEs; 1114 return true; 1115 } 1116 return false; 1117 } 1118 1119 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1120 if (CPEMI->getOperand(1).isCPI()) 1121 return CPEMI->getOperand(1).getIndex(); 1122 1123 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1124 } 1125 1126 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1127 /// if not, see if an in-range clone of the CPE is in range, and if so, 1128 /// change the data structures so the user references the clone. Returns: 1129 /// 0 = no existing entry found 1130 /// 1 = entry found, and there were no code insertions or deletions 1131 /// 2 = entry found, and there were code insertions or deletions 1132 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1133 { 1134 MachineInstr *UserMI = U.MI; 1135 MachineInstr *CPEMI = U.CPEMI; 1136 1137 // Check to see if the CPE is already in-range. 1138 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1139 true)) { 1140 DEBUG(dbgs() << "In range\n"); 1141 return 1; 1142 } 1143 1144 // No. Look for previously created clones of the CPE that are in range. 1145 unsigned CPI = getCombinedIndex(CPEMI); 1146 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1147 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1148 // We already tried this one 1149 if (CPEs[i].CPEMI == CPEMI) 1150 continue; 1151 // Removing CPEs can leave empty entries, skip 1152 if (CPEs[i].CPEMI == nullptr) 1153 continue; 1154 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1155 U.NegOk)) { 1156 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1157 << CPEs[i].CPI << "\n"); 1158 // Point the CPUser node to the replacement 1159 U.CPEMI = CPEs[i].CPEMI; 1160 // Change the CPI in the instruction operand to refer to the clone. 1161 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1162 if (UserMI->getOperand(j).isCPI()) { 1163 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1164 break; 1165 } 1166 // Adjust the refcount of the clone... 1167 CPEs[i].RefCount++; 1168 // ...and the original. If we didn't remove the old entry, none of the 1169 // addresses changed, so we don't need another pass. 1170 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1171 } 1172 } 1173 return 0; 1174 } 1175 1176 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1177 /// the specific unconditional branch instruction. 1178 static inline unsigned getUnconditionalBrDisp(int Opc) { 1179 switch (Opc) { 1180 case ARM::tB: 1181 return ((1<<10)-1)*2; 1182 case ARM::t2B: 1183 return ((1<<23)-1)*2; 1184 default: 1185 break; 1186 } 1187 1188 return ((1<<23)-1)*4; 1189 } 1190 1191 /// findAvailableWater - Look for an existing entry in the WaterList in which 1192 /// we can place the CPE referenced from U so it's within range of U's MI. 1193 /// Returns true if found, false if not. If it returns true, WaterIter 1194 /// is set to the WaterList entry. For Thumb, prefer water that will not 1195 /// introduce padding to water that will. To ensure that this pass 1196 /// terminates, the CPE location for a particular CPUser is only allowed to 1197 /// move to a lower address, so search backward from the end of the list and 1198 /// prefer the first water that is in range. 1199 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1200 water_iterator &WaterIter, 1201 bool CloserWater) { 1202 if (WaterList.empty()) 1203 return false; 1204 1205 unsigned BestGrowth = ~0u; 1206 // The nearest water without splitting the UserBB is right after it. 1207 // If the distance is still large (we have a big BB), then we need to split it 1208 // if we don't converge after certain iterations. This helps the following 1209 // situation to converge: 1210 // BB0: 1211 // Big BB 1212 // BB1: 1213 // Constant Pool 1214 // When a CP access is out of range, BB0 may be used as water. However, 1215 // inserting islands between BB0 and BB1 makes other accesses out of range. 1216 MachineBasicBlock *UserBB = U.MI->getParent(); 1217 unsigned MinNoSplitDisp = 1218 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1219 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1220 return false; 1221 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1222 --IP) { 1223 MachineBasicBlock* WaterBB = *IP; 1224 // Check if water is in range and is either at a lower address than the 1225 // current "high water mark" or a new water block that was created since 1226 // the previous iteration by inserting an unconditional branch. In the 1227 // latter case, we want to allow resetting the high water mark back to 1228 // this new water since we haven't seen it before. Inserting branches 1229 // should be relatively uncommon and when it does happen, we want to be 1230 // sure to take advantage of it for all the CPEs near that block, so that 1231 // we don't insert more branches than necessary. 1232 // When CloserWater is true, we try to find the lowest address after (or 1233 // equal to) user MI's BB no matter of padding growth. 1234 unsigned Growth; 1235 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1236 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1237 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1238 Growth < BestGrowth) { 1239 // This is the least amount of required padding seen so far. 1240 BestGrowth = Growth; 1241 WaterIter = IP; 1242 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1243 << " Growth=" << Growth << '\n'); 1244 1245 if (CloserWater && WaterBB == U.MI->getParent()) 1246 return true; 1247 // Keep looking unless it is perfect and we're not looking for the lowest 1248 // possible address. 1249 if (!CloserWater && BestGrowth == 0) 1250 return true; 1251 } 1252 if (IP == B) 1253 break; 1254 } 1255 return BestGrowth != ~0u; 1256 } 1257 1258 /// createNewWater - No existing WaterList entry will work for 1259 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1260 /// block is used if in range, and the conditional branch munged so control 1261 /// flow is correct. Otherwise the block is split to create a hole with an 1262 /// unconditional branch around it. In either case NewMBB is set to a 1263 /// block following which the new island can be inserted (the WaterList 1264 /// is not adjusted). 1265 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1266 unsigned UserOffset, 1267 MachineBasicBlock *&NewMBB) { 1268 CPUser &U = CPUsers[CPUserIndex]; 1269 MachineInstr *UserMI = U.MI; 1270 MachineInstr *CPEMI = U.CPEMI; 1271 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1272 MachineBasicBlock *UserMBB = UserMI->getParent(); 1273 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1274 1275 // If the block does not end in an unconditional branch already, and if the 1276 // end of the block is within range, make new water there. (The addition 1277 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1278 // Thumb2, 2 on Thumb1. 1279 if (BBHasFallthrough(UserMBB)) { 1280 // Size of branch to insert. 1281 unsigned Delta = isThumb1 ? 2 : 4; 1282 // Compute the offset where the CPE will begin. 1283 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1284 1285 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1286 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1287 << format(", expected CPE offset %#x\n", CPEOffset)); 1288 NewMBB = &*++UserMBB->getIterator(); 1289 // Add an unconditional branch from UserMBB to fallthrough block. Record 1290 // it for branch lengthening; this new branch will not get out of range, 1291 // but if the preceding conditional branch is out of range, the targets 1292 // will be exchanged, and the altered branch may be out of range, so the 1293 // machinery has to know about it. 1294 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1295 if (!isThumb) 1296 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1297 else 1298 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1299 .addImm(ARMCC::AL).addReg(0); 1300 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1301 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1302 MaxDisp, false, UncondBr)); 1303 computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]); 1304 adjustBBOffsetsAfter(UserMBB); 1305 return; 1306 } 1307 } 1308 1309 // What a big block. Find a place within the block to split it. This is a 1310 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1311 // entries are 4 bytes: if instruction I references island CPE, and 1312 // instruction I+1 references CPE', it will not work well to put CPE as far 1313 // forward as possible, since then CPE' cannot immediately follow it (that 1314 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1315 // need to create a new island. So, we make a first guess, then walk through 1316 // the instructions between the one currently being looked at and the 1317 // possible insertion point, and make sure any other instructions that 1318 // reference CPEs will be able to use the same island area; if not, we back 1319 // up the insertion point. 1320 1321 // Try to split the block so it's fully aligned. Compute the latest split 1322 // point where we can add a 4-byte branch instruction, and then align to 1323 // LogAlign which is the largest possible alignment in the function. 1324 unsigned LogAlign = MF->getAlignment(); 1325 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1326 unsigned KnownBits = UserBBI.internalKnownBits(); 1327 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1328 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1329 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1330 BaseInsertOffset)); 1331 1332 // The 4 in the following is for the unconditional branch we'll be inserting 1333 // (allows for long branch on Thumb1). Alignment of the island is handled 1334 // inside isOffsetInRange. 1335 BaseInsertOffset -= 4; 1336 1337 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1338 << " la=" << LogAlign 1339 << " kb=" << KnownBits 1340 << " up=" << UPad << '\n'); 1341 1342 // This could point off the end of the block if we've already got constant 1343 // pool entries following this block; only the last one is in the water list. 1344 // Back past any possible branches (allow for a conditional and a maximally 1345 // long unconditional). 1346 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1347 // Ensure BaseInsertOffset is larger than the offset of the instruction 1348 // following UserMI so that the loop which searches for the split point 1349 // iterates at least once. 1350 BaseInsertOffset = 1351 std::max(UserBBI.postOffset() - UPad - 8, 1352 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1353 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1354 } 1355 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1356 CPEMI->getOperand(2).getImm(); 1357 MachineBasicBlock::iterator MI = UserMI; 1358 ++MI; 1359 unsigned CPUIndex = CPUserIndex+1; 1360 unsigned NumCPUsers = CPUsers.size(); 1361 MachineInstr *LastIT = nullptr; 1362 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1363 Offset < BaseInsertOffset; 1364 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1365 assert(MI != UserMBB->end() && "Fell off end of block"); 1366 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1367 CPUser &U = CPUsers[CPUIndex]; 1368 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1369 // Shift intertion point by one unit of alignment so it is within reach. 1370 BaseInsertOffset -= 1u << LogAlign; 1371 EndInsertOffset -= 1u << LogAlign; 1372 } 1373 // This is overly conservative, as we don't account for CPEMIs being 1374 // reused within the block, but it doesn't matter much. Also assume CPEs 1375 // are added in order with alignment padding. We may eventually be able 1376 // to pack the aligned CPEs better. 1377 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1378 CPUIndex++; 1379 } 1380 1381 // Remember the last IT instruction. 1382 if (MI->getOpcode() == ARM::t2IT) 1383 LastIT = &*MI; 1384 } 1385 1386 --MI; 1387 1388 // Avoid splitting an IT block. 1389 if (LastIT) { 1390 unsigned PredReg = 0; 1391 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1392 if (CC != ARMCC::AL) 1393 MI = LastIT; 1394 } 1395 1396 // We really must not split an IT block. 1397 DEBUG(unsigned PredReg; 1398 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1399 1400 NewMBB = splitBlockBeforeInstr(&*MI); 1401 } 1402 1403 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1404 /// is out-of-range. If so, pick up the constant pool value and move it some 1405 /// place in-range. Return true if we changed any addresses (thus must run 1406 /// another pass of branch lengthening), false otherwise. 1407 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1408 bool CloserWater) { 1409 CPUser &U = CPUsers[CPUserIndex]; 1410 MachineInstr *UserMI = U.MI; 1411 MachineInstr *CPEMI = U.CPEMI; 1412 unsigned CPI = getCombinedIndex(CPEMI); 1413 unsigned Size = CPEMI->getOperand(2).getImm(); 1414 // Compute this only once, it's expensive. 1415 unsigned UserOffset = getUserOffset(U); 1416 1417 // See if the current entry is within range, or there is a clone of it 1418 // in range. 1419 int result = findInRangeCPEntry(U, UserOffset); 1420 if (result==1) return false; 1421 else if (result==2) return true; 1422 1423 // No existing clone of this CPE is within range. 1424 // We will be generating a new clone. Get a UID for it. 1425 unsigned ID = AFI->createPICLabelUId(); 1426 1427 // Look for water where we can place this CPE. 1428 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1429 MachineBasicBlock *NewMBB; 1430 water_iterator IP; 1431 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1432 DEBUG(dbgs() << "Found water in range\n"); 1433 MachineBasicBlock *WaterBB = *IP; 1434 1435 // If the original WaterList entry was "new water" on this iteration, 1436 // propagate that to the new island. This is just keeping NewWaterList 1437 // updated to match the WaterList, which will be updated below. 1438 if (NewWaterList.erase(WaterBB)) 1439 NewWaterList.insert(NewIsland); 1440 1441 // The new CPE goes before the following block (NewMBB). 1442 NewMBB = &*++WaterBB->getIterator(); 1443 } else { 1444 // No water found. 1445 DEBUG(dbgs() << "No water found\n"); 1446 createNewWater(CPUserIndex, UserOffset, NewMBB); 1447 1448 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1449 // called while handling branches so that the water will be seen on the 1450 // next iteration for constant pools, but in this context, we don't want 1451 // it. Check for this so it will be removed from the WaterList. 1452 // Also remove any entry from NewWaterList. 1453 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1454 IP = find(WaterList, WaterBB); 1455 if (IP != WaterList.end()) 1456 NewWaterList.erase(WaterBB); 1457 1458 // We are adding new water. Update NewWaterList. 1459 NewWaterList.insert(NewIsland); 1460 } 1461 1462 // Remove the original WaterList entry; we want subsequent insertions in 1463 // this vicinity to go after the one we're about to insert. This 1464 // considerably reduces the number of times we have to move the same CPE 1465 // more than once and is also important to ensure the algorithm terminates. 1466 if (IP != WaterList.end()) 1467 WaterList.erase(IP); 1468 1469 // Okay, we know we can put an island before NewMBB now, do it! 1470 MF->insert(NewMBB->getIterator(), NewIsland); 1471 1472 // Update internal data structures to account for the newly inserted MBB. 1473 updateForInsertedWaterBlock(NewIsland); 1474 1475 // Now that we have an island to add the CPE to, clone the original CPE and 1476 // add it to the island. 1477 U.HighWaterMark = NewIsland; 1478 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1479 .addImm(ID).addOperand(CPEMI->getOperand(1)).addImm(Size); 1480 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1481 ++NumCPEs; 1482 1483 // Decrement the old entry, and remove it if refcount becomes 0. 1484 decrementCPEReferenceCount(CPI, CPEMI); 1485 1486 // Mark the basic block as aligned as required by the const-pool entry. 1487 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1488 1489 // Increase the size of the island block to account for the new entry. 1490 BBInfo[NewIsland->getNumber()].Size += Size; 1491 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1492 1493 // Finally, change the CPI in the instruction operand to be ID. 1494 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1495 if (UserMI->getOperand(i).isCPI()) { 1496 UserMI->getOperand(i).setIndex(ID); 1497 break; 1498 } 1499 1500 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1501 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1502 1503 return true; 1504 } 1505 1506 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1507 /// sizes and offsets of impacted basic blocks. 1508 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1509 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1510 unsigned Size = CPEMI->getOperand(2).getImm(); 1511 CPEMI->eraseFromParent(); 1512 BBInfo[CPEBB->getNumber()].Size -= Size; 1513 // All succeeding offsets have the current size value added in, fix this. 1514 if (CPEBB->empty()) { 1515 BBInfo[CPEBB->getNumber()].Size = 0; 1516 1517 // This block no longer needs to be aligned. 1518 CPEBB->setAlignment(0); 1519 } else 1520 // Entries are sorted by descending alignment, so realign from the front. 1521 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1522 1523 adjustBBOffsetsAfter(CPEBB); 1524 // An island has only one predecessor BB and one successor BB. Check if 1525 // this BB's predecessor jumps directly to this BB's successor. This 1526 // shouldn't happen currently. 1527 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1528 // FIXME: remove the empty blocks after all the work is done? 1529 } 1530 1531 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1532 /// are zero. 1533 bool ARMConstantIslands::removeUnusedCPEntries() { 1534 unsigned MadeChange = false; 1535 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1536 std::vector<CPEntry> &CPEs = CPEntries[i]; 1537 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1538 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1539 removeDeadCPEMI(CPEs[j].CPEMI); 1540 CPEs[j].CPEMI = nullptr; 1541 MadeChange = true; 1542 } 1543 } 1544 } 1545 return MadeChange; 1546 } 1547 1548 /// isBBInRange - Returns true if the distance between specific MI and 1549 /// specific BB can fit in MI's displacement field. 1550 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1551 unsigned MaxDisp) { 1552 unsigned PCAdj = isThumb ? 4 : 8; 1553 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1554 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1555 1556 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1557 << " from BB#" << MI->getParent()->getNumber() 1558 << " max delta=" << MaxDisp 1559 << " from " << getOffsetOf(MI) << " to " << DestOffset 1560 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1561 1562 if (BrOffset <= DestOffset) { 1563 // Branch before the Dest. 1564 if (DestOffset-BrOffset <= MaxDisp) 1565 return true; 1566 } else { 1567 if (BrOffset-DestOffset <= MaxDisp) 1568 return true; 1569 } 1570 return false; 1571 } 1572 1573 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1574 /// away to fit in its displacement field. 1575 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1576 MachineInstr *MI = Br.MI; 1577 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1578 1579 // Check to see if the DestBB is already in-range. 1580 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1581 return false; 1582 1583 if (!Br.isCond) 1584 return fixupUnconditionalBr(Br); 1585 return fixupConditionalBr(Br); 1586 } 1587 1588 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1589 /// too far away to fit in its displacement field. If the LR register has been 1590 /// spilled in the epilogue, then we can use BL to implement a far jump. 1591 /// Otherwise, add an intermediate branch instruction to a branch. 1592 bool 1593 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1594 MachineInstr *MI = Br.MI; 1595 MachineBasicBlock *MBB = MI->getParent(); 1596 if (!isThumb1) 1597 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1598 1599 // Use BL to implement far jump. 1600 Br.MaxDisp = (1 << 21) * 2; 1601 MI->setDesc(TII->get(ARM::tBfar)); 1602 BBInfo[MBB->getNumber()].Size += 2; 1603 adjustBBOffsetsAfter(MBB); 1604 HasFarJump = true; 1605 ++NumUBrFixed; 1606 1607 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1608 1609 return true; 1610 } 1611 1612 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1613 /// far away to fit in its displacement field. It is converted to an inverse 1614 /// conditional branch + an unconditional branch to the destination. 1615 bool 1616 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1617 MachineInstr *MI = Br.MI; 1618 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1619 1620 // Add an unconditional branch to the destination and invert the branch 1621 // condition to jump over it: 1622 // blt L1 1623 // => 1624 // bge L2 1625 // b L1 1626 // L2: 1627 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1628 CC = ARMCC::getOppositeCondition(CC); 1629 unsigned CCReg = MI->getOperand(2).getReg(); 1630 1631 // If the branch is at the end of its MBB and that has a fall-through block, 1632 // direct the updated conditional branch to the fall-through block. Otherwise, 1633 // split the MBB before the next instruction. 1634 MachineBasicBlock *MBB = MI->getParent(); 1635 MachineInstr *BMI = &MBB->back(); 1636 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1637 1638 ++NumCBrFixed; 1639 if (BMI != MI) { 1640 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1641 BMI->getOpcode() == Br.UncondBr) { 1642 // Last MI in the BB is an unconditional branch. Can we simply invert the 1643 // condition and swap destinations: 1644 // beq L1 1645 // b L2 1646 // => 1647 // bne L2 1648 // b L1 1649 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1650 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1651 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1652 << *BMI); 1653 BMI->getOperand(0).setMBB(DestBB); 1654 MI->getOperand(0).setMBB(NewDest); 1655 MI->getOperand(1).setImm(CC); 1656 return true; 1657 } 1658 } 1659 } 1660 1661 if (NeedSplit) { 1662 splitBlockBeforeInstr(MI); 1663 // No need for the branch to the next block. We're adding an unconditional 1664 // branch to the destination. 1665 int delta = TII->getInstSizeInBytes(MBB->back()); 1666 BBInfo[MBB->getNumber()].Size -= delta; 1667 MBB->back().eraseFromParent(); 1668 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1669 } 1670 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1671 1672 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1673 << " also invert condition and change dest. to BB#" 1674 << NextBB->getNumber() << "\n"); 1675 1676 // Insert a new conditional branch and a new unconditional branch. 1677 // Also update the ImmBranch as well as adding a new entry for the new branch. 1678 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1679 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1680 Br.MI = &MBB->back(); 1681 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1682 if (isThumb) 1683 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1684 .addImm(ARMCC::AL).addReg(0); 1685 else 1686 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1687 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1688 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1689 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1690 1691 // Remove the old conditional branch. It may or may not still be in MBB. 1692 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1693 MI->eraseFromParent(); 1694 adjustBBOffsetsAfter(MBB); 1695 return true; 1696 } 1697 1698 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1699 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1700 /// to do this if tBfar is not used. 1701 bool ARMConstantIslands::undoLRSpillRestore() { 1702 bool MadeChange = false; 1703 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1704 MachineInstr *MI = PushPopMIs[i]; 1705 // First two operands are predicates. 1706 if (MI->getOpcode() == ARM::tPOP_RET && 1707 MI->getOperand(2).getReg() == ARM::PC && 1708 MI->getNumExplicitOperands() == 3) { 1709 // Create the new insn and copy the predicate from the old. 1710 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1711 .addOperand(MI->getOperand(0)) 1712 .addOperand(MI->getOperand(1)); 1713 MI->eraseFromParent(); 1714 MadeChange = true; 1715 } 1716 } 1717 return MadeChange; 1718 } 1719 1720 bool ARMConstantIslands::optimizeThumb2Instructions() { 1721 bool MadeChange = false; 1722 1723 // Shrink ADR and LDR from constantpool. 1724 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1725 CPUser &U = CPUsers[i]; 1726 unsigned Opcode = U.MI->getOpcode(); 1727 unsigned NewOpc = 0; 1728 unsigned Scale = 1; 1729 unsigned Bits = 0; 1730 switch (Opcode) { 1731 default: break; 1732 case ARM::t2LEApcrel: 1733 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1734 NewOpc = ARM::tLEApcrel; 1735 Bits = 8; 1736 Scale = 4; 1737 } 1738 break; 1739 case ARM::t2LDRpci: 1740 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1741 NewOpc = ARM::tLDRpci; 1742 Bits = 8; 1743 Scale = 4; 1744 } 1745 break; 1746 } 1747 1748 if (!NewOpc) 1749 continue; 1750 1751 unsigned UserOffset = getUserOffset(U); 1752 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1753 1754 // Be conservative with inline asm. 1755 if (!U.KnownAlignment) 1756 MaxOffs -= 2; 1757 1758 // FIXME: Check if offset is multiple of scale if scale is not 4. 1759 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1760 DEBUG(dbgs() << "Shrink: " << *U.MI); 1761 U.MI->setDesc(TII->get(NewOpc)); 1762 MachineBasicBlock *MBB = U.MI->getParent(); 1763 BBInfo[MBB->getNumber()].Size -= 2; 1764 adjustBBOffsetsAfter(MBB); 1765 ++NumT2CPShrunk; 1766 MadeChange = true; 1767 } 1768 } 1769 1770 return MadeChange; 1771 } 1772 1773 bool ARMConstantIslands::optimizeThumb2Branches() { 1774 bool MadeChange = false; 1775 1776 // The order in which branches appear in ImmBranches is approximately their 1777 // order within the function body. By visiting later branches first, we reduce 1778 // the distance between earlier forward branches and their targets, making it 1779 // more likely that the cbn?z optimization, which can only apply to forward 1780 // branches, will succeed. 1781 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1782 ImmBranch &Br = ImmBranches[i-1]; 1783 unsigned Opcode = Br.MI->getOpcode(); 1784 unsigned NewOpc = 0; 1785 unsigned Scale = 1; 1786 unsigned Bits = 0; 1787 switch (Opcode) { 1788 default: break; 1789 case ARM::t2B: 1790 NewOpc = ARM::tB; 1791 Bits = 11; 1792 Scale = 2; 1793 break; 1794 case ARM::t2Bcc: { 1795 NewOpc = ARM::tBcc; 1796 Bits = 8; 1797 Scale = 2; 1798 break; 1799 } 1800 } 1801 if (NewOpc) { 1802 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1803 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1804 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1805 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1806 Br.MI->setDesc(TII->get(NewOpc)); 1807 MachineBasicBlock *MBB = Br.MI->getParent(); 1808 BBInfo[MBB->getNumber()].Size -= 2; 1809 adjustBBOffsetsAfter(MBB); 1810 ++NumT2BrShrunk; 1811 MadeChange = true; 1812 } 1813 } 1814 1815 Opcode = Br.MI->getOpcode(); 1816 if (Opcode != ARM::tBcc) 1817 continue; 1818 1819 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1820 // so this transformation is not safe. 1821 if (!Br.MI->killsRegister(ARM::CPSR)) 1822 continue; 1823 1824 NewOpc = 0; 1825 unsigned PredReg = 0; 1826 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1827 if (Pred == ARMCC::EQ) 1828 NewOpc = ARM::tCBZ; 1829 else if (Pred == ARMCC::NE) 1830 NewOpc = ARM::tCBNZ; 1831 if (!NewOpc) 1832 continue; 1833 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1834 // Check if the distance is within 126. Subtract starting offset by 2 1835 // because the cmp will be eliminated. 1836 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1837 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1838 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1839 MachineBasicBlock::iterator CmpMI = Br.MI; 1840 if (CmpMI != Br.MI->getParent()->begin()) { 1841 --CmpMI; 1842 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1843 unsigned Reg = CmpMI->getOperand(0).getReg(); 1844 Pred = getInstrPredicate(*CmpMI, PredReg); 1845 if (Pred == ARMCC::AL && 1846 CmpMI->getOperand(1).getImm() == 0 && 1847 isARMLowRegister(Reg)) { 1848 MachineBasicBlock *MBB = Br.MI->getParent(); 1849 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1850 MachineInstr *NewBR = 1851 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1852 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1853 CmpMI->eraseFromParent(); 1854 Br.MI->eraseFromParent(); 1855 Br.MI = NewBR; 1856 BBInfo[MBB->getNumber()].Size -= 2; 1857 adjustBBOffsetsAfter(MBB); 1858 ++NumCBZ; 1859 MadeChange = true; 1860 } 1861 } 1862 } 1863 } 1864 } 1865 1866 return MadeChange; 1867 } 1868 1869 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1870 unsigned BaseReg) { 1871 if (I.getOpcode() != ARM::t2ADDrs) 1872 return false; 1873 1874 if (I.getOperand(0).getReg() != EntryReg) 1875 return false; 1876 1877 if (I.getOperand(1).getReg() != BaseReg) 1878 return false; 1879 1880 // FIXME: what about CC and IdxReg? 1881 return true; 1882 } 1883 1884 /// \brief While trying to form a TBB/TBH instruction, we may (if the table 1885 /// doesn't immediately follow the BR_JT) need access to the start of the 1886 /// jump-table. We know one instruction that produces such a register; this 1887 /// function works out whether that definition can be preserved to the BR_JT, 1888 /// possibly by removing an intervening addition (which is usually needed to 1889 /// calculate the actual entry to jump to). 1890 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1891 MachineInstr *LEAMI, 1892 unsigned &DeadSize, 1893 bool &CanDeleteLEA, 1894 bool &BaseRegKill) { 1895 if (JumpMI->getParent() != LEAMI->getParent()) 1896 return false; 1897 1898 // Now we hope that we have at least these instructions in the basic block: 1899 // BaseReg = t2LEA ... 1900 // [...] 1901 // EntryReg = t2ADDrs BaseReg, ... 1902 // [...] 1903 // t2BR_JT EntryReg 1904 // 1905 // We have to be very conservative about what we recognise here though. The 1906 // main perturbing factors to watch out for are: 1907 // + Spills at any point in the chain: not direct problems but we would 1908 // expect a blocking Def of the spilled register so in practice what we 1909 // can do is limited. 1910 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1911 // of BaseReg, but only if the t2ADDrs can be removed. 1912 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1913 // the wild, but we should be careful. 1914 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 1915 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 1916 1917 CanDeleteLEA = true; 1918 BaseRegKill = false; 1919 MachineInstr *RemovableAdd = nullptr; 1920 MachineBasicBlock::iterator I(LEAMI); 1921 for (++I; &*I != JumpMI; ++I) { 1922 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 1923 RemovableAdd = &*I; 1924 break; 1925 } 1926 1927 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1928 const MachineOperand &MO = I->getOperand(K); 1929 if (!MO.isReg() || !MO.getReg()) 1930 continue; 1931 if (MO.isDef() && MO.getReg() == BaseReg) 1932 return false; 1933 if (MO.isUse() && MO.getReg() == BaseReg) { 1934 BaseRegKill = BaseRegKill || MO.isKill(); 1935 CanDeleteLEA = false; 1936 } 1937 } 1938 } 1939 1940 if (!RemovableAdd) 1941 return true; 1942 1943 // Check the add really is removable, and that nothing else in the block 1944 // clobbers BaseReg. 1945 for (++I; &*I != JumpMI; ++I) { 1946 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1947 const MachineOperand &MO = I->getOperand(K); 1948 if (!MO.isReg() || !MO.getReg()) 1949 continue; 1950 if (MO.isDef() && MO.getReg() == BaseReg) 1951 return false; 1952 if (MO.isUse() && MO.getReg() == EntryReg) 1953 RemovableAdd = nullptr; 1954 } 1955 } 1956 1957 if (RemovableAdd) { 1958 RemovableAdd->eraseFromParent(); 1959 DeadSize += isThumb2 ? 4 : 2; 1960 } else if (BaseReg == EntryReg) { 1961 // The add wasn't removable, but clobbered the base for the TBB. So we can't 1962 // preserve it. 1963 return false; 1964 } 1965 1966 // We reached the end of the block without seeing another definition of 1967 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 1968 // used in the TBB/TBH if necessary. 1969 return true; 1970 } 1971 1972 /// \brief Returns whether CPEMI is the first instruction in the block 1973 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 1974 /// we can switch the first register to PC and usually remove the address 1975 /// calculation that preceded it. 1976 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 1977 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 1978 MachineFunction *MF = MBB->getParent(); 1979 ++MBB; 1980 1981 return MBB != MF->end() && MBB->begin() != MBB->end() && 1982 &*MBB->begin() == CPEMI; 1983 } 1984 1985 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1986 /// jumptables when it's possible. 1987 bool ARMConstantIslands::optimizeThumb2JumpTables() { 1988 bool MadeChange = false; 1989 1990 // FIXME: After the tables are shrunk, can we get rid some of the 1991 // constantpool tables? 1992 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1993 if (!MJTI) return false; 1994 1995 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1996 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1997 MachineInstr *MI = T2JumpTables[i]; 1998 const MCInstrDesc &MCID = MI->getDesc(); 1999 unsigned NumOps = MCID.getNumOperands(); 2000 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2001 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2002 unsigned JTI = JTOP.getIndex(); 2003 assert(JTI < JT.size()); 2004 2005 bool ByteOk = true; 2006 bool HalfWordOk = true; 2007 unsigned JTOffset = getOffsetOf(MI) + 4; 2008 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2009 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2010 MachineBasicBlock *MBB = JTBBs[j]; 2011 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2012 // Negative offset is not ok. FIXME: We should change BB layout to make 2013 // sure all the branches are forward. 2014 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2015 ByteOk = false; 2016 unsigned TBHLimit = ((1<<16)-1)*2; 2017 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2018 HalfWordOk = false; 2019 if (!ByteOk && !HalfWordOk) 2020 break; 2021 } 2022 2023 if (!ByteOk && !HalfWordOk) 2024 continue; 2025 2026 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2027 MachineBasicBlock *MBB = MI->getParent(); 2028 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2029 continue; 2030 2031 unsigned DeadSize = 0; 2032 bool CanDeleteLEA = false; 2033 bool BaseRegKill = false; 2034 2035 unsigned IdxReg = ~0U; 2036 bool IdxRegKill = true; 2037 if (isThumb2) { 2038 IdxReg = MI->getOperand(1).getReg(); 2039 IdxRegKill = MI->getOperand(1).isKill(); 2040 2041 bool PreservedBaseReg = 2042 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2043 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2044 continue; 2045 } else { 2046 // We're in thumb-1 mode, so we must have something like: 2047 // %idx = tLSLri %idx, 2 2048 // %base = tLEApcrelJT 2049 // %t = tLDRr %idx, %base 2050 unsigned BaseReg = User.MI->getOperand(0).getReg(); 2051 2052 MachineInstr *Shift = User.MI->getPrevNode(); 2053 if (Shift->getOpcode() != ARM::tLSLri || 2054 Shift->getOperand(3).getImm() != 2 || 2055 !Shift->getOperand(2).isKill()) 2056 continue; 2057 IdxReg = Shift->getOperand(2).getReg(); 2058 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg(); 2059 2060 MachineInstr *Load = User.MI->getNextNode(); 2061 if (Load->getOpcode() != ARM::tLDRr) 2062 continue; 2063 if (Load->getOperand(1).getReg() != ShiftedIdxReg || 2064 Load->getOperand(2).getReg() != BaseReg || 2065 !Load->getOperand(1).isKill()) 2066 continue; 2067 2068 // If we're in PIC mode, there should be another ADD following. 2069 if (isPositionIndependentOrROPI) { 2070 MachineInstr *Add = Load->getNextNode(); 2071 if (Add->getOpcode() != ARM::tADDrr || 2072 Add->getOperand(2).getReg() != Load->getOperand(0).getReg() || 2073 Add->getOperand(3).getReg() != BaseReg || 2074 !Add->getOperand(2).isKill()) 2075 continue; 2076 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2077 continue; 2078 2079 Add->eraseFromParent(); 2080 DeadSize += 2; 2081 } else { 2082 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2083 continue; 2084 } 2085 2086 2087 // Now safe to delete the load and lsl. The LEA will be removed later. 2088 CanDeleteLEA = true; 2089 Shift->eraseFromParent(); 2090 Load->eraseFromParent(); 2091 DeadSize += 4; 2092 } 2093 2094 DEBUG(dbgs() << "Shrink JT: " << *MI); 2095 MachineInstr *CPEMI = User.CPEMI; 2096 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2097 if (!isThumb2) 2098 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2099 2100 MachineBasicBlock::iterator MI_JT = MI; 2101 MachineInstr *NewJTMI = 2102 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2103 .addReg(User.MI->getOperand(0).getReg(), 2104 getKillRegState(BaseRegKill)) 2105 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2106 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2107 .addImm(CPEMI->getOperand(0).getImm()); 2108 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); 2109 2110 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2111 CPEMI->setDesc(TII->get(JTOpc)); 2112 2113 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2114 NewJTMI->getOperand(0).setReg(ARM::PC); 2115 NewJTMI->getOperand(0).setIsKill(false); 2116 2117 if (CanDeleteLEA) { 2118 User.MI->eraseFromParent(); 2119 DeadSize += isThumb2 ? 4 : 2; 2120 2121 // The LEA was eliminated, the TBB instruction becomes the only new user 2122 // of the jump table. 2123 User.MI = NewJTMI; 2124 User.MaxDisp = 4; 2125 User.NegOk = false; 2126 User.IsSoImm = false; 2127 User.KnownAlignment = false; 2128 } else { 2129 // The LEA couldn't be eliminated, so we must add another CPUser to 2130 // record the TBB or TBH use. 2131 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2132 auto &CPEs = CPEntries[CPEntryIdx]; 2133 auto Entry = 2134 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2135 ++Entry->RefCount; 2136 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2137 } 2138 } 2139 2140 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2141 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2142 MI->eraseFromParent(); 2143 2144 int Delta = OrigSize - NewSize + DeadSize; 2145 BBInfo[MBB->getNumber()].Size -= Delta; 2146 adjustBBOffsetsAfter(MBB); 2147 2148 ++NumTBs; 2149 MadeChange = true; 2150 } 2151 2152 return MadeChange; 2153 } 2154 2155 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2156 /// jump tables always branch forwards, since that's what tbb and tbh need. 2157 bool ARMConstantIslands::reorderThumb2JumpTables() { 2158 bool MadeChange = false; 2159 2160 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2161 if (!MJTI) return false; 2162 2163 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2164 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2165 MachineInstr *MI = T2JumpTables[i]; 2166 const MCInstrDesc &MCID = MI->getDesc(); 2167 unsigned NumOps = MCID.getNumOperands(); 2168 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2169 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2170 unsigned JTI = JTOP.getIndex(); 2171 assert(JTI < JT.size()); 2172 2173 // We prefer if target blocks for the jump table come after the jump 2174 // instruction so we can use TB[BH]. Loop through the target blocks 2175 // and try to adjust them such that that's true. 2176 int JTNumber = MI->getParent()->getNumber(); 2177 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2178 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2179 MachineBasicBlock *MBB = JTBBs[j]; 2180 int DTNumber = MBB->getNumber(); 2181 2182 if (DTNumber < JTNumber) { 2183 // The destination precedes the switch. Try to move the block forward 2184 // so we have a positive offset. 2185 MachineBasicBlock *NewBB = 2186 adjustJTTargetBlockForward(MBB, MI->getParent()); 2187 if (NewBB) 2188 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2189 MadeChange = true; 2190 } 2191 } 2192 } 2193 2194 return MadeChange; 2195 } 2196 2197 MachineBasicBlock *ARMConstantIslands:: 2198 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2199 // If the destination block is terminated by an unconditional branch, 2200 // try to move it; otherwise, create a new block following the jump 2201 // table that branches back to the actual target. This is a very simple 2202 // heuristic. FIXME: We can definitely improve it. 2203 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2204 SmallVector<MachineOperand, 4> Cond; 2205 SmallVector<MachineOperand, 4> CondPrior; 2206 MachineFunction::iterator BBi = BB->getIterator(); 2207 MachineFunction::iterator OldPrior = std::prev(BBi); 2208 2209 // If the block terminator isn't analyzable, don't try to move the block 2210 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2211 2212 // If the block ends in an unconditional branch, move it. The prior block 2213 // has to have an analyzable terminator for us to move this one. Be paranoid 2214 // and make sure we're not trying to move the entry block of the function. 2215 if (!B && Cond.empty() && BB != &MF->front() && 2216 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2217 BB->moveAfter(JTBB); 2218 OldPrior->updateTerminator(); 2219 BB->updateTerminator(); 2220 // Update numbering to account for the block being moved. 2221 MF->RenumberBlocks(); 2222 ++NumJTMoved; 2223 return nullptr; 2224 } 2225 2226 // Create a new MBB for the code after the jump BB. 2227 MachineBasicBlock *NewBB = 2228 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2229 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2230 MF->insert(MBBI, NewBB); 2231 2232 // Add an unconditional branch from NewBB to BB. 2233 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2234 // correspond directly to anything in the source. 2235 if (isThumb2) 2236 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2237 .addMBB(BB) 2238 .addImm(ARMCC::AL) 2239 .addReg(0); 2240 else 2241 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2242 .addMBB(BB) 2243 .addImm(ARMCC::AL) 2244 .addReg(0); 2245 2246 // Update internal data structures to account for the newly inserted MBB. 2247 MF->RenumberBlocks(NewBB); 2248 2249 // Update the CFG. 2250 NewBB->addSuccessor(BB); 2251 JTBB->replaceSuccessor(BB, NewBB); 2252 2253 ++NumJTInserted; 2254 return NewBB; 2255 } 2256