1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function.  This is required due to the
11 // limited pc-relative displacements that ARM has.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Format.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <utility>
54 #include <vector>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "arm-cp-islands"
59 
60 #define ARM_CP_ISLANDS_OPT_NAME \
61   "ARM constant island placement and branch shortening pass"
62 STATISTIC(NumCPEs,       "Number of constpool entries");
63 STATISTIC(NumSplit,      "Number of uncond branches inserted");
64 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
65 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
66 STATISTIC(NumTBs,        "Number of table branches generated");
67 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
68 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
69 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
70 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
71 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
72 
73 static cl::opt<bool>
74 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
75           cl::desc("Adjust basic block layout to better use TB[BH]"));
76 
77 static cl::opt<unsigned>
78 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
79           cl::desc("The max number of iteration for converge"));
80 
81 static cl::opt<bool> SynthesizeThumb1TBB(
82     "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
83     cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
84              "equivalent to the TBB/TBH instructions"));
85 
86 namespace {
87 
88   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
89   /// requires constant pool entries to be scattered among the instructions
90   /// inside a function.  To do this, it completely ignores the normal LLVM
91   /// constant pool; instead, it places constants wherever it feels like with
92   /// special instructions.
93   ///
94   /// The terminology used in this pass includes:
95   ///   Islands - Clumps of constants placed in the function.
96   ///   Water   - Potential places where an island could be formed.
97   ///   CPE     - A constant pool entry that has been placed somewhere, which
98   ///             tracks a list of users.
99   class ARMConstantIslands : public MachineFunctionPass {
100     std::vector<BasicBlockInfo> BBInfo;
101 
102     /// WaterList - A sorted list of basic blocks where islands could be placed
103     /// (i.e. blocks that don't fall through to the following block, due
104     /// to a return, unreachable, or unconditional branch).
105     std::vector<MachineBasicBlock*> WaterList;
106 
107     /// NewWaterList - The subset of WaterList that was created since the
108     /// previous iteration by inserting unconditional branches.
109     SmallSet<MachineBasicBlock*, 4> NewWaterList;
110 
111     using water_iterator = std::vector<MachineBasicBlock *>::iterator;
112 
113     /// CPUser - One user of a constant pool, keeping the machine instruction
114     /// pointer, the constant pool being referenced, and the max displacement
115     /// allowed from the instruction to the CP.  The HighWaterMark records the
116     /// highest basic block where a new CPEntry can be placed.  To ensure this
117     /// pass terminates, the CP entries are initially placed at the end of the
118     /// function and then move monotonically to lower addresses.  The
119     /// exception to this rule is when the current CP entry for a particular
120     /// CPUser is out of range, but there is another CP entry for the same
121     /// constant value in range.  We want to use the existing in-range CP
122     /// entry, but if it later moves out of range, the search for new water
123     /// should resume where it left off.  The HighWaterMark is used to record
124     /// that point.
125     struct CPUser {
126       MachineInstr *MI;
127       MachineInstr *CPEMI;
128       MachineBasicBlock *HighWaterMark;
129       unsigned MaxDisp;
130       bool NegOk;
131       bool IsSoImm;
132       bool KnownAlignment = false;
133 
134       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
135              bool neg, bool soimm)
136         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
137         HighWaterMark = CPEMI->getParent();
138       }
139 
140       /// getMaxDisp - Returns the maximum displacement supported by MI.
141       /// Correct for unknown alignment.
142       /// Conservatively subtract 2 bytes to handle weird alignment effects.
143       unsigned getMaxDisp() const {
144         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
145       }
146     };
147 
148     /// CPUsers - Keep track of all of the machine instructions that use various
149     /// constant pools and their max displacement.
150     std::vector<CPUser> CPUsers;
151 
152     /// CPEntry - One per constant pool entry, keeping the machine instruction
153     /// pointer, the constpool index, and the number of CPUser's which
154     /// reference this entry.
155     struct CPEntry {
156       MachineInstr *CPEMI;
157       unsigned CPI;
158       unsigned RefCount;
159 
160       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
161         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
162     };
163 
164     /// CPEntries - Keep track of all of the constant pool entry machine
165     /// instructions. For each original constpool index (i.e. those that existed
166     /// upon entry to this pass), it keeps a vector of entries.  Original
167     /// elements are cloned as we go along; the clones are put in the vector of
168     /// the original element, but have distinct CPIs.
169     ///
170     /// The first half of CPEntries contains generic constants, the second half
171     /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
172     /// which vector it will be in here.
173     std::vector<std::vector<CPEntry>> CPEntries;
174 
175     /// Maps a JT index to the offset in CPEntries containing copies of that
176     /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
177     DenseMap<int, int> JumpTableEntryIndices;
178 
179     /// Maps a JT index to the LEA that actually uses the index to calculate its
180     /// base address.
181     DenseMap<int, int> JumpTableUserIndices;
182 
183     /// ImmBranch - One per immediate branch, keeping the machine instruction
184     /// pointer, conditional or unconditional, the max displacement,
185     /// and (if isCond is true) the corresponding unconditional branch
186     /// opcode.
187     struct ImmBranch {
188       MachineInstr *MI;
189       unsigned MaxDisp : 31;
190       bool isCond : 1;
191       unsigned UncondBr;
192 
193       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
194         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
195     };
196 
197     /// ImmBranches - Keep track of all the immediate branch instructions.
198     std::vector<ImmBranch> ImmBranches;
199 
200     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
201     SmallVector<MachineInstr*, 4> PushPopMIs;
202 
203     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
204     SmallVector<MachineInstr*, 4> T2JumpTables;
205 
206     /// HasFarJump - True if any far jump instruction has been emitted during
207     /// the branch fix up pass.
208     bool HasFarJump;
209 
210     MachineFunction *MF;
211     MachineConstantPool *MCP;
212     const ARMBaseInstrInfo *TII;
213     const ARMSubtarget *STI;
214     ARMFunctionInfo *AFI;
215     bool isThumb;
216     bool isThumb1;
217     bool isThumb2;
218     bool isPositionIndependentOrROPI;
219 
220   public:
221     static char ID;
222 
223     ARMConstantIslands() : MachineFunctionPass(ID) {}
224 
225     bool runOnMachineFunction(MachineFunction &MF) override;
226 
227     MachineFunctionProperties getRequiredProperties() const override {
228       return MachineFunctionProperties().set(
229           MachineFunctionProperties::Property::NoVRegs);
230     }
231 
232     StringRef getPassName() const override {
233       return ARM_CP_ISLANDS_OPT_NAME;
234     }
235 
236   private:
237     void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
238     void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
239     bool BBHasFallthrough(MachineBasicBlock *MBB);
240     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
241     unsigned getCPELogAlign(const MachineInstr *CPEMI);
242     void scanFunctionJumpTables();
243     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
244     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
245     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
246     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
247     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
248     unsigned getCombinedIndex(const MachineInstr *CPEMI);
249     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
250     bool findAvailableWater(CPUser&U, unsigned UserOffset,
251                             water_iterator &WaterIter, bool CloserWater);
252     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
253                         MachineBasicBlock *&NewMBB);
254     bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
255     void removeDeadCPEMI(MachineInstr *CPEMI);
256     bool removeUnusedCPEntries();
257     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
258                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
259                           bool DoDump = false);
260     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
261                         CPUser &U, unsigned &Growth);
262     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
263     bool fixupImmediateBr(ImmBranch &Br);
264     bool fixupConditionalBr(ImmBranch &Br);
265     bool fixupUnconditionalBr(ImmBranch &Br);
266     bool undoLRSpillRestore();
267     bool optimizeThumb2Instructions();
268     bool optimizeThumb2Branches();
269     bool reorderThumb2JumpTables();
270     bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
271                               unsigned &DeadSize, bool &CanDeleteLEA,
272                               bool &BaseRegKill);
273     bool optimizeThumb2JumpTables();
274     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
275                                                   MachineBasicBlock *JTBB);
276 
277     unsigned getOffsetOf(MachineInstr *MI) const;
278     unsigned getUserOffset(CPUser&) const;
279     void dumpBBs();
280     void verify();
281 
282     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
283                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
284     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
285                          const CPUser &U) {
286       return isOffsetInRange(UserOffset, TrialOffset,
287                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
288     }
289   };
290 
291 } // end anonymous namespace
292 
293 char ARMConstantIslands::ID = 0;
294 
295 /// verify - check BBOffsets, BBSizes, alignment of islands
296 void ARMConstantIslands::verify() {
297 #ifndef NDEBUG
298   assert(std::is_sorted(MF->begin(), MF->end(),
299                         [this](const MachineBasicBlock &LHS,
300                                const MachineBasicBlock &RHS) {
301                           return BBInfo[LHS.getNumber()].postOffset() <
302                                  BBInfo[RHS.getNumber()].postOffset();
303                         }));
304   LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
305   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
306     CPUser &U = CPUsers[i];
307     unsigned UserOffset = getUserOffset(U);
308     // Verify offset using the real max displacement without the safety
309     // adjustment.
310     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
311                          /* DoDump = */ true)) {
312       LLVM_DEBUG(dbgs() << "OK\n");
313       continue;
314     }
315     LLVM_DEBUG(dbgs() << "Out of range.\n");
316     dumpBBs();
317     LLVM_DEBUG(MF->dump());
318     llvm_unreachable("Constant pool entry out of range!");
319   }
320 #endif
321 }
322 
323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
324 /// print block size and offset information - debugging
325 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
326   LLVM_DEBUG({
327     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
328       const BasicBlockInfo &BBI = BBInfo[J];
329       dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
330              << " kb=" << unsigned(BBI.KnownBits)
331              << " ua=" << unsigned(BBI.Unalign)
332              << " pa=" << unsigned(BBI.PostAlign)
333              << format(" size=%#x\n", BBInfo[J].Size);
334     }
335   });
336 }
337 #endif
338 
339 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
340   MF = &mf;
341   MCP = mf.getConstantPool();
342 
343   LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
344                     << MCP->getConstants().size() << " CP entries, aligned to "
345                     << MCP->getConstantPoolAlignment() << " bytes *****\n");
346 
347   STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
348   TII = STI->getInstrInfo();
349   isPositionIndependentOrROPI =
350       STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
351   AFI = MF->getInfo<ARMFunctionInfo>();
352 
353   isThumb = AFI->isThumbFunction();
354   isThumb1 = AFI->isThumb1OnlyFunction();
355   isThumb2 = AFI->isThumb2Function();
356 
357   HasFarJump = false;
358   bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
359 
360   // This pass invalidates liveness information when it splits basic blocks.
361   MF->getRegInfo().invalidateLiveness();
362 
363   // Renumber all of the machine basic blocks in the function, guaranteeing that
364   // the numbers agree with the position of the block in the function.
365   MF->RenumberBlocks();
366 
367   // Try to reorder and otherwise adjust the block layout to make good use
368   // of the TB[BH] instructions.
369   bool MadeChange = false;
370   if (GenerateTBB && AdjustJumpTableBlocks) {
371     scanFunctionJumpTables();
372     MadeChange |= reorderThumb2JumpTables();
373     // Data is out of date, so clear it. It'll be re-computed later.
374     T2JumpTables.clear();
375     // Blocks may have shifted around. Keep the numbering up to date.
376     MF->RenumberBlocks();
377   }
378 
379   // Perform the initial placement of the constant pool entries.  To start with,
380   // we put them all at the end of the function.
381   std::vector<MachineInstr*> CPEMIs;
382   if (!MCP->isEmpty())
383     doInitialConstPlacement(CPEMIs);
384 
385   if (MF->getJumpTableInfo())
386     doInitialJumpTablePlacement(CPEMIs);
387 
388   /// The next UID to take is the first unused one.
389   AFI->initPICLabelUId(CPEMIs.size());
390 
391   // Do the initial scan of the function, building up information about the
392   // sizes of each block, the location of all the water, and finding all of the
393   // constant pool users.
394   initializeFunctionInfo(CPEMIs);
395   CPEMIs.clear();
396   LLVM_DEBUG(dumpBBs());
397 
398   // Functions with jump tables need an alignment of 4 because they use the ADR
399   // instruction, which aligns the PC to 4 bytes before adding an offset.
400   if (!T2JumpTables.empty())
401     MF->ensureAlignment(2);
402 
403   /// Remove dead constant pool entries.
404   MadeChange |= removeUnusedCPEntries();
405 
406   // Iteratively place constant pool entries and fix up branches until there
407   // is no change.
408   unsigned NoCPIters = 0, NoBRIters = 0;
409   while (true) {
410     LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
411     bool CPChange = false;
412     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
413       // For most inputs, it converges in no more than 5 iterations.
414       // If it doesn't end in 10, the input may have huge BB or many CPEs.
415       // In this case, we will try different heuristics.
416       CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
417     if (CPChange && ++NoCPIters > CPMaxIteration)
418       report_fatal_error("Constant Island pass failed to converge!");
419     LLVM_DEBUG(dumpBBs());
420 
421     // Clear NewWaterList now.  If we split a block for branches, it should
422     // appear as "new water" for the next iteration of constant pool placement.
423     NewWaterList.clear();
424 
425     LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
426     bool BRChange = false;
427     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
428       BRChange |= fixupImmediateBr(ImmBranches[i]);
429     if (BRChange && ++NoBRIters > 30)
430       report_fatal_error("Branch Fix Up pass failed to converge!");
431     LLVM_DEBUG(dumpBBs());
432 
433     if (!CPChange && !BRChange)
434       break;
435     MadeChange = true;
436   }
437 
438   // Shrink 32-bit Thumb2 load and store instructions.
439   if (isThumb2 && !STI->prefers32BitThumb())
440     MadeChange |= optimizeThumb2Instructions();
441 
442   // Shrink 32-bit branch instructions.
443   if (isThumb && STI->hasV8MBaselineOps())
444     MadeChange |= optimizeThumb2Branches();
445 
446   // Optimize jump tables using TBB / TBH.
447   if (GenerateTBB && !STI->genExecuteOnly())
448     MadeChange |= optimizeThumb2JumpTables();
449 
450   // After a while, this might be made debug-only, but it is not expensive.
451   verify();
452 
453   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
454   // undo the spill / restore of LR if possible.
455   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
456     MadeChange |= undoLRSpillRestore();
457 
458   // Save the mapping between original and cloned constpool entries.
459   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
460     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
461       const CPEntry & CPE = CPEntries[i][j];
462       if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
463         AFI->recordCPEClone(i, CPE.CPI);
464     }
465   }
466 
467   LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
468 
469   BBInfo.clear();
470   WaterList.clear();
471   CPUsers.clear();
472   CPEntries.clear();
473   JumpTableEntryIndices.clear();
474   JumpTableUserIndices.clear();
475   ImmBranches.clear();
476   PushPopMIs.clear();
477   T2JumpTables.clear();
478 
479   return MadeChange;
480 }
481 
482 /// Perform the initial placement of the regular constant pool entries.
483 /// To start with, we put them all at the end of the function.
484 void
485 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
486   // Create the basic block to hold the CPE's.
487   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
488   MF->push_back(BB);
489 
490   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
491   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
492 
493   // Mark the basic block as required by the const-pool.
494   BB->setAlignment(MaxAlign);
495 
496   // The function needs to be as aligned as the basic blocks. The linker may
497   // move functions around based on their alignment.
498   MF->ensureAlignment(BB->getAlignment());
499 
500   // Order the entries in BB by descending alignment.  That ensures correct
501   // alignment of all entries as long as BB is sufficiently aligned.  Keep
502   // track of the insertion point for each alignment.  We are going to bucket
503   // sort the entries as they are created.
504   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
505 
506   // Add all of the constants from the constant pool to the end block, use an
507   // identity mapping of CPI's to CPE's.
508   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
509 
510   const DataLayout &TD = MF->getDataLayout();
511   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
512     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
513     unsigned Align = CPs[i].getAlignment();
514     assert(isPowerOf2_32(Align) && "Invalid alignment");
515     // Verify that all constant pool entries are a multiple of their alignment.
516     // If not, we would have to pad them out so that instructions stay aligned.
517     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
518 
519     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
520     unsigned LogAlign = Log2_32(Align);
521     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
522     MachineInstr *CPEMI =
523       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
524         .addImm(i).addConstantPoolIndex(i).addImm(Size);
525     CPEMIs.push_back(CPEMI);
526 
527     // Ensure that future entries with higher alignment get inserted before
528     // CPEMI. This is bucket sort with iterators.
529     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
530       if (InsPoint[a] == InsAt)
531         InsPoint[a] = CPEMI;
532 
533     // Add a new CPEntry, but no corresponding CPUser yet.
534     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
535     ++NumCPEs;
536     LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
537                       << Size << ", align = " << Align << '\n');
538   }
539   LLVM_DEBUG(BB->dump());
540 }
541 
542 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
543 /// instructions can be made more efficient if the jump table immediately
544 /// follows the instruction, it's best to place them immediately next to their
545 /// jumps to begin with. In almost all cases they'll never be moved from that
546 /// position.
547 void ARMConstantIslands::doInitialJumpTablePlacement(
548     std::vector<MachineInstr *> &CPEMIs) {
549   unsigned i = CPEntries.size();
550   auto MJTI = MF->getJumpTableInfo();
551   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
552 
553   MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
554   for (MachineBasicBlock &MBB : *MF) {
555     auto MI = MBB.getLastNonDebugInstr();
556     if (MI == MBB.end())
557       continue;
558 
559     unsigned JTOpcode;
560     switch (MI->getOpcode()) {
561     default:
562       continue;
563     case ARM::BR_JTadd:
564     case ARM::BR_JTr:
565     case ARM::tBR_JTr:
566     case ARM::BR_JTm_i12:
567     case ARM::BR_JTm_rs:
568       JTOpcode = ARM::JUMPTABLE_ADDRS;
569       break;
570     case ARM::t2BR_JT:
571       JTOpcode = ARM::JUMPTABLE_INSTS;
572       break;
573     case ARM::tTBB_JT:
574     case ARM::t2TBB_JT:
575       JTOpcode = ARM::JUMPTABLE_TBB;
576       break;
577     case ARM::tTBH_JT:
578     case ARM::t2TBH_JT:
579       JTOpcode = ARM::JUMPTABLE_TBH;
580       break;
581     }
582 
583     unsigned NumOps = MI->getDesc().getNumOperands();
584     MachineOperand JTOp =
585       MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
586     unsigned JTI = JTOp.getIndex();
587     unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
588     MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
589     MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
590     MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
591                                   DebugLoc(), TII->get(JTOpcode))
592                               .addImm(i++)
593                               .addJumpTableIndex(JTI)
594                               .addImm(Size);
595     CPEMIs.push_back(CPEMI);
596     CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
597     JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
598     if (!LastCorrectlyNumberedBB)
599       LastCorrectlyNumberedBB = &MBB;
600   }
601 
602   // If we did anything then we need to renumber the subsequent blocks.
603   if (LastCorrectlyNumberedBB)
604     MF->RenumberBlocks(LastCorrectlyNumberedBB);
605 }
606 
607 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
608 /// into the block immediately after it.
609 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
610   // Get the next machine basic block in the function.
611   MachineFunction::iterator MBBI = MBB->getIterator();
612   // Can't fall off end of function.
613   if (std::next(MBBI) == MBB->getParent()->end())
614     return false;
615 
616   MachineBasicBlock *NextBB = &*std::next(MBBI);
617   if (!MBB->isSuccessor(NextBB))
618     return false;
619 
620   // Try to analyze the end of the block. A potential fallthrough may already
621   // have an unconditional branch for whatever reason.
622   MachineBasicBlock *TBB, *FBB;
623   SmallVector<MachineOperand, 4> Cond;
624   bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
625   return TooDifficult || FBB == nullptr;
626 }
627 
628 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
629 /// look up the corresponding CPEntry.
630 ARMConstantIslands::CPEntry *
631 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
632                                        const MachineInstr *CPEMI) {
633   std::vector<CPEntry> &CPEs = CPEntries[CPI];
634   // Number of entries per constpool index should be small, just do a
635   // linear search.
636   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
637     if (CPEs[i].CPEMI == CPEMI)
638       return &CPEs[i];
639   }
640   return nullptr;
641 }
642 
643 /// getCPELogAlign - Returns the required alignment of the constant pool entry
644 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
645 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
646   switch (CPEMI->getOpcode()) {
647   case ARM::CONSTPOOL_ENTRY:
648     break;
649   case ARM::JUMPTABLE_TBB:
650     return isThumb1 ? 2 : 0;
651   case ARM::JUMPTABLE_TBH:
652     return isThumb1 ? 2 : 1;
653   case ARM::JUMPTABLE_INSTS:
654     return 1;
655   case ARM::JUMPTABLE_ADDRS:
656     return 2;
657   default:
658     llvm_unreachable("unknown constpool entry kind");
659   }
660 
661   unsigned CPI = getCombinedIndex(CPEMI);
662   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
663   unsigned Align = MCP->getConstants()[CPI].getAlignment();
664   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
665   return Log2_32(Align);
666 }
667 
668 /// scanFunctionJumpTables - Do a scan of the function, building up
669 /// information about the sizes of each block and the locations of all
670 /// the jump tables.
671 void ARMConstantIslands::scanFunctionJumpTables() {
672   for (MachineBasicBlock &MBB : *MF) {
673     for (MachineInstr &I : MBB)
674       if (I.isBranch() &&
675           (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
676         T2JumpTables.push_back(&I);
677   }
678 }
679 
680 /// initializeFunctionInfo - Do the initial scan of the function, building up
681 /// information about the sizes of each block, the location of all the water,
682 /// and finding all of the constant pool users.
683 void ARMConstantIslands::
684 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
685 
686   BBInfo = computeAllBlockSizes(MF);
687 
688   // The known bits of the entry block offset are determined by the function
689   // alignment.
690   BBInfo.front().KnownBits = MF->getAlignment();
691 
692   // Compute block offsets and known bits.
693   adjustBBOffsetsAfter(&MF->front());
694 
695   // Now go back through the instructions and build up our data structures.
696   for (MachineBasicBlock &MBB : *MF) {
697     // If this block doesn't fall through into the next MBB, then this is
698     // 'water' that a constant pool island could be placed.
699     if (!BBHasFallthrough(&MBB))
700       WaterList.push_back(&MBB);
701 
702     for (MachineInstr &I : MBB) {
703       if (I.isDebugInstr())
704         continue;
705 
706       unsigned Opc = I.getOpcode();
707       if (I.isBranch()) {
708         bool isCond = false;
709         unsigned Bits = 0;
710         unsigned Scale = 1;
711         int UOpc = Opc;
712         switch (Opc) {
713         default:
714           continue;  // Ignore other JT branches
715         case ARM::t2BR_JT:
716         case ARM::tBR_JTr:
717           T2JumpTables.push_back(&I);
718           continue;   // Does not get an entry in ImmBranches
719         case ARM::Bcc:
720           isCond = true;
721           UOpc = ARM::B;
722           LLVM_FALLTHROUGH;
723         case ARM::B:
724           Bits = 24;
725           Scale = 4;
726           break;
727         case ARM::tBcc:
728           isCond = true;
729           UOpc = ARM::tB;
730           Bits = 8;
731           Scale = 2;
732           break;
733         case ARM::tB:
734           Bits = 11;
735           Scale = 2;
736           break;
737         case ARM::t2Bcc:
738           isCond = true;
739           UOpc = ARM::t2B;
740           Bits = 20;
741           Scale = 2;
742           break;
743         case ARM::t2B:
744           Bits = 24;
745           Scale = 2;
746           break;
747         }
748 
749         // Record this immediate branch.
750         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
751         ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
752       }
753 
754       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
755         PushPopMIs.push_back(&I);
756 
757       if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
758           Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
759           Opc == ARM::JUMPTABLE_TBH)
760         continue;
761 
762       // Scan the instructions for constant pool operands.
763       for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
764         if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
765           // We found one.  The addressing mode tells us the max displacement
766           // from the PC that this instruction permits.
767 
768           // Basic size info comes from the TSFlags field.
769           unsigned Bits = 0;
770           unsigned Scale = 1;
771           bool NegOk = false;
772           bool IsSoImm = false;
773 
774           switch (Opc) {
775           default:
776             llvm_unreachable("Unknown addressing mode for CP reference!");
777 
778           // Taking the address of a CP entry.
779           case ARM::LEApcrel:
780           case ARM::LEApcrelJT:
781             // This takes a SoImm, which is 8 bit immediate rotated. We'll
782             // pretend the maximum offset is 255 * 4. Since each instruction
783             // 4 byte wide, this is always correct. We'll check for other
784             // displacements that fits in a SoImm as well.
785             Bits = 8;
786             Scale = 4;
787             NegOk = true;
788             IsSoImm = true;
789             break;
790           case ARM::t2LEApcrel:
791           case ARM::t2LEApcrelJT:
792             Bits = 12;
793             NegOk = true;
794             break;
795           case ARM::tLEApcrel:
796           case ARM::tLEApcrelJT:
797             Bits = 8;
798             Scale = 4;
799             break;
800 
801           case ARM::LDRBi12:
802           case ARM::LDRi12:
803           case ARM::LDRcp:
804           case ARM::t2LDRpci:
805           case ARM::t2LDRHpci:
806           case ARM::t2LDRBpci:
807             Bits = 12;  // +-offset_12
808             NegOk = true;
809             break;
810 
811           case ARM::tLDRpci:
812             Bits = 8;
813             Scale = 4;  // +(offset_8*4)
814             break;
815 
816           case ARM::VLDRD:
817           case ARM::VLDRS:
818             Bits = 8;
819             Scale = 4;  // +-(offset_8*4)
820             NegOk = true;
821             break;
822           case ARM::VLDRH:
823             Bits = 8;
824             Scale = 2;  // +-(offset_8*2)
825             NegOk = true;
826             break;
827 
828           case ARM::tLDRHi:
829             Bits = 5;
830             Scale = 2; // +(offset_5*2)
831             break;
832           }
833 
834           // Remember that this is a user of a CP entry.
835           unsigned CPI = I.getOperand(op).getIndex();
836           if (I.getOperand(op).isJTI()) {
837             JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
838             CPI = JumpTableEntryIndices[CPI];
839           }
840 
841           MachineInstr *CPEMI = CPEMIs[CPI];
842           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
843           CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
844 
845           // Increment corresponding CPEntry reference count.
846           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
847           assert(CPE && "Cannot find a corresponding CPEntry!");
848           CPE->RefCount++;
849 
850           // Instructions can only use one CP entry, don't bother scanning the
851           // rest of the operands.
852           break;
853         }
854     }
855   }
856 }
857 
858 /// getOffsetOf - Return the current offset of the specified machine instruction
859 /// from the start of the function.  This offset changes as stuff is moved
860 /// around inside the function.
861 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
862   MachineBasicBlock *MBB = MI->getParent();
863 
864   // The offset is composed of two things: the sum of the sizes of all MBB's
865   // before this instruction's block, and the offset from the start of the block
866   // it is in.
867   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
868 
869   // Sum instructions before MI in MBB.
870   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
871     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
872     Offset += TII->getInstSizeInBytes(*I);
873   }
874   return Offset;
875 }
876 
877 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
878 /// ID.
879 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
880                               const MachineBasicBlock *RHS) {
881   return LHS->getNumber() < RHS->getNumber();
882 }
883 
884 /// updateForInsertedWaterBlock - When a block is newly inserted into the
885 /// machine function, it upsets all of the block numbers.  Renumber the blocks
886 /// and update the arrays that parallel this numbering.
887 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
888   // Renumber the MBB's to keep them consecutive.
889   NewBB->getParent()->RenumberBlocks(NewBB);
890 
891   // Insert an entry into BBInfo to align it properly with the (newly
892   // renumbered) block numbers.
893   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
894 
895   // Next, update WaterList.  Specifically, we need to add NewMBB as having
896   // available water after it.
897   water_iterator IP =
898     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
899                      CompareMBBNumbers);
900   WaterList.insert(IP, NewBB);
901 }
902 
903 /// Split the basic block containing MI into two blocks, which are joined by
904 /// an unconditional branch.  Update data structures and renumber blocks to
905 /// account for this change and returns the newly created block.
906 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
907   MachineBasicBlock *OrigBB = MI->getParent();
908 
909   // Create a new MBB for the code after the OrigBB.
910   MachineBasicBlock *NewBB =
911     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
912   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
913   MF->insert(MBBI, NewBB);
914 
915   // Splice the instructions starting with MI over to NewBB.
916   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
917 
918   // Add an unconditional branch from OrigBB to NewBB.
919   // Note the new unconditional branch is not being recorded.
920   // There doesn't seem to be meaningful DebugInfo available; this doesn't
921   // correspond to anything in the source.
922   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
923   if (!isThumb)
924     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
925   else
926     BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
927         .addMBB(NewBB)
928         .add(predOps(ARMCC::AL));
929   ++NumSplit;
930 
931   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
932   NewBB->transferSuccessors(OrigBB);
933 
934   // OrigBB branches to NewBB.
935   OrigBB->addSuccessor(NewBB);
936 
937   // Update internal data structures to account for the newly inserted MBB.
938   // This is almost the same as updateForInsertedWaterBlock, except that
939   // the Water goes after OrigBB, not NewBB.
940   MF->RenumberBlocks(NewBB);
941 
942   // Insert an entry into BBInfo to align it properly with the (newly
943   // renumbered) block numbers.
944   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
945 
946   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
947   // available water after it (but not if it's already there, which happens
948   // when splitting before a conditional branch that is followed by an
949   // unconditional branch - in that case we want to insert NewBB).
950   water_iterator IP =
951     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
952                      CompareMBBNumbers);
953   MachineBasicBlock* WaterBB = *IP;
954   if (WaterBB == OrigBB)
955     WaterList.insert(std::next(IP), NewBB);
956   else
957     WaterList.insert(IP, OrigBB);
958   NewWaterList.insert(OrigBB);
959 
960   // Figure out how large the OrigBB is.  As the first half of the original
961   // block, it cannot contain a tablejump.  The size includes
962   // the new jump we added.  (It should be possible to do this without
963   // recounting everything, but it's very confusing, and this is rarely
964   // executed.)
965   computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]);
966 
967   // Figure out how large the NewMBB is.  As the second half of the original
968   // block, it may contain a tablejump.
969   computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]);
970 
971   // All BBOffsets following these blocks must be modified.
972   adjustBBOffsetsAfter(OrigBB);
973 
974   return NewBB;
975 }
976 
977 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
978 /// displacement computation.  Update U.KnownAlignment to match its current
979 /// basic block location.
980 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
981   unsigned UserOffset = getOffsetOf(U.MI);
982   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
983   unsigned KnownBits = BBI.internalKnownBits();
984 
985   // The value read from PC is offset from the actual instruction address.
986   UserOffset += (isThumb ? 4 : 8);
987 
988   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
989   // Make sure U.getMaxDisp() returns a constrained range.
990   U.KnownAlignment = (KnownBits >= 2);
991 
992   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
993   // purposes of the displacement computation; compensate for that here.
994   // For unknown alignments, getMaxDisp() constrains the range instead.
995   if (isThumb && U.KnownAlignment)
996     UserOffset &= ~3u;
997 
998   return UserOffset;
999 }
1000 
1001 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1002 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1003 /// constant pool entry).
1004 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1005 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1006 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1007 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1008                                          unsigned TrialOffset, unsigned MaxDisp,
1009                                          bool NegativeOK, bool IsSoImm) {
1010   if (UserOffset <= TrialOffset) {
1011     // User before the Trial.
1012     if (TrialOffset - UserOffset <= MaxDisp)
1013       return true;
1014     // FIXME: Make use full range of soimm values.
1015   } else if (NegativeOK) {
1016     if (UserOffset - TrialOffset <= MaxDisp)
1017       return true;
1018     // FIXME: Make use full range of soimm values.
1019   }
1020   return false;
1021 }
1022 
1023 /// isWaterInRange - Returns true if a CPE placed after the specified
1024 /// Water (a basic block) will be in range for the specific MI.
1025 ///
1026 /// Compute how much the function will grow by inserting a CPE after Water.
1027 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1028                                         MachineBasicBlock* Water, CPUser &U,
1029                                         unsigned &Growth) {
1030   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
1031   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
1032   unsigned NextBlockOffset, NextBlockAlignment;
1033   MachineFunction::const_iterator NextBlock = Water->getIterator();
1034   if (++NextBlock == MF->end()) {
1035     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1036     NextBlockAlignment = 0;
1037   } else {
1038     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1039     NextBlockAlignment = NextBlock->getAlignment();
1040   }
1041   unsigned Size = U.CPEMI->getOperand(2).getImm();
1042   unsigned CPEEnd = CPEOffset + Size;
1043 
1044   // The CPE may be able to hide in the alignment padding before the next
1045   // block. It may also cause more padding to be required if it is more aligned
1046   // that the next block.
1047   if (CPEEnd > NextBlockOffset) {
1048     Growth = CPEEnd - NextBlockOffset;
1049     // Compute the padding that would go at the end of the CPE to align the next
1050     // block.
1051     Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment);
1052 
1053     // If the CPE is to be inserted before the instruction, that will raise
1054     // the offset of the instruction. Also account for unknown alignment padding
1055     // in blocks between CPE and the user.
1056     if (CPEOffset < UserOffset)
1057       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
1058   } else
1059     // CPE fits in existing padding.
1060     Growth = 0;
1061 
1062   return isOffsetInRange(UserOffset, CPEOffset, U);
1063 }
1064 
1065 /// isCPEntryInRange - Returns true if the distance between specific MI and
1066 /// specific ConstPool entry instruction can fit in MI's displacement field.
1067 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1068                                       MachineInstr *CPEMI, unsigned MaxDisp,
1069                                       bool NegOk, bool DoDump) {
1070   unsigned CPEOffset  = getOffsetOf(CPEMI);
1071 
1072   if (DoDump) {
1073     LLVM_DEBUG({
1074       unsigned Block = MI->getParent()->getNumber();
1075       const BasicBlockInfo &BBI = BBInfo[Block];
1076       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1077              << " max delta=" << MaxDisp
1078              << format(" insn address=%#x", UserOffset) << " in "
1079              << printMBBReference(*MI->getParent()) << ": "
1080              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1081              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1082                        int(CPEOffset - UserOffset));
1083     });
1084   }
1085 
1086   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1087 }
1088 
1089 #ifndef NDEBUG
1090 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1091 /// unconditionally branches to its only successor.
1092 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1093   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1094     return false;
1095 
1096   MachineBasicBlock *Succ = *MBB->succ_begin();
1097   MachineBasicBlock *Pred = *MBB->pred_begin();
1098   MachineInstr *PredMI = &Pred->back();
1099   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1100       || PredMI->getOpcode() == ARM::t2B)
1101     return PredMI->getOperand(0).getMBB() == Succ;
1102   return false;
1103 }
1104 #endif // NDEBUG
1105 
1106 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1107   unsigned BBNum = BB->getNumber();
1108   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1109     // Get the offset and known bits at the end of the layout predecessor.
1110     // Include the alignment of the current block.
1111     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
1112     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
1113     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
1114 
1115     // This is where block i begins.  Stop if the offset is already correct,
1116     // and we have updated 2 blocks.  This is the maximum number of blocks
1117     // changed before calling this function.
1118     if (i > BBNum + 2 &&
1119         BBInfo[i].Offset == Offset &&
1120         BBInfo[i].KnownBits == KnownBits)
1121       break;
1122 
1123     BBInfo[i].Offset = Offset;
1124     BBInfo[i].KnownBits = KnownBits;
1125   }
1126 }
1127 
1128 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1129 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1130 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1131 /// the entry, false if we didn't.
1132 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1133                                                     MachineInstr *CPEMI) {
1134   // Find the old entry. Eliminate it if it is no longer used.
1135   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1136   assert(CPE && "Unexpected!");
1137   if (--CPE->RefCount == 0) {
1138     removeDeadCPEMI(CPEMI);
1139     CPE->CPEMI = nullptr;
1140     --NumCPEs;
1141     return true;
1142   }
1143   return false;
1144 }
1145 
1146 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1147   if (CPEMI->getOperand(1).isCPI())
1148     return CPEMI->getOperand(1).getIndex();
1149 
1150   return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1151 }
1152 
1153 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1154 /// if not, see if an in-range clone of the CPE is in range, and if so,
1155 /// change the data structures so the user references the clone.  Returns:
1156 /// 0 = no existing entry found
1157 /// 1 = entry found, and there were no code insertions or deletions
1158 /// 2 = entry found, and there were code insertions or deletions
1159 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1160   MachineInstr *UserMI = U.MI;
1161   MachineInstr *CPEMI  = U.CPEMI;
1162 
1163   // Check to see if the CPE is already in-range.
1164   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1165                        true)) {
1166     LLVM_DEBUG(dbgs() << "In range\n");
1167     return 1;
1168   }
1169 
1170   // No.  Look for previously created clones of the CPE that are in range.
1171   unsigned CPI = getCombinedIndex(CPEMI);
1172   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1173   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1174     // We already tried this one
1175     if (CPEs[i].CPEMI == CPEMI)
1176       continue;
1177     // Removing CPEs can leave empty entries, skip
1178     if (CPEs[i].CPEMI == nullptr)
1179       continue;
1180     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1181                      U.NegOk)) {
1182       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1183                         << CPEs[i].CPI << "\n");
1184       // Point the CPUser node to the replacement
1185       U.CPEMI = CPEs[i].CPEMI;
1186       // Change the CPI in the instruction operand to refer to the clone.
1187       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1188         if (UserMI->getOperand(j).isCPI()) {
1189           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1190           break;
1191         }
1192       // Adjust the refcount of the clone...
1193       CPEs[i].RefCount++;
1194       // ...and the original.  If we didn't remove the old entry, none of the
1195       // addresses changed, so we don't need another pass.
1196       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1197     }
1198   }
1199   return 0;
1200 }
1201 
1202 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1203 /// the specific unconditional branch instruction.
1204 static inline unsigned getUnconditionalBrDisp(int Opc) {
1205   switch (Opc) {
1206   case ARM::tB:
1207     return ((1<<10)-1)*2;
1208   case ARM::t2B:
1209     return ((1<<23)-1)*2;
1210   default:
1211     break;
1212   }
1213 
1214   return ((1<<23)-1)*4;
1215 }
1216 
1217 /// findAvailableWater - Look for an existing entry in the WaterList in which
1218 /// we can place the CPE referenced from U so it's within range of U's MI.
1219 /// Returns true if found, false if not.  If it returns true, WaterIter
1220 /// is set to the WaterList entry.  For Thumb, prefer water that will not
1221 /// introduce padding to water that will.  To ensure that this pass
1222 /// terminates, the CPE location for a particular CPUser is only allowed to
1223 /// move to a lower address, so search backward from the end of the list and
1224 /// prefer the first water that is in range.
1225 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1226                                             water_iterator &WaterIter,
1227                                             bool CloserWater) {
1228   if (WaterList.empty())
1229     return false;
1230 
1231   unsigned BestGrowth = ~0u;
1232   // The nearest water without splitting the UserBB is right after it.
1233   // If the distance is still large (we have a big BB), then we need to split it
1234   // if we don't converge after certain iterations. This helps the following
1235   // situation to converge:
1236   //   BB0:
1237   //      Big BB
1238   //   BB1:
1239   //      Constant Pool
1240   // When a CP access is out of range, BB0 may be used as water. However,
1241   // inserting islands between BB0 and BB1 makes other accesses out of range.
1242   MachineBasicBlock *UserBB = U.MI->getParent();
1243   unsigned MinNoSplitDisp =
1244       BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI));
1245   if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1246     return false;
1247   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1248        --IP) {
1249     MachineBasicBlock* WaterBB = *IP;
1250     // Check if water is in range and is either at a lower address than the
1251     // current "high water mark" or a new water block that was created since
1252     // the previous iteration by inserting an unconditional branch.  In the
1253     // latter case, we want to allow resetting the high water mark back to
1254     // this new water since we haven't seen it before.  Inserting branches
1255     // should be relatively uncommon and when it does happen, we want to be
1256     // sure to take advantage of it for all the CPEs near that block, so that
1257     // we don't insert more branches than necessary.
1258     // When CloserWater is true, we try to find the lowest address after (or
1259     // equal to) user MI's BB no matter of padding growth.
1260     unsigned Growth;
1261     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1262         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1263          NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1264         Growth < BestGrowth) {
1265       // This is the least amount of required padding seen so far.
1266       BestGrowth = Growth;
1267       WaterIter = IP;
1268       LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1269                         << " Growth=" << Growth << '\n');
1270 
1271       if (CloserWater && WaterBB == U.MI->getParent())
1272         return true;
1273       // Keep looking unless it is perfect and we're not looking for the lowest
1274       // possible address.
1275       if (!CloserWater && BestGrowth == 0)
1276         return true;
1277     }
1278     if (IP == B)
1279       break;
1280   }
1281   return BestGrowth != ~0u;
1282 }
1283 
1284 /// createNewWater - No existing WaterList entry will work for
1285 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1286 /// block is used if in range, and the conditional branch munged so control
1287 /// flow is correct.  Otherwise the block is split to create a hole with an
1288 /// unconditional branch around it.  In either case NewMBB is set to a
1289 /// block following which the new island can be inserted (the WaterList
1290 /// is not adjusted).
1291 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1292                                         unsigned UserOffset,
1293                                         MachineBasicBlock *&NewMBB) {
1294   CPUser &U = CPUsers[CPUserIndex];
1295   MachineInstr *UserMI = U.MI;
1296   MachineInstr *CPEMI  = U.CPEMI;
1297   unsigned CPELogAlign = getCPELogAlign(CPEMI);
1298   MachineBasicBlock *UserMBB = UserMI->getParent();
1299   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1300 
1301   // If the block does not end in an unconditional branch already, and if the
1302   // end of the block is within range, make new water there.  (The addition
1303   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1304   // Thumb2, 2 on Thumb1.
1305   if (BBHasFallthrough(UserMBB)) {
1306     // Size of branch to insert.
1307     unsigned Delta = isThumb1 ? 2 : 4;
1308     // Compute the offset where the CPE will begin.
1309     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1310 
1311     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1312       LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1313                         << format(", expected CPE offset %#x\n", CPEOffset));
1314       NewMBB = &*++UserMBB->getIterator();
1315       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1316       // it for branch lengthening; this new branch will not get out of range,
1317       // but if the preceding conditional branch is out of range, the targets
1318       // will be exchanged, and the altered branch may be out of range, so the
1319       // machinery has to know about it.
1320       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1321       if (!isThumb)
1322         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1323       else
1324         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1325             .addMBB(NewMBB)
1326             .add(predOps(ARMCC::AL));
1327       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1328       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1329                                       MaxDisp, false, UncondBr));
1330       computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]);
1331       adjustBBOffsetsAfter(UserMBB);
1332       return;
1333     }
1334   }
1335 
1336   // What a big block.  Find a place within the block to split it.  This is a
1337   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1338   // entries are 4 bytes: if instruction I references island CPE, and
1339   // instruction I+1 references CPE', it will not work well to put CPE as far
1340   // forward as possible, since then CPE' cannot immediately follow it (that
1341   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1342   // need to create a new island.  So, we make a first guess, then walk through
1343   // the instructions between the one currently being looked at and the
1344   // possible insertion point, and make sure any other instructions that
1345   // reference CPEs will be able to use the same island area; if not, we back
1346   // up the insertion point.
1347 
1348   // Try to split the block so it's fully aligned.  Compute the latest split
1349   // point where we can add a 4-byte branch instruction, and then align to
1350   // LogAlign which is the largest possible alignment in the function.
1351   unsigned LogAlign = MF->getAlignment();
1352   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1353   unsigned KnownBits = UserBBI.internalKnownBits();
1354   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1355   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1356   LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1357                               BaseInsertOffset));
1358 
1359   // The 4 in the following is for the unconditional branch we'll be inserting
1360   // (allows for long branch on Thumb1).  Alignment of the island is handled
1361   // inside isOffsetInRange.
1362   BaseInsertOffset -= 4;
1363 
1364   LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1365                     << " la=" << LogAlign << " kb=" << KnownBits
1366                     << " up=" << UPad << '\n');
1367 
1368   // This could point off the end of the block if we've already got constant
1369   // pool entries following this block; only the last one is in the water list.
1370   // Back past any possible branches (allow for a conditional and a maximally
1371   // long unconditional).
1372   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1373     // Ensure BaseInsertOffset is larger than the offset of the instruction
1374     // following UserMI so that the loop which searches for the split point
1375     // iterates at least once.
1376     BaseInsertOffset =
1377         std::max(UserBBI.postOffset() - UPad - 8,
1378                  UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1379     LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1380   }
1381   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1382     CPEMI->getOperand(2).getImm();
1383   MachineBasicBlock::iterator MI = UserMI;
1384   ++MI;
1385   unsigned CPUIndex = CPUserIndex+1;
1386   unsigned NumCPUsers = CPUsers.size();
1387   MachineInstr *LastIT = nullptr;
1388   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1389        Offset < BaseInsertOffset;
1390        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1391     assert(MI != UserMBB->end() && "Fell off end of block");
1392     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1393       CPUser &U = CPUsers[CPUIndex];
1394       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1395         // Shift intertion point by one unit of alignment so it is within reach.
1396         BaseInsertOffset -= 1u << LogAlign;
1397         EndInsertOffset  -= 1u << LogAlign;
1398       }
1399       // This is overly conservative, as we don't account for CPEMIs being
1400       // reused within the block, but it doesn't matter much.  Also assume CPEs
1401       // are added in order with alignment padding.  We may eventually be able
1402       // to pack the aligned CPEs better.
1403       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1404       CPUIndex++;
1405     }
1406 
1407     // Remember the last IT instruction.
1408     if (MI->getOpcode() == ARM::t2IT)
1409       LastIT = &*MI;
1410   }
1411 
1412   --MI;
1413 
1414   // Avoid splitting an IT block.
1415   if (LastIT) {
1416     unsigned PredReg = 0;
1417     ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1418     if (CC != ARMCC::AL)
1419       MI = LastIT;
1420   }
1421 
1422   // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1423   // On Windows, this instruction pair is covered by one single
1424   // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1425   // constant island is injected inbetween them, the relocation will clobber
1426   // the instruction and fail to update the MOVT instruction.
1427   // (These instructions are bundled up until right before the ConstantIslands
1428   // pass.)
1429   if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1430       (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1431           ARMII::MO_HI16) {
1432     --MI;
1433     assert(MI->getOpcode() == ARM::t2MOVi16 &&
1434            (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1435                ARMII::MO_LO16);
1436   }
1437 
1438   // We really must not split an IT block.
1439   LLVM_DEBUG(unsigned PredReg; assert(
1440                  !isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL));
1441 
1442   NewMBB = splitBlockBeforeInstr(&*MI);
1443 }
1444 
1445 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1446 /// is out-of-range.  If so, pick up the constant pool value and move it some
1447 /// place in-range.  Return true if we changed any addresses (thus must run
1448 /// another pass of branch lengthening), false otherwise.
1449 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1450                                                 bool CloserWater) {
1451   CPUser &U = CPUsers[CPUserIndex];
1452   MachineInstr *UserMI = U.MI;
1453   MachineInstr *CPEMI  = U.CPEMI;
1454   unsigned CPI = getCombinedIndex(CPEMI);
1455   unsigned Size = CPEMI->getOperand(2).getImm();
1456   // Compute this only once, it's expensive.
1457   unsigned UserOffset = getUserOffset(U);
1458 
1459   // See if the current entry is within range, or there is a clone of it
1460   // in range.
1461   int result = findInRangeCPEntry(U, UserOffset);
1462   if (result==1) return false;
1463   else if (result==2) return true;
1464 
1465   // No existing clone of this CPE is within range.
1466   // We will be generating a new clone.  Get a UID for it.
1467   unsigned ID = AFI->createPICLabelUId();
1468 
1469   // Look for water where we can place this CPE.
1470   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1471   MachineBasicBlock *NewMBB;
1472   water_iterator IP;
1473   if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1474     LLVM_DEBUG(dbgs() << "Found water in range\n");
1475     MachineBasicBlock *WaterBB = *IP;
1476 
1477     // If the original WaterList entry was "new water" on this iteration,
1478     // propagate that to the new island.  This is just keeping NewWaterList
1479     // updated to match the WaterList, which will be updated below.
1480     if (NewWaterList.erase(WaterBB))
1481       NewWaterList.insert(NewIsland);
1482 
1483     // The new CPE goes before the following block (NewMBB).
1484     NewMBB = &*++WaterBB->getIterator();
1485   } else {
1486     // No water found.
1487     LLVM_DEBUG(dbgs() << "No water found\n");
1488     createNewWater(CPUserIndex, UserOffset, NewMBB);
1489 
1490     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1491     // called while handling branches so that the water will be seen on the
1492     // next iteration for constant pools, but in this context, we don't want
1493     // it.  Check for this so it will be removed from the WaterList.
1494     // Also remove any entry from NewWaterList.
1495     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1496     IP = find(WaterList, WaterBB);
1497     if (IP != WaterList.end())
1498       NewWaterList.erase(WaterBB);
1499 
1500     // We are adding new water.  Update NewWaterList.
1501     NewWaterList.insert(NewIsland);
1502   }
1503   // Always align the new block because CP entries can be smaller than 4
1504   // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1505   // be an already aligned constant pool block.
1506   const unsigned Align = isThumb ? 1 : 2;
1507   if (NewMBB->getAlignment() < Align)
1508     NewMBB->setAlignment(Align);
1509 
1510   // Remove the original WaterList entry; we want subsequent insertions in
1511   // this vicinity to go after the one we're about to insert.  This
1512   // considerably reduces the number of times we have to move the same CPE
1513   // more than once and is also important to ensure the algorithm terminates.
1514   if (IP != WaterList.end())
1515     WaterList.erase(IP);
1516 
1517   // Okay, we know we can put an island before NewMBB now, do it!
1518   MF->insert(NewMBB->getIterator(), NewIsland);
1519 
1520   // Update internal data structures to account for the newly inserted MBB.
1521   updateForInsertedWaterBlock(NewIsland);
1522 
1523   // Now that we have an island to add the CPE to, clone the original CPE and
1524   // add it to the island.
1525   U.HighWaterMark = NewIsland;
1526   U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1527                 .addImm(ID)
1528                 .add(CPEMI->getOperand(1))
1529                 .addImm(Size);
1530   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1531   ++NumCPEs;
1532 
1533   // Decrement the old entry, and remove it if refcount becomes 0.
1534   decrementCPEReferenceCount(CPI, CPEMI);
1535 
1536   // Mark the basic block as aligned as required by the const-pool entry.
1537   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1538 
1539   // Increase the size of the island block to account for the new entry.
1540   BBInfo[NewIsland->getNumber()].Size += Size;
1541   adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1542 
1543   // Finally, change the CPI in the instruction operand to be ID.
1544   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1545     if (UserMI->getOperand(i).isCPI()) {
1546       UserMI->getOperand(i).setIndex(ID);
1547       break;
1548     }
1549 
1550   LLVM_DEBUG(
1551       dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1552              << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1553 
1554   return true;
1555 }
1556 
1557 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1558 /// sizes and offsets of impacted basic blocks.
1559 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1560   MachineBasicBlock *CPEBB = CPEMI->getParent();
1561   unsigned Size = CPEMI->getOperand(2).getImm();
1562   CPEMI->eraseFromParent();
1563   BBInfo[CPEBB->getNumber()].Size -= Size;
1564   // All succeeding offsets have the current size value added in, fix this.
1565   if (CPEBB->empty()) {
1566     BBInfo[CPEBB->getNumber()].Size = 0;
1567 
1568     // This block no longer needs to be aligned.
1569     CPEBB->setAlignment(0);
1570   } else
1571     // Entries are sorted by descending alignment, so realign from the front.
1572     CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin()));
1573 
1574   adjustBBOffsetsAfter(CPEBB);
1575   // An island has only one predecessor BB and one successor BB. Check if
1576   // this BB's predecessor jumps directly to this BB's successor. This
1577   // shouldn't happen currently.
1578   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1579   // FIXME: remove the empty blocks after all the work is done?
1580 }
1581 
1582 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1583 /// are zero.
1584 bool ARMConstantIslands::removeUnusedCPEntries() {
1585   unsigned MadeChange = false;
1586   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1587       std::vector<CPEntry> &CPEs = CPEntries[i];
1588       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1589         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1590           removeDeadCPEMI(CPEs[j].CPEMI);
1591           CPEs[j].CPEMI = nullptr;
1592           MadeChange = true;
1593         }
1594       }
1595   }
1596   return MadeChange;
1597 }
1598 
1599 /// isBBInRange - Returns true if the distance between specific MI and
1600 /// specific BB can fit in MI's displacement field.
1601 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1602                                      unsigned MaxDisp) {
1603   unsigned PCAdj      = isThumb ? 4 : 8;
1604   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
1605   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1606 
1607   LLVM_DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB)
1608                     << " from " << printMBBReference(*MI->getParent())
1609                     << " max delta=" << MaxDisp << " from " << getOffsetOf(MI)
1610                     << " to " << DestOffset << " offset "
1611                     << int(DestOffset - BrOffset) << "\t" << *MI);
1612 
1613   if (BrOffset <= DestOffset) {
1614     // Branch before the Dest.
1615     if (DestOffset-BrOffset <= MaxDisp)
1616       return true;
1617   } else {
1618     if (BrOffset-DestOffset <= MaxDisp)
1619       return true;
1620   }
1621   return false;
1622 }
1623 
1624 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1625 /// away to fit in its displacement field.
1626 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1627   MachineInstr *MI = Br.MI;
1628   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1629 
1630   // Check to see if the DestBB is already in-range.
1631   if (isBBInRange(MI, DestBB, Br.MaxDisp))
1632     return false;
1633 
1634   if (!Br.isCond)
1635     return fixupUnconditionalBr(Br);
1636   return fixupConditionalBr(Br);
1637 }
1638 
1639 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1640 /// too far away to fit in its displacement field. If the LR register has been
1641 /// spilled in the epilogue, then we can use BL to implement a far jump.
1642 /// Otherwise, add an intermediate branch instruction to a branch.
1643 bool
1644 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1645   MachineInstr *MI = Br.MI;
1646   MachineBasicBlock *MBB = MI->getParent();
1647   if (!isThumb1)
1648     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1649 
1650   if (!AFI->isLRSpilled())
1651     report_fatal_error("underestimated function size");
1652 
1653   // Use BL to implement far jump.
1654   Br.MaxDisp = (1 << 21) * 2;
1655   MI->setDesc(TII->get(ARM::tBfar));
1656   BBInfo[MBB->getNumber()].Size += 2;
1657   adjustBBOffsetsAfter(MBB);
1658   HasFarJump = true;
1659   ++NumUBrFixed;
1660 
1661   LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1662 
1663   return true;
1664 }
1665 
1666 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1667 /// far away to fit in its displacement field. It is converted to an inverse
1668 /// conditional branch + an unconditional branch to the destination.
1669 bool
1670 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1671   MachineInstr *MI = Br.MI;
1672   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1673 
1674   // Add an unconditional branch to the destination and invert the branch
1675   // condition to jump over it:
1676   // blt L1
1677   // =>
1678   // bge L2
1679   // b   L1
1680   // L2:
1681   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1682   CC = ARMCC::getOppositeCondition(CC);
1683   unsigned CCReg = MI->getOperand(2).getReg();
1684 
1685   // If the branch is at the end of its MBB and that has a fall-through block,
1686   // direct the updated conditional branch to the fall-through block. Otherwise,
1687   // split the MBB before the next instruction.
1688   MachineBasicBlock *MBB = MI->getParent();
1689   MachineInstr *BMI = &MBB->back();
1690   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1691 
1692   ++NumCBrFixed;
1693   if (BMI != MI) {
1694     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1695         BMI->getOpcode() == Br.UncondBr) {
1696       // Last MI in the BB is an unconditional branch. Can we simply invert the
1697       // condition and swap destinations:
1698       // beq L1
1699       // b   L2
1700       // =>
1701       // bne L2
1702       // b   L1
1703       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1704       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1705         LLVM_DEBUG(
1706             dbgs() << "  Invert Bcc condition and swap its destination with "
1707                    << *BMI);
1708         BMI->getOperand(0).setMBB(DestBB);
1709         MI->getOperand(0).setMBB(NewDest);
1710         MI->getOperand(1).setImm(CC);
1711         return true;
1712       }
1713     }
1714   }
1715 
1716   if (NeedSplit) {
1717     splitBlockBeforeInstr(MI);
1718     // No need for the branch to the next block. We're adding an unconditional
1719     // branch to the destination.
1720     int delta = TII->getInstSizeInBytes(MBB->back());
1721     BBInfo[MBB->getNumber()].Size -= delta;
1722     MBB->back().eraseFromParent();
1723 
1724     // The conditional successor will be swapped between the BBs after this, so
1725     // update CFG.
1726     MBB->addSuccessor(DestBB);
1727     std::next(MBB->getIterator())->removeSuccessor(DestBB);
1728 
1729     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1730   }
1731   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1732 
1733   LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1734                     << " also invert condition and change dest. to "
1735                     << printMBBReference(*NextBB) << "\n");
1736 
1737   // Insert a new conditional branch and a new unconditional branch.
1738   // Also update the ImmBranch as well as adding a new entry for the new branch.
1739   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1740     .addMBB(NextBB).addImm(CC).addReg(CCReg);
1741   Br.MI = &MBB->back();
1742   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1743   if (isThumb)
1744     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1745         .addMBB(DestBB)
1746         .add(predOps(ARMCC::AL));
1747   else
1748     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1749   BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
1750   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1751   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1752 
1753   // Remove the old conditional branch.  It may or may not still be in MBB.
1754   BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI);
1755   MI->eraseFromParent();
1756   adjustBBOffsetsAfter(MBB);
1757   return true;
1758 }
1759 
1760 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1761 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1762 /// to do this if tBfar is not used.
1763 bool ARMConstantIslands::undoLRSpillRestore() {
1764   bool MadeChange = false;
1765   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1766     MachineInstr *MI = PushPopMIs[i];
1767     // First two operands are predicates.
1768     if (MI->getOpcode() == ARM::tPOP_RET &&
1769         MI->getOperand(2).getReg() == ARM::PC &&
1770         MI->getNumExplicitOperands() == 3) {
1771       // Create the new insn and copy the predicate from the old.
1772       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1773           .add(MI->getOperand(0))
1774           .add(MI->getOperand(1));
1775       MI->eraseFromParent();
1776       MadeChange = true;
1777     } else if (MI->getOpcode() == ARM::tPUSH &&
1778                MI->getOperand(2).getReg() == ARM::LR &&
1779                MI->getNumExplicitOperands() == 3) {
1780       // Just remove the push.
1781       MI->eraseFromParent();
1782       MadeChange = true;
1783     }
1784   }
1785   return MadeChange;
1786 }
1787 
1788 bool ARMConstantIslands::optimizeThumb2Instructions() {
1789   bool MadeChange = false;
1790 
1791   // Shrink ADR and LDR from constantpool.
1792   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1793     CPUser &U = CPUsers[i];
1794     unsigned Opcode = U.MI->getOpcode();
1795     unsigned NewOpc = 0;
1796     unsigned Scale = 1;
1797     unsigned Bits = 0;
1798     switch (Opcode) {
1799     default: break;
1800     case ARM::t2LEApcrel:
1801       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1802         NewOpc = ARM::tLEApcrel;
1803         Bits = 8;
1804         Scale = 4;
1805       }
1806       break;
1807     case ARM::t2LDRpci:
1808       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1809         NewOpc = ARM::tLDRpci;
1810         Bits = 8;
1811         Scale = 4;
1812       }
1813       break;
1814     }
1815 
1816     if (!NewOpc)
1817       continue;
1818 
1819     unsigned UserOffset = getUserOffset(U);
1820     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1821 
1822     // Be conservative with inline asm.
1823     if (!U.KnownAlignment)
1824       MaxOffs -= 2;
1825 
1826     // FIXME: Check if offset is multiple of scale if scale is not 4.
1827     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1828       LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1829       U.MI->setDesc(TII->get(NewOpc));
1830       MachineBasicBlock *MBB = U.MI->getParent();
1831       BBInfo[MBB->getNumber()].Size -= 2;
1832       adjustBBOffsetsAfter(MBB);
1833       ++NumT2CPShrunk;
1834       MadeChange = true;
1835     }
1836   }
1837 
1838   return MadeChange;
1839 }
1840 
1841 static bool registerDefinedBetween(unsigned Reg,
1842                                    MachineBasicBlock::iterator From,
1843                                    MachineBasicBlock::iterator To,
1844                                    const TargetRegisterInfo *TRI) {
1845   for (auto I = From; I != To; ++I)
1846     if (I->modifiesRegister(Reg, TRI))
1847       return true;
1848   return false;
1849 }
1850 
1851 bool ARMConstantIslands::optimizeThumb2Branches() {
1852   bool MadeChange = false;
1853 
1854   // The order in which branches appear in ImmBranches is approximately their
1855   // order within the function body. By visiting later branches first, we reduce
1856   // the distance between earlier forward branches and their targets, making it
1857   // more likely that the cbn?z optimization, which can only apply to forward
1858   // branches, will succeed.
1859   for (unsigned i = ImmBranches.size(); i != 0; --i) {
1860     ImmBranch &Br = ImmBranches[i-1];
1861     unsigned Opcode = Br.MI->getOpcode();
1862     unsigned NewOpc = 0;
1863     unsigned Scale = 1;
1864     unsigned Bits = 0;
1865     switch (Opcode) {
1866     default: break;
1867     case ARM::t2B:
1868       NewOpc = ARM::tB;
1869       Bits = 11;
1870       Scale = 2;
1871       break;
1872     case ARM::t2Bcc:
1873       NewOpc = ARM::tBcc;
1874       Bits = 8;
1875       Scale = 2;
1876       break;
1877     }
1878     if (NewOpc) {
1879       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1880       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1881       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
1882         LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1883         Br.MI->setDesc(TII->get(NewOpc));
1884         MachineBasicBlock *MBB = Br.MI->getParent();
1885         BBInfo[MBB->getNumber()].Size -= 2;
1886         adjustBBOffsetsAfter(MBB);
1887         ++NumT2BrShrunk;
1888         MadeChange = true;
1889       }
1890     }
1891 
1892     Opcode = Br.MI->getOpcode();
1893     if (Opcode != ARM::tBcc)
1894       continue;
1895 
1896     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1897     // so this transformation is not safe.
1898     if (!Br.MI->killsRegister(ARM::CPSR))
1899       continue;
1900 
1901     NewOpc = 0;
1902     unsigned PredReg = 0;
1903     ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1904     if (Pred == ARMCC::EQ)
1905       NewOpc = ARM::tCBZ;
1906     else if (Pred == ARMCC::NE)
1907       NewOpc = ARM::tCBNZ;
1908     if (!NewOpc)
1909       continue;
1910     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1911     // Check if the distance is within 126. Subtract starting offset by 2
1912     // because the cmp will be eliminated.
1913     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
1914     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1915     if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1916       continue;
1917 
1918     // Search backwards to the instruction that defines CSPR. This may or not
1919     // be a CMP, we check that after this loop. If we find an instruction that
1920     // reads cpsr, we need to keep the original cmp.
1921     auto *TRI = STI->getRegisterInfo();
1922     MachineBasicBlock::iterator CmpMI = Br.MI;
1923     while (CmpMI != Br.MI->getParent()->begin()) {
1924       --CmpMI;
1925       if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
1926         break;
1927       if (CmpMI->readsRegister(ARM::CPSR, TRI))
1928         break;
1929     }
1930 
1931     // Check that this inst is a CMP r[0-7], #0 and that the register
1932     // is not redefined between the cmp and the br.
1933     if (CmpMI->getOpcode() != ARM::tCMPi8)
1934       continue;
1935     unsigned Reg = CmpMI->getOperand(0).getReg();
1936     Pred = getInstrPredicate(*CmpMI, PredReg);
1937     if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
1938       continue;
1939     if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br.MI, TRI))
1940       continue;
1941 
1942     // Check for Kill flags on Reg. If they are present remove them and set kill
1943     // on the new CBZ.
1944     MachineBasicBlock::iterator KillMI = Br.MI;
1945     bool RegKilled = false;
1946     do {
1947       --KillMI;
1948       if (KillMI->killsRegister(Reg, TRI)) {
1949         KillMI->clearRegisterKills(Reg, TRI);
1950         RegKilled = true;
1951         break;
1952       }
1953     } while (KillMI != CmpMI);
1954 
1955     // Create the new CBZ/CBNZ
1956     MachineBasicBlock *MBB = Br.MI->getParent();
1957     LLVM_DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1958     MachineInstr *NewBR =
1959         BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1960             .addReg(Reg, getKillRegState(RegKilled))
1961             .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1962     CmpMI->eraseFromParent();
1963     Br.MI->eraseFromParent();
1964     Br.MI = NewBR;
1965     BBInfo[MBB->getNumber()].Size -= 2;
1966     adjustBBOffsetsAfter(MBB);
1967     ++NumCBZ;
1968     MadeChange = true;
1969   }
1970 
1971   return MadeChange;
1972 }
1973 
1974 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
1975                               unsigned BaseReg) {
1976   if (I.getOpcode() != ARM::t2ADDrs)
1977     return false;
1978 
1979   if (I.getOperand(0).getReg() != EntryReg)
1980     return false;
1981 
1982   if (I.getOperand(1).getReg() != BaseReg)
1983     return false;
1984 
1985   // FIXME: what about CC and IdxReg?
1986   return true;
1987 }
1988 
1989 /// While trying to form a TBB/TBH instruction, we may (if the table
1990 /// doesn't immediately follow the BR_JT) need access to the start of the
1991 /// jump-table. We know one instruction that produces such a register; this
1992 /// function works out whether that definition can be preserved to the BR_JT,
1993 /// possibly by removing an intervening addition (which is usually needed to
1994 /// calculate the actual entry to jump to).
1995 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
1996                                               MachineInstr *LEAMI,
1997                                               unsigned &DeadSize,
1998                                               bool &CanDeleteLEA,
1999                                               bool &BaseRegKill) {
2000   if (JumpMI->getParent() != LEAMI->getParent())
2001     return false;
2002 
2003   // Now we hope that we have at least these instructions in the basic block:
2004   //     BaseReg = t2LEA ...
2005   //     [...]
2006   //     EntryReg = t2ADDrs BaseReg, ...
2007   //     [...]
2008   //     t2BR_JT EntryReg
2009   //
2010   // We have to be very conservative about what we recognise here though. The
2011   // main perturbing factors to watch out for are:
2012   //    + Spills at any point in the chain: not direct problems but we would
2013   //      expect a blocking Def of the spilled register so in practice what we
2014   //      can do is limited.
2015   //    + EntryReg == BaseReg: this is the one situation we should allow a Def
2016   //      of BaseReg, but only if the t2ADDrs can be removed.
2017   //    + Some instruction other than t2ADDrs computing the entry. Not seen in
2018   //      the wild, but we should be careful.
2019   unsigned EntryReg = JumpMI->getOperand(0).getReg();
2020   unsigned BaseReg = LEAMI->getOperand(0).getReg();
2021 
2022   CanDeleteLEA = true;
2023   BaseRegKill = false;
2024   MachineInstr *RemovableAdd = nullptr;
2025   MachineBasicBlock::iterator I(LEAMI);
2026   for (++I; &*I != JumpMI; ++I) {
2027     if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2028       RemovableAdd = &*I;
2029       break;
2030     }
2031 
2032     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2033       const MachineOperand &MO = I->getOperand(K);
2034       if (!MO.isReg() || !MO.getReg())
2035         continue;
2036       if (MO.isDef() && MO.getReg() == BaseReg)
2037         return false;
2038       if (MO.isUse() && MO.getReg() == BaseReg) {
2039         BaseRegKill = BaseRegKill || MO.isKill();
2040         CanDeleteLEA = false;
2041       }
2042     }
2043   }
2044 
2045   if (!RemovableAdd)
2046     return true;
2047 
2048   // Check the add really is removable, and that nothing else in the block
2049   // clobbers BaseReg.
2050   for (++I; &*I != JumpMI; ++I) {
2051     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2052       const MachineOperand &MO = I->getOperand(K);
2053       if (!MO.isReg() || !MO.getReg())
2054         continue;
2055       if (MO.isDef() && MO.getReg() == BaseReg)
2056         return false;
2057       if (MO.isUse() && MO.getReg() == EntryReg)
2058         RemovableAdd = nullptr;
2059     }
2060   }
2061 
2062   if (RemovableAdd) {
2063     RemovableAdd->eraseFromParent();
2064     DeadSize += isThumb2 ? 4 : 2;
2065   } else if (BaseReg == EntryReg) {
2066     // The add wasn't removable, but clobbered the base for the TBB. So we can't
2067     // preserve it.
2068     return false;
2069   }
2070 
2071   // We reached the end of the block without seeing another definition of
2072   // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2073   // used in the TBB/TBH if necessary.
2074   return true;
2075 }
2076 
2077 /// Returns whether CPEMI is the first instruction in the block
2078 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2079 /// we can switch the first register to PC and usually remove the address
2080 /// calculation that preceded it.
2081 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2082   MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2083   MachineFunction *MF = MBB->getParent();
2084   ++MBB;
2085 
2086   return MBB != MF->end() && MBB->begin() != MBB->end() &&
2087          &*MBB->begin() == CPEMI;
2088 }
2089 
2090 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2091                                          MachineInstr *JumpMI,
2092                                          unsigned &DeadSize) {
2093   // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2094   // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2095   // and is not clobbered / used.
2096   MachineInstr *RemovableAdd = nullptr;
2097   unsigned EntryReg = JumpMI->getOperand(0).getReg();
2098 
2099   // Find the last ADD to set EntryReg
2100   MachineBasicBlock::iterator I(LEAMI);
2101   for (++I; &*I != JumpMI; ++I) {
2102     if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2103       RemovableAdd = &*I;
2104   }
2105 
2106   if (!RemovableAdd)
2107     return;
2108 
2109   // Ensure EntryReg is not clobbered or used.
2110   MachineBasicBlock::iterator J(RemovableAdd);
2111   for (++J; &*J != JumpMI; ++J) {
2112     for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2113       const MachineOperand &MO = J->getOperand(K);
2114       if (!MO.isReg() || !MO.getReg())
2115         continue;
2116       if (MO.isDef() && MO.getReg() == EntryReg)
2117         return;
2118       if (MO.isUse() && MO.getReg() == EntryReg)
2119         return;
2120     }
2121   }
2122 
2123   LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2124   RemovableAdd->eraseFromParent();
2125   DeadSize += 4;
2126 }
2127 
2128 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2129 /// jumptables when it's possible.
2130 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2131   bool MadeChange = false;
2132 
2133   // FIXME: After the tables are shrunk, can we get rid some of the
2134   // constantpool tables?
2135   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2136   if (!MJTI) return false;
2137 
2138   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2139   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2140     MachineInstr *MI = T2JumpTables[i];
2141     const MCInstrDesc &MCID = MI->getDesc();
2142     unsigned NumOps = MCID.getNumOperands();
2143     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2144     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2145     unsigned JTI = JTOP.getIndex();
2146     assert(JTI < JT.size());
2147 
2148     bool ByteOk = true;
2149     bool HalfWordOk = true;
2150     unsigned JTOffset = getOffsetOf(MI) + 4;
2151     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2152     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2153       MachineBasicBlock *MBB = JTBBs[j];
2154       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2155       // Negative offset is not ok. FIXME: We should change BB layout to make
2156       // sure all the branches are forward.
2157       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2158         ByteOk = false;
2159       unsigned TBHLimit = ((1<<16)-1)*2;
2160       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2161         HalfWordOk = false;
2162       if (!ByteOk && !HalfWordOk)
2163         break;
2164     }
2165 
2166     if (!ByteOk && !HalfWordOk)
2167       continue;
2168 
2169     CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2170     MachineBasicBlock *MBB = MI->getParent();
2171     if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2172       continue;
2173 
2174     unsigned DeadSize = 0;
2175     bool CanDeleteLEA = false;
2176     bool BaseRegKill = false;
2177 
2178     unsigned IdxReg = ~0U;
2179     bool IdxRegKill = true;
2180     if (isThumb2) {
2181       IdxReg = MI->getOperand(1).getReg();
2182       IdxRegKill = MI->getOperand(1).isKill();
2183 
2184       bool PreservedBaseReg =
2185         preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2186       if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2187         continue;
2188     } else {
2189       // We're in thumb-1 mode, so we must have something like:
2190       //   %idx = tLSLri %idx, 2
2191       //   %base = tLEApcrelJT
2192       //   %t = tLDRr %base, %idx
2193       unsigned BaseReg = User.MI->getOperand(0).getReg();
2194 
2195       if (User.MI->getIterator() == User.MI->getParent()->begin())
2196         continue;
2197       MachineInstr *Shift = User.MI->getPrevNode();
2198       if (Shift->getOpcode() != ARM::tLSLri ||
2199           Shift->getOperand(3).getImm() != 2 ||
2200           !Shift->getOperand(2).isKill())
2201         continue;
2202       IdxReg = Shift->getOperand(2).getReg();
2203       unsigned ShiftedIdxReg = Shift->getOperand(0).getReg();
2204 
2205       // It's important that IdxReg is live until the actual TBB/TBH. Most of
2206       // the range is checked later, but the LEA might still clobber it and not
2207       // actually get removed.
2208       if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2209         continue;
2210 
2211       MachineInstr *Load = User.MI->getNextNode();
2212       if (Load->getOpcode() != ARM::tLDRr)
2213         continue;
2214       if (Load->getOperand(1).getReg() != BaseReg ||
2215           Load->getOperand(2).getReg() != ShiftedIdxReg ||
2216           !Load->getOperand(2).isKill())
2217         continue;
2218 
2219       // If we're in PIC mode, there should be another ADD following.
2220       auto *TRI = STI->getRegisterInfo();
2221 
2222       // %base cannot be redefined after the load as it will appear before
2223       // TBB/TBH like:
2224       //      %base =
2225       //      %base =
2226       //      tBB %base, %idx
2227       if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2228         continue;
2229 
2230       if (isPositionIndependentOrROPI) {
2231         MachineInstr *Add = Load->getNextNode();
2232         if (Add->getOpcode() != ARM::tADDrr ||
2233             Add->getOperand(2).getReg() != BaseReg ||
2234             Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2235             !Add->getOperand(3).isKill())
2236           continue;
2237         if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2238           continue;
2239         if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2240           // IdxReg gets redefined in the middle of the sequence.
2241           continue;
2242         Add->eraseFromParent();
2243         DeadSize += 2;
2244       } else {
2245         if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2246           continue;
2247         if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2248           // IdxReg gets redefined in the middle of the sequence.
2249           continue;
2250       }
2251 
2252       // Now safe to delete the load and lsl. The LEA will be removed later.
2253       CanDeleteLEA = true;
2254       Shift->eraseFromParent();
2255       Load->eraseFromParent();
2256       DeadSize += 4;
2257     }
2258 
2259     LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2260     MachineInstr *CPEMI = User.CPEMI;
2261     unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2262     if (!isThumb2)
2263       Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2264 
2265     MachineBasicBlock::iterator MI_JT = MI;
2266     MachineInstr *NewJTMI =
2267         BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2268             .addReg(User.MI->getOperand(0).getReg(),
2269                     getKillRegState(BaseRegKill))
2270             .addReg(IdxReg, getKillRegState(IdxRegKill))
2271             .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2272             .addImm(CPEMI->getOperand(0).getImm());
2273     LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2274 
2275     unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2276     CPEMI->setDesc(TII->get(JTOpc));
2277 
2278     if (jumpTableFollowsTB(MI, User.CPEMI)) {
2279       NewJTMI->getOperand(0).setReg(ARM::PC);
2280       NewJTMI->getOperand(0).setIsKill(false);
2281 
2282       if (CanDeleteLEA) {
2283         if (isThumb2)
2284           RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2285 
2286         User.MI->eraseFromParent();
2287         DeadSize += isThumb2 ? 4 : 2;
2288 
2289         // The LEA was eliminated, the TBB instruction becomes the only new user
2290         // of the jump table.
2291         User.MI = NewJTMI;
2292         User.MaxDisp = 4;
2293         User.NegOk = false;
2294         User.IsSoImm = false;
2295         User.KnownAlignment = false;
2296       } else {
2297         // The LEA couldn't be eliminated, so we must add another CPUser to
2298         // record the TBB or TBH use.
2299         int CPEntryIdx = JumpTableEntryIndices[JTI];
2300         auto &CPEs = CPEntries[CPEntryIdx];
2301         auto Entry =
2302             find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2303         ++Entry->RefCount;
2304         CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2305       }
2306     }
2307 
2308     unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2309     unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2310     MI->eraseFromParent();
2311 
2312     int Delta = OrigSize - NewSize + DeadSize;
2313     BBInfo[MBB->getNumber()].Size -= Delta;
2314     adjustBBOffsetsAfter(MBB);
2315 
2316     ++NumTBs;
2317     MadeChange = true;
2318   }
2319 
2320   return MadeChange;
2321 }
2322 
2323 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2324 /// jump tables always branch forwards, since that's what tbb and tbh need.
2325 bool ARMConstantIslands::reorderThumb2JumpTables() {
2326   bool MadeChange = false;
2327 
2328   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2329   if (!MJTI) return false;
2330 
2331   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2332   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2333     MachineInstr *MI = T2JumpTables[i];
2334     const MCInstrDesc &MCID = MI->getDesc();
2335     unsigned NumOps = MCID.getNumOperands();
2336     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2337     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2338     unsigned JTI = JTOP.getIndex();
2339     assert(JTI < JT.size());
2340 
2341     // We prefer if target blocks for the jump table come after the jump
2342     // instruction so we can use TB[BH]. Loop through the target blocks
2343     // and try to adjust them such that that's true.
2344     int JTNumber = MI->getParent()->getNumber();
2345     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2346     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2347       MachineBasicBlock *MBB = JTBBs[j];
2348       int DTNumber = MBB->getNumber();
2349 
2350       if (DTNumber < JTNumber) {
2351         // The destination precedes the switch. Try to move the block forward
2352         // so we have a positive offset.
2353         MachineBasicBlock *NewBB =
2354           adjustJTTargetBlockForward(MBB, MI->getParent());
2355         if (NewBB)
2356           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2357         MadeChange = true;
2358       }
2359     }
2360   }
2361 
2362   return MadeChange;
2363 }
2364 
2365 MachineBasicBlock *ARMConstantIslands::
2366 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2367   // If the destination block is terminated by an unconditional branch,
2368   // try to move it; otherwise, create a new block following the jump
2369   // table that branches back to the actual target. This is a very simple
2370   // heuristic. FIXME: We can definitely improve it.
2371   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2372   SmallVector<MachineOperand, 4> Cond;
2373   SmallVector<MachineOperand, 4> CondPrior;
2374   MachineFunction::iterator BBi = BB->getIterator();
2375   MachineFunction::iterator OldPrior = std::prev(BBi);
2376 
2377   // If the block terminator isn't analyzable, don't try to move the block
2378   bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2379 
2380   // If the block ends in an unconditional branch, move it. The prior block
2381   // has to have an analyzable terminator for us to move this one. Be paranoid
2382   // and make sure we're not trying to move the entry block of the function.
2383   if (!B && Cond.empty() && BB != &MF->front() &&
2384       !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2385     BB->moveAfter(JTBB);
2386     OldPrior->updateTerminator();
2387     BB->updateTerminator();
2388     // Update numbering to account for the block being moved.
2389     MF->RenumberBlocks();
2390     ++NumJTMoved;
2391     return nullptr;
2392   }
2393 
2394   // Create a new MBB for the code after the jump BB.
2395   MachineBasicBlock *NewBB =
2396     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2397   MachineFunction::iterator MBBI = ++JTBB->getIterator();
2398   MF->insert(MBBI, NewBB);
2399 
2400   // Add an unconditional branch from NewBB to BB.
2401   // There doesn't seem to be meaningful DebugInfo available; this doesn't
2402   // correspond directly to anything in the source.
2403   if (isThumb2)
2404     BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2405         .addMBB(BB)
2406         .add(predOps(ARMCC::AL));
2407   else
2408     BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2409         .addMBB(BB)
2410         .add(predOps(ARMCC::AL));
2411 
2412   // Update internal data structures to account for the newly inserted MBB.
2413   MF->RenumberBlocks(NewBB);
2414 
2415   // Update the CFG.
2416   NewBB->addSuccessor(BB);
2417   JTBB->replaceSuccessor(BB, NewBB);
2418 
2419   ++NumJTInserted;
2420   return NewBB;
2421 }
2422 
2423 /// createARMConstantIslandPass - returns an instance of the constpool
2424 /// island pass.
2425 FunctionPass *llvm::createARMConstantIslandPass() {
2426   return new ARMConstantIslands();
2427 }
2428 
2429 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2430                 false, false)
2431