1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "arm-cp-islands" 61 62 #define ARM_CP_ISLANDS_OPT_NAME \ 63 "ARM constant island placement and branch shortening pass" 64 STATISTIC(NumCPEs, "Number of constpool entries"); 65 STATISTIC(NumSplit, "Number of uncond branches inserted"); 66 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 67 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 68 STATISTIC(NumTBs, "Number of table branches generated"); 69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 71 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 72 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 75 76 static cl::opt<bool> 77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 78 cl::desc("Adjust basic block layout to better use TB[BH]")); 79 80 static cl::opt<unsigned> 81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 82 cl::desc("The max number of iteration for converge")); 83 84 static cl::opt<bool> SynthesizeThumb1TBB( 85 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 87 "equivalent to the TBB/TBH instructions")); 88 89 namespace { 90 91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 92 /// requires constant pool entries to be scattered among the instructions 93 /// inside a function. To do this, it completely ignores the normal LLVM 94 /// constant pool; instead, it places constants wherever it feels like with 95 /// special instructions. 96 /// 97 /// The terminology used in this pass includes: 98 /// Islands - Clumps of constants placed in the function. 99 /// Water - Potential places where an island could be formed. 100 /// CPE - A constant pool entry that has been placed somewhere, which 101 /// tracks a list of users. 102 class ARMConstantIslands : public MachineFunctionPass { 103 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 104 105 /// WaterList - A sorted list of basic blocks where islands could be placed 106 /// (i.e. blocks that don't fall through to the following block, due 107 /// to a return, unreachable, or unconditional branch). 108 std::vector<MachineBasicBlock*> WaterList; 109 110 /// NewWaterList - The subset of WaterList that was created since the 111 /// previous iteration by inserting unconditional branches. 112 SmallSet<MachineBasicBlock*, 4> NewWaterList; 113 114 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 115 116 /// CPUser - One user of a constant pool, keeping the machine instruction 117 /// pointer, the constant pool being referenced, and the max displacement 118 /// allowed from the instruction to the CP. The HighWaterMark records the 119 /// highest basic block where a new CPEntry can be placed. To ensure this 120 /// pass terminates, the CP entries are initially placed at the end of the 121 /// function and then move monotonically to lower addresses. The 122 /// exception to this rule is when the current CP entry for a particular 123 /// CPUser is out of range, but there is another CP entry for the same 124 /// constant value in range. We want to use the existing in-range CP 125 /// entry, but if it later moves out of range, the search for new water 126 /// should resume where it left off. The HighWaterMark is used to record 127 /// that point. 128 struct CPUser { 129 MachineInstr *MI; 130 MachineInstr *CPEMI; 131 MachineBasicBlock *HighWaterMark; 132 unsigned MaxDisp; 133 bool NegOk; 134 bool IsSoImm; 135 bool KnownAlignment = false; 136 137 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 138 bool neg, bool soimm) 139 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 140 HighWaterMark = CPEMI->getParent(); 141 } 142 143 /// getMaxDisp - Returns the maximum displacement supported by MI. 144 /// Correct for unknown alignment. 145 /// Conservatively subtract 2 bytes to handle weird alignment effects. 146 unsigned getMaxDisp() const { 147 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 148 } 149 }; 150 151 /// CPUsers - Keep track of all of the machine instructions that use various 152 /// constant pools and their max displacement. 153 std::vector<CPUser> CPUsers; 154 155 /// CPEntry - One per constant pool entry, keeping the machine instruction 156 /// pointer, the constpool index, and the number of CPUser's which 157 /// reference this entry. 158 struct CPEntry { 159 MachineInstr *CPEMI; 160 unsigned CPI; 161 unsigned RefCount; 162 163 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 164 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 165 }; 166 167 /// CPEntries - Keep track of all of the constant pool entry machine 168 /// instructions. For each original constpool index (i.e. those that existed 169 /// upon entry to this pass), it keeps a vector of entries. Original 170 /// elements are cloned as we go along; the clones are put in the vector of 171 /// the original element, but have distinct CPIs. 172 /// 173 /// The first half of CPEntries contains generic constants, the second half 174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 175 /// which vector it will be in here. 176 std::vector<std::vector<CPEntry>> CPEntries; 177 178 /// Maps a JT index to the offset in CPEntries containing copies of that 179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 180 DenseMap<int, int> JumpTableEntryIndices; 181 182 /// Maps a JT index to the LEA that actually uses the index to calculate its 183 /// base address. 184 DenseMap<int, int> JumpTableUserIndices; 185 186 /// ImmBranch - One per immediate branch, keeping the machine instruction 187 /// pointer, conditional or unconditional, the max displacement, 188 /// and (if isCond is true) the corresponding unconditional branch 189 /// opcode. 190 struct ImmBranch { 191 MachineInstr *MI; 192 unsigned MaxDisp : 31; 193 bool isCond : 1; 194 unsigned UncondBr; 195 196 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 197 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 198 }; 199 200 /// ImmBranches - Keep track of all the immediate branch instructions. 201 std::vector<ImmBranch> ImmBranches; 202 203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 204 SmallVector<MachineInstr*, 4> PushPopMIs; 205 206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 207 SmallVector<MachineInstr*, 4> T2JumpTables; 208 209 MachineFunction *MF; 210 MachineConstantPool *MCP; 211 const ARMBaseInstrInfo *TII; 212 const ARMSubtarget *STI; 213 ARMFunctionInfo *AFI; 214 MachineDominatorTree *DT = nullptr; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 void getAnalysisUsage(AnalysisUsage &AU) const override { 228 AU.addRequired<MachineDominatorTree>(); 229 MachineFunctionPass::getAnalysisUsage(AU); 230 } 231 232 MachineFunctionProperties getRequiredProperties() const override { 233 return MachineFunctionProperties().set( 234 MachineFunctionProperties::Property::NoVRegs); 235 } 236 237 StringRef getPassName() const override { 238 return ARM_CP_ISLANDS_OPT_NAME; 239 } 240 241 private: 242 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 243 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 244 bool BBHasFallthrough(MachineBasicBlock *MBB); 245 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 246 Align getCPEAlign(const MachineInstr *CPEMI); 247 void scanFunctionJumpTables(); 248 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 249 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 250 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 251 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 252 unsigned getCombinedIndex(const MachineInstr *CPEMI); 253 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 254 bool findAvailableWater(CPUser&U, unsigned UserOffset, 255 water_iterator &WaterIter, bool CloserWater); 256 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 257 MachineBasicBlock *&NewMBB); 258 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 259 void removeDeadCPEMI(MachineInstr *CPEMI); 260 bool removeUnusedCPEntries(); 261 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 262 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 263 bool DoDump = false); 264 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 265 CPUser &U, unsigned &Growth); 266 bool fixupImmediateBr(ImmBranch &Br); 267 bool fixupConditionalBr(ImmBranch &Br); 268 bool fixupUnconditionalBr(ImmBranch &Br); 269 bool optimizeThumb2Instructions(); 270 bool optimizeThumb2Branches(); 271 bool reorderThumb2JumpTables(); 272 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 273 unsigned &DeadSize, bool &CanDeleteLEA, 274 bool &BaseRegKill); 275 bool optimizeThumb2JumpTables(); 276 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 277 MachineBasicBlock *JTBB); 278 279 unsigned getUserOffset(CPUser&) const; 280 void dumpBBs(); 281 void verify(); 282 283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 284 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 286 const CPUser &U) { 287 return isOffsetInRange(UserOffset, TrialOffset, 288 U.getMaxDisp(), U.NegOk, U.IsSoImm); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char ARMConstantIslands::ID = 0; 295 296 /// verify - check BBOffsets, BBSizes, alignment of islands 297 void ARMConstantIslands::verify() { 298 #ifndef NDEBUG 299 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 300 assert(std::is_sorted(MF->begin(), MF->end(), 301 [&BBInfo](const MachineBasicBlock &LHS, 302 const MachineBasicBlock &RHS) { 303 return BBInfo[LHS.getNumber()].postOffset() < 304 BBInfo[RHS.getNumber()].postOffset(); 305 })); 306 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 307 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 308 CPUser &U = CPUsers[i]; 309 unsigned UserOffset = getUserOffset(U); 310 // Verify offset using the real max displacement without the safety 311 // adjustment. 312 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 313 /* DoDump = */ true)) { 314 LLVM_DEBUG(dbgs() << "OK\n"); 315 continue; 316 } 317 LLVM_DEBUG(dbgs() << "Out of range.\n"); 318 dumpBBs(); 319 LLVM_DEBUG(MF->dump()); 320 llvm_unreachable("Constant pool entry out of range!"); 321 } 322 #endif 323 } 324 325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 326 /// print block size and offset information - debugging 327 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 328 LLVM_DEBUG({ 329 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 330 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 331 const BasicBlockInfo &BBI = BBInfo[J]; 332 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 333 << " kb=" << unsigned(BBI.KnownBits) 334 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 335 << format(" size=%#x\n", BBInfo[J].Size); 336 } 337 }); 338 } 339 #endif 340 341 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 342 MF = &mf; 343 MCP = mf.getConstantPool(); 344 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 345 346 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 347 << MCP->getConstants().size() << " CP entries, aligned to " 348 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 349 350 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 351 TII = STI->getInstrInfo(); 352 isPositionIndependentOrROPI = 353 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 354 AFI = MF->getInfo<ARMFunctionInfo>(); 355 DT = &getAnalysis<MachineDominatorTree>(); 356 357 isThumb = AFI->isThumbFunction(); 358 isThumb1 = AFI->isThumb1OnlyFunction(); 359 isThumb2 = AFI->isThumb2Function(); 360 361 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 362 363 // Renumber all of the machine basic blocks in the function, guaranteeing that 364 // the numbers agree with the position of the block in the function. 365 MF->RenumberBlocks(); 366 367 // Try to reorder and otherwise adjust the block layout to make good use 368 // of the TB[BH] instructions. 369 bool MadeChange = false; 370 if (GenerateTBB && AdjustJumpTableBlocks) { 371 scanFunctionJumpTables(); 372 MadeChange |= reorderThumb2JumpTables(); 373 // Data is out of date, so clear it. It'll be re-computed later. 374 T2JumpTables.clear(); 375 // Blocks may have shifted around. Keep the numbering up to date. 376 MF->RenumberBlocks(); 377 } 378 379 // Perform the initial placement of the constant pool entries. To start with, 380 // we put them all at the end of the function. 381 std::vector<MachineInstr*> CPEMIs; 382 if (!MCP->isEmpty()) 383 doInitialConstPlacement(CPEMIs); 384 385 if (MF->getJumpTableInfo()) 386 doInitialJumpTablePlacement(CPEMIs); 387 388 /// The next UID to take is the first unused one. 389 AFI->initPICLabelUId(CPEMIs.size()); 390 391 // Do the initial scan of the function, building up information about the 392 // sizes of each block, the location of all the water, and finding all of the 393 // constant pool users. 394 initializeFunctionInfo(CPEMIs); 395 CPEMIs.clear(); 396 LLVM_DEBUG(dumpBBs()); 397 398 // Functions with jump tables need an alignment of 4 because they use the ADR 399 // instruction, which aligns the PC to 4 bytes before adding an offset. 400 if (!T2JumpTables.empty()) 401 MF->ensureAlignment(Align(4)); 402 403 /// Remove dead constant pool entries. 404 MadeChange |= removeUnusedCPEntries(); 405 406 // Iteratively place constant pool entries and fix up branches until there 407 // is no change. 408 unsigned NoCPIters = 0, NoBRIters = 0; 409 while (true) { 410 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 411 bool CPChange = false; 412 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 413 // For most inputs, it converges in no more than 5 iterations. 414 // If it doesn't end in 10, the input may have huge BB or many CPEs. 415 // In this case, we will try different heuristics. 416 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 417 if (CPChange && ++NoCPIters > CPMaxIteration) 418 report_fatal_error("Constant Island pass failed to converge!"); 419 LLVM_DEBUG(dumpBBs()); 420 421 // Clear NewWaterList now. If we split a block for branches, it should 422 // appear as "new water" for the next iteration of constant pool placement. 423 NewWaterList.clear(); 424 425 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 426 bool BRChange = false; 427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 428 BRChange |= fixupImmediateBr(ImmBranches[i]); 429 if (BRChange && ++NoBRIters > 30) 430 report_fatal_error("Branch Fix Up pass failed to converge!"); 431 LLVM_DEBUG(dumpBBs()); 432 433 if (!CPChange && !BRChange) 434 break; 435 MadeChange = true; 436 } 437 438 // Shrink 32-bit Thumb2 load and store instructions. 439 if (isThumb2 && !STI->prefers32BitThumb()) 440 MadeChange |= optimizeThumb2Instructions(); 441 442 // Shrink 32-bit branch instructions. 443 if (isThumb && STI->hasV8MBaselineOps()) 444 MadeChange |= optimizeThumb2Branches(); 445 446 // Optimize jump tables using TBB / TBH. 447 if (GenerateTBB && !STI->genExecuteOnly()) 448 MadeChange |= optimizeThumb2JumpTables(); 449 450 // After a while, this might be made debug-only, but it is not expensive. 451 verify(); 452 453 // Save the mapping between original and cloned constpool entries. 454 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 455 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 456 const CPEntry & CPE = CPEntries[i][j]; 457 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 458 AFI->recordCPEClone(i, CPE.CPI); 459 } 460 } 461 462 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 463 464 BBUtils->clear(); 465 WaterList.clear(); 466 CPUsers.clear(); 467 CPEntries.clear(); 468 JumpTableEntryIndices.clear(); 469 JumpTableUserIndices.clear(); 470 ImmBranches.clear(); 471 PushPopMIs.clear(); 472 T2JumpTables.clear(); 473 474 return MadeChange; 475 } 476 477 /// Perform the initial placement of the regular constant pool entries. 478 /// To start with, we put them all at the end of the function. 479 void 480 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 481 // Create the basic block to hold the CPE's. 482 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 483 MF->push_back(BB); 484 485 // MachineConstantPool measures alignment in bytes. 486 const Align MaxAlign = MCP->getConstantPoolAlign(); 487 const unsigned MaxLogAlign = Log2(MaxAlign); 488 489 // Mark the basic block as required by the const-pool. 490 BB->setAlignment(MaxAlign); 491 492 // The function needs to be as aligned as the basic blocks. The linker may 493 // move functions around based on their alignment. 494 // Special case: halfword literals still need word alignment on the function. 495 Align FuncAlign = MaxAlign; 496 if (MaxAlign == 2) 497 FuncAlign = Align(4); 498 MF->ensureAlignment(FuncAlign); 499 500 // Order the entries in BB by descending alignment. That ensures correct 501 // alignment of all entries as long as BB is sufficiently aligned. Keep 502 // track of the insertion point for each alignment. We are going to bucket 503 // sort the entries as they are created. 504 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 505 BB->end()); 506 507 // Add all of the constants from the constant pool to the end block, use an 508 // identity mapping of CPI's to CPE's. 509 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 510 511 const DataLayout &TD = MF->getDataLayout(); 512 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 513 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 514 Align Alignment = CPs[i].getAlign(); 515 // Verify that all constant pool entries are a multiple of their alignment. 516 // If not, we would have to pad them out so that instructions stay aligned. 517 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 518 519 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 520 unsigned LogAlign = Log2(Alignment); 521 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 522 MachineInstr *CPEMI = 523 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 524 .addImm(i).addConstantPoolIndex(i).addImm(Size); 525 CPEMIs.push_back(CPEMI); 526 527 // Ensure that future entries with higher alignment get inserted before 528 // CPEMI. This is bucket sort with iterators. 529 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 530 if (InsPoint[a] == InsAt) 531 InsPoint[a] = CPEMI; 532 533 // Add a new CPEntry, but no corresponding CPUser yet. 534 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 535 ++NumCPEs; 536 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 537 << Size << ", align = " << Alignment.value() << '\n'); 538 } 539 LLVM_DEBUG(BB->dump()); 540 } 541 542 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 543 /// instructions can be made more efficient if the jump table immediately 544 /// follows the instruction, it's best to place them immediately next to their 545 /// jumps to begin with. In almost all cases they'll never be moved from that 546 /// position. 547 void ARMConstantIslands::doInitialJumpTablePlacement( 548 std::vector<MachineInstr *> &CPEMIs) { 549 unsigned i = CPEntries.size(); 550 auto MJTI = MF->getJumpTableInfo(); 551 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 552 553 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 554 for (MachineBasicBlock &MBB : *MF) { 555 auto MI = MBB.getLastNonDebugInstr(); 556 if (MI == MBB.end()) 557 continue; 558 559 unsigned JTOpcode; 560 switch (MI->getOpcode()) { 561 default: 562 continue; 563 case ARM::BR_JTadd: 564 case ARM::BR_JTr: 565 case ARM::tBR_JTr: 566 case ARM::BR_JTm_i12: 567 case ARM::BR_JTm_rs: 568 JTOpcode = ARM::JUMPTABLE_ADDRS; 569 break; 570 case ARM::t2BR_JT: 571 JTOpcode = ARM::JUMPTABLE_INSTS; 572 break; 573 case ARM::tTBB_JT: 574 case ARM::t2TBB_JT: 575 JTOpcode = ARM::JUMPTABLE_TBB; 576 break; 577 case ARM::tTBH_JT: 578 case ARM::t2TBH_JT: 579 JTOpcode = ARM::JUMPTABLE_TBH; 580 break; 581 } 582 583 unsigned NumOps = MI->getDesc().getNumOperands(); 584 MachineOperand JTOp = 585 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 586 unsigned JTI = JTOp.getIndex(); 587 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 588 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 589 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 590 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 591 DebugLoc(), TII->get(JTOpcode)) 592 .addImm(i++) 593 .addJumpTableIndex(JTI) 594 .addImm(Size); 595 CPEMIs.push_back(CPEMI); 596 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 597 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 598 if (!LastCorrectlyNumberedBB) 599 LastCorrectlyNumberedBB = &MBB; 600 } 601 602 // If we did anything then we need to renumber the subsequent blocks. 603 if (LastCorrectlyNumberedBB) 604 MF->RenumberBlocks(LastCorrectlyNumberedBB); 605 } 606 607 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 608 /// into the block immediately after it. 609 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 610 // Get the next machine basic block in the function. 611 MachineFunction::iterator MBBI = MBB->getIterator(); 612 // Can't fall off end of function. 613 if (std::next(MBBI) == MBB->getParent()->end()) 614 return false; 615 616 MachineBasicBlock *NextBB = &*std::next(MBBI); 617 if (!MBB->isSuccessor(NextBB)) 618 return false; 619 620 // Try to analyze the end of the block. A potential fallthrough may already 621 // have an unconditional branch for whatever reason. 622 MachineBasicBlock *TBB, *FBB; 623 SmallVector<MachineOperand, 4> Cond; 624 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 625 return TooDifficult || FBB == nullptr; 626 } 627 628 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 629 /// look up the corresponding CPEntry. 630 ARMConstantIslands::CPEntry * 631 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 632 const MachineInstr *CPEMI) { 633 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 634 // Number of entries per constpool index should be small, just do a 635 // linear search. 636 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 637 if (CPEs[i].CPEMI == CPEMI) 638 return &CPEs[i]; 639 } 640 return nullptr; 641 } 642 643 /// getCPEAlign - Returns the required alignment of the constant pool entry 644 /// represented by CPEMI. 645 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 646 switch (CPEMI->getOpcode()) { 647 case ARM::CONSTPOOL_ENTRY: 648 break; 649 case ARM::JUMPTABLE_TBB: 650 return isThumb1 ? Align(4) : Align(1); 651 case ARM::JUMPTABLE_TBH: 652 return isThumb1 ? Align(4) : Align(2); 653 case ARM::JUMPTABLE_INSTS: 654 return Align(2); 655 case ARM::JUMPTABLE_ADDRS: 656 return Align(4); 657 default: 658 llvm_unreachable("unknown constpool entry kind"); 659 } 660 661 unsigned CPI = getCombinedIndex(CPEMI); 662 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 663 return MCP->getConstants()[CPI].getAlign(); 664 } 665 666 /// scanFunctionJumpTables - Do a scan of the function, building up 667 /// information about the sizes of each block and the locations of all 668 /// the jump tables. 669 void ARMConstantIslands::scanFunctionJumpTables() { 670 for (MachineBasicBlock &MBB : *MF) { 671 for (MachineInstr &I : MBB) 672 if (I.isBranch() && 673 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 674 T2JumpTables.push_back(&I); 675 } 676 } 677 678 /// initializeFunctionInfo - Do the initial scan of the function, building up 679 /// information about the sizes of each block, the location of all the water, 680 /// and finding all of the constant pool users. 681 void ARMConstantIslands:: 682 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 683 684 BBUtils->computeAllBlockSizes(); 685 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 686 // The known bits of the entry block offset are determined by the function 687 // alignment. 688 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 689 690 // Compute block offsets and known bits. 691 BBUtils->adjustBBOffsetsAfter(&MF->front()); 692 693 // Now go back through the instructions and build up our data structures. 694 for (MachineBasicBlock &MBB : *MF) { 695 // If this block doesn't fall through into the next MBB, then this is 696 // 'water' that a constant pool island could be placed. 697 if (!BBHasFallthrough(&MBB)) 698 WaterList.push_back(&MBB); 699 700 for (MachineInstr &I : MBB) { 701 if (I.isDebugInstr()) 702 continue; 703 704 unsigned Opc = I.getOpcode(); 705 if (I.isBranch()) { 706 bool isCond = false; 707 unsigned Bits = 0; 708 unsigned Scale = 1; 709 int UOpc = Opc; 710 switch (Opc) { 711 default: 712 continue; // Ignore other JT branches 713 case ARM::t2BR_JT: 714 case ARM::tBR_JTr: 715 T2JumpTables.push_back(&I); 716 continue; // Does not get an entry in ImmBranches 717 case ARM::Bcc: 718 isCond = true; 719 UOpc = ARM::B; 720 LLVM_FALLTHROUGH; 721 case ARM::B: 722 Bits = 24; 723 Scale = 4; 724 break; 725 case ARM::tBcc: 726 isCond = true; 727 UOpc = ARM::tB; 728 Bits = 8; 729 Scale = 2; 730 break; 731 case ARM::tB: 732 Bits = 11; 733 Scale = 2; 734 break; 735 case ARM::t2Bcc: 736 isCond = true; 737 UOpc = ARM::t2B; 738 Bits = 20; 739 Scale = 2; 740 break; 741 case ARM::t2B: 742 Bits = 24; 743 Scale = 2; 744 break; 745 } 746 747 // Record this immediate branch. 748 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 749 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 750 } 751 752 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 753 PushPopMIs.push_back(&I); 754 755 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 756 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 757 Opc == ARM::JUMPTABLE_TBH) 758 continue; 759 760 // Scan the instructions for constant pool operands. 761 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 762 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 763 // We found one. The addressing mode tells us the max displacement 764 // from the PC that this instruction permits. 765 766 // Basic size info comes from the TSFlags field. 767 unsigned Bits = 0; 768 unsigned Scale = 1; 769 bool NegOk = false; 770 bool IsSoImm = false; 771 772 switch (Opc) { 773 default: 774 llvm_unreachable("Unknown addressing mode for CP reference!"); 775 776 // Taking the address of a CP entry. 777 case ARM::LEApcrel: 778 case ARM::LEApcrelJT: 779 // This takes a SoImm, which is 8 bit immediate rotated. We'll 780 // pretend the maximum offset is 255 * 4. Since each instruction 781 // 4 byte wide, this is always correct. We'll check for other 782 // displacements that fits in a SoImm as well. 783 Bits = 8; 784 Scale = 4; 785 NegOk = true; 786 IsSoImm = true; 787 break; 788 case ARM::t2LEApcrel: 789 case ARM::t2LEApcrelJT: 790 Bits = 12; 791 NegOk = true; 792 break; 793 case ARM::tLEApcrel: 794 case ARM::tLEApcrelJT: 795 Bits = 8; 796 Scale = 4; 797 break; 798 799 case ARM::LDRBi12: 800 case ARM::LDRi12: 801 case ARM::LDRcp: 802 case ARM::t2LDRpci: 803 case ARM::t2LDRHpci: 804 case ARM::t2LDRBpci: 805 Bits = 12; // +-offset_12 806 NegOk = true; 807 break; 808 809 case ARM::tLDRpci: 810 Bits = 8; 811 Scale = 4; // +(offset_8*4) 812 break; 813 814 case ARM::VLDRD: 815 case ARM::VLDRS: 816 Bits = 8; 817 Scale = 4; // +-(offset_8*4) 818 NegOk = true; 819 break; 820 case ARM::VLDRH: 821 Bits = 8; 822 Scale = 2; // +-(offset_8*2) 823 NegOk = true; 824 break; 825 } 826 827 // Remember that this is a user of a CP entry. 828 unsigned CPI = I.getOperand(op).getIndex(); 829 if (I.getOperand(op).isJTI()) { 830 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 831 CPI = JumpTableEntryIndices[CPI]; 832 } 833 834 MachineInstr *CPEMI = CPEMIs[CPI]; 835 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 836 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 837 838 // Increment corresponding CPEntry reference count. 839 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 840 assert(CPE && "Cannot find a corresponding CPEntry!"); 841 CPE->RefCount++; 842 843 // Instructions can only use one CP entry, don't bother scanning the 844 // rest of the operands. 845 break; 846 } 847 } 848 } 849 } 850 851 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 852 /// ID. 853 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 854 const MachineBasicBlock *RHS) { 855 return LHS->getNumber() < RHS->getNumber(); 856 } 857 858 /// updateForInsertedWaterBlock - When a block is newly inserted into the 859 /// machine function, it upsets all of the block numbers. Renumber the blocks 860 /// and update the arrays that parallel this numbering. 861 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 862 // Renumber the MBB's to keep them consecutive. 863 NewBB->getParent()->RenumberBlocks(NewBB); 864 865 // Insert an entry into BBInfo to align it properly with the (newly 866 // renumbered) block numbers. 867 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 868 869 // Next, update WaterList. Specifically, we need to add NewMBB as having 870 // available water after it. 871 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 872 WaterList.insert(IP, NewBB); 873 } 874 875 /// Split the basic block containing MI into two blocks, which are joined by 876 /// an unconditional branch. Update data structures and renumber blocks to 877 /// account for this change and returns the newly created block. 878 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 879 MachineBasicBlock *OrigBB = MI->getParent(); 880 881 // Collect liveness information at MI. 882 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 883 LRs.addLiveOuts(*OrigBB); 884 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 885 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 886 LRs.stepBackward(LiveMI); 887 888 // Create a new MBB for the code after the OrigBB. 889 MachineBasicBlock *NewBB = 890 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 891 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 892 MF->insert(MBBI, NewBB); 893 894 // Splice the instructions starting with MI over to NewBB. 895 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 896 897 // Add an unconditional branch from OrigBB to NewBB. 898 // Note the new unconditional branch is not being recorded. 899 // There doesn't seem to be meaningful DebugInfo available; this doesn't 900 // correspond to anything in the source. 901 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 902 if (!isThumb) 903 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 904 else 905 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 906 .addMBB(NewBB) 907 .add(predOps(ARMCC::AL)); 908 ++NumSplit; 909 910 // Update the CFG. All succs of OrigBB are now succs of NewBB. 911 NewBB->transferSuccessors(OrigBB); 912 913 // OrigBB branches to NewBB. 914 OrigBB->addSuccessor(NewBB); 915 916 // Update live-in information in the new block. 917 MachineRegisterInfo &MRI = MF->getRegInfo(); 918 for (MCPhysReg L : LRs) 919 if (!MRI.isReserved(L)) 920 NewBB->addLiveIn(L); 921 922 // Update internal data structures to account for the newly inserted MBB. 923 // This is almost the same as updateForInsertedWaterBlock, except that 924 // the Water goes after OrigBB, not NewBB. 925 MF->RenumberBlocks(NewBB); 926 927 // Insert an entry into BBInfo to align it properly with the (newly 928 // renumbered) block numbers. 929 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 930 931 // Next, update WaterList. Specifically, we need to add OrigMBB as having 932 // available water after it (but not if it's already there, which happens 933 // when splitting before a conditional branch that is followed by an 934 // unconditional branch - in that case we want to insert NewBB). 935 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 936 MachineBasicBlock* WaterBB = *IP; 937 if (WaterBB == OrigBB) 938 WaterList.insert(std::next(IP), NewBB); 939 else 940 WaterList.insert(IP, OrigBB); 941 NewWaterList.insert(OrigBB); 942 943 // Figure out how large the OrigBB is. As the first half of the original 944 // block, it cannot contain a tablejump. The size includes 945 // the new jump we added. (It should be possible to do this without 946 // recounting everything, but it's very confusing, and this is rarely 947 // executed.) 948 BBUtils->computeBlockSize(OrigBB); 949 950 // Figure out how large the NewMBB is. As the second half of the original 951 // block, it may contain a tablejump. 952 BBUtils->computeBlockSize(NewBB); 953 954 // All BBOffsets following these blocks must be modified. 955 BBUtils->adjustBBOffsetsAfter(OrigBB); 956 957 return NewBB; 958 } 959 960 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 961 /// displacement computation. Update U.KnownAlignment to match its current 962 /// basic block location. 963 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 964 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 965 966 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 967 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 968 unsigned KnownBits = BBI.internalKnownBits(); 969 970 // The value read from PC is offset from the actual instruction address. 971 UserOffset += (isThumb ? 4 : 8); 972 973 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 974 // Make sure U.getMaxDisp() returns a constrained range. 975 U.KnownAlignment = (KnownBits >= 2); 976 977 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 978 // purposes of the displacement computation; compensate for that here. 979 // For unknown alignments, getMaxDisp() constrains the range instead. 980 if (isThumb && U.KnownAlignment) 981 UserOffset &= ~3u; 982 983 return UserOffset; 984 } 985 986 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 987 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 988 /// constant pool entry). 989 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 990 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 991 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 992 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 993 unsigned TrialOffset, unsigned MaxDisp, 994 bool NegativeOK, bool IsSoImm) { 995 if (UserOffset <= TrialOffset) { 996 // User before the Trial. 997 if (TrialOffset - UserOffset <= MaxDisp) 998 return true; 999 // FIXME: Make use full range of soimm values. 1000 } else if (NegativeOK) { 1001 if (UserOffset - TrialOffset <= MaxDisp) 1002 return true; 1003 // FIXME: Make use full range of soimm values. 1004 } 1005 return false; 1006 } 1007 1008 /// isWaterInRange - Returns true if a CPE placed after the specified 1009 /// Water (a basic block) will be in range for the specific MI. 1010 /// 1011 /// Compute how much the function will grow by inserting a CPE after Water. 1012 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1013 MachineBasicBlock* Water, CPUser &U, 1014 unsigned &Growth) { 1015 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1016 const Align CPEAlign = getCPEAlign(U.CPEMI); 1017 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1018 unsigned NextBlockOffset; 1019 Align NextBlockAlignment; 1020 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1021 if (++NextBlock == MF->end()) { 1022 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1023 } else { 1024 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1025 NextBlockAlignment = NextBlock->getAlignment(); 1026 } 1027 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1028 unsigned CPEEnd = CPEOffset + Size; 1029 1030 // The CPE may be able to hide in the alignment padding before the next 1031 // block. It may also cause more padding to be required if it is more aligned 1032 // that the next block. 1033 if (CPEEnd > NextBlockOffset) { 1034 Growth = CPEEnd - NextBlockOffset; 1035 // Compute the padding that would go at the end of the CPE to align the next 1036 // block. 1037 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1038 1039 // If the CPE is to be inserted before the instruction, that will raise 1040 // the offset of the instruction. Also account for unknown alignment padding 1041 // in blocks between CPE and the user. 1042 if (CPEOffset < UserOffset) 1043 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1044 } else 1045 // CPE fits in existing padding. 1046 Growth = 0; 1047 1048 return isOffsetInRange(UserOffset, CPEOffset, U); 1049 } 1050 1051 /// isCPEntryInRange - Returns true if the distance between specific MI and 1052 /// specific ConstPool entry instruction can fit in MI's displacement field. 1053 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1054 MachineInstr *CPEMI, unsigned MaxDisp, 1055 bool NegOk, bool DoDump) { 1056 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1057 1058 if (DoDump) { 1059 LLVM_DEBUG({ 1060 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1061 unsigned Block = MI->getParent()->getNumber(); 1062 const BasicBlockInfo &BBI = BBInfo[Block]; 1063 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1064 << " max delta=" << MaxDisp 1065 << format(" insn address=%#x", UserOffset) << " in " 1066 << printMBBReference(*MI->getParent()) << ": " 1067 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1068 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1069 int(CPEOffset - UserOffset)); 1070 }); 1071 } 1072 1073 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1074 } 1075 1076 #ifndef NDEBUG 1077 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1078 /// unconditionally branches to its only successor. 1079 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1080 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1081 return false; 1082 1083 MachineBasicBlock *Succ = *MBB->succ_begin(); 1084 MachineBasicBlock *Pred = *MBB->pred_begin(); 1085 MachineInstr *PredMI = &Pred->back(); 1086 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1087 || PredMI->getOpcode() == ARM::t2B) 1088 return PredMI->getOperand(0).getMBB() == Succ; 1089 return false; 1090 } 1091 #endif // NDEBUG 1092 1093 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1094 /// and instruction CPEMI, and decrement its refcount. If the refcount 1095 /// becomes 0 remove the entry and instruction. Returns true if we removed 1096 /// the entry, false if we didn't. 1097 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1098 MachineInstr *CPEMI) { 1099 // Find the old entry. Eliminate it if it is no longer used. 1100 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1101 assert(CPE && "Unexpected!"); 1102 if (--CPE->RefCount == 0) { 1103 removeDeadCPEMI(CPEMI); 1104 CPE->CPEMI = nullptr; 1105 --NumCPEs; 1106 return true; 1107 } 1108 return false; 1109 } 1110 1111 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1112 if (CPEMI->getOperand(1).isCPI()) 1113 return CPEMI->getOperand(1).getIndex(); 1114 1115 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1116 } 1117 1118 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1119 /// if not, see if an in-range clone of the CPE is in range, and if so, 1120 /// change the data structures so the user references the clone. Returns: 1121 /// 0 = no existing entry found 1122 /// 1 = entry found, and there were no code insertions or deletions 1123 /// 2 = entry found, and there were code insertions or deletions 1124 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1125 MachineInstr *UserMI = U.MI; 1126 MachineInstr *CPEMI = U.CPEMI; 1127 1128 // Check to see if the CPE is already in-range. 1129 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1130 true)) { 1131 LLVM_DEBUG(dbgs() << "In range\n"); 1132 return 1; 1133 } 1134 1135 // No. Look for previously created clones of the CPE that are in range. 1136 unsigned CPI = getCombinedIndex(CPEMI); 1137 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1138 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1139 // We already tried this one 1140 if (CPEs[i].CPEMI == CPEMI) 1141 continue; 1142 // Removing CPEs can leave empty entries, skip 1143 if (CPEs[i].CPEMI == nullptr) 1144 continue; 1145 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1146 U.NegOk)) { 1147 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1148 << CPEs[i].CPI << "\n"); 1149 // Point the CPUser node to the replacement 1150 U.CPEMI = CPEs[i].CPEMI; 1151 // Change the CPI in the instruction operand to refer to the clone. 1152 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1153 if (UserMI->getOperand(j).isCPI()) { 1154 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1155 break; 1156 } 1157 // Adjust the refcount of the clone... 1158 CPEs[i].RefCount++; 1159 // ...and the original. If we didn't remove the old entry, none of the 1160 // addresses changed, so we don't need another pass. 1161 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1162 } 1163 } 1164 return 0; 1165 } 1166 1167 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1168 /// the specific unconditional branch instruction. 1169 static inline unsigned getUnconditionalBrDisp(int Opc) { 1170 switch (Opc) { 1171 case ARM::tB: 1172 return ((1<<10)-1)*2; 1173 case ARM::t2B: 1174 return ((1<<23)-1)*2; 1175 default: 1176 break; 1177 } 1178 1179 return ((1<<23)-1)*4; 1180 } 1181 1182 /// findAvailableWater - Look for an existing entry in the WaterList in which 1183 /// we can place the CPE referenced from U so it's within range of U's MI. 1184 /// Returns true if found, false if not. If it returns true, WaterIter 1185 /// is set to the WaterList entry. For Thumb, prefer water that will not 1186 /// introduce padding to water that will. To ensure that this pass 1187 /// terminates, the CPE location for a particular CPUser is only allowed to 1188 /// move to a lower address, so search backward from the end of the list and 1189 /// prefer the first water that is in range. 1190 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1191 water_iterator &WaterIter, 1192 bool CloserWater) { 1193 if (WaterList.empty()) 1194 return false; 1195 1196 unsigned BestGrowth = ~0u; 1197 // The nearest water without splitting the UserBB is right after it. 1198 // If the distance is still large (we have a big BB), then we need to split it 1199 // if we don't converge after certain iterations. This helps the following 1200 // situation to converge: 1201 // BB0: 1202 // Big BB 1203 // BB1: 1204 // Constant Pool 1205 // When a CP access is out of range, BB0 may be used as water. However, 1206 // inserting islands between BB0 and BB1 makes other accesses out of range. 1207 MachineBasicBlock *UserBB = U.MI->getParent(); 1208 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1209 const Align CPEAlign = getCPEAlign(U.CPEMI); 1210 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1211 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1212 return false; 1213 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1214 --IP) { 1215 MachineBasicBlock* WaterBB = *IP; 1216 // Check if water is in range and is either at a lower address than the 1217 // current "high water mark" or a new water block that was created since 1218 // the previous iteration by inserting an unconditional branch. In the 1219 // latter case, we want to allow resetting the high water mark back to 1220 // this new water since we haven't seen it before. Inserting branches 1221 // should be relatively uncommon and when it does happen, we want to be 1222 // sure to take advantage of it for all the CPEs near that block, so that 1223 // we don't insert more branches than necessary. 1224 // When CloserWater is true, we try to find the lowest address after (or 1225 // equal to) user MI's BB no matter of padding growth. 1226 unsigned Growth; 1227 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1228 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1229 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1230 Growth < BestGrowth) { 1231 // This is the least amount of required padding seen so far. 1232 BestGrowth = Growth; 1233 WaterIter = IP; 1234 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1235 << " Growth=" << Growth << '\n'); 1236 1237 if (CloserWater && WaterBB == U.MI->getParent()) 1238 return true; 1239 // Keep looking unless it is perfect and we're not looking for the lowest 1240 // possible address. 1241 if (!CloserWater && BestGrowth == 0) 1242 return true; 1243 } 1244 if (IP == B) 1245 break; 1246 } 1247 return BestGrowth != ~0u; 1248 } 1249 1250 /// createNewWater - No existing WaterList entry will work for 1251 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1252 /// block is used if in range, and the conditional branch munged so control 1253 /// flow is correct. Otherwise the block is split to create a hole with an 1254 /// unconditional branch around it. In either case NewMBB is set to a 1255 /// block following which the new island can be inserted (the WaterList 1256 /// is not adjusted). 1257 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1258 unsigned UserOffset, 1259 MachineBasicBlock *&NewMBB) { 1260 CPUser &U = CPUsers[CPUserIndex]; 1261 MachineInstr *UserMI = U.MI; 1262 MachineInstr *CPEMI = U.CPEMI; 1263 const Align CPEAlign = getCPEAlign(CPEMI); 1264 MachineBasicBlock *UserMBB = UserMI->getParent(); 1265 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1266 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1267 1268 // If the block does not end in an unconditional branch already, and if the 1269 // end of the block is within range, make new water there. (The addition 1270 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1271 // Thumb2, 2 on Thumb1. 1272 if (BBHasFallthrough(UserMBB)) { 1273 // Size of branch to insert. 1274 unsigned Delta = isThumb1 ? 2 : 4; 1275 // Compute the offset where the CPE will begin. 1276 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1277 1278 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1279 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1280 << format(", expected CPE offset %#x\n", CPEOffset)); 1281 NewMBB = &*++UserMBB->getIterator(); 1282 // Add an unconditional branch from UserMBB to fallthrough block. Record 1283 // it for branch lengthening; this new branch will not get out of range, 1284 // but if the preceding conditional branch is out of range, the targets 1285 // will be exchanged, and the altered branch may be out of range, so the 1286 // machinery has to know about it. 1287 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1288 if (!isThumb) 1289 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1290 else 1291 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1292 .addMBB(NewMBB) 1293 .add(predOps(ARMCC::AL)); 1294 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1295 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1296 MaxDisp, false, UncondBr)); 1297 BBUtils->computeBlockSize(UserMBB); 1298 BBUtils->adjustBBOffsetsAfter(UserMBB); 1299 return; 1300 } 1301 } 1302 1303 // What a big block. Find a place within the block to split it. This is a 1304 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1305 // entries are 4 bytes: if instruction I references island CPE, and 1306 // instruction I+1 references CPE', it will not work well to put CPE as far 1307 // forward as possible, since then CPE' cannot immediately follow it (that 1308 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1309 // need to create a new island. So, we make a first guess, then walk through 1310 // the instructions between the one currently being looked at and the 1311 // possible insertion point, and make sure any other instructions that 1312 // reference CPEs will be able to use the same island area; if not, we back 1313 // up the insertion point. 1314 1315 // Try to split the block so it's fully aligned. Compute the latest split 1316 // point where we can add a 4-byte branch instruction, and then align to 1317 // Align which is the largest possible alignment in the function. 1318 const Align Align = MF->getAlignment(); 1319 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1320 unsigned KnownBits = UserBBI.internalKnownBits(); 1321 unsigned UPad = UnknownPadding(Align, KnownBits); 1322 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1323 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1324 BaseInsertOffset)); 1325 1326 // The 4 in the following is for the unconditional branch we'll be inserting 1327 // (allows for long branch on Thumb1). Alignment of the island is handled 1328 // inside isOffsetInRange. 1329 BaseInsertOffset -= 4; 1330 1331 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1332 << " la=" << Log2(Align) << " kb=" << KnownBits 1333 << " up=" << UPad << '\n'); 1334 1335 // This could point off the end of the block if we've already got constant 1336 // pool entries following this block; only the last one is in the water list. 1337 // Back past any possible branches (allow for a conditional and a maximally 1338 // long unconditional). 1339 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1340 // Ensure BaseInsertOffset is larger than the offset of the instruction 1341 // following UserMI so that the loop which searches for the split point 1342 // iterates at least once. 1343 BaseInsertOffset = 1344 std::max(UserBBI.postOffset() - UPad - 8, 1345 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1346 // If the CP is referenced(ie, UserOffset) is in first four instructions 1347 // after IT, this recalculated BaseInsertOffset could be in the middle of 1348 // an IT block. If it is, change the BaseInsertOffset to just after the 1349 // IT block. This still make the CP Entry is in range becuase of the 1350 // following reasons. 1351 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1352 // U.getMaxDisp() - UPad). 1353 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1354 // bytes). 1355 // 3. All the relevant instructions support much larger Maximum 1356 // displacement. 1357 MachineBasicBlock::iterator I = UserMI; 1358 ++I; 1359 Register PredReg; 1360 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1361 I->getOpcode() != ARM::t2IT && 1362 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1363 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1364 BaseInsertOffset = 1365 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1366 assert(I != UserMBB->end() && "Fell off end of block"); 1367 } 1368 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1369 } 1370 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1371 CPEMI->getOperand(2).getImm(); 1372 MachineBasicBlock::iterator MI = UserMI; 1373 ++MI; 1374 unsigned CPUIndex = CPUserIndex+1; 1375 unsigned NumCPUsers = CPUsers.size(); 1376 MachineInstr *LastIT = nullptr; 1377 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1378 Offset < BaseInsertOffset; 1379 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1380 assert(MI != UserMBB->end() && "Fell off end of block"); 1381 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1382 CPUser &U = CPUsers[CPUIndex]; 1383 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1384 // Shift intertion point by one unit of alignment so it is within reach. 1385 BaseInsertOffset -= Align.value(); 1386 EndInsertOffset -= Align.value(); 1387 } 1388 // This is overly conservative, as we don't account for CPEMIs being 1389 // reused within the block, but it doesn't matter much. Also assume CPEs 1390 // are added in order with alignment padding. We may eventually be able 1391 // to pack the aligned CPEs better. 1392 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1393 CPUIndex++; 1394 } 1395 1396 // Remember the last IT instruction. 1397 if (MI->getOpcode() == ARM::t2IT) 1398 LastIT = &*MI; 1399 } 1400 1401 --MI; 1402 1403 // Avoid splitting an IT block. 1404 if (LastIT) { 1405 Register PredReg; 1406 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1407 if (CC != ARMCC::AL) 1408 MI = LastIT; 1409 } 1410 1411 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1412 // On Windows, this instruction pair is covered by one single 1413 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1414 // constant island is injected inbetween them, the relocation will clobber 1415 // the instruction and fail to update the MOVT instruction. 1416 // (These instructions are bundled up until right before the ConstantIslands 1417 // pass.) 1418 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1419 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1420 ARMII::MO_HI16) { 1421 --MI; 1422 assert(MI->getOpcode() == ARM::t2MOVi16 && 1423 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1424 ARMII::MO_LO16); 1425 } 1426 1427 // We really must not split an IT block. 1428 #ifndef NDEBUG 1429 Register PredReg; 1430 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1431 #endif 1432 NewMBB = splitBlockBeforeInstr(&*MI); 1433 } 1434 1435 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1436 /// is out-of-range. If so, pick up the constant pool value and move it some 1437 /// place in-range. Return true if we changed any addresses (thus must run 1438 /// another pass of branch lengthening), false otherwise. 1439 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1440 bool CloserWater) { 1441 CPUser &U = CPUsers[CPUserIndex]; 1442 MachineInstr *UserMI = U.MI; 1443 MachineInstr *CPEMI = U.CPEMI; 1444 unsigned CPI = getCombinedIndex(CPEMI); 1445 unsigned Size = CPEMI->getOperand(2).getImm(); 1446 // Compute this only once, it's expensive. 1447 unsigned UserOffset = getUserOffset(U); 1448 1449 // See if the current entry is within range, or there is a clone of it 1450 // in range. 1451 int result = findInRangeCPEntry(U, UserOffset); 1452 if (result==1) return false; 1453 else if (result==2) return true; 1454 1455 // No existing clone of this CPE is within range. 1456 // We will be generating a new clone. Get a UID for it. 1457 unsigned ID = AFI->createPICLabelUId(); 1458 1459 // Look for water where we can place this CPE. 1460 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1461 MachineBasicBlock *NewMBB; 1462 water_iterator IP; 1463 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1464 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1465 MachineBasicBlock *WaterBB = *IP; 1466 1467 // If the original WaterList entry was "new water" on this iteration, 1468 // propagate that to the new island. This is just keeping NewWaterList 1469 // updated to match the WaterList, which will be updated below. 1470 if (NewWaterList.erase(WaterBB)) 1471 NewWaterList.insert(NewIsland); 1472 1473 // The new CPE goes before the following block (NewMBB). 1474 NewMBB = &*++WaterBB->getIterator(); 1475 } else { 1476 // No water found. 1477 LLVM_DEBUG(dbgs() << "No water found\n"); 1478 createNewWater(CPUserIndex, UserOffset, NewMBB); 1479 1480 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1481 // called while handling branches so that the water will be seen on the 1482 // next iteration for constant pools, but in this context, we don't want 1483 // it. Check for this so it will be removed from the WaterList. 1484 // Also remove any entry from NewWaterList. 1485 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1486 IP = find(WaterList, WaterBB); 1487 if (IP != WaterList.end()) 1488 NewWaterList.erase(WaterBB); 1489 1490 // We are adding new water. Update NewWaterList. 1491 NewWaterList.insert(NewIsland); 1492 } 1493 // Always align the new block because CP entries can be smaller than 4 1494 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1495 // be an already aligned constant pool block. 1496 const Align Alignment = isThumb ? Align(2) : Align(4); 1497 if (NewMBB->getAlignment() < Alignment) 1498 NewMBB->setAlignment(Alignment); 1499 1500 // Remove the original WaterList entry; we want subsequent insertions in 1501 // this vicinity to go after the one we're about to insert. This 1502 // considerably reduces the number of times we have to move the same CPE 1503 // more than once and is also important to ensure the algorithm terminates. 1504 if (IP != WaterList.end()) 1505 WaterList.erase(IP); 1506 1507 // Okay, we know we can put an island before NewMBB now, do it! 1508 MF->insert(NewMBB->getIterator(), NewIsland); 1509 1510 // Update internal data structures to account for the newly inserted MBB. 1511 updateForInsertedWaterBlock(NewIsland); 1512 1513 // Now that we have an island to add the CPE to, clone the original CPE and 1514 // add it to the island. 1515 U.HighWaterMark = NewIsland; 1516 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1517 .addImm(ID) 1518 .add(CPEMI->getOperand(1)) 1519 .addImm(Size); 1520 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1521 ++NumCPEs; 1522 1523 // Decrement the old entry, and remove it if refcount becomes 0. 1524 decrementCPEReferenceCount(CPI, CPEMI); 1525 1526 // Mark the basic block as aligned as required by the const-pool entry. 1527 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1528 1529 // Increase the size of the island block to account for the new entry. 1530 BBUtils->adjustBBSize(NewIsland, Size); 1531 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1532 1533 // Finally, change the CPI in the instruction operand to be ID. 1534 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1535 if (UserMI->getOperand(i).isCPI()) { 1536 UserMI->getOperand(i).setIndex(ID); 1537 break; 1538 } 1539 1540 LLVM_DEBUG( 1541 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1542 << format(" offset=%#x\n", 1543 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1544 1545 return true; 1546 } 1547 1548 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1549 /// sizes and offsets of impacted basic blocks. 1550 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1551 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1552 unsigned Size = CPEMI->getOperand(2).getImm(); 1553 CPEMI->eraseFromParent(); 1554 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1555 BBUtils->adjustBBSize(CPEBB, -Size); 1556 // All succeeding offsets have the current size value added in, fix this. 1557 if (CPEBB->empty()) { 1558 BBInfo[CPEBB->getNumber()].Size = 0; 1559 1560 // This block no longer needs to be aligned. 1561 CPEBB->setAlignment(Align(1)); 1562 } else { 1563 // Entries are sorted by descending alignment, so realign from the front. 1564 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1565 } 1566 1567 BBUtils->adjustBBOffsetsAfter(CPEBB); 1568 // An island has only one predecessor BB and one successor BB. Check if 1569 // this BB's predecessor jumps directly to this BB's successor. This 1570 // shouldn't happen currently. 1571 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1572 // FIXME: remove the empty blocks after all the work is done? 1573 } 1574 1575 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1576 /// are zero. 1577 bool ARMConstantIslands::removeUnusedCPEntries() { 1578 unsigned MadeChange = false; 1579 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1580 std::vector<CPEntry> &CPEs = CPEntries[i]; 1581 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1582 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1583 removeDeadCPEMI(CPEs[j].CPEMI); 1584 CPEs[j].CPEMI = nullptr; 1585 MadeChange = true; 1586 } 1587 } 1588 } 1589 return MadeChange; 1590 } 1591 1592 1593 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1594 /// away to fit in its displacement field. 1595 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1596 MachineInstr *MI = Br.MI; 1597 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1598 1599 // Check to see if the DestBB is already in-range. 1600 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1601 return false; 1602 1603 if (!Br.isCond) 1604 return fixupUnconditionalBr(Br); 1605 return fixupConditionalBr(Br); 1606 } 1607 1608 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1609 /// too far away to fit in its displacement field. If the LR register has been 1610 /// spilled in the epilogue, then we can use BL to implement a far jump. 1611 /// Otherwise, add an intermediate branch instruction to a branch. 1612 bool 1613 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1614 MachineInstr *MI = Br.MI; 1615 MachineBasicBlock *MBB = MI->getParent(); 1616 if (!isThumb1) 1617 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1618 1619 if (!AFI->isLRSpilled()) 1620 report_fatal_error("underestimated function size"); 1621 1622 // Use BL to implement far jump. 1623 Br.MaxDisp = (1 << 21) * 2; 1624 MI->setDesc(TII->get(ARM::tBfar)); 1625 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1626 BBInfo[MBB->getNumber()].Size += 2; 1627 BBUtils->adjustBBOffsetsAfter(MBB); 1628 ++NumUBrFixed; 1629 1630 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1631 1632 return true; 1633 } 1634 1635 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1636 /// far away to fit in its displacement field. It is converted to an inverse 1637 /// conditional branch + an unconditional branch to the destination. 1638 bool 1639 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1640 MachineInstr *MI = Br.MI; 1641 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1642 1643 // Add an unconditional branch to the destination and invert the branch 1644 // condition to jump over it: 1645 // blt L1 1646 // => 1647 // bge L2 1648 // b L1 1649 // L2: 1650 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1651 CC = ARMCC::getOppositeCondition(CC); 1652 Register CCReg = MI->getOperand(2).getReg(); 1653 1654 // If the branch is at the end of its MBB and that has a fall-through block, 1655 // direct the updated conditional branch to the fall-through block. Otherwise, 1656 // split the MBB before the next instruction. 1657 MachineBasicBlock *MBB = MI->getParent(); 1658 MachineInstr *BMI = &MBB->back(); 1659 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1660 1661 ++NumCBrFixed; 1662 if (BMI != MI) { 1663 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1664 BMI->getOpcode() == Br.UncondBr) { 1665 // Last MI in the BB is an unconditional branch. Can we simply invert the 1666 // condition and swap destinations: 1667 // beq L1 1668 // b L2 1669 // => 1670 // bne L2 1671 // b L1 1672 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1673 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1674 LLVM_DEBUG( 1675 dbgs() << " Invert Bcc condition and swap its destination with " 1676 << *BMI); 1677 BMI->getOperand(0).setMBB(DestBB); 1678 MI->getOperand(0).setMBB(NewDest); 1679 MI->getOperand(1).setImm(CC); 1680 return true; 1681 } 1682 } 1683 } 1684 1685 if (NeedSplit) { 1686 splitBlockBeforeInstr(MI); 1687 // No need for the branch to the next block. We're adding an unconditional 1688 // branch to the destination. 1689 int delta = TII->getInstSizeInBytes(MBB->back()); 1690 BBUtils->adjustBBSize(MBB, -delta); 1691 MBB->back().eraseFromParent(); 1692 1693 // The conditional successor will be swapped between the BBs after this, so 1694 // update CFG. 1695 MBB->addSuccessor(DestBB); 1696 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1697 1698 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1699 } 1700 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1701 1702 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1703 << " also invert condition and change dest. to " 1704 << printMBBReference(*NextBB) << "\n"); 1705 1706 // Insert a new conditional branch and a new unconditional branch. 1707 // Also update the ImmBranch as well as adding a new entry for the new branch. 1708 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1709 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1710 Br.MI = &MBB->back(); 1711 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1712 if (isThumb) 1713 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1714 .addMBB(DestBB) 1715 .add(predOps(ARMCC::AL)); 1716 else 1717 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1718 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1719 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1720 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1721 1722 // Remove the old conditional branch. It may or may not still be in MBB. 1723 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1724 MI->eraseFromParent(); 1725 BBUtils->adjustBBOffsetsAfter(MBB); 1726 return true; 1727 } 1728 1729 bool ARMConstantIslands::optimizeThumb2Instructions() { 1730 bool MadeChange = false; 1731 1732 // Shrink ADR and LDR from constantpool. 1733 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1734 CPUser &U = CPUsers[i]; 1735 unsigned Opcode = U.MI->getOpcode(); 1736 unsigned NewOpc = 0; 1737 unsigned Scale = 1; 1738 unsigned Bits = 0; 1739 switch (Opcode) { 1740 default: break; 1741 case ARM::t2LEApcrel: 1742 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1743 NewOpc = ARM::tLEApcrel; 1744 Bits = 8; 1745 Scale = 4; 1746 } 1747 break; 1748 case ARM::t2LDRpci: 1749 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1750 NewOpc = ARM::tLDRpci; 1751 Bits = 8; 1752 Scale = 4; 1753 } 1754 break; 1755 } 1756 1757 if (!NewOpc) 1758 continue; 1759 1760 unsigned UserOffset = getUserOffset(U); 1761 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1762 1763 // Be conservative with inline asm. 1764 if (!U.KnownAlignment) 1765 MaxOffs -= 2; 1766 1767 // FIXME: Check if offset is multiple of scale if scale is not 4. 1768 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1769 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1770 U.MI->setDesc(TII->get(NewOpc)); 1771 MachineBasicBlock *MBB = U.MI->getParent(); 1772 BBUtils->adjustBBSize(MBB, -2); 1773 BBUtils->adjustBBOffsetsAfter(MBB); 1774 ++NumT2CPShrunk; 1775 MadeChange = true; 1776 } 1777 } 1778 1779 return MadeChange; 1780 } 1781 1782 1783 bool ARMConstantIslands::optimizeThumb2Branches() { 1784 1785 auto TryShrinkBranch = [this](ImmBranch &Br) { 1786 unsigned Opcode = Br.MI->getOpcode(); 1787 unsigned NewOpc = 0; 1788 unsigned Scale = 1; 1789 unsigned Bits = 0; 1790 switch (Opcode) { 1791 default: break; 1792 case ARM::t2B: 1793 NewOpc = ARM::tB; 1794 Bits = 11; 1795 Scale = 2; 1796 break; 1797 case ARM::t2Bcc: 1798 NewOpc = ARM::tBcc; 1799 Bits = 8; 1800 Scale = 2; 1801 break; 1802 } 1803 if (NewOpc) { 1804 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1805 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1806 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1807 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1808 Br.MI->setDesc(TII->get(NewOpc)); 1809 MachineBasicBlock *MBB = Br.MI->getParent(); 1810 BBUtils->adjustBBSize(MBB, -2); 1811 BBUtils->adjustBBOffsetsAfter(MBB); 1812 ++NumT2BrShrunk; 1813 return true; 1814 } 1815 } 1816 return false; 1817 }; 1818 1819 struct ImmCompare { 1820 MachineInstr* MI = nullptr; 1821 unsigned NewOpc = 0; 1822 }; 1823 1824 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1825 MachineBasicBlock *DestBB) { 1826 ImmCmp.MI = nullptr; 1827 ImmCmp.NewOpc = 0; 1828 1829 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1830 // so this transformation is not safe. 1831 if (!Br.MI->killsRegister(ARM::CPSR)) 1832 return false; 1833 1834 Register PredReg; 1835 unsigned NewOpc = 0; 1836 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1837 if (Pred == ARMCC::EQ) 1838 NewOpc = ARM::tCBZ; 1839 else if (Pred == ARMCC::NE) 1840 NewOpc = ARM::tCBNZ; 1841 else 1842 return false; 1843 1844 // Check if the distance is within 126. Subtract starting offset by 2 1845 // because the cmp will be eliminated. 1846 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1847 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1848 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1849 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1850 return false; 1851 1852 // Search backwards to find a tCMPi8 1853 auto *TRI = STI->getRegisterInfo(); 1854 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1855 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1856 return false; 1857 1858 ImmCmp.MI = CmpMI; 1859 ImmCmp.NewOpc = NewOpc; 1860 return true; 1861 }; 1862 1863 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1864 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1865 STI->hasMinSize()) 1866 return false; 1867 1868 MachineBasicBlock *MBB = Br.MI->getParent(); 1869 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1870 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1871 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1872 return false; 1873 1874 if (!DT->dominates(DestBB, MBB)) 1875 return false; 1876 1877 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1878 // target of Br. So now we need to reverse the condition. 1879 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1880 1881 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1882 TII->get(ARM::t2LE)); 1883 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1884 MIB.add(Br.MI->getOperand(0)); 1885 Br.MI->eraseFromParent(); 1886 Br.MI = MIB; 1887 ++NumLEInserted; 1888 return true; 1889 }; 1890 1891 bool MadeChange = false; 1892 1893 // The order in which branches appear in ImmBranches is approximately their 1894 // order within the function body. By visiting later branches first, we reduce 1895 // the distance between earlier forward branches and their targets, making it 1896 // more likely that the cbn?z optimization, which can only apply to forward 1897 // branches, will succeed. 1898 for (ImmBranch &Br : reverse(ImmBranches)) { 1899 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1900 MachineBasicBlock *MBB = Br.MI->getParent(); 1901 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 1902 MBB->getFallThrough() : 1903 MBB->back().getOperand(0).getMBB(); 1904 1905 ImmCompare Cmp; 1906 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 1907 DestBB = ExitBB; 1908 MadeChange = true; 1909 } else { 1910 FindCmpForCBZ(Br, Cmp, DestBB); 1911 MadeChange |= TryShrinkBranch(Br); 1912 } 1913 1914 unsigned Opcode = Br.MI->getOpcode(); 1915 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 1916 continue; 1917 1918 Register Reg = Cmp.MI->getOperand(0).getReg(); 1919 1920 // Check for Kill flags on Reg. If they are present remove them and set kill 1921 // on the new CBZ. 1922 auto *TRI = STI->getRegisterInfo(); 1923 MachineBasicBlock::iterator KillMI = Br.MI; 1924 bool RegKilled = false; 1925 do { 1926 --KillMI; 1927 if (KillMI->killsRegister(Reg, TRI)) { 1928 KillMI->clearRegisterKills(Reg, TRI); 1929 RegKilled = true; 1930 break; 1931 } 1932 } while (KillMI != Cmp.MI); 1933 1934 // Create the new CBZ/CBNZ 1935 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 1936 MachineInstr *NewBR = 1937 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 1938 .addReg(Reg, getKillRegState(RegKilled)) 1939 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1940 1941 Cmp.MI->eraseFromParent(); 1942 1943 if (Br.MI->getOpcode() == ARM::tBcc) { 1944 Br.MI->eraseFromParent(); 1945 Br.MI = NewBR; 1946 BBUtils->adjustBBSize(MBB, -2); 1947 } else if (MBB->back().getOpcode() != ARM::t2LE) { 1948 // An LE has been generated, but it's not the terminator - that is an 1949 // unconditional branch. However, the logic has now been reversed with the 1950 // CBN?Z being the conditional branch and the LE being the unconditional 1951 // branch. So this means we can remove the redundant unconditional branch 1952 // at the end of the block. 1953 MachineInstr *LastMI = &MBB->back(); 1954 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 1955 LastMI->eraseFromParent(); 1956 } 1957 BBUtils->adjustBBOffsetsAfter(MBB); 1958 ++NumCBZ; 1959 MadeChange = true; 1960 } 1961 1962 return MadeChange; 1963 } 1964 1965 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1966 unsigned BaseReg) { 1967 if (I.getOpcode() != ARM::t2ADDrs) 1968 return false; 1969 1970 if (I.getOperand(0).getReg() != EntryReg) 1971 return false; 1972 1973 if (I.getOperand(1).getReg() != BaseReg) 1974 return false; 1975 1976 // FIXME: what about CC and IdxReg? 1977 return true; 1978 } 1979 1980 /// While trying to form a TBB/TBH instruction, we may (if the table 1981 /// doesn't immediately follow the BR_JT) need access to the start of the 1982 /// jump-table. We know one instruction that produces such a register; this 1983 /// function works out whether that definition can be preserved to the BR_JT, 1984 /// possibly by removing an intervening addition (which is usually needed to 1985 /// calculate the actual entry to jump to). 1986 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1987 MachineInstr *LEAMI, 1988 unsigned &DeadSize, 1989 bool &CanDeleteLEA, 1990 bool &BaseRegKill) { 1991 if (JumpMI->getParent() != LEAMI->getParent()) 1992 return false; 1993 1994 // Now we hope that we have at least these instructions in the basic block: 1995 // BaseReg = t2LEA ... 1996 // [...] 1997 // EntryReg = t2ADDrs BaseReg, ... 1998 // [...] 1999 // t2BR_JT EntryReg 2000 // 2001 // We have to be very conservative about what we recognise here though. The 2002 // main perturbing factors to watch out for are: 2003 // + Spills at any point in the chain: not direct problems but we would 2004 // expect a blocking Def of the spilled register so in practice what we 2005 // can do is limited. 2006 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2007 // of BaseReg, but only if the t2ADDrs can be removed. 2008 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2009 // the wild, but we should be careful. 2010 Register EntryReg = JumpMI->getOperand(0).getReg(); 2011 Register BaseReg = LEAMI->getOperand(0).getReg(); 2012 2013 CanDeleteLEA = true; 2014 BaseRegKill = false; 2015 MachineInstr *RemovableAdd = nullptr; 2016 MachineBasicBlock::iterator I(LEAMI); 2017 for (++I; &*I != JumpMI; ++I) { 2018 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2019 RemovableAdd = &*I; 2020 break; 2021 } 2022 2023 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2024 const MachineOperand &MO = I->getOperand(K); 2025 if (!MO.isReg() || !MO.getReg()) 2026 continue; 2027 if (MO.isDef() && MO.getReg() == BaseReg) 2028 return false; 2029 if (MO.isUse() && MO.getReg() == BaseReg) { 2030 BaseRegKill = BaseRegKill || MO.isKill(); 2031 CanDeleteLEA = false; 2032 } 2033 } 2034 } 2035 2036 if (!RemovableAdd) 2037 return true; 2038 2039 // Check the add really is removable, and that nothing else in the block 2040 // clobbers BaseReg. 2041 for (++I; &*I != JumpMI; ++I) { 2042 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2043 const MachineOperand &MO = I->getOperand(K); 2044 if (!MO.isReg() || !MO.getReg()) 2045 continue; 2046 if (MO.isDef() && MO.getReg() == BaseReg) 2047 return false; 2048 if (MO.isUse() && MO.getReg() == EntryReg) 2049 RemovableAdd = nullptr; 2050 } 2051 } 2052 2053 if (RemovableAdd) { 2054 RemovableAdd->eraseFromParent(); 2055 DeadSize += isThumb2 ? 4 : 2; 2056 } else if (BaseReg == EntryReg) { 2057 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2058 // preserve it. 2059 return false; 2060 } 2061 2062 // We reached the end of the block without seeing another definition of 2063 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2064 // used in the TBB/TBH if necessary. 2065 return true; 2066 } 2067 2068 /// Returns whether CPEMI is the first instruction in the block 2069 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2070 /// we can switch the first register to PC and usually remove the address 2071 /// calculation that preceded it. 2072 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2073 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2074 MachineFunction *MF = MBB->getParent(); 2075 ++MBB; 2076 2077 return MBB != MF->end() && MBB->begin() != MBB->end() && 2078 &*MBB->begin() == CPEMI; 2079 } 2080 2081 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2082 MachineInstr *JumpMI, 2083 unsigned &DeadSize) { 2084 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2085 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2086 // and is not clobbered / used. 2087 MachineInstr *RemovableAdd = nullptr; 2088 Register EntryReg = JumpMI->getOperand(0).getReg(); 2089 2090 // Find the last ADD to set EntryReg 2091 MachineBasicBlock::iterator I(LEAMI); 2092 for (++I; &*I != JumpMI; ++I) { 2093 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2094 RemovableAdd = &*I; 2095 } 2096 2097 if (!RemovableAdd) 2098 return; 2099 2100 // Ensure EntryReg is not clobbered or used. 2101 MachineBasicBlock::iterator J(RemovableAdd); 2102 for (++J; &*J != JumpMI; ++J) { 2103 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2104 const MachineOperand &MO = J->getOperand(K); 2105 if (!MO.isReg() || !MO.getReg()) 2106 continue; 2107 if (MO.isDef() && MO.getReg() == EntryReg) 2108 return; 2109 if (MO.isUse() && MO.getReg() == EntryReg) 2110 return; 2111 } 2112 } 2113 2114 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2115 RemovableAdd->eraseFromParent(); 2116 DeadSize += 4; 2117 } 2118 2119 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2120 /// jumptables when it's possible. 2121 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2122 bool MadeChange = false; 2123 2124 // FIXME: After the tables are shrunk, can we get rid some of the 2125 // constantpool tables? 2126 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2127 if (!MJTI) return false; 2128 2129 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2130 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2131 MachineInstr *MI = T2JumpTables[i]; 2132 const MCInstrDesc &MCID = MI->getDesc(); 2133 unsigned NumOps = MCID.getNumOperands(); 2134 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2135 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2136 unsigned JTI = JTOP.getIndex(); 2137 assert(JTI < JT.size()); 2138 2139 bool ByteOk = true; 2140 bool HalfWordOk = true; 2141 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2142 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2143 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2144 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2145 MachineBasicBlock *MBB = JTBBs[j]; 2146 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2147 // Negative offset is not ok. FIXME: We should change BB layout to make 2148 // sure all the branches are forward. 2149 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2150 ByteOk = false; 2151 unsigned TBHLimit = ((1<<16)-1)*2; 2152 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2153 HalfWordOk = false; 2154 if (!ByteOk && !HalfWordOk) 2155 break; 2156 } 2157 2158 if (!ByteOk && !HalfWordOk) 2159 continue; 2160 2161 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2162 MachineBasicBlock *MBB = MI->getParent(); 2163 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2164 continue; 2165 2166 unsigned DeadSize = 0; 2167 bool CanDeleteLEA = false; 2168 bool BaseRegKill = false; 2169 2170 unsigned IdxReg = ~0U; 2171 bool IdxRegKill = true; 2172 if (isThumb2) { 2173 IdxReg = MI->getOperand(1).getReg(); 2174 IdxRegKill = MI->getOperand(1).isKill(); 2175 2176 bool PreservedBaseReg = 2177 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2178 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2179 continue; 2180 } else { 2181 // We're in thumb-1 mode, so we must have something like: 2182 // %idx = tLSLri %idx, 2 2183 // %base = tLEApcrelJT 2184 // %t = tLDRr %base, %idx 2185 Register BaseReg = User.MI->getOperand(0).getReg(); 2186 2187 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2188 continue; 2189 MachineInstr *Shift = User.MI->getPrevNode(); 2190 if (Shift->getOpcode() != ARM::tLSLri || 2191 Shift->getOperand(3).getImm() != 2 || 2192 !Shift->getOperand(2).isKill()) 2193 continue; 2194 IdxReg = Shift->getOperand(2).getReg(); 2195 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2196 2197 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2198 // the range is checked later, but the LEA might still clobber it and not 2199 // actually get removed. 2200 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2201 continue; 2202 2203 MachineInstr *Load = User.MI->getNextNode(); 2204 if (Load->getOpcode() != ARM::tLDRr) 2205 continue; 2206 if (Load->getOperand(1).getReg() != BaseReg || 2207 Load->getOperand(2).getReg() != ShiftedIdxReg || 2208 !Load->getOperand(2).isKill()) 2209 continue; 2210 2211 // If we're in PIC mode, there should be another ADD following. 2212 auto *TRI = STI->getRegisterInfo(); 2213 2214 // %base cannot be redefined after the load as it will appear before 2215 // TBB/TBH like: 2216 // %base = 2217 // %base = 2218 // tBB %base, %idx 2219 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2220 continue; 2221 2222 if (isPositionIndependentOrROPI) { 2223 MachineInstr *Add = Load->getNextNode(); 2224 if (Add->getOpcode() != ARM::tADDrr || 2225 Add->getOperand(2).getReg() != BaseReg || 2226 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2227 !Add->getOperand(3).isKill()) 2228 continue; 2229 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2230 continue; 2231 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2232 // IdxReg gets redefined in the middle of the sequence. 2233 continue; 2234 Add->eraseFromParent(); 2235 DeadSize += 2; 2236 } else { 2237 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2238 continue; 2239 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2240 // IdxReg gets redefined in the middle of the sequence. 2241 continue; 2242 } 2243 2244 // Now safe to delete the load and lsl. The LEA will be removed later. 2245 CanDeleteLEA = true; 2246 Shift->eraseFromParent(); 2247 Load->eraseFromParent(); 2248 DeadSize += 4; 2249 } 2250 2251 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2252 MachineInstr *CPEMI = User.CPEMI; 2253 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2254 if (!isThumb2) 2255 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2256 2257 MachineBasicBlock::iterator MI_JT = MI; 2258 MachineInstr *NewJTMI = 2259 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2260 .addReg(User.MI->getOperand(0).getReg(), 2261 getKillRegState(BaseRegKill)) 2262 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2263 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2264 .addImm(CPEMI->getOperand(0).getImm()); 2265 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2266 2267 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2268 CPEMI->setDesc(TII->get(JTOpc)); 2269 2270 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2271 NewJTMI->getOperand(0).setReg(ARM::PC); 2272 NewJTMI->getOperand(0).setIsKill(false); 2273 2274 if (CanDeleteLEA) { 2275 if (isThumb2) 2276 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2277 2278 User.MI->eraseFromParent(); 2279 DeadSize += isThumb2 ? 4 : 2; 2280 2281 // The LEA was eliminated, the TBB instruction becomes the only new user 2282 // of the jump table. 2283 User.MI = NewJTMI; 2284 User.MaxDisp = 4; 2285 User.NegOk = false; 2286 User.IsSoImm = false; 2287 User.KnownAlignment = false; 2288 } else { 2289 // The LEA couldn't be eliminated, so we must add another CPUser to 2290 // record the TBB or TBH use. 2291 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2292 auto &CPEs = CPEntries[CPEntryIdx]; 2293 auto Entry = 2294 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2295 ++Entry->RefCount; 2296 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2297 } 2298 } 2299 2300 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2301 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2302 MI->eraseFromParent(); 2303 2304 int Delta = OrigSize - NewSize + DeadSize; 2305 BBInfo[MBB->getNumber()].Size -= Delta; 2306 BBUtils->adjustBBOffsetsAfter(MBB); 2307 2308 ++NumTBs; 2309 MadeChange = true; 2310 } 2311 2312 return MadeChange; 2313 } 2314 2315 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2316 /// jump tables always branch forwards, since that's what tbb and tbh need. 2317 bool ARMConstantIslands::reorderThumb2JumpTables() { 2318 bool MadeChange = false; 2319 2320 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2321 if (!MJTI) return false; 2322 2323 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2324 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2325 MachineInstr *MI = T2JumpTables[i]; 2326 const MCInstrDesc &MCID = MI->getDesc(); 2327 unsigned NumOps = MCID.getNumOperands(); 2328 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2329 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2330 unsigned JTI = JTOP.getIndex(); 2331 assert(JTI < JT.size()); 2332 2333 // We prefer if target blocks for the jump table come after the jump 2334 // instruction so we can use TB[BH]. Loop through the target blocks 2335 // and try to adjust them such that that's true. 2336 int JTNumber = MI->getParent()->getNumber(); 2337 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2338 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2339 MachineBasicBlock *MBB = JTBBs[j]; 2340 int DTNumber = MBB->getNumber(); 2341 2342 if (DTNumber < JTNumber) { 2343 // The destination precedes the switch. Try to move the block forward 2344 // so we have a positive offset. 2345 MachineBasicBlock *NewBB = 2346 adjustJTTargetBlockForward(MBB, MI->getParent()); 2347 if (NewBB) 2348 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2349 MadeChange = true; 2350 } 2351 } 2352 } 2353 2354 return MadeChange; 2355 } 2356 2357 MachineBasicBlock *ARMConstantIslands:: 2358 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2359 // If the destination block is terminated by an unconditional branch, 2360 // try to move it; otherwise, create a new block following the jump 2361 // table that branches back to the actual target. This is a very simple 2362 // heuristic. FIXME: We can definitely improve it. 2363 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2364 SmallVector<MachineOperand, 4> Cond; 2365 SmallVector<MachineOperand, 4> CondPrior; 2366 MachineFunction::iterator BBi = BB->getIterator(); 2367 MachineFunction::iterator OldPrior = std::prev(BBi); 2368 MachineFunction::iterator OldNext = std::next(BBi); 2369 2370 // If the block terminator isn't analyzable, don't try to move the block 2371 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2372 2373 // If the block ends in an unconditional branch, move it. The prior block 2374 // has to have an analyzable terminator for us to move this one. Be paranoid 2375 // and make sure we're not trying to move the entry block of the function. 2376 if (!B && Cond.empty() && BB != &MF->front() && 2377 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2378 BB->moveAfter(JTBB); 2379 OldPrior->updateTerminator(BB); 2380 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr); 2381 // Update numbering to account for the block being moved. 2382 MF->RenumberBlocks(); 2383 ++NumJTMoved; 2384 return nullptr; 2385 } 2386 2387 // Create a new MBB for the code after the jump BB. 2388 MachineBasicBlock *NewBB = 2389 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2390 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2391 MF->insert(MBBI, NewBB); 2392 2393 // Copy live-in information to new block. 2394 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2395 NewBB->addLiveIn(RegMaskPair); 2396 2397 // Add an unconditional branch from NewBB to BB. 2398 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2399 // correspond directly to anything in the source. 2400 if (isThumb2) 2401 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2402 .addMBB(BB) 2403 .add(predOps(ARMCC::AL)); 2404 else 2405 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2406 .addMBB(BB) 2407 .add(predOps(ARMCC::AL)); 2408 2409 // Update internal data structures to account for the newly inserted MBB. 2410 MF->RenumberBlocks(NewBB); 2411 2412 // Update the CFG. 2413 NewBB->addSuccessor(BB); 2414 JTBB->replaceSuccessor(BB, NewBB); 2415 2416 ++NumJTInserted; 2417 return NewBB; 2418 } 2419 2420 /// createARMConstantIslandPass - returns an instance of the constpool 2421 /// island pass. 2422 FunctionPass *llvm::createARMConstantIslandPass() { 2423 return new ARMConstantIslands(); 2424 } 2425 2426 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2427 false, false) 2428