1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/Config/llvm-config.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/MC/MCInstrDesc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "arm-cp-islands" 59 60 #define ARM_CP_ISLANDS_OPT_NAME \ 61 "ARM constant island placement and branch shortening pass" 62 STATISTIC(NumCPEs, "Number of constpool entries"); 63 STATISTIC(NumSplit, "Number of uncond branches inserted"); 64 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 66 STATISTIC(NumTBs, "Number of table branches generated"); 67 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 68 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 69 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 70 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 71 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 72 73 static cl::opt<bool> 74 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 75 cl::desc("Adjust basic block layout to better use TB[BH]")); 76 77 static cl::opt<unsigned> 78 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 79 cl::desc("The max number of iteration for converge")); 80 81 static cl::opt<bool> SynthesizeThumb1TBB( 82 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 83 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 84 "equivalent to the TBB/TBH instructions")); 85 86 namespace { 87 88 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 89 /// requires constant pool entries to be scattered among the instructions 90 /// inside a function. To do this, it completely ignores the normal LLVM 91 /// constant pool; instead, it places constants wherever it feels like with 92 /// special instructions. 93 /// 94 /// The terminology used in this pass includes: 95 /// Islands - Clumps of constants placed in the function. 96 /// Water - Potential places where an island could be formed. 97 /// CPE - A constant pool entry that has been placed somewhere, which 98 /// tracks a list of users. 99 class ARMConstantIslands : public MachineFunctionPass { 100 std::vector<BasicBlockInfo> BBInfo; 101 102 /// WaterList - A sorted list of basic blocks where islands could be placed 103 /// (i.e. blocks that don't fall through to the following block, due 104 /// to a return, unreachable, or unconditional branch). 105 std::vector<MachineBasicBlock*> WaterList; 106 107 /// NewWaterList - The subset of WaterList that was created since the 108 /// previous iteration by inserting unconditional branches. 109 SmallSet<MachineBasicBlock*, 4> NewWaterList; 110 111 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 112 113 /// CPUser - One user of a constant pool, keeping the machine instruction 114 /// pointer, the constant pool being referenced, and the max displacement 115 /// allowed from the instruction to the CP. The HighWaterMark records the 116 /// highest basic block where a new CPEntry can be placed. To ensure this 117 /// pass terminates, the CP entries are initially placed at the end of the 118 /// function and then move monotonically to lower addresses. The 119 /// exception to this rule is when the current CP entry for a particular 120 /// CPUser is out of range, but there is another CP entry for the same 121 /// constant value in range. We want to use the existing in-range CP 122 /// entry, but if it later moves out of range, the search for new water 123 /// should resume where it left off. The HighWaterMark is used to record 124 /// that point. 125 struct CPUser { 126 MachineInstr *MI; 127 MachineInstr *CPEMI; 128 MachineBasicBlock *HighWaterMark; 129 unsigned MaxDisp; 130 bool NegOk; 131 bool IsSoImm; 132 bool KnownAlignment = false; 133 134 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 135 bool neg, bool soimm) 136 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 137 HighWaterMark = CPEMI->getParent(); 138 } 139 140 /// getMaxDisp - Returns the maximum displacement supported by MI. 141 /// Correct for unknown alignment. 142 /// Conservatively subtract 2 bytes to handle weird alignment effects. 143 unsigned getMaxDisp() const { 144 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 145 } 146 }; 147 148 /// CPUsers - Keep track of all of the machine instructions that use various 149 /// constant pools and their max displacement. 150 std::vector<CPUser> CPUsers; 151 152 /// CPEntry - One per constant pool entry, keeping the machine instruction 153 /// pointer, the constpool index, and the number of CPUser's which 154 /// reference this entry. 155 struct CPEntry { 156 MachineInstr *CPEMI; 157 unsigned CPI; 158 unsigned RefCount; 159 160 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 161 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 162 }; 163 164 /// CPEntries - Keep track of all of the constant pool entry machine 165 /// instructions. For each original constpool index (i.e. those that existed 166 /// upon entry to this pass), it keeps a vector of entries. Original 167 /// elements are cloned as we go along; the clones are put in the vector of 168 /// the original element, but have distinct CPIs. 169 /// 170 /// The first half of CPEntries contains generic constants, the second half 171 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 172 /// which vector it will be in here. 173 std::vector<std::vector<CPEntry>> CPEntries; 174 175 /// Maps a JT index to the offset in CPEntries containing copies of that 176 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 177 DenseMap<int, int> JumpTableEntryIndices; 178 179 /// Maps a JT index to the LEA that actually uses the index to calculate its 180 /// base address. 181 DenseMap<int, int> JumpTableUserIndices; 182 183 /// ImmBranch - One per immediate branch, keeping the machine instruction 184 /// pointer, conditional or unconditional, the max displacement, 185 /// and (if isCond is true) the corresponding unconditional branch 186 /// opcode. 187 struct ImmBranch { 188 MachineInstr *MI; 189 unsigned MaxDisp : 31; 190 bool isCond : 1; 191 unsigned UncondBr; 192 193 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 194 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 195 }; 196 197 /// ImmBranches - Keep track of all the immediate branch instructions. 198 std::vector<ImmBranch> ImmBranches; 199 200 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 201 SmallVector<MachineInstr*, 4> PushPopMIs; 202 203 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 204 SmallVector<MachineInstr*, 4> T2JumpTables; 205 206 /// HasFarJump - True if any far jump instruction has been emitted during 207 /// the branch fix up pass. 208 bool HasFarJump; 209 210 MachineFunction *MF; 211 MachineConstantPool *MCP; 212 const ARMBaseInstrInfo *TII; 213 const ARMSubtarget *STI; 214 ARMFunctionInfo *AFI; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 MachineFunctionProperties getRequiredProperties() const override { 228 return MachineFunctionProperties().set( 229 MachineFunctionProperties::Property::NoVRegs); 230 } 231 232 StringRef getPassName() const override { 233 return ARM_CP_ISLANDS_OPT_NAME; 234 } 235 236 private: 237 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 238 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 239 bool BBHasFallthrough(MachineBasicBlock *MBB); 240 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 241 unsigned getCPELogAlign(const MachineInstr *CPEMI); 242 void scanFunctionJumpTables(); 243 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 244 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 245 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 246 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 247 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 248 unsigned getCombinedIndex(const MachineInstr *CPEMI); 249 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 250 bool findAvailableWater(CPUser&U, unsigned UserOffset, 251 water_iterator &WaterIter, bool CloserWater); 252 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 253 MachineBasicBlock *&NewMBB); 254 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 255 void removeDeadCPEMI(MachineInstr *CPEMI); 256 bool removeUnusedCPEntries(); 257 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 258 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 259 bool DoDump = false); 260 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 261 CPUser &U, unsigned &Growth); 262 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 263 bool fixupImmediateBr(ImmBranch &Br); 264 bool fixupConditionalBr(ImmBranch &Br); 265 bool fixupUnconditionalBr(ImmBranch &Br); 266 bool undoLRSpillRestore(); 267 bool optimizeThumb2Instructions(); 268 bool optimizeThumb2Branches(); 269 bool reorderThumb2JumpTables(); 270 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 271 unsigned &DeadSize, bool &CanDeleteLEA, 272 bool &BaseRegKill); 273 bool optimizeThumb2JumpTables(); 274 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 275 MachineBasicBlock *JTBB); 276 277 unsigned getOffsetOf(MachineInstr *MI) const; 278 unsigned getUserOffset(CPUser&) const; 279 void dumpBBs(); 280 void verify(); 281 282 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 283 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 284 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 285 const CPUser &U) { 286 return isOffsetInRange(UserOffset, TrialOffset, 287 U.getMaxDisp(), U.NegOk, U.IsSoImm); 288 } 289 }; 290 291 } // end anonymous namespace 292 293 char ARMConstantIslands::ID = 0; 294 295 /// verify - check BBOffsets, BBSizes, alignment of islands 296 void ARMConstantIslands::verify() { 297 #ifndef NDEBUG 298 assert(std::is_sorted(MF->begin(), MF->end(), 299 [this](const MachineBasicBlock &LHS, 300 const MachineBasicBlock &RHS) { 301 return BBInfo[LHS.getNumber()].postOffset() < 302 BBInfo[RHS.getNumber()].postOffset(); 303 })); 304 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 305 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 306 CPUser &U = CPUsers[i]; 307 unsigned UserOffset = getUserOffset(U); 308 // Verify offset using the real max displacement without the safety 309 // adjustment. 310 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 311 /* DoDump = */ true)) { 312 LLVM_DEBUG(dbgs() << "OK\n"); 313 continue; 314 } 315 LLVM_DEBUG(dbgs() << "Out of range.\n"); 316 dumpBBs(); 317 LLVM_DEBUG(MF->dump()); 318 llvm_unreachable("Constant pool entry out of range!"); 319 } 320 #endif 321 } 322 323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 324 /// print block size and offset information - debugging 325 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 326 LLVM_DEBUG({ 327 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 328 const BasicBlockInfo &BBI = BBInfo[J]; 329 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 330 << " kb=" << unsigned(BBI.KnownBits) 331 << " ua=" << unsigned(BBI.Unalign) 332 << " pa=" << unsigned(BBI.PostAlign) 333 << format(" size=%#x\n", BBInfo[J].Size); 334 } 335 }); 336 } 337 #endif 338 339 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 340 MF = &mf; 341 MCP = mf.getConstantPool(); 342 343 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 344 << MCP->getConstants().size() << " CP entries, aligned to " 345 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 346 347 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 348 TII = STI->getInstrInfo(); 349 isPositionIndependentOrROPI = 350 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 351 AFI = MF->getInfo<ARMFunctionInfo>(); 352 353 isThumb = AFI->isThumbFunction(); 354 isThumb1 = AFI->isThumb1OnlyFunction(); 355 isThumb2 = AFI->isThumb2Function(); 356 357 HasFarJump = false; 358 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 359 360 // This pass invalidates liveness information when it splits basic blocks. 361 MF->getRegInfo().invalidateLiveness(); 362 363 // Renumber all of the machine basic blocks in the function, guaranteeing that 364 // the numbers agree with the position of the block in the function. 365 MF->RenumberBlocks(); 366 367 // Try to reorder and otherwise adjust the block layout to make good use 368 // of the TB[BH] instructions. 369 bool MadeChange = false; 370 if (GenerateTBB && AdjustJumpTableBlocks) { 371 scanFunctionJumpTables(); 372 MadeChange |= reorderThumb2JumpTables(); 373 // Data is out of date, so clear it. It'll be re-computed later. 374 T2JumpTables.clear(); 375 // Blocks may have shifted around. Keep the numbering up to date. 376 MF->RenumberBlocks(); 377 } 378 379 // Perform the initial placement of the constant pool entries. To start with, 380 // we put them all at the end of the function. 381 std::vector<MachineInstr*> CPEMIs; 382 if (!MCP->isEmpty()) 383 doInitialConstPlacement(CPEMIs); 384 385 if (MF->getJumpTableInfo()) 386 doInitialJumpTablePlacement(CPEMIs); 387 388 /// The next UID to take is the first unused one. 389 AFI->initPICLabelUId(CPEMIs.size()); 390 391 // Do the initial scan of the function, building up information about the 392 // sizes of each block, the location of all the water, and finding all of the 393 // constant pool users. 394 initializeFunctionInfo(CPEMIs); 395 CPEMIs.clear(); 396 LLVM_DEBUG(dumpBBs()); 397 398 // Functions with jump tables need an alignment of 4 because they use the ADR 399 // instruction, which aligns the PC to 4 bytes before adding an offset. 400 if (!T2JumpTables.empty()) 401 MF->ensureAlignment(2); 402 403 /// Remove dead constant pool entries. 404 MadeChange |= removeUnusedCPEntries(); 405 406 // Iteratively place constant pool entries and fix up branches until there 407 // is no change. 408 unsigned NoCPIters = 0, NoBRIters = 0; 409 while (true) { 410 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 411 bool CPChange = false; 412 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 413 // For most inputs, it converges in no more than 5 iterations. 414 // If it doesn't end in 10, the input may have huge BB or many CPEs. 415 // In this case, we will try different heuristics. 416 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 417 if (CPChange && ++NoCPIters > CPMaxIteration) 418 report_fatal_error("Constant Island pass failed to converge!"); 419 LLVM_DEBUG(dumpBBs()); 420 421 // Clear NewWaterList now. If we split a block for branches, it should 422 // appear as "new water" for the next iteration of constant pool placement. 423 NewWaterList.clear(); 424 425 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 426 bool BRChange = false; 427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 428 BRChange |= fixupImmediateBr(ImmBranches[i]); 429 if (BRChange && ++NoBRIters > 30) 430 report_fatal_error("Branch Fix Up pass failed to converge!"); 431 LLVM_DEBUG(dumpBBs()); 432 433 if (!CPChange && !BRChange) 434 break; 435 MadeChange = true; 436 } 437 438 // Shrink 32-bit Thumb2 load and store instructions. 439 if (isThumb2 && !STI->prefers32BitThumb()) 440 MadeChange |= optimizeThumb2Instructions(); 441 442 // Shrink 32-bit branch instructions. 443 if (isThumb && STI->hasV8MBaselineOps()) 444 MadeChange |= optimizeThumb2Branches(); 445 446 // Optimize jump tables using TBB / TBH. 447 if (GenerateTBB && !STI->genExecuteOnly()) 448 MadeChange |= optimizeThumb2JumpTables(); 449 450 // After a while, this might be made debug-only, but it is not expensive. 451 verify(); 452 453 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 454 // undo the spill / restore of LR if possible. 455 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 456 MadeChange |= undoLRSpillRestore(); 457 458 // Save the mapping between original and cloned constpool entries. 459 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 460 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 461 const CPEntry & CPE = CPEntries[i][j]; 462 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 463 AFI->recordCPEClone(i, CPE.CPI); 464 } 465 } 466 467 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 468 469 BBInfo.clear(); 470 WaterList.clear(); 471 CPUsers.clear(); 472 CPEntries.clear(); 473 JumpTableEntryIndices.clear(); 474 JumpTableUserIndices.clear(); 475 ImmBranches.clear(); 476 PushPopMIs.clear(); 477 T2JumpTables.clear(); 478 479 return MadeChange; 480 } 481 482 /// Perform the initial placement of the regular constant pool entries. 483 /// To start with, we put them all at the end of the function. 484 void 485 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 486 // Create the basic block to hold the CPE's. 487 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 488 MF->push_back(BB); 489 490 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 491 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 492 493 // Mark the basic block as required by the const-pool. 494 BB->setAlignment(MaxAlign); 495 496 // The function needs to be as aligned as the basic blocks. The linker may 497 // move functions around based on their alignment. 498 MF->ensureAlignment(BB->getAlignment()); 499 500 // Order the entries in BB by descending alignment. That ensures correct 501 // alignment of all entries as long as BB is sufficiently aligned. Keep 502 // track of the insertion point for each alignment. We are going to bucket 503 // sort the entries as they are created. 504 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 505 506 // Add all of the constants from the constant pool to the end block, use an 507 // identity mapping of CPI's to CPE's. 508 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 509 510 const DataLayout &TD = MF->getDataLayout(); 511 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 512 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 513 unsigned Align = CPs[i].getAlignment(); 514 assert(isPowerOf2_32(Align) && "Invalid alignment"); 515 // Verify that all constant pool entries are a multiple of their alignment. 516 // If not, we would have to pad them out so that instructions stay aligned. 517 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 518 519 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 520 unsigned LogAlign = Log2_32(Align); 521 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 522 MachineInstr *CPEMI = 523 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 524 .addImm(i).addConstantPoolIndex(i).addImm(Size); 525 CPEMIs.push_back(CPEMI); 526 527 // Ensure that future entries with higher alignment get inserted before 528 // CPEMI. This is bucket sort with iterators. 529 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 530 if (InsPoint[a] == InsAt) 531 InsPoint[a] = CPEMI; 532 533 // Add a new CPEntry, but no corresponding CPUser yet. 534 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 535 ++NumCPEs; 536 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 537 << Size << ", align = " << Align << '\n'); 538 } 539 LLVM_DEBUG(BB->dump()); 540 } 541 542 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 543 /// instructions can be made more efficient if the jump table immediately 544 /// follows the instruction, it's best to place them immediately next to their 545 /// jumps to begin with. In almost all cases they'll never be moved from that 546 /// position. 547 void ARMConstantIslands::doInitialJumpTablePlacement( 548 std::vector<MachineInstr *> &CPEMIs) { 549 unsigned i = CPEntries.size(); 550 auto MJTI = MF->getJumpTableInfo(); 551 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 552 553 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 554 for (MachineBasicBlock &MBB : *MF) { 555 auto MI = MBB.getLastNonDebugInstr(); 556 if (MI == MBB.end()) 557 continue; 558 559 unsigned JTOpcode; 560 switch (MI->getOpcode()) { 561 default: 562 continue; 563 case ARM::BR_JTadd: 564 case ARM::BR_JTr: 565 case ARM::tBR_JTr: 566 case ARM::BR_JTm_i12: 567 case ARM::BR_JTm_rs: 568 JTOpcode = ARM::JUMPTABLE_ADDRS; 569 break; 570 case ARM::t2BR_JT: 571 JTOpcode = ARM::JUMPTABLE_INSTS; 572 break; 573 case ARM::tTBB_JT: 574 case ARM::t2TBB_JT: 575 JTOpcode = ARM::JUMPTABLE_TBB; 576 break; 577 case ARM::tTBH_JT: 578 case ARM::t2TBH_JT: 579 JTOpcode = ARM::JUMPTABLE_TBH; 580 break; 581 } 582 583 unsigned NumOps = MI->getDesc().getNumOperands(); 584 MachineOperand JTOp = 585 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 586 unsigned JTI = JTOp.getIndex(); 587 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 588 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 589 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 590 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 591 DebugLoc(), TII->get(JTOpcode)) 592 .addImm(i++) 593 .addJumpTableIndex(JTI) 594 .addImm(Size); 595 CPEMIs.push_back(CPEMI); 596 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 597 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 598 if (!LastCorrectlyNumberedBB) 599 LastCorrectlyNumberedBB = &MBB; 600 } 601 602 // If we did anything then we need to renumber the subsequent blocks. 603 if (LastCorrectlyNumberedBB) 604 MF->RenumberBlocks(LastCorrectlyNumberedBB); 605 } 606 607 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 608 /// into the block immediately after it. 609 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 610 // Get the next machine basic block in the function. 611 MachineFunction::iterator MBBI = MBB->getIterator(); 612 // Can't fall off end of function. 613 if (std::next(MBBI) == MBB->getParent()->end()) 614 return false; 615 616 MachineBasicBlock *NextBB = &*std::next(MBBI); 617 if (!MBB->isSuccessor(NextBB)) 618 return false; 619 620 // Try to analyze the end of the block. A potential fallthrough may already 621 // have an unconditional branch for whatever reason. 622 MachineBasicBlock *TBB, *FBB; 623 SmallVector<MachineOperand, 4> Cond; 624 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 625 return TooDifficult || FBB == nullptr; 626 } 627 628 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 629 /// look up the corresponding CPEntry. 630 ARMConstantIslands::CPEntry * 631 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 632 const MachineInstr *CPEMI) { 633 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 634 // Number of entries per constpool index should be small, just do a 635 // linear search. 636 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 637 if (CPEs[i].CPEMI == CPEMI) 638 return &CPEs[i]; 639 } 640 return nullptr; 641 } 642 643 /// getCPELogAlign - Returns the required alignment of the constant pool entry 644 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 645 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 646 switch (CPEMI->getOpcode()) { 647 case ARM::CONSTPOOL_ENTRY: 648 break; 649 case ARM::JUMPTABLE_TBB: 650 return isThumb1 ? 2 : 0; 651 case ARM::JUMPTABLE_TBH: 652 return isThumb1 ? 2 : 1; 653 case ARM::JUMPTABLE_INSTS: 654 return 1; 655 case ARM::JUMPTABLE_ADDRS: 656 return 2; 657 default: 658 llvm_unreachable("unknown constpool entry kind"); 659 } 660 661 unsigned CPI = getCombinedIndex(CPEMI); 662 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 663 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 664 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 665 return Log2_32(Align); 666 } 667 668 /// scanFunctionJumpTables - Do a scan of the function, building up 669 /// information about the sizes of each block and the locations of all 670 /// the jump tables. 671 void ARMConstantIslands::scanFunctionJumpTables() { 672 for (MachineBasicBlock &MBB : *MF) { 673 for (MachineInstr &I : MBB) 674 if (I.isBranch() && 675 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 676 T2JumpTables.push_back(&I); 677 } 678 } 679 680 /// initializeFunctionInfo - Do the initial scan of the function, building up 681 /// information about the sizes of each block, the location of all the water, 682 /// and finding all of the constant pool users. 683 void ARMConstantIslands:: 684 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 685 686 BBInfo = computeAllBlockSizes(MF); 687 688 // The known bits of the entry block offset are determined by the function 689 // alignment. 690 BBInfo.front().KnownBits = MF->getAlignment(); 691 692 // Compute block offsets and known bits. 693 adjustBBOffsetsAfter(&MF->front()); 694 695 // Now go back through the instructions and build up our data structures. 696 for (MachineBasicBlock &MBB : *MF) { 697 // If this block doesn't fall through into the next MBB, then this is 698 // 'water' that a constant pool island could be placed. 699 if (!BBHasFallthrough(&MBB)) 700 WaterList.push_back(&MBB); 701 702 for (MachineInstr &I : MBB) { 703 if (I.isDebugInstr()) 704 continue; 705 706 unsigned Opc = I.getOpcode(); 707 if (I.isBranch()) { 708 bool isCond = false; 709 unsigned Bits = 0; 710 unsigned Scale = 1; 711 int UOpc = Opc; 712 switch (Opc) { 713 default: 714 continue; // Ignore other JT branches 715 case ARM::t2BR_JT: 716 case ARM::tBR_JTr: 717 T2JumpTables.push_back(&I); 718 continue; // Does not get an entry in ImmBranches 719 case ARM::Bcc: 720 isCond = true; 721 UOpc = ARM::B; 722 LLVM_FALLTHROUGH; 723 case ARM::B: 724 Bits = 24; 725 Scale = 4; 726 break; 727 case ARM::tBcc: 728 isCond = true; 729 UOpc = ARM::tB; 730 Bits = 8; 731 Scale = 2; 732 break; 733 case ARM::tB: 734 Bits = 11; 735 Scale = 2; 736 break; 737 case ARM::t2Bcc: 738 isCond = true; 739 UOpc = ARM::t2B; 740 Bits = 20; 741 Scale = 2; 742 break; 743 case ARM::t2B: 744 Bits = 24; 745 Scale = 2; 746 break; 747 } 748 749 // Record this immediate branch. 750 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 751 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 752 } 753 754 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 755 PushPopMIs.push_back(&I); 756 757 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 758 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 759 Opc == ARM::JUMPTABLE_TBH) 760 continue; 761 762 // Scan the instructions for constant pool operands. 763 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 764 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 765 // We found one. The addressing mode tells us the max displacement 766 // from the PC that this instruction permits. 767 768 // Basic size info comes from the TSFlags field. 769 unsigned Bits = 0; 770 unsigned Scale = 1; 771 bool NegOk = false; 772 bool IsSoImm = false; 773 774 switch (Opc) { 775 default: 776 llvm_unreachable("Unknown addressing mode for CP reference!"); 777 778 // Taking the address of a CP entry. 779 case ARM::LEApcrel: 780 case ARM::LEApcrelJT: 781 // This takes a SoImm, which is 8 bit immediate rotated. We'll 782 // pretend the maximum offset is 255 * 4. Since each instruction 783 // 4 byte wide, this is always correct. We'll check for other 784 // displacements that fits in a SoImm as well. 785 Bits = 8; 786 Scale = 4; 787 NegOk = true; 788 IsSoImm = true; 789 break; 790 case ARM::t2LEApcrel: 791 case ARM::t2LEApcrelJT: 792 Bits = 12; 793 NegOk = true; 794 break; 795 case ARM::tLEApcrel: 796 case ARM::tLEApcrelJT: 797 Bits = 8; 798 Scale = 4; 799 break; 800 801 case ARM::LDRBi12: 802 case ARM::LDRi12: 803 case ARM::LDRcp: 804 case ARM::t2LDRpci: 805 case ARM::t2LDRHpci: 806 case ARM::t2LDRBpci: 807 Bits = 12; // +-offset_12 808 NegOk = true; 809 break; 810 811 case ARM::tLDRpci: 812 Bits = 8; 813 Scale = 4; // +(offset_8*4) 814 break; 815 816 case ARM::VLDRD: 817 case ARM::VLDRS: 818 Bits = 8; 819 Scale = 4; // +-(offset_8*4) 820 NegOk = true; 821 break; 822 case ARM::VLDRH: 823 Bits = 8; 824 Scale = 2; // +-(offset_8*2) 825 NegOk = true; 826 break; 827 828 case ARM::tLDRHi: 829 Bits = 5; 830 Scale = 2; // +(offset_5*2) 831 break; 832 } 833 834 // Remember that this is a user of a CP entry. 835 unsigned CPI = I.getOperand(op).getIndex(); 836 if (I.getOperand(op).isJTI()) { 837 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 838 CPI = JumpTableEntryIndices[CPI]; 839 } 840 841 MachineInstr *CPEMI = CPEMIs[CPI]; 842 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 843 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 844 845 // Increment corresponding CPEntry reference count. 846 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 847 assert(CPE && "Cannot find a corresponding CPEntry!"); 848 CPE->RefCount++; 849 850 // Instructions can only use one CP entry, don't bother scanning the 851 // rest of the operands. 852 break; 853 } 854 } 855 } 856 } 857 858 /// getOffsetOf - Return the current offset of the specified machine instruction 859 /// from the start of the function. This offset changes as stuff is moved 860 /// around inside the function. 861 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 862 MachineBasicBlock *MBB = MI->getParent(); 863 864 // The offset is composed of two things: the sum of the sizes of all MBB's 865 // before this instruction's block, and the offset from the start of the block 866 // it is in. 867 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 868 869 // Sum instructions before MI in MBB. 870 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 871 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 872 Offset += TII->getInstSizeInBytes(*I); 873 } 874 return Offset; 875 } 876 877 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 878 /// ID. 879 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 880 const MachineBasicBlock *RHS) { 881 return LHS->getNumber() < RHS->getNumber(); 882 } 883 884 /// updateForInsertedWaterBlock - When a block is newly inserted into the 885 /// machine function, it upsets all of the block numbers. Renumber the blocks 886 /// and update the arrays that parallel this numbering. 887 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 888 // Renumber the MBB's to keep them consecutive. 889 NewBB->getParent()->RenumberBlocks(NewBB); 890 891 // Insert an entry into BBInfo to align it properly with the (newly 892 // renumbered) block numbers. 893 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 894 895 // Next, update WaterList. Specifically, we need to add NewMBB as having 896 // available water after it. 897 water_iterator IP = 898 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 899 CompareMBBNumbers); 900 WaterList.insert(IP, NewBB); 901 } 902 903 /// Split the basic block containing MI into two blocks, which are joined by 904 /// an unconditional branch. Update data structures and renumber blocks to 905 /// account for this change and returns the newly created block. 906 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 907 MachineBasicBlock *OrigBB = MI->getParent(); 908 909 // Create a new MBB for the code after the OrigBB. 910 MachineBasicBlock *NewBB = 911 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 912 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 913 MF->insert(MBBI, NewBB); 914 915 // Splice the instructions starting with MI over to NewBB. 916 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 917 918 // Add an unconditional branch from OrigBB to NewBB. 919 // Note the new unconditional branch is not being recorded. 920 // There doesn't seem to be meaningful DebugInfo available; this doesn't 921 // correspond to anything in the source. 922 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 923 if (!isThumb) 924 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 925 else 926 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 927 .addMBB(NewBB) 928 .add(predOps(ARMCC::AL)); 929 ++NumSplit; 930 931 // Update the CFG. All succs of OrigBB are now succs of NewBB. 932 NewBB->transferSuccessors(OrigBB); 933 934 // OrigBB branches to NewBB. 935 OrigBB->addSuccessor(NewBB); 936 937 // Update internal data structures to account for the newly inserted MBB. 938 // This is almost the same as updateForInsertedWaterBlock, except that 939 // the Water goes after OrigBB, not NewBB. 940 MF->RenumberBlocks(NewBB); 941 942 // Insert an entry into BBInfo to align it properly with the (newly 943 // renumbered) block numbers. 944 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 945 946 // Next, update WaterList. Specifically, we need to add OrigMBB as having 947 // available water after it (but not if it's already there, which happens 948 // when splitting before a conditional branch that is followed by an 949 // unconditional branch - in that case we want to insert NewBB). 950 water_iterator IP = 951 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 952 CompareMBBNumbers); 953 MachineBasicBlock* WaterBB = *IP; 954 if (WaterBB == OrigBB) 955 WaterList.insert(std::next(IP), NewBB); 956 else 957 WaterList.insert(IP, OrigBB); 958 NewWaterList.insert(OrigBB); 959 960 // Figure out how large the OrigBB is. As the first half of the original 961 // block, it cannot contain a tablejump. The size includes 962 // the new jump we added. (It should be possible to do this without 963 // recounting everything, but it's very confusing, and this is rarely 964 // executed.) 965 computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]); 966 967 // Figure out how large the NewMBB is. As the second half of the original 968 // block, it may contain a tablejump. 969 computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]); 970 971 // All BBOffsets following these blocks must be modified. 972 adjustBBOffsetsAfter(OrigBB); 973 974 return NewBB; 975 } 976 977 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 978 /// displacement computation. Update U.KnownAlignment to match its current 979 /// basic block location. 980 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 981 unsigned UserOffset = getOffsetOf(U.MI); 982 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 983 unsigned KnownBits = BBI.internalKnownBits(); 984 985 // The value read from PC is offset from the actual instruction address. 986 UserOffset += (isThumb ? 4 : 8); 987 988 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 989 // Make sure U.getMaxDisp() returns a constrained range. 990 U.KnownAlignment = (KnownBits >= 2); 991 992 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 993 // purposes of the displacement computation; compensate for that here. 994 // For unknown alignments, getMaxDisp() constrains the range instead. 995 if (isThumb && U.KnownAlignment) 996 UserOffset &= ~3u; 997 998 return UserOffset; 999 } 1000 1001 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1002 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1003 /// constant pool entry). 1004 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1005 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1006 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1007 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1008 unsigned TrialOffset, unsigned MaxDisp, 1009 bool NegativeOK, bool IsSoImm) { 1010 if (UserOffset <= TrialOffset) { 1011 // User before the Trial. 1012 if (TrialOffset - UserOffset <= MaxDisp) 1013 return true; 1014 // FIXME: Make use full range of soimm values. 1015 } else if (NegativeOK) { 1016 if (UserOffset - TrialOffset <= MaxDisp) 1017 return true; 1018 // FIXME: Make use full range of soimm values. 1019 } 1020 return false; 1021 } 1022 1023 /// isWaterInRange - Returns true if a CPE placed after the specified 1024 /// Water (a basic block) will be in range for the specific MI. 1025 /// 1026 /// Compute how much the function will grow by inserting a CPE after Water. 1027 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1028 MachineBasicBlock* Water, CPUser &U, 1029 unsigned &Growth) { 1030 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1031 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1032 unsigned NextBlockOffset, NextBlockAlignment; 1033 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1034 if (++NextBlock == MF->end()) { 1035 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1036 NextBlockAlignment = 0; 1037 } else { 1038 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1039 NextBlockAlignment = NextBlock->getAlignment(); 1040 } 1041 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1042 unsigned CPEEnd = CPEOffset + Size; 1043 1044 // The CPE may be able to hide in the alignment padding before the next 1045 // block. It may also cause more padding to be required if it is more aligned 1046 // that the next block. 1047 if (CPEEnd > NextBlockOffset) { 1048 Growth = CPEEnd - NextBlockOffset; 1049 // Compute the padding that would go at the end of the CPE to align the next 1050 // block. 1051 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1052 1053 // If the CPE is to be inserted before the instruction, that will raise 1054 // the offset of the instruction. Also account for unknown alignment padding 1055 // in blocks between CPE and the user. 1056 if (CPEOffset < UserOffset) 1057 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1058 } else 1059 // CPE fits in existing padding. 1060 Growth = 0; 1061 1062 return isOffsetInRange(UserOffset, CPEOffset, U); 1063 } 1064 1065 /// isCPEntryInRange - Returns true if the distance between specific MI and 1066 /// specific ConstPool entry instruction can fit in MI's displacement field. 1067 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1068 MachineInstr *CPEMI, unsigned MaxDisp, 1069 bool NegOk, bool DoDump) { 1070 unsigned CPEOffset = getOffsetOf(CPEMI); 1071 1072 if (DoDump) { 1073 LLVM_DEBUG({ 1074 unsigned Block = MI->getParent()->getNumber(); 1075 const BasicBlockInfo &BBI = BBInfo[Block]; 1076 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1077 << " max delta=" << MaxDisp 1078 << format(" insn address=%#x", UserOffset) << " in " 1079 << printMBBReference(*MI->getParent()) << ": " 1080 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1081 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1082 int(CPEOffset - UserOffset)); 1083 }); 1084 } 1085 1086 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1087 } 1088 1089 #ifndef NDEBUG 1090 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1091 /// unconditionally branches to its only successor. 1092 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1093 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1094 return false; 1095 1096 MachineBasicBlock *Succ = *MBB->succ_begin(); 1097 MachineBasicBlock *Pred = *MBB->pred_begin(); 1098 MachineInstr *PredMI = &Pred->back(); 1099 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1100 || PredMI->getOpcode() == ARM::t2B) 1101 return PredMI->getOperand(0).getMBB() == Succ; 1102 return false; 1103 } 1104 #endif // NDEBUG 1105 1106 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1107 unsigned BBNum = BB->getNumber(); 1108 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1109 // Get the offset and known bits at the end of the layout predecessor. 1110 // Include the alignment of the current block. 1111 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1112 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1113 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1114 1115 // This is where block i begins. Stop if the offset is already correct, 1116 // and we have updated 2 blocks. This is the maximum number of blocks 1117 // changed before calling this function. 1118 if (i > BBNum + 2 && 1119 BBInfo[i].Offset == Offset && 1120 BBInfo[i].KnownBits == KnownBits) 1121 break; 1122 1123 BBInfo[i].Offset = Offset; 1124 BBInfo[i].KnownBits = KnownBits; 1125 } 1126 } 1127 1128 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1129 /// and instruction CPEMI, and decrement its refcount. If the refcount 1130 /// becomes 0 remove the entry and instruction. Returns true if we removed 1131 /// the entry, false if we didn't. 1132 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1133 MachineInstr *CPEMI) { 1134 // Find the old entry. Eliminate it if it is no longer used. 1135 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1136 assert(CPE && "Unexpected!"); 1137 if (--CPE->RefCount == 0) { 1138 removeDeadCPEMI(CPEMI); 1139 CPE->CPEMI = nullptr; 1140 --NumCPEs; 1141 return true; 1142 } 1143 return false; 1144 } 1145 1146 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1147 if (CPEMI->getOperand(1).isCPI()) 1148 return CPEMI->getOperand(1).getIndex(); 1149 1150 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1151 } 1152 1153 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1154 /// if not, see if an in-range clone of the CPE is in range, and if so, 1155 /// change the data structures so the user references the clone. Returns: 1156 /// 0 = no existing entry found 1157 /// 1 = entry found, and there were no code insertions or deletions 1158 /// 2 = entry found, and there were code insertions or deletions 1159 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1160 MachineInstr *UserMI = U.MI; 1161 MachineInstr *CPEMI = U.CPEMI; 1162 1163 // Check to see if the CPE is already in-range. 1164 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1165 true)) { 1166 LLVM_DEBUG(dbgs() << "In range\n"); 1167 return 1; 1168 } 1169 1170 // No. Look for previously created clones of the CPE that are in range. 1171 unsigned CPI = getCombinedIndex(CPEMI); 1172 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1173 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1174 // We already tried this one 1175 if (CPEs[i].CPEMI == CPEMI) 1176 continue; 1177 // Removing CPEs can leave empty entries, skip 1178 if (CPEs[i].CPEMI == nullptr) 1179 continue; 1180 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1181 U.NegOk)) { 1182 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1183 << CPEs[i].CPI << "\n"); 1184 // Point the CPUser node to the replacement 1185 U.CPEMI = CPEs[i].CPEMI; 1186 // Change the CPI in the instruction operand to refer to the clone. 1187 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1188 if (UserMI->getOperand(j).isCPI()) { 1189 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1190 break; 1191 } 1192 // Adjust the refcount of the clone... 1193 CPEs[i].RefCount++; 1194 // ...and the original. If we didn't remove the old entry, none of the 1195 // addresses changed, so we don't need another pass. 1196 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1197 } 1198 } 1199 return 0; 1200 } 1201 1202 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1203 /// the specific unconditional branch instruction. 1204 static inline unsigned getUnconditionalBrDisp(int Opc) { 1205 switch (Opc) { 1206 case ARM::tB: 1207 return ((1<<10)-1)*2; 1208 case ARM::t2B: 1209 return ((1<<23)-1)*2; 1210 default: 1211 break; 1212 } 1213 1214 return ((1<<23)-1)*4; 1215 } 1216 1217 /// findAvailableWater - Look for an existing entry in the WaterList in which 1218 /// we can place the CPE referenced from U so it's within range of U's MI. 1219 /// Returns true if found, false if not. If it returns true, WaterIter 1220 /// is set to the WaterList entry. For Thumb, prefer water that will not 1221 /// introduce padding to water that will. To ensure that this pass 1222 /// terminates, the CPE location for a particular CPUser is only allowed to 1223 /// move to a lower address, so search backward from the end of the list and 1224 /// prefer the first water that is in range. 1225 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1226 water_iterator &WaterIter, 1227 bool CloserWater) { 1228 if (WaterList.empty()) 1229 return false; 1230 1231 unsigned BestGrowth = ~0u; 1232 // The nearest water without splitting the UserBB is right after it. 1233 // If the distance is still large (we have a big BB), then we need to split it 1234 // if we don't converge after certain iterations. This helps the following 1235 // situation to converge: 1236 // BB0: 1237 // Big BB 1238 // BB1: 1239 // Constant Pool 1240 // When a CP access is out of range, BB0 may be used as water. However, 1241 // inserting islands between BB0 and BB1 makes other accesses out of range. 1242 MachineBasicBlock *UserBB = U.MI->getParent(); 1243 unsigned MinNoSplitDisp = 1244 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1245 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1246 return false; 1247 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1248 --IP) { 1249 MachineBasicBlock* WaterBB = *IP; 1250 // Check if water is in range and is either at a lower address than the 1251 // current "high water mark" or a new water block that was created since 1252 // the previous iteration by inserting an unconditional branch. In the 1253 // latter case, we want to allow resetting the high water mark back to 1254 // this new water since we haven't seen it before. Inserting branches 1255 // should be relatively uncommon and when it does happen, we want to be 1256 // sure to take advantage of it for all the CPEs near that block, so that 1257 // we don't insert more branches than necessary. 1258 // When CloserWater is true, we try to find the lowest address after (or 1259 // equal to) user MI's BB no matter of padding growth. 1260 unsigned Growth; 1261 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1262 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1263 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1264 Growth < BestGrowth) { 1265 // This is the least amount of required padding seen so far. 1266 BestGrowth = Growth; 1267 WaterIter = IP; 1268 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1269 << " Growth=" << Growth << '\n'); 1270 1271 if (CloserWater && WaterBB == U.MI->getParent()) 1272 return true; 1273 // Keep looking unless it is perfect and we're not looking for the lowest 1274 // possible address. 1275 if (!CloserWater && BestGrowth == 0) 1276 return true; 1277 } 1278 if (IP == B) 1279 break; 1280 } 1281 return BestGrowth != ~0u; 1282 } 1283 1284 /// createNewWater - No existing WaterList entry will work for 1285 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1286 /// block is used if in range, and the conditional branch munged so control 1287 /// flow is correct. Otherwise the block is split to create a hole with an 1288 /// unconditional branch around it. In either case NewMBB is set to a 1289 /// block following which the new island can be inserted (the WaterList 1290 /// is not adjusted). 1291 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1292 unsigned UserOffset, 1293 MachineBasicBlock *&NewMBB) { 1294 CPUser &U = CPUsers[CPUserIndex]; 1295 MachineInstr *UserMI = U.MI; 1296 MachineInstr *CPEMI = U.CPEMI; 1297 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1298 MachineBasicBlock *UserMBB = UserMI->getParent(); 1299 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1300 1301 // If the block does not end in an unconditional branch already, and if the 1302 // end of the block is within range, make new water there. (The addition 1303 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1304 // Thumb2, 2 on Thumb1. 1305 if (BBHasFallthrough(UserMBB)) { 1306 // Size of branch to insert. 1307 unsigned Delta = isThumb1 ? 2 : 4; 1308 // Compute the offset where the CPE will begin. 1309 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1310 1311 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1312 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1313 << format(", expected CPE offset %#x\n", CPEOffset)); 1314 NewMBB = &*++UserMBB->getIterator(); 1315 // Add an unconditional branch from UserMBB to fallthrough block. Record 1316 // it for branch lengthening; this new branch will not get out of range, 1317 // but if the preceding conditional branch is out of range, the targets 1318 // will be exchanged, and the altered branch may be out of range, so the 1319 // machinery has to know about it. 1320 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1321 if (!isThumb) 1322 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1323 else 1324 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1325 .addMBB(NewMBB) 1326 .add(predOps(ARMCC::AL)); 1327 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1328 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1329 MaxDisp, false, UncondBr)); 1330 computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]); 1331 adjustBBOffsetsAfter(UserMBB); 1332 return; 1333 } 1334 } 1335 1336 // What a big block. Find a place within the block to split it. This is a 1337 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1338 // entries are 4 bytes: if instruction I references island CPE, and 1339 // instruction I+1 references CPE', it will not work well to put CPE as far 1340 // forward as possible, since then CPE' cannot immediately follow it (that 1341 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1342 // need to create a new island. So, we make a first guess, then walk through 1343 // the instructions between the one currently being looked at and the 1344 // possible insertion point, and make sure any other instructions that 1345 // reference CPEs will be able to use the same island area; if not, we back 1346 // up the insertion point. 1347 1348 // Try to split the block so it's fully aligned. Compute the latest split 1349 // point where we can add a 4-byte branch instruction, and then align to 1350 // LogAlign which is the largest possible alignment in the function. 1351 unsigned LogAlign = MF->getAlignment(); 1352 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1353 unsigned KnownBits = UserBBI.internalKnownBits(); 1354 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1355 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1356 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1357 BaseInsertOffset)); 1358 1359 // The 4 in the following is for the unconditional branch we'll be inserting 1360 // (allows for long branch on Thumb1). Alignment of the island is handled 1361 // inside isOffsetInRange. 1362 BaseInsertOffset -= 4; 1363 1364 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1365 << " la=" << LogAlign << " kb=" << KnownBits 1366 << " up=" << UPad << '\n'); 1367 1368 // This could point off the end of the block if we've already got constant 1369 // pool entries following this block; only the last one is in the water list. 1370 // Back past any possible branches (allow for a conditional and a maximally 1371 // long unconditional). 1372 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1373 // Ensure BaseInsertOffset is larger than the offset of the instruction 1374 // following UserMI so that the loop which searches for the split point 1375 // iterates at least once. 1376 BaseInsertOffset = 1377 std::max(UserBBI.postOffset() - UPad - 8, 1378 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1379 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1380 } 1381 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1382 CPEMI->getOperand(2).getImm(); 1383 MachineBasicBlock::iterator MI = UserMI; 1384 ++MI; 1385 unsigned CPUIndex = CPUserIndex+1; 1386 unsigned NumCPUsers = CPUsers.size(); 1387 MachineInstr *LastIT = nullptr; 1388 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1389 Offset < BaseInsertOffset; 1390 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1391 assert(MI != UserMBB->end() && "Fell off end of block"); 1392 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1393 CPUser &U = CPUsers[CPUIndex]; 1394 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1395 // Shift intertion point by one unit of alignment so it is within reach. 1396 BaseInsertOffset -= 1u << LogAlign; 1397 EndInsertOffset -= 1u << LogAlign; 1398 } 1399 // This is overly conservative, as we don't account for CPEMIs being 1400 // reused within the block, but it doesn't matter much. Also assume CPEs 1401 // are added in order with alignment padding. We may eventually be able 1402 // to pack the aligned CPEs better. 1403 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1404 CPUIndex++; 1405 } 1406 1407 // Remember the last IT instruction. 1408 if (MI->getOpcode() == ARM::t2IT) 1409 LastIT = &*MI; 1410 } 1411 1412 --MI; 1413 1414 // Avoid splitting an IT block. 1415 if (LastIT) { 1416 unsigned PredReg = 0; 1417 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1418 if (CC != ARMCC::AL) 1419 MI = LastIT; 1420 } 1421 1422 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1423 // On Windows, this instruction pair is covered by one single 1424 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1425 // constant island is injected inbetween them, the relocation will clobber 1426 // the instruction and fail to update the MOVT instruction. 1427 // (These instructions are bundled up until right before the ConstantIslands 1428 // pass.) 1429 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1430 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1431 ARMII::MO_HI16) { 1432 --MI; 1433 assert(MI->getOpcode() == ARM::t2MOVi16 && 1434 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1435 ARMII::MO_LO16); 1436 } 1437 1438 // We really must not split an IT block. 1439 LLVM_DEBUG(unsigned PredReg; assert( 1440 !isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1441 1442 NewMBB = splitBlockBeforeInstr(&*MI); 1443 } 1444 1445 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1446 /// is out-of-range. If so, pick up the constant pool value and move it some 1447 /// place in-range. Return true if we changed any addresses (thus must run 1448 /// another pass of branch lengthening), false otherwise. 1449 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1450 bool CloserWater) { 1451 CPUser &U = CPUsers[CPUserIndex]; 1452 MachineInstr *UserMI = U.MI; 1453 MachineInstr *CPEMI = U.CPEMI; 1454 unsigned CPI = getCombinedIndex(CPEMI); 1455 unsigned Size = CPEMI->getOperand(2).getImm(); 1456 // Compute this only once, it's expensive. 1457 unsigned UserOffset = getUserOffset(U); 1458 1459 // See if the current entry is within range, or there is a clone of it 1460 // in range. 1461 int result = findInRangeCPEntry(U, UserOffset); 1462 if (result==1) return false; 1463 else if (result==2) return true; 1464 1465 // No existing clone of this CPE is within range. 1466 // We will be generating a new clone. Get a UID for it. 1467 unsigned ID = AFI->createPICLabelUId(); 1468 1469 // Look for water where we can place this CPE. 1470 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1471 MachineBasicBlock *NewMBB; 1472 water_iterator IP; 1473 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1474 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1475 MachineBasicBlock *WaterBB = *IP; 1476 1477 // If the original WaterList entry was "new water" on this iteration, 1478 // propagate that to the new island. This is just keeping NewWaterList 1479 // updated to match the WaterList, which will be updated below. 1480 if (NewWaterList.erase(WaterBB)) 1481 NewWaterList.insert(NewIsland); 1482 1483 // The new CPE goes before the following block (NewMBB). 1484 NewMBB = &*++WaterBB->getIterator(); 1485 } else { 1486 // No water found. 1487 LLVM_DEBUG(dbgs() << "No water found\n"); 1488 createNewWater(CPUserIndex, UserOffset, NewMBB); 1489 1490 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1491 // called while handling branches so that the water will be seen on the 1492 // next iteration for constant pools, but in this context, we don't want 1493 // it. Check for this so it will be removed from the WaterList. 1494 // Also remove any entry from NewWaterList. 1495 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1496 IP = find(WaterList, WaterBB); 1497 if (IP != WaterList.end()) 1498 NewWaterList.erase(WaterBB); 1499 1500 // We are adding new water. Update NewWaterList. 1501 NewWaterList.insert(NewIsland); 1502 } 1503 // Always align the new block because CP entries can be smaller than 4 1504 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1505 // be an already aligned constant pool block. 1506 const unsigned Align = isThumb ? 1 : 2; 1507 if (NewMBB->getAlignment() < Align) 1508 NewMBB->setAlignment(Align); 1509 1510 // Remove the original WaterList entry; we want subsequent insertions in 1511 // this vicinity to go after the one we're about to insert. This 1512 // considerably reduces the number of times we have to move the same CPE 1513 // more than once and is also important to ensure the algorithm terminates. 1514 if (IP != WaterList.end()) 1515 WaterList.erase(IP); 1516 1517 // Okay, we know we can put an island before NewMBB now, do it! 1518 MF->insert(NewMBB->getIterator(), NewIsland); 1519 1520 // Update internal data structures to account for the newly inserted MBB. 1521 updateForInsertedWaterBlock(NewIsland); 1522 1523 // Now that we have an island to add the CPE to, clone the original CPE and 1524 // add it to the island. 1525 U.HighWaterMark = NewIsland; 1526 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1527 .addImm(ID) 1528 .add(CPEMI->getOperand(1)) 1529 .addImm(Size); 1530 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1531 ++NumCPEs; 1532 1533 // Decrement the old entry, and remove it if refcount becomes 0. 1534 decrementCPEReferenceCount(CPI, CPEMI); 1535 1536 // Mark the basic block as aligned as required by the const-pool entry. 1537 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1538 1539 // Increase the size of the island block to account for the new entry. 1540 BBInfo[NewIsland->getNumber()].Size += Size; 1541 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1542 1543 // Finally, change the CPI in the instruction operand to be ID. 1544 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1545 if (UserMI->getOperand(i).isCPI()) { 1546 UserMI->getOperand(i).setIndex(ID); 1547 break; 1548 } 1549 1550 LLVM_DEBUG( 1551 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1552 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1553 1554 return true; 1555 } 1556 1557 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1558 /// sizes and offsets of impacted basic blocks. 1559 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1560 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1561 unsigned Size = CPEMI->getOperand(2).getImm(); 1562 CPEMI->eraseFromParent(); 1563 BBInfo[CPEBB->getNumber()].Size -= Size; 1564 // All succeeding offsets have the current size value added in, fix this. 1565 if (CPEBB->empty()) { 1566 BBInfo[CPEBB->getNumber()].Size = 0; 1567 1568 // This block no longer needs to be aligned. 1569 CPEBB->setAlignment(0); 1570 } else 1571 // Entries are sorted by descending alignment, so realign from the front. 1572 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1573 1574 adjustBBOffsetsAfter(CPEBB); 1575 // An island has only one predecessor BB and one successor BB. Check if 1576 // this BB's predecessor jumps directly to this BB's successor. This 1577 // shouldn't happen currently. 1578 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1579 // FIXME: remove the empty blocks after all the work is done? 1580 } 1581 1582 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1583 /// are zero. 1584 bool ARMConstantIslands::removeUnusedCPEntries() { 1585 unsigned MadeChange = false; 1586 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1587 std::vector<CPEntry> &CPEs = CPEntries[i]; 1588 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1589 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1590 removeDeadCPEMI(CPEs[j].CPEMI); 1591 CPEs[j].CPEMI = nullptr; 1592 MadeChange = true; 1593 } 1594 } 1595 } 1596 return MadeChange; 1597 } 1598 1599 /// isBBInRange - Returns true if the distance between specific MI and 1600 /// specific BB can fit in MI's displacement field. 1601 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1602 unsigned MaxDisp) { 1603 unsigned PCAdj = isThumb ? 4 : 8; 1604 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1605 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1606 1607 LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1608 << " from " << printMBBReference(*MI->getParent()) 1609 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1610 << " to " << DestOffset << " offset " 1611 << int(DestOffset - BrOffset) << "\t" << *MI); 1612 1613 if (BrOffset <= DestOffset) { 1614 // Branch before the Dest. 1615 if (DestOffset-BrOffset <= MaxDisp) 1616 return true; 1617 } else { 1618 if (BrOffset-DestOffset <= MaxDisp) 1619 return true; 1620 } 1621 return false; 1622 } 1623 1624 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1625 /// away to fit in its displacement field. 1626 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1627 MachineInstr *MI = Br.MI; 1628 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1629 1630 // Check to see if the DestBB is already in-range. 1631 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1632 return false; 1633 1634 if (!Br.isCond) 1635 return fixupUnconditionalBr(Br); 1636 return fixupConditionalBr(Br); 1637 } 1638 1639 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1640 /// too far away to fit in its displacement field. If the LR register has been 1641 /// spilled in the epilogue, then we can use BL to implement a far jump. 1642 /// Otherwise, add an intermediate branch instruction to a branch. 1643 bool 1644 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1645 MachineInstr *MI = Br.MI; 1646 MachineBasicBlock *MBB = MI->getParent(); 1647 if (!isThumb1) 1648 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1649 1650 if (!AFI->isLRSpilled()) 1651 report_fatal_error("underestimated function size"); 1652 1653 // Use BL to implement far jump. 1654 Br.MaxDisp = (1 << 21) * 2; 1655 MI->setDesc(TII->get(ARM::tBfar)); 1656 BBInfo[MBB->getNumber()].Size += 2; 1657 adjustBBOffsetsAfter(MBB); 1658 HasFarJump = true; 1659 ++NumUBrFixed; 1660 1661 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1662 1663 return true; 1664 } 1665 1666 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1667 /// far away to fit in its displacement field. It is converted to an inverse 1668 /// conditional branch + an unconditional branch to the destination. 1669 bool 1670 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1671 MachineInstr *MI = Br.MI; 1672 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1673 1674 // Add an unconditional branch to the destination and invert the branch 1675 // condition to jump over it: 1676 // blt L1 1677 // => 1678 // bge L2 1679 // b L1 1680 // L2: 1681 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1682 CC = ARMCC::getOppositeCondition(CC); 1683 unsigned CCReg = MI->getOperand(2).getReg(); 1684 1685 // If the branch is at the end of its MBB and that has a fall-through block, 1686 // direct the updated conditional branch to the fall-through block. Otherwise, 1687 // split the MBB before the next instruction. 1688 MachineBasicBlock *MBB = MI->getParent(); 1689 MachineInstr *BMI = &MBB->back(); 1690 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1691 1692 ++NumCBrFixed; 1693 if (BMI != MI) { 1694 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1695 BMI->getOpcode() == Br.UncondBr) { 1696 // Last MI in the BB is an unconditional branch. Can we simply invert the 1697 // condition and swap destinations: 1698 // beq L1 1699 // b L2 1700 // => 1701 // bne L2 1702 // b L1 1703 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1704 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1705 LLVM_DEBUG( 1706 dbgs() << " Invert Bcc condition and swap its destination with " 1707 << *BMI); 1708 BMI->getOperand(0).setMBB(DestBB); 1709 MI->getOperand(0).setMBB(NewDest); 1710 MI->getOperand(1).setImm(CC); 1711 return true; 1712 } 1713 } 1714 } 1715 1716 if (NeedSplit) { 1717 splitBlockBeforeInstr(MI); 1718 // No need for the branch to the next block. We're adding an unconditional 1719 // branch to the destination. 1720 int delta = TII->getInstSizeInBytes(MBB->back()); 1721 BBInfo[MBB->getNumber()].Size -= delta; 1722 MBB->back().eraseFromParent(); 1723 1724 // The conditional successor will be swapped between the BBs after this, so 1725 // update CFG. 1726 MBB->addSuccessor(DestBB); 1727 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1728 1729 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1730 } 1731 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1732 1733 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1734 << " also invert condition and change dest. to " 1735 << printMBBReference(*NextBB) << "\n"); 1736 1737 // Insert a new conditional branch and a new unconditional branch. 1738 // Also update the ImmBranch as well as adding a new entry for the new branch. 1739 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1740 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1741 Br.MI = &MBB->back(); 1742 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1743 if (isThumb) 1744 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1745 .addMBB(DestBB) 1746 .add(predOps(ARMCC::AL)); 1747 else 1748 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1749 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1750 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1751 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1752 1753 // Remove the old conditional branch. It may or may not still be in MBB. 1754 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1755 MI->eraseFromParent(); 1756 adjustBBOffsetsAfter(MBB); 1757 return true; 1758 } 1759 1760 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1761 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1762 /// to do this if tBfar is not used. 1763 bool ARMConstantIslands::undoLRSpillRestore() { 1764 bool MadeChange = false; 1765 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1766 MachineInstr *MI = PushPopMIs[i]; 1767 // First two operands are predicates. 1768 if (MI->getOpcode() == ARM::tPOP_RET && 1769 MI->getOperand(2).getReg() == ARM::PC && 1770 MI->getNumExplicitOperands() == 3) { 1771 // Create the new insn and copy the predicate from the old. 1772 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1773 .add(MI->getOperand(0)) 1774 .add(MI->getOperand(1)); 1775 MI->eraseFromParent(); 1776 MadeChange = true; 1777 } else if (MI->getOpcode() == ARM::tPUSH && 1778 MI->getOperand(2).getReg() == ARM::LR && 1779 MI->getNumExplicitOperands() == 3) { 1780 // Just remove the push. 1781 MI->eraseFromParent(); 1782 MadeChange = true; 1783 } 1784 } 1785 return MadeChange; 1786 } 1787 1788 bool ARMConstantIslands::optimizeThumb2Instructions() { 1789 bool MadeChange = false; 1790 1791 // Shrink ADR and LDR from constantpool. 1792 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1793 CPUser &U = CPUsers[i]; 1794 unsigned Opcode = U.MI->getOpcode(); 1795 unsigned NewOpc = 0; 1796 unsigned Scale = 1; 1797 unsigned Bits = 0; 1798 switch (Opcode) { 1799 default: break; 1800 case ARM::t2LEApcrel: 1801 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1802 NewOpc = ARM::tLEApcrel; 1803 Bits = 8; 1804 Scale = 4; 1805 } 1806 break; 1807 case ARM::t2LDRpci: 1808 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1809 NewOpc = ARM::tLDRpci; 1810 Bits = 8; 1811 Scale = 4; 1812 } 1813 break; 1814 } 1815 1816 if (!NewOpc) 1817 continue; 1818 1819 unsigned UserOffset = getUserOffset(U); 1820 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1821 1822 // Be conservative with inline asm. 1823 if (!U.KnownAlignment) 1824 MaxOffs -= 2; 1825 1826 // FIXME: Check if offset is multiple of scale if scale is not 4. 1827 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1828 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1829 U.MI->setDesc(TII->get(NewOpc)); 1830 MachineBasicBlock *MBB = U.MI->getParent(); 1831 BBInfo[MBB->getNumber()].Size -= 2; 1832 adjustBBOffsetsAfter(MBB); 1833 ++NumT2CPShrunk; 1834 MadeChange = true; 1835 } 1836 } 1837 1838 return MadeChange; 1839 } 1840 1841 bool ARMConstantIslands::optimizeThumb2Branches() { 1842 bool MadeChange = false; 1843 1844 // The order in which branches appear in ImmBranches is approximately their 1845 // order within the function body. By visiting later branches first, we reduce 1846 // the distance between earlier forward branches and their targets, making it 1847 // more likely that the cbn?z optimization, which can only apply to forward 1848 // branches, will succeed. 1849 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1850 ImmBranch &Br = ImmBranches[i-1]; 1851 unsigned Opcode = Br.MI->getOpcode(); 1852 unsigned NewOpc = 0; 1853 unsigned Scale = 1; 1854 unsigned Bits = 0; 1855 switch (Opcode) { 1856 default: break; 1857 case ARM::t2B: 1858 NewOpc = ARM::tB; 1859 Bits = 11; 1860 Scale = 2; 1861 break; 1862 case ARM::t2Bcc: 1863 NewOpc = ARM::tBcc; 1864 Bits = 8; 1865 Scale = 2; 1866 break; 1867 } 1868 if (NewOpc) { 1869 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1870 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1871 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1872 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1873 Br.MI->setDesc(TII->get(NewOpc)); 1874 MachineBasicBlock *MBB = Br.MI->getParent(); 1875 BBInfo[MBB->getNumber()].Size -= 2; 1876 adjustBBOffsetsAfter(MBB); 1877 ++NumT2BrShrunk; 1878 MadeChange = true; 1879 } 1880 } 1881 1882 Opcode = Br.MI->getOpcode(); 1883 if (Opcode != ARM::tBcc) 1884 continue; 1885 1886 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1887 // so this transformation is not safe. 1888 if (!Br.MI->killsRegister(ARM::CPSR)) 1889 continue; 1890 1891 NewOpc = 0; 1892 unsigned PredReg = 0; 1893 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1894 if (Pred == ARMCC::EQ) 1895 NewOpc = ARM::tCBZ; 1896 else if (Pred == ARMCC::NE) 1897 NewOpc = ARM::tCBNZ; 1898 if (!NewOpc) 1899 continue; 1900 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1901 // Check if the distance is within 126. Subtract starting offset by 2 1902 // because the cmp will be eliminated. 1903 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1904 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1905 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1906 continue; 1907 1908 // Search backwards to find a tCMPi8 1909 auto *TRI = STI->getRegisterInfo(); 1910 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1911 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1912 continue; 1913 1914 unsigned Reg = CmpMI->getOperand(0).getReg(); 1915 1916 // Check for Kill flags on Reg. If they are present remove them and set kill 1917 // on the new CBZ. 1918 MachineBasicBlock::iterator KillMI = Br.MI; 1919 bool RegKilled = false; 1920 do { 1921 --KillMI; 1922 if (KillMI->killsRegister(Reg, TRI)) { 1923 KillMI->clearRegisterKills(Reg, TRI); 1924 RegKilled = true; 1925 break; 1926 } 1927 } while (KillMI != CmpMI); 1928 1929 // Create the new CBZ/CBNZ 1930 MachineBasicBlock *MBB = Br.MI->getParent(); 1931 LLVM_DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1932 MachineInstr *NewBR = 1933 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1934 .addReg(Reg, getKillRegState(RegKilled)) 1935 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1936 CmpMI->eraseFromParent(); 1937 Br.MI->eraseFromParent(); 1938 Br.MI = NewBR; 1939 BBInfo[MBB->getNumber()].Size -= 2; 1940 adjustBBOffsetsAfter(MBB); 1941 ++NumCBZ; 1942 MadeChange = true; 1943 } 1944 1945 return MadeChange; 1946 } 1947 1948 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1949 unsigned BaseReg) { 1950 if (I.getOpcode() != ARM::t2ADDrs) 1951 return false; 1952 1953 if (I.getOperand(0).getReg() != EntryReg) 1954 return false; 1955 1956 if (I.getOperand(1).getReg() != BaseReg) 1957 return false; 1958 1959 // FIXME: what about CC and IdxReg? 1960 return true; 1961 } 1962 1963 /// While trying to form a TBB/TBH instruction, we may (if the table 1964 /// doesn't immediately follow the BR_JT) need access to the start of the 1965 /// jump-table. We know one instruction that produces such a register; this 1966 /// function works out whether that definition can be preserved to the BR_JT, 1967 /// possibly by removing an intervening addition (which is usually needed to 1968 /// calculate the actual entry to jump to). 1969 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1970 MachineInstr *LEAMI, 1971 unsigned &DeadSize, 1972 bool &CanDeleteLEA, 1973 bool &BaseRegKill) { 1974 if (JumpMI->getParent() != LEAMI->getParent()) 1975 return false; 1976 1977 // Now we hope that we have at least these instructions in the basic block: 1978 // BaseReg = t2LEA ... 1979 // [...] 1980 // EntryReg = t2ADDrs BaseReg, ... 1981 // [...] 1982 // t2BR_JT EntryReg 1983 // 1984 // We have to be very conservative about what we recognise here though. The 1985 // main perturbing factors to watch out for are: 1986 // + Spills at any point in the chain: not direct problems but we would 1987 // expect a blocking Def of the spilled register so in practice what we 1988 // can do is limited. 1989 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1990 // of BaseReg, but only if the t2ADDrs can be removed. 1991 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1992 // the wild, but we should be careful. 1993 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 1994 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 1995 1996 CanDeleteLEA = true; 1997 BaseRegKill = false; 1998 MachineInstr *RemovableAdd = nullptr; 1999 MachineBasicBlock::iterator I(LEAMI); 2000 for (++I; &*I != JumpMI; ++I) { 2001 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2002 RemovableAdd = &*I; 2003 break; 2004 } 2005 2006 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2007 const MachineOperand &MO = I->getOperand(K); 2008 if (!MO.isReg() || !MO.getReg()) 2009 continue; 2010 if (MO.isDef() && MO.getReg() == BaseReg) 2011 return false; 2012 if (MO.isUse() && MO.getReg() == BaseReg) { 2013 BaseRegKill = BaseRegKill || MO.isKill(); 2014 CanDeleteLEA = false; 2015 } 2016 } 2017 } 2018 2019 if (!RemovableAdd) 2020 return true; 2021 2022 // Check the add really is removable, and that nothing else in the block 2023 // clobbers BaseReg. 2024 for (++I; &*I != JumpMI; ++I) { 2025 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2026 const MachineOperand &MO = I->getOperand(K); 2027 if (!MO.isReg() || !MO.getReg()) 2028 continue; 2029 if (MO.isDef() && MO.getReg() == BaseReg) 2030 return false; 2031 if (MO.isUse() && MO.getReg() == EntryReg) 2032 RemovableAdd = nullptr; 2033 } 2034 } 2035 2036 if (RemovableAdd) { 2037 RemovableAdd->eraseFromParent(); 2038 DeadSize += isThumb2 ? 4 : 2; 2039 } else if (BaseReg == EntryReg) { 2040 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2041 // preserve it. 2042 return false; 2043 } 2044 2045 // We reached the end of the block without seeing another definition of 2046 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2047 // used in the TBB/TBH if necessary. 2048 return true; 2049 } 2050 2051 /// Returns whether CPEMI is the first instruction in the block 2052 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2053 /// we can switch the first register to PC and usually remove the address 2054 /// calculation that preceded it. 2055 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2056 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2057 MachineFunction *MF = MBB->getParent(); 2058 ++MBB; 2059 2060 return MBB != MF->end() && MBB->begin() != MBB->end() && 2061 &*MBB->begin() == CPEMI; 2062 } 2063 2064 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2065 MachineInstr *JumpMI, 2066 unsigned &DeadSize) { 2067 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2068 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2069 // and is not clobbered / used. 2070 MachineInstr *RemovableAdd = nullptr; 2071 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 2072 2073 // Find the last ADD to set EntryReg 2074 MachineBasicBlock::iterator I(LEAMI); 2075 for (++I; &*I != JumpMI; ++I) { 2076 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2077 RemovableAdd = &*I; 2078 } 2079 2080 if (!RemovableAdd) 2081 return; 2082 2083 // Ensure EntryReg is not clobbered or used. 2084 MachineBasicBlock::iterator J(RemovableAdd); 2085 for (++J; &*J != JumpMI; ++J) { 2086 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2087 const MachineOperand &MO = J->getOperand(K); 2088 if (!MO.isReg() || !MO.getReg()) 2089 continue; 2090 if (MO.isDef() && MO.getReg() == EntryReg) 2091 return; 2092 if (MO.isUse() && MO.getReg() == EntryReg) 2093 return; 2094 } 2095 } 2096 2097 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2098 RemovableAdd->eraseFromParent(); 2099 DeadSize += 4; 2100 } 2101 2102 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2103 /// jumptables when it's possible. 2104 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2105 bool MadeChange = false; 2106 2107 // FIXME: After the tables are shrunk, can we get rid some of the 2108 // constantpool tables? 2109 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2110 if (!MJTI) return false; 2111 2112 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2113 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2114 MachineInstr *MI = T2JumpTables[i]; 2115 const MCInstrDesc &MCID = MI->getDesc(); 2116 unsigned NumOps = MCID.getNumOperands(); 2117 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2118 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2119 unsigned JTI = JTOP.getIndex(); 2120 assert(JTI < JT.size()); 2121 2122 bool ByteOk = true; 2123 bool HalfWordOk = true; 2124 unsigned JTOffset = getOffsetOf(MI) + 4; 2125 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2126 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2127 MachineBasicBlock *MBB = JTBBs[j]; 2128 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2129 // Negative offset is not ok. FIXME: We should change BB layout to make 2130 // sure all the branches are forward. 2131 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2132 ByteOk = false; 2133 unsigned TBHLimit = ((1<<16)-1)*2; 2134 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2135 HalfWordOk = false; 2136 if (!ByteOk && !HalfWordOk) 2137 break; 2138 } 2139 2140 if (!ByteOk && !HalfWordOk) 2141 continue; 2142 2143 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2144 MachineBasicBlock *MBB = MI->getParent(); 2145 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2146 continue; 2147 2148 unsigned DeadSize = 0; 2149 bool CanDeleteLEA = false; 2150 bool BaseRegKill = false; 2151 2152 unsigned IdxReg = ~0U; 2153 bool IdxRegKill = true; 2154 if (isThumb2) { 2155 IdxReg = MI->getOperand(1).getReg(); 2156 IdxRegKill = MI->getOperand(1).isKill(); 2157 2158 bool PreservedBaseReg = 2159 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2160 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2161 continue; 2162 } else { 2163 // We're in thumb-1 mode, so we must have something like: 2164 // %idx = tLSLri %idx, 2 2165 // %base = tLEApcrelJT 2166 // %t = tLDRr %base, %idx 2167 unsigned BaseReg = User.MI->getOperand(0).getReg(); 2168 2169 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2170 continue; 2171 MachineInstr *Shift = User.MI->getPrevNode(); 2172 if (Shift->getOpcode() != ARM::tLSLri || 2173 Shift->getOperand(3).getImm() != 2 || 2174 !Shift->getOperand(2).isKill()) 2175 continue; 2176 IdxReg = Shift->getOperand(2).getReg(); 2177 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg(); 2178 2179 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2180 // the range is checked later, but the LEA might still clobber it and not 2181 // actually get removed. 2182 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2183 continue; 2184 2185 MachineInstr *Load = User.MI->getNextNode(); 2186 if (Load->getOpcode() != ARM::tLDRr) 2187 continue; 2188 if (Load->getOperand(1).getReg() != BaseReg || 2189 Load->getOperand(2).getReg() != ShiftedIdxReg || 2190 !Load->getOperand(2).isKill()) 2191 continue; 2192 2193 // If we're in PIC mode, there should be another ADD following. 2194 auto *TRI = STI->getRegisterInfo(); 2195 2196 // %base cannot be redefined after the load as it will appear before 2197 // TBB/TBH like: 2198 // %base = 2199 // %base = 2200 // tBB %base, %idx 2201 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2202 continue; 2203 2204 if (isPositionIndependentOrROPI) { 2205 MachineInstr *Add = Load->getNextNode(); 2206 if (Add->getOpcode() != ARM::tADDrr || 2207 Add->getOperand(2).getReg() != BaseReg || 2208 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2209 !Add->getOperand(3).isKill()) 2210 continue; 2211 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2212 continue; 2213 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2214 // IdxReg gets redefined in the middle of the sequence. 2215 continue; 2216 Add->eraseFromParent(); 2217 DeadSize += 2; 2218 } else { 2219 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2220 continue; 2221 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2222 // IdxReg gets redefined in the middle of the sequence. 2223 continue; 2224 } 2225 2226 // Now safe to delete the load and lsl. The LEA will be removed later. 2227 CanDeleteLEA = true; 2228 Shift->eraseFromParent(); 2229 Load->eraseFromParent(); 2230 DeadSize += 4; 2231 } 2232 2233 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2234 MachineInstr *CPEMI = User.CPEMI; 2235 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2236 if (!isThumb2) 2237 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2238 2239 MachineBasicBlock::iterator MI_JT = MI; 2240 MachineInstr *NewJTMI = 2241 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2242 .addReg(User.MI->getOperand(0).getReg(), 2243 getKillRegState(BaseRegKill)) 2244 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2245 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2246 .addImm(CPEMI->getOperand(0).getImm()); 2247 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2248 2249 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2250 CPEMI->setDesc(TII->get(JTOpc)); 2251 2252 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2253 NewJTMI->getOperand(0).setReg(ARM::PC); 2254 NewJTMI->getOperand(0).setIsKill(false); 2255 2256 if (CanDeleteLEA) { 2257 if (isThumb2) 2258 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2259 2260 User.MI->eraseFromParent(); 2261 DeadSize += isThumb2 ? 4 : 2; 2262 2263 // The LEA was eliminated, the TBB instruction becomes the only new user 2264 // of the jump table. 2265 User.MI = NewJTMI; 2266 User.MaxDisp = 4; 2267 User.NegOk = false; 2268 User.IsSoImm = false; 2269 User.KnownAlignment = false; 2270 } else { 2271 // The LEA couldn't be eliminated, so we must add another CPUser to 2272 // record the TBB or TBH use. 2273 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2274 auto &CPEs = CPEntries[CPEntryIdx]; 2275 auto Entry = 2276 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2277 ++Entry->RefCount; 2278 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2279 } 2280 } 2281 2282 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2283 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2284 MI->eraseFromParent(); 2285 2286 int Delta = OrigSize - NewSize + DeadSize; 2287 BBInfo[MBB->getNumber()].Size -= Delta; 2288 adjustBBOffsetsAfter(MBB); 2289 2290 ++NumTBs; 2291 MadeChange = true; 2292 } 2293 2294 return MadeChange; 2295 } 2296 2297 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2298 /// jump tables always branch forwards, since that's what tbb and tbh need. 2299 bool ARMConstantIslands::reorderThumb2JumpTables() { 2300 bool MadeChange = false; 2301 2302 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2303 if (!MJTI) return false; 2304 2305 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2306 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2307 MachineInstr *MI = T2JumpTables[i]; 2308 const MCInstrDesc &MCID = MI->getDesc(); 2309 unsigned NumOps = MCID.getNumOperands(); 2310 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2311 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2312 unsigned JTI = JTOP.getIndex(); 2313 assert(JTI < JT.size()); 2314 2315 // We prefer if target blocks for the jump table come after the jump 2316 // instruction so we can use TB[BH]. Loop through the target blocks 2317 // and try to adjust them such that that's true. 2318 int JTNumber = MI->getParent()->getNumber(); 2319 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2320 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2321 MachineBasicBlock *MBB = JTBBs[j]; 2322 int DTNumber = MBB->getNumber(); 2323 2324 if (DTNumber < JTNumber) { 2325 // The destination precedes the switch. Try to move the block forward 2326 // so we have a positive offset. 2327 MachineBasicBlock *NewBB = 2328 adjustJTTargetBlockForward(MBB, MI->getParent()); 2329 if (NewBB) 2330 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2331 MadeChange = true; 2332 } 2333 } 2334 } 2335 2336 return MadeChange; 2337 } 2338 2339 MachineBasicBlock *ARMConstantIslands:: 2340 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2341 // If the destination block is terminated by an unconditional branch, 2342 // try to move it; otherwise, create a new block following the jump 2343 // table that branches back to the actual target. This is a very simple 2344 // heuristic. FIXME: We can definitely improve it. 2345 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2346 SmallVector<MachineOperand, 4> Cond; 2347 SmallVector<MachineOperand, 4> CondPrior; 2348 MachineFunction::iterator BBi = BB->getIterator(); 2349 MachineFunction::iterator OldPrior = std::prev(BBi); 2350 2351 // If the block terminator isn't analyzable, don't try to move the block 2352 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2353 2354 // If the block ends in an unconditional branch, move it. The prior block 2355 // has to have an analyzable terminator for us to move this one. Be paranoid 2356 // and make sure we're not trying to move the entry block of the function. 2357 if (!B && Cond.empty() && BB != &MF->front() && 2358 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2359 BB->moveAfter(JTBB); 2360 OldPrior->updateTerminator(); 2361 BB->updateTerminator(); 2362 // Update numbering to account for the block being moved. 2363 MF->RenumberBlocks(); 2364 ++NumJTMoved; 2365 return nullptr; 2366 } 2367 2368 // Create a new MBB for the code after the jump BB. 2369 MachineBasicBlock *NewBB = 2370 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2371 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2372 MF->insert(MBBI, NewBB); 2373 2374 // Add an unconditional branch from NewBB to BB. 2375 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2376 // correspond directly to anything in the source. 2377 if (isThumb2) 2378 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2379 .addMBB(BB) 2380 .add(predOps(ARMCC::AL)); 2381 else 2382 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2383 .addMBB(BB) 2384 .add(predOps(ARMCC::AL)); 2385 2386 // Update internal data structures to account for the newly inserted MBB. 2387 MF->RenumberBlocks(NewBB); 2388 2389 // Update the CFG. 2390 NewBB->addSuccessor(BB); 2391 JTBB->replaceSuccessor(BB, NewBB); 2392 2393 ++NumJTInserted; 2394 return NewBB; 2395 } 2396 2397 /// createARMConstantIslandPass - returns an instance of the constpool 2398 /// island pass. 2399 FunctionPass *llvm::createARMConstantIslandPass() { 2400 return new ARMConstantIslands(); 2401 } 2402 2403 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2404 false, false) 2405