1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "arm-cp-islands" 61 62 #define ARM_CP_ISLANDS_OPT_NAME \ 63 "ARM constant island placement and branch shortening pass" 64 STATISTIC(NumCPEs, "Number of constpool entries"); 65 STATISTIC(NumSplit, "Number of uncond branches inserted"); 66 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 67 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 68 STATISTIC(NumTBs, "Number of table branches generated"); 69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 71 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 72 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 75 76 static cl::opt<bool> 77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 78 cl::desc("Adjust basic block layout to better use TB[BH]")); 79 80 static cl::opt<unsigned> 81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 82 cl::desc("The max number of iteration for converge")); 83 84 static cl::opt<bool> SynthesizeThumb1TBB( 85 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 87 "equivalent to the TBB/TBH instructions")); 88 89 namespace { 90 91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 92 /// requires constant pool entries to be scattered among the instructions 93 /// inside a function. To do this, it completely ignores the normal LLVM 94 /// constant pool; instead, it places constants wherever it feels like with 95 /// special instructions. 96 /// 97 /// The terminology used in this pass includes: 98 /// Islands - Clumps of constants placed in the function. 99 /// Water - Potential places where an island could be formed. 100 /// CPE - A constant pool entry that has been placed somewhere, which 101 /// tracks a list of users. 102 class ARMConstantIslands : public MachineFunctionPass { 103 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 104 105 /// WaterList - A sorted list of basic blocks where islands could be placed 106 /// (i.e. blocks that don't fall through to the following block, due 107 /// to a return, unreachable, or unconditional branch). 108 std::vector<MachineBasicBlock*> WaterList; 109 110 /// NewWaterList - The subset of WaterList that was created since the 111 /// previous iteration by inserting unconditional branches. 112 SmallSet<MachineBasicBlock*, 4> NewWaterList; 113 114 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 115 116 /// CPUser - One user of a constant pool, keeping the machine instruction 117 /// pointer, the constant pool being referenced, and the max displacement 118 /// allowed from the instruction to the CP. The HighWaterMark records the 119 /// highest basic block where a new CPEntry can be placed. To ensure this 120 /// pass terminates, the CP entries are initially placed at the end of the 121 /// function and then move monotonically to lower addresses. The 122 /// exception to this rule is when the current CP entry for a particular 123 /// CPUser is out of range, but there is another CP entry for the same 124 /// constant value in range. We want to use the existing in-range CP 125 /// entry, but if it later moves out of range, the search for new water 126 /// should resume where it left off. The HighWaterMark is used to record 127 /// that point. 128 struct CPUser { 129 MachineInstr *MI; 130 MachineInstr *CPEMI; 131 MachineBasicBlock *HighWaterMark; 132 unsigned MaxDisp; 133 bool NegOk; 134 bool IsSoImm; 135 bool KnownAlignment = false; 136 137 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 138 bool neg, bool soimm) 139 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 140 HighWaterMark = CPEMI->getParent(); 141 } 142 143 /// getMaxDisp - Returns the maximum displacement supported by MI. 144 /// Correct for unknown alignment. 145 /// Conservatively subtract 2 bytes to handle weird alignment effects. 146 unsigned getMaxDisp() const { 147 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 148 } 149 }; 150 151 /// CPUsers - Keep track of all of the machine instructions that use various 152 /// constant pools and their max displacement. 153 std::vector<CPUser> CPUsers; 154 155 /// CPEntry - One per constant pool entry, keeping the machine instruction 156 /// pointer, the constpool index, and the number of CPUser's which 157 /// reference this entry. 158 struct CPEntry { 159 MachineInstr *CPEMI; 160 unsigned CPI; 161 unsigned RefCount; 162 163 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 164 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 165 }; 166 167 /// CPEntries - Keep track of all of the constant pool entry machine 168 /// instructions. For each original constpool index (i.e. those that existed 169 /// upon entry to this pass), it keeps a vector of entries. Original 170 /// elements are cloned as we go along; the clones are put in the vector of 171 /// the original element, but have distinct CPIs. 172 /// 173 /// The first half of CPEntries contains generic constants, the second half 174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 175 /// which vector it will be in here. 176 std::vector<std::vector<CPEntry>> CPEntries; 177 178 /// Maps a JT index to the offset in CPEntries containing copies of that 179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 180 DenseMap<int, int> JumpTableEntryIndices; 181 182 /// Maps a JT index to the LEA that actually uses the index to calculate its 183 /// base address. 184 DenseMap<int, int> JumpTableUserIndices; 185 186 /// ImmBranch - One per immediate branch, keeping the machine instruction 187 /// pointer, conditional or unconditional, the max displacement, 188 /// and (if isCond is true) the corresponding unconditional branch 189 /// opcode. 190 struct ImmBranch { 191 MachineInstr *MI; 192 unsigned MaxDisp : 31; 193 bool isCond : 1; 194 unsigned UncondBr; 195 196 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 197 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 198 }; 199 200 /// ImmBranches - Keep track of all the immediate branch instructions. 201 std::vector<ImmBranch> ImmBranches; 202 203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 204 SmallVector<MachineInstr*, 4> PushPopMIs; 205 206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 207 SmallVector<MachineInstr*, 4> T2JumpTables; 208 209 MachineFunction *MF; 210 MachineConstantPool *MCP; 211 const ARMBaseInstrInfo *TII; 212 const ARMSubtarget *STI; 213 ARMFunctionInfo *AFI; 214 MachineDominatorTree *DT = nullptr; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 void getAnalysisUsage(AnalysisUsage &AU) const override { 228 AU.addRequired<MachineDominatorTree>(); 229 MachineFunctionPass::getAnalysisUsage(AU); 230 } 231 232 MachineFunctionProperties getRequiredProperties() const override { 233 return MachineFunctionProperties().set( 234 MachineFunctionProperties::Property::NoVRegs); 235 } 236 237 StringRef getPassName() const override { 238 return ARM_CP_ISLANDS_OPT_NAME; 239 } 240 241 private: 242 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 243 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 244 bool BBHasFallthrough(MachineBasicBlock *MBB); 245 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 246 Align getCPEAlign(const MachineInstr *CPEMI); 247 void scanFunctionJumpTables(); 248 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 249 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 250 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 251 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 252 unsigned getCombinedIndex(const MachineInstr *CPEMI); 253 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 254 bool findAvailableWater(CPUser&U, unsigned UserOffset, 255 water_iterator &WaterIter, bool CloserWater); 256 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 257 MachineBasicBlock *&NewMBB); 258 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 259 void removeDeadCPEMI(MachineInstr *CPEMI); 260 bool removeUnusedCPEntries(); 261 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 262 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 263 bool DoDump = false); 264 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 265 CPUser &U, unsigned &Growth); 266 bool fixupImmediateBr(ImmBranch &Br); 267 bool fixupConditionalBr(ImmBranch &Br); 268 bool fixupUnconditionalBr(ImmBranch &Br); 269 bool optimizeThumb2Instructions(); 270 bool optimizeThumb2Branches(); 271 bool reorderThumb2JumpTables(); 272 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 273 unsigned &DeadSize, bool &CanDeleteLEA, 274 bool &BaseRegKill); 275 bool optimizeThumb2JumpTables(); 276 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 277 MachineBasicBlock *JTBB); 278 279 unsigned getUserOffset(CPUser&) const; 280 void dumpBBs(); 281 void verify(); 282 283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 284 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 286 const CPUser &U) { 287 return isOffsetInRange(UserOffset, TrialOffset, 288 U.getMaxDisp(), U.NegOk, U.IsSoImm); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char ARMConstantIslands::ID = 0; 295 296 /// verify - check BBOffsets, BBSizes, alignment of islands 297 void ARMConstantIslands::verify() { 298 #ifndef NDEBUG 299 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 300 assert(std::is_sorted(MF->begin(), MF->end(), 301 [&BBInfo](const MachineBasicBlock &LHS, 302 const MachineBasicBlock &RHS) { 303 return BBInfo[LHS.getNumber()].postOffset() < 304 BBInfo[RHS.getNumber()].postOffset(); 305 })); 306 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 307 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 308 CPUser &U = CPUsers[i]; 309 unsigned UserOffset = getUserOffset(U); 310 // Verify offset using the real max displacement without the safety 311 // adjustment. 312 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 313 /* DoDump = */ true)) { 314 LLVM_DEBUG(dbgs() << "OK\n"); 315 continue; 316 } 317 LLVM_DEBUG(dbgs() << "Out of range.\n"); 318 dumpBBs(); 319 LLVM_DEBUG(MF->dump()); 320 llvm_unreachable("Constant pool entry out of range!"); 321 } 322 #endif 323 } 324 325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 326 /// print block size and offset information - debugging 327 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 328 LLVM_DEBUG({ 329 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 330 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 331 const BasicBlockInfo &BBI = BBInfo[J]; 332 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 333 << " kb=" << unsigned(BBI.KnownBits) 334 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 335 << format(" size=%#x\n", BBInfo[J].Size); 336 } 337 }); 338 } 339 #endif 340 341 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 342 MF = &mf; 343 MCP = mf.getConstantPool(); 344 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 345 346 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 347 << MCP->getConstants().size() << " CP entries, aligned to " 348 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 349 350 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 351 TII = STI->getInstrInfo(); 352 isPositionIndependentOrROPI = 353 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 354 AFI = MF->getInfo<ARMFunctionInfo>(); 355 DT = &getAnalysis<MachineDominatorTree>(); 356 357 isThumb = AFI->isThumbFunction(); 358 isThumb1 = AFI->isThumb1OnlyFunction(); 359 isThumb2 = AFI->isThumb2Function(); 360 361 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 362 // TBB generation code in this constant island pass has not been adapted to 363 // deal with speculation barriers. 364 if (STI->hardenSlsRetBr()) 365 GenerateTBB = false; 366 367 // Renumber all of the machine basic blocks in the function, guaranteeing that 368 // the numbers agree with the position of the block in the function. 369 MF->RenumberBlocks(); 370 371 // Try to reorder and otherwise adjust the block layout to make good use 372 // of the TB[BH] instructions. 373 bool MadeChange = false; 374 if (GenerateTBB && AdjustJumpTableBlocks) { 375 scanFunctionJumpTables(); 376 MadeChange |= reorderThumb2JumpTables(); 377 // Data is out of date, so clear it. It'll be re-computed later. 378 T2JumpTables.clear(); 379 // Blocks may have shifted around. Keep the numbering up to date. 380 MF->RenumberBlocks(); 381 } 382 383 // Perform the initial placement of the constant pool entries. To start with, 384 // we put them all at the end of the function. 385 std::vector<MachineInstr*> CPEMIs; 386 if (!MCP->isEmpty()) 387 doInitialConstPlacement(CPEMIs); 388 389 if (MF->getJumpTableInfo()) 390 doInitialJumpTablePlacement(CPEMIs); 391 392 /// The next UID to take is the first unused one. 393 AFI->initPICLabelUId(CPEMIs.size()); 394 395 // Do the initial scan of the function, building up information about the 396 // sizes of each block, the location of all the water, and finding all of the 397 // constant pool users. 398 initializeFunctionInfo(CPEMIs); 399 CPEMIs.clear(); 400 LLVM_DEBUG(dumpBBs()); 401 402 // Functions with jump tables need an alignment of 4 because they use the ADR 403 // instruction, which aligns the PC to 4 bytes before adding an offset. 404 if (!T2JumpTables.empty()) 405 MF->ensureAlignment(Align(4)); 406 407 /// Remove dead constant pool entries. 408 MadeChange |= removeUnusedCPEntries(); 409 410 // Iteratively place constant pool entries and fix up branches until there 411 // is no change. 412 unsigned NoCPIters = 0, NoBRIters = 0; 413 while (true) { 414 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 415 bool CPChange = false; 416 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 417 // For most inputs, it converges in no more than 5 iterations. 418 // If it doesn't end in 10, the input may have huge BB or many CPEs. 419 // In this case, we will try different heuristics. 420 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 421 if (CPChange && ++NoCPIters > CPMaxIteration) 422 report_fatal_error("Constant Island pass failed to converge!"); 423 LLVM_DEBUG(dumpBBs()); 424 425 // Clear NewWaterList now. If we split a block for branches, it should 426 // appear as "new water" for the next iteration of constant pool placement. 427 NewWaterList.clear(); 428 429 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 430 bool BRChange = false; 431 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 432 BRChange |= fixupImmediateBr(ImmBranches[i]); 433 if (BRChange && ++NoBRIters > 30) 434 report_fatal_error("Branch Fix Up pass failed to converge!"); 435 LLVM_DEBUG(dumpBBs()); 436 437 if (!CPChange && !BRChange) 438 break; 439 MadeChange = true; 440 } 441 442 // Shrink 32-bit Thumb2 load and store instructions. 443 if (isThumb2 && !STI->prefers32BitThumb()) 444 MadeChange |= optimizeThumb2Instructions(); 445 446 // Shrink 32-bit branch instructions. 447 if (isThumb && STI->hasV8MBaselineOps()) 448 MadeChange |= optimizeThumb2Branches(); 449 450 // Optimize jump tables using TBB / TBH. 451 if (GenerateTBB && !STI->genExecuteOnly()) 452 MadeChange |= optimizeThumb2JumpTables(); 453 454 // After a while, this might be made debug-only, but it is not expensive. 455 verify(); 456 457 // Save the mapping between original and cloned constpool entries. 458 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 459 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 460 const CPEntry & CPE = CPEntries[i][j]; 461 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 462 AFI->recordCPEClone(i, CPE.CPI); 463 } 464 } 465 466 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 467 468 BBUtils->clear(); 469 WaterList.clear(); 470 CPUsers.clear(); 471 CPEntries.clear(); 472 JumpTableEntryIndices.clear(); 473 JumpTableUserIndices.clear(); 474 ImmBranches.clear(); 475 PushPopMIs.clear(); 476 T2JumpTables.clear(); 477 478 return MadeChange; 479 } 480 481 /// Perform the initial placement of the regular constant pool entries. 482 /// To start with, we put them all at the end of the function. 483 void 484 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 485 // Create the basic block to hold the CPE's. 486 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 487 MF->push_back(BB); 488 489 // MachineConstantPool measures alignment in bytes. 490 const Align MaxAlign = MCP->getConstantPoolAlign(); 491 const unsigned MaxLogAlign = Log2(MaxAlign); 492 493 // Mark the basic block as required by the const-pool. 494 BB->setAlignment(MaxAlign); 495 496 // The function needs to be as aligned as the basic blocks. The linker may 497 // move functions around based on their alignment. 498 // Special case: halfword literals still need word alignment on the function. 499 Align FuncAlign = MaxAlign; 500 if (MaxAlign == 2) 501 FuncAlign = Align(4); 502 MF->ensureAlignment(FuncAlign); 503 504 // Order the entries in BB by descending alignment. That ensures correct 505 // alignment of all entries as long as BB is sufficiently aligned. Keep 506 // track of the insertion point for each alignment. We are going to bucket 507 // sort the entries as they are created. 508 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 509 BB->end()); 510 511 // Add all of the constants from the constant pool to the end block, use an 512 // identity mapping of CPI's to CPE's. 513 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 514 515 const DataLayout &TD = MF->getDataLayout(); 516 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 517 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 518 Align Alignment = CPs[i].getAlign(); 519 // Verify that all constant pool entries are a multiple of their alignment. 520 // If not, we would have to pad them out so that instructions stay aligned. 521 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 522 523 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 524 unsigned LogAlign = Log2(Alignment); 525 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 526 MachineInstr *CPEMI = 527 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 528 .addImm(i).addConstantPoolIndex(i).addImm(Size); 529 CPEMIs.push_back(CPEMI); 530 531 // Ensure that future entries with higher alignment get inserted before 532 // CPEMI. This is bucket sort with iterators. 533 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 534 if (InsPoint[a] == InsAt) 535 InsPoint[a] = CPEMI; 536 537 // Add a new CPEntry, but no corresponding CPUser yet. 538 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 539 ++NumCPEs; 540 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 541 << Size << ", align = " << Alignment.value() << '\n'); 542 } 543 LLVM_DEBUG(BB->dump()); 544 } 545 546 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 547 /// instructions can be made more efficient if the jump table immediately 548 /// follows the instruction, it's best to place them immediately next to their 549 /// jumps to begin with. In almost all cases they'll never be moved from that 550 /// position. 551 void ARMConstantIslands::doInitialJumpTablePlacement( 552 std::vector<MachineInstr *> &CPEMIs) { 553 unsigned i = CPEntries.size(); 554 auto MJTI = MF->getJumpTableInfo(); 555 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 556 557 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 558 for (MachineBasicBlock &MBB : *MF) { 559 auto MI = MBB.getLastNonDebugInstr(); 560 // Look past potential SpeculationBarriers at end of BB. 561 while (MI != MBB.end() && 562 (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) || 563 MI->isDebugInstr())) 564 --MI; 565 566 if (MI == MBB.end()) 567 continue; 568 569 unsigned JTOpcode; 570 switch (MI->getOpcode()) { 571 default: 572 continue; 573 case ARM::BR_JTadd: 574 case ARM::BR_JTr: 575 case ARM::tBR_JTr: 576 case ARM::BR_JTm_i12: 577 case ARM::BR_JTm_rs: 578 JTOpcode = ARM::JUMPTABLE_ADDRS; 579 break; 580 case ARM::t2BR_JT: 581 JTOpcode = ARM::JUMPTABLE_INSTS; 582 break; 583 case ARM::tTBB_JT: 584 case ARM::t2TBB_JT: 585 JTOpcode = ARM::JUMPTABLE_TBB; 586 break; 587 case ARM::tTBH_JT: 588 case ARM::t2TBH_JT: 589 JTOpcode = ARM::JUMPTABLE_TBH; 590 break; 591 } 592 593 unsigned NumOps = MI->getDesc().getNumOperands(); 594 MachineOperand JTOp = 595 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 596 unsigned JTI = JTOp.getIndex(); 597 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 598 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 599 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 600 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 601 DebugLoc(), TII->get(JTOpcode)) 602 .addImm(i++) 603 .addJumpTableIndex(JTI) 604 .addImm(Size); 605 CPEMIs.push_back(CPEMI); 606 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 607 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 608 if (!LastCorrectlyNumberedBB) 609 LastCorrectlyNumberedBB = &MBB; 610 } 611 612 // If we did anything then we need to renumber the subsequent blocks. 613 if (LastCorrectlyNumberedBB) 614 MF->RenumberBlocks(LastCorrectlyNumberedBB); 615 } 616 617 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 618 /// into the block immediately after it. 619 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 620 // Get the next machine basic block in the function. 621 MachineFunction::iterator MBBI = MBB->getIterator(); 622 // Can't fall off end of function. 623 if (std::next(MBBI) == MBB->getParent()->end()) 624 return false; 625 626 MachineBasicBlock *NextBB = &*std::next(MBBI); 627 if (!MBB->isSuccessor(NextBB)) 628 return false; 629 630 // Try to analyze the end of the block. A potential fallthrough may already 631 // have an unconditional branch for whatever reason. 632 MachineBasicBlock *TBB, *FBB; 633 SmallVector<MachineOperand, 4> Cond; 634 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 635 return TooDifficult || FBB == nullptr; 636 } 637 638 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 639 /// look up the corresponding CPEntry. 640 ARMConstantIslands::CPEntry * 641 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 642 const MachineInstr *CPEMI) { 643 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 644 // Number of entries per constpool index should be small, just do a 645 // linear search. 646 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 647 if (CPEs[i].CPEMI == CPEMI) 648 return &CPEs[i]; 649 } 650 return nullptr; 651 } 652 653 /// getCPEAlign - Returns the required alignment of the constant pool entry 654 /// represented by CPEMI. 655 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 656 switch (CPEMI->getOpcode()) { 657 case ARM::CONSTPOOL_ENTRY: 658 break; 659 case ARM::JUMPTABLE_TBB: 660 return isThumb1 ? Align(4) : Align(1); 661 case ARM::JUMPTABLE_TBH: 662 return isThumb1 ? Align(4) : Align(2); 663 case ARM::JUMPTABLE_INSTS: 664 return Align(2); 665 case ARM::JUMPTABLE_ADDRS: 666 return Align(4); 667 default: 668 llvm_unreachable("unknown constpool entry kind"); 669 } 670 671 unsigned CPI = getCombinedIndex(CPEMI); 672 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 673 return MCP->getConstants()[CPI].getAlign(); 674 } 675 676 /// scanFunctionJumpTables - Do a scan of the function, building up 677 /// information about the sizes of each block and the locations of all 678 /// the jump tables. 679 void ARMConstantIslands::scanFunctionJumpTables() { 680 for (MachineBasicBlock &MBB : *MF) { 681 for (MachineInstr &I : MBB) 682 if (I.isBranch() && 683 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 684 T2JumpTables.push_back(&I); 685 } 686 } 687 688 /// initializeFunctionInfo - Do the initial scan of the function, building up 689 /// information about the sizes of each block, the location of all the water, 690 /// and finding all of the constant pool users. 691 void ARMConstantIslands:: 692 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 693 694 BBUtils->computeAllBlockSizes(); 695 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 696 // The known bits of the entry block offset are determined by the function 697 // alignment. 698 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 699 700 // Compute block offsets and known bits. 701 BBUtils->adjustBBOffsetsAfter(&MF->front()); 702 703 // Now go back through the instructions and build up our data structures. 704 for (MachineBasicBlock &MBB : *MF) { 705 // If this block doesn't fall through into the next MBB, then this is 706 // 'water' that a constant pool island could be placed. 707 if (!BBHasFallthrough(&MBB)) 708 WaterList.push_back(&MBB); 709 710 for (MachineInstr &I : MBB) { 711 if (I.isDebugInstr()) 712 continue; 713 714 unsigned Opc = I.getOpcode(); 715 if (I.isBranch()) { 716 bool isCond = false; 717 unsigned Bits = 0; 718 unsigned Scale = 1; 719 int UOpc = Opc; 720 switch (Opc) { 721 default: 722 continue; // Ignore other JT branches 723 case ARM::t2BR_JT: 724 case ARM::tBR_JTr: 725 T2JumpTables.push_back(&I); 726 continue; // Does not get an entry in ImmBranches 727 case ARM::Bcc: 728 isCond = true; 729 UOpc = ARM::B; 730 LLVM_FALLTHROUGH; 731 case ARM::B: 732 Bits = 24; 733 Scale = 4; 734 break; 735 case ARM::tBcc: 736 isCond = true; 737 UOpc = ARM::tB; 738 Bits = 8; 739 Scale = 2; 740 break; 741 case ARM::tB: 742 Bits = 11; 743 Scale = 2; 744 break; 745 case ARM::t2Bcc: 746 isCond = true; 747 UOpc = ARM::t2B; 748 Bits = 20; 749 Scale = 2; 750 break; 751 case ARM::t2B: 752 Bits = 24; 753 Scale = 2; 754 break; 755 } 756 757 // Record this immediate branch. 758 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 759 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 760 } 761 762 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 763 PushPopMIs.push_back(&I); 764 765 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 766 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 767 Opc == ARM::JUMPTABLE_TBH) 768 continue; 769 770 // Scan the instructions for constant pool operands. 771 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 772 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 773 // We found one. The addressing mode tells us the max displacement 774 // from the PC that this instruction permits. 775 776 // Basic size info comes from the TSFlags field. 777 unsigned Bits = 0; 778 unsigned Scale = 1; 779 bool NegOk = false; 780 bool IsSoImm = false; 781 782 switch (Opc) { 783 default: 784 llvm_unreachable("Unknown addressing mode for CP reference!"); 785 786 // Taking the address of a CP entry. 787 case ARM::LEApcrel: 788 case ARM::LEApcrelJT: { 789 // This takes a SoImm, which is 8 bit immediate rotated. We'll 790 // pretend the maximum offset is 255 * 4. Since each instruction 791 // 4 byte wide, this is always correct. We'll check for other 792 // displacements that fits in a SoImm as well. 793 Bits = 8; 794 NegOk = true; 795 IsSoImm = true; 796 unsigned CPI = I.getOperand(op).getIndex(); 797 assert(CPI < CPEMIs.size()); 798 MachineInstr *CPEMI = CPEMIs[CPI]; 799 const Align CPEAlign = getCPEAlign(CPEMI); 800 const unsigned LogCPEAlign = Log2(CPEAlign); 801 if (LogCPEAlign >= 2) 802 Scale = 4; 803 else 804 // For constants with less than 4-byte alignment, 805 // we'll pretend the maximum offset is 255 * 1. 806 Scale = 1; 807 } 808 break; 809 case ARM::t2LEApcrel: 810 case ARM::t2LEApcrelJT: 811 Bits = 12; 812 NegOk = true; 813 break; 814 case ARM::tLEApcrel: 815 case ARM::tLEApcrelJT: 816 Bits = 8; 817 Scale = 4; 818 break; 819 820 case ARM::LDRBi12: 821 case ARM::LDRi12: 822 case ARM::LDRcp: 823 case ARM::t2LDRpci: 824 case ARM::t2LDRHpci: 825 case ARM::t2LDRBpci: 826 Bits = 12; // +-offset_12 827 NegOk = true; 828 break; 829 830 case ARM::tLDRpci: 831 Bits = 8; 832 Scale = 4; // +(offset_8*4) 833 break; 834 835 case ARM::VLDRD: 836 case ARM::VLDRS: 837 Bits = 8; 838 Scale = 4; // +-(offset_8*4) 839 NegOk = true; 840 break; 841 case ARM::VLDRH: 842 Bits = 8; 843 Scale = 2; // +-(offset_8*2) 844 NegOk = true; 845 break; 846 } 847 848 // Remember that this is a user of a CP entry. 849 unsigned CPI = I.getOperand(op).getIndex(); 850 if (I.getOperand(op).isJTI()) { 851 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 852 CPI = JumpTableEntryIndices[CPI]; 853 } 854 855 MachineInstr *CPEMI = CPEMIs[CPI]; 856 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 857 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 858 859 // Increment corresponding CPEntry reference count. 860 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 861 assert(CPE && "Cannot find a corresponding CPEntry!"); 862 CPE->RefCount++; 863 864 // Instructions can only use one CP entry, don't bother scanning the 865 // rest of the operands. 866 break; 867 } 868 } 869 } 870 } 871 872 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 873 /// ID. 874 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 875 const MachineBasicBlock *RHS) { 876 return LHS->getNumber() < RHS->getNumber(); 877 } 878 879 /// updateForInsertedWaterBlock - When a block is newly inserted into the 880 /// machine function, it upsets all of the block numbers. Renumber the blocks 881 /// and update the arrays that parallel this numbering. 882 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 883 // Renumber the MBB's to keep them consecutive. 884 NewBB->getParent()->RenumberBlocks(NewBB); 885 886 // Insert an entry into BBInfo to align it properly with the (newly 887 // renumbered) block numbers. 888 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 889 890 // Next, update WaterList. Specifically, we need to add NewMBB as having 891 // available water after it. 892 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 893 WaterList.insert(IP, NewBB); 894 } 895 896 /// Split the basic block containing MI into two blocks, which are joined by 897 /// an unconditional branch. Update data structures and renumber blocks to 898 /// account for this change and returns the newly created block. 899 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 900 MachineBasicBlock *OrigBB = MI->getParent(); 901 902 // Collect liveness information at MI. 903 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 904 LRs.addLiveOuts(*OrigBB); 905 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 906 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 907 LRs.stepBackward(LiveMI); 908 909 // Create a new MBB for the code after the OrigBB. 910 MachineBasicBlock *NewBB = 911 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 912 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 913 MF->insert(MBBI, NewBB); 914 915 // Splice the instructions starting with MI over to NewBB. 916 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 917 918 // Add an unconditional branch from OrigBB to NewBB. 919 // Note the new unconditional branch is not being recorded. 920 // There doesn't seem to be meaningful DebugInfo available; this doesn't 921 // correspond to anything in the source. 922 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 923 if (!isThumb) 924 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 925 else 926 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 927 .addMBB(NewBB) 928 .add(predOps(ARMCC::AL)); 929 ++NumSplit; 930 931 // Update the CFG. All succs of OrigBB are now succs of NewBB. 932 NewBB->transferSuccessors(OrigBB); 933 934 // OrigBB branches to NewBB. 935 OrigBB->addSuccessor(NewBB); 936 937 // Update live-in information in the new block. 938 MachineRegisterInfo &MRI = MF->getRegInfo(); 939 for (MCPhysReg L : LRs) 940 if (!MRI.isReserved(L)) 941 NewBB->addLiveIn(L); 942 943 // Update internal data structures to account for the newly inserted MBB. 944 // This is almost the same as updateForInsertedWaterBlock, except that 945 // the Water goes after OrigBB, not NewBB. 946 MF->RenumberBlocks(NewBB); 947 948 // Insert an entry into BBInfo to align it properly with the (newly 949 // renumbered) block numbers. 950 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 951 952 // Next, update WaterList. Specifically, we need to add OrigMBB as having 953 // available water after it (but not if it's already there, which happens 954 // when splitting before a conditional branch that is followed by an 955 // unconditional branch - in that case we want to insert NewBB). 956 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 957 MachineBasicBlock* WaterBB = *IP; 958 if (WaterBB == OrigBB) 959 WaterList.insert(std::next(IP), NewBB); 960 else 961 WaterList.insert(IP, OrigBB); 962 NewWaterList.insert(OrigBB); 963 964 // Figure out how large the OrigBB is. As the first half of the original 965 // block, it cannot contain a tablejump. The size includes 966 // the new jump we added. (It should be possible to do this without 967 // recounting everything, but it's very confusing, and this is rarely 968 // executed.) 969 BBUtils->computeBlockSize(OrigBB); 970 971 // Figure out how large the NewMBB is. As the second half of the original 972 // block, it may contain a tablejump. 973 BBUtils->computeBlockSize(NewBB); 974 975 // All BBOffsets following these blocks must be modified. 976 BBUtils->adjustBBOffsetsAfter(OrigBB); 977 978 return NewBB; 979 } 980 981 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 982 /// displacement computation. Update U.KnownAlignment to match its current 983 /// basic block location. 984 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 985 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 986 987 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 988 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 989 unsigned KnownBits = BBI.internalKnownBits(); 990 991 // The value read from PC is offset from the actual instruction address. 992 UserOffset += (isThumb ? 4 : 8); 993 994 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 995 // Make sure U.getMaxDisp() returns a constrained range. 996 U.KnownAlignment = (KnownBits >= 2); 997 998 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 999 // purposes of the displacement computation; compensate for that here. 1000 // For unknown alignments, getMaxDisp() constrains the range instead. 1001 if (isThumb && U.KnownAlignment) 1002 UserOffset &= ~3u; 1003 1004 return UserOffset; 1005 } 1006 1007 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1008 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1009 /// constant pool entry). 1010 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1011 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1012 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1013 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1014 unsigned TrialOffset, unsigned MaxDisp, 1015 bool NegativeOK, bool IsSoImm) { 1016 if (UserOffset <= TrialOffset) { 1017 // User before the Trial. 1018 if (TrialOffset - UserOffset <= MaxDisp) 1019 return true; 1020 // FIXME: Make use full range of soimm values. 1021 } else if (NegativeOK) { 1022 if (UserOffset - TrialOffset <= MaxDisp) 1023 return true; 1024 // FIXME: Make use full range of soimm values. 1025 } 1026 return false; 1027 } 1028 1029 /// isWaterInRange - Returns true if a CPE placed after the specified 1030 /// Water (a basic block) will be in range for the specific MI. 1031 /// 1032 /// Compute how much the function will grow by inserting a CPE after Water. 1033 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1034 MachineBasicBlock* Water, CPUser &U, 1035 unsigned &Growth) { 1036 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1037 const Align CPEAlign = getCPEAlign(U.CPEMI); 1038 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1039 unsigned NextBlockOffset; 1040 Align NextBlockAlignment; 1041 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1042 if (++NextBlock == MF->end()) { 1043 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1044 } else { 1045 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1046 NextBlockAlignment = NextBlock->getAlignment(); 1047 } 1048 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1049 unsigned CPEEnd = CPEOffset + Size; 1050 1051 // The CPE may be able to hide in the alignment padding before the next 1052 // block. It may also cause more padding to be required if it is more aligned 1053 // that the next block. 1054 if (CPEEnd > NextBlockOffset) { 1055 Growth = CPEEnd - NextBlockOffset; 1056 // Compute the padding that would go at the end of the CPE to align the next 1057 // block. 1058 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1059 1060 // If the CPE is to be inserted before the instruction, that will raise 1061 // the offset of the instruction. Also account for unknown alignment padding 1062 // in blocks between CPE and the user. 1063 if (CPEOffset < UserOffset) 1064 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1065 } else 1066 // CPE fits in existing padding. 1067 Growth = 0; 1068 1069 return isOffsetInRange(UserOffset, CPEOffset, U); 1070 } 1071 1072 /// isCPEntryInRange - Returns true if the distance between specific MI and 1073 /// specific ConstPool entry instruction can fit in MI's displacement field. 1074 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1075 MachineInstr *CPEMI, unsigned MaxDisp, 1076 bool NegOk, bool DoDump) { 1077 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1078 1079 if (DoDump) { 1080 LLVM_DEBUG({ 1081 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1082 unsigned Block = MI->getParent()->getNumber(); 1083 const BasicBlockInfo &BBI = BBInfo[Block]; 1084 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1085 << " max delta=" << MaxDisp 1086 << format(" insn address=%#x", UserOffset) << " in " 1087 << printMBBReference(*MI->getParent()) << ": " 1088 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1089 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1090 int(CPEOffset - UserOffset)); 1091 }); 1092 } 1093 1094 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1095 } 1096 1097 #ifndef NDEBUG 1098 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1099 /// unconditionally branches to its only successor. 1100 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1101 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1102 return false; 1103 1104 MachineBasicBlock *Succ = *MBB->succ_begin(); 1105 MachineBasicBlock *Pred = *MBB->pred_begin(); 1106 MachineInstr *PredMI = &Pred->back(); 1107 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1108 || PredMI->getOpcode() == ARM::t2B) 1109 return PredMI->getOperand(0).getMBB() == Succ; 1110 return false; 1111 } 1112 #endif // NDEBUG 1113 1114 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1115 /// and instruction CPEMI, and decrement its refcount. If the refcount 1116 /// becomes 0 remove the entry and instruction. Returns true if we removed 1117 /// the entry, false if we didn't. 1118 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1119 MachineInstr *CPEMI) { 1120 // Find the old entry. Eliminate it if it is no longer used. 1121 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1122 assert(CPE && "Unexpected!"); 1123 if (--CPE->RefCount == 0) { 1124 removeDeadCPEMI(CPEMI); 1125 CPE->CPEMI = nullptr; 1126 --NumCPEs; 1127 return true; 1128 } 1129 return false; 1130 } 1131 1132 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1133 if (CPEMI->getOperand(1).isCPI()) 1134 return CPEMI->getOperand(1).getIndex(); 1135 1136 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1137 } 1138 1139 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1140 /// if not, see if an in-range clone of the CPE is in range, and if so, 1141 /// change the data structures so the user references the clone. Returns: 1142 /// 0 = no existing entry found 1143 /// 1 = entry found, and there were no code insertions or deletions 1144 /// 2 = entry found, and there were code insertions or deletions 1145 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1146 MachineInstr *UserMI = U.MI; 1147 MachineInstr *CPEMI = U.CPEMI; 1148 1149 // Check to see if the CPE is already in-range. 1150 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1151 true)) { 1152 LLVM_DEBUG(dbgs() << "In range\n"); 1153 return 1; 1154 } 1155 1156 // No. Look for previously created clones of the CPE that are in range. 1157 unsigned CPI = getCombinedIndex(CPEMI); 1158 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1159 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1160 // We already tried this one 1161 if (CPEs[i].CPEMI == CPEMI) 1162 continue; 1163 // Removing CPEs can leave empty entries, skip 1164 if (CPEs[i].CPEMI == nullptr) 1165 continue; 1166 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1167 U.NegOk)) { 1168 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1169 << CPEs[i].CPI << "\n"); 1170 // Point the CPUser node to the replacement 1171 U.CPEMI = CPEs[i].CPEMI; 1172 // Change the CPI in the instruction operand to refer to the clone. 1173 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1174 if (UserMI->getOperand(j).isCPI()) { 1175 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1176 break; 1177 } 1178 // Adjust the refcount of the clone... 1179 CPEs[i].RefCount++; 1180 // ...and the original. If we didn't remove the old entry, none of the 1181 // addresses changed, so we don't need another pass. 1182 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1183 } 1184 } 1185 return 0; 1186 } 1187 1188 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1189 /// the specific unconditional branch instruction. 1190 static inline unsigned getUnconditionalBrDisp(int Opc) { 1191 switch (Opc) { 1192 case ARM::tB: 1193 return ((1<<10)-1)*2; 1194 case ARM::t2B: 1195 return ((1<<23)-1)*2; 1196 default: 1197 break; 1198 } 1199 1200 return ((1<<23)-1)*4; 1201 } 1202 1203 /// findAvailableWater - Look for an existing entry in the WaterList in which 1204 /// we can place the CPE referenced from U so it's within range of U's MI. 1205 /// Returns true if found, false if not. If it returns true, WaterIter 1206 /// is set to the WaterList entry. For Thumb, prefer water that will not 1207 /// introduce padding to water that will. To ensure that this pass 1208 /// terminates, the CPE location for a particular CPUser is only allowed to 1209 /// move to a lower address, so search backward from the end of the list and 1210 /// prefer the first water that is in range. 1211 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1212 water_iterator &WaterIter, 1213 bool CloserWater) { 1214 if (WaterList.empty()) 1215 return false; 1216 1217 unsigned BestGrowth = ~0u; 1218 // The nearest water without splitting the UserBB is right after it. 1219 // If the distance is still large (we have a big BB), then we need to split it 1220 // if we don't converge after certain iterations. This helps the following 1221 // situation to converge: 1222 // BB0: 1223 // Big BB 1224 // BB1: 1225 // Constant Pool 1226 // When a CP access is out of range, BB0 may be used as water. However, 1227 // inserting islands between BB0 and BB1 makes other accesses out of range. 1228 MachineBasicBlock *UserBB = U.MI->getParent(); 1229 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1230 const Align CPEAlign = getCPEAlign(U.CPEMI); 1231 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1232 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1233 return false; 1234 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1235 --IP) { 1236 MachineBasicBlock* WaterBB = *IP; 1237 // Check if water is in range and is either at a lower address than the 1238 // current "high water mark" or a new water block that was created since 1239 // the previous iteration by inserting an unconditional branch. In the 1240 // latter case, we want to allow resetting the high water mark back to 1241 // this new water since we haven't seen it before. Inserting branches 1242 // should be relatively uncommon and when it does happen, we want to be 1243 // sure to take advantage of it for all the CPEs near that block, so that 1244 // we don't insert more branches than necessary. 1245 // When CloserWater is true, we try to find the lowest address after (or 1246 // equal to) user MI's BB no matter of padding growth. 1247 unsigned Growth; 1248 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1249 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1250 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1251 Growth < BestGrowth) { 1252 // This is the least amount of required padding seen so far. 1253 BestGrowth = Growth; 1254 WaterIter = IP; 1255 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1256 << " Growth=" << Growth << '\n'); 1257 1258 if (CloserWater && WaterBB == U.MI->getParent()) 1259 return true; 1260 // Keep looking unless it is perfect and we're not looking for the lowest 1261 // possible address. 1262 if (!CloserWater && BestGrowth == 0) 1263 return true; 1264 } 1265 if (IP == B) 1266 break; 1267 } 1268 return BestGrowth != ~0u; 1269 } 1270 1271 /// createNewWater - No existing WaterList entry will work for 1272 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1273 /// block is used if in range, and the conditional branch munged so control 1274 /// flow is correct. Otherwise the block is split to create a hole with an 1275 /// unconditional branch around it. In either case NewMBB is set to a 1276 /// block following which the new island can be inserted (the WaterList 1277 /// is not adjusted). 1278 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1279 unsigned UserOffset, 1280 MachineBasicBlock *&NewMBB) { 1281 CPUser &U = CPUsers[CPUserIndex]; 1282 MachineInstr *UserMI = U.MI; 1283 MachineInstr *CPEMI = U.CPEMI; 1284 const Align CPEAlign = getCPEAlign(CPEMI); 1285 MachineBasicBlock *UserMBB = UserMI->getParent(); 1286 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1287 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1288 1289 // If the block does not end in an unconditional branch already, and if the 1290 // end of the block is within range, make new water there. (The addition 1291 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1292 // Thumb2, 2 on Thumb1. 1293 if (BBHasFallthrough(UserMBB)) { 1294 // Size of branch to insert. 1295 unsigned Delta = isThumb1 ? 2 : 4; 1296 // Compute the offset where the CPE will begin. 1297 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1298 1299 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1300 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1301 << format(", expected CPE offset %#x\n", CPEOffset)); 1302 NewMBB = &*++UserMBB->getIterator(); 1303 // Add an unconditional branch from UserMBB to fallthrough block. Record 1304 // it for branch lengthening; this new branch will not get out of range, 1305 // but if the preceding conditional branch is out of range, the targets 1306 // will be exchanged, and the altered branch may be out of range, so the 1307 // machinery has to know about it. 1308 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1309 if (!isThumb) 1310 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1311 else 1312 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1313 .addMBB(NewMBB) 1314 .add(predOps(ARMCC::AL)); 1315 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1316 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1317 MaxDisp, false, UncondBr)); 1318 BBUtils->computeBlockSize(UserMBB); 1319 BBUtils->adjustBBOffsetsAfter(UserMBB); 1320 return; 1321 } 1322 } 1323 1324 // What a big block. Find a place within the block to split it. This is a 1325 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1326 // entries are 4 bytes: if instruction I references island CPE, and 1327 // instruction I+1 references CPE', it will not work well to put CPE as far 1328 // forward as possible, since then CPE' cannot immediately follow it (that 1329 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1330 // need to create a new island. So, we make a first guess, then walk through 1331 // the instructions between the one currently being looked at and the 1332 // possible insertion point, and make sure any other instructions that 1333 // reference CPEs will be able to use the same island area; if not, we back 1334 // up the insertion point. 1335 1336 // Try to split the block so it's fully aligned. Compute the latest split 1337 // point where we can add a 4-byte branch instruction, and then align to 1338 // Align which is the largest possible alignment in the function. 1339 const Align Align = MF->getAlignment(); 1340 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1341 unsigned KnownBits = UserBBI.internalKnownBits(); 1342 unsigned UPad = UnknownPadding(Align, KnownBits); 1343 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1344 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1345 BaseInsertOffset)); 1346 1347 // The 4 in the following is for the unconditional branch we'll be inserting 1348 // (allows for long branch on Thumb1). Alignment of the island is handled 1349 // inside isOffsetInRange. 1350 BaseInsertOffset -= 4; 1351 1352 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1353 << " la=" << Log2(Align) << " kb=" << KnownBits 1354 << " up=" << UPad << '\n'); 1355 1356 // This could point off the end of the block if we've already got constant 1357 // pool entries following this block; only the last one is in the water list. 1358 // Back past any possible branches (allow for a conditional and a maximally 1359 // long unconditional). 1360 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1361 // Ensure BaseInsertOffset is larger than the offset of the instruction 1362 // following UserMI so that the loop which searches for the split point 1363 // iterates at least once. 1364 BaseInsertOffset = 1365 std::max(UserBBI.postOffset() - UPad - 8, 1366 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1367 // If the CP is referenced(ie, UserOffset) is in first four instructions 1368 // after IT, this recalculated BaseInsertOffset could be in the middle of 1369 // an IT block. If it is, change the BaseInsertOffset to just after the 1370 // IT block. This still make the CP Entry is in range becuase of the 1371 // following reasons. 1372 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1373 // U.getMaxDisp() - UPad). 1374 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1375 // bytes). 1376 // 3. All the relevant instructions support much larger Maximum 1377 // displacement. 1378 MachineBasicBlock::iterator I = UserMI; 1379 ++I; 1380 Register PredReg; 1381 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1382 I->getOpcode() != ARM::t2IT && 1383 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1384 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1385 BaseInsertOffset = 1386 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1387 assert(I != UserMBB->end() && "Fell off end of block"); 1388 } 1389 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1390 } 1391 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1392 CPEMI->getOperand(2).getImm(); 1393 MachineBasicBlock::iterator MI = UserMI; 1394 ++MI; 1395 unsigned CPUIndex = CPUserIndex+1; 1396 unsigned NumCPUsers = CPUsers.size(); 1397 MachineInstr *LastIT = nullptr; 1398 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1399 Offset < BaseInsertOffset; 1400 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1401 assert(MI != UserMBB->end() && "Fell off end of block"); 1402 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1403 CPUser &U = CPUsers[CPUIndex]; 1404 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1405 // Shift intertion point by one unit of alignment so it is within reach. 1406 BaseInsertOffset -= Align.value(); 1407 EndInsertOffset -= Align.value(); 1408 } 1409 // This is overly conservative, as we don't account for CPEMIs being 1410 // reused within the block, but it doesn't matter much. Also assume CPEs 1411 // are added in order with alignment padding. We may eventually be able 1412 // to pack the aligned CPEs better. 1413 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1414 CPUIndex++; 1415 } 1416 1417 // Remember the last IT instruction. 1418 if (MI->getOpcode() == ARM::t2IT) 1419 LastIT = &*MI; 1420 } 1421 1422 --MI; 1423 1424 // Avoid splitting an IT block. 1425 if (LastIT) { 1426 Register PredReg; 1427 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1428 if (CC != ARMCC::AL) 1429 MI = LastIT; 1430 } 1431 1432 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1433 // On Windows, this instruction pair is covered by one single 1434 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1435 // constant island is injected inbetween them, the relocation will clobber 1436 // the instruction and fail to update the MOVT instruction. 1437 // (These instructions are bundled up until right before the ConstantIslands 1438 // pass.) 1439 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1440 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1441 ARMII::MO_HI16) { 1442 --MI; 1443 assert(MI->getOpcode() == ARM::t2MOVi16 && 1444 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1445 ARMII::MO_LO16); 1446 } 1447 1448 // We really must not split an IT block. 1449 #ifndef NDEBUG 1450 Register PredReg; 1451 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1452 #endif 1453 NewMBB = splitBlockBeforeInstr(&*MI); 1454 } 1455 1456 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1457 /// is out-of-range. If so, pick up the constant pool value and move it some 1458 /// place in-range. Return true if we changed any addresses (thus must run 1459 /// another pass of branch lengthening), false otherwise. 1460 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1461 bool CloserWater) { 1462 CPUser &U = CPUsers[CPUserIndex]; 1463 MachineInstr *UserMI = U.MI; 1464 MachineInstr *CPEMI = U.CPEMI; 1465 unsigned CPI = getCombinedIndex(CPEMI); 1466 unsigned Size = CPEMI->getOperand(2).getImm(); 1467 // Compute this only once, it's expensive. 1468 unsigned UserOffset = getUserOffset(U); 1469 1470 // See if the current entry is within range, or there is a clone of it 1471 // in range. 1472 int result = findInRangeCPEntry(U, UserOffset); 1473 if (result==1) return false; 1474 else if (result==2) return true; 1475 1476 // No existing clone of this CPE is within range. 1477 // We will be generating a new clone. Get a UID for it. 1478 unsigned ID = AFI->createPICLabelUId(); 1479 1480 // Look for water where we can place this CPE. 1481 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1482 MachineBasicBlock *NewMBB; 1483 water_iterator IP; 1484 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1485 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1486 MachineBasicBlock *WaterBB = *IP; 1487 1488 // If the original WaterList entry was "new water" on this iteration, 1489 // propagate that to the new island. This is just keeping NewWaterList 1490 // updated to match the WaterList, which will be updated below. 1491 if (NewWaterList.erase(WaterBB)) 1492 NewWaterList.insert(NewIsland); 1493 1494 // The new CPE goes before the following block (NewMBB). 1495 NewMBB = &*++WaterBB->getIterator(); 1496 } else { 1497 // No water found. 1498 LLVM_DEBUG(dbgs() << "No water found\n"); 1499 createNewWater(CPUserIndex, UserOffset, NewMBB); 1500 1501 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1502 // called while handling branches so that the water will be seen on the 1503 // next iteration for constant pools, but in this context, we don't want 1504 // it. Check for this so it will be removed from the WaterList. 1505 // Also remove any entry from NewWaterList. 1506 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1507 IP = find(WaterList, WaterBB); 1508 if (IP != WaterList.end()) 1509 NewWaterList.erase(WaterBB); 1510 1511 // We are adding new water. Update NewWaterList. 1512 NewWaterList.insert(NewIsland); 1513 } 1514 // Always align the new block because CP entries can be smaller than 4 1515 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1516 // be an already aligned constant pool block. 1517 const Align Alignment = isThumb ? Align(2) : Align(4); 1518 if (NewMBB->getAlignment() < Alignment) 1519 NewMBB->setAlignment(Alignment); 1520 1521 // Remove the original WaterList entry; we want subsequent insertions in 1522 // this vicinity to go after the one we're about to insert. This 1523 // considerably reduces the number of times we have to move the same CPE 1524 // more than once and is also important to ensure the algorithm terminates. 1525 if (IP != WaterList.end()) 1526 WaterList.erase(IP); 1527 1528 // Okay, we know we can put an island before NewMBB now, do it! 1529 MF->insert(NewMBB->getIterator(), NewIsland); 1530 1531 // Update internal data structures to account for the newly inserted MBB. 1532 updateForInsertedWaterBlock(NewIsland); 1533 1534 // Now that we have an island to add the CPE to, clone the original CPE and 1535 // add it to the island. 1536 U.HighWaterMark = NewIsland; 1537 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1538 .addImm(ID) 1539 .add(CPEMI->getOperand(1)) 1540 .addImm(Size); 1541 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1542 ++NumCPEs; 1543 1544 // Decrement the old entry, and remove it if refcount becomes 0. 1545 decrementCPEReferenceCount(CPI, CPEMI); 1546 1547 // Mark the basic block as aligned as required by the const-pool entry. 1548 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1549 1550 // Increase the size of the island block to account for the new entry. 1551 BBUtils->adjustBBSize(NewIsland, Size); 1552 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1553 1554 // Finally, change the CPI in the instruction operand to be ID. 1555 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1556 if (UserMI->getOperand(i).isCPI()) { 1557 UserMI->getOperand(i).setIndex(ID); 1558 break; 1559 } 1560 1561 LLVM_DEBUG( 1562 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1563 << format(" offset=%#x\n", 1564 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1565 1566 return true; 1567 } 1568 1569 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1570 /// sizes and offsets of impacted basic blocks. 1571 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1572 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1573 unsigned Size = CPEMI->getOperand(2).getImm(); 1574 CPEMI->eraseFromParent(); 1575 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1576 BBUtils->adjustBBSize(CPEBB, -Size); 1577 // All succeeding offsets have the current size value added in, fix this. 1578 if (CPEBB->empty()) { 1579 BBInfo[CPEBB->getNumber()].Size = 0; 1580 1581 // This block no longer needs to be aligned. 1582 CPEBB->setAlignment(Align(1)); 1583 } else { 1584 // Entries are sorted by descending alignment, so realign from the front. 1585 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1586 } 1587 1588 BBUtils->adjustBBOffsetsAfter(CPEBB); 1589 // An island has only one predecessor BB and one successor BB. Check if 1590 // this BB's predecessor jumps directly to this BB's successor. This 1591 // shouldn't happen currently. 1592 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1593 // FIXME: remove the empty blocks after all the work is done? 1594 } 1595 1596 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1597 /// are zero. 1598 bool ARMConstantIslands::removeUnusedCPEntries() { 1599 unsigned MadeChange = false; 1600 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1601 std::vector<CPEntry> &CPEs = CPEntries[i]; 1602 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1603 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1604 removeDeadCPEMI(CPEs[j].CPEMI); 1605 CPEs[j].CPEMI = nullptr; 1606 MadeChange = true; 1607 } 1608 } 1609 } 1610 return MadeChange; 1611 } 1612 1613 1614 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1615 /// away to fit in its displacement field. 1616 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1617 MachineInstr *MI = Br.MI; 1618 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1619 1620 // Check to see if the DestBB is already in-range. 1621 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1622 return false; 1623 1624 if (!Br.isCond) 1625 return fixupUnconditionalBr(Br); 1626 return fixupConditionalBr(Br); 1627 } 1628 1629 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1630 /// too far away to fit in its displacement field. If the LR register has been 1631 /// spilled in the epilogue, then we can use BL to implement a far jump. 1632 /// Otherwise, add an intermediate branch instruction to a branch. 1633 bool 1634 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1635 MachineInstr *MI = Br.MI; 1636 MachineBasicBlock *MBB = MI->getParent(); 1637 if (!isThumb1) 1638 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1639 1640 if (!AFI->isLRSpilled()) 1641 report_fatal_error("underestimated function size"); 1642 1643 // Use BL to implement far jump. 1644 Br.MaxDisp = (1 << 21) * 2; 1645 MI->setDesc(TII->get(ARM::tBfar)); 1646 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1647 BBInfo[MBB->getNumber()].Size += 2; 1648 BBUtils->adjustBBOffsetsAfter(MBB); 1649 ++NumUBrFixed; 1650 1651 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1652 1653 return true; 1654 } 1655 1656 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1657 /// far away to fit in its displacement field. It is converted to an inverse 1658 /// conditional branch + an unconditional branch to the destination. 1659 bool 1660 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1661 MachineInstr *MI = Br.MI; 1662 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1663 1664 // Add an unconditional branch to the destination and invert the branch 1665 // condition to jump over it: 1666 // blt L1 1667 // => 1668 // bge L2 1669 // b L1 1670 // L2: 1671 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1672 CC = ARMCC::getOppositeCondition(CC); 1673 Register CCReg = MI->getOperand(2).getReg(); 1674 1675 // If the branch is at the end of its MBB and that has a fall-through block, 1676 // direct the updated conditional branch to the fall-through block. Otherwise, 1677 // split the MBB before the next instruction. 1678 MachineBasicBlock *MBB = MI->getParent(); 1679 MachineInstr *BMI = &MBB->back(); 1680 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1681 1682 ++NumCBrFixed; 1683 if (BMI != MI) { 1684 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1685 BMI->getOpcode() == Br.UncondBr) { 1686 // Last MI in the BB is an unconditional branch. Can we simply invert the 1687 // condition and swap destinations: 1688 // beq L1 1689 // b L2 1690 // => 1691 // bne L2 1692 // b L1 1693 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1694 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1695 LLVM_DEBUG( 1696 dbgs() << " Invert Bcc condition and swap its destination with " 1697 << *BMI); 1698 BMI->getOperand(0).setMBB(DestBB); 1699 MI->getOperand(0).setMBB(NewDest); 1700 MI->getOperand(1).setImm(CC); 1701 return true; 1702 } 1703 } 1704 } 1705 1706 if (NeedSplit) { 1707 splitBlockBeforeInstr(MI); 1708 // No need for the branch to the next block. We're adding an unconditional 1709 // branch to the destination. 1710 int delta = TII->getInstSizeInBytes(MBB->back()); 1711 BBUtils->adjustBBSize(MBB, -delta); 1712 MBB->back().eraseFromParent(); 1713 1714 // The conditional successor will be swapped between the BBs after this, so 1715 // update CFG. 1716 MBB->addSuccessor(DestBB); 1717 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1718 1719 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1720 } 1721 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1722 1723 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1724 << " also invert condition and change dest. to " 1725 << printMBBReference(*NextBB) << "\n"); 1726 1727 // Insert a new conditional branch and a new unconditional branch. 1728 // Also update the ImmBranch as well as adding a new entry for the new branch. 1729 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1730 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1731 Br.MI = &MBB->back(); 1732 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1733 if (isThumb) 1734 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1735 .addMBB(DestBB) 1736 .add(predOps(ARMCC::AL)); 1737 else 1738 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1739 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1740 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1741 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1742 1743 // Remove the old conditional branch. It may or may not still be in MBB. 1744 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1745 MI->eraseFromParent(); 1746 BBUtils->adjustBBOffsetsAfter(MBB); 1747 return true; 1748 } 1749 1750 bool ARMConstantIslands::optimizeThumb2Instructions() { 1751 bool MadeChange = false; 1752 1753 // Shrink ADR and LDR from constantpool. 1754 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1755 CPUser &U = CPUsers[i]; 1756 unsigned Opcode = U.MI->getOpcode(); 1757 unsigned NewOpc = 0; 1758 unsigned Scale = 1; 1759 unsigned Bits = 0; 1760 switch (Opcode) { 1761 default: break; 1762 case ARM::t2LEApcrel: 1763 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1764 NewOpc = ARM::tLEApcrel; 1765 Bits = 8; 1766 Scale = 4; 1767 } 1768 break; 1769 case ARM::t2LDRpci: 1770 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1771 NewOpc = ARM::tLDRpci; 1772 Bits = 8; 1773 Scale = 4; 1774 } 1775 break; 1776 } 1777 1778 if (!NewOpc) 1779 continue; 1780 1781 unsigned UserOffset = getUserOffset(U); 1782 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1783 1784 // Be conservative with inline asm. 1785 if (!U.KnownAlignment) 1786 MaxOffs -= 2; 1787 1788 // FIXME: Check if offset is multiple of scale if scale is not 4. 1789 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1790 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1791 U.MI->setDesc(TII->get(NewOpc)); 1792 MachineBasicBlock *MBB = U.MI->getParent(); 1793 BBUtils->adjustBBSize(MBB, -2); 1794 BBUtils->adjustBBOffsetsAfter(MBB); 1795 ++NumT2CPShrunk; 1796 MadeChange = true; 1797 } 1798 } 1799 1800 return MadeChange; 1801 } 1802 1803 1804 bool ARMConstantIslands::optimizeThumb2Branches() { 1805 1806 auto TryShrinkBranch = [this](ImmBranch &Br) { 1807 unsigned Opcode = Br.MI->getOpcode(); 1808 unsigned NewOpc = 0; 1809 unsigned Scale = 1; 1810 unsigned Bits = 0; 1811 switch (Opcode) { 1812 default: break; 1813 case ARM::t2B: 1814 NewOpc = ARM::tB; 1815 Bits = 11; 1816 Scale = 2; 1817 break; 1818 case ARM::t2Bcc: 1819 NewOpc = ARM::tBcc; 1820 Bits = 8; 1821 Scale = 2; 1822 break; 1823 } 1824 if (NewOpc) { 1825 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1826 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1827 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1828 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1829 Br.MI->setDesc(TII->get(NewOpc)); 1830 MachineBasicBlock *MBB = Br.MI->getParent(); 1831 BBUtils->adjustBBSize(MBB, -2); 1832 BBUtils->adjustBBOffsetsAfter(MBB); 1833 ++NumT2BrShrunk; 1834 return true; 1835 } 1836 } 1837 return false; 1838 }; 1839 1840 struct ImmCompare { 1841 MachineInstr* MI = nullptr; 1842 unsigned NewOpc = 0; 1843 }; 1844 1845 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1846 MachineBasicBlock *DestBB) { 1847 ImmCmp.MI = nullptr; 1848 ImmCmp.NewOpc = 0; 1849 1850 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1851 // so this transformation is not safe. 1852 if (!Br.MI->killsRegister(ARM::CPSR)) 1853 return false; 1854 1855 Register PredReg; 1856 unsigned NewOpc = 0; 1857 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1858 if (Pred == ARMCC::EQ) 1859 NewOpc = ARM::tCBZ; 1860 else if (Pred == ARMCC::NE) 1861 NewOpc = ARM::tCBNZ; 1862 else 1863 return false; 1864 1865 // Check if the distance is within 126. Subtract starting offset by 2 1866 // because the cmp will be eliminated. 1867 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1868 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1869 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1870 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1871 return false; 1872 1873 // Search backwards to find a tCMPi8 1874 auto *TRI = STI->getRegisterInfo(); 1875 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1876 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1877 return false; 1878 1879 ImmCmp.MI = CmpMI; 1880 ImmCmp.NewOpc = NewOpc; 1881 return true; 1882 }; 1883 1884 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1885 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1886 STI->hasMinSize()) 1887 return false; 1888 1889 MachineBasicBlock *MBB = Br.MI->getParent(); 1890 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1891 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1892 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1893 return false; 1894 1895 if (!DT->dominates(DestBB, MBB)) 1896 return false; 1897 1898 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1899 // target of Br. So now we need to reverse the condition. 1900 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1901 1902 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1903 TII->get(ARM::t2LE)); 1904 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1905 MIB.add(Br.MI->getOperand(0)); 1906 Br.MI->eraseFromParent(); 1907 Br.MI = MIB; 1908 ++NumLEInserted; 1909 return true; 1910 }; 1911 1912 bool MadeChange = false; 1913 1914 // The order in which branches appear in ImmBranches is approximately their 1915 // order within the function body. By visiting later branches first, we reduce 1916 // the distance between earlier forward branches and their targets, making it 1917 // more likely that the cbn?z optimization, which can only apply to forward 1918 // branches, will succeed. 1919 for (ImmBranch &Br : reverse(ImmBranches)) { 1920 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1921 MachineBasicBlock *MBB = Br.MI->getParent(); 1922 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 1923 MBB->getFallThrough() : 1924 MBB->back().getOperand(0).getMBB(); 1925 1926 ImmCompare Cmp; 1927 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 1928 DestBB = ExitBB; 1929 MadeChange = true; 1930 } else { 1931 FindCmpForCBZ(Br, Cmp, DestBB); 1932 MadeChange |= TryShrinkBranch(Br); 1933 } 1934 1935 unsigned Opcode = Br.MI->getOpcode(); 1936 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 1937 continue; 1938 1939 Register Reg = Cmp.MI->getOperand(0).getReg(); 1940 1941 // Check for Kill flags on Reg. If they are present remove them and set kill 1942 // on the new CBZ. 1943 auto *TRI = STI->getRegisterInfo(); 1944 MachineBasicBlock::iterator KillMI = Br.MI; 1945 bool RegKilled = false; 1946 do { 1947 --KillMI; 1948 if (KillMI->killsRegister(Reg, TRI)) { 1949 KillMI->clearRegisterKills(Reg, TRI); 1950 RegKilled = true; 1951 break; 1952 } 1953 } while (KillMI != Cmp.MI); 1954 1955 // Create the new CBZ/CBNZ 1956 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 1957 MachineInstr *NewBR = 1958 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 1959 .addReg(Reg, getKillRegState(RegKilled)) 1960 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1961 1962 Cmp.MI->eraseFromParent(); 1963 1964 if (Br.MI->getOpcode() == ARM::tBcc) { 1965 Br.MI->eraseFromParent(); 1966 Br.MI = NewBR; 1967 BBUtils->adjustBBSize(MBB, -2); 1968 } else if (MBB->back().getOpcode() != ARM::t2LE) { 1969 // An LE has been generated, but it's not the terminator - that is an 1970 // unconditional branch. However, the logic has now been reversed with the 1971 // CBN?Z being the conditional branch and the LE being the unconditional 1972 // branch. So this means we can remove the redundant unconditional branch 1973 // at the end of the block. 1974 MachineInstr *LastMI = &MBB->back(); 1975 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 1976 LastMI->eraseFromParent(); 1977 } 1978 BBUtils->adjustBBOffsetsAfter(MBB); 1979 ++NumCBZ; 1980 MadeChange = true; 1981 } 1982 1983 return MadeChange; 1984 } 1985 1986 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1987 unsigned BaseReg) { 1988 if (I.getOpcode() != ARM::t2ADDrs) 1989 return false; 1990 1991 if (I.getOperand(0).getReg() != EntryReg) 1992 return false; 1993 1994 if (I.getOperand(1).getReg() != BaseReg) 1995 return false; 1996 1997 // FIXME: what about CC and IdxReg? 1998 return true; 1999 } 2000 2001 /// While trying to form a TBB/TBH instruction, we may (if the table 2002 /// doesn't immediately follow the BR_JT) need access to the start of the 2003 /// jump-table. We know one instruction that produces such a register; this 2004 /// function works out whether that definition can be preserved to the BR_JT, 2005 /// possibly by removing an intervening addition (which is usually needed to 2006 /// calculate the actual entry to jump to). 2007 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2008 MachineInstr *LEAMI, 2009 unsigned &DeadSize, 2010 bool &CanDeleteLEA, 2011 bool &BaseRegKill) { 2012 if (JumpMI->getParent() != LEAMI->getParent()) 2013 return false; 2014 2015 // Now we hope that we have at least these instructions in the basic block: 2016 // BaseReg = t2LEA ... 2017 // [...] 2018 // EntryReg = t2ADDrs BaseReg, ... 2019 // [...] 2020 // t2BR_JT EntryReg 2021 // 2022 // We have to be very conservative about what we recognise here though. The 2023 // main perturbing factors to watch out for are: 2024 // + Spills at any point in the chain: not direct problems but we would 2025 // expect a blocking Def of the spilled register so in practice what we 2026 // can do is limited. 2027 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2028 // of BaseReg, but only if the t2ADDrs can be removed. 2029 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2030 // the wild, but we should be careful. 2031 Register EntryReg = JumpMI->getOperand(0).getReg(); 2032 Register BaseReg = LEAMI->getOperand(0).getReg(); 2033 2034 CanDeleteLEA = true; 2035 BaseRegKill = false; 2036 MachineInstr *RemovableAdd = nullptr; 2037 MachineBasicBlock::iterator I(LEAMI); 2038 for (++I; &*I != JumpMI; ++I) { 2039 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2040 RemovableAdd = &*I; 2041 break; 2042 } 2043 2044 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2045 const MachineOperand &MO = I->getOperand(K); 2046 if (!MO.isReg() || !MO.getReg()) 2047 continue; 2048 if (MO.isDef() && MO.getReg() == BaseReg) 2049 return false; 2050 if (MO.isUse() && MO.getReg() == BaseReg) { 2051 BaseRegKill = BaseRegKill || MO.isKill(); 2052 CanDeleteLEA = false; 2053 } 2054 } 2055 } 2056 2057 if (!RemovableAdd) 2058 return true; 2059 2060 // Check the add really is removable, and that nothing else in the block 2061 // clobbers BaseReg. 2062 for (++I; &*I != JumpMI; ++I) { 2063 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2064 const MachineOperand &MO = I->getOperand(K); 2065 if (!MO.isReg() || !MO.getReg()) 2066 continue; 2067 if (MO.isDef() && MO.getReg() == BaseReg) 2068 return false; 2069 if (MO.isUse() && MO.getReg() == EntryReg) 2070 RemovableAdd = nullptr; 2071 } 2072 } 2073 2074 if (RemovableAdd) { 2075 RemovableAdd->eraseFromParent(); 2076 DeadSize += isThumb2 ? 4 : 2; 2077 } else if (BaseReg == EntryReg) { 2078 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2079 // preserve it. 2080 return false; 2081 } 2082 2083 // We reached the end of the block without seeing another definition of 2084 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2085 // used in the TBB/TBH if necessary. 2086 return true; 2087 } 2088 2089 /// Returns whether CPEMI is the first instruction in the block 2090 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2091 /// we can switch the first register to PC and usually remove the address 2092 /// calculation that preceded it. 2093 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2094 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2095 MachineFunction *MF = MBB->getParent(); 2096 ++MBB; 2097 2098 return MBB != MF->end() && MBB->begin() != MBB->end() && 2099 &*MBB->begin() == CPEMI; 2100 } 2101 2102 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2103 MachineInstr *JumpMI, 2104 unsigned &DeadSize) { 2105 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2106 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2107 // and is not clobbered / used. 2108 MachineInstr *RemovableAdd = nullptr; 2109 Register EntryReg = JumpMI->getOperand(0).getReg(); 2110 2111 // Find the last ADD to set EntryReg 2112 MachineBasicBlock::iterator I(LEAMI); 2113 for (++I; &*I != JumpMI; ++I) { 2114 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2115 RemovableAdd = &*I; 2116 } 2117 2118 if (!RemovableAdd) 2119 return; 2120 2121 // Ensure EntryReg is not clobbered or used. 2122 MachineBasicBlock::iterator J(RemovableAdd); 2123 for (++J; &*J != JumpMI; ++J) { 2124 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2125 const MachineOperand &MO = J->getOperand(K); 2126 if (!MO.isReg() || !MO.getReg()) 2127 continue; 2128 if (MO.isDef() && MO.getReg() == EntryReg) 2129 return; 2130 if (MO.isUse() && MO.getReg() == EntryReg) 2131 return; 2132 } 2133 } 2134 2135 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2136 RemovableAdd->eraseFromParent(); 2137 DeadSize += 4; 2138 } 2139 2140 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2141 /// jumptables when it's possible. 2142 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2143 bool MadeChange = false; 2144 2145 // FIXME: After the tables are shrunk, can we get rid some of the 2146 // constantpool tables? 2147 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2148 if (!MJTI) return false; 2149 2150 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2151 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2152 MachineInstr *MI = T2JumpTables[i]; 2153 const MCInstrDesc &MCID = MI->getDesc(); 2154 unsigned NumOps = MCID.getNumOperands(); 2155 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2156 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2157 unsigned JTI = JTOP.getIndex(); 2158 assert(JTI < JT.size()); 2159 2160 bool ByteOk = true; 2161 bool HalfWordOk = true; 2162 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2163 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2164 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2165 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2166 MachineBasicBlock *MBB = JTBBs[j]; 2167 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2168 // Negative offset is not ok. FIXME: We should change BB layout to make 2169 // sure all the branches are forward. 2170 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2171 ByteOk = false; 2172 unsigned TBHLimit = ((1<<16)-1)*2; 2173 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2174 HalfWordOk = false; 2175 if (!ByteOk && !HalfWordOk) 2176 break; 2177 } 2178 2179 if (!ByteOk && !HalfWordOk) 2180 continue; 2181 2182 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2183 MachineBasicBlock *MBB = MI->getParent(); 2184 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2185 continue; 2186 2187 unsigned DeadSize = 0; 2188 bool CanDeleteLEA = false; 2189 bool BaseRegKill = false; 2190 2191 unsigned IdxReg = ~0U; 2192 bool IdxRegKill = true; 2193 if (isThumb2) { 2194 IdxReg = MI->getOperand(1).getReg(); 2195 IdxRegKill = MI->getOperand(1).isKill(); 2196 2197 bool PreservedBaseReg = 2198 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2199 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2200 continue; 2201 } else { 2202 // We're in thumb-1 mode, so we must have something like: 2203 // %idx = tLSLri %idx, 2 2204 // %base = tLEApcrelJT 2205 // %t = tLDRr %base, %idx 2206 Register BaseReg = User.MI->getOperand(0).getReg(); 2207 2208 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2209 continue; 2210 MachineInstr *Shift = User.MI->getPrevNode(); 2211 if (Shift->getOpcode() != ARM::tLSLri || 2212 Shift->getOperand(3).getImm() != 2 || 2213 !Shift->getOperand(2).isKill()) 2214 continue; 2215 IdxReg = Shift->getOperand(2).getReg(); 2216 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2217 2218 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2219 // the range is checked later, but the LEA might still clobber it and not 2220 // actually get removed. 2221 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2222 continue; 2223 2224 MachineInstr *Load = User.MI->getNextNode(); 2225 if (Load->getOpcode() != ARM::tLDRr) 2226 continue; 2227 if (Load->getOperand(1).getReg() != BaseReg || 2228 Load->getOperand(2).getReg() != ShiftedIdxReg || 2229 !Load->getOperand(2).isKill()) 2230 continue; 2231 2232 // If we're in PIC mode, there should be another ADD following. 2233 auto *TRI = STI->getRegisterInfo(); 2234 2235 // %base cannot be redefined after the load as it will appear before 2236 // TBB/TBH like: 2237 // %base = 2238 // %base = 2239 // tBB %base, %idx 2240 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2241 continue; 2242 2243 if (isPositionIndependentOrROPI) { 2244 MachineInstr *Add = Load->getNextNode(); 2245 if (Add->getOpcode() != ARM::tADDrr || 2246 Add->getOperand(2).getReg() != BaseReg || 2247 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2248 !Add->getOperand(3).isKill()) 2249 continue; 2250 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2251 continue; 2252 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2253 // IdxReg gets redefined in the middle of the sequence. 2254 continue; 2255 Add->eraseFromParent(); 2256 DeadSize += 2; 2257 } else { 2258 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2259 continue; 2260 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2261 // IdxReg gets redefined in the middle of the sequence. 2262 continue; 2263 } 2264 2265 // Now safe to delete the load and lsl. The LEA will be removed later. 2266 CanDeleteLEA = true; 2267 Shift->eraseFromParent(); 2268 Load->eraseFromParent(); 2269 DeadSize += 4; 2270 } 2271 2272 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2273 MachineInstr *CPEMI = User.CPEMI; 2274 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2275 if (!isThumb2) 2276 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2277 2278 MachineBasicBlock::iterator MI_JT = MI; 2279 MachineInstr *NewJTMI = 2280 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2281 .addReg(User.MI->getOperand(0).getReg(), 2282 getKillRegState(BaseRegKill)) 2283 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2284 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2285 .addImm(CPEMI->getOperand(0).getImm()); 2286 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2287 2288 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2289 CPEMI->setDesc(TII->get(JTOpc)); 2290 2291 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2292 NewJTMI->getOperand(0).setReg(ARM::PC); 2293 NewJTMI->getOperand(0).setIsKill(false); 2294 2295 if (CanDeleteLEA) { 2296 if (isThumb2) 2297 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2298 2299 User.MI->eraseFromParent(); 2300 DeadSize += isThumb2 ? 4 : 2; 2301 2302 // The LEA was eliminated, the TBB instruction becomes the only new user 2303 // of the jump table. 2304 User.MI = NewJTMI; 2305 User.MaxDisp = 4; 2306 User.NegOk = false; 2307 User.IsSoImm = false; 2308 User.KnownAlignment = false; 2309 } else { 2310 // The LEA couldn't be eliminated, so we must add another CPUser to 2311 // record the TBB or TBH use. 2312 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2313 auto &CPEs = CPEntries[CPEntryIdx]; 2314 auto Entry = 2315 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2316 ++Entry->RefCount; 2317 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2318 } 2319 } 2320 2321 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2322 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2323 MI->eraseFromParent(); 2324 2325 int Delta = OrigSize - NewSize + DeadSize; 2326 BBInfo[MBB->getNumber()].Size -= Delta; 2327 BBUtils->adjustBBOffsetsAfter(MBB); 2328 2329 ++NumTBs; 2330 MadeChange = true; 2331 } 2332 2333 return MadeChange; 2334 } 2335 2336 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2337 /// jump tables always branch forwards, since that's what tbb and tbh need. 2338 bool ARMConstantIslands::reorderThumb2JumpTables() { 2339 bool MadeChange = false; 2340 2341 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2342 if (!MJTI) return false; 2343 2344 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2345 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2346 MachineInstr *MI = T2JumpTables[i]; 2347 const MCInstrDesc &MCID = MI->getDesc(); 2348 unsigned NumOps = MCID.getNumOperands(); 2349 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2350 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2351 unsigned JTI = JTOP.getIndex(); 2352 assert(JTI < JT.size()); 2353 2354 // We prefer if target blocks for the jump table come after the jump 2355 // instruction so we can use TB[BH]. Loop through the target blocks 2356 // and try to adjust them such that that's true. 2357 int JTNumber = MI->getParent()->getNumber(); 2358 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2359 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2360 MachineBasicBlock *MBB = JTBBs[j]; 2361 int DTNumber = MBB->getNumber(); 2362 2363 if (DTNumber < JTNumber) { 2364 // The destination precedes the switch. Try to move the block forward 2365 // so we have a positive offset. 2366 MachineBasicBlock *NewBB = 2367 adjustJTTargetBlockForward(MBB, MI->getParent()); 2368 if (NewBB) 2369 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2370 MadeChange = true; 2371 } 2372 } 2373 } 2374 2375 return MadeChange; 2376 } 2377 2378 MachineBasicBlock *ARMConstantIslands:: 2379 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2380 // If the destination block is terminated by an unconditional branch, 2381 // try to move it; otherwise, create a new block following the jump 2382 // table that branches back to the actual target. This is a very simple 2383 // heuristic. FIXME: We can definitely improve it. 2384 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2385 SmallVector<MachineOperand, 4> Cond; 2386 SmallVector<MachineOperand, 4> CondPrior; 2387 MachineFunction::iterator BBi = BB->getIterator(); 2388 MachineFunction::iterator OldPrior = std::prev(BBi); 2389 MachineFunction::iterator OldNext = std::next(BBi); 2390 2391 // If the block terminator isn't analyzable, don't try to move the block 2392 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2393 2394 // If the block ends in an unconditional branch, move it. The prior block 2395 // has to have an analyzable terminator for us to move this one. Be paranoid 2396 // and make sure we're not trying to move the entry block of the function. 2397 if (!B && Cond.empty() && BB != &MF->front() && 2398 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2399 BB->moveAfter(JTBB); 2400 OldPrior->updateTerminator(BB); 2401 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr); 2402 // Update numbering to account for the block being moved. 2403 MF->RenumberBlocks(); 2404 ++NumJTMoved; 2405 return nullptr; 2406 } 2407 2408 // Create a new MBB for the code after the jump BB. 2409 MachineBasicBlock *NewBB = 2410 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2411 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2412 MF->insert(MBBI, NewBB); 2413 2414 // Copy live-in information to new block. 2415 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2416 NewBB->addLiveIn(RegMaskPair); 2417 2418 // Add an unconditional branch from NewBB to BB. 2419 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2420 // correspond directly to anything in the source. 2421 if (isThumb2) 2422 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2423 .addMBB(BB) 2424 .add(predOps(ARMCC::AL)); 2425 else 2426 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2427 .addMBB(BB) 2428 .add(predOps(ARMCC::AL)); 2429 2430 // Update internal data structures to account for the newly inserted MBB. 2431 MF->RenumberBlocks(NewBB); 2432 2433 // Update the CFG. 2434 NewBB->addSuccessor(BB); 2435 JTBB->replaceSuccessor(BB, NewBB); 2436 2437 ++NumJTInserted; 2438 return NewBB; 2439 } 2440 2441 /// createARMConstantIslandPass - returns an instance of the constpool 2442 /// island pass. 2443 FunctionPass *llvm::createARMConstantIslandPass() { 2444 return new ARMConstantIslands(); 2445 } 2446 2447 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2448 false, false) 2449