1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function.  This is required due to the
12 // limited pc-relative displacements that ARM has.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "ARM.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "MCTargetDesc/ARMAddressingModes.h"
19 #include "Thumb2InstrInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <algorithm>
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "arm-cp-islands"
39 
40 STATISTIC(NumCPEs,       "Number of constpool entries");
41 STATISTIC(NumSplit,      "Number of uncond branches inserted");
42 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
43 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
44 STATISTIC(NumTBs,        "Number of table branches generated");
45 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
46 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
47 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
48 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
49 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
50 
51 
52 static cl::opt<bool>
53 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
54           cl::desc("Adjust basic block layout to better use TB[BH]"));
55 
56 static cl::opt<unsigned>
57 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
58           cl::desc("The max number of iteration for converge"));
59 
60 
61 /// UnknownPadding - Return the worst case padding that could result from
62 /// unknown offset bits.  This does not include alignment padding caused by
63 /// known offset bits.
64 ///
65 /// @param LogAlign log2(alignment)
66 /// @param KnownBits Number of known low offset bits.
67 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
68   if (KnownBits < LogAlign)
69     return (1u << LogAlign) - (1u << KnownBits);
70   return 0;
71 }
72 
73 namespace {
74   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
75   /// requires constant pool entries to be scattered among the instructions
76   /// inside a function.  To do this, it completely ignores the normal LLVM
77   /// constant pool; instead, it places constants wherever it feels like with
78   /// special instructions.
79   ///
80   /// The terminology used in this pass includes:
81   ///   Islands - Clumps of constants placed in the function.
82   ///   Water   - Potential places where an island could be formed.
83   ///   CPE     - A constant pool entry that has been placed somewhere, which
84   ///             tracks a list of users.
85   class ARMConstantIslands : public MachineFunctionPass {
86     /// BasicBlockInfo - Information about the offset and size of a single
87     /// basic block.
88     struct BasicBlockInfo {
89       /// Offset - Distance from the beginning of the function to the beginning
90       /// of this basic block.
91       ///
92       /// Offsets are computed assuming worst case padding before an aligned
93       /// block. This means that subtracting basic block offsets always gives a
94       /// conservative estimate of the real distance which may be smaller.
95       ///
96       /// Because worst case padding is used, the computed offset of an aligned
97       /// block may not actually be aligned.
98       unsigned Offset;
99 
100       /// Size - Size of the basic block in bytes.  If the block contains
101       /// inline assembly, this is a worst case estimate.
102       ///
103       /// The size does not include any alignment padding whether from the
104       /// beginning of the block, or from an aligned jump table at the end.
105       unsigned Size;
106 
107       /// KnownBits - The number of low bits in Offset that are known to be
108       /// exact.  The remaining bits of Offset are an upper bound.
109       uint8_t KnownBits;
110 
111       /// Unalign - When non-zero, the block contains instructions (inline asm)
112       /// of unknown size.  The real size may be smaller than Size bytes by a
113       /// multiple of 1 << Unalign.
114       uint8_t Unalign;
115 
116       /// PostAlign - When non-zero, the block terminator contains a .align
117       /// directive, so the end of the block is aligned to 1 << PostAlign
118       /// bytes.
119       uint8_t PostAlign;
120 
121       BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
122         PostAlign(0) {}
123 
124       /// Compute the number of known offset bits internally to this block.
125       /// This number should be used to predict worst case padding when
126       /// splitting the block.
127       unsigned internalKnownBits() const {
128         unsigned Bits = Unalign ? Unalign : KnownBits;
129         // If the block size isn't a multiple of the known bits, assume the
130         // worst case padding.
131         if (Size & ((1u << Bits) - 1))
132           Bits = countTrailingZeros(Size);
133         return Bits;
134       }
135 
136       /// Compute the offset immediately following this block.  If LogAlign is
137       /// specified, return the offset the successor block will get if it has
138       /// this alignment.
139       unsigned postOffset(unsigned LogAlign = 0) const {
140         unsigned PO = Offset + Size;
141         unsigned LA = std::max(unsigned(PostAlign), LogAlign);
142         if (!LA)
143           return PO;
144         // Add alignment padding from the terminator.
145         return PO + UnknownPadding(LA, internalKnownBits());
146       }
147 
148       /// Compute the number of known low bits of postOffset.  If this block
149       /// contains inline asm, the number of known bits drops to the
150       /// instruction alignment.  An aligned terminator may increase the number
151       /// of know bits.
152       /// If LogAlign is given, also consider the alignment of the next block.
153       unsigned postKnownBits(unsigned LogAlign = 0) const {
154         return std::max(std::max(unsigned(PostAlign), LogAlign),
155                         internalKnownBits());
156       }
157     };
158 
159     std::vector<BasicBlockInfo> BBInfo;
160 
161     /// WaterList - A sorted list of basic blocks where islands could be placed
162     /// (i.e. blocks that don't fall through to the following block, due
163     /// to a return, unreachable, or unconditional branch).
164     std::vector<MachineBasicBlock*> WaterList;
165 
166     /// NewWaterList - The subset of WaterList that was created since the
167     /// previous iteration by inserting unconditional branches.
168     SmallSet<MachineBasicBlock*, 4> NewWaterList;
169 
170     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
171 
172     /// CPUser - One user of a constant pool, keeping the machine instruction
173     /// pointer, the constant pool being referenced, and the max displacement
174     /// allowed from the instruction to the CP.  The HighWaterMark records the
175     /// highest basic block where a new CPEntry can be placed.  To ensure this
176     /// pass terminates, the CP entries are initially placed at the end of the
177     /// function and then move monotonically to lower addresses.  The
178     /// exception to this rule is when the current CP entry for a particular
179     /// CPUser is out of range, but there is another CP entry for the same
180     /// constant value in range.  We want to use the existing in-range CP
181     /// entry, but if it later moves out of range, the search for new water
182     /// should resume where it left off.  The HighWaterMark is used to record
183     /// that point.
184     struct CPUser {
185       MachineInstr *MI;
186       MachineInstr *CPEMI;
187       MachineBasicBlock *HighWaterMark;
188       unsigned MaxDisp;
189       bool NegOk;
190       bool IsSoImm;
191       bool KnownAlignment;
192       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
193              bool neg, bool soimm)
194         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
195           KnownAlignment(false) {
196         HighWaterMark = CPEMI->getParent();
197       }
198       /// getMaxDisp - Returns the maximum displacement supported by MI.
199       /// Correct for unknown alignment.
200       /// Conservatively subtract 2 bytes to handle weird alignment effects.
201       unsigned getMaxDisp() const {
202         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
203       }
204     };
205 
206     /// CPUsers - Keep track of all of the machine instructions that use various
207     /// constant pools and their max displacement.
208     std::vector<CPUser> CPUsers;
209 
210     /// CPEntry - One per constant pool entry, keeping the machine instruction
211     /// pointer, the constpool index, and the number of CPUser's which
212     /// reference this entry.
213     struct CPEntry {
214       MachineInstr *CPEMI;
215       unsigned CPI;
216       unsigned RefCount;
217       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
218         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
219     };
220 
221     /// CPEntries - Keep track of all of the constant pool entry machine
222     /// instructions. For each original constpool index (i.e. those that existed
223     /// upon entry to this pass), it keeps a vector of entries.  Original
224     /// elements are cloned as we go along; the clones are put in the vector of
225     /// the original element, but have distinct CPIs.
226     ///
227     /// The first half of CPEntries contains generic constants, the second half
228     /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
229     /// which vector it will be in here.
230     std::vector<std::vector<CPEntry> > CPEntries;
231 
232     /// Maps a JT index to the offset in CPEntries containing copies of that
233     /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
234     DenseMap<int, int> JumpTableEntryIndices;
235 
236     /// Maps a JT index to the LEA that actually uses the index to calculate its
237     /// base address.
238     DenseMap<int, int> JumpTableUserIndices;
239 
240     /// ImmBranch - One per immediate branch, keeping the machine instruction
241     /// pointer, conditional or unconditional, the max displacement,
242     /// and (if isCond is true) the corresponding unconditional branch
243     /// opcode.
244     struct ImmBranch {
245       MachineInstr *MI;
246       unsigned MaxDisp : 31;
247       bool isCond : 1;
248       unsigned UncondBr;
249       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
250         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
251     };
252 
253     /// ImmBranches - Keep track of all the immediate branch instructions.
254     ///
255     std::vector<ImmBranch> ImmBranches;
256 
257     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
258     ///
259     SmallVector<MachineInstr*, 4> PushPopMIs;
260 
261     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
262     SmallVector<MachineInstr*, 4> T2JumpTables;
263 
264     /// HasFarJump - True if any far jump instruction has been emitted during
265     /// the branch fix up pass.
266     bool HasFarJump;
267 
268     MachineFunction *MF;
269     MachineConstantPool *MCP;
270     const ARMBaseInstrInfo *TII;
271     const ARMSubtarget *STI;
272     ARMFunctionInfo *AFI;
273     bool isThumb;
274     bool isThumb1;
275     bool isThumb2;
276   public:
277     static char ID;
278     ARMConstantIslands() : MachineFunctionPass(ID) {}
279 
280     bool runOnMachineFunction(MachineFunction &MF) override;
281 
282     MachineFunctionProperties getRequiredProperties() const override {
283       return MachineFunctionProperties().set(
284           MachineFunctionProperties::Property::AllVRegsAllocated);
285     }
286 
287     const char *getPassName() const override {
288       return "ARM constant island placement and branch shortening pass";
289     }
290 
291   private:
292     void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
293     void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
294     bool BBHasFallthrough(MachineBasicBlock *MBB);
295     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
296     unsigned getCPELogAlign(const MachineInstr *CPEMI);
297     void scanFunctionJumpTables();
298     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
299     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
300     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
301     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
302     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
303     unsigned getCombinedIndex(const MachineInstr *CPEMI);
304     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
305     bool findAvailableWater(CPUser&U, unsigned UserOffset,
306                             water_iterator &WaterIter, bool CloserWater);
307     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
308                         MachineBasicBlock *&NewMBB);
309     bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
310     void removeDeadCPEMI(MachineInstr *CPEMI);
311     bool removeUnusedCPEntries();
312     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
313                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
314                           bool DoDump = false);
315     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
316                         CPUser &U, unsigned &Growth);
317     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
318     bool fixupImmediateBr(ImmBranch &Br);
319     bool fixupConditionalBr(ImmBranch &Br);
320     bool fixupUnconditionalBr(ImmBranch &Br);
321     bool undoLRSpillRestore();
322     bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
323     bool optimizeThumb2Instructions();
324     bool optimizeThumb2Branches();
325     bool reorderThumb2JumpTables();
326     bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
327                               unsigned &DeadSize, bool &CanDeleteLEA,
328                               bool &BaseRegKill);
329     bool optimizeThumb2JumpTables();
330     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
331                                                   MachineBasicBlock *JTBB);
332 
333     void computeBlockSize(MachineBasicBlock *MBB);
334     unsigned getOffsetOf(MachineInstr *MI) const;
335     unsigned getUserOffset(CPUser&) const;
336     void dumpBBs();
337     void verify();
338 
339     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
340                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
341     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
342                          const CPUser &U) {
343       return isOffsetInRange(UserOffset, TrialOffset,
344                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
345     }
346   };
347   char ARMConstantIslands::ID = 0;
348 }
349 
350 /// verify - check BBOffsets, BBSizes, alignment of islands
351 void ARMConstantIslands::verify() {
352 #ifndef NDEBUG
353   assert(std::is_sorted(MF->begin(), MF->end(),
354                         [this](const MachineBasicBlock &LHS,
355                                const MachineBasicBlock &RHS) {
356                           return BBInfo[LHS.getNumber()].postOffset() <
357                                  BBInfo[RHS.getNumber()].postOffset();
358                         }));
359   DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
360   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
361     CPUser &U = CPUsers[i];
362     unsigned UserOffset = getUserOffset(U);
363     // Verify offset using the real max displacement without the safety
364     // adjustment.
365     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
366                          /* DoDump = */ true)) {
367       DEBUG(dbgs() << "OK\n");
368       continue;
369     }
370     DEBUG(dbgs() << "Out of range.\n");
371     dumpBBs();
372     DEBUG(MF->dump());
373     llvm_unreachable("Constant pool entry out of range!");
374   }
375 #endif
376 }
377 
378 /// print block size and offset information - debugging
379 void ARMConstantIslands::dumpBBs() {
380   DEBUG({
381     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
382       const BasicBlockInfo &BBI = BBInfo[J];
383       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
384              << " kb=" << unsigned(BBI.KnownBits)
385              << " ua=" << unsigned(BBI.Unalign)
386              << " pa=" << unsigned(BBI.PostAlign)
387              << format(" size=%#x\n", BBInfo[J].Size);
388     }
389   });
390 }
391 
392 /// createARMConstantIslandPass - returns an instance of the constpool
393 /// island pass.
394 FunctionPass *llvm::createARMConstantIslandPass() {
395   return new ARMConstantIslands();
396 }
397 
398 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
399   MF = &mf;
400   MCP = mf.getConstantPool();
401 
402   DEBUG(dbgs() << "***** ARMConstantIslands: "
403                << MCP->getConstants().size() << " CP entries, aligned to "
404                << MCP->getConstantPoolAlignment() << " bytes *****\n");
405 
406   STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
407   TII = STI->getInstrInfo();
408   AFI = MF->getInfo<ARMFunctionInfo>();
409 
410   isThumb = AFI->isThumbFunction();
411   isThumb1 = AFI->isThumb1OnlyFunction();
412   isThumb2 = AFI->isThumb2Function();
413 
414   HasFarJump = false;
415 
416   // This pass invalidates liveness information when it splits basic blocks.
417   MF->getRegInfo().invalidateLiveness();
418 
419   // Renumber all of the machine basic blocks in the function, guaranteeing that
420   // the numbers agree with the position of the block in the function.
421   MF->RenumberBlocks();
422 
423   // Try to reorder and otherwise adjust the block layout to make good use
424   // of the TB[BH] instructions.
425   bool MadeChange = false;
426   if (isThumb2 && AdjustJumpTableBlocks) {
427     scanFunctionJumpTables();
428     MadeChange |= reorderThumb2JumpTables();
429     // Data is out of date, so clear it. It'll be re-computed later.
430     T2JumpTables.clear();
431     // Blocks may have shifted around. Keep the numbering up to date.
432     MF->RenumberBlocks();
433   }
434 
435   // Perform the initial placement of the constant pool entries.  To start with,
436   // we put them all at the end of the function.
437   std::vector<MachineInstr*> CPEMIs;
438   if (!MCP->isEmpty())
439     doInitialConstPlacement(CPEMIs);
440 
441   if (MF->getJumpTableInfo())
442     doInitialJumpTablePlacement(CPEMIs);
443 
444   /// The next UID to take is the first unused one.
445   AFI->initPICLabelUId(CPEMIs.size());
446 
447   // Do the initial scan of the function, building up information about the
448   // sizes of each block, the location of all the water, and finding all of the
449   // constant pool users.
450   initializeFunctionInfo(CPEMIs);
451   CPEMIs.clear();
452   DEBUG(dumpBBs());
453 
454   // Functions with jump tables need an alignment of 4 because they use the ADR
455   // instruction, which aligns the PC to 4 bytes before adding an offset.
456   if (!T2JumpTables.empty())
457     MF->ensureAlignment(2);
458 
459   /// Remove dead constant pool entries.
460   MadeChange |= removeUnusedCPEntries();
461 
462   // Iteratively place constant pool entries and fix up branches until there
463   // is no change.
464   unsigned NoCPIters = 0, NoBRIters = 0;
465   while (true) {
466     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
467     bool CPChange = false;
468     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
469       // For most inputs, it converges in no more than 5 iterations.
470       // If it doens't end in 10, the input may have huge BB or many CPEs.
471       // In this case, we will try differnt heuristics.
472       CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
473     if (CPChange && ++NoCPIters > CPMaxIteration)
474       report_fatal_error("Constant Island pass failed to converge!");
475     DEBUG(dumpBBs());
476 
477     // Clear NewWaterList now.  If we split a block for branches, it should
478     // appear as "new water" for the next iteration of constant pool placement.
479     NewWaterList.clear();
480 
481     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
482     bool BRChange = false;
483     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
484       BRChange |= fixupImmediateBr(ImmBranches[i]);
485     if (BRChange && ++NoBRIters > 30)
486       report_fatal_error("Branch Fix Up pass failed to converge!");
487     DEBUG(dumpBBs());
488 
489     if (!CPChange && !BRChange)
490       break;
491     MadeChange = true;
492   }
493 
494   // Shrink 32-bit Thumb2 load and store instructions.
495   if (isThumb2 && !STI->prefers32BitThumb())
496     MadeChange |= optimizeThumb2Instructions();
497 
498   // Shrink 32-bit branch instructions.
499   if (isThumb && STI->hasV8MBaselineOps())
500     MadeChange |= optimizeThumb2Branches();
501 
502   // Optimize jump tables using TBB / TBH.
503   if (isThumb2)
504     MadeChange |= optimizeThumb2JumpTables();
505 
506   // After a while, this might be made debug-only, but it is not expensive.
507   verify();
508 
509   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
510   // undo the spill / restore of LR if possible.
511   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
512     MadeChange |= undoLRSpillRestore();
513 
514   // Save the mapping between original and cloned constpool entries.
515   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
516     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
517       const CPEntry & CPE = CPEntries[i][j];
518       if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
519         AFI->recordCPEClone(i, CPE.CPI);
520     }
521   }
522 
523   DEBUG(dbgs() << '\n'; dumpBBs());
524 
525   BBInfo.clear();
526   WaterList.clear();
527   CPUsers.clear();
528   CPEntries.clear();
529   JumpTableEntryIndices.clear();
530   JumpTableUserIndices.clear();
531   ImmBranches.clear();
532   PushPopMIs.clear();
533   T2JumpTables.clear();
534 
535   return MadeChange;
536 }
537 
538 /// \brief Perform the initial placement of the regular constant pool entries.
539 /// To start with, we put them all at the end of the function.
540 void
541 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
542   // Create the basic block to hold the CPE's.
543   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
544   MF->push_back(BB);
545 
546   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
547   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
548 
549   // Mark the basic block as required by the const-pool.
550   BB->setAlignment(MaxAlign);
551 
552   // The function needs to be as aligned as the basic blocks. The linker may
553   // move functions around based on their alignment.
554   MF->ensureAlignment(BB->getAlignment());
555 
556   // Order the entries in BB by descending alignment.  That ensures correct
557   // alignment of all entries as long as BB is sufficiently aligned.  Keep
558   // track of the insertion point for each alignment.  We are going to bucket
559   // sort the entries as they are created.
560   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
561 
562   // Add all of the constants from the constant pool to the end block, use an
563   // identity mapping of CPI's to CPE's.
564   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
565 
566   const DataLayout &TD = MF->getDataLayout();
567   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
568     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
569     assert(Size >= 4 && "Too small constant pool entry");
570     unsigned Align = CPs[i].getAlignment();
571     assert(isPowerOf2_32(Align) && "Invalid alignment");
572     // Verify that all constant pool entries are a multiple of their alignment.
573     // If not, we would have to pad them out so that instructions stay aligned.
574     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
575 
576     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
577     unsigned LogAlign = Log2_32(Align);
578     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
579     MachineInstr *CPEMI =
580       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
581         .addImm(i).addConstantPoolIndex(i).addImm(Size);
582     CPEMIs.push_back(CPEMI);
583 
584     // Ensure that future entries with higher alignment get inserted before
585     // CPEMI. This is bucket sort with iterators.
586     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
587       if (InsPoint[a] == InsAt)
588         InsPoint[a] = CPEMI;
589 
590     // Add a new CPEntry, but no corresponding CPUser yet.
591     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
592     ++NumCPEs;
593     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
594                  << Size << ", align = " << Align <<'\n');
595   }
596   DEBUG(BB->dump());
597 }
598 
599 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH
600 /// instructions can be made more efficient if the jump table immediately
601 /// follows the instruction, it's best to place them immediately next to their
602 /// jumps to begin with. In almost all cases they'll never be moved from that
603 /// position.
604 void ARMConstantIslands::doInitialJumpTablePlacement(
605     std::vector<MachineInstr *> &CPEMIs) {
606   unsigned i = CPEntries.size();
607   auto MJTI = MF->getJumpTableInfo();
608   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
609 
610   MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
611   for (MachineBasicBlock &MBB : *MF) {
612     auto MI = MBB.getLastNonDebugInstr();
613     if (MI == MBB.end())
614       continue;
615 
616     unsigned JTOpcode;
617     switch (MI->getOpcode()) {
618     default:
619       continue;
620     case ARM::BR_JTadd:
621     case ARM::BR_JTr:
622     case ARM::tBR_JTr:
623     case ARM::BR_JTm:
624       JTOpcode = ARM::JUMPTABLE_ADDRS;
625       break;
626     case ARM::t2BR_JT:
627       JTOpcode = ARM::JUMPTABLE_INSTS;
628       break;
629     case ARM::t2TBB_JT:
630       JTOpcode = ARM::JUMPTABLE_TBB;
631       break;
632     case ARM::t2TBH_JT:
633       JTOpcode = ARM::JUMPTABLE_TBH;
634       break;
635     }
636 
637     unsigned NumOps = MI->getDesc().getNumOperands();
638     MachineOperand JTOp =
639       MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
640     unsigned JTI = JTOp.getIndex();
641     unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
642     MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
643     MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
644     MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
645                                   DebugLoc(), TII->get(JTOpcode))
646                               .addImm(i++)
647                               .addJumpTableIndex(JTI)
648                               .addImm(Size);
649     CPEMIs.push_back(CPEMI);
650     CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
651     JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
652     if (!LastCorrectlyNumberedBB)
653       LastCorrectlyNumberedBB = &MBB;
654   }
655 
656   // If we did anything then we need to renumber the subsequent blocks.
657   if (LastCorrectlyNumberedBB)
658     MF->RenumberBlocks(LastCorrectlyNumberedBB);
659 }
660 
661 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
662 /// into the block immediately after it.
663 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
664   // Get the next machine basic block in the function.
665   MachineFunction::iterator MBBI = MBB->getIterator();
666   // Can't fall off end of function.
667   if (std::next(MBBI) == MBB->getParent()->end())
668     return false;
669 
670   MachineBasicBlock *NextBB = &*std::next(MBBI);
671   if (std::find(MBB->succ_begin(), MBB->succ_end(), NextBB) == MBB->succ_end())
672     return false;
673 
674   // Try to analyze the end of the block. A potential fallthrough may already
675   // have an unconditional branch for whatever reason.
676   MachineBasicBlock *TBB, *FBB;
677   SmallVector<MachineOperand, 4> Cond;
678   bool TooDifficult = TII->AnalyzeBranch(*MBB, TBB, FBB, Cond);
679   return TooDifficult || FBB == nullptr;
680 }
681 
682 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
683 /// look up the corresponding CPEntry.
684 ARMConstantIslands::CPEntry
685 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
686                                         const MachineInstr *CPEMI) {
687   std::vector<CPEntry> &CPEs = CPEntries[CPI];
688   // Number of entries per constpool index should be small, just do a
689   // linear search.
690   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
691     if (CPEs[i].CPEMI == CPEMI)
692       return &CPEs[i];
693   }
694   return nullptr;
695 }
696 
697 /// getCPELogAlign - Returns the required alignment of the constant pool entry
698 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
699 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
700   switch (CPEMI->getOpcode()) {
701   case ARM::CONSTPOOL_ENTRY:
702     break;
703   case ARM::JUMPTABLE_TBB:
704     return 0;
705   case ARM::JUMPTABLE_TBH:
706   case ARM::JUMPTABLE_INSTS:
707     return 1;
708   case ARM::JUMPTABLE_ADDRS:
709     return 2;
710   default:
711     llvm_unreachable("unknown constpool entry kind");
712   }
713 
714   unsigned CPI = getCombinedIndex(CPEMI);
715   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
716   unsigned Align = MCP->getConstants()[CPI].getAlignment();
717   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
718   return Log2_32(Align);
719 }
720 
721 /// scanFunctionJumpTables - Do a scan of the function, building up
722 /// information about the sizes of each block and the locations of all
723 /// the jump tables.
724 void ARMConstantIslands::scanFunctionJumpTables() {
725   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
726        MBBI != E; ++MBBI) {
727     MachineBasicBlock &MBB = *MBBI;
728 
729     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
730          I != E; ++I)
731       if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
732         T2JumpTables.push_back(I);
733   }
734 }
735 
736 /// initializeFunctionInfo - Do the initial scan of the function, building up
737 /// information about the sizes of each block, the location of all the water,
738 /// and finding all of the constant pool users.
739 void ARMConstantIslands::
740 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
741   BBInfo.clear();
742   BBInfo.resize(MF->getNumBlockIDs());
743 
744   // First thing, compute the size of all basic blocks, and see if the function
745   // has any inline assembly in it. If so, we have to be conservative about
746   // alignment assumptions, as we don't know for sure the size of any
747   // instructions in the inline assembly.
748   for (MachineBasicBlock &MBB : *MF)
749     computeBlockSize(&MBB);
750 
751   // The known bits of the entry block offset are determined by the function
752   // alignment.
753   BBInfo.front().KnownBits = MF->getAlignment();
754 
755   // Compute block offsets and known bits.
756   adjustBBOffsetsAfter(&MF->front());
757 
758   // Now go back through the instructions and build up our data structures.
759   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
760        MBBI != E; ++MBBI) {
761     MachineBasicBlock &MBB = *MBBI;
762 
763     // If this block doesn't fall through into the next MBB, then this is
764     // 'water' that a constant pool island could be placed.
765     if (!BBHasFallthrough(&MBB))
766       WaterList.push_back(&MBB);
767 
768     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
769          I != E; ++I) {
770       if (I->isDebugValue())
771         continue;
772 
773       unsigned Opc = I->getOpcode();
774       if (I->isBranch()) {
775         bool isCond = false;
776         unsigned Bits = 0;
777         unsigned Scale = 1;
778         int UOpc = Opc;
779         switch (Opc) {
780         default:
781           continue;  // Ignore other JT branches
782         case ARM::t2BR_JT:
783           T2JumpTables.push_back(I);
784           continue;   // Does not get an entry in ImmBranches
785         case ARM::Bcc:
786           isCond = true;
787           UOpc = ARM::B;
788           // Fallthrough
789         case ARM::B:
790           Bits = 24;
791           Scale = 4;
792           break;
793         case ARM::tBcc:
794           isCond = true;
795           UOpc = ARM::tB;
796           Bits = 8;
797           Scale = 2;
798           break;
799         case ARM::tB:
800           Bits = 11;
801           Scale = 2;
802           break;
803         case ARM::t2Bcc:
804           isCond = true;
805           UOpc = ARM::t2B;
806           Bits = 20;
807           Scale = 2;
808           break;
809         case ARM::t2B:
810           Bits = 24;
811           Scale = 2;
812           break;
813         }
814 
815         // Record this immediate branch.
816         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
817         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
818       }
819 
820       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
821         PushPopMIs.push_back(I);
822 
823       if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
824           Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
825           Opc == ARM::JUMPTABLE_TBH)
826         continue;
827 
828       // Scan the instructions for constant pool operands.
829       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
830         if (I->getOperand(op).isCPI() || I->getOperand(op).isJTI()) {
831           // We found one.  The addressing mode tells us the max displacement
832           // from the PC that this instruction permits.
833 
834           // Basic size info comes from the TSFlags field.
835           unsigned Bits = 0;
836           unsigned Scale = 1;
837           bool NegOk = false;
838           bool IsSoImm = false;
839 
840           switch (Opc) {
841           default:
842             llvm_unreachable("Unknown addressing mode for CP reference!");
843 
844           // Taking the address of a CP entry.
845           case ARM::LEApcrel:
846           case ARM::LEApcrelJT:
847             // This takes a SoImm, which is 8 bit immediate rotated. We'll
848             // pretend the maximum offset is 255 * 4. Since each instruction
849             // 4 byte wide, this is always correct. We'll check for other
850             // displacements that fits in a SoImm as well.
851             Bits = 8;
852             Scale = 4;
853             NegOk = true;
854             IsSoImm = true;
855             break;
856           case ARM::t2LEApcrel:
857           case ARM::t2LEApcrelJT:
858             Bits = 12;
859             NegOk = true;
860             break;
861           case ARM::tLEApcrel:
862           case ARM::tLEApcrelJT:
863             Bits = 8;
864             Scale = 4;
865             break;
866 
867           case ARM::LDRBi12:
868           case ARM::LDRi12:
869           case ARM::LDRcp:
870           case ARM::t2LDRpci:
871             Bits = 12;  // +-offset_12
872             NegOk = true;
873             break;
874 
875           case ARM::tLDRpci:
876             Bits = 8;
877             Scale = 4;  // +(offset_8*4)
878             break;
879 
880           case ARM::VLDRD:
881           case ARM::VLDRS:
882             Bits = 8;
883             Scale = 4;  // +-(offset_8*4)
884             NegOk = true;
885             break;
886           }
887 
888           // Remember that this is a user of a CP entry.
889           unsigned CPI = I->getOperand(op).getIndex();
890           if (I->getOperand(op).isJTI()) {
891             JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
892             CPI = JumpTableEntryIndices[CPI];
893           }
894 
895           MachineInstr *CPEMI = CPEMIs[CPI];
896           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
897           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
898 
899           // Increment corresponding CPEntry reference count.
900           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
901           assert(CPE && "Cannot find a corresponding CPEntry!");
902           CPE->RefCount++;
903 
904           // Instructions can only use one CP entry, don't bother scanning the
905           // rest of the operands.
906           break;
907         }
908     }
909   }
910 }
911 
912 /// computeBlockSize - Compute the size and some alignment information for MBB.
913 /// This function updates BBInfo directly.
914 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
915   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
916   BBI.Size = 0;
917   BBI.Unalign = 0;
918   BBI.PostAlign = 0;
919 
920   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
921        ++I) {
922     BBI.Size += TII->GetInstSizeInBytes(I);
923     // For inline asm, GetInstSizeInBytes returns a conservative estimate.
924     // The actual size may be smaller, but still a multiple of the instr size.
925     if (I->isInlineAsm())
926       BBI.Unalign = isThumb ? 1 : 2;
927     // Also consider instructions that may be shrunk later.
928     else if (isThumb && mayOptimizeThumb2Instruction(I))
929       BBI.Unalign = 1;
930   }
931 
932   // tBR_JTr contains a .align 2 directive.
933   if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
934     BBI.PostAlign = 2;
935     MBB->getParent()->ensureAlignment(2);
936   }
937 }
938 
939 /// getOffsetOf - Return the current offset of the specified machine instruction
940 /// from the start of the function.  This offset changes as stuff is moved
941 /// around inside the function.
942 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
943   MachineBasicBlock *MBB = MI->getParent();
944 
945   // The offset is composed of two things: the sum of the sizes of all MBB's
946   // before this instruction's block, and the offset from the start of the block
947   // it is in.
948   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
949 
950   // Sum instructions before MI in MBB.
951   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
952     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
953     Offset += TII->GetInstSizeInBytes(I);
954   }
955   return Offset;
956 }
957 
958 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
959 /// ID.
960 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
961                               const MachineBasicBlock *RHS) {
962   return LHS->getNumber() < RHS->getNumber();
963 }
964 
965 /// updateForInsertedWaterBlock - When a block is newly inserted into the
966 /// machine function, it upsets all of the block numbers.  Renumber the blocks
967 /// and update the arrays that parallel this numbering.
968 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
969   // Renumber the MBB's to keep them consecutive.
970   NewBB->getParent()->RenumberBlocks(NewBB);
971 
972   // Insert an entry into BBInfo to align it properly with the (newly
973   // renumbered) block numbers.
974   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
975 
976   // Next, update WaterList.  Specifically, we need to add NewMBB as having
977   // available water after it.
978   water_iterator IP =
979     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
980                      CompareMBBNumbers);
981   WaterList.insert(IP, NewBB);
982 }
983 
984 
985 /// Split the basic block containing MI into two blocks, which are joined by
986 /// an unconditional branch.  Update data structures and renumber blocks to
987 /// account for this change and returns the newly created block.
988 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
989   MachineBasicBlock *OrigBB = MI->getParent();
990 
991   // Create a new MBB for the code after the OrigBB.
992   MachineBasicBlock *NewBB =
993     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
994   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
995   MF->insert(MBBI, NewBB);
996 
997   // Splice the instructions starting with MI over to NewBB.
998   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
999 
1000   // Add an unconditional branch from OrigBB to NewBB.
1001   // Note the new unconditional branch is not being recorded.
1002   // There doesn't seem to be meaningful DebugInfo available; this doesn't
1003   // correspond to anything in the source.
1004   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
1005   if (!isThumb)
1006     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
1007   else
1008     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
1009             .addImm(ARMCC::AL).addReg(0);
1010   ++NumSplit;
1011 
1012   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
1013   NewBB->transferSuccessors(OrigBB);
1014 
1015   // OrigBB branches to NewBB.
1016   OrigBB->addSuccessor(NewBB);
1017 
1018   // Update internal data structures to account for the newly inserted MBB.
1019   // This is almost the same as updateForInsertedWaterBlock, except that
1020   // the Water goes after OrigBB, not NewBB.
1021   MF->RenumberBlocks(NewBB);
1022 
1023   // Insert an entry into BBInfo to align it properly with the (newly
1024   // renumbered) block numbers.
1025   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
1026 
1027   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
1028   // available water after it (but not if it's already there, which happens
1029   // when splitting before a conditional branch that is followed by an
1030   // unconditional branch - in that case we want to insert NewBB).
1031   water_iterator IP =
1032     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
1033                      CompareMBBNumbers);
1034   MachineBasicBlock* WaterBB = *IP;
1035   if (WaterBB == OrigBB)
1036     WaterList.insert(std::next(IP), NewBB);
1037   else
1038     WaterList.insert(IP, OrigBB);
1039   NewWaterList.insert(OrigBB);
1040 
1041   // Figure out how large the OrigBB is.  As the first half of the original
1042   // block, it cannot contain a tablejump.  The size includes
1043   // the new jump we added.  (It should be possible to do this without
1044   // recounting everything, but it's very confusing, and this is rarely
1045   // executed.)
1046   computeBlockSize(OrigBB);
1047 
1048   // Figure out how large the NewMBB is.  As the second half of the original
1049   // block, it may contain a tablejump.
1050   computeBlockSize(NewBB);
1051 
1052   // All BBOffsets following these blocks must be modified.
1053   adjustBBOffsetsAfter(OrigBB);
1054 
1055   return NewBB;
1056 }
1057 
1058 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
1059 /// displacement computation.  Update U.KnownAlignment to match its current
1060 /// basic block location.
1061 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
1062   unsigned UserOffset = getOffsetOf(U.MI);
1063   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
1064   unsigned KnownBits = BBI.internalKnownBits();
1065 
1066   // The value read from PC is offset from the actual instruction address.
1067   UserOffset += (isThumb ? 4 : 8);
1068 
1069   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
1070   // Make sure U.getMaxDisp() returns a constrained range.
1071   U.KnownAlignment = (KnownBits >= 2);
1072 
1073   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
1074   // purposes of the displacement computation; compensate for that here.
1075   // For unknown alignments, getMaxDisp() constrains the range instead.
1076   if (isThumb && U.KnownAlignment)
1077     UserOffset &= ~3u;
1078 
1079   return UserOffset;
1080 }
1081 
1082 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1083 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1084 /// constant pool entry).
1085 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1086 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1087 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1088 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1089                                          unsigned TrialOffset, unsigned MaxDisp,
1090                                          bool NegativeOK, bool IsSoImm) {
1091   if (UserOffset <= TrialOffset) {
1092     // User before the Trial.
1093     if (TrialOffset - UserOffset <= MaxDisp)
1094       return true;
1095     // FIXME: Make use full range of soimm values.
1096   } else if (NegativeOK) {
1097     if (UserOffset - TrialOffset <= MaxDisp)
1098       return true;
1099     // FIXME: Make use full range of soimm values.
1100   }
1101   return false;
1102 }
1103 
1104 /// isWaterInRange - Returns true if a CPE placed after the specified
1105 /// Water (a basic block) will be in range for the specific MI.
1106 ///
1107 /// Compute how much the function will grow by inserting a CPE after Water.
1108 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1109                                         MachineBasicBlock* Water, CPUser &U,
1110                                         unsigned &Growth) {
1111   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
1112   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
1113   unsigned NextBlockOffset, NextBlockAlignment;
1114   MachineFunction::const_iterator NextBlock = Water->getIterator();
1115   if (++NextBlock == MF->end()) {
1116     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1117     NextBlockAlignment = 0;
1118   } else {
1119     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1120     NextBlockAlignment = NextBlock->getAlignment();
1121   }
1122   unsigned Size = U.CPEMI->getOperand(2).getImm();
1123   unsigned CPEEnd = CPEOffset + Size;
1124 
1125   // The CPE may be able to hide in the alignment padding before the next
1126   // block. It may also cause more padding to be required if it is more aligned
1127   // that the next block.
1128   if (CPEEnd > NextBlockOffset) {
1129     Growth = CPEEnd - NextBlockOffset;
1130     // Compute the padding that would go at the end of the CPE to align the next
1131     // block.
1132     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
1133 
1134     // If the CPE is to be inserted before the instruction, that will raise
1135     // the offset of the instruction. Also account for unknown alignment padding
1136     // in blocks between CPE and the user.
1137     if (CPEOffset < UserOffset)
1138       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
1139   } else
1140     // CPE fits in existing padding.
1141     Growth = 0;
1142 
1143   return isOffsetInRange(UserOffset, CPEOffset, U);
1144 }
1145 
1146 /// isCPEntryInRange - Returns true if the distance between specific MI and
1147 /// specific ConstPool entry instruction can fit in MI's displacement field.
1148 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1149                                       MachineInstr *CPEMI, unsigned MaxDisp,
1150                                       bool NegOk, bool DoDump) {
1151   unsigned CPEOffset  = getOffsetOf(CPEMI);
1152 
1153   if (DoDump) {
1154     DEBUG({
1155       unsigned Block = MI->getParent()->getNumber();
1156       const BasicBlockInfo &BBI = BBInfo[Block];
1157       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1158              << " max delta=" << MaxDisp
1159              << format(" insn address=%#x", UserOffset)
1160              << " in BB#" << Block << ": "
1161              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1162              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1163                        int(CPEOffset-UserOffset));
1164     });
1165   }
1166 
1167   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1168 }
1169 
1170 #ifndef NDEBUG
1171 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1172 /// unconditionally branches to its only successor.
1173 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1174   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1175     return false;
1176 
1177   MachineBasicBlock *Succ = *MBB->succ_begin();
1178   MachineBasicBlock *Pred = *MBB->pred_begin();
1179   MachineInstr *PredMI = &Pred->back();
1180   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1181       || PredMI->getOpcode() == ARM::t2B)
1182     return PredMI->getOperand(0).getMBB() == Succ;
1183   return false;
1184 }
1185 #endif // NDEBUG
1186 
1187 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1188   unsigned BBNum = BB->getNumber();
1189   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1190     // Get the offset and known bits at the end of the layout predecessor.
1191     // Include the alignment of the current block.
1192     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
1193     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
1194     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
1195 
1196     // This is where block i begins.  Stop if the offset is already correct,
1197     // and we have updated 2 blocks.  This is the maximum number of blocks
1198     // changed before calling this function.
1199     if (i > BBNum + 2 &&
1200         BBInfo[i].Offset == Offset &&
1201         BBInfo[i].KnownBits == KnownBits)
1202       break;
1203 
1204     BBInfo[i].Offset = Offset;
1205     BBInfo[i].KnownBits = KnownBits;
1206   }
1207 }
1208 
1209 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1210 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1211 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1212 /// the entry, false if we didn't.
1213 
1214 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1215                                                     MachineInstr *CPEMI) {
1216   // Find the old entry. Eliminate it if it is no longer used.
1217   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1218   assert(CPE && "Unexpected!");
1219   if (--CPE->RefCount == 0) {
1220     removeDeadCPEMI(CPEMI);
1221     CPE->CPEMI = nullptr;
1222     --NumCPEs;
1223     return true;
1224   }
1225   return false;
1226 }
1227 
1228 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1229   if (CPEMI->getOperand(1).isCPI())
1230     return CPEMI->getOperand(1).getIndex();
1231 
1232   return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1233 }
1234 
1235 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1236 /// if not, see if an in-range clone of the CPE is in range, and if so,
1237 /// change the data structures so the user references the clone.  Returns:
1238 /// 0 = no existing entry found
1239 /// 1 = entry found, and there were no code insertions or deletions
1240 /// 2 = entry found, and there were code insertions or deletions
1241 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1242 {
1243   MachineInstr *UserMI = U.MI;
1244   MachineInstr *CPEMI  = U.CPEMI;
1245 
1246   // Check to see if the CPE is already in-range.
1247   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1248                        true)) {
1249     DEBUG(dbgs() << "In range\n");
1250     return 1;
1251   }
1252 
1253   // No.  Look for previously created clones of the CPE that are in range.
1254   unsigned CPI = getCombinedIndex(CPEMI);
1255   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1256   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1257     // We already tried this one
1258     if (CPEs[i].CPEMI == CPEMI)
1259       continue;
1260     // Removing CPEs can leave empty entries, skip
1261     if (CPEs[i].CPEMI == nullptr)
1262       continue;
1263     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1264                      U.NegOk)) {
1265       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1266                    << CPEs[i].CPI << "\n");
1267       // Point the CPUser node to the replacement
1268       U.CPEMI = CPEs[i].CPEMI;
1269       // Change the CPI in the instruction operand to refer to the clone.
1270       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1271         if (UserMI->getOperand(j).isCPI()) {
1272           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1273           break;
1274         }
1275       // Adjust the refcount of the clone...
1276       CPEs[i].RefCount++;
1277       // ...and the original.  If we didn't remove the old entry, none of the
1278       // addresses changed, so we don't need another pass.
1279       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1280     }
1281   }
1282   return 0;
1283 }
1284 
1285 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1286 /// the specific unconditional branch instruction.
1287 static inline unsigned getUnconditionalBrDisp(int Opc) {
1288   switch (Opc) {
1289   case ARM::tB:
1290     return ((1<<10)-1)*2;
1291   case ARM::t2B:
1292     return ((1<<23)-1)*2;
1293   default:
1294     break;
1295   }
1296 
1297   return ((1<<23)-1)*4;
1298 }
1299 
1300 /// findAvailableWater - Look for an existing entry in the WaterList in which
1301 /// we can place the CPE referenced from U so it's within range of U's MI.
1302 /// Returns true if found, false if not.  If it returns true, WaterIter
1303 /// is set to the WaterList entry.  For Thumb, prefer water that will not
1304 /// introduce padding to water that will.  To ensure that this pass
1305 /// terminates, the CPE location for a particular CPUser is only allowed to
1306 /// move to a lower address, so search backward from the end of the list and
1307 /// prefer the first water that is in range.
1308 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1309                                             water_iterator &WaterIter,
1310                                             bool CloserWater) {
1311   if (WaterList.empty())
1312     return false;
1313 
1314   unsigned BestGrowth = ~0u;
1315   // The nearest water without splitting the UserBB is right after it.
1316   // If the distance is still large (we have a big BB), then we need to split it
1317   // if we don't converge after certain iterations. This helps the following
1318   // situation to converge:
1319   //   BB0:
1320   //      Big BB
1321   //   BB1:
1322   //      Constant Pool
1323   // When a CP access is out of range, BB0 may be used as water. However,
1324   // inserting islands between BB0 and BB1 makes other accesses out of range.
1325   MachineBasicBlock *UserBB = U.MI->getParent();
1326   unsigned MinNoSplitDisp =
1327       BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI));
1328   if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1329     return false;
1330   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1331        --IP) {
1332     MachineBasicBlock* WaterBB = *IP;
1333     // Check if water is in range and is either at a lower address than the
1334     // current "high water mark" or a new water block that was created since
1335     // the previous iteration by inserting an unconditional branch.  In the
1336     // latter case, we want to allow resetting the high water mark back to
1337     // this new water since we haven't seen it before.  Inserting branches
1338     // should be relatively uncommon and when it does happen, we want to be
1339     // sure to take advantage of it for all the CPEs near that block, so that
1340     // we don't insert more branches than necessary.
1341     // When CloserWater is true, we try to find the lowest address after (or
1342     // equal to) user MI's BB no matter of padding growth.
1343     unsigned Growth;
1344     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1345         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1346          NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1347         Growth < BestGrowth) {
1348       // This is the least amount of required padding seen so far.
1349       BestGrowth = Growth;
1350       WaterIter = IP;
1351       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1352                    << " Growth=" << Growth << '\n');
1353 
1354       if (CloserWater && WaterBB == U.MI->getParent())
1355         return true;
1356       // Keep looking unless it is perfect and we're not looking for the lowest
1357       // possible address.
1358       if (!CloserWater && BestGrowth == 0)
1359         return true;
1360     }
1361     if (IP == B)
1362       break;
1363   }
1364   return BestGrowth != ~0u;
1365 }
1366 
1367 /// createNewWater - No existing WaterList entry will work for
1368 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1369 /// block is used if in range, and the conditional branch munged so control
1370 /// flow is correct.  Otherwise the block is split to create a hole with an
1371 /// unconditional branch around it.  In either case NewMBB is set to a
1372 /// block following which the new island can be inserted (the WaterList
1373 /// is not adjusted).
1374 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1375                                         unsigned UserOffset,
1376                                         MachineBasicBlock *&NewMBB) {
1377   CPUser &U = CPUsers[CPUserIndex];
1378   MachineInstr *UserMI = U.MI;
1379   MachineInstr *CPEMI  = U.CPEMI;
1380   unsigned CPELogAlign = getCPELogAlign(CPEMI);
1381   MachineBasicBlock *UserMBB = UserMI->getParent();
1382   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1383 
1384   // If the block does not end in an unconditional branch already, and if the
1385   // end of the block is within range, make new water there.  (The addition
1386   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1387   // Thumb2, 2 on Thumb1.
1388   if (BBHasFallthrough(UserMBB)) {
1389     // Size of branch to insert.
1390     unsigned Delta = isThumb1 ? 2 : 4;
1391     // Compute the offset where the CPE will begin.
1392     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1393 
1394     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1395       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1396             << format(", expected CPE offset %#x\n", CPEOffset));
1397       NewMBB = &*++UserMBB->getIterator();
1398       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1399       // it for branch lengthening; this new branch will not get out of range,
1400       // but if the preceding conditional branch is out of range, the targets
1401       // will be exchanged, and the altered branch may be out of range, so the
1402       // machinery has to know about it.
1403       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1404       if (!isThumb)
1405         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1406       else
1407         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
1408           .addImm(ARMCC::AL).addReg(0);
1409       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1410       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1411                                       MaxDisp, false, UncondBr));
1412       computeBlockSize(UserMBB);
1413       adjustBBOffsetsAfter(UserMBB);
1414       return;
1415     }
1416   }
1417 
1418   // What a big block.  Find a place within the block to split it.  This is a
1419   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1420   // entries are 4 bytes: if instruction I references island CPE, and
1421   // instruction I+1 references CPE', it will not work well to put CPE as far
1422   // forward as possible, since then CPE' cannot immediately follow it (that
1423   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1424   // need to create a new island.  So, we make a first guess, then walk through
1425   // the instructions between the one currently being looked at and the
1426   // possible insertion point, and make sure any other instructions that
1427   // reference CPEs will be able to use the same island area; if not, we back
1428   // up the insertion point.
1429 
1430   // Try to split the block so it's fully aligned.  Compute the latest split
1431   // point where we can add a 4-byte branch instruction, and then align to
1432   // LogAlign which is the largest possible alignment in the function.
1433   unsigned LogAlign = MF->getAlignment();
1434   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1435   unsigned KnownBits = UserBBI.internalKnownBits();
1436   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1437   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1438   DEBUG(dbgs() << format("Split in middle of big block before %#x",
1439                          BaseInsertOffset));
1440 
1441   // The 4 in the following is for the unconditional branch we'll be inserting
1442   // (allows for long branch on Thumb1).  Alignment of the island is handled
1443   // inside isOffsetInRange.
1444   BaseInsertOffset -= 4;
1445 
1446   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1447                << " la=" << LogAlign
1448                << " kb=" << KnownBits
1449                << " up=" << UPad << '\n');
1450 
1451   // This could point off the end of the block if we've already got constant
1452   // pool entries following this block; only the last one is in the water list.
1453   // Back past any possible branches (allow for a conditional and a maximally
1454   // long unconditional).
1455   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1456     // Ensure BaseInsertOffset is larger than the offset of the instruction
1457     // following UserMI so that the loop which searches for the split point
1458     // iterates at least once.
1459     BaseInsertOffset =
1460         std::max(UserBBI.postOffset() - UPad - 8,
1461                  UserOffset + TII->GetInstSizeInBytes(UserMI) + 1);
1462     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1463   }
1464   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1465     CPEMI->getOperand(2).getImm();
1466   MachineBasicBlock::iterator MI = UserMI;
1467   ++MI;
1468   unsigned CPUIndex = CPUserIndex+1;
1469   unsigned NumCPUsers = CPUsers.size();
1470   MachineInstr *LastIT = nullptr;
1471   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1472        Offset < BaseInsertOffset;
1473        Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
1474     assert(MI != UserMBB->end() && "Fell off end of block");
1475     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1476       CPUser &U = CPUsers[CPUIndex];
1477       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1478         // Shift intertion point by one unit of alignment so it is within reach.
1479         BaseInsertOffset -= 1u << LogAlign;
1480         EndInsertOffset  -= 1u << LogAlign;
1481       }
1482       // This is overly conservative, as we don't account for CPEMIs being
1483       // reused within the block, but it doesn't matter much.  Also assume CPEs
1484       // are added in order with alignment padding.  We may eventually be able
1485       // to pack the aligned CPEs better.
1486       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1487       CPUIndex++;
1488     }
1489 
1490     // Remember the last IT instruction.
1491     if (MI->getOpcode() == ARM::t2IT)
1492       LastIT = MI;
1493   }
1494 
1495   --MI;
1496 
1497   // Avoid splitting an IT block.
1498   if (LastIT) {
1499     unsigned PredReg = 0;
1500     ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1501     if (CC != ARMCC::AL)
1502       MI = LastIT;
1503   }
1504 
1505   // We really must not split an IT block.
1506   DEBUG(unsigned PredReg;
1507         assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL));
1508 
1509   NewMBB = splitBlockBeforeInstr(MI);
1510 }
1511 
1512 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1513 /// is out-of-range.  If so, pick up the constant pool value and move it some
1514 /// place in-range.  Return true if we changed any addresses (thus must run
1515 /// another pass of branch lengthening), false otherwise.
1516 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1517                                                 bool CloserWater) {
1518   CPUser &U = CPUsers[CPUserIndex];
1519   MachineInstr *UserMI = U.MI;
1520   MachineInstr *CPEMI  = U.CPEMI;
1521   unsigned CPI = getCombinedIndex(CPEMI);
1522   unsigned Size = CPEMI->getOperand(2).getImm();
1523   // Compute this only once, it's expensive.
1524   unsigned UserOffset = getUserOffset(U);
1525 
1526   // See if the current entry is within range, or there is a clone of it
1527   // in range.
1528   int result = findInRangeCPEntry(U, UserOffset);
1529   if (result==1) return false;
1530   else if (result==2) return true;
1531 
1532   // No existing clone of this CPE is within range.
1533   // We will be generating a new clone.  Get a UID for it.
1534   unsigned ID = AFI->createPICLabelUId();
1535 
1536   // Look for water where we can place this CPE.
1537   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1538   MachineBasicBlock *NewMBB;
1539   water_iterator IP;
1540   if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1541     DEBUG(dbgs() << "Found water in range\n");
1542     MachineBasicBlock *WaterBB = *IP;
1543 
1544     // If the original WaterList entry was "new water" on this iteration,
1545     // propagate that to the new island.  This is just keeping NewWaterList
1546     // updated to match the WaterList, which will be updated below.
1547     if (NewWaterList.erase(WaterBB))
1548       NewWaterList.insert(NewIsland);
1549 
1550     // The new CPE goes before the following block (NewMBB).
1551     NewMBB = &*++WaterBB->getIterator();
1552   } else {
1553     // No water found.
1554     DEBUG(dbgs() << "No water found\n");
1555     createNewWater(CPUserIndex, UserOffset, NewMBB);
1556 
1557     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1558     // called while handling branches so that the water will be seen on the
1559     // next iteration for constant pools, but in this context, we don't want
1560     // it.  Check for this so it will be removed from the WaterList.
1561     // Also remove any entry from NewWaterList.
1562     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1563     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1564     if (IP != WaterList.end())
1565       NewWaterList.erase(WaterBB);
1566 
1567     // We are adding new water.  Update NewWaterList.
1568     NewWaterList.insert(NewIsland);
1569   }
1570 
1571   // Remove the original WaterList entry; we want subsequent insertions in
1572   // this vicinity to go after the one we're about to insert.  This
1573   // considerably reduces the number of times we have to move the same CPE
1574   // more than once and is also important to ensure the algorithm terminates.
1575   if (IP != WaterList.end())
1576     WaterList.erase(IP);
1577 
1578   // Okay, we know we can put an island before NewMBB now, do it!
1579   MF->insert(NewMBB->getIterator(), NewIsland);
1580 
1581   // Update internal data structures to account for the newly inserted MBB.
1582   updateForInsertedWaterBlock(NewIsland);
1583 
1584   // Now that we have an island to add the CPE to, clone the original CPE and
1585   // add it to the island.
1586   U.HighWaterMark = NewIsland;
1587   U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1588                 .addImm(ID).addOperand(CPEMI->getOperand(1)).addImm(Size);
1589   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1590   ++NumCPEs;
1591 
1592   // Decrement the old entry, and remove it if refcount becomes 0.
1593   decrementCPEReferenceCount(CPI, CPEMI);
1594 
1595   // Mark the basic block as aligned as required by the const-pool entry.
1596   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1597 
1598   // Increase the size of the island block to account for the new entry.
1599   BBInfo[NewIsland->getNumber()].Size += Size;
1600   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1601 
1602   // Finally, change the CPI in the instruction operand to be ID.
1603   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1604     if (UserMI->getOperand(i).isCPI()) {
1605       UserMI->getOperand(i).setIndex(ID);
1606       break;
1607     }
1608 
1609   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1610         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1611 
1612   return true;
1613 }
1614 
1615 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1616 /// sizes and offsets of impacted basic blocks.
1617 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1618   MachineBasicBlock *CPEBB = CPEMI->getParent();
1619   unsigned Size = CPEMI->getOperand(2).getImm();
1620   CPEMI->eraseFromParent();
1621   BBInfo[CPEBB->getNumber()].Size -= Size;
1622   // All succeeding offsets have the current size value added in, fix this.
1623   if (CPEBB->empty()) {
1624     BBInfo[CPEBB->getNumber()].Size = 0;
1625 
1626     // This block no longer needs to be aligned.
1627     CPEBB->setAlignment(0);
1628   } else
1629     // Entries are sorted by descending alignment, so realign from the front.
1630     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1631 
1632   adjustBBOffsetsAfter(CPEBB);
1633   // An island has only one predecessor BB and one successor BB. Check if
1634   // this BB's predecessor jumps directly to this BB's successor. This
1635   // shouldn't happen currently.
1636   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1637   // FIXME: remove the empty blocks after all the work is done?
1638 }
1639 
1640 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1641 /// are zero.
1642 bool ARMConstantIslands::removeUnusedCPEntries() {
1643   unsigned MadeChange = false;
1644   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1645       std::vector<CPEntry> &CPEs = CPEntries[i];
1646       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1647         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1648           removeDeadCPEMI(CPEs[j].CPEMI);
1649           CPEs[j].CPEMI = nullptr;
1650           MadeChange = true;
1651         }
1652       }
1653   }
1654   return MadeChange;
1655 }
1656 
1657 /// isBBInRange - Returns true if the distance between specific MI and
1658 /// specific BB can fit in MI's displacement field.
1659 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1660                                      unsigned MaxDisp) {
1661   unsigned PCAdj      = isThumb ? 4 : 8;
1662   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1663   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1664 
1665   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1666                << " from BB#" << MI->getParent()->getNumber()
1667                << " max delta=" << MaxDisp
1668                << " from " << getOffsetOf(MI) << " to " << DestOffset
1669                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1670 
1671   if (BrOffset <= DestOffset) {
1672     // Branch before the Dest.
1673     if (DestOffset-BrOffset <= MaxDisp)
1674       return true;
1675   } else {
1676     if (BrOffset-DestOffset <= MaxDisp)
1677       return true;
1678   }
1679   return false;
1680 }
1681 
1682 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1683 /// away to fit in its displacement field.
1684 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1685   MachineInstr *MI = Br.MI;
1686   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1687 
1688   // Check to see if the DestBB is already in-range.
1689   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1690     return false;
1691 
1692   if (!Br.isCond)
1693     return fixupUnconditionalBr(Br);
1694   return fixupConditionalBr(Br);
1695 }
1696 
1697 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1698 /// too far away to fit in its displacement field. If the LR register has been
1699 /// spilled in the epilogue, then we can use BL to implement a far jump.
1700 /// Otherwise, add an intermediate branch instruction to a branch.
1701 bool
1702 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1703   MachineInstr *MI = Br.MI;
1704   MachineBasicBlock *MBB = MI->getParent();
1705   if (!isThumb1)
1706     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1707 
1708   // Use BL to implement far jump.
1709   Br.MaxDisp = (1 << 21) * 2;
1710   MI->setDesc(TII->get(ARM::tBfar));
1711   BBInfo[MBB->getNumber()].Size += 2;
1712   adjustBBOffsetsAfter(MBB);
1713   HasFarJump = true;
1714   ++NumUBrFixed;
1715 
1716   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1717 
1718   return true;
1719 }
1720 
1721 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1722 /// far away to fit in its displacement field. It is converted to an inverse
1723 /// conditional branch + an unconditional branch to the destination.
1724 bool
1725 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1726   MachineInstr *MI = Br.MI;
1727   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1728 
1729   // Add an unconditional branch to the destination and invert the branch
1730   // condition to jump over it:
1731   // blt L1
1732   // =>
1733   // bge L2
1734   // b   L1
1735   // L2:
1736   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1737   CC = ARMCC::getOppositeCondition(CC);
1738   unsigned CCReg = MI->getOperand(2).getReg();
1739 
1740   // If the branch is at the end of its MBB and that has a fall-through block,
1741   // direct the updated conditional branch to the fall-through block. Otherwise,
1742   // split the MBB before the next instruction.
1743   MachineBasicBlock *MBB = MI->getParent();
1744   MachineInstr *BMI = &MBB->back();
1745   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1746 
1747   ++NumCBrFixed;
1748   if (BMI != MI) {
1749     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1750         BMI->getOpcode() == Br.UncondBr) {
1751       // Last MI in the BB is an unconditional branch. Can we simply invert the
1752       // condition and swap destinations:
1753       // beq L1
1754       // b   L2
1755       // =>
1756       // bne L2
1757       // b   L1
1758       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1759       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1760         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
1761                      << *BMI);
1762         BMI->getOperand(0).setMBB(DestBB);
1763         MI->getOperand(0).setMBB(NewDest);
1764         MI->getOperand(1).setImm(CC);
1765         return true;
1766       }
1767     }
1768   }
1769 
1770   if (NeedSplit) {
1771     splitBlockBeforeInstr(MI);
1772     // No need for the branch to the next block. We're adding an unconditional
1773     // branch to the destination.
1774     int delta = TII->GetInstSizeInBytes(&MBB->back());
1775     BBInfo[MBB->getNumber()].Size -= delta;
1776     MBB->back().eraseFromParent();
1777     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1778   }
1779   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1780 
1781   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
1782                << " also invert condition and change dest. to BB#"
1783                << NextBB->getNumber() << "\n");
1784 
1785   // Insert a new conditional branch and a new unconditional branch.
1786   // Also update the ImmBranch as well as adding a new entry for the new branch.
1787   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1788     .addMBB(NextBB).addImm(CC).addReg(CCReg);
1789   Br.MI = &MBB->back();
1790   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1791   if (isThumb)
1792     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
1793             .addImm(ARMCC::AL).addReg(0);
1794   else
1795     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1796   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1797   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1798   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1799 
1800   // Remove the old conditional branch.  It may or may not still be in MBB.
1801   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1802   MI->eraseFromParent();
1803   adjustBBOffsetsAfter(MBB);
1804   return true;
1805 }
1806 
1807 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1808 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1809 /// to do this if tBfar is not used.
1810 bool ARMConstantIslands::undoLRSpillRestore() {
1811   bool MadeChange = false;
1812   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1813     MachineInstr *MI = PushPopMIs[i];
1814     // First two operands are predicates.
1815     if (MI->getOpcode() == ARM::tPOP_RET &&
1816         MI->getOperand(2).getReg() == ARM::PC &&
1817         MI->getNumExplicitOperands() == 3) {
1818       // Create the new insn and copy the predicate from the old.
1819       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1820         .addOperand(MI->getOperand(0))
1821         .addOperand(MI->getOperand(1));
1822       MI->eraseFromParent();
1823       MadeChange = true;
1824     }
1825   }
1826   return MadeChange;
1827 }
1828 
1829 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
1830 // below may shrink MI.
1831 bool
1832 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
1833   switch(MI->getOpcode()) {
1834     // optimizeThumb2Instructions.
1835     case ARM::t2LEApcrel:
1836     case ARM::t2LDRpci:
1837     // optimizeThumb2Branches.
1838     case ARM::t2B:
1839     case ARM::t2Bcc:
1840     case ARM::tBcc:
1841     // optimizeThumb2JumpTables.
1842     case ARM::t2BR_JT:
1843       return true;
1844   }
1845   return false;
1846 }
1847 
1848 bool ARMConstantIslands::optimizeThumb2Instructions() {
1849   bool MadeChange = false;
1850 
1851   // Shrink ADR and LDR from constantpool.
1852   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1853     CPUser &U = CPUsers[i];
1854     unsigned Opcode = U.MI->getOpcode();
1855     unsigned NewOpc = 0;
1856     unsigned Scale = 1;
1857     unsigned Bits = 0;
1858     switch (Opcode) {
1859     default: break;
1860     case ARM::t2LEApcrel:
1861       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1862         NewOpc = ARM::tLEApcrel;
1863         Bits = 8;
1864         Scale = 4;
1865       }
1866       break;
1867     case ARM::t2LDRpci:
1868       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1869         NewOpc = ARM::tLDRpci;
1870         Bits = 8;
1871         Scale = 4;
1872       }
1873       break;
1874     }
1875 
1876     if (!NewOpc)
1877       continue;
1878 
1879     unsigned UserOffset = getUserOffset(U);
1880     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1881 
1882     // Be conservative with inline asm.
1883     if (!U.KnownAlignment)
1884       MaxOffs -= 2;
1885 
1886     // FIXME: Check if offset is multiple of scale if scale is not 4.
1887     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1888       DEBUG(dbgs() << "Shrink: " << *U.MI);
1889       U.MI->setDesc(TII->get(NewOpc));
1890       MachineBasicBlock *MBB = U.MI->getParent();
1891       BBInfo[MBB->getNumber()].Size -= 2;
1892       adjustBBOffsetsAfter(MBB);
1893       ++NumT2CPShrunk;
1894       MadeChange = true;
1895     }
1896   }
1897 
1898   return MadeChange;
1899 }
1900 
1901 bool ARMConstantIslands::optimizeThumb2Branches() {
1902   bool MadeChange = false;
1903 
1904   // The order in which branches appear in ImmBranches is approximately their
1905   // order within the function body. By visiting later branches first, we reduce
1906   // the distance between earlier forward branches and their targets, making it
1907   // more likely that the cbn?z optimization, which can only apply to forward
1908   // branches, will succeed.
1909   for (unsigned i = ImmBranches.size(); i != 0; --i) {
1910     ImmBranch &Br = ImmBranches[i-1];
1911     unsigned Opcode = Br.MI->getOpcode();
1912     unsigned NewOpc = 0;
1913     unsigned Scale = 1;
1914     unsigned Bits = 0;
1915     switch (Opcode) {
1916     default: break;
1917     case ARM::t2B:
1918       NewOpc = ARM::tB;
1919       Bits = 11;
1920       Scale = 2;
1921       break;
1922     case ARM::t2Bcc: {
1923       NewOpc = ARM::tBcc;
1924       Bits = 8;
1925       Scale = 2;
1926       break;
1927     }
1928     }
1929     if (NewOpc) {
1930       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1931       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1932       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
1933         DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1934         Br.MI->setDesc(TII->get(NewOpc));
1935         MachineBasicBlock *MBB = Br.MI->getParent();
1936         BBInfo[MBB->getNumber()].Size -= 2;
1937         adjustBBOffsetsAfter(MBB);
1938         ++NumT2BrShrunk;
1939         MadeChange = true;
1940       }
1941     }
1942 
1943     Opcode = Br.MI->getOpcode();
1944     if (Opcode != ARM::tBcc)
1945       continue;
1946 
1947     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1948     // so this transformation is not safe.
1949     if (!Br.MI->killsRegister(ARM::CPSR))
1950       continue;
1951 
1952     NewOpc = 0;
1953     unsigned PredReg = 0;
1954     ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1955     if (Pred == ARMCC::EQ)
1956       NewOpc = ARM::tCBZ;
1957     else if (Pred == ARMCC::NE)
1958       NewOpc = ARM::tCBNZ;
1959     if (!NewOpc)
1960       continue;
1961     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1962     // Check if the distance is within 126. Subtract starting offset by 2
1963     // because the cmp will be eliminated.
1964     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
1965     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1966     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1967       MachineBasicBlock::iterator CmpMI = Br.MI;
1968       if (CmpMI != Br.MI->getParent()->begin()) {
1969         --CmpMI;
1970         if (CmpMI->getOpcode() == ARM::tCMPi8) {
1971           unsigned Reg = CmpMI->getOperand(0).getReg();
1972           Pred = getInstrPredicate(*CmpMI, PredReg);
1973           if (Pred == ARMCC::AL &&
1974               CmpMI->getOperand(1).getImm() == 0 &&
1975               isARMLowRegister(Reg)) {
1976             MachineBasicBlock *MBB = Br.MI->getParent();
1977             DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1978             MachineInstr *NewBR =
1979               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1980               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1981             CmpMI->eraseFromParent();
1982             Br.MI->eraseFromParent();
1983             Br.MI = NewBR;
1984             BBInfo[MBB->getNumber()].Size -= 2;
1985             adjustBBOffsetsAfter(MBB);
1986             ++NumCBZ;
1987             MadeChange = true;
1988           }
1989         }
1990       }
1991     }
1992   }
1993 
1994   return MadeChange;
1995 }
1996 
1997 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
1998                               unsigned BaseReg) {
1999   if (I.getOpcode() != ARM::t2ADDrs)
2000     return false;
2001 
2002   if (I.getOperand(0).getReg() != EntryReg)
2003     return false;
2004 
2005   if (I.getOperand(1).getReg() != BaseReg)
2006     return false;
2007 
2008   // FIXME: what about CC and IdxReg?
2009   return true;
2010 }
2011 
2012 /// \brief While trying to form a TBB/TBH instruction, we may (if the table
2013 /// doesn't immediately follow the BR_JT) need access to the start of the
2014 /// jump-table. We know one instruction that produces such a register; this
2015 /// function works out whether that definition can be preserved to the BR_JT,
2016 /// possibly by removing an intervening addition (which is usually needed to
2017 /// calculate the actual entry to jump to).
2018 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2019                                               MachineInstr *LEAMI,
2020                                               unsigned &DeadSize,
2021                                               bool &CanDeleteLEA,
2022                                               bool &BaseRegKill) {
2023   if (JumpMI->getParent() != LEAMI->getParent())
2024     return false;
2025 
2026   // Now we hope that we have at least these instructions in the basic block:
2027   //     BaseReg = t2LEA ...
2028   //     [...]
2029   //     EntryReg = t2ADDrs BaseReg, ...
2030   //     [...]
2031   //     t2BR_JT EntryReg
2032   //
2033   // We have to be very conservative about what we recognise here though. The
2034   // main perturbing factors to watch out for are:
2035   //    + Spills at any point in the chain: not direct problems but we would
2036   //      expect a blocking Def of the spilled register so in practice what we
2037   //      can do is limited.
2038   //    + EntryReg == BaseReg: this is the one situation we should allow a Def
2039   //      of BaseReg, but only if the t2ADDrs can be removed.
2040   //    + Some instruction other than t2ADDrs computing the entry. Not seen in
2041   //      the wild, but we should be careful.
2042   unsigned EntryReg = JumpMI->getOperand(0).getReg();
2043   unsigned BaseReg = LEAMI->getOperand(0).getReg();
2044 
2045   CanDeleteLEA = true;
2046   BaseRegKill = false;
2047   MachineInstr *RemovableAdd = nullptr;
2048   MachineBasicBlock::iterator I(LEAMI);
2049   for (++I; &*I != JumpMI; ++I) {
2050     if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2051       RemovableAdd = &*I;
2052       break;
2053     }
2054 
2055     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2056       const MachineOperand &MO = I->getOperand(K);
2057       if (!MO.isReg() || !MO.getReg())
2058         continue;
2059       if (MO.isDef() && MO.getReg() == BaseReg)
2060         return false;
2061       if (MO.isUse() && MO.getReg() == BaseReg) {
2062         BaseRegKill = BaseRegKill || MO.isKill();
2063         CanDeleteLEA = false;
2064       }
2065     }
2066   }
2067 
2068   if (!RemovableAdd)
2069     return true;
2070 
2071   // Check the add really is removable, and that nothing else in the block
2072   // clobbers BaseReg.
2073   for (++I; &*I != JumpMI; ++I) {
2074     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2075       const MachineOperand &MO = I->getOperand(K);
2076       if (!MO.isReg() || !MO.getReg())
2077         continue;
2078       if (MO.isDef() && MO.getReg() == BaseReg)
2079         return false;
2080       if (MO.isUse() && MO.getReg() == EntryReg)
2081         RemovableAdd = nullptr;
2082     }
2083   }
2084 
2085   if (RemovableAdd) {
2086     RemovableAdd->eraseFromParent();
2087     DeadSize += 4;
2088   } else if (BaseReg == EntryReg) {
2089     // The add wasn't removable, but clobbered the base for the TBB. So we can't
2090     // preserve it.
2091     return false;
2092   }
2093 
2094   // We reached the end of the block without seeing another definition of
2095   // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2096   // used in the TBB/TBH if necessary.
2097   return true;
2098 }
2099 
2100 /// \brief Returns whether CPEMI is the first instruction in the block
2101 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2102 /// we can switch the first register to PC and usually remove the address
2103 /// calculation that preceded it.
2104 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2105   MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2106   MachineFunction *MF = MBB->getParent();
2107   ++MBB;
2108 
2109   return MBB != MF->end() && MBB->begin() != MBB->end() &&
2110          &*MBB->begin() == CPEMI;
2111 }
2112 
2113 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2114 /// jumptables when it's possible.
2115 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2116   bool MadeChange = false;
2117 
2118   // FIXME: After the tables are shrunk, can we get rid some of the
2119   // constantpool tables?
2120   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2121   if (!MJTI) return false;
2122 
2123   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2124   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2125     MachineInstr *MI = T2JumpTables[i];
2126     const MCInstrDesc &MCID = MI->getDesc();
2127     unsigned NumOps = MCID.getNumOperands();
2128     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2129     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2130     unsigned JTI = JTOP.getIndex();
2131     assert(JTI < JT.size());
2132 
2133     bool ByteOk = true;
2134     bool HalfWordOk = true;
2135     unsigned JTOffset = getOffsetOf(MI) + 4;
2136     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2137     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2138       MachineBasicBlock *MBB = JTBBs[j];
2139       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2140       // Negative offset is not ok. FIXME: We should change BB layout to make
2141       // sure all the branches are forward.
2142       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2143         ByteOk = false;
2144       unsigned TBHLimit = ((1<<16)-1)*2;
2145       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2146         HalfWordOk = false;
2147       if (!ByteOk && !HalfWordOk)
2148         break;
2149     }
2150 
2151     if (!ByteOk && !HalfWordOk)
2152       continue;
2153 
2154     MachineBasicBlock *MBB = MI->getParent();
2155     if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2156       continue;
2157     unsigned IdxReg = MI->getOperand(1).getReg();
2158     bool IdxRegKill = MI->getOperand(1).isKill();
2159 
2160     CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2161     unsigned DeadSize = 0;
2162     bool CanDeleteLEA = false;
2163     bool BaseRegKill = false;
2164     bool PreservedBaseReg =
2165         preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2166 
2167     if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2168       continue;
2169 
2170     DEBUG(dbgs() << "Shrink JT: " << *MI);
2171     MachineInstr *CPEMI = User.CPEMI;
2172     unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2173     MachineBasicBlock::iterator MI_JT = MI;
2174     MachineInstr *NewJTMI =
2175         BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2176             .addReg(User.MI->getOperand(0).getReg(),
2177                     getKillRegState(BaseRegKill))
2178             .addReg(IdxReg, getKillRegState(IdxRegKill))
2179             .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2180             .addImm(CPEMI->getOperand(0).getImm());
2181     DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
2182 
2183     unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2184     CPEMI->setDesc(TII->get(JTOpc));
2185 
2186     if (jumpTableFollowsTB(MI, User.CPEMI)) {
2187       NewJTMI->getOperand(0).setReg(ARM::PC);
2188       NewJTMI->getOperand(0).setIsKill(false);
2189 
2190       if (CanDeleteLEA)  {
2191         User.MI->eraseFromParent();
2192         DeadSize += 4;
2193 
2194         // The LEA was eliminated, the TBB instruction becomes the only new user
2195         // of the jump table.
2196         User.MI = NewJTMI;
2197         User.MaxDisp = 4;
2198         User.NegOk = false;
2199         User.IsSoImm = false;
2200         User.KnownAlignment = false;
2201       } else {
2202         // The LEA couldn't be eliminated, so we must add another CPUser to
2203         // record the TBB or TBH use.
2204         int CPEntryIdx = JumpTableEntryIndices[JTI];
2205         auto &CPEs = CPEntries[CPEntryIdx];
2206         auto Entry = std::find_if(CPEs.begin(), CPEs.end(), [&](CPEntry &E) {
2207           return E.CPEMI == User.CPEMI;
2208         });
2209         ++Entry->RefCount;
2210         CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2211       }
2212     }
2213 
2214     unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
2215     unsigned OrigSize = TII->GetInstSizeInBytes(MI);
2216     MI->eraseFromParent();
2217 
2218     int Delta = OrigSize - NewSize + DeadSize;
2219     BBInfo[MBB->getNumber()].Size -= Delta;
2220     adjustBBOffsetsAfter(MBB);
2221 
2222     ++NumTBs;
2223     MadeChange = true;
2224   }
2225 
2226   return MadeChange;
2227 }
2228 
2229 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2230 /// jump tables always branch forwards, since that's what tbb and tbh need.
2231 bool ARMConstantIslands::reorderThumb2JumpTables() {
2232   bool MadeChange = false;
2233 
2234   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2235   if (!MJTI) return false;
2236 
2237   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2238   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2239     MachineInstr *MI = T2JumpTables[i];
2240     const MCInstrDesc &MCID = MI->getDesc();
2241     unsigned NumOps = MCID.getNumOperands();
2242     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2243     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2244     unsigned JTI = JTOP.getIndex();
2245     assert(JTI < JT.size());
2246 
2247     // We prefer if target blocks for the jump table come after the jump
2248     // instruction so we can use TB[BH]. Loop through the target blocks
2249     // and try to adjust them such that that's true.
2250     int JTNumber = MI->getParent()->getNumber();
2251     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2252     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2253       MachineBasicBlock *MBB = JTBBs[j];
2254       int DTNumber = MBB->getNumber();
2255 
2256       if (DTNumber < JTNumber) {
2257         // The destination precedes the switch. Try to move the block forward
2258         // so we have a positive offset.
2259         MachineBasicBlock *NewBB =
2260           adjustJTTargetBlockForward(MBB, MI->getParent());
2261         if (NewBB)
2262           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2263         MadeChange = true;
2264       }
2265     }
2266   }
2267 
2268   return MadeChange;
2269 }
2270 
2271 MachineBasicBlock *ARMConstantIslands::
2272 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2273   // If the destination block is terminated by an unconditional branch,
2274   // try to move it; otherwise, create a new block following the jump
2275   // table that branches back to the actual target. This is a very simple
2276   // heuristic. FIXME: We can definitely improve it.
2277   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2278   SmallVector<MachineOperand, 4> Cond;
2279   SmallVector<MachineOperand, 4> CondPrior;
2280   MachineFunction::iterator BBi = BB->getIterator();
2281   MachineFunction::iterator OldPrior = std::prev(BBi);
2282 
2283   // If the block terminator isn't analyzable, don't try to move the block
2284   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
2285 
2286   // If the block ends in an unconditional branch, move it. The prior block
2287   // has to have an analyzable terminator for us to move this one. Be paranoid
2288   // and make sure we're not trying to move the entry block of the function.
2289   if (!B && Cond.empty() && BB != &MF->front() &&
2290       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2291     BB->moveAfter(JTBB);
2292     OldPrior->updateTerminator();
2293     BB->updateTerminator();
2294     // Update numbering to account for the block being moved.
2295     MF->RenumberBlocks();
2296     ++NumJTMoved;
2297     return nullptr;
2298   }
2299 
2300   // Create a new MBB for the code after the jump BB.
2301   MachineBasicBlock *NewBB =
2302     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2303   MachineFunction::iterator MBBI = ++JTBB->getIterator();
2304   MF->insert(MBBI, NewBB);
2305 
2306   // Add an unconditional branch from NewBB to BB.
2307   // There doesn't seem to be meaningful DebugInfo available; this doesn't
2308   // correspond directly to anything in the source.
2309   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
2310   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
2311           .addImm(ARMCC::AL).addReg(0);
2312 
2313   // Update internal data structures to account for the newly inserted MBB.
2314   MF->RenumberBlocks(NewBB);
2315 
2316   // Update the CFG.
2317   NewBB->addSuccessor(BB);
2318   JTBB->replaceSuccessor(BB, NewBB);
2319 
2320   ++NumJTInserted;
2321   return NewBB;
2322 }
2323