1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMBasicBlockInfo.h" 19 #include "ARMMachineFunctionInfo.h" 20 #include "ARMSubtarget.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Thumb2InstrInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/Format.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <iterator> 51 #include <new> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "arm-cp-islands" 58 59 STATISTIC(NumCPEs, "Number of constpool entries"); 60 STATISTIC(NumSplit, "Number of uncond branches inserted"); 61 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 62 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 63 STATISTIC(NumTBs, "Number of table branches generated"); 64 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 65 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 66 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 67 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 68 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 69 70 static cl::opt<bool> 71 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 72 cl::desc("Adjust basic block layout to better use TB[BH]")); 73 74 static cl::opt<unsigned> 75 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 76 cl::desc("The max number of iteration for converge")); 77 78 static cl::opt<bool> SynthesizeThumb1TBB( 79 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 80 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 81 "equivalent to the TBB/TBH instructions")); 82 83 namespace { 84 85 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 86 /// requires constant pool entries to be scattered among the instructions 87 /// inside a function. To do this, it completely ignores the normal LLVM 88 /// constant pool; instead, it places constants wherever it feels like with 89 /// special instructions. 90 /// 91 /// The terminology used in this pass includes: 92 /// Islands - Clumps of constants placed in the function. 93 /// Water - Potential places where an island could be formed. 94 /// CPE - A constant pool entry that has been placed somewhere, which 95 /// tracks a list of users. 96 class ARMConstantIslands : public MachineFunctionPass { 97 std::vector<BasicBlockInfo> BBInfo; 98 99 /// WaterList - A sorted list of basic blocks where islands could be placed 100 /// (i.e. blocks that don't fall through to the following block, due 101 /// to a return, unreachable, or unconditional branch). 102 std::vector<MachineBasicBlock*> WaterList; 103 104 /// NewWaterList - The subset of WaterList that was created since the 105 /// previous iteration by inserting unconditional branches. 106 SmallSet<MachineBasicBlock*, 4> NewWaterList; 107 108 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 109 110 /// CPUser - One user of a constant pool, keeping the machine instruction 111 /// pointer, the constant pool being referenced, and the max displacement 112 /// allowed from the instruction to the CP. The HighWaterMark records the 113 /// highest basic block where a new CPEntry can be placed. To ensure this 114 /// pass terminates, the CP entries are initially placed at the end of the 115 /// function and then move monotonically to lower addresses. The 116 /// exception to this rule is when the current CP entry for a particular 117 /// CPUser is out of range, but there is another CP entry for the same 118 /// constant value in range. We want to use the existing in-range CP 119 /// entry, but if it later moves out of range, the search for new water 120 /// should resume where it left off. The HighWaterMark is used to record 121 /// that point. 122 struct CPUser { 123 MachineInstr *MI; 124 MachineInstr *CPEMI; 125 MachineBasicBlock *HighWaterMark; 126 unsigned MaxDisp; 127 bool NegOk; 128 bool IsSoImm; 129 bool KnownAlignment; 130 131 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 132 bool neg, bool soimm) 133 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 134 KnownAlignment(false) { 135 HighWaterMark = CPEMI->getParent(); 136 } 137 138 /// getMaxDisp - Returns the maximum displacement supported by MI. 139 /// Correct for unknown alignment. 140 /// Conservatively subtract 2 bytes to handle weird alignment effects. 141 unsigned getMaxDisp() const { 142 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 143 } 144 }; 145 146 /// CPUsers - Keep track of all of the machine instructions that use various 147 /// constant pools and their max displacement. 148 std::vector<CPUser> CPUsers; 149 150 /// CPEntry - One per constant pool entry, keeping the machine instruction 151 /// pointer, the constpool index, and the number of CPUser's which 152 /// reference this entry. 153 struct CPEntry { 154 MachineInstr *CPEMI; 155 unsigned CPI; 156 unsigned RefCount; 157 158 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 159 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 160 }; 161 162 /// CPEntries - Keep track of all of the constant pool entry machine 163 /// instructions. For each original constpool index (i.e. those that existed 164 /// upon entry to this pass), it keeps a vector of entries. Original 165 /// elements are cloned as we go along; the clones are put in the vector of 166 /// the original element, but have distinct CPIs. 167 /// 168 /// The first half of CPEntries contains generic constants, the second half 169 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 170 /// which vector it will be in here. 171 std::vector<std::vector<CPEntry>> CPEntries; 172 173 /// Maps a JT index to the offset in CPEntries containing copies of that 174 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 175 DenseMap<int, int> JumpTableEntryIndices; 176 177 /// Maps a JT index to the LEA that actually uses the index to calculate its 178 /// base address. 179 DenseMap<int, int> JumpTableUserIndices; 180 181 /// ImmBranch - One per immediate branch, keeping the machine instruction 182 /// pointer, conditional or unconditional, the max displacement, 183 /// and (if isCond is true) the corresponding unconditional branch 184 /// opcode. 185 struct ImmBranch { 186 MachineInstr *MI; 187 unsigned MaxDisp : 31; 188 bool isCond : 1; 189 unsigned UncondBr; 190 191 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 192 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 193 }; 194 195 /// ImmBranches - Keep track of all the immediate branch instructions. 196 /// 197 std::vector<ImmBranch> ImmBranches; 198 199 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 200 /// 201 SmallVector<MachineInstr*, 4> PushPopMIs; 202 203 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 204 SmallVector<MachineInstr*, 4> T2JumpTables; 205 206 /// HasFarJump - True if any far jump instruction has been emitted during 207 /// the branch fix up pass. 208 bool HasFarJump; 209 210 MachineFunction *MF; 211 MachineConstantPool *MCP; 212 const ARMBaseInstrInfo *TII; 213 const ARMSubtarget *STI; 214 ARMFunctionInfo *AFI; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 MachineFunctionProperties getRequiredProperties() const override { 228 return MachineFunctionProperties().set( 229 MachineFunctionProperties::Property::NoVRegs); 230 } 231 232 StringRef getPassName() const override { 233 return "ARM constant island placement and branch shortening pass"; 234 } 235 236 private: 237 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 238 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 239 bool BBHasFallthrough(MachineBasicBlock *MBB); 240 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 241 unsigned getCPELogAlign(const MachineInstr *CPEMI); 242 void scanFunctionJumpTables(); 243 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 244 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 245 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 246 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 247 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 248 unsigned getCombinedIndex(const MachineInstr *CPEMI); 249 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 250 bool findAvailableWater(CPUser&U, unsigned UserOffset, 251 water_iterator &WaterIter, bool CloserWater); 252 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 253 MachineBasicBlock *&NewMBB); 254 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 255 void removeDeadCPEMI(MachineInstr *CPEMI); 256 bool removeUnusedCPEntries(); 257 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 258 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 259 bool DoDump = false); 260 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 261 CPUser &U, unsigned &Growth); 262 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 263 bool fixupImmediateBr(ImmBranch &Br); 264 bool fixupConditionalBr(ImmBranch &Br); 265 bool fixupUnconditionalBr(ImmBranch &Br); 266 bool undoLRSpillRestore(); 267 bool optimizeThumb2Instructions(); 268 bool optimizeThumb2Branches(); 269 bool reorderThumb2JumpTables(); 270 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 271 unsigned &DeadSize, bool &CanDeleteLEA, 272 bool &BaseRegKill); 273 bool optimizeThumb2JumpTables(); 274 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 275 MachineBasicBlock *JTBB); 276 277 unsigned getOffsetOf(MachineInstr *MI) const; 278 unsigned getUserOffset(CPUser&) const; 279 void dumpBBs(); 280 void verify(); 281 282 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 283 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 284 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 285 const CPUser &U) { 286 return isOffsetInRange(UserOffset, TrialOffset, 287 U.getMaxDisp(), U.NegOk, U.IsSoImm); 288 } 289 }; 290 291 char ARMConstantIslands::ID = 0; 292 293 } // end anonymous namespace 294 295 /// verify - check BBOffsets, BBSizes, alignment of islands 296 void ARMConstantIslands::verify() { 297 #ifndef NDEBUG 298 assert(std::is_sorted(MF->begin(), MF->end(), 299 [this](const MachineBasicBlock &LHS, 300 const MachineBasicBlock &RHS) { 301 return BBInfo[LHS.getNumber()].postOffset() < 302 BBInfo[RHS.getNumber()].postOffset(); 303 })); 304 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 305 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 306 CPUser &U = CPUsers[i]; 307 unsigned UserOffset = getUserOffset(U); 308 // Verify offset using the real max displacement without the safety 309 // adjustment. 310 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 311 /* DoDump = */ true)) { 312 DEBUG(dbgs() << "OK\n"); 313 continue; 314 } 315 DEBUG(dbgs() << "Out of range.\n"); 316 dumpBBs(); 317 DEBUG(MF->dump()); 318 llvm_unreachable("Constant pool entry out of range!"); 319 } 320 #endif 321 } 322 323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 324 /// print block size and offset information - debugging 325 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 326 DEBUG({ 327 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 328 const BasicBlockInfo &BBI = BBInfo[J]; 329 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 330 << " kb=" << unsigned(BBI.KnownBits) 331 << " ua=" << unsigned(BBI.Unalign) 332 << " pa=" << unsigned(BBI.PostAlign) 333 << format(" size=%#x\n", BBInfo[J].Size); 334 } 335 }); 336 } 337 #endif 338 339 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 340 MF = &mf; 341 MCP = mf.getConstantPool(); 342 343 DEBUG(dbgs() << "***** ARMConstantIslands: " 344 << MCP->getConstants().size() << " CP entries, aligned to " 345 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 346 347 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 348 TII = STI->getInstrInfo(); 349 isPositionIndependentOrROPI = 350 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 351 AFI = MF->getInfo<ARMFunctionInfo>(); 352 353 isThumb = AFI->isThumbFunction(); 354 isThumb1 = AFI->isThumb1OnlyFunction(); 355 isThumb2 = AFI->isThumb2Function(); 356 357 HasFarJump = false; 358 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 359 360 // This pass invalidates liveness information when it splits basic blocks. 361 MF->getRegInfo().invalidateLiveness(); 362 363 // Renumber all of the machine basic blocks in the function, guaranteeing that 364 // the numbers agree with the position of the block in the function. 365 MF->RenumberBlocks(); 366 367 // Try to reorder and otherwise adjust the block layout to make good use 368 // of the TB[BH] instructions. 369 bool MadeChange = false; 370 if (GenerateTBB && AdjustJumpTableBlocks) { 371 scanFunctionJumpTables(); 372 MadeChange |= reorderThumb2JumpTables(); 373 // Data is out of date, so clear it. It'll be re-computed later. 374 T2JumpTables.clear(); 375 // Blocks may have shifted around. Keep the numbering up to date. 376 MF->RenumberBlocks(); 377 } 378 379 // Perform the initial placement of the constant pool entries. To start with, 380 // we put them all at the end of the function. 381 std::vector<MachineInstr*> CPEMIs; 382 if (!MCP->isEmpty()) 383 doInitialConstPlacement(CPEMIs); 384 385 if (MF->getJumpTableInfo()) 386 doInitialJumpTablePlacement(CPEMIs); 387 388 /// The next UID to take is the first unused one. 389 AFI->initPICLabelUId(CPEMIs.size()); 390 391 // Do the initial scan of the function, building up information about the 392 // sizes of each block, the location of all the water, and finding all of the 393 // constant pool users. 394 initializeFunctionInfo(CPEMIs); 395 CPEMIs.clear(); 396 DEBUG(dumpBBs()); 397 398 // Functions with jump tables need an alignment of 4 because they use the ADR 399 // instruction, which aligns the PC to 4 bytes before adding an offset. 400 if (!T2JumpTables.empty()) 401 MF->ensureAlignment(2); 402 403 /// Remove dead constant pool entries. 404 MadeChange |= removeUnusedCPEntries(); 405 406 // Iteratively place constant pool entries and fix up branches until there 407 // is no change. 408 unsigned NoCPIters = 0, NoBRIters = 0; 409 while (true) { 410 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 411 bool CPChange = false; 412 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 413 // For most inputs, it converges in no more than 5 iterations. 414 // If it doesn't end in 10, the input may have huge BB or many CPEs. 415 // In this case, we will try different heuristics. 416 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 417 if (CPChange && ++NoCPIters > CPMaxIteration) 418 report_fatal_error("Constant Island pass failed to converge!"); 419 DEBUG(dumpBBs()); 420 421 // Clear NewWaterList now. If we split a block for branches, it should 422 // appear as "new water" for the next iteration of constant pool placement. 423 NewWaterList.clear(); 424 425 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 426 bool BRChange = false; 427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 428 BRChange |= fixupImmediateBr(ImmBranches[i]); 429 if (BRChange && ++NoBRIters > 30) 430 report_fatal_error("Branch Fix Up pass failed to converge!"); 431 DEBUG(dumpBBs()); 432 433 if (!CPChange && !BRChange) 434 break; 435 MadeChange = true; 436 } 437 438 // Shrink 32-bit Thumb2 load and store instructions. 439 if (isThumb2 && !STI->prefers32BitThumb()) 440 MadeChange |= optimizeThumb2Instructions(); 441 442 // Shrink 32-bit branch instructions. 443 if (isThumb && STI->hasV8MBaselineOps()) 444 MadeChange |= optimizeThumb2Branches(); 445 446 // Optimize jump tables using TBB / TBH. 447 if (GenerateTBB && !STI->genExecuteOnly()) 448 MadeChange |= optimizeThumb2JumpTables(); 449 450 // After a while, this might be made debug-only, but it is not expensive. 451 verify(); 452 453 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 454 // undo the spill / restore of LR if possible. 455 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 456 MadeChange |= undoLRSpillRestore(); 457 458 // Save the mapping between original and cloned constpool entries. 459 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 460 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 461 const CPEntry & CPE = CPEntries[i][j]; 462 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 463 AFI->recordCPEClone(i, CPE.CPI); 464 } 465 } 466 467 DEBUG(dbgs() << '\n'; dumpBBs()); 468 469 BBInfo.clear(); 470 WaterList.clear(); 471 CPUsers.clear(); 472 CPEntries.clear(); 473 JumpTableEntryIndices.clear(); 474 JumpTableUserIndices.clear(); 475 ImmBranches.clear(); 476 PushPopMIs.clear(); 477 T2JumpTables.clear(); 478 479 return MadeChange; 480 } 481 482 /// \brief Perform the initial placement of the regular constant pool entries. 483 /// To start with, we put them all at the end of the function. 484 void 485 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 486 // Create the basic block to hold the CPE's. 487 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 488 MF->push_back(BB); 489 490 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 491 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 492 493 // Mark the basic block as required by the const-pool. 494 BB->setAlignment(MaxAlign); 495 496 // The function needs to be as aligned as the basic blocks. The linker may 497 // move functions around based on their alignment. 498 MF->ensureAlignment(BB->getAlignment()); 499 500 // Order the entries in BB by descending alignment. That ensures correct 501 // alignment of all entries as long as BB is sufficiently aligned. Keep 502 // track of the insertion point for each alignment. We are going to bucket 503 // sort the entries as they are created. 504 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 505 506 // Add all of the constants from the constant pool to the end block, use an 507 // identity mapping of CPI's to CPE's. 508 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 509 510 const DataLayout &TD = MF->getDataLayout(); 511 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 512 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 513 assert(Size >= 4 && "Too small constant pool entry"); 514 unsigned Align = CPs[i].getAlignment(); 515 assert(isPowerOf2_32(Align) && "Invalid alignment"); 516 // Verify that all constant pool entries are a multiple of their alignment. 517 // If not, we would have to pad them out so that instructions stay aligned. 518 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 519 520 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 521 unsigned LogAlign = Log2_32(Align); 522 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 523 MachineInstr *CPEMI = 524 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 525 .addImm(i).addConstantPoolIndex(i).addImm(Size); 526 CPEMIs.push_back(CPEMI); 527 528 // Ensure that future entries with higher alignment get inserted before 529 // CPEMI. This is bucket sort with iterators. 530 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 531 if (InsPoint[a] == InsAt) 532 InsPoint[a] = CPEMI; 533 534 // Add a new CPEntry, but no corresponding CPUser yet. 535 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 536 ++NumCPEs; 537 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 538 << Size << ", align = " << Align <<'\n'); 539 } 540 DEBUG(BB->dump()); 541 } 542 543 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH 544 /// instructions can be made more efficient if the jump table immediately 545 /// follows the instruction, it's best to place them immediately next to their 546 /// jumps to begin with. In almost all cases they'll never be moved from that 547 /// position. 548 void ARMConstantIslands::doInitialJumpTablePlacement( 549 std::vector<MachineInstr *> &CPEMIs) { 550 unsigned i = CPEntries.size(); 551 auto MJTI = MF->getJumpTableInfo(); 552 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 553 554 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 555 for (MachineBasicBlock &MBB : *MF) { 556 auto MI = MBB.getLastNonDebugInstr(); 557 if (MI == MBB.end()) 558 continue; 559 560 unsigned JTOpcode; 561 switch (MI->getOpcode()) { 562 default: 563 continue; 564 case ARM::BR_JTadd: 565 case ARM::BR_JTr: 566 case ARM::tBR_JTr: 567 case ARM::BR_JTm: 568 JTOpcode = ARM::JUMPTABLE_ADDRS; 569 break; 570 case ARM::t2BR_JT: 571 JTOpcode = ARM::JUMPTABLE_INSTS; 572 break; 573 case ARM::tTBB_JT: 574 case ARM::t2TBB_JT: 575 JTOpcode = ARM::JUMPTABLE_TBB; 576 break; 577 case ARM::tTBH_JT: 578 case ARM::t2TBH_JT: 579 JTOpcode = ARM::JUMPTABLE_TBH; 580 break; 581 } 582 583 unsigned NumOps = MI->getDesc().getNumOperands(); 584 MachineOperand JTOp = 585 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 586 unsigned JTI = JTOp.getIndex(); 587 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 588 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 589 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 590 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 591 DebugLoc(), TII->get(JTOpcode)) 592 .addImm(i++) 593 .addJumpTableIndex(JTI) 594 .addImm(Size); 595 CPEMIs.push_back(CPEMI); 596 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 597 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 598 if (!LastCorrectlyNumberedBB) 599 LastCorrectlyNumberedBB = &MBB; 600 } 601 602 // If we did anything then we need to renumber the subsequent blocks. 603 if (LastCorrectlyNumberedBB) 604 MF->RenumberBlocks(LastCorrectlyNumberedBB); 605 } 606 607 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 608 /// into the block immediately after it. 609 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 610 // Get the next machine basic block in the function. 611 MachineFunction::iterator MBBI = MBB->getIterator(); 612 // Can't fall off end of function. 613 if (std::next(MBBI) == MBB->getParent()->end()) 614 return false; 615 616 MachineBasicBlock *NextBB = &*std::next(MBBI); 617 if (!MBB->isSuccessor(NextBB)) 618 return false; 619 620 // Try to analyze the end of the block. A potential fallthrough may already 621 // have an unconditional branch for whatever reason. 622 MachineBasicBlock *TBB, *FBB; 623 SmallVector<MachineOperand, 4> Cond; 624 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 625 return TooDifficult || FBB == nullptr; 626 } 627 628 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 629 /// look up the corresponding CPEntry. 630 ARMConstantIslands::CPEntry 631 *ARMConstantIslands::findConstPoolEntry(unsigned CPI, 632 const MachineInstr *CPEMI) { 633 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 634 // Number of entries per constpool index should be small, just do a 635 // linear search. 636 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 637 if (CPEs[i].CPEMI == CPEMI) 638 return &CPEs[i]; 639 } 640 return nullptr; 641 } 642 643 /// getCPELogAlign - Returns the required alignment of the constant pool entry 644 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 645 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 646 switch (CPEMI->getOpcode()) { 647 case ARM::CONSTPOOL_ENTRY: 648 break; 649 case ARM::JUMPTABLE_TBB: 650 return isThumb1 ? 2 : 0; 651 case ARM::JUMPTABLE_TBH: 652 return isThumb1 ? 2 : 1; 653 case ARM::JUMPTABLE_INSTS: 654 return 1; 655 case ARM::JUMPTABLE_ADDRS: 656 return 2; 657 default: 658 llvm_unreachable("unknown constpool entry kind"); 659 } 660 661 unsigned CPI = getCombinedIndex(CPEMI); 662 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 663 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 664 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 665 return Log2_32(Align); 666 } 667 668 /// scanFunctionJumpTables - Do a scan of the function, building up 669 /// information about the sizes of each block and the locations of all 670 /// the jump tables. 671 void ARMConstantIslands::scanFunctionJumpTables() { 672 for (MachineBasicBlock &MBB : *MF) { 673 for (MachineInstr &I : MBB) 674 if (I.isBranch() && 675 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 676 T2JumpTables.push_back(&I); 677 } 678 } 679 680 /// initializeFunctionInfo - Do the initial scan of the function, building up 681 /// information about the sizes of each block, the location of all the water, 682 /// and finding all of the constant pool users. 683 void ARMConstantIslands:: 684 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 685 686 BBInfo = computeAllBlockSizes(MF); 687 688 // The known bits of the entry block offset are determined by the function 689 // alignment. 690 BBInfo.front().KnownBits = MF->getAlignment(); 691 692 // Compute block offsets and known bits. 693 adjustBBOffsetsAfter(&MF->front()); 694 695 // Now go back through the instructions and build up our data structures. 696 for (MachineBasicBlock &MBB : *MF) { 697 // If this block doesn't fall through into the next MBB, then this is 698 // 'water' that a constant pool island could be placed. 699 if (!BBHasFallthrough(&MBB)) 700 WaterList.push_back(&MBB); 701 702 for (MachineInstr &I : MBB) { 703 if (I.isDebugValue()) 704 continue; 705 706 unsigned Opc = I.getOpcode(); 707 if (I.isBranch()) { 708 bool isCond = false; 709 unsigned Bits = 0; 710 unsigned Scale = 1; 711 int UOpc = Opc; 712 switch (Opc) { 713 default: 714 continue; // Ignore other JT branches 715 case ARM::t2BR_JT: 716 case ARM::tBR_JTr: 717 T2JumpTables.push_back(&I); 718 continue; // Does not get an entry in ImmBranches 719 case ARM::Bcc: 720 isCond = true; 721 UOpc = ARM::B; 722 LLVM_FALLTHROUGH; 723 case ARM::B: 724 Bits = 24; 725 Scale = 4; 726 break; 727 case ARM::tBcc: 728 isCond = true; 729 UOpc = ARM::tB; 730 Bits = 8; 731 Scale = 2; 732 break; 733 case ARM::tB: 734 Bits = 11; 735 Scale = 2; 736 break; 737 case ARM::t2Bcc: 738 isCond = true; 739 UOpc = ARM::t2B; 740 Bits = 20; 741 Scale = 2; 742 break; 743 case ARM::t2B: 744 Bits = 24; 745 Scale = 2; 746 break; 747 } 748 749 // Record this immediate branch. 750 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 751 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 752 } 753 754 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 755 PushPopMIs.push_back(&I); 756 757 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 758 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 759 Opc == ARM::JUMPTABLE_TBH) 760 continue; 761 762 // Scan the instructions for constant pool operands. 763 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 764 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 765 // We found one. The addressing mode tells us the max displacement 766 // from the PC that this instruction permits. 767 768 // Basic size info comes from the TSFlags field. 769 unsigned Bits = 0; 770 unsigned Scale = 1; 771 bool NegOk = false; 772 bool IsSoImm = false; 773 774 switch (Opc) { 775 default: 776 llvm_unreachable("Unknown addressing mode for CP reference!"); 777 778 // Taking the address of a CP entry. 779 case ARM::LEApcrel: 780 case ARM::LEApcrelJT: 781 // This takes a SoImm, which is 8 bit immediate rotated. We'll 782 // pretend the maximum offset is 255 * 4. Since each instruction 783 // 4 byte wide, this is always correct. We'll check for other 784 // displacements that fits in a SoImm as well. 785 Bits = 8; 786 Scale = 4; 787 NegOk = true; 788 IsSoImm = true; 789 break; 790 case ARM::t2LEApcrel: 791 case ARM::t2LEApcrelJT: 792 Bits = 12; 793 NegOk = true; 794 break; 795 case ARM::tLEApcrel: 796 case ARM::tLEApcrelJT: 797 Bits = 8; 798 Scale = 4; 799 break; 800 801 case ARM::LDRBi12: 802 case ARM::LDRi12: 803 case ARM::LDRcp: 804 case ARM::t2LDRpci: 805 case ARM::t2LDRHpci: 806 Bits = 12; // +-offset_12 807 NegOk = true; 808 break; 809 810 case ARM::tLDRpci: 811 Bits = 8; 812 Scale = 4; // +(offset_8*4) 813 break; 814 815 case ARM::VLDRD: 816 case ARM::VLDRS: 817 Bits = 8; 818 Scale = 4; // +-(offset_8*4) 819 NegOk = true; 820 break; 821 822 case ARM::tLDRHi: 823 Bits = 5; 824 Scale = 2; // +(offset_5*2) 825 break; 826 } 827 828 // Remember that this is a user of a CP entry. 829 unsigned CPI = I.getOperand(op).getIndex(); 830 if (I.getOperand(op).isJTI()) { 831 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 832 CPI = JumpTableEntryIndices[CPI]; 833 } 834 835 MachineInstr *CPEMI = CPEMIs[CPI]; 836 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 837 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 838 839 // Increment corresponding CPEntry reference count. 840 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 841 assert(CPE && "Cannot find a corresponding CPEntry!"); 842 CPE->RefCount++; 843 844 // Instructions can only use one CP entry, don't bother scanning the 845 // rest of the operands. 846 break; 847 } 848 } 849 } 850 } 851 852 /// getOffsetOf - Return the current offset of the specified machine instruction 853 /// from the start of the function. This offset changes as stuff is moved 854 /// around inside the function. 855 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 856 MachineBasicBlock *MBB = MI->getParent(); 857 858 // The offset is composed of two things: the sum of the sizes of all MBB's 859 // before this instruction's block, and the offset from the start of the block 860 // it is in. 861 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 862 863 // Sum instructions before MI in MBB. 864 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 865 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 866 Offset += TII->getInstSizeInBytes(*I); 867 } 868 return Offset; 869 } 870 871 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 872 /// ID. 873 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 874 const MachineBasicBlock *RHS) { 875 return LHS->getNumber() < RHS->getNumber(); 876 } 877 878 /// updateForInsertedWaterBlock - When a block is newly inserted into the 879 /// machine function, it upsets all of the block numbers. Renumber the blocks 880 /// and update the arrays that parallel this numbering. 881 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 882 // Renumber the MBB's to keep them consecutive. 883 NewBB->getParent()->RenumberBlocks(NewBB); 884 885 // Insert an entry into BBInfo to align it properly with the (newly 886 // renumbered) block numbers. 887 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 888 889 // Next, update WaterList. Specifically, we need to add NewMBB as having 890 // available water after it. 891 water_iterator IP = 892 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 893 CompareMBBNumbers); 894 WaterList.insert(IP, NewBB); 895 } 896 897 /// Split the basic block containing MI into two blocks, which are joined by 898 /// an unconditional branch. Update data structures and renumber blocks to 899 /// account for this change and returns the newly created block. 900 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 901 MachineBasicBlock *OrigBB = MI->getParent(); 902 903 // Create a new MBB for the code after the OrigBB. 904 MachineBasicBlock *NewBB = 905 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 906 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 907 MF->insert(MBBI, NewBB); 908 909 // Splice the instructions starting with MI over to NewBB. 910 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 911 912 // Add an unconditional branch from OrigBB to NewBB. 913 // Note the new unconditional branch is not being recorded. 914 // There doesn't seem to be meaningful DebugInfo available; this doesn't 915 // correspond to anything in the source. 916 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 917 if (!isThumb) 918 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 919 else 920 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 921 .addMBB(NewBB) 922 .add(predOps(ARMCC::AL)); 923 ++NumSplit; 924 925 // Update the CFG. All succs of OrigBB are now succs of NewBB. 926 NewBB->transferSuccessors(OrigBB); 927 928 // OrigBB branches to NewBB. 929 OrigBB->addSuccessor(NewBB); 930 931 // Update internal data structures to account for the newly inserted MBB. 932 // This is almost the same as updateForInsertedWaterBlock, except that 933 // the Water goes after OrigBB, not NewBB. 934 MF->RenumberBlocks(NewBB); 935 936 // Insert an entry into BBInfo to align it properly with the (newly 937 // renumbered) block numbers. 938 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 939 940 // Next, update WaterList. Specifically, we need to add OrigMBB as having 941 // available water after it (but not if it's already there, which happens 942 // when splitting before a conditional branch that is followed by an 943 // unconditional branch - in that case we want to insert NewBB). 944 water_iterator IP = 945 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 946 CompareMBBNumbers); 947 MachineBasicBlock* WaterBB = *IP; 948 if (WaterBB == OrigBB) 949 WaterList.insert(std::next(IP), NewBB); 950 else 951 WaterList.insert(IP, OrigBB); 952 NewWaterList.insert(OrigBB); 953 954 // Figure out how large the OrigBB is. As the first half of the original 955 // block, it cannot contain a tablejump. The size includes 956 // the new jump we added. (It should be possible to do this without 957 // recounting everything, but it's very confusing, and this is rarely 958 // executed.) 959 computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]); 960 961 // Figure out how large the NewMBB is. As the second half of the original 962 // block, it may contain a tablejump. 963 computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]); 964 965 // All BBOffsets following these blocks must be modified. 966 adjustBBOffsetsAfter(OrigBB); 967 968 return NewBB; 969 } 970 971 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 972 /// displacement computation. Update U.KnownAlignment to match its current 973 /// basic block location. 974 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 975 unsigned UserOffset = getOffsetOf(U.MI); 976 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 977 unsigned KnownBits = BBI.internalKnownBits(); 978 979 // The value read from PC is offset from the actual instruction address. 980 UserOffset += (isThumb ? 4 : 8); 981 982 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 983 // Make sure U.getMaxDisp() returns a constrained range. 984 U.KnownAlignment = (KnownBits >= 2); 985 986 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 987 // purposes of the displacement computation; compensate for that here. 988 // For unknown alignments, getMaxDisp() constrains the range instead. 989 if (isThumb && U.KnownAlignment) 990 UserOffset &= ~3u; 991 992 return UserOffset; 993 } 994 995 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 996 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 997 /// constant pool entry). 998 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 999 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1000 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1001 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1002 unsigned TrialOffset, unsigned MaxDisp, 1003 bool NegativeOK, bool IsSoImm) { 1004 if (UserOffset <= TrialOffset) { 1005 // User before the Trial. 1006 if (TrialOffset - UserOffset <= MaxDisp) 1007 return true; 1008 // FIXME: Make use full range of soimm values. 1009 } else if (NegativeOK) { 1010 if (UserOffset - TrialOffset <= MaxDisp) 1011 return true; 1012 // FIXME: Make use full range of soimm values. 1013 } 1014 return false; 1015 } 1016 1017 /// isWaterInRange - Returns true if a CPE placed after the specified 1018 /// Water (a basic block) will be in range for the specific MI. 1019 /// 1020 /// Compute how much the function will grow by inserting a CPE after Water. 1021 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1022 MachineBasicBlock* Water, CPUser &U, 1023 unsigned &Growth) { 1024 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1025 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1026 unsigned NextBlockOffset, NextBlockAlignment; 1027 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1028 if (++NextBlock == MF->end()) { 1029 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1030 NextBlockAlignment = 0; 1031 } else { 1032 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1033 NextBlockAlignment = NextBlock->getAlignment(); 1034 } 1035 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1036 unsigned CPEEnd = CPEOffset + Size; 1037 1038 // The CPE may be able to hide in the alignment padding before the next 1039 // block. It may also cause more padding to be required if it is more aligned 1040 // that the next block. 1041 if (CPEEnd > NextBlockOffset) { 1042 Growth = CPEEnd - NextBlockOffset; 1043 // Compute the padding that would go at the end of the CPE to align the next 1044 // block. 1045 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1046 1047 // If the CPE is to be inserted before the instruction, that will raise 1048 // the offset of the instruction. Also account for unknown alignment padding 1049 // in blocks between CPE and the user. 1050 if (CPEOffset < UserOffset) 1051 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1052 } else 1053 // CPE fits in existing padding. 1054 Growth = 0; 1055 1056 return isOffsetInRange(UserOffset, CPEOffset, U); 1057 } 1058 1059 /// isCPEntryInRange - Returns true if the distance between specific MI and 1060 /// specific ConstPool entry instruction can fit in MI's displacement field. 1061 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1062 MachineInstr *CPEMI, unsigned MaxDisp, 1063 bool NegOk, bool DoDump) { 1064 unsigned CPEOffset = getOffsetOf(CPEMI); 1065 1066 if (DoDump) { 1067 DEBUG({ 1068 unsigned Block = MI->getParent()->getNumber(); 1069 const BasicBlockInfo &BBI = BBInfo[Block]; 1070 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1071 << " max delta=" << MaxDisp 1072 << format(" insn address=%#x", UserOffset) 1073 << " in BB#" << Block << ": " 1074 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1075 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1076 int(CPEOffset-UserOffset)); 1077 }); 1078 } 1079 1080 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1081 } 1082 1083 #ifndef NDEBUG 1084 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1085 /// unconditionally branches to its only successor. 1086 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1087 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1088 return false; 1089 1090 MachineBasicBlock *Succ = *MBB->succ_begin(); 1091 MachineBasicBlock *Pred = *MBB->pred_begin(); 1092 MachineInstr *PredMI = &Pred->back(); 1093 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1094 || PredMI->getOpcode() == ARM::t2B) 1095 return PredMI->getOperand(0).getMBB() == Succ; 1096 return false; 1097 } 1098 #endif // NDEBUG 1099 1100 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1101 unsigned BBNum = BB->getNumber(); 1102 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1103 // Get the offset and known bits at the end of the layout predecessor. 1104 // Include the alignment of the current block. 1105 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1106 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1107 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1108 1109 // This is where block i begins. Stop if the offset is already correct, 1110 // and we have updated 2 blocks. This is the maximum number of blocks 1111 // changed before calling this function. 1112 if (i > BBNum + 2 && 1113 BBInfo[i].Offset == Offset && 1114 BBInfo[i].KnownBits == KnownBits) 1115 break; 1116 1117 BBInfo[i].Offset = Offset; 1118 BBInfo[i].KnownBits = KnownBits; 1119 } 1120 } 1121 1122 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1123 /// and instruction CPEMI, and decrement its refcount. If the refcount 1124 /// becomes 0 remove the entry and instruction. Returns true if we removed 1125 /// the entry, false if we didn't. 1126 1127 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1128 MachineInstr *CPEMI) { 1129 // Find the old entry. Eliminate it if it is no longer used. 1130 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1131 assert(CPE && "Unexpected!"); 1132 if (--CPE->RefCount == 0) { 1133 removeDeadCPEMI(CPEMI); 1134 CPE->CPEMI = nullptr; 1135 --NumCPEs; 1136 return true; 1137 } 1138 return false; 1139 } 1140 1141 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1142 if (CPEMI->getOperand(1).isCPI()) 1143 return CPEMI->getOperand(1).getIndex(); 1144 1145 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1146 } 1147 1148 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1149 /// if not, see if an in-range clone of the CPE is in range, and if so, 1150 /// change the data structures so the user references the clone. Returns: 1151 /// 0 = no existing entry found 1152 /// 1 = entry found, and there were no code insertions or deletions 1153 /// 2 = entry found, and there were code insertions or deletions 1154 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1155 { 1156 MachineInstr *UserMI = U.MI; 1157 MachineInstr *CPEMI = U.CPEMI; 1158 1159 // Check to see if the CPE is already in-range. 1160 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1161 true)) { 1162 DEBUG(dbgs() << "In range\n"); 1163 return 1; 1164 } 1165 1166 // No. Look for previously created clones of the CPE that are in range. 1167 unsigned CPI = getCombinedIndex(CPEMI); 1168 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1169 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1170 // We already tried this one 1171 if (CPEs[i].CPEMI == CPEMI) 1172 continue; 1173 // Removing CPEs can leave empty entries, skip 1174 if (CPEs[i].CPEMI == nullptr) 1175 continue; 1176 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1177 U.NegOk)) { 1178 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1179 << CPEs[i].CPI << "\n"); 1180 // Point the CPUser node to the replacement 1181 U.CPEMI = CPEs[i].CPEMI; 1182 // Change the CPI in the instruction operand to refer to the clone. 1183 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1184 if (UserMI->getOperand(j).isCPI()) { 1185 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1186 break; 1187 } 1188 // Adjust the refcount of the clone... 1189 CPEs[i].RefCount++; 1190 // ...and the original. If we didn't remove the old entry, none of the 1191 // addresses changed, so we don't need another pass. 1192 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1193 } 1194 } 1195 return 0; 1196 } 1197 1198 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1199 /// the specific unconditional branch instruction. 1200 static inline unsigned getUnconditionalBrDisp(int Opc) { 1201 switch (Opc) { 1202 case ARM::tB: 1203 return ((1<<10)-1)*2; 1204 case ARM::t2B: 1205 return ((1<<23)-1)*2; 1206 default: 1207 break; 1208 } 1209 1210 return ((1<<23)-1)*4; 1211 } 1212 1213 /// findAvailableWater - Look for an existing entry in the WaterList in which 1214 /// we can place the CPE referenced from U so it's within range of U's MI. 1215 /// Returns true if found, false if not. If it returns true, WaterIter 1216 /// is set to the WaterList entry. For Thumb, prefer water that will not 1217 /// introduce padding to water that will. To ensure that this pass 1218 /// terminates, the CPE location for a particular CPUser is only allowed to 1219 /// move to a lower address, so search backward from the end of the list and 1220 /// prefer the first water that is in range. 1221 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1222 water_iterator &WaterIter, 1223 bool CloserWater) { 1224 if (WaterList.empty()) 1225 return false; 1226 1227 unsigned BestGrowth = ~0u; 1228 // The nearest water without splitting the UserBB is right after it. 1229 // If the distance is still large (we have a big BB), then we need to split it 1230 // if we don't converge after certain iterations. This helps the following 1231 // situation to converge: 1232 // BB0: 1233 // Big BB 1234 // BB1: 1235 // Constant Pool 1236 // When a CP access is out of range, BB0 may be used as water. However, 1237 // inserting islands between BB0 and BB1 makes other accesses out of range. 1238 MachineBasicBlock *UserBB = U.MI->getParent(); 1239 unsigned MinNoSplitDisp = 1240 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1241 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1242 return false; 1243 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1244 --IP) { 1245 MachineBasicBlock* WaterBB = *IP; 1246 // Check if water is in range and is either at a lower address than the 1247 // current "high water mark" or a new water block that was created since 1248 // the previous iteration by inserting an unconditional branch. In the 1249 // latter case, we want to allow resetting the high water mark back to 1250 // this new water since we haven't seen it before. Inserting branches 1251 // should be relatively uncommon and when it does happen, we want to be 1252 // sure to take advantage of it for all the CPEs near that block, so that 1253 // we don't insert more branches than necessary. 1254 // When CloserWater is true, we try to find the lowest address after (or 1255 // equal to) user MI's BB no matter of padding growth. 1256 unsigned Growth; 1257 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1258 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1259 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1260 Growth < BestGrowth) { 1261 // This is the least amount of required padding seen so far. 1262 BestGrowth = Growth; 1263 WaterIter = IP; 1264 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1265 << " Growth=" << Growth << '\n'); 1266 1267 if (CloserWater && WaterBB == U.MI->getParent()) 1268 return true; 1269 // Keep looking unless it is perfect and we're not looking for the lowest 1270 // possible address. 1271 if (!CloserWater && BestGrowth == 0) 1272 return true; 1273 } 1274 if (IP == B) 1275 break; 1276 } 1277 return BestGrowth != ~0u; 1278 } 1279 1280 /// createNewWater - No existing WaterList entry will work for 1281 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1282 /// block is used if in range, and the conditional branch munged so control 1283 /// flow is correct. Otherwise the block is split to create a hole with an 1284 /// unconditional branch around it. In either case NewMBB is set to a 1285 /// block following which the new island can be inserted (the WaterList 1286 /// is not adjusted). 1287 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1288 unsigned UserOffset, 1289 MachineBasicBlock *&NewMBB) { 1290 CPUser &U = CPUsers[CPUserIndex]; 1291 MachineInstr *UserMI = U.MI; 1292 MachineInstr *CPEMI = U.CPEMI; 1293 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1294 MachineBasicBlock *UserMBB = UserMI->getParent(); 1295 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1296 1297 // If the block does not end in an unconditional branch already, and if the 1298 // end of the block is within range, make new water there. (The addition 1299 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1300 // Thumb2, 2 on Thumb1. 1301 if (BBHasFallthrough(UserMBB)) { 1302 // Size of branch to insert. 1303 unsigned Delta = isThumb1 ? 2 : 4; 1304 // Compute the offset where the CPE will begin. 1305 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1306 1307 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1308 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1309 << format(", expected CPE offset %#x\n", CPEOffset)); 1310 NewMBB = &*++UserMBB->getIterator(); 1311 // Add an unconditional branch from UserMBB to fallthrough block. Record 1312 // it for branch lengthening; this new branch will not get out of range, 1313 // but if the preceding conditional branch is out of range, the targets 1314 // will be exchanged, and the altered branch may be out of range, so the 1315 // machinery has to know about it. 1316 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1317 if (!isThumb) 1318 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1319 else 1320 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1321 .addMBB(NewMBB) 1322 .add(predOps(ARMCC::AL)); 1323 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1324 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1325 MaxDisp, false, UncondBr)); 1326 computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]); 1327 adjustBBOffsetsAfter(UserMBB); 1328 return; 1329 } 1330 } 1331 1332 // What a big block. Find a place within the block to split it. This is a 1333 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1334 // entries are 4 bytes: if instruction I references island CPE, and 1335 // instruction I+1 references CPE', it will not work well to put CPE as far 1336 // forward as possible, since then CPE' cannot immediately follow it (that 1337 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1338 // need to create a new island. So, we make a first guess, then walk through 1339 // the instructions between the one currently being looked at and the 1340 // possible insertion point, and make sure any other instructions that 1341 // reference CPEs will be able to use the same island area; if not, we back 1342 // up the insertion point. 1343 1344 // Try to split the block so it's fully aligned. Compute the latest split 1345 // point where we can add a 4-byte branch instruction, and then align to 1346 // LogAlign which is the largest possible alignment in the function. 1347 unsigned LogAlign = MF->getAlignment(); 1348 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1349 unsigned KnownBits = UserBBI.internalKnownBits(); 1350 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1351 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1352 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1353 BaseInsertOffset)); 1354 1355 // The 4 in the following is for the unconditional branch we'll be inserting 1356 // (allows for long branch on Thumb1). Alignment of the island is handled 1357 // inside isOffsetInRange. 1358 BaseInsertOffset -= 4; 1359 1360 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1361 << " la=" << LogAlign 1362 << " kb=" << KnownBits 1363 << " up=" << UPad << '\n'); 1364 1365 // This could point off the end of the block if we've already got constant 1366 // pool entries following this block; only the last one is in the water list. 1367 // Back past any possible branches (allow for a conditional and a maximally 1368 // long unconditional). 1369 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1370 // Ensure BaseInsertOffset is larger than the offset of the instruction 1371 // following UserMI so that the loop which searches for the split point 1372 // iterates at least once. 1373 BaseInsertOffset = 1374 std::max(UserBBI.postOffset() - UPad - 8, 1375 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1376 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1377 } 1378 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1379 CPEMI->getOperand(2).getImm(); 1380 MachineBasicBlock::iterator MI = UserMI; 1381 ++MI; 1382 unsigned CPUIndex = CPUserIndex+1; 1383 unsigned NumCPUsers = CPUsers.size(); 1384 MachineInstr *LastIT = nullptr; 1385 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1386 Offset < BaseInsertOffset; 1387 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1388 assert(MI != UserMBB->end() && "Fell off end of block"); 1389 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1390 CPUser &U = CPUsers[CPUIndex]; 1391 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1392 // Shift intertion point by one unit of alignment so it is within reach. 1393 BaseInsertOffset -= 1u << LogAlign; 1394 EndInsertOffset -= 1u << LogAlign; 1395 } 1396 // This is overly conservative, as we don't account for CPEMIs being 1397 // reused within the block, but it doesn't matter much. Also assume CPEs 1398 // are added in order with alignment padding. We may eventually be able 1399 // to pack the aligned CPEs better. 1400 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1401 CPUIndex++; 1402 } 1403 1404 // Remember the last IT instruction. 1405 if (MI->getOpcode() == ARM::t2IT) 1406 LastIT = &*MI; 1407 } 1408 1409 --MI; 1410 1411 // Avoid splitting an IT block. 1412 if (LastIT) { 1413 unsigned PredReg = 0; 1414 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1415 if (CC != ARMCC::AL) 1416 MI = LastIT; 1417 } 1418 1419 // We really must not split an IT block. 1420 DEBUG(unsigned PredReg; 1421 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1422 1423 NewMBB = splitBlockBeforeInstr(&*MI); 1424 } 1425 1426 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1427 /// is out-of-range. If so, pick up the constant pool value and move it some 1428 /// place in-range. Return true if we changed any addresses (thus must run 1429 /// another pass of branch lengthening), false otherwise. 1430 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1431 bool CloserWater) { 1432 CPUser &U = CPUsers[CPUserIndex]; 1433 MachineInstr *UserMI = U.MI; 1434 MachineInstr *CPEMI = U.CPEMI; 1435 unsigned CPI = getCombinedIndex(CPEMI); 1436 unsigned Size = CPEMI->getOperand(2).getImm(); 1437 // Compute this only once, it's expensive. 1438 unsigned UserOffset = getUserOffset(U); 1439 1440 // See if the current entry is within range, or there is a clone of it 1441 // in range. 1442 int result = findInRangeCPEntry(U, UserOffset); 1443 if (result==1) return false; 1444 else if (result==2) return true; 1445 1446 // No existing clone of this CPE is within range. 1447 // We will be generating a new clone. Get a UID for it. 1448 unsigned ID = AFI->createPICLabelUId(); 1449 1450 // Look for water where we can place this CPE. 1451 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1452 MachineBasicBlock *NewMBB; 1453 water_iterator IP; 1454 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1455 DEBUG(dbgs() << "Found water in range\n"); 1456 MachineBasicBlock *WaterBB = *IP; 1457 1458 // If the original WaterList entry was "new water" on this iteration, 1459 // propagate that to the new island. This is just keeping NewWaterList 1460 // updated to match the WaterList, which will be updated below. 1461 if (NewWaterList.erase(WaterBB)) 1462 NewWaterList.insert(NewIsland); 1463 1464 // The new CPE goes before the following block (NewMBB). 1465 NewMBB = &*++WaterBB->getIterator(); 1466 } else { 1467 // No water found. 1468 DEBUG(dbgs() << "No water found\n"); 1469 createNewWater(CPUserIndex, UserOffset, NewMBB); 1470 1471 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1472 // called while handling branches so that the water will be seen on the 1473 // next iteration for constant pools, but in this context, we don't want 1474 // it. Check for this so it will be removed from the WaterList. 1475 // Also remove any entry from NewWaterList. 1476 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1477 IP = find(WaterList, WaterBB); 1478 if (IP != WaterList.end()) 1479 NewWaterList.erase(WaterBB); 1480 1481 // We are adding new water. Update NewWaterList. 1482 NewWaterList.insert(NewIsland); 1483 } 1484 1485 // Remove the original WaterList entry; we want subsequent insertions in 1486 // this vicinity to go after the one we're about to insert. This 1487 // considerably reduces the number of times we have to move the same CPE 1488 // more than once and is also important to ensure the algorithm terminates. 1489 if (IP != WaterList.end()) 1490 WaterList.erase(IP); 1491 1492 // Okay, we know we can put an island before NewMBB now, do it! 1493 MF->insert(NewMBB->getIterator(), NewIsland); 1494 1495 // Update internal data structures to account for the newly inserted MBB. 1496 updateForInsertedWaterBlock(NewIsland); 1497 1498 // Now that we have an island to add the CPE to, clone the original CPE and 1499 // add it to the island. 1500 U.HighWaterMark = NewIsland; 1501 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1502 .addImm(ID) 1503 .add(CPEMI->getOperand(1)) 1504 .addImm(Size); 1505 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1506 ++NumCPEs; 1507 1508 // Decrement the old entry, and remove it if refcount becomes 0. 1509 decrementCPEReferenceCount(CPI, CPEMI); 1510 1511 // Mark the basic block as aligned as required by the const-pool entry. 1512 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1513 1514 // Increase the size of the island block to account for the new entry. 1515 BBInfo[NewIsland->getNumber()].Size += Size; 1516 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1517 1518 // Finally, change the CPI in the instruction operand to be ID. 1519 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1520 if (UserMI->getOperand(i).isCPI()) { 1521 UserMI->getOperand(i).setIndex(ID); 1522 break; 1523 } 1524 1525 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1526 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1527 1528 return true; 1529 } 1530 1531 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1532 /// sizes and offsets of impacted basic blocks. 1533 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1534 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1535 unsigned Size = CPEMI->getOperand(2).getImm(); 1536 CPEMI->eraseFromParent(); 1537 BBInfo[CPEBB->getNumber()].Size -= Size; 1538 // All succeeding offsets have the current size value added in, fix this. 1539 if (CPEBB->empty()) { 1540 BBInfo[CPEBB->getNumber()].Size = 0; 1541 1542 // This block no longer needs to be aligned. 1543 CPEBB->setAlignment(0); 1544 } else 1545 // Entries are sorted by descending alignment, so realign from the front. 1546 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1547 1548 adjustBBOffsetsAfter(CPEBB); 1549 // An island has only one predecessor BB and one successor BB. Check if 1550 // this BB's predecessor jumps directly to this BB's successor. This 1551 // shouldn't happen currently. 1552 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1553 // FIXME: remove the empty blocks after all the work is done? 1554 } 1555 1556 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1557 /// are zero. 1558 bool ARMConstantIslands::removeUnusedCPEntries() { 1559 unsigned MadeChange = false; 1560 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1561 std::vector<CPEntry> &CPEs = CPEntries[i]; 1562 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1563 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1564 removeDeadCPEMI(CPEs[j].CPEMI); 1565 CPEs[j].CPEMI = nullptr; 1566 MadeChange = true; 1567 } 1568 } 1569 } 1570 return MadeChange; 1571 } 1572 1573 /// isBBInRange - Returns true if the distance between specific MI and 1574 /// specific BB can fit in MI's displacement field. 1575 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1576 unsigned MaxDisp) { 1577 unsigned PCAdj = isThumb ? 4 : 8; 1578 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1579 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1580 1581 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1582 << " from BB#" << MI->getParent()->getNumber() 1583 << " max delta=" << MaxDisp 1584 << " from " << getOffsetOf(MI) << " to " << DestOffset 1585 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1586 1587 if (BrOffset <= DestOffset) { 1588 // Branch before the Dest. 1589 if (DestOffset-BrOffset <= MaxDisp) 1590 return true; 1591 } else { 1592 if (BrOffset-DestOffset <= MaxDisp) 1593 return true; 1594 } 1595 return false; 1596 } 1597 1598 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1599 /// away to fit in its displacement field. 1600 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1601 MachineInstr *MI = Br.MI; 1602 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1603 1604 // Check to see if the DestBB is already in-range. 1605 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1606 return false; 1607 1608 if (!Br.isCond) 1609 return fixupUnconditionalBr(Br); 1610 return fixupConditionalBr(Br); 1611 } 1612 1613 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1614 /// too far away to fit in its displacement field. If the LR register has been 1615 /// spilled in the epilogue, then we can use BL to implement a far jump. 1616 /// Otherwise, add an intermediate branch instruction to a branch. 1617 bool 1618 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1619 MachineInstr *MI = Br.MI; 1620 MachineBasicBlock *MBB = MI->getParent(); 1621 if (!isThumb1) 1622 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1623 1624 // Use BL to implement far jump. 1625 Br.MaxDisp = (1 << 21) * 2; 1626 MI->setDesc(TII->get(ARM::tBfar)); 1627 BBInfo[MBB->getNumber()].Size += 2; 1628 adjustBBOffsetsAfter(MBB); 1629 HasFarJump = true; 1630 ++NumUBrFixed; 1631 1632 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1633 1634 return true; 1635 } 1636 1637 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1638 /// far away to fit in its displacement field. It is converted to an inverse 1639 /// conditional branch + an unconditional branch to the destination. 1640 bool 1641 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1642 MachineInstr *MI = Br.MI; 1643 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1644 1645 // Add an unconditional branch to the destination and invert the branch 1646 // condition to jump over it: 1647 // blt L1 1648 // => 1649 // bge L2 1650 // b L1 1651 // L2: 1652 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1653 CC = ARMCC::getOppositeCondition(CC); 1654 unsigned CCReg = MI->getOperand(2).getReg(); 1655 1656 // If the branch is at the end of its MBB and that has a fall-through block, 1657 // direct the updated conditional branch to the fall-through block. Otherwise, 1658 // split the MBB before the next instruction. 1659 MachineBasicBlock *MBB = MI->getParent(); 1660 MachineInstr *BMI = &MBB->back(); 1661 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1662 1663 ++NumCBrFixed; 1664 if (BMI != MI) { 1665 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1666 BMI->getOpcode() == Br.UncondBr) { 1667 // Last MI in the BB is an unconditional branch. Can we simply invert the 1668 // condition and swap destinations: 1669 // beq L1 1670 // b L2 1671 // => 1672 // bne L2 1673 // b L1 1674 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1675 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1676 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1677 << *BMI); 1678 BMI->getOperand(0).setMBB(DestBB); 1679 MI->getOperand(0).setMBB(NewDest); 1680 MI->getOperand(1).setImm(CC); 1681 return true; 1682 } 1683 } 1684 } 1685 1686 if (NeedSplit) { 1687 splitBlockBeforeInstr(MI); 1688 // No need for the branch to the next block. We're adding an unconditional 1689 // branch to the destination. 1690 int delta = TII->getInstSizeInBytes(MBB->back()); 1691 BBInfo[MBB->getNumber()].Size -= delta; 1692 MBB->back().eraseFromParent(); 1693 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1694 } 1695 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1696 1697 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1698 << " also invert condition and change dest. to BB#" 1699 << NextBB->getNumber() << "\n"); 1700 1701 // Insert a new conditional branch and a new unconditional branch. 1702 // Also update the ImmBranch as well as adding a new entry for the new branch. 1703 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1704 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1705 Br.MI = &MBB->back(); 1706 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1707 if (isThumb) 1708 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1709 .addMBB(DestBB) 1710 .add(predOps(ARMCC::AL)); 1711 else 1712 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1713 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1714 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1715 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1716 1717 // Remove the old conditional branch. It may or may not still be in MBB. 1718 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1719 MI->eraseFromParent(); 1720 adjustBBOffsetsAfter(MBB); 1721 return true; 1722 } 1723 1724 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1725 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1726 /// to do this if tBfar is not used. 1727 bool ARMConstantIslands::undoLRSpillRestore() { 1728 bool MadeChange = false; 1729 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1730 MachineInstr *MI = PushPopMIs[i]; 1731 // First two operands are predicates. 1732 if (MI->getOpcode() == ARM::tPOP_RET && 1733 MI->getOperand(2).getReg() == ARM::PC && 1734 MI->getNumExplicitOperands() == 3) { 1735 // Create the new insn and copy the predicate from the old. 1736 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1737 .add(MI->getOperand(0)) 1738 .add(MI->getOperand(1)); 1739 MI->eraseFromParent(); 1740 MadeChange = true; 1741 } 1742 } 1743 return MadeChange; 1744 } 1745 1746 bool ARMConstantIslands::optimizeThumb2Instructions() { 1747 bool MadeChange = false; 1748 1749 // Shrink ADR and LDR from constantpool. 1750 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1751 CPUser &U = CPUsers[i]; 1752 unsigned Opcode = U.MI->getOpcode(); 1753 unsigned NewOpc = 0; 1754 unsigned Scale = 1; 1755 unsigned Bits = 0; 1756 switch (Opcode) { 1757 default: break; 1758 case ARM::t2LEApcrel: 1759 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1760 NewOpc = ARM::tLEApcrel; 1761 Bits = 8; 1762 Scale = 4; 1763 } 1764 break; 1765 case ARM::t2LDRpci: 1766 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1767 NewOpc = ARM::tLDRpci; 1768 Bits = 8; 1769 Scale = 4; 1770 } 1771 break; 1772 } 1773 1774 if (!NewOpc) 1775 continue; 1776 1777 unsigned UserOffset = getUserOffset(U); 1778 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1779 1780 // Be conservative with inline asm. 1781 if (!U.KnownAlignment) 1782 MaxOffs -= 2; 1783 1784 // FIXME: Check if offset is multiple of scale if scale is not 4. 1785 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1786 DEBUG(dbgs() << "Shrink: " << *U.MI); 1787 U.MI->setDesc(TII->get(NewOpc)); 1788 MachineBasicBlock *MBB = U.MI->getParent(); 1789 BBInfo[MBB->getNumber()].Size -= 2; 1790 adjustBBOffsetsAfter(MBB); 1791 ++NumT2CPShrunk; 1792 MadeChange = true; 1793 } 1794 } 1795 1796 return MadeChange; 1797 } 1798 1799 bool ARMConstantIslands::optimizeThumb2Branches() { 1800 bool MadeChange = false; 1801 1802 // The order in which branches appear in ImmBranches is approximately their 1803 // order within the function body. By visiting later branches first, we reduce 1804 // the distance between earlier forward branches and their targets, making it 1805 // more likely that the cbn?z optimization, which can only apply to forward 1806 // branches, will succeed. 1807 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1808 ImmBranch &Br = ImmBranches[i-1]; 1809 unsigned Opcode = Br.MI->getOpcode(); 1810 unsigned NewOpc = 0; 1811 unsigned Scale = 1; 1812 unsigned Bits = 0; 1813 switch (Opcode) { 1814 default: break; 1815 case ARM::t2B: 1816 NewOpc = ARM::tB; 1817 Bits = 11; 1818 Scale = 2; 1819 break; 1820 case ARM::t2Bcc: 1821 NewOpc = ARM::tBcc; 1822 Bits = 8; 1823 Scale = 2; 1824 break; 1825 } 1826 if (NewOpc) { 1827 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1828 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1829 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1830 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1831 Br.MI->setDesc(TII->get(NewOpc)); 1832 MachineBasicBlock *MBB = Br.MI->getParent(); 1833 BBInfo[MBB->getNumber()].Size -= 2; 1834 adjustBBOffsetsAfter(MBB); 1835 ++NumT2BrShrunk; 1836 MadeChange = true; 1837 } 1838 } 1839 1840 Opcode = Br.MI->getOpcode(); 1841 if (Opcode != ARM::tBcc) 1842 continue; 1843 1844 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1845 // so this transformation is not safe. 1846 if (!Br.MI->killsRegister(ARM::CPSR)) 1847 continue; 1848 1849 NewOpc = 0; 1850 unsigned PredReg = 0; 1851 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1852 if (Pred == ARMCC::EQ) 1853 NewOpc = ARM::tCBZ; 1854 else if (Pred == ARMCC::NE) 1855 NewOpc = ARM::tCBNZ; 1856 if (!NewOpc) 1857 continue; 1858 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1859 // Check if the distance is within 126. Subtract starting offset by 2 1860 // because the cmp will be eliminated. 1861 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1862 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1863 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1864 MachineBasicBlock::iterator CmpMI = Br.MI; 1865 if (CmpMI != Br.MI->getParent()->begin()) { 1866 --CmpMI; 1867 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1868 unsigned Reg = CmpMI->getOperand(0).getReg(); 1869 Pred = getInstrPredicate(*CmpMI, PredReg); 1870 if (Pred == ARMCC::AL && 1871 CmpMI->getOperand(1).getImm() == 0 && 1872 isARMLowRegister(Reg)) { 1873 MachineBasicBlock *MBB = Br.MI->getParent(); 1874 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1875 MachineInstr *NewBR = 1876 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1877 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1878 CmpMI->eraseFromParent(); 1879 Br.MI->eraseFromParent(); 1880 Br.MI = NewBR; 1881 BBInfo[MBB->getNumber()].Size -= 2; 1882 adjustBBOffsetsAfter(MBB); 1883 ++NumCBZ; 1884 MadeChange = true; 1885 } 1886 } 1887 } 1888 } 1889 } 1890 1891 return MadeChange; 1892 } 1893 1894 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1895 unsigned BaseReg) { 1896 if (I.getOpcode() != ARM::t2ADDrs) 1897 return false; 1898 1899 if (I.getOperand(0).getReg() != EntryReg) 1900 return false; 1901 1902 if (I.getOperand(1).getReg() != BaseReg) 1903 return false; 1904 1905 // FIXME: what about CC and IdxReg? 1906 return true; 1907 } 1908 1909 /// \brief While trying to form a TBB/TBH instruction, we may (if the table 1910 /// doesn't immediately follow the BR_JT) need access to the start of the 1911 /// jump-table. We know one instruction that produces such a register; this 1912 /// function works out whether that definition can be preserved to the BR_JT, 1913 /// possibly by removing an intervening addition (which is usually needed to 1914 /// calculate the actual entry to jump to). 1915 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1916 MachineInstr *LEAMI, 1917 unsigned &DeadSize, 1918 bool &CanDeleteLEA, 1919 bool &BaseRegKill) { 1920 if (JumpMI->getParent() != LEAMI->getParent()) 1921 return false; 1922 1923 // Now we hope that we have at least these instructions in the basic block: 1924 // BaseReg = t2LEA ... 1925 // [...] 1926 // EntryReg = t2ADDrs BaseReg, ... 1927 // [...] 1928 // t2BR_JT EntryReg 1929 // 1930 // We have to be very conservative about what we recognise here though. The 1931 // main perturbing factors to watch out for are: 1932 // + Spills at any point in the chain: not direct problems but we would 1933 // expect a blocking Def of the spilled register so in practice what we 1934 // can do is limited. 1935 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1936 // of BaseReg, but only if the t2ADDrs can be removed. 1937 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1938 // the wild, but we should be careful. 1939 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 1940 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 1941 1942 CanDeleteLEA = true; 1943 BaseRegKill = false; 1944 MachineInstr *RemovableAdd = nullptr; 1945 MachineBasicBlock::iterator I(LEAMI); 1946 for (++I; &*I != JumpMI; ++I) { 1947 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 1948 RemovableAdd = &*I; 1949 break; 1950 } 1951 1952 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1953 const MachineOperand &MO = I->getOperand(K); 1954 if (!MO.isReg() || !MO.getReg()) 1955 continue; 1956 if (MO.isDef() && MO.getReg() == BaseReg) 1957 return false; 1958 if (MO.isUse() && MO.getReg() == BaseReg) { 1959 BaseRegKill = BaseRegKill || MO.isKill(); 1960 CanDeleteLEA = false; 1961 } 1962 } 1963 } 1964 1965 if (!RemovableAdd) 1966 return true; 1967 1968 // Check the add really is removable, and that nothing else in the block 1969 // clobbers BaseReg. 1970 for (++I; &*I != JumpMI; ++I) { 1971 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1972 const MachineOperand &MO = I->getOperand(K); 1973 if (!MO.isReg() || !MO.getReg()) 1974 continue; 1975 if (MO.isDef() && MO.getReg() == BaseReg) 1976 return false; 1977 if (MO.isUse() && MO.getReg() == EntryReg) 1978 RemovableAdd = nullptr; 1979 } 1980 } 1981 1982 if (RemovableAdd) { 1983 RemovableAdd->eraseFromParent(); 1984 DeadSize += isThumb2 ? 4 : 2; 1985 } else if (BaseReg == EntryReg) { 1986 // The add wasn't removable, but clobbered the base for the TBB. So we can't 1987 // preserve it. 1988 return false; 1989 } 1990 1991 // We reached the end of the block without seeing another definition of 1992 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 1993 // used in the TBB/TBH if necessary. 1994 return true; 1995 } 1996 1997 /// \brief Returns whether CPEMI is the first instruction in the block 1998 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 1999 /// we can switch the first register to PC and usually remove the address 2000 /// calculation that preceded it. 2001 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2002 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2003 MachineFunction *MF = MBB->getParent(); 2004 ++MBB; 2005 2006 return MBB != MF->end() && MBB->begin() != MBB->end() && 2007 &*MBB->begin() == CPEMI; 2008 } 2009 2010 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2011 /// jumptables when it's possible. 2012 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2013 bool MadeChange = false; 2014 2015 // FIXME: After the tables are shrunk, can we get rid some of the 2016 // constantpool tables? 2017 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2018 if (!MJTI) return false; 2019 2020 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2021 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2022 MachineInstr *MI = T2JumpTables[i]; 2023 const MCInstrDesc &MCID = MI->getDesc(); 2024 unsigned NumOps = MCID.getNumOperands(); 2025 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2026 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2027 unsigned JTI = JTOP.getIndex(); 2028 assert(JTI < JT.size()); 2029 2030 bool ByteOk = true; 2031 bool HalfWordOk = true; 2032 unsigned JTOffset = getOffsetOf(MI) + 4; 2033 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2034 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2035 MachineBasicBlock *MBB = JTBBs[j]; 2036 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2037 // Negative offset is not ok. FIXME: We should change BB layout to make 2038 // sure all the branches are forward. 2039 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2040 ByteOk = false; 2041 unsigned TBHLimit = ((1<<16)-1)*2; 2042 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2043 HalfWordOk = false; 2044 if (!ByteOk && !HalfWordOk) 2045 break; 2046 } 2047 2048 if (!ByteOk && !HalfWordOk) 2049 continue; 2050 2051 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2052 MachineBasicBlock *MBB = MI->getParent(); 2053 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2054 continue; 2055 2056 unsigned DeadSize = 0; 2057 bool CanDeleteLEA = false; 2058 bool BaseRegKill = false; 2059 2060 unsigned IdxReg = ~0U; 2061 bool IdxRegKill = true; 2062 if (isThumb2) { 2063 IdxReg = MI->getOperand(1).getReg(); 2064 IdxRegKill = MI->getOperand(1).isKill(); 2065 2066 bool PreservedBaseReg = 2067 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2068 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2069 continue; 2070 } else { 2071 // We're in thumb-1 mode, so we must have something like: 2072 // %idx = tLSLri %idx, 2 2073 // %base = tLEApcrelJT 2074 // %t = tLDRr %idx, %base 2075 unsigned BaseReg = User.MI->getOperand(0).getReg(); 2076 2077 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2078 continue; 2079 MachineInstr *Shift = User.MI->getPrevNode(); 2080 if (Shift->getOpcode() != ARM::tLSLri || 2081 Shift->getOperand(3).getImm() != 2 || 2082 !Shift->getOperand(2).isKill()) 2083 continue; 2084 IdxReg = Shift->getOperand(2).getReg(); 2085 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg(); 2086 2087 MachineInstr *Load = User.MI->getNextNode(); 2088 if (Load->getOpcode() != ARM::tLDRr) 2089 continue; 2090 if (Load->getOperand(1).getReg() != ShiftedIdxReg || 2091 Load->getOperand(2).getReg() != BaseReg || 2092 !Load->getOperand(1).isKill()) 2093 continue; 2094 2095 // If we're in PIC mode, there should be another ADD following. 2096 if (isPositionIndependentOrROPI) { 2097 MachineInstr *Add = Load->getNextNode(); 2098 if (Add->getOpcode() != ARM::tADDrr || 2099 Add->getOperand(2).getReg() != Load->getOperand(0).getReg() || 2100 Add->getOperand(3).getReg() != BaseReg || 2101 !Add->getOperand(2).isKill()) 2102 continue; 2103 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2104 continue; 2105 2106 Add->eraseFromParent(); 2107 DeadSize += 2; 2108 } else { 2109 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2110 continue; 2111 } 2112 2113 // Now safe to delete the load and lsl. The LEA will be removed later. 2114 CanDeleteLEA = true; 2115 Shift->eraseFromParent(); 2116 Load->eraseFromParent(); 2117 DeadSize += 4; 2118 } 2119 2120 DEBUG(dbgs() << "Shrink JT: " << *MI); 2121 MachineInstr *CPEMI = User.CPEMI; 2122 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2123 if (!isThumb2) 2124 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2125 2126 MachineBasicBlock::iterator MI_JT = MI; 2127 MachineInstr *NewJTMI = 2128 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2129 .addReg(User.MI->getOperand(0).getReg(), 2130 getKillRegState(BaseRegKill)) 2131 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2132 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2133 .addImm(CPEMI->getOperand(0).getImm()); 2134 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); 2135 2136 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2137 CPEMI->setDesc(TII->get(JTOpc)); 2138 2139 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2140 NewJTMI->getOperand(0).setReg(ARM::PC); 2141 NewJTMI->getOperand(0).setIsKill(false); 2142 2143 if (CanDeleteLEA) { 2144 User.MI->eraseFromParent(); 2145 DeadSize += isThumb2 ? 4 : 2; 2146 2147 // The LEA was eliminated, the TBB instruction becomes the only new user 2148 // of the jump table. 2149 User.MI = NewJTMI; 2150 User.MaxDisp = 4; 2151 User.NegOk = false; 2152 User.IsSoImm = false; 2153 User.KnownAlignment = false; 2154 } else { 2155 // The LEA couldn't be eliminated, so we must add another CPUser to 2156 // record the TBB or TBH use. 2157 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2158 auto &CPEs = CPEntries[CPEntryIdx]; 2159 auto Entry = 2160 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2161 ++Entry->RefCount; 2162 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2163 } 2164 } 2165 2166 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2167 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2168 MI->eraseFromParent(); 2169 2170 int Delta = OrigSize - NewSize + DeadSize; 2171 BBInfo[MBB->getNumber()].Size -= Delta; 2172 adjustBBOffsetsAfter(MBB); 2173 2174 ++NumTBs; 2175 MadeChange = true; 2176 } 2177 2178 return MadeChange; 2179 } 2180 2181 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2182 /// jump tables always branch forwards, since that's what tbb and tbh need. 2183 bool ARMConstantIslands::reorderThumb2JumpTables() { 2184 bool MadeChange = false; 2185 2186 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2187 if (!MJTI) return false; 2188 2189 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2190 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2191 MachineInstr *MI = T2JumpTables[i]; 2192 const MCInstrDesc &MCID = MI->getDesc(); 2193 unsigned NumOps = MCID.getNumOperands(); 2194 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2195 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2196 unsigned JTI = JTOP.getIndex(); 2197 assert(JTI < JT.size()); 2198 2199 // We prefer if target blocks for the jump table come after the jump 2200 // instruction so we can use TB[BH]. Loop through the target blocks 2201 // and try to adjust them such that that's true. 2202 int JTNumber = MI->getParent()->getNumber(); 2203 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2204 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2205 MachineBasicBlock *MBB = JTBBs[j]; 2206 int DTNumber = MBB->getNumber(); 2207 2208 if (DTNumber < JTNumber) { 2209 // The destination precedes the switch. Try to move the block forward 2210 // so we have a positive offset. 2211 MachineBasicBlock *NewBB = 2212 adjustJTTargetBlockForward(MBB, MI->getParent()); 2213 if (NewBB) 2214 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2215 MadeChange = true; 2216 } 2217 } 2218 } 2219 2220 return MadeChange; 2221 } 2222 2223 MachineBasicBlock *ARMConstantIslands:: 2224 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2225 // If the destination block is terminated by an unconditional branch, 2226 // try to move it; otherwise, create a new block following the jump 2227 // table that branches back to the actual target. This is a very simple 2228 // heuristic. FIXME: We can definitely improve it. 2229 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2230 SmallVector<MachineOperand, 4> Cond; 2231 SmallVector<MachineOperand, 4> CondPrior; 2232 MachineFunction::iterator BBi = BB->getIterator(); 2233 MachineFunction::iterator OldPrior = std::prev(BBi); 2234 2235 // If the block terminator isn't analyzable, don't try to move the block 2236 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2237 2238 // If the block ends in an unconditional branch, move it. The prior block 2239 // has to have an analyzable terminator for us to move this one. Be paranoid 2240 // and make sure we're not trying to move the entry block of the function. 2241 if (!B && Cond.empty() && BB != &MF->front() && 2242 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2243 BB->moveAfter(JTBB); 2244 OldPrior->updateTerminator(); 2245 BB->updateTerminator(); 2246 // Update numbering to account for the block being moved. 2247 MF->RenumberBlocks(); 2248 ++NumJTMoved; 2249 return nullptr; 2250 } 2251 2252 // Create a new MBB for the code after the jump BB. 2253 MachineBasicBlock *NewBB = 2254 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2255 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2256 MF->insert(MBBI, NewBB); 2257 2258 // Add an unconditional branch from NewBB to BB. 2259 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2260 // correspond directly to anything in the source. 2261 if (isThumb2) 2262 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2263 .addMBB(BB) 2264 .add(predOps(ARMCC::AL)); 2265 else 2266 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2267 .addMBB(BB) 2268 .add(predOps(ARMCC::AL)); 2269 2270 // Update internal data structures to account for the newly inserted MBB. 2271 MF->RenumberBlocks(NewBB); 2272 2273 // Update the CFG. 2274 NewBB->addSuccessor(BB); 2275 JTBB->replaceSuccessor(BB, NewBB); 2276 2277 ++NumJTInserted; 2278 return NewBB; 2279 } 2280 2281 /// createARMConstantIslandPass - returns an instance of the constpool 2282 /// island pass. 2283 FunctionPass *llvm::createARMConstantIslandPass() { 2284 return new ARMConstantIslands(); 2285 } 2286