1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "MCTargetDesc/ARMAddressingModes.h" 19 #include "Thumb2InstrInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 #define DEBUG_TYPE "arm-cp-islands" 39 40 STATISTIC(NumCPEs, "Number of constpool entries"); 41 STATISTIC(NumSplit, "Number of uncond branches inserted"); 42 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 43 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 44 STATISTIC(NumTBs, "Number of table branches generated"); 45 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 46 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 47 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 48 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 49 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 50 51 52 static cl::opt<bool> 53 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 54 cl::desc("Adjust basic block layout to better use TB[BH]")); 55 56 /// UnknownPadding - Return the worst case padding that could result from 57 /// unknown offset bits. This does not include alignment padding caused by 58 /// known offset bits. 59 /// 60 /// @param LogAlign log2(alignment) 61 /// @param KnownBits Number of known low offset bits. 62 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { 63 if (KnownBits < LogAlign) 64 return (1u << LogAlign) - (1u << KnownBits); 65 return 0; 66 } 67 68 namespace { 69 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 70 /// requires constant pool entries to be scattered among the instructions 71 /// inside a function. To do this, it completely ignores the normal LLVM 72 /// constant pool; instead, it places constants wherever it feels like with 73 /// special instructions. 74 /// 75 /// The terminology used in this pass includes: 76 /// Islands - Clumps of constants placed in the function. 77 /// Water - Potential places where an island could be formed. 78 /// CPE - A constant pool entry that has been placed somewhere, which 79 /// tracks a list of users. 80 class ARMConstantIslands : public MachineFunctionPass { 81 /// BasicBlockInfo - Information about the offset and size of a single 82 /// basic block. 83 struct BasicBlockInfo { 84 /// Offset - Distance from the beginning of the function to the beginning 85 /// of this basic block. 86 /// 87 /// Offsets are computed assuming worst case padding before an aligned 88 /// block. This means that subtracting basic block offsets always gives a 89 /// conservative estimate of the real distance which may be smaller. 90 /// 91 /// Because worst case padding is used, the computed offset of an aligned 92 /// block may not actually be aligned. 93 unsigned Offset; 94 95 /// Size - Size of the basic block in bytes. If the block contains 96 /// inline assembly, this is a worst case estimate. 97 /// 98 /// The size does not include any alignment padding whether from the 99 /// beginning of the block, or from an aligned jump table at the end. 100 unsigned Size; 101 102 /// KnownBits - The number of low bits in Offset that are known to be 103 /// exact. The remaining bits of Offset are an upper bound. 104 uint8_t KnownBits; 105 106 /// Unalign - When non-zero, the block contains instructions (inline asm) 107 /// of unknown size. The real size may be smaller than Size bytes by a 108 /// multiple of 1 << Unalign. 109 uint8_t Unalign; 110 111 /// PostAlign - When non-zero, the block terminator contains a .align 112 /// directive, so the end of the block is aligned to 1 << PostAlign 113 /// bytes. 114 uint8_t PostAlign; 115 116 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), 117 PostAlign(0) {} 118 119 /// Compute the number of known offset bits internally to this block. 120 /// This number should be used to predict worst case padding when 121 /// splitting the block. 122 unsigned internalKnownBits() const { 123 unsigned Bits = Unalign ? Unalign : KnownBits; 124 // If the block size isn't a multiple of the known bits, assume the 125 // worst case padding. 126 if (Size & ((1u << Bits) - 1)) 127 Bits = countTrailingZeros(Size); 128 return Bits; 129 } 130 131 /// Compute the offset immediately following this block. If LogAlign is 132 /// specified, return the offset the successor block will get if it has 133 /// this alignment. 134 unsigned postOffset(unsigned LogAlign = 0) const { 135 unsigned PO = Offset + Size; 136 unsigned LA = std::max(unsigned(PostAlign), LogAlign); 137 if (!LA) 138 return PO; 139 // Add alignment padding from the terminator. 140 return PO + UnknownPadding(LA, internalKnownBits()); 141 } 142 143 /// Compute the number of known low bits of postOffset. If this block 144 /// contains inline asm, the number of known bits drops to the 145 /// instruction alignment. An aligned terminator may increase the number 146 /// of know bits. 147 /// If LogAlign is given, also consider the alignment of the next block. 148 unsigned postKnownBits(unsigned LogAlign = 0) const { 149 return std::max(std::max(unsigned(PostAlign), LogAlign), 150 internalKnownBits()); 151 } 152 }; 153 154 std::vector<BasicBlockInfo> BBInfo; 155 156 /// WaterList - A sorted list of basic blocks where islands could be placed 157 /// (i.e. blocks that don't fall through to the following block, due 158 /// to a return, unreachable, or unconditional branch). 159 std::vector<MachineBasicBlock*> WaterList; 160 161 /// NewWaterList - The subset of WaterList that was created since the 162 /// previous iteration by inserting unconditional branches. 163 SmallSet<MachineBasicBlock*, 4> NewWaterList; 164 165 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 166 167 /// CPUser - One user of a constant pool, keeping the machine instruction 168 /// pointer, the constant pool being referenced, and the max displacement 169 /// allowed from the instruction to the CP. The HighWaterMark records the 170 /// highest basic block where a new CPEntry can be placed. To ensure this 171 /// pass terminates, the CP entries are initially placed at the end of the 172 /// function and then move monotonically to lower addresses. The 173 /// exception to this rule is when the current CP entry for a particular 174 /// CPUser is out of range, but there is another CP entry for the same 175 /// constant value in range. We want to use the existing in-range CP 176 /// entry, but if it later moves out of range, the search for new water 177 /// should resume where it left off. The HighWaterMark is used to record 178 /// that point. 179 struct CPUser { 180 MachineInstr *MI; 181 MachineInstr *CPEMI; 182 MachineBasicBlock *HighWaterMark; 183 unsigned MaxDisp; 184 bool NegOk; 185 bool IsSoImm; 186 bool KnownAlignment; 187 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 188 bool neg, bool soimm) 189 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 190 KnownAlignment(false) { 191 HighWaterMark = CPEMI->getParent(); 192 } 193 /// getMaxDisp - Returns the maximum displacement supported by MI. 194 /// Correct for unknown alignment. 195 /// Conservatively subtract 2 bytes to handle weird alignment effects. 196 unsigned getMaxDisp() const { 197 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 198 } 199 }; 200 201 /// CPUsers - Keep track of all of the machine instructions that use various 202 /// constant pools and their max displacement. 203 std::vector<CPUser> CPUsers; 204 205 /// CPEntry - One per constant pool entry, keeping the machine instruction 206 /// pointer, the constpool index, and the number of CPUser's which 207 /// reference this entry. 208 struct CPEntry { 209 MachineInstr *CPEMI; 210 unsigned CPI; 211 unsigned RefCount; 212 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 213 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 214 }; 215 216 /// CPEntries - Keep track of all of the constant pool entry machine 217 /// instructions. For each original constpool index (i.e. those that existed 218 /// upon entry to this pass), it keeps a vector of entries. Original 219 /// elements are cloned as we go along; the clones are put in the vector of 220 /// the original element, but have distinct CPIs. 221 /// 222 /// The first half of CPEntries contains generic constants, the second half 223 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 224 /// which vector it will be in here. 225 std::vector<std::vector<CPEntry> > CPEntries; 226 227 /// Maps a JT index to the offset in CPEntries containing copies of that 228 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 229 DenseMap<int, int> JumpTableEntryIndices; 230 231 /// Maps a JT index to the LEA that actually uses the index to calculate its 232 /// base address. 233 DenseMap<int, int> JumpTableUserIndices; 234 235 /// ImmBranch - One per immediate branch, keeping the machine instruction 236 /// pointer, conditional or unconditional, the max displacement, 237 /// and (if isCond is true) the corresponding unconditional branch 238 /// opcode. 239 struct ImmBranch { 240 MachineInstr *MI; 241 unsigned MaxDisp : 31; 242 bool isCond : 1; 243 unsigned UncondBr; 244 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 245 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 246 }; 247 248 /// ImmBranches - Keep track of all the immediate branch instructions. 249 /// 250 std::vector<ImmBranch> ImmBranches; 251 252 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 253 /// 254 SmallVector<MachineInstr*, 4> PushPopMIs; 255 256 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 257 SmallVector<MachineInstr*, 4> T2JumpTables; 258 259 /// HasFarJump - True if any far jump instruction has been emitted during 260 /// the branch fix up pass. 261 bool HasFarJump; 262 263 MachineFunction *MF; 264 MachineConstantPool *MCP; 265 const ARMBaseInstrInfo *TII; 266 const ARMSubtarget *STI; 267 ARMFunctionInfo *AFI; 268 bool isThumb; 269 bool isThumb1; 270 bool isThumb2; 271 public: 272 static char ID; 273 ARMConstantIslands() : MachineFunctionPass(ID) {} 274 275 bool runOnMachineFunction(MachineFunction &MF) override; 276 277 const char *getPassName() const override { 278 return "ARM constant island placement and branch shortening pass"; 279 } 280 281 private: 282 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 283 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 284 bool BBHasFallthrough(MachineBasicBlock *MBB); 285 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 286 unsigned getCPELogAlign(const MachineInstr *CPEMI); 287 void scanFunctionJumpTables(); 288 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 289 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 290 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 291 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 292 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 293 unsigned getCombinedIndex(const MachineInstr *CPEMI); 294 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 295 bool findAvailableWater(CPUser&U, unsigned UserOffset, 296 water_iterator &WaterIter); 297 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 298 MachineBasicBlock *&NewMBB); 299 bool handleConstantPoolUser(unsigned CPUserIndex); 300 void removeDeadCPEMI(MachineInstr *CPEMI); 301 bool removeUnusedCPEntries(); 302 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 303 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 304 bool DoDump = false); 305 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 306 CPUser &U, unsigned &Growth); 307 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 308 bool fixupImmediateBr(ImmBranch &Br); 309 bool fixupConditionalBr(ImmBranch &Br); 310 bool fixupUnconditionalBr(ImmBranch &Br); 311 bool undoLRSpillRestore(); 312 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; 313 bool optimizeThumb2Instructions(); 314 bool optimizeThumb2Branches(); 315 bool reorderThumb2JumpTables(); 316 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 317 unsigned &DeadSize, bool &CanDeleteLEA, 318 bool &BaseRegKill); 319 bool optimizeThumb2JumpTables(); 320 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 321 MachineBasicBlock *JTBB); 322 323 void computeBlockSize(MachineBasicBlock *MBB); 324 unsigned getOffsetOf(MachineInstr *MI) const; 325 unsigned getUserOffset(CPUser&) const; 326 void dumpBBs(); 327 void verify(); 328 329 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 330 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 331 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 332 const CPUser &U) { 333 return isOffsetInRange(UserOffset, TrialOffset, 334 U.getMaxDisp(), U.NegOk, U.IsSoImm); 335 } 336 }; 337 char ARMConstantIslands::ID = 0; 338 } 339 340 /// verify - check BBOffsets, BBSizes, alignment of islands 341 void ARMConstantIslands::verify() { 342 #ifndef NDEBUG 343 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 344 MBBI != E; ++MBBI) { 345 MachineBasicBlock *MBB = MBBI; 346 unsigned MBBId = MBB->getNumber(); 347 assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); 348 } 349 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 350 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 351 CPUser &U = CPUsers[i]; 352 unsigned UserOffset = getUserOffset(U); 353 // Verify offset using the real max displacement without the safety 354 // adjustment. 355 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 356 /* DoDump = */ true)) { 357 DEBUG(dbgs() << "OK\n"); 358 continue; 359 } 360 DEBUG(dbgs() << "Out of range.\n"); 361 dumpBBs(); 362 DEBUG(MF->dump()); 363 llvm_unreachable("Constant pool entry out of range!"); 364 } 365 #endif 366 } 367 368 /// print block size and offset information - debugging 369 void ARMConstantIslands::dumpBBs() { 370 DEBUG({ 371 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 372 const BasicBlockInfo &BBI = BBInfo[J]; 373 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 374 << " kb=" << unsigned(BBI.KnownBits) 375 << " ua=" << unsigned(BBI.Unalign) 376 << " pa=" << unsigned(BBI.PostAlign) 377 << format(" size=%#x\n", BBInfo[J].Size); 378 } 379 }); 380 } 381 382 /// createARMConstantIslandPass - returns an instance of the constpool 383 /// island pass. 384 FunctionPass *llvm::createARMConstantIslandPass() { 385 return new ARMConstantIslands(); 386 } 387 388 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 389 MF = &mf; 390 MCP = mf.getConstantPool(); 391 392 DEBUG(dbgs() << "***** ARMConstantIslands: " 393 << MCP->getConstants().size() << " CP entries, aligned to " 394 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 395 396 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 397 TII = STI->getInstrInfo(); 398 AFI = MF->getInfo<ARMFunctionInfo>(); 399 400 isThumb = AFI->isThumbFunction(); 401 isThumb1 = AFI->isThumb1OnlyFunction(); 402 isThumb2 = AFI->isThumb2Function(); 403 404 HasFarJump = false; 405 406 // This pass invalidates liveness information when it splits basic blocks. 407 MF->getRegInfo().invalidateLiveness(); 408 409 // Renumber all of the machine basic blocks in the function, guaranteeing that 410 // the numbers agree with the position of the block in the function. 411 MF->RenumberBlocks(); 412 413 // Try to reorder and otherwise adjust the block layout to make good use 414 // of the TB[BH] instructions. 415 bool MadeChange = false; 416 if (isThumb2 && AdjustJumpTableBlocks) { 417 scanFunctionJumpTables(); 418 MadeChange |= reorderThumb2JumpTables(); 419 // Data is out of date, so clear it. It'll be re-computed later. 420 T2JumpTables.clear(); 421 // Blocks may have shifted around. Keep the numbering up to date. 422 MF->RenumberBlocks(); 423 } 424 425 // Perform the initial placement of the constant pool entries. To start with, 426 // we put them all at the end of the function. 427 std::vector<MachineInstr*> CPEMIs; 428 if (!MCP->isEmpty()) 429 doInitialConstPlacement(CPEMIs); 430 431 if (MF->getJumpTableInfo()) 432 doInitialJumpTablePlacement(CPEMIs); 433 434 /// The next UID to take is the first unused one. 435 AFI->initPICLabelUId(CPEMIs.size()); 436 437 // Do the initial scan of the function, building up information about the 438 // sizes of each block, the location of all the water, and finding all of the 439 // constant pool users. 440 initializeFunctionInfo(CPEMIs); 441 CPEMIs.clear(); 442 DEBUG(dumpBBs()); 443 444 // Functions with jump tables need an alignment of 4 because they use the ADR 445 // instruction, which aligns the PC to 4 bytes before adding an offset. 446 if (!T2JumpTables.empty()) 447 MF->ensureAlignment(2); 448 449 /// Remove dead constant pool entries. 450 MadeChange |= removeUnusedCPEntries(); 451 452 // Iteratively place constant pool entries and fix up branches until there 453 // is no change. 454 unsigned NoCPIters = 0, NoBRIters = 0; 455 while (true) { 456 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 457 bool CPChange = false; 458 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 459 CPChange |= handleConstantPoolUser(i); 460 if (CPChange && ++NoCPIters > 30) 461 report_fatal_error("Constant Island pass failed to converge!"); 462 DEBUG(dumpBBs()); 463 464 // Clear NewWaterList now. If we split a block for branches, it should 465 // appear as "new water" for the next iteration of constant pool placement. 466 NewWaterList.clear(); 467 468 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 469 bool BRChange = false; 470 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 471 BRChange |= fixupImmediateBr(ImmBranches[i]); 472 if (BRChange && ++NoBRIters > 30) 473 report_fatal_error("Branch Fix Up pass failed to converge!"); 474 DEBUG(dumpBBs()); 475 476 if (!CPChange && !BRChange) 477 break; 478 MadeChange = true; 479 } 480 481 // Shrink 32-bit Thumb2 branch, load, and store instructions. 482 if (isThumb2 && !STI->prefers32BitThumb()) 483 MadeChange |= optimizeThumb2Instructions(); 484 485 // After a while, this might be made debug-only, but it is not expensive. 486 verify(); 487 488 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 489 // undo the spill / restore of LR if possible. 490 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 491 MadeChange |= undoLRSpillRestore(); 492 493 // Save the mapping between original and cloned constpool entries. 494 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 495 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 496 const CPEntry & CPE = CPEntries[i][j]; 497 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 498 AFI->recordCPEClone(i, CPE.CPI); 499 } 500 } 501 502 DEBUG(dbgs() << '\n'; dumpBBs()); 503 504 BBInfo.clear(); 505 WaterList.clear(); 506 CPUsers.clear(); 507 CPEntries.clear(); 508 JumpTableEntryIndices.clear(); 509 JumpTableUserIndices.clear(); 510 ImmBranches.clear(); 511 PushPopMIs.clear(); 512 T2JumpTables.clear(); 513 514 return MadeChange; 515 } 516 517 /// \brief Perform the initial placement of the regular constant pool entries. 518 /// To start with, we put them all at the end of the function. 519 void 520 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 521 // Create the basic block to hold the CPE's. 522 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 523 MF->push_back(BB); 524 525 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 526 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 527 528 // Mark the basic block as required by the const-pool. 529 BB->setAlignment(MaxAlign); 530 531 // The function needs to be as aligned as the basic blocks. The linker may 532 // move functions around based on their alignment. 533 MF->ensureAlignment(BB->getAlignment()); 534 535 // Order the entries in BB by descending alignment. That ensures correct 536 // alignment of all entries as long as BB is sufficiently aligned. Keep 537 // track of the insertion point for each alignment. We are going to bucket 538 // sort the entries as they are created. 539 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 540 541 // Add all of the constants from the constant pool to the end block, use an 542 // identity mapping of CPI's to CPE's. 543 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 544 545 const DataLayout &TD = MF->getDataLayout(); 546 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 547 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 548 assert(Size >= 4 && "Too small constant pool entry"); 549 unsigned Align = CPs[i].getAlignment(); 550 assert(isPowerOf2_32(Align) && "Invalid alignment"); 551 // Verify that all constant pool entries are a multiple of their alignment. 552 // If not, we would have to pad them out so that instructions stay aligned. 553 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 554 555 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 556 unsigned LogAlign = Log2_32(Align); 557 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 558 MachineInstr *CPEMI = 559 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 560 .addImm(i).addConstantPoolIndex(i).addImm(Size); 561 CPEMIs.push_back(CPEMI); 562 563 // Ensure that future entries with higher alignment get inserted before 564 // CPEMI. This is bucket sort with iterators. 565 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 566 if (InsPoint[a] == InsAt) 567 InsPoint[a] = CPEMI; 568 569 // Add a new CPEntry, but no corresponding CPUser yet. 570 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 571 ++NumCPEs; 572 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 573 << Size << ", align = " << Align <<'\n'); 574 } 575 DEBUG(BB->dump()); 576 } 577 578 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH 579 /// instructions can be made more efficient if the jump table immediately 580 /// follows the instruction, it's best to place them immediately next to their 581 /// jumps to begin with. In almost all cases they'll never be moved from that 582 /// position. 583 void ARMConstantIslands::doInitialJumpTablePlacement( 584 std::vector<MachineInstr *> &CPEMIs) { 585 unsigned i = CPEntries.size(); 586 auto MJTI = MF->getJumpTableInfo(); 587 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 588 589 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 590 for (MachineBasicBlock &MBB : *MF) { 591 auto MI = MBB.getLastNonDebugInstr(); 592 593 unsigned JTOpcode; 594 switch (MI->getOpcode()) { 595 default: 596 continue; 597 case ARM::BR_JTadd: 598 case ARM::BR_JTr: 599 case ARM::tBR_JTr: 600 case ARM::BR_JTm: 601 JTOpcode = ARM::JUMPTABLE_ADDRS; 602 break; 603 case ARM::t2BR_JT: 604 JTOpcode = ARM::JUMPTABLE_INSTS; 605 break; 606 case ARM::t2TBB_JT: 607 JTOpcode = ARM::JUMPTABLE_TBB; 608 break; 609 case ARM::t2TBH_JT: 610 JTOpcode = ARM::JUMPTABLE_TBH; 611 break; 612 } 613 614 unsigned NumOps = MI->getDesc().getNumOperands(); 615 MachineOperand JTOp = 616 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 617 unsigned JTI = JTOp.getIndex(); 618 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 619 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 620 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 621 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 622 DebugLoc(), TII->get(JTOpcode)) 623 .addImm(i++) 624 .addJumpTableIndex(JTI) 625 .addImm(Size); 626 CPEMIs.push_back(CPEMI); 627 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 628 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 629 if (!LastCorrectlyNumberedBB) 630 LastCorrectlyNumberedBB = &MBB; 631 } 632 633 // If we did anything then we need to renumber the subsequent blocks. 634 if (LastCorrectlyNumberedBB) 635 MF->RenumberBlocks(LastCorrectlyNumberedBB); 636 } 637 638 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 639 /// into the block immediately after it. 640 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 641 // Get the next machine basic block in the function. 642 MachineFunction::iterator MBBI = MBB; 643 // Can't fall off end of function. 644 if (std::next(MBBI) == MBB->getParent()->end()) 645 return false; 646 647 MachineBasicBlock *NextBB = std::next(MBBI); 648 if (std::find(MBB->succ_begin(), MBB->succ_end(), NextBB) == MBB->succ_end()) 649 return false; 650 651 // Try to analyze the end of the block. A potential fallthrough may already 652 // have an unconditional branch for whatever reason. 653 MachineBasicBlock *TBB, *FBB; 654 SmallVector<MachineOperand, 4> Cond; 655 bool TooDifficult = TII->AnalyzeBranch(*MBB, TBB, FBB, Cond); 656 return TooDifficult || FBB == nullptr; 657 } 658 659 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 660 /// look up the corresponding CPEntry. 661 ARMConstantIslands::CPEntry 662 *ARMConstantIslands::findConstPoolEntry(unsigned CPI, 663 const MachineInstr *CPEMI) { 664 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 665 // Number of entries per constpool index should be small, just do a 666 // linear search. 667 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 668 if (CPEs[i].CPEMI == CPEMI) 669 return &CPEs[i]; 670 } 671 return nullptr; 672 } 673 674 /// getCPELogAlign - Returns the required alignment of the constant pool entry 675 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 676 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 677 switch (CPEMI->getOpcode()) { 678 case ARM::CONSTPOOL_ENTRY: 679 break; 680 case ARM::JUMPTABLE_TBB: 681 return 0; 682 case ARM::JUMPTABLE_TBH: 683 case ARM::JUMPTABLE_INSTS: 684 return 1; 685 case ARM::JUMPTABLE_ADDRS: 686 return 2; 687 default: 688 llvm_unreachable("unknown constpool entry kind"); 689 } 690 691 unsigned CPI = getCombinedIndex(CPEMI); 692 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 693 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 694 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 695 return Log2_32(Align); 696 } 697 698 /// scanFunctionJumpTables - Do a scan of the function, building up 699 /// information about the sizes of each block and the locations of all 700 /// the jump tables. 701 void ARMConstantIslands::scanFunctionJumpTables() { 702 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 703 MBBI != E; ++MBBI) { 704 MachineBasicBlock &MBB = *MBBI; 705 706 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 707 I != E; ++I) 708 if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) 709 T2JumpTables.push_back(I); 710 } 711 } 712 713 /// initializeFunctionInfo - Do the initial scan of the function, building up 714 /// information about the sizes of each block, the location of all the water, 715 /// and finding all of the constant pool users. 716 void ARMConstantIslands:: 717 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 718 BBInfo.clear(); 719 BBInfo.resize(MF->getNumBlockIDs()); 720 721 // First thing, compute the size of all basic blocks, and see if the function 722 // has any inline assembly in it. If so, we have to be conservative about 723 // alignment assumptions, as we don't know for sure the size of any 724 // instructions in the inline assembly. 725 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 726 computeBlockSize(I); 727 728 // The known bits of the entry block offset are determined by the function 729 // alignment. 730 BBInfo.front().KnownBits = MF->getAlignment(); 731 732 // Compute block offsets and known bits. 733 adjustBBOffsetsAfter(MF->begin()); 734 735 // Now go back through the instructions and build up our data structures. 736 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 737 MBBI != E; ++MBBI) { 738 MachineBasicBlock &MBB = *MBBI; 739 740 // If this block doesn't fall through into the next MBB, then this is 741 // 'water' that a constant pool island could be placed. 742 if (!BBHasFallthrough(&MBB)) 743 WaterList.push_back(&MBB); 744 745 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 746 I != E; ++I) { 747 if (I->isDebugValue()) 748 continue; 749 750 unsigned Opc = I->getOpcode(); 751 if (I->isBranch()) { 752 bool isCond = false; 753 unsigned Bits = 0; 754 unsigned Scale = 1; 755 int UOpc = Opc; 756 switch (Opc) { 757 default: 758 continue; // Ignore other JT branches 759 case ARM::t2BR_JT: 760 T2JumpTables.push_back(I); 761 continue; // Does not get an entry in ImmBranches 762 case ARM::Bcc: 763 isCond = true; 764 UOpc = ARM::B; 765 // Fallthrough 766 case ARM::B: 767 Bits = 24; 768 Scale = 4; 769 break; 770 case ARM::tBcc: 771 isCond = true; 772 UOpc = ARM::tB; 773 Bits = 8; 774 Scale = 2; 775 break; 776 case ARM::tB: 777 Bits = 11; 778 Scale = 2; 779 break; 780 case ARM::t2Bcc: 781 isCond = true; 782 UOpc = ARM::t2B; 783 Bits = 20; 784 Scale = 2; 785 break; 786 case ARM::t2B: 787 Bits = 24; 788 Scale = 2; 789 break; 790 } 791 792 // Record this immediate branch. 793 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 794 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 795 } 796 797 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 798 PushPopMIs.push_back(I); 799 800 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 801 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 802 Opc == ARM::JUMPTABLE_TBH) 803 continue; 804 805 // Scan the instructions for constant pool operands. 806 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 807 if (I->getOperand(op).isCPI() || I->getOperand(op).isJTI()) { 808 // We found one. The addressing mode tells us the max displacement 809 // from the PC that this instruction permits. 810 811 // Basic size info comes from the TSFlags field. 812 unsigned Bits = 0; 813 unsigned Scale = 1; 814 bool NegOk = false; 815 bool IsSoImm = false; 816 817 switch (Opc) { 818 default: 819 llvm_unreachable("Unknown addressing mode for CP reference!"); 820 821 // Taking the address of a CP entry. 822 case ARM::LEApcrel: 823 case ARM::LEApcrelJT: 824 // This takes a SoImm, which is 8 bit immediate rotated. We'll 825 // pretend the maximum offset is 255 * 4. Since each instruction 826 // 4 byte wide, this is always correct. We'll check for other 827 // displacements that fits in a SoImm as well. 828 Bits = 8; 829 Scale = 4; 830 NegOk = true; 831 IsSoImm = true; 832 break; 833 case ARM::t2LEApcrel: 834 case ARM::t2LEApcrelJT: 835 Bits = 12; 836 NegOk = true; 837 break; 838 case ARM::tLEApcrel: 839 case ARM::tLEApcrelJT: 840 Bits = 8; 841 Scale = 4; 842 break; 843 844 case ARM::LDRBi12: 845 case ARM::LDRi12: 846 case ARM::LDRcp: 847 case ARM::t2LDRpci: 848 Bits = 12; // +-offset_12 849 NegOk = true; 850 break; 851 852 case ARM::tLDRpci: 853 Bits = 8; 854 Scale = 4; // +(offset_8*4) 855 break; 856 857 case ARM::VLDRD: 858 case ARM::VLDRS: 859 Bits = 8; 860 Scale = 4; // +-(offset_8*4) 861 NegOk = true; 862 break; 863 } 864 865 // Remember that this is a user of a CP entry. 866 unsigned CPI = I->getOperand(op).getIndex(); 867 if (I->getOperand(op).isJTI()) { 868 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 869 CPI = JumpTableEntryIndices[CPI]; 870 } 871 872 MachineInstr *CPEMI = CPEMIs[CPI]; 873 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 874 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 875 876 // Increment corresponding CPEntry reference count. 877 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 878 assert(CPE && "Cannot find a corresponding CPEntry!"); 879 CPE->RefCount++; 880 881 // Instructions can only use one CP entry, don't bother scanning the 882 // rest of the operands. 883 break; 884 } 885 } 886 } 887 } 888 889 /// computeBlockSize - Compute the size and some alignment information for MBB. 890 /// This function updates BBInfo directly. 891 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 892 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 893 BBI.Size = 0; 894 BBI.Unalign = 0; 895 BBI.PostAlign = 0; 896 897 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 898 ++I) { 899 BBI.Size += TII->GetInstSizeInBytes(I); 900 // For inline asm, GetInstSizeInBytes returns a conservative estimate. 901 // The actual size may be smaller, but still a multiple of the instr size. 902 if (I->isInlineAsm()) 903 BBI.Unalign = isThumb ? 1 : 2; 904 // Also consider instructions that may be shrunk later. 905 else if (isThumb && mayOptimizeThumb2Instruction(I)) 906 BBI.Unalign = 1; 907 } 908 909 // tBR_JTr contains a .align 2 directive. 910 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { 911 BBI.PostAlign = 2; 912 MBB->getParent()->ensureAlignment(2); 913 } 914 } 915 916 /// getOffsetOf - Return the current offset of the specified machine instruction 917 /// from the start of the function. This offset changes as stuff is moved 918 /// around inside the function. 919 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 920 MachineBasicBlock *MBB = MI->getParent(); 921 922 // The offset is composed of two things: the sum of the sizes of all MBB's 923 // before this instruction's block, and the offset from the start of the block 924 // it is in. 925 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 926 927 // Sum instructions before MI in MBB. 928 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 929 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 930 Offset += TII->GetInstSizeInBytes(I); 931 } 932 return Offset; 933 } 934 935 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 936 /// ID. 937 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 938 const MachineBasicBlock *RHS) { 939 return LHS->getNumber() < RHS->getNumber(); 940 } 941 942 /// updateForInsertedWaterBlock - When a block is newly inserted into the 943 /// machine function, it upsets all of the block numbers. Renumber the blocks 944 /// and update the arrays that parallel this numbering. 945 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 946 // Renumber the MBB's to keep them consecutive. 947 NewBB->getParent()->RenumberBlocks(NewBB); 948 949 // Insert an entry into BBInfo to align it properly with the (newly 950 // renumbered) block numbers. 951 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 952 953 // Next, update WaterList. Specifically, we need to add NewMBB as having 954 // available water after it. 955 water_iterator IP = 956 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 957 CompareMBBNumbers); 958 WaterList.insert(IP, NewBB); 959 } 960 961 962 /// Split the basic block containing MI into two blocks, which are joined by 963 /// an unconditional branch. Update data structures and renumber blocks to 964 /// account for this change and returns the newly created block. 965 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 966 MachineBasicBlock *OrigBB = MI->getParent(); 967 968 // Create a new MBB for the code after the OrigBB. 969 MachineBasicBlock *NewBB = 970 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 971 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 972 MF->insert(MBBI, NewBB); 973 974 // Splice the instructions starting with MI over to NewBB. 975 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 976 977 // Add an unconditional branch from OrigBB to NewBB. 978 // Note the new unconditional branch is not being recorded. 979 // There doesn't seem to be meaningful DebugInfo available; this doesn't 980 // correspond to anything in the source. 981 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 982 if (!isThumb) 983 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 984 else 985 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 986 .addImm(ARMCC::AL).addReg(0); 987 ++NumSplit; 988 989 // Update the CFG. All succs of OrigBB are now succs of NewBB. 990 NewBB->transferSuccessors(OrigBB); 991 992 // OrigBB branches to NewBB. 993 OrigBB->addSuccessor(NewBB); 994 995 // Update internal data structures to account for the newly inserted MBB. 996 // This is almost the same as updateForInsertedWaterBlock, except that 997 // the Water goes after OrigBB, not NewBB. 998 MF->RenumberBlocks(NewBB); 999 1000 // Insert an entry into BBInfo to align it properly with the (newly 1001 // renumbered) block numbers. 1002 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 1003 1004 // Next, update WaterList. Specifically, we need to add OrigMBB as having 1005 // available water after it (but not if it's already there, which happens 1006 // when splitting before a conditional branch that is followed by an 1007 // unconditional branch - in that case we want to insert NewBB). 1008 water_iterator IP = 1009 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 1010 CompareMBBNumbers); 1011 MachineBasicBlock* WaterBB = *IP; 1012 if (WaterBB == OrigBB) 1013 WaterList.insert(std::next(IP), NewBB); 1014 else 1015 WaterList.insert(IP, OrigBB); 1016 NewWaterList.insert(OrigBB); 1017 1018 // Figure out how large the OrigBB is. As the first half of the original 1019 // block, it cannot contain a tablejump. The size includes 1020 // the new jump we added. (It should be possible to do this without 1021 // recounting everything, but it's very confusing, and this is rarely 1022 // executed.) 1023 computeBlockSize(OrigBB); 1024 1025 // Figure out how large the NewMBB is. As the second half of the original 1026 // block, it may contain a tablejump. 1027 computeBlockSize(NewBB); 1028 1029 // All BBOffsets following these blocks must be modified. 1030 adjustBBOffsetsAfter(OrigBB); 1031 1032 return NewBB; 1033 } 1034 1035 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 1036 /// displacement computation. Update U.KnownAlignment to match its current 1037 /// basic block location. 1038 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 1039 unsigned UserOffset = getOffsetOf(U.MI); 1040 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 1041 unsigned KnownBits = BBI.internalKnownBits(); 1042 1043 // The value read from PC is offset from the actual instruction address. 1044 UserOffset += (isThumb ? 4 : 8); 1045 1046 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 1047 // Make sure U.getMaxDisp() returns a constrained range. 1048 U.KnownAlignment = (KnownBits >= 2); 1049 1050 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 1051 // purposes of the displacement computation; compensate for that here. 1052 // For unknown alignments, getMaxDisp() constrains the range instead. 1053 if (isThumb && U.KnownAlignment) 1054 UserOffset &= ~3u; 1055 1056 return UserOffset; 1057 } 1058 1059 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1060 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1061 /// constant pool entry). 1062 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1063 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1064 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1065 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1066 unsigned TrialOffset, unsigned MaxDisp, 1067 bool NegativeOK, bool IsSoImm) { 1068 if (UserOffset <= TrialOffset) { 1069 // User before the Trial. 1070 if (TrialOffset - UserOffset <= MaxDisp) 1071 return true; 1072 // FIXME: Make use full range of soimm values. 1073 } else if (NegativeOK) { 1074 if (UserOffset - TrialOffset <= MaxDisp) 1075 return true; 1076 // FIXME: Make use full range of soimm values. 1077 } 1078 return false; 1079 } 1080 1081 /// isWaterInRange - Returns true if a CPE placed after the specified 1082 /// Water (a basic block) will be in range for the specific MI. 1083 /// 1084 /// Compute how much the function will grow by inserting a CPE after Water. 1085 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1086 MachineBasicBlock* Water, CPUser &U, 1087 unsigned &Growth) { 1088 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1089 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1090 unsigned NextBlockOffset, NextBlockAlignment; 1091 MachineFunction::const_iterator NextBlock = Water; 1092 if (++NextBlock == MF->end()) { 1093 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1094 NextBlockAlignment = 0; 1095 } else { 1096 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1097 NextBlockAlignment = NextBlock->getAlignment(); 1098 } 1099 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1100 unsigned CPEEnd = CPEOffset + Size; 1101 1102 // The CPE may be able to hide in the alignment padding before the next 1103 // block. It may also cause more padding to be required if it is more aligned 1104 // that the next block. 1105 if (CPEEnd > NextBlockOffset) { 1106 Growth = CPEEnd - NextBlockOffset; 1107 // Compute the padding that would go at the end of the CPE to align the next 1108 // block. 1109 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); 1110 1111 // If the CPE is to be inserted before the instruction, that will raise 1112 // the offset of the instruction. Also account for unknown alignment padding 1113 // in blocks between CPE and the user. 1114 if (CPEOffset < UserOffset) 1115 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1116 } else 1117 // CPE fits in existing padding. 1118 Growth = 0; 1119 1120 return isOffsetInRange(UserOffset, CPEOffset, U); 1121 } 1122 1123 /// isCPEntryInRange - Returns true if the distance between specific MI and 1124 /// specific ConstPool entry instruction can fit in MI's displacement field. 1125 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1126 MachineInstr *CPEMI, unsigned MaxDisp, 1127 bool NegOk, bool DoDump) { 1128 unsigned CPEOffset = getOffsetOf(CPEMI); 1129 1130 if (DoDump) { 1131 DEBUG({ 1132 unsigned Block = MI->getParent()->getNumber(); 1133 const BasicBlockInfo &BBI = BBInfo[Block]; 1134 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1135 << " max delta=" << MaxDisp 1136 << format(" insn address=%#x", UserOffset) 1137 << " in BB#" << Block << ": " 1138 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1139 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1140 int(CPEOffset-UserOffset)); 1141 }); 1142 } 1143 1144 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1145 } 1146 1147 #ifndef NDEBUG 1148 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1149 /// unconditionally branches to its only successor. 1150 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1151 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1152 return false; 1153 1154 MachineBasicBlock *Succ = *MBB->succ_begin(); 1155 MachineBasicBlock *Pred = *MBB->pred_begin(); 1156 MachineInstr *PredMI = &Pred->back(); 1157 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1158 || PredMI->getOpcode() == ARM::t2B) 1159 return PredMI->getOperand(0).getMBB() == Succ; 1160 return false; 1161 } 1162 #endif // NDEBUG 1163 1164 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1165 unsigned BBNum = BB->getNumber(); 1166 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1167 // Get the offset and known bits at the end of the layout predecessor. 1168 // Include the alignment of the current block. 1169 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1170 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1171 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1172 1173 // This is where block i begins. Stop if the offset is already correct, 1174 // and we have updated 2 blocks. This is the maximum number of blocks 1175 // changed before calling this function. 1176 if (i > BBNum + 2 && 1177 BBInfo[i].Offset == Offset && 1178 BBInfo[i].KnownBits == KnownBits) 1179 break; 1180 1181 BBInfo[i].Offset = Offset; 1182 BBInfo[i].KnownBits = KnownBits; 1183 } 1184 } 1185 1186 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1187 /// and instruction CPEMI, and decrement its refcount. If the refcount 1188 /// becomes 0 remove the entry and instruction. Returns true if we removed 1189 /// the entry, false if we didn't. 1190 1191 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1192 MachineInstr *CPEMI) { 1193 // Find the old entry. Eliminate it if it is no longer used. 1194 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1195 assert(CPE && "Unexpected!"); 1196 if (--CPE->RefCount == 0) { 1197 removeDeadCPEMI(CPEMI); 1198 CPE->CPEMI = nullptr; 1199 --NumCPEs; 1200 return true; 1201 } 1202 return false; 1203 } 1204 1205 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1206 if (CPEMI->getOperand(1).isCPI()) 1207 return CPEMI->getOperand(1).getIndex(); 1208 1209 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1210 } 1211 1212 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1213 /// if not, see if an in-range clone of the CPE is in range, and if so, 1214 /// change the data structures so the user references the clone. Returns: 1215 /// 0 = no existing entry found 1216 /// 1 = entry found, and there were no code insertions or deletions 1217 /// 2 = entry found, and there were code insertions or deletions 1218 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1219 { 1220 MachineInstr *UserMI = U.MI; 1221 MachineInstr *CPEMI = U.CPEMI; 1222 1223 // Check to see if the CPE is already in-range. 1224 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1225 true)) { 1226 DEBUG(dbgs() << "In range\n"); 1227 return 1; 1228 } 1229 1230 // No. Look for previously created clones of the CPE that are in range. 1231 unsigned CPI = getCombinedIndex(CPEMI); 1232 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1233 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1234 // We already tried this one 1235 if (CPEs[i].CPEMI == CPEMI) 1236 continue; 1237 // Removing CPEs can leave empty entries, skip 1238 if (CPEs[i].CPEMI == nullptr) 1239 continue; 1240 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1241 U.NegOk)) { 1242 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1243 << CPEs[i].CPI << "\n"); 1244 // Point the CPUser node to the replacement 1245 U.CPEMI = CPEs[i].CPEMI; 1246 // Change the CPI in the instruction operand to refer to the clone. 1247 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1248 if (UserMI->getOperand(j).isCPI()) { 1249 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1250 break; 1251 } 1252 // Adjust the refcount of the clone... 1253 CPEs[i].RefCount++; 1254 // ...and the original. If we didn't remove the old entry, none of the 1255 // addresses changed, so we don't need another pass. 1256 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1257 } 1258 } 1259 return 0; 1260 } 1261 1262 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1263 /// the specific unconditional branch instruction. 1264 static inline unsigned getUnconditionalBrDisp(int Opc) { 1265 switch (Opc) { 1266 case ARM::tB: 1267 return ((1<<10)-1)*2; 1268 case ARM::t2B: 1269 return ((1<<23)-1)*2; 1270 default: 1271 break; 1272 } 1273 1274 return ((1<<23)-1)*4; 1275 } 1276 1277 /// findAvailableWater - Look for an existing entry in the WaterList in which 1278 /// we can place the CPE referenced from U so it's within range of U's MI. 1279 /// Returns true if found, false if not. If it returns true, WaterIter 1280 /// is set to the WaterList entry. For Thumb, prefer water that will not 1281 /// introduce padding to water that will. To ensure that this pass 1282 /// terminates, the CPE location for a particular CPUser is only allowed to 1283 /// move to a lower address, so search backward from the end of the list and 1284 /// prefer the first water that is in range. 1285 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1286 water_iterator &WaterIter) { 1287 if (WaterList.empty()) 1288 return false; 1289 1290 unsigned BestGrowth = ~0u; 1291 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1292 --IP) { 1293 MachineBasicBlock* WaterBB = *IP; 1294 // Check if water is in range and is either at a lower address than the 1295 // current "high water mark" or a new water block that was created since 1296 // the previous iteration by inserting an unconditional branch. In the 1297 // latter case, we want to allow resetting the high water mark back to 1298 // this new water since we haven't seen it before. Inserting branches 1299 // should be relatively uncommon and when it does happen, we want to be 1300 // sure to take advantage of it for all the CPEs near that block, so that 1301 // we don't insert more branches than necessary. 1302 unsigned Growth; 1303 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1304 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1305 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1306 Growth < BestGrowth) { 1307 // This is the least amount of required padding seen so far. 1308 BestGrowth = Growth; 1309 WaterIter = IP; 1310 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1311 << " Growth=" << Growth << '\n'); 1312 1313 // Keep looking unless it is perfect. 1314 if (BestGrowth == 0) 1315 return true; 1316 } 1317 if (IP == B) 1318 break; 1319 } 1320 return BestGrowth != ~0u; 1321 } 1322 1323 /// createNewWater - No existing WaterList entry will work for 1324 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1325 /// block is used if in range, and the conditional branch munged so control 1326 /// flow is correct. Otherwise the block is split to create a hole with an 1327 /// unconditional branch around it. In either case NewMBB is set to a 1328 /// block following which the new island can be inserted (the WaterList 1329 /// is not adjusted). 1330 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1331 unsigned UserOffset, 1332 MachineBasicBlock *&NewMBB) { 1333 CPUser &U = CPUsers[CPUserIndex]; 1334 MachineInstr *UserMI = U.MI; 1335 MachineInstr *CPEMI = U.CPEMI; 1336 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1337 MachineBasicBlock *UserMBB = UserMI->getParent(); 1338 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1339 1340 // If the block does not end in an unconditional branch already, and if the 1341 // end of the block is within range, make new water there. (The addition 1342 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1343 // Thumb2, 2 on Thumb1. 1344 if (BBHasFallthrough(UserMBB)) { 1345 // Size of branch to insert. 1346 unsigned Delta = isThumb1 ? 2 : 4; 1347 // Compute the offset where the CPE will begin. 1348 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1349 1350 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1351 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1352 << format(", expected CPE offset %#x\n", CPEOffset)); 1353 NewMBB = std::next(MachineFunction::iterator(UserMBB)); 1354 // Add an unconditional branch from UserMBB to fallthrough block. Record 1355 // it for branch lengthening; this new branch will not get out of range, 1356 // but if the preceding conditional branch is out of range, the targets 1357 // will be exchanged, and the altered branch may be out of range, so the 1358 // machinery has to know about it. 1359 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1360 if (!isThumb) 1361 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1362 else 1363 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1364 .addImm(ARMCC::AL).addReg(0); 1365 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1366 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1367 MaxDisp, false, UncondBr)); 1368 computeBlockSize(UserMBB); 1369 adjustBBOffsetsAfter(UserMBB); 1370 return; 1371 } 1372 } 1373 1374 // What a big block. Find a place within the block to split it. This is a 1375 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1376 // entries are 4 bytes: if instruction I references island CPE, and 1377 // instruction I+1 references CPE', it will not work well to put CPE as far 1378 // forward as possible, since then CPE' cannot immediately follow it (that 1379 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1380 // need to create a new island. So, we make a first guess, then walk through 1381 // the instructions between the one currently being looked at and the 1382 // possible insertion point, and make sure any other instructions that 1383 // reference CPEs will be able to use the same island area; if not, we back 1384 // up the insertion point. 1385 1386 // Try to split the block so it's fully aligned. Compute the latest split 1387 // point where we can add a 4-byte branch instruction, and then align to 1388 // LogAlign which is the largest possible alignment in the function. 1389 unsigned LogAlign = MF->getAlignment(); 1390 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1391 unsigned KnownBits = UserBBI.internalKnownBits(); 1392 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1393 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1394 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1395 BaseInsertOffset)); 1396 1397 // The 4 in the following is for the unconditional branch we'll be inserting 1398 // (allows for long branch on Thumb1). Alignment of the island is handled 1399 // inside isOffsetInRange. 1400 BaseInsertOffset -= 4; 1401 1402 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1403 << " la=" << LogAlign 1404 << " kb=" << KnownBits 1405 << " up=" << UPad << '\n'); 1406 1407 // This could point off the end of the block if we've already got constant 1408 // pool entries following this block; only the last one is in the water list. 1409 // Back past any possible branches (allow for a conditional and a maximally 1410 // long unconditional). 1411 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1412 // Ensure BaseInsertOffset is larger than the offset of the instruction 1413 // following UserMI so that the loop which searches for the split point 1414 // iterates at least once. 1415 BaseInsertOffset = 1416 std::max(UserBBI.postOffset() - UPad - 8, 1417 UserOffset + TII->GetInstSizeInBytes(UserMI) + 1); 1418 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1419 } 1420 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1421 CPEMI->getOperand(2).getImm(); 1422 MachineBasicBlock::iterator MI = UserMI; 1423 ++MI; 1424 unsigned CPUIndex = CPUserIndex+1; 1425 unsigned NumCPUsers = CPUsers.size(); 1426 MachineInstr *LastIT = nullptr; 1427 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1428 Offset < BaseInsertOffset; 1429 Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) { 1430 assert(MI != UserMBB->end() && "Fell off end of block"); 1431 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1432 CPUser &U = CPUsers[CPUIndex]; 1433 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1434 // Shift intertion point by one unit of alignment so it is within reach. 1435 BaseInsertOffset -= 1u << LogAlign; 1436 EndInsertOffset -= 1u << LogAlign; 1437 } 1438 // This is overly conservative, as we don't account for CPEMIs being 1439 // reused within the block, but it doesn't matter much. Also assume CPEs 1440 // are added in order with alignment padding. We may eventually be able 1441 // to pack the aligned CPEs better. 1442 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1443 CPUIndex++; 1444 } 1445 1446 // Remember the last IT instruction. 1447 if (MI->getOpcode() == ARM::t2IT) 1448 LastIT = MI; 1449 } 1450 1451 --MI; 1452 1453 // Avoid splitting an IT block. 1454 if (LastIT) { 1455 unsigned PredReg = 0; 1456 ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg); 1457 if (CC != ARMCC::AL) 1458 MI = LastIT; 1459 } 1460 1461 // We really must not split an IT block. 1462 DEBUG(unsigned PredReg; 1463 assert(!isThumb || getITInstrPredicate(MI, PredReg) == ARMCC::AL)); 1464 1465 NewMBB = splitBlockBeforeInstr(MI); 1466 } 1467 1468 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1469 /// is out-of-range. If so, pick up the constant pool value and move it some 1470 /// place in-range. Return true if we changed any addresses (thus must run 1471 /// another pass of branch lengthening), false otherwise. 1472 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1473 CPUser &U = CPUsers[CPUserIndex]; 1474 MachineInstr *UserMI = U.MI; 1475 MachineInstr *CPEMI = U.CPEMI; 1476 unsigned CPI = getCombinedIndex(CPEMI); 1477 unsigned Size = CPEMI->getOperand(2).getImm(); 1478 // Compute this only once, it's expensive. 1479 unsigned UserOffset = getUserOffset(U); 1480 1481 // See if the current entry is within range, or there is a clone of it 1482 // in range. 1483 int result = findInRangeCPEntry(U, UserOffset); 1484 if (result==1) return false; 1485 else if (result==2) return true; 1486 1487 // No existing clone of this CPE is within range. 1488 // We will be generating a new clone. Get a UID for it. 1489 unsigned ID = AFI->createPICLabelUId(); 1490 1491 // Look for water where we can place this CPE. 1492 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1493 MachineBasicBlock *NewMBB; 1494 water_iterator IP; 1495 if (findAvailableWater(U, UserOffset, IP)) { 1496 DEBUG(dbgs() << "Found water in range\n"); 1497 MachineBasicBlock *WaterBB = *IP; 1498 1499 // If the original WaterList entry was "new water" on this iteration, 1500 // propagate that to the new island. This is just keeping NewWaterList 1501 // updated to match the WaterList, which will be updated below. 1502 if (NewWaterList.erase(WaterBB)) 1503 NewWaterList.insert(NewIsland); 1504 1505 // The new CPE goes before the following block (NewMBB). 1506 NewMBB = std::next(MachineFunction::iterator(WaterBB)); 1507 1508 } else { 1509 // No water found. 1510 DEBUG(dbgs() << "No water found\n"); 1511 createNewWater(CPUserIndex, UserOffset, NewMBB); 1512 1513 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1514 // called while handling branches so that the water will be seen on the 1515 // next iteration for constant pools, but in this context, we don't want 1516 // it. Check for this so it will be removed from the WaterList. 1517 // Also remove any entry from NewWaterList. 1518 MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB)); 1519 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1520 if (IP != WaterList.end()) 1521 NewWaterList.erase(WaterBB); 1522 1523 // We are adding new water. Update NewWaterList. 1524 NewWaterList.insert(NewIsland); 1525 } 1526 1527 // Remove the original WaterList entry; we want subsequent insertions in 1528 // this vicinity to go after the one we're about to insert. This 1529 // considerably reduces the number of times we have to move the same CPE 1530 // more than once and is also important to ensure the algorithm terminates. 1531 if (IP != WaterList.end()) 1532 WaterList.erase(IP); 1533 1534 // Okay, we know we can put an island before NewMBB now, do it! 1535 MF->insert(NewMBB, NewIsland); 1536 1537 // Update internal data structures to account for the newly inserted MBB. 1538 updateForInsertedWaterBlock(NewIsland); 1539 1540 // Now that we have an island to add the CPE to, clone the original CPE and 1541 // add it to the island. 1542 U.HighWaterMark = NewIsland; 1543 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1544 .addImm(ID).addOperand(CPEMI->getOperand(1)).addImm(Size); 1545 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1546 ++NumCPEs; 1547 1548 // Decrement the old entry, and remove it if refcount becomes 0. 1549 decrementCPEReferenceCount(CPI, CPEMI); 1550 1551 // Mark the basic block as aligned as required by the const-pool entry. 1552 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1553 1554 // Increase the size of the island block to account for the new entry. 1555 BBInfo[NewIsland->getNumber()].Size += Size; 1556 adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland))); 1557 1558 // Finally, change the CPI in the instruction operand to be ID. 1559 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1560 if (UserMI->getOperand(i).isCPI()) { 1561 UserMI->getOperand(i).setIndex(ID); 1562 break; 1563 } 1564 1565 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1566 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1567 1568 return true; 1569 } 1570 1571 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1572 /// sizes and offsets of impacted basic blocks. 1573 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1574 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1575 unsigned Size = CPEMI->getOperand(2).getImm(); 1576 CPEMI->eraseFromParent(); 1577 BBInfo[CPEBB->getNumber()].Size -= Size; 1578 // All succeeding offsets have the current size value added in, fix this. 1579 if (CPEBB->empty()) { 1580 BBInfo[CPEBB->getNumber()].Size = 0; 1581 1582 // This block no longer needs to be aligned. 1583 CPEBB->setAlignment(0); 1584 } else 1585 // Entries are sorted by descending alignment, so realign from the front. 1586 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); 1587 1588 adjustBBOffsetsAfter(CPEBB); 1589 // An island has only one predecessor BB and one successor BB. Check if 1590 // this BB's predecessor jumps directly to this BB's successor. This 1591 // shouldn't happen currently. 1592 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1593 // FIXME: remove the empty blocks after all the work is done? 1594 } 1595 1596 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1597 /// are zero. 1598 bool ARMConstantIslands::removeUnusedCPEntries() { 1599 unsigned MadeChange = false; 1600 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1601 std::vector<CPEntry> &CPEs = CPEntries[i]; 1602 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1603 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1604 removeDeadCPEMI(CPEs[j].CPEMI); 1605 CPEs[j].CPEMI = nullptr; 1606 MadeChange = true; 1607 } 1608 } 1609 } 1610 return MadeChange; 1611 } 1612 1613 /// isBBInRange - Returns true if the distance between specific MI and 1614 /// specific BB can fit in MI's displacement field. 1615 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1616 unsigned MaxDisp) { 1617 unsigned PCAdj = isThumb ? 4 : 8; 1618 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1619 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1620 1621 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1622 << " from BB#" << MI->getParent()->getNumber() 1623 << " max delta=" << MaxDisp 1624 << " from " << getOffsetOf(MI) << " to " << DestOffset 1625 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1626 1627 if (BrOffset <= DestOffset) { 1628 // Branch before the Dest. 1629 if (DestOffset-BrOffset <= MaxDisp) 1630 return true; 1631 } else { 1632 if (BrOffset-DestOffset <= MaxDisp) 1633 return true; 1634 } 1635 return false; 1636 } 1637 1638 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1639 /// away to fit in its displacement field. 1640 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1641 MachineInstr *MI = Br.MI; 1642 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1643 1644 // Check to see if the DestBB is already in-range. 1645 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1646 return false; 1647 1648 if (!Br.isCond) 1649 return fixupUnconditionalBr(Br); 1650 return fixupConditionalBr(Br); 1651 } 1652 1653 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1654 /// too far away to fit in its displacement field. If the LR register has been 1655 /// spilled in the epilogue, then we can use BL to implement a far jump. 1656 /// Otherwise, add an intermediate branch instruction to a branch. 1657 bool 1658 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1659 MachineInstr *MI = Br.MI; 1660 MachineBasicBlock *MBB = MI->getParent(); 1661 if (!isThumb1) 1662 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1663 1664 // Use BL to implement far jump. 1665 Br.MaxDisp = (1 << 21) * 2; 1666 MI->setDesc(TII->get(ARM::tBfar)); 1667 BBInfo[MBB->getNumber()].Size += 2; 1668 adjustBBOffsetsAfter(MBB); 1669 HasFarJump = true; 1670 ++NumUBrFixed; 1671 1672 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1673 1674 return true; 1675 } 1676 1677 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1678 /// far away to fit in its displacement field. It is converted to an inverse 1679 /// conditional branch + an unconditional branch to the destination. 1680 bool 1681 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1682 MachineInstr *MI = Br.MI; 1683 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1684 1685 // Add an unconditional branch to the destination and invert the branch 1686 // condition to jump over it: 1687 // blt L1 1688 // => 1689 // bge L2 1690 // b L1 1691 // L2: 1692 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1693 CC = ARMCC::getOppositeCondition(CC); 1694 unsigned CCReg = MI->getOperand(2).getReg(); 1695 1696 // If the branch is at the end of its MBB and that has a fall-through block, 1697 // direct the updated conditional branch to the fall-through block. Otherwise, 1698 // split the MBB before the next instruction. 1699 MachineBasicBlock *MBB = MI->getParent(); 1700 MachineInstr *BMI = &MBB->back(); 1701 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1702 1703 ++NumCBrFixed; 1704 if (BMI != MI) { 1705 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1706 BMI->getOpcode() == Br.UncondBr) { 1707 // Last MI in the BB is an unconditional branch. Can we simply invert the 1708 // condition and swap destinations: 1709 // beq L1 1710 // b L2 1711 // => 1712 // bne L2 1713 // b L1 1714 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1715 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1716 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1717 << *BMI); 1718 BMI->getOperand(0).setMBB(DestBB); 1719 MI->getOperand(0).setMBB(NewDest); 1720 MI->getOperand(1).setImm(CC); 1721 return true; 1722 } 1723 } 1724 } 1725 1726 if (NeedSplit) { 1727 splitBlockBeforeInstr(MI); 1728 // No need for the branch to the next block. We're adding an unconditional 1729 // branch to the destination. 1730 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1731 BBInfo[MBB->getNumber()].Size -= delta; 1732 MBB->back().eraseFromParent(); 1733 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1734 } 1735 MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB)); 1736 1737 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1738 << " also invert condition and change dest. to BB#" 1739 << NextBB->getNumber() << "\n"); 1740 1741 // Insert a new conditional branch and a new unconditional branch. 1742 // Also update the ImmBranch as well as adding a new entry for the new branch. 1743 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1744 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1745 Br.MI = &MBB->back(); 1746 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1747 if (isThumb) 1748 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1749 .addImm(ARMCC::AL).addReg(0); 1750 else 1751 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1752 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1753 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1754 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1755 1756 // Remove the old conditional branch. It may or may not still be in MBB. 1757 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); 1758 MI->eraseFromParent(); 1759 adjustBBOffsetsAfter(MBB); 1760 return true; 1761 } 1762 1763 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1764 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1765 /// to do this if tBfar is not used. 1766 bool ARMConstantIslands::undoLRSpillRestore() { 1767 bool MadeChange = false; 1768 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1769 MachineInstr *MI = PushPopMIs[i]; 1770 // First two operands are predicates. 1771 if (MI->getOpcode() == ARM::tPOP_RET && 1772 MI->getOperand(2).getReg() == ARM::PC && 1773 MI->getNumExplicitOperands() == 3) { 1774 // Create the new insn and copy the predicate from the old. 1775 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1776 .addOperand(MI->getOperand(0)) 1777 .addOperand(MI->getOperand(1)); 1778 MI->eraseFromParent(); 1779 MadeChange = true; 1780 } 1781 } 1782 return MadeChange; 1783 } 1784 1785 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions 1786 // below may shrink MI. 1787 bool 1788 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { 1789 switch(MI->getOpcode()) { 1790 // optimizeThumb2Instructions. 1791 case ARM::t2LEApcrel: 1792 case ARM::t2LDRpci: 1793 // optimizeThumb2Branches. 1794 case ARM::t2B: 1795 case ARM::t2Bcc: 1796 case ARM::tBcc: 1797 // optimizeThumb2JumpTables. 1798 case ARM::t2BR_JT: 1799 return true; 1800 } 1801 return false; 1802 } 1803 1804 bool ARMConstantIslands::optimizeThumb2Instructions() { 1805 bool MadeChange = false; 1806 1807 // Shrink ADR and LDR from constantpool. 1808 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1809 CPUser &U = CPUsers[i]; 1810 unsigned Opcode = U.MI->getOpcode(); 1811 unsigned NewOpc = 0; 1812 unsigned Scale = 1; 1813 unsigned Bits = 0; 1814 switch (Opcode) { 1815 default: break; 1816 case ARM::t2LEApcrel: 1817 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1818 NewOpc = ARM::tLEApcrel; 1819 Bits = 8; 1820 Scale = 4; 1821 } 1822 break; 1823 case ARM::t2LDRpci: 1824 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1825 NewOpc = ARM::tLDRpci; 1826 Bits = 8; 1827 Scale = 4; 1828 } 1829 break; 1830 } 1831 1832 if (!NewOpc) 1833 continue; 1834 1835 unsigned UserOffset = getUserOffset(U); 1836 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1837 1838 // Be conservative with inline asm. 1839 if (!U.KnownAlignment) 1840 MaxOffs -= 2; 1841 1842 // FIXME: Check if offset is multiple of scale if scale is not 4. 1843 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1844 DEBUG(dbgs() << "Shrink: " << *U.MI); 1845 U.MI->setDesc(TII->get(NewOpc)); 1846 MachineBasicBlock *MBB = U.MI->getParent(); 1847 BBInfo[MBB->getNumber()].Size -= 2; 1848 adjustBBOffsetsAfter(MBB); 1849 ++NumT2CPShrunk; 1850 MadeChange = true; 1851 } 1852 } 1853 1854 MadeChange |= optimizeThumb2Branches(); 1855 MadeChange |= optimizeThumb2JumpTables(); 1856 return MadeChange; 1857 } 1858 1859 bool ARMConstantIslands::optimizeThumb2Branches() { 1860 bool MadeChange = false; 1861 1862 // The order in which branches appear in ImmBranches is approximately their 1863 // order within the function body. By visiting later branches first, we reduce 1864 // the distance between earlier forward branches and their targets, making it 1865 // more likely that the cbn?z optimization, which can only apply to forward 1866 // branches, will succeed. 1867 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1868 ImmBranch &Br = ImmBranches[i-1]; 1869 unsigned Opcode = Br.MI->getOpcode(); 1870 unsigned NewOpc = 0; 1871 unsigned Scale = 1; 1872 unsigned Bits = 0; 1873 switch (Opcode) { 1874 default: break; 1875 case ARM::t2B: 1876 NewOpc = ARM::tB; 1877 Bits = 11; 1878 Scale = 2; 1879 break; 1880 case ARM::t2Bcc: { 1881 NewOpc = ARM::tBcc; 1882 Bits = 8; 1883 Scale = 2; 1884 break; 1885 } 1886 } 1887 if (NewOpc) { 1888 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1889 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1890 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1891 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1892 Br.MI->setDesc(TII->get(NewOpc)); 1893 MachineBasicBlock *MBB = Br.MI->getParent(); 1894 BBInfo[MBB->getNumber()].Size -= 2; 1895 adjustBBOffsetsAfter(MBB); 1896 ++NumT2BrShrunk; 1897 MadeChange = true; 1898 } 1899 } 1900 1901 Opcode = Br.MI->getOpcode(); 1902 if (Opcode != ARM::tBcc) 1903 continue; 1904 1905 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1906 // so this transformation is not safe. 1907 if (!Br.MI->killsRegister(ARM::CPSR)) 1908 continue; 1909 1910 NewOpc = 0; 1911 unsigned PredReg = 0; 1912 ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg); 1913 if (Pred == ARMCC::EQ) 1914 NewOpc = ARM::tCBZ; 1915 else if (Pred == ARMCC::NE) 1916 NewOpc = ARM::tCBNZ; 1917 if (!NewOpc) 1918 continue; 1919 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1920 // Check if the distance is within 126. Subtract starting offset by 2 1921 // because the cmp will be eliminated. 1922 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1923 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1924 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1925 MachineBasicBlock::iterator CmpMI = Br.MI; 1926 if (CmpMI != Br.MI->getParent()->begin()) { 1927 --CmpMI; 1928 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1929 unsigned Reg = CmpMI->getOperand(0).getReg(); 1930 Pred = getInstrPredicate(CmpMI, PredReg); 1931 if (Pred == ARMCC::AL && 1932 CmpMI->getOperand(1).getImm() == 0 && 1933 isARMLowRegister(Reg)) { 1934 MachineBasicBlock *MBB = Br.MI->getParent(); 1935 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1936 MachineInstr *NewBR = 1937 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1938 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1939 CmpMI->eraseFromParent(); 1940 Br.MI->eraseFromParent(); 1941 Br.MI = NewBR; 1942 BBInfo[MBB->getNumber()].Size -= 2; 1943 adjustBBOffsetsAfter(MBB); 1944 ++NumCBZ; 1945 MadeChange = true; 1946 } 1947 } 1948 } 1949 } 1950 } 1951 1952 return MadeChange; 1953 } 1954 1955 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1956 unsigned BaseReg) { 1957 if (I.getOpcode() != ARM::t2ADDrs) 1958 return false; 1959 1960 if (I.getOperand(0).getReg() != EntryReg) 1961 return false; 1962 1963 if (I.getOperand(1).getReg() != BaseReg) 1964 return false; 1965 1966 // FIXME: what about CC and IdxReg? 1967 return true; 1968 } 1969 1970 /// \brief While trying to form a TBB/TBH instruction, we may (if the table 1971 /// doesn't immediately follow the BR_JT) need access to the start of the 1972 /// jump-table. We know one instruction that produces such a register; this 1973 /// function works out whether that definition can be preserved to the BR_JT, 1974 /// possibly by removing an intervening addition (which is usually needed to 1975 /// calculate the actual entry to jump to). 1976 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1977 MachineInstr *LEAMI, 1978 unsigned &DeadSize, 1979 bool &CanDeleteLEA, 1980 bool &BaseRegKill) { 1981 if (JumpMI->getParent() != LEAMI->getParent()) 1982 return false; 1983 1984 // Now we hope that we have at least these instructions in the basic block: 1985 // BaseReg = t2LEA ... 1986 // [...] 1987 // EntryReg = t2ADDrs BaseReg, ... 1988 // [...] 1989 // t2BR_JT EntryReg 1990 // 1991 // We have to be very conservative about what we recognise here though. The 1992 // main perturbing factors to watch out for are: 1993 // + Spills at any point in the chain: not direct problems but we would 1994 // expect a blocking Def of the spilled register so in practice what we 1995 // can do is limited. 1996 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1997 // of BaseReg, but only if the t2ADDrs can be removed. 1998 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1999 // the wild, but we should be careful. 2000 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 2001 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 2002 2003 CanDeleteLEA = true; 2004 BaseRegKill = false; 2005 MachineInstr *RemovableAdd = nullptr; 2006 MachineBasicBlock::iterator I(LEAMI); 2007 for (++I; &*I != JumpMI; ++I) { 2008 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2009 RemovableAdd = &*I; 2010 break; 2011 } 2012 2013 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2014 const MachineOperand &MO = I->getOperand(K); 2015 if (!MO.isReg() || !MO.getReg()) 2016 continue; 2017 if (MO.isDef() && MO.getReg() == BaseReg) 2018 return false; 2019 if (MO.isUse() && MO.getReg() == BaseReg) { 2020 BaseRegKill = BaseRegKill || MO.isKill(); 2021 CanDeleteLEA = false; 2022 } 2023 } 2024 } 2025 2026 if (!RemovableAdd) 2027 return true; 2028 2029 // Check the add really is removable, and that nothing else in the block 2030 // clobbers BaseReg. 2031 for (++I; &*I != JumpMI; ++I) { 2032 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2033 const MachineOperand &MO = I->getOperand(K); 2034 if (!MO.isReg() || !MO.getReg()) 2035 continue; 2036 if (MO.isDef() && MO.getReg() == BaseReg) 2037 return false; 2038 if (MO.isUse() && MO.getReg() == EntryReg) 2039 RemovableAdd = nullptr; 2040 } 2041 } 2042 2043 if (RemovableAdd) { 2044 RemovableAdd->eraseFromParent(); 2045 DeadSize += 4; 2046 } else if (BaseReg == EntryReg) { 2047 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2048 // preserve it. 2049 return false; 2050 } 2051 2052 // We reached the end of the block without seeing another definition of 2053 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2054 // used in the TBB/TBH if necessary. 2055 return true; 2056 } 2057 2058 /// \brief Returns whether CPEMI is the first instruction in the block 2059 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2060 /// we can switch the first register to PC and usually remove the address 2061 /// calculation that preceded it. 2062 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2063 MachineFunction::iterator MBB = JTMI->getParent(); 2064 MachineFunction *MF = MBB->getParent(); 2065 ++MBB; 2066 2067 return MBB != MF->end() && MBB->begin() != MBB->end() && 2068 &*MBB->begin() == CPEMI; 2069 } 2070 2071 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2072 /// jumptables when it's possible. 2073 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2074 bool MadeChange = false; 2075 2076 // FIXME: After the tables are shrunk, can we get rid some of the 2077 // constantpool tables? 2078 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2079 if (!MJTI) return false; 2080 2081 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2082 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2083 MachineInstr *MI = T2JumpTables[i]; 2084 const MCInstrDesc &MCID = MI->getDesc(); 2085 unsigned NumOps = MCID.getNumOperands(); 2086 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2087 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2088 unsigned JTI = JTOP.getIndex(); 2089 assert(JTI < JT.size()); 2090 2091 bool ByteOk = true; 2092 bool HalfWordOk = true; 2093 unsigned JTOffset = getOffsetOf(MI) + 4; 2094 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2095 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2096 MachineBasicBlock *MBB = JTBBs[j]; 2097 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2098 // Negative offset is not ok. FIXME: We should change BB layout to make 2099 // sure all the branches are forward. 2100 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2101 ByteOk = false; 2102 unsigned TBHLimit = ((1<<16)-1)*2; 2103 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2104 HalfWordOk = false; 2105 if (!ByteOk && !HalfWordOk) 2106 break; 2107 } 2108 2109 if (!ByteOk && !HalfWordOk) 2110 continue; 2111 2112 MachineBasicBlock *MBB = MI->getParent(); 2113 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2114 continue; 2115 unsigned IdxReg = MI->getOperand(1).getReg(); 2116 bool IdxRegKill = MI->getOperand(1).isKill(); 2117 2118 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2119 unsigned DeadSize = 0; 2120 bool CanDeleteLEA = false; 2121 bool BaseRegKill = false; 2122 bool PreservedBaseReg = 2123 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2124 2125 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2126 continue; 2127 2128 DEBUG(dbgs() << "Shrink JT: " << *MI); 2129 MachineInstr *CPEMI = User.CPEMI; 2130 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2131 MachineBasicBlock::iterator MI_JT = MI; 2132 MachineInstr *NewJTMI = 2133 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2134 .addReg(User.MI->getOperand(0).getReg(), 2135 getKillRegState(BaseRegKill)) 2136 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2137 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2138 .addImm(CPEMI->getOperand(0).getImm()); 2139 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); 2140 2141 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2142 CPEMI->setDesc(TII->get(JTOpc)); 2143 2144 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2145 NewJTMI->getOperand(0).setReg(ARM::PC); 2146 NewJTMI->getOperand(0).setIsKill(false); 2147 2148 if (CanDeleteLEA) { 2149 User.MI->eraseFromParent(); 2150 DeadSize += 4; 2151 2152 // The LEA was eliminated, the TBB instruction becomes the only new user 2153 // of the jump table. 2154 User.MI = NewJTMI; 2155 User.MaxDisp = 4; 2156 User.NegOk = false; 2157 User.IsSoImm = false; 2158 User.KnownAlignment = false; 2159 } else { 2160 // The LEA couldn't be eliminated, so we must add another CPUser to 2161 // record the TBB or TBH use. 2162 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2163 auto &CPEs = CPEntries[CPEntryIdx]; 2164 auto Entry = std::find_if(CPEs.begin(), CPEs.end(), [&](CPEntry &E) { 2165 return E.CPEMI == User.CPEMI; 2166 }); 2167 ++Entry->RefCount; 2168 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2169 } 2170 } 2171 2172 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 2173 unsigned OrigSize = TII->GetInstSizeInBytes(MI); 2174 MI->eraseFromParent(); 2175 2176 int Delta = OrigSize - NewSize + DeadSize; 2177 BBInfo[MBB->getNumber()].Size -= Delta; 2178 adjustBBOffsetsAfter(MBB); 2179 2180 ++NumTBs; 2181 MadeChange = true; 2182 } 2183 2184 return MadeChange; 2185 } 2186 2187 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2188 /// jump tables always branch forwards, since that's what tbb and tbh need. 2189 bool ARMConstantIslands::reorderThumb2JumpTables() { 2190 bool MadeChange = false; 2191 2192 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2193 if (!MJTI) return false; 2194 2195 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2196 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2197 MachineInstr *MI = T2JumpTables[i]; 2198 const MCInstrDesc &MCID = MI->getDesc(); 2199 unsigned NumOps = MCID.getNumOperands(); 2200 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2201 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2202 unsigned JTI = JTOP.getIndex(); 2203 assert(JTI < JT.size()); 2204 2205 // We prefer if target blocks for the jump table come after the jump 2206 // instruction so we can use TB[BH]. Loop through the target blocks 2207 // and try to adjust them such that that's true. 2208 int JTNumber = MI->getParent()->getNumber(); 2209 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2210 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2211 MachineBasicBlock *MBB = JTBBs[j]; 2212 int DTNumber = MBB->getNumber(); 2213 2214 if (DTNumber < JTNumber) { 2215 // The destination precedes the switch. Try to move the block forward 2216 // so we have a positive offset. 2217 MachineBasicBlock *NewBB = 2218 adjustJTTargetBlockForward(MBB, MI->getParent()); 2219 if (NewBB) 2220 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2221 MadeChange = true; 2222 } 2223 } 2224 } 2225 2226 return MadeChange; 2227 } 2228 2229 MachineBasicBlock *ARMConstantIslands:: 2230 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2231 // If the destination block is terminated by an unconditional branch, 2232 // try to move it; otherwise, create a new block following the jump 2233 // table that branches back to the actual target. This is a very simple 2234 // heuristic. FIXME: We can definitely improve it. 2235 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2236 SmallVector<MachineOperand, 4> Cond; 2237 SmallVector<MachineOperand, 4> CondPrior; 2238 MachineFunction::iterator BBi = BB; 2239 MachineFunction::iterator OldPrior = std::prev(BBi); 2240 2241 // If the block terminator isn't analyzable, don't try to move the block 2242 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 2243 2244 // If the block ends in an unconditional branch, move it. The prior block 2245 // has to have an analyzable terminator for us to move this one. Be paranoid 2246 // and make sure we're not trying to move the entry block of the function. 2247 if (!B && Cond.empty() && BB != MF->begin() && 2248 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2249 BB->moveAfter(JTBB); 2250 OldPrior->updateTerminator(); 2251 BB->updateTerminator(); 2252 // Update numbering to account for the block being moved. 2253 MF->RenumberBlocks(); 2254 ++NumJTMoved; 2255 return nullptr; 2256 } 2257 2258 // Create a new MBB for the code after the jump BB. 2259 MachineBasicBlock *NewBB = 2260 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2261 MachineFunction::iterator MBBI = JTBB; ++MBBI; 2262 MF->insert(MBBI, NewBB); 2263 2264 // Add an unconditional branch from NewBB to BB. 2265 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2266 // correspond directly to anything in the source. 2267 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 2268 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 2269 .addImm(ARMCC::AL).addReg(0); 2270 2271 // Update internal data structures to account for the newly inserted MBB. 2272 MF->RenumberBlocks(NewBB); 2273 2274 // Update the CFG. 2275 NewBB->addSuccessor(BB); 2276 JTBB->removeSuccessor(BB); 2277 JTBB->addSuccessor(NewBB); 2278 2279 ++NumJTInserted; 2280 return NewBB; 2281 } 2282