1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "arm-cp-islands" 61 62 #define ARM_CP_ISLANDS_OPT_NAME \ 63 "ARM constant island placement and branch shortening pass" 64 STATISTIC(NumCPEs, "Number of constpool entries"); 65 STATISTIC(NumSplit, "Number of uncond branches inserted"); 66 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 67 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 68 STATISTIC(NumTBs, "Number of table branches generated"); 69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 71 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 72 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 75 76 static cl::opt<bool> 77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 78 cl::desc("Adjust basic block layout to better use TB[BH]")); 79 80 static cl::opt<unsigned> 81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 82 cl::desc("The max number of iteration for converge")); 83 84 static cl::opt<bool> SynthesizeThumb1TBB( 85 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 87 "equivalent to the TBB/TBH instructions")); 88 89 namespace { 90 91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 92 /// requires constant pool entries to be scattered among the instructions 93 /// inside a function. To do this, it completely ignores the normal LLVM 94 /// constant pool; instead, it places constants wherever it feels like with 95 /// special instructions. 96 /// 97 /// The terminology used in this pass includes: 98 /// Islands - Clumps of constants placed in the function. 99 /// Water - Potential places where an island could be formed. 100 /// CPE - A constant pool entry that has been placed somewhere, which 101 /// tracks a list of users. 102 class ARMConstantIslands : public MachineFunctionPass { 103 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 104 105 /// WaterList - A sorted list of basic blocks where islands could be placed 106 /// (i.e. blocks that don't fall through to the following block, due 107 /// to a return, unreachable, or unconditional branch). 108 std::vector<MachineBasicBlock*> WaterList; 109 110 /// NewWaterList - The subset of WaterList that was created since the 111 /// previous iteration by inserting unconditional branches. 112 SmallSet<MachineBasicBlock*, 4> NewWaterList; 113 114 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 115 116 /// CPUser - One user of a constant pool, keeping the machine instruction 117 /// pointer, the constant pool being referenced, and the max displacement 118 /// allowed from the instruction to the CP. The HighWaterMark records the 119 /// highest basic block where a new CPEntry can be placed. To ensure this 120 /// pass terminates, the CP entries are initially placed at the end of the 121 /// function and then move monotonically to lower addresses. The 122 /// exception to this rule is when the current CP entry for a particular 123 /// CPUser is out of range, but there is another CP entry for the same 124 /// constant value in range. We want to use the existing in-range CP 125 /// entry, but if it later moves out of range, the search for new water 126 /// should resume where it left off. The HighWaterMark is used to record 127 /// that point. 128 struct CPUser { 129 MachineInstr *MI; 130 MachineInstr *CPEMI; 131 MachineBasicBlock *HighWaterMark; 132 unsigned MaxDisp; 133 bool NegOk; 134 bool IsSoImm; 135 bool KnownAlignment = false; 136 137 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 138 bool neg, bool soimm) 139 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 140 HighWaterMark = CPEMI->getParent(); 141 } 142 143 /// getMaxDisp - Returns the maximum displacement supported by MI. 144 /// Correct for unknown alignment. 145 /// Conservatively subtract 2 bytes to handle weird alignment effects. 146 unsigned getMaxDisp() const { 147 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 148 } 149 }; 150 151 /// CPUsers - Keep track of all of the machine instructions that use various 152 /// constant pools and their max displacement. 153 std::vector<CPUser> CPUsers; 154 155 /// CPEntry - One per constant pool entry, keeping the machine instruction 156 /// pointer, the constpool index, and the number of CPUser's which 157 /// reference this entry. 158 struct CPEntry { 159 MachineInstr *CPEMI; 160 unsigned CPI; 161 unsigned RefCount; 162 163 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 164 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 165 }; 166 167 /// CPEntries - Keep track of all of the constant pool entry machine 168 /// instructions. For each original constpool index (i.e. those that existed 169 /// upon entry to this pass), it keeps a vector of entries. Original 170 /// elements are cloned as we go along; the clones are put in the vector of 171 /// the original element, but have distinct CPIs. 172 /// 173 /// The first half of CPEntries contains generic constants, the second half 174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 175 /// which vector it will be in here. 176 std::vector<std::vector<CPEntry>> CPEntries; 177 178 /// Maps a JT index to the offset in CPEntries containing copies of that 179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 180 DenseMap<int, int> JumpTableEntryIndices; 181 182 /// Maps a JT index to the LEA that actually uses the index to calculate its 183 /// base address. 184 DenseMap<int, int> JumpTableUserIndices; 185 186 /// ImmBranch - One per immediate branch, keeping the machine instruction 187 /// pointer, conditional or unconditional, the max displacement, 188 /// and (if isCond is true) the corresponding unconditional branch 189 /// opcode. 190 struct ImmBranch { 191 MachineInstr *MI; 192 unsigned MaxDisp : 31; 193 bool isCond : 1; 194 unsigned UncondBr; 195 196 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 197 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 198 }; 199 200 /// ImmBranches - Keep track of all the immediate branch instructions. 201 std::vector<ImmBranch> ImmBranches; 202 203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 204 SmallVector<MachineInstr*, 4> PushPopMIs; 205 206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 207 SmallVector<MachineInstr*, 4> T2JumpTables; 208 209 MachineFunction *MF; 210 MachineConstantPool *MCP; 211 const ARMBaseInstrInfo *TII; 212 const ARMSubtarget *STI; 213 ARMFunctionInfo *AFI; 214 MachineDominatorTree *DT = nullptr; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 void getAnalysisUsage(AnalysisUsage &AU) const override { 228 AU.addRequired<MachineDominatorTree>(); 229 MachineFunctionPass::getAnalysisUsage(AU); 230 } 231 232 MachineFunctionProperties getRequiredProperties() const override { 233 return MachineFunctionProperties().set( 234 MachineFunctionProperties::Property::NoVRegs); 235 } 236 237 StringRef getPassName() const override { 238 return ARM_CP_ISLANDS_OPT_NAME; 239 } 240 241 private: 242 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 243 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 244 bool BBHasFallthrough(MachineBasicBlock *MBB); 245 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 246 Align getCPEAlign(const MachineInstr *CPEMI); 247 void scanFunctionJumpTables(); 248 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 249 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 250 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 251 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 252 unsigned getCombinedIndex(const MachineInstr *CPEMI); 253 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 254 bool findAvailableWater(CPUser&U, unsigned UserOffset, 255 water_iterator &WaterIter, bool CloserWater); 256 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 257 MachineBasicBlock *&NewMBB); 258 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 259 void removeDeadCPEMI(MachineInstr *CPEMI); 260 bool removeUnusedCPEntries(); 261 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 262 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 263 bool DoDump = false); 264 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 265 CPUser &U, unsigned &Growth); 266 bool fixupImmediateBr(ImmBranch &Br); 267 bool fixupConditionalBr(ImmBranch &Br); 268 bool fixupUnconditionalBr(ImmBranch &Br); 269 bool optimizeThumb2Instructions(); 270 bool optimizeThumb2Branches(); 271 bool reorderThumb2JumpTables(); 272 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 273 unsigned &DeadSize, bool &CanDeleteLEA, 274 bool &BaseRegKill); 275 bool optimizeThumb2JumpTables(); 276 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 277 MachineBasicBlock *JTBB); 278 279 unsigned getUserOffset(CPUser&) const; 280 void dumpBBs(); 281 void verify(); 282 283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 284 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 286 const CPUser &U) { 287 return isOffsetInRange(UserOffset, TrialOffset, 288 U.getMaxDisp(), U.NegOk, U.IsSoImm); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char ARMConstantIslands::ID = 0; 295 296 /// verify - check BBOffsets, BBSizes, alignment of islands 297 void ARMConstantIslands::verify() { 298 #ifndef NDEBUG 299 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 300 assert(std::is_sorted(MF->begin(), MF->end(), 301 [&BBInfo](const MachineBasicBlock &LHS, 302 const MachineBasicBlock &RHS) { 303 return BBInfo[LHS.getNumber()].postOffset() < 304 BBInfo[RHS.getNumber()].postOffset(); 305 })); 306 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 307 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 308 CPUser &U = CPUsers[i]; 309 unsigned UserOffset = getUserOffset(U); 310 // Verify offset using the real max displacement without the safety 311 // adjustment. 312 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 313 /* DoDump = */ true)) { 314 LLVM_DEBUG(dbgs() << "OK\n"); 315 continue; 316 } 317 LLVM_DEBUG(dbgs() << "Out of range.\n"); 318 dumpBBs(); 319 LLVM_DEBUG(MF->dump()); 320 llvm_unreachable("Constant pool entry out of range!"); 321 } 322 #endif 323 } 324 325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 326 /// print block size and offset information - debugging 327 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 328 LLVM_DEBUG({ 329 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 330 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 331 const BasicBlockInfo &BBI = BBInfo[J]; 332 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 333 << " kb=" << unsigned(BBI.KnownBits) 334 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 335 << format(" size=%#x\n", BBInfo[J].Size); 336 } 337 }); 338 } 339 #endif 340 341 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 342 MF = &mf; 343 MCP = mf.getConstantPool(); 344 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 345 346 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 347 << MCP->getConstants().size() << " CP entries, aligned to " 348 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 349 350 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 351 TII = STI->getInstrInfo(); 352 isPositionIndependentOrROPI = 353 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 354 AFI = MF->getInfo<ARMFunctionInfo>(); 355 DT = &getAnalysis<MachineDominatorTree>(); 356 357 isThumb = AFI->isThumbFunction(); 358 isThumb1 = AFI->isThumb1OnlyFunction(); 359 isThumb2 = AFI->isThumb2Function(); 360 361 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 362 363 // Renumber all of the machine basic blocks in the function, guaranteeing that 364 // the numbers agree with the position of the block in the function. 365 MF->RenumberBlocks(); 366 367 // Try to reorder and otherwise adjust the block layout to make good use 368 // of the TB[BH] instructions. 369 bool MadeChange = false; 370 if (GenerateTBB && AdjustJumpTableBlocks) { 371 scanFunctionJumpTables(); 372 MadeChange |= reorderThumb2JumpTables(); 373 // Data is out of date, so clear it. It'll be re-computed later. 374 T2JumpTables.clear(); 375 // Blocks may have shifted around. Keep the numbering up to date. 376 MF->RenumberBlocks(); 377 } 378 379 // Perform the initial placement of the constant pool entries. To start with, 380 // we put them all at the end of the function. 381 std::vector<MachineInstr*> CPEMIs; 382 if (!MCP->isEmpty()) 383 doInitialConstPlacement(CPEMIs); 384 385 if (MF->getJumpTableInfo()) 386 doInitialJumpTablePlacement(CPEMIs); 387 388 /// The next UID to take is the first unused one. 389 AFI->initPICLabelUId(CPEMIs.size()); 390 391 // Do the initial scan of the function, building up information about the 392 // sizes of each block, the location of all the water, and finding all of the 393 // constant pool users. 394 initializeFunctionInfo(CPEMIs); 395 CPEMIs.clear(); 396 LLVM_DEBUG(dumpBBs()); 397 398 // Functions with jump tables need an alignment of 4 because they use the ADR 399 // instruction, which aligns the PC to 4 bytes before adding an offset. 400 if (!T2JumpTables.empty()) 401 MF->ensureAlignment(Align(4)); 402 403 /// Remove dead constant pool entries. 404 MadeChange |= removeUnusedCPEntries(); 405 406 // Iteratively place constant pool entries and fix up branches until there 407 // is no change. 408 unsigned NoCPIters = 0, NoBRIters = 0; 409 while (true) { 410 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 411 bool CPChange = false; 412 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 413 // For most inputs, it converges in no more than 5 iterations. 414 // If it doesn't end in 10, the input may have huge BB or many CPEs. 415 // In this case, we will try different heuristics. 416 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 417 if (CPChange && ++NoCPIters > CPMaxIteration) 418 report_fatal_error("Constant Island pass failed to converge!"); 419 LLVM_DEBUG(dumpBBs()); 420 421 // Clear NewWaterList now. If we split a block for branches, it should 422 // appear as "new water" for the next iteration of constant pool placement. 423 NewWaterList.clear(); 424 425 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 426 bool BRChange = false; 427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 428 BRChange |= fixupImmediateBr(ImmBranches[i]); 429 if (BRChange && ++NoBRIters > 30) 430 report_fatal_error("Branch Fix Up pass failed to converge!"); 431 LLVM_DEBUG(dumpBBs()); 432 433 if (!CPChange && !BRChange) 434 break; 435 MadeChange = true; 436 } 437 438 // Shrink 32-bit Thumb2 load and store instructions. 439 if (isThumb2 && !STI->prefers32BitThumb()) 440 MadeChange |= optimizeThumb2Instructions(); 441 442 // Shrink 32-bit branch instructions. 443 if (isThumb && STI->hasV8MBaselineOps()) 444 MadeChange |= optimizeThumb2Branches(); 445 446 // Optimize jump tables using TBB / TBH. 447 if (GenerateTBB && !STI->genExecuteOnly()) 448 MadeChange |= optimizeThumb2JumpTables(); 449 450 // After a while, this might be made debug-only, but it is not expensive. 451 verify(); 452 453 // Save the mapping between original and cloned constpool entries. 454 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 455 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 456 const CPEntry & CPE = CPEntries[i][j]; 457 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 458 AFI->recordCPEClone(i, CPE.CPI); 459 } 460 } 461 462 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 463 464 BBUtils->clear(); 465 WaterList.clear(); 466 CPUsers.clear(); 467 CPEntries.clear(); 468 JumpTableEntryIndices.clear(); 469 JumpTableUserIndices.clear(); 470 ImmBranches.clear(); 471 PushPopMIs.clear(); 472 T2JumpTables.clear(); 473 474 return MadeChange; 475 } 476 477 /// Perform the initial placement of the regular constant pool entries. 478 /// To start with, we put them all at the end of the function. 479 void 480 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 481 // Create the basic block to hold the CPE's. 482 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 483 MF->push_back(BB); 484 485 // MachineConstantPool measures alignment in bytes. 486 const Align MaxAlign(MCP->getConstantPoolAlignment()); 487 const unsigned MaxLogAlign = Log2(MaxAlign); 488 489 // Mark the basic block as required by the const-pool. 490 BB->setAlignment(MaxAlign); 491 492 // The function needs to be as aligned as the basic blocks. The linker may 493 // move functions around based on their alignment. 494 MF->ensureAlignment(BB->getAlignment()); 495 496 // Order the entries in BB by descending alignment. That ensures correct 497 // alignment of all entries as long as BB is sufficiently aligned. Keep 498 // track of the insertion point for each alignment. We are going to bucket 499 // sort the entries as they are created. 500 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 501 BB->end()); 502 503 // Add all of the constants from the constant pool to the end block, use an 504 // identity mapping of CPI's to CPE's. 505 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 506 507 const DataLayout &TD = MF->getDataLayout(); 508 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 509 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 510 unsigned Align = CPs[i].getAlignment(); 511 assert(isPowerOf2_32(Align) && "Invalid alignment"); 512 // Verify that all constant pool entries are a multiple of their alignment. 513 // If not, we would have to pad them out so that instructions stay aligned. 514 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 515 516 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 517 unsigned LogAlign = Log2_32(Align); 518 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 519 MachineInstr *CPEMI = 520 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 521 .addImm(i).addConstantPoolIndex(i).addImm(Size); 522 CPEMIs.push_back(CPEMI); 523 524 // Ensure that future entries with higher alignment get inserted before 525 // CPEMI. This is bucket sort with iterators. 526 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 527 if (InsPoint[a] == InsAt) 528 InsPoint[a] = CPEMI; 529 530 // Add a new CPEntry, but no corresponding CPUser yet. 531 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 532 ++NumCPEs; 533 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 534 << Size << ", align = " << Align << '\n'); 535 } 536 LLVM_DEBUG(BB->dump()); 537 } 538 539 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 540 /// instructions can be made more efficient if the jump table immediately 541 /// follows the instruction, it's best to place them immediately next to their 542 /// jumps to begin with. In almost all cases they'll never be moved from that 543 /// position. 544 void ARMConstantIslands::doInitialJumpTablePlacement( 545 std::vector<MachineInstr *> &CPEMIs) { 546 unsigned i = CPEntries.size(); 547 auto MJTI = MF->getJumpTableInfo(); 548 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 549 550 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 551 for (MachineBasicBlock &MBB : *MF) { 552 auto MI = MBB.getLastNonDebugInstr(); 553 if (MI == MBB.end()) 554 continue; 555 556 unsigned JTOpcode; 557 switch (MI->getOpcode()) { 558 default: 559 continue; 560 case ARM::BR_JTadd: 561 case ARM::BR_JTr: 562 case ARM::tBR_JTr: 563 case ARM::BR_JTm_i12: 564 case ARM::BR_JTm_rs: 565 JTOpcode = ARM::JUMPTABLE_ADDRS; 566 break; 567 case ARM::t2BR_JT: 568 JTOpcode = ARM::JUMPTABLE_INSTS; 569 break; 570 case ARM::tTBB_JT: 571 case ARM::t2TBB_JT: 572 JTOpcode = ARM::JUMPTABLE_TBB; 573 break; 574 case ARM::tTBH_JT: 575 case ARM::t2TBH_JT: 576 JTOpcode = ARM::JUMPTABLE_TBH; 577 break; 578 } 579 580 unsigned NumOps = MI->getDesc().getNumOperands(); 581 MachineOperand JTOp = 582 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 583 unsigned JTI = JTOp.getIndex(); 584 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 585 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 586 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 587 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 588 DebugLoc(), TII->get(JTOpcode)) 589 .addImm(i++) 590 .addJumpTableIndex(JTI) 591 .addImm(Size); 592 CPEMIs.push_back(CPEMI); 593 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 594 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 595 if (!LastCorrectlyNumberedBB) 596 LastCorrectlyNumberedBB = &MBB; 597 } 598 599 // If we did anything then we need to renumber the subsequent blocks. 600 if (LastCorrectlyNumberedBB) 601 MF->RenumberBlocks(LastCorrectlyNumberedBB); 602 } 603 604 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 605 /// into the block immediately after it. 606 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 607 // Get the next machine basic block in the function. 608 MachineFunction::iterator MBBI = MBB->getIterator(); 609 // Can't fall off end of function. 610 if (std::next(MBBI) == MBB->getParent()->end()) 611 return false; 612 613 MachineBasicBlock *NextBB = &*std::next(MBBI); 614 if (!MBB->isSuccessor(NextBB)) 615 return false; 616 617 // Try to analyze the end of the block. A potential fallthrough may already 618 // have an unconditional branch for whatever reason. 619 MachineBasicBlock *TBB, *FBB; 620 SmallVector<MachineOperand, 4> Cond; 621 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 622 return TooDifficult || FBB == nullptr; 623 } 624 625 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 626 /// look up the corresponding CPEntry. 627 ARMConstantIslands::CPEntry * 628 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 629 const MachineInstr *CPEMI) { 630 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 631 // Number of entries per constpool index should be small, just do a 632 // linear search. 633 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 634 if (CPEs[i].CPEMI == CPEMI) 635 return &CPEs[i]; 636 } 637 return nullptr; 638 } 639 640 /// getCPEAlign - Returns the required alignment of the constant pool entry 641 /// represented by CPEMI. 642 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 643 switch (CPEMI->getOpcode()) { 644 case ARM::CONSTPOOL_ENTRY: 645 break; 646 case ARM::JUMPTABLE_TBB: 647 return isThumb1 ? Align(4) : Align(1); 648 case ARM::JUMPTABLE_TBH: 649 return isThumb1 ? Align(4) : Align(2); 650 case ARM::JUMPTABLE_INSTS: 651 return Align(2); 652 case ARM::JUMPTABLE_ADDRS: 653 return Align(4); 654 default: 655 llvm_unreachable("unknown constpool entry kind"); 656 } 657 658 unsigned CPI = getCombinedIndex(CPEMI); 659 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 660 return Align(MCP->getConstants()[CPI].getAlignment()); 661 } 662 663 /// scanFunctionJumpTables - Do a scan of the function, building up 664 /// information about the sizes of each block and the locations of all 665 /// the jump tables. 666 void ARMConstantIslands::scanFunctionJumpTables() { 667 for (MachineBasicBlock &MBB : *MF) { 668 for (MachineInstr &I : MBB) 669 if (I.isBranch() && 670 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 671 T2JumpTables.push_back(&I); 672 } 673 } 674 675 /// initializeFunctionInfo - Do the initial scan of the function, building up 676 /// information about the sizes of each block, the location of all the water, 677 /// and finding all of the constant pool users. 678 void ARMConstantIslands:: 679 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 680 681 BBUtils->computeAllBlockSizes(); 682 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 683 // The known bits of the entry block offset are determined by the function 684 // alignment. 685 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 686 687 // Compute block offsets and known bits. 688 BBUtils->adjustBBOffsetsAfter(&MF->front()); 689 690 // Now go back through the instructions and build up our data structures. 691 for (MachineBasicBlock &MBB : *MF) { 692 // If this block doesn't fall through into the next MBB, then this is 693 // 'water' that a constant pool island could be placed. 694 if (!BBHasFallthrough(&MBB)) 695 WaterList.push_back(&MBB); 696 697 for (MachineInstr &I : MBB) { 698 if (I.isDebugInstr()) 699 continue; 700 701 unsigned Opc = I.getOpcode(); 702 if (I.isBranch()) { 703 bool isCond = false; 704 unsigned Bits = 0; 705 unsigned Scale = 1; 706 int UOpc = Opc; 707 switch (Opc) { 708 default: 709 continue; // Ignore other JT branches 710 case ARM::t2BR_JT: 711 case ARM::tBR_JTr: 712 T2JumpTables.push_back(&I); 713 continue; // Does not get an entry in ImmBranches 714 case ARM::Bcc: 715 isCond = true; 716 UOpc = ARM::B; 717 LLVM_FALLTHROUGH; 718 case ARM::B: 719 Bits = 24; 720 Scale = 4; 721 break; 722 case ARM::tBcc: 723 isCond = true; 724 UOpc = ARM::tB; 725 Bits = 8; 726 Scale = 2; 727 break; 728 case ARM::tB: 729 Bits = 11; 730 Scale = 2; 731 break; 732 case ARM::t2Bcc: 733 isCond = true; 734 UOpc = ARM::t2B; 735 Bits = 20; 736 Scale = 2; 737 break; 738 case ARM::t2B: 739 Bits = 24; 740 Scale = 2; 741 break; 742 } 743 744 // Record this immediate branch. 745 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 746 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 747 } 748 749 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 750 PushPopMIs.push_back(&I); 751 752 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 753 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 754 Opc == ARM::JUMPTABLE_TBH) 755 continue; 756 757 // Scan the instructions for constant pool operands. 758 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 759 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 760 // We found one. The addressing mode tells us the max displacement 761 // from the PC that this instruction permits. 762 763 // Basic size info comes from the TSFlags field. 764 unsigned Bits = 0; 765 unsigned Scale = 1; 766 bool NegOk = false; 767 bool IsSoImm = false; 768 769 switch (Opc) { 770 default: 771 llvm_unreachable("Unknown addressing mode for CP reference!"); 772 773 // Taking the address of a CP entry. 774 case ARM::LEApcrel: 775 case ARM::LEApcrelJT: 776 // This takes a SoImm, which is 8 bit immediate rotated. We'll 777 // pretend the maximum offset is 255 * 4. Since each instruction 778 // 4 byte wide, this is always correct. We'll check for other 779 // displacements that fits in a SoImm as well. 780 Bits = 8; 781 Scale = 4; 782 NegOk = true; 783 IsSoImm = true; 784 break; 785 case ARM::t2LEApcrel: 786 case ARM::t2LEApcrelJT: 787 Bits = 12; 788 NegOk = true; 789 break; 790 case ARM::tLEApcrel: 791 case ARM::tLEApcrelJT: 792 Bits = 8; 793 Scale = 4; 794 break; 795 796 case ARM::LDRBi12: 797 case ARM::LDRi12: 798 case ARM::LDRcp: 799 case ARM::t2LDRpci: 800 case ARM::t2LDRHpci: 801 case ARM::t2LDRBpci: 802 Bits = 12; // +-offset_12 803 NegOk = true; 804 break; 805 806 case ARM::tLDRpci: 807 Bits = 8; 808 Scale = 4; // +(offset_8*4) 809 break; 810 811 case ARM::VLDRD: 812 case ARM::VLDRS: 813 Bits = 8; 814 Scale = 4; // +-(offset_8*4) 815 NegOk = true; 816 break; 817 case ARM::VLDRH: 818 Bits = 8; 819 Scale = 2; // +-(offset_8*2) 820 NegOk = true; 821 break; 822 } 823 824 // Remember that this is a user of a CP entry. 825 unsigned CPI = I.getOperand(op).getIndex(); 826 if (I.getOperand(op).isJTI()) { 827 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 828 CPI = JumpTableEntryIndices[CPI]; 829 } 830 831 MachineInstr *CPEMI = CPEMIs[CPI]; 832 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 833 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 834 835 // Increment corresponding CPEntry reference count. 836 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 837 assert(CPE && "Cannot find a corresponding CPEntry!"); 838 CPE->RefCount++; 839 840 // Instructions can only use one CP entry, don't bother scanning the 841 // rest of the operands. 842 break; 843 } 844 } 845 } 846 } 847 848 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 849 /// ID. 850 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 851 const MachineBasicBlock *RHS) { 852 return LHS->getNumber() < RHS->getNumber(); 853 } 854 855 /// updateForInsertedWaterBlock - When a block is newly inserted into the 856 /// machine function, it upsets all of the block numbers. Renumber the blocks 857 /// and update the arrays that parallel this numbering. 858 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 859 // Renumber the MBB's to keep them consecutive. 860 NewBB->getParent()->RenumberBlocks(NewBB); 861 862 // Insert an entry into BBInfo to align it properly with the (newly 863 // renumbered) block numbers. 864 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 865 866 // Next, update WaterList. Specifically, we need to add NewMBB as having 867 // available water after it. 868 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 869 WaterList.insert(IP, NewBB); 870 } 871 872 /// Split the basic block containing MI into two blocks, which are joined by 873 /// an unconditional branch. Update data structures and renumber blocks to 874 /// account for this change and returns the newly created block. 875 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 876 MachineBasicBlock *OrigBB = MI->getParent(); 877 878 // Collect liveness information at MI. 879 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 880 LRs.addLiveOuts(*OrigBB); 881 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 882 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 883 LRs.stepBackward(LiveMI); 884 885 // Create a new MBB for the code after the OrigBB. 886 MachineBasicBlock *NewBB = 887 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 888 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 889 MF->insert(MBBI, NewBB); 890 891 // Splice the instructions starting with MI over to NewBB. 892 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 893 894 // Add an unconditional branch from OrigBB to NewBB. 895 // Note the new unconditional branch is not being recorded. 896 // There doesn't seem to be meaningful DebugInfo available; this doesn't 897 // correspond to anything in the source. 898 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 899 if (!isThumb) 900 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 901 else 902 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 903 .addMBB(NewBB) 904 .add(predOps(ARMCC::AL)); 905 ++NumSplit; 906 907 // Update the CFG. All succs of OrigBB are now succs of NewBB. 908 NewBB->transferSuccessors(OrigBB); 909 910 // OrigBB branches to NewBB. 911 OrigBB->addSuccessor(NewBB); 912 913 // Update live-in information in the new block. 914 MachineRegisterInfo &MRI = MF->getRegInfo(); 915 for (MCPhysReg L : LRs) 916 if (!MRI.isReserved(L)) 917 NewBB->addLiveIn(L); 918 919 // Update internal data structures to account for the newly inserted MBB. 920 // This is almost the same as updateForInsertedWaterBlock, except that 921 // the Water goes after OrigBB, not NewBB. 922 MF->RenumberBlocks(NewBB); 923 924 // Insert an entry into BBInfo to align it properly with the (newly 925 // renumbered) block numbers. 926 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 927 928 // Next, update WaterList. Specifically, we need to add OrigMBB as having 929 // available water after it (but not if it's already there, which happens 930 // when splitting before a conditional branch that is followed by an 931 // unconditional branch - in that case we want to insert NewBB). 932 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 933 MachineBasicBlock* WaterBB = *IP; 934 if (WaterBB == OrigBB) 935 WaterList.insert(std::next(IP), NewBB); 936 else 937 WaterList.insert(IP, OrigBB); 938 NewWaterList.insert(OrigBB); 939 940 // Figure out how large the OrigBB is. As the first half of the original 941 // block, it cannot contain a tablejump. The size includes 942 // the new jump we added. (It should be possible to do this without 943 // recounting everything, but it's very confusing, and this is rarely 944 // executed.) 945 BBUtils->computeBlockSize(OrigBB); 946 947 // Figure out how large the NewMBB is. As the second half of the original 948 // block, it may contain a tablejump. 949 BBUtils->computeBlockSize(NewBB); 950 951 // All BBOffsets following these blocks must be modified. 952 BBUtils->adjustBBOffsetsAfter(OrigBB); 953 954 return NewBB; 955 } 956 957 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 958 /// displacement computation. Update U.KnownAlignment to match its current 959 /// basic block location. 960 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 961 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 962 963 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 964 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 965 unsigned KnownBits = BBI.internalKnownBits(); 966 967 // The value read from PC is offset from the actual instruction address. 968 UserOffset += (isThumb ? 4 : 8); 969 970 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 971 // Make sure U.getMaxDisp() returns a constrained range. 972 U.KnownAlignment = (KnownBits >= 2); 973 974 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 975 // purposes of the displacement computation; compensate for that here. 976 // For unknown alignments, getMaxDisp() constrains the range instead. 977 if (isThumb && U.KnownAlignment) 978 UserOffset &= ~3u; 979 980 return UserOffset; 981 } 982 983 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 984 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 985 /// constant pool entry). 986 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 987 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 988 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 989 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 990 unsigned TrialOffset, unsigned MaxDisp, 991 bool NegativeOK, bool IsSoImm) { 992 if (UserOffset <= TrialOffset) { 993 // User before the Trial. 994 if (TrialOffset - UserOffset <= MaxDisp) 995 return true; 996 // FIXME: Make use full range of soimm values. 997 } else if (NegativeOK) { 998 if (UserOffset - TrialOffset <= MaxDisp) 999 return true; 1000 // FIXME: Make use full range of soimm values. 1001 } 1002 return false; 1003 } 1004 1005 /// isWaterInRange - Returns true if a CPE placed after the specified 1006 /// Water (a basic block) will be in range for the specific MI. 1007 /// 1008 /// Compute how much the function will grow by inserting a CPE after Water. 1009 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1010 MachineBasicBlock* Water, CPUser &U, 1011 unsigned &Growth) { 1012 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1013 const Align CPEAlign = getCPEAlign(U.CPEMI); 1014 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1015 unsigned NextBlockOffset; 1016 Align NextBlockAlignment; 1017 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1018 if (++NextBlock == MF->end()) { 1019 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1020 } else { 1021 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1022 NextBlockAlignment = NextBlock->getAlignment(); 1023 } 1024 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1025 unsigned CPEEnd = CPEOffset + Size; 1026 1027 // The CPE may be able to hide in the alignment padding before the next 1028 // block. It may also cause more padding to be required if it is more aligned 1029 // that the next block. 1030 if (CPEEnd > NextBlockOffset) { 1031 Growth = CPEEnd - NextBlockOffset; 1032 // Compute the padding that would go at the end of the CPE to align the next 1033 // block. 1034 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1035 1036 // If the CPE is to be inserted before the instruction, that will raise 1037 // the offset of the instruction. Also account for unknown alignment padding 1038 // in blocks between CPE and the user. 1039 if (CPEOffset < UserOffset) 1040 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1041 } else 1042 // CPE fits in existing padding. 1043 Growth = 0; 1044 1045 return isOffsetInRange(UserOffset, CPEOffset, U); 1046 } 1047 1048 /// isCPEntryInRange - Returns true if the distance between specific MI and 1049 /// specific ConstPool entry instruction can fit in MI's displacement field. 1050 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1051 MachineInstr *CPEMI, unsigned MaxDisp, 1052 bool NegOk, bool DoDump) { 1053 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1054 1055 if (DoDump) { 1056 LLVM_DEBUG({ 1057 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1058 unsigned Block = MI->getParent()->getNumber(); 1059 const BasicBlockInfo &BBI = BBInfo[Block]; 1060 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1061 << " max delta=" << MaxDisp 1062 << format(" insn address=%#x", UserOffset) << " in " 1063 << printMBBReference(*MI->getParent()) << ": " 1064 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1065 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1066 int(CPEOffset - UserOffset)); 1067 }); 1068 } 1069 1070 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1071 } 1072 1073 #ifndef NDEBUG 1074 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1075 /// unconditionally branches to its only successor. 1076 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1077 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1078 return false; 1079 1080 MachineBasicBlock *Succ = *MBB->succ_begin(); 1081 MachineBasicBlock *Pred = *MBB->pred_begin(); 1082 MachineInstr *PredMI = &Pred->back(); 1083 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1084 || PredMI->getOpcode() == ARM::t2B) 1085 return PredMI->getOperand(0).getMBB() == Succ; 1086 return false; 1087 } 1088 #endif // NDEBUG 1089 1090 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1091 /// and instruction CPEMI, and decrement its refcount. If the refcount 1092 /// becomes 0 remove the entry and instruction. Returns true if we removed 1093 /// the entry, false if we didn't. 1094 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1095 MachineInstr *CPEMI) { 1096 // Find the old entry. Eliminate it if it is no longer used. 1097 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1098 assert(CPE && "Unexpected!"); 1099 if (--CPE->RefCount == 0) { 1100 removeDeadCPEMI(CPEMI); 1101 CPE->CPEMI = nullptr; 1102 --NumCPEs; 1103 return true; 1104 } 1105 return false; 1106 } 1107 1108 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1109 if (CPEMI->getOperand(1).isCPI()) 1110 return CPEMI->getOperand(1).getIndex(); 1111 1112 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1113 } 1114 1115 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1116 /// if not, see if an in-range clone of the CPE is in range, and if so, 1117 /// change the data structures so the user references the clone. Returns: 1118 /// 0 = no existing entry found 1119 /// 1 = entry found, and there were no code insertions or deletions 1120 /// 2 = entry found, and there were code insertions or deletions 1121 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1122 MachineInstr *UserMI = U.MI; 1123 MachineInstr *CPEMI = U.CPEMI; 1124 1125 // Check to see if the CPE is already in-range. 1126 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1127 true)) { 1128 LLVM_DEBUG(dbgs() << "In range\n"); 1129 return 1; 1130 } 1131 1132 // No. Look for previously created clones of the CPE that are in range. 1133 unsigned CPI = getCombinedIndex(CPEMI); 1134 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1135 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1136 // We already tried this one 1137 if (CPEs[i].CPEMI == CPEMI) 1138 continue; 1139 // Removing CPEs can leave empty entries, skip 1140 if (CPEs[i].CPEMI == nullptr) 1141 continue; 1142 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1143 U.NegOk)) { 1144 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1145 << CPEs[i].CPI << "\n"); 1146 // Point the CPUser node to the replacement 1147 U.CPEMI = CPEs[i].CPEMI; 1148 // Change the CPI in the instruction operand to refer to the clone. 1149 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1150 if (UserMI->getOperand(j).isCPI()) { 1151 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1152 break; 1153 } 1154 // Adjust the refcount of the clone... 1155 CPEs[i].RefCount++; 1156 // ...and the original. If we didn't remove the old entry, none of the 1157 // addresses changed, so we don't need another pass. 1158 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1159 } 1160 } 1161 return 0; 1162 } 1163 1164 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1165 /// the specific unconditional branch instruction. 1166 static inline unsigned getUnconditionalBrDisp(int Opc) { 1167 switch (Opc) { 1168 case ARM::tB: 1169 return ((1<<10)-1)*2; 1170 case ARM::t2B: 1171 return ((1<<23)-1)*2; 1172 default: 1173 break; 1174 } 1175 1176 return ((1<<23)-1)*4; 1177 } 1178 1179 /// findAvailableWater - Look for an existing entry in the WaterList in which 1180 /// we can place the CPE referenced from U so it's within range of U's MI. 1181 /// Returns true if found, false if not. If it returns true, WaterIter 1182 /// is set to the WaterList entry. For Thumb, prefer water that will not 1183 /// introduce padding to water that will. To ensure that this pass 1184 /// terminates, the CPE location for a particular CPUser is only allowed to 1185 /// move to a lower address, so search backward from the end of the list and 1186 /// prefer the first water that is in range. 1187 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1188 water_iterator &WaterIter, 1189 bool CloserWater) { 1190 if (WaterList.empty()) 1191 return false; 1192 1193 unsigned BestGrowth = ~0u; 1194 // The nearest water without splitting the UserBB is right after it. 1195 // If the distance is still large (we have a big BB), then we need to split it 1196 // if we don't converge after certain iterations. This helps the following 1197 // situation to converge: 1198 // BB0: 1199 // Big BB 1200 // BB1: 1201 // Constant Pool 1202 // When a CP access is out of range, BB0 may be used as water. However, 1203 // inserting islands between BB0 and BB1 makes other accesses out of range. 1204 MachineBasicBlock *UserBB = U.MI->getParent(); 1205 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1206 const Align CPEAlign = getCPEAlign(U.CPEMI); 1207 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1208 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1209 return false; 1210 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1211 --IP) { 1212 MachineBasicBlock* WaterBB = *IP; 1213 // Check if water is in range and is either at a lower address than the 1214 // current "high water mark" or a new water block that was created since 1215 // the previous iteration by inserting an unconditional branch. In the 1216 // latter case, we want to allow resetting the high water mark back to 1217 // this new water since we haven't seen it before. Inserting branches 1218 // should be relatively uncommon and when it does happen, we want to be 1219 // sure to take advantage of it for all the CPEs near that block, so that 1220 // we don't insert more branches than necessary. 1221 // When CloserWater is true, we try to find the lowest address after (or 1222 // equal to) user MI's BB no matter of padding growth. 1223 unsigned Growth; 1224 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1225 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1226 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1227 Growth < BestGrowth) { 1228 // This is the least amount of required padding seen so far. 1229 BestGrowth = Growth; 1230 WaterIter = IP; 1231 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1232 << " Growth=" << Growth << '\n'); 1233 1234 if (CloserWater && WaterBB == U.MI->getParent()) 1235 return true; 1236 // Keep looking unless it is perfect and we're not looking for the lowest 1237 // possible address. 1238 if (!CloserWater && BestGrowth == 0) 1239 return true; 1240 } 1241 if (IP == B) 1242 break; 1243 } 1244 return BestGrowth != ~0u; 1245 } 1246 1247 /// createNewWater - No existing WaterList entry will work for 1248 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1249 /// block is used if in range, and the conditional branch munged so control 1250 /// flow is correct. Otherwise the block is split to create a hole with an 1251 /// unconditional branch around it. In either case NewMBB is set to a 1252 /// block following which the new island can be inserted (the WaterList 1253 /// is not adjusted). 1254 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1255 unsigned UserOffset, 1256 MachineBasicBlock *&NewMBB) { 1257 CPUser &U = CPUsers[CPUserIndex]; 1258 MachineInstr *UserMI = U.MI; 1259 MachineInstr *CPEMI = U.CPEMI; 1260 const Align CPEAlign = getCPEAlign(CPEMI); 1261 MachineBasicBlock *UserMBB = UserMI->getParent(); 1262 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1263 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1264 1265 // If the block does not end in an unconditional branch already, and if the 1266 // end of the block is within range, make new water there. (The addition 1267 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1268 // Thumb2, 2 on Thumb1. 1269 if (BBHasFallthrough(UserMBB)) { 1270 // Size of branch to insert. 1271 unsigned Delta = isThumb1 ? 2 : 4; 1272 // Compute the offset where the CPE will begin. 1273 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1274 1275 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1276 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1277 << format(", expected CPE offset %#x\n", CPEOffset)); 1278 NewMBB = &*++UserMBB->getIterator(); 1279 // Add an unconditional branch from UserMBB to fallthrough block. Record 1280 // it for branch lengthening; this new branch will not get out of range, 1281 // but if the preceding conditional branch is out of range, the targets 1282 // will be exchanged, and the altered branch may be out of range, so the 1283 // machinery has to know about it. 1284 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1285 if (!isThumb) 1286 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1287 else 1288 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1289 .addMBB(NewMBB) 1290 .add(predOps(ARMCC::AL)); 1291 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1292 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1293 MaxDisp, false, UncondBr)); 1294 BBUtils->computeBlockSize(UserMBB); 1295 BBUtils->adjustBBOffsetsAfter(UserMBB); 1296 return; 1297 } 1298 } 1299 1300 // What a big block. Find a place within the block to split it. This is a 1301 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1302 // entries are 4 bytes: if instruction I references island CPE, and 1303 // instruction I+1 references CPE', it will not work well to put CPE as far 1304 // forward as possible, since then CPE' cannot immediately follow it (that 1305 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1306 // need to create a new island. So, we make a first guess, then walk through 1307 // the instructions between the one currently being looked at and the 1308 // possible insertion point, and make sure any other instructions that 1309 // reference CPEs will be able to use the same island area; if not, we back 1310 // up the insertion point. 1311 1312 // Try to split the block so it's fully aligned. Compute the latest split 1313 // point where we can add a 4-byte branch instruction, and then align to 1314 // Align which is the largest possible alignment in the function. 1315 const Align Align = MF->getAlignment(); 1316 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1317 unsigned KnownBits = UserBBI.internalKnownBits(); 1318 unsigned UPad = UnknownPadding(Align, KnownBits); 1319 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1320 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1321 BaseInsertOffset)); 1322 1323 // The 4 in the following is for the unconditional branch we'll be inserting 1324 // (allows for long branch on Thumb1). Alignment of the island is handled 1325 // inside isOffsetInRange. 1326 BaseInsertOffset -= 4; 1327 1328 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1329 << " la=" << Log2(Align) << " kb=" << KnownBits 1330 << " up=" << UPad << '\n'); 1331 1332 // This could point off the end of the block if we've already got constant 1333 // pool entries following this block; only the last one is in the water list. 1334 // Back past any possible branches (allow for a conditional and a maximally 1335 // long unconditional). 1336 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1337 // Ensure BaseInsertOffset is larger than the offset of the instruction 1338 // following UserMI so that the loop which searches for the split point 1339 // iterates at least once. 1340 BaseInsertOffset = 1341 std::max(UserBBI.postOffset() - UPad - 8, 1342 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1343 // If the CP is referenced(ie, UserOffset) is in first four instructions 1344 // after IT, this recalculated BaseInsertOffset could be in the middle of 1345 // an IT block. If it is, change the BaseInsertOffset to just after the 1346 // IT block. This still make the CP Entry is in range becuase of the 1347 // following reasons. 1348 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1349 // U.getMaxDisp() - UPad). 1350 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1351 // bytes). 1352 // 3. All the relevant instructions support much larger Maximum 1353 // displacement. 1354 MachineBasicBlock::iterator I = UserMI; 1355 ++I; 1356 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI), 1357 PredReg = 0; 1358 I->getOpcode() != ARM::t2IT && 1359 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1360 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1361 BaseInsertOffset = 1362 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1363 assert(I != UserMBB->end() && "Fell off end of block"); 1364 } 1365 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1366 } 1367 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1368 CPEMI->getOperand(2).getImm(); 1369 MachineBasicBlock::iterator MI = UserMI; 1370 ++MI; 1371 unsigned CPUIndex = CPUserIndex+1; 1372 unsigned NumCPUsers = CPUsers.size(); 1373 MachineInstr *LastIT = nullptr; 1374 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1375 Offset < BaseInsertOffset; 1376 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1377 assert(MI != UserMBB->end() && "Fell off end of block"); 1378 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1379 CPUser &U = CPUsers[CPUIndex]; 1380 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1381 // Shift intertion point by one unit of alignment so it is within reach. 1382 BaseInsertOffset -= Align.value(); 1383 EndInsertOffset -= Align.value(); 1384 } 1385 // This is overly conservative, as we don't account for CPEMIs being 1386 // reused within the block, but it doesn't matter much. Also assume CPEs 1387 // are added in order with alignment padding. We may eventually be able 1388 // to pack the aligned CPEs better. 1389 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1390 CPUIndex++; 1391 } 1392 1393 // Remember the last IT instruction. 1394 if (MI->getOpcode() == ARM::t2IT) 1395 LastIT = &*MI; 1396 } 1397 1398 --MI; 1399 1400 // Avoid splitting an IT block. 1401 if (LastIT) { 1402 unsigned PredReg = 0; 1403 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1404 if (CC != ARMCC::AL) 1405 MI = LastIT; 1406 } 1407 1408 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1409 // On Windows, this instruction pair is covered by one single 1410 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1411 // constant island is injected inbetween them, the relocation will clobber 1412 // the instruction and fail to update the MOVT instruction. 1413 // (These instructions are bundled up until right before the ConstantIslands 1414 // pass.) 1415 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1416 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1417 ARMII::MO_HI16) { 1418 --MI; 1419 assert(MI->getOpcode() == ARM::t2MOVi16 && 1420 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1421 ARMII::MO_LO16); 1422 } 1423 1424 // We really must not split an IT block. 1425 #ifndef NDEBUG 1426 unsigned PredReg; 1427 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1428 #endif 1429 NewMBB = splitBlockBeforeInstr(&*MI); 1430 } 1431 1432 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1433 /// is out-of-range. If so, pick up the constant pool value and move it some 1434 /// place in-range. Return true if we changed any addresses (thus must run 1435 /// another pass of branch lengthening), false otherwise. 1436 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1437 bool CloserWater) { 1438 CPUser &U = CPUsers[CPUserIndex]; 1439 MachineInstr *UserMI = U.MI; 1440 MachineInstr *CPEMI = U.CPEMI; 1441 unsigned CPI = getCombinedIndex(CPEMI); 1442 unsigned Size = CPEMI->getOperand(2).getImm(); 1443 // Compute this only once, it's expensive. 1444 unsigned UserOffset = getUserOffset(U); 1445 1446 // See if the current entry is within range, or there is a clone of it 1447 // in range. 1448 int result = findInRangeCPEntry(U, UserOffset); 1449 if (result==1) return false; 1450 else if (result==2) return true; 1451 1452 // No existing clone of this CPE is within range. 1453 // We will be generating a new clone. Get a UID for it. 1454 unsigned ID = AFI->createPICLabelUId(); 1455 1456 // Look for water where we can place this CPE. 1457 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1458 MachineBasicBlock *NewMBB; 1459 water_iterator IP; 1460 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1461 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1462 MachineBasicBlock *WaterBB = *IP; 1463 1464 // If the original WaterList entry was "new water" on this iteration, 1465 // propagate that to the new island. This is just keeping NewWaterList 1466 // updated to match the WaterList, which will be updated below. 1467 if (NewWaterList.erase(WaterBB)) 1468 NewWaterList.insert(NewIsland); 1469 1470 // The new CPE goes before the following block (NewMBB). 1471 NewMBB = &*++WaterBB->getIterator(); 1472 } else { 1473 // No water found. 1474 LLVM_DEBUG(dbgs() << "No water found\n"); 1475 createNewWater(CPUserIndex, UserOffset, NewMBB); 1476 1477 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1478 // called while handling branches so that the water will be seen on the 1479 // next iteration for constant pools, but in this context, we don't want 1480 // it. Check for this so it will be removed from the WaterList. 1481 // Also remove any entry from NewWaterList. 1482 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1483 IP = find(WaterList, WaterBB); 1484 if (IP != WaterList.end()) 1485 NewWaterList.erase(WaterBB); 1486 1487 // We are adding new water. Update NewWaterList. 1488 NewWaterList.insert(NewIsland); 1489 } 1490 // Always align the new block because CP entries can be smaller than 4 1491 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1492 // be an already aligned constant pool block. 1493 const Align Alignment = isThumb ? Align(2) : Align(4); 1494 if (NewMBB->getAlignment() < Alignment) 1495 NewMBB->setAlignment(Alignment); 1496 1497 // Remove the original WaterList entry; we want subsequent insertions in 1498 // this vicinity to go after the one we're about to insert. This 1499 // considerably reduces the number of times we have to move the same CPE 1500 // more than once and is also important to ensure the algorithm terminates. 1501 if (IP != WaterList.end()) 1502 WaterList.erase(IP); 1503 1504 // Okay, we know we can put an island before NewMBB now, do it! 1505 MF->insert(NewMBB->getIterator(), NewIsland); 1506 1507 // Update internal data structures to account for the newly inserted MBB. 1508 updateForInsertedWaterBlock(NewIsland); 1509 1510 // Now that we have an island to add the CPE to, clone the original CPE and 1511 // add it to the island. 1512 U.HighWaterMark = NewIsland; 1513 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1514 .addImm(ID) 1515 .add(CPEMI->getOperand(1)) 1516 .addImm(Size); 1517 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1518 ++NumCPEs; 1519 1520 // Decrement the old entry, and remove it if refcount becomes 0. 1521 decrementCPEReferenceCount(CPI, CPEMI); 1522 1523 // Mark the basic block as aligned as required by the const-pool entry. 1524 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1525 1526 // Increase the size of the island block to account for the new entry. 1527 BBUtils->adjustBBSize(NewIsland, Size); 1528 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1529 1530 // Finally, change the CPI in the instruction operand to be ID. 1531 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1532 if (UserMI->getOperand(i).isCPI()) { 1533 UserMI->getOperand(i).setIndex(ID); 1534 break; 1535 } 1536 1537 LLVM_DEBUG( 1538 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1539 << format(" offset=%#x\n", 1540 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1541 1542 return true; 1543 } 1544 1545 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1546 /// sizes and offsets of impacted basic blocks. 1547 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1548 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1549 unsigned Size = CPEMI->getOperand(2).getImm(); 1550 CPEMI->eraseFromParent(); 1551 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1552 BBUtils->adjustBBSize(CPEBB, -Size); 1553 // All succeeding offsets have the current size value added in, fix this. 1554 if (CPEBB->empty()) { 1555 BBInfo[CPEBB->getNumber()].Size = 0; 1556 1557 // This block no longer needs to be aligned. 1558 CPEBB->setAlignment(Align(1)); 1559 } else { 1560 // Entries are sorted by descending alignment, so realign from the front. 1561 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1562 } 1563 1564 BBUtils->adjustBBOffsetsAfter(CPEBB); 1565 // An island has only one predecessor BB and one successor BB. Check if 1566 // this BB's predecessor jumps directly to this BB's successor. This 1567 // shouldn't happen currently. 1568 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1569 // FIXME: remove the empty blocks after all the work is done? 1570 } 1571 1572 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1573 /// are zero. 1574 bool ARMConstantIslands::removeUnusedCPEntries() { 1575 unsigned MadeChange = false; 1576 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1577 std::vector<CPEntry> &CPEs = CPEntries[i]; 1578 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1579 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1580 removeDeadCPEMI(CPEs[j].CPEMI); 1581 CPEs[j].CPEMI = nullptr; 1582 MadeChange = true; 1583 } 1584 } 1585 } 1586 return MadeChange; 1587 } 1588 1589 1590 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1591 /// away to fit in its displacement field. 1592 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1593 MachineInstr *MI = Br.MI; 1594 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1595 1596 // Check to see if the DestBB is already in-range. 1597 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1598 return false; 1599 1600 if (!Br.isCond) 1601 return fixupUnconditionalBr(Br); 1602 return fixupConditionalBr(Br); 1603 } 1604 1605 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1606 /// too far away to fit in its displacement field. If the LR register has been 1607 /// spilled in the epilogue, then we can use BL to implement a far jump. 1608 /// Otherwise, add an intermediate branch instruction to a branch. 1609 bool 1610 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1611 MachineInstr *MI = Br.MI; 1612 MachineBasicBlock *MBB = MI->getParent(); 1613 if (!isThumb1) 1614 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1615 1616 if (!AFI->isLRSpilled()) 1617 report_fatal_error("underestimated function size"); 1618 1619 // Use BL to implement far jump. 1620 Br.MaxDisp = (1 << 21) * 2; 1621 MI->setDesc(TII->get(ARM::tBfar)); 1622 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1623 BBInfo[MBB->getNumber()].Size += 2; 1624 BBUtils->adjustBBOffsetsAfter(MBB); 1625 ++NumUBrFixed; 1626 1627 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1628 1629 return true; 1630 } 1631 1632 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1633 /// far away to fit in its displacement field. It is converted to an inverse 1634 /// conditional branch + an unconditional branch to the destination. 1635 bool 1636 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1637 MachineInstr *MI = Br.MI; 1638 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1639 1640 // Add an unconditional branch to the destination and invert the branch 1641 // condition to jump over it: 1642 // blt L1 1643 // => 1644 // bge L2 1645 // b L1 1646 // L2: 1647 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1648 CC = ARMCC::getOppositeCondition(CC); 1649 Register CCReg = MI->getOperand(2).getReg(); 1650 1651 // If the branch is at the end of its MBB and that has a fall-through block, 1652 // direct the updated conditional branch to the fall-through block. Otherwise, 1653 // split the MBB before the next instruction. 1654 MachineBasicBlock *MBB = MI->getParent(); 1655 MachineInstr *BMI = &MBB->back(); 1656 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1657 1658 ++NumCBrFixed; 1659 if (BMI != MI) { 1660 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1661 BMI->getOpcode() == Br.UncondBr) { 1662 // Last MI in the BB is an unconditional branch. Can we simply invert the 1663 // condition and swap destinations: 1664 // beq L1 1665 // b L2 1666 // => 1667 // bne L2 1668 // b L1 1669 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1670 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1671 LLVM_DEBUG( 1672 dbgs() << " Invert Bcc condition and swap its destination with " 1673 << *BMI); 1674 BMI->getOperand(0).setMBB(DestBB); 1675 MI->getOperand(0).setMBB(NewDest); 1676 MI->getOperand(1).setImm(CC); 1677 return true; 1678 } 1679 } 1680 } 1681 1682 if (NeedSplit) { 1683 splitBlockBeforeInstr(MI); 1684 // No need for the branch to the next block. We're adding an unconditional 1685 // branch to the destination. 1686 int delta = TII->getInstSizeInBytes(MBB->back()); 1687 BBUtils->adjustBBSize(MBB, -delta); 1688 MBB->back().eraseFromParent(); 1689 1690 // The conditional successor will be swapped between the BBs after this, so 1691 // update CFG. 1692 MBB->addSuccessor(DestBB); 1693 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1694 1695 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1696 } 1697 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1698 1699 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1700 << " also invert condition and change dest. to " 1701 << printMBBReference(*NextBB) << "\n"); 1702 1703 // Insert a new conditional branch and a new unconditional branch. 1704 // Also update the ImmBranch as well as adding a new entry for the new branch. 1705 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1706 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1707 Br.MI = &MBB->back(); 1708 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1709 if (isThumb) 1710 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1711 .addMBB(DestBB) 1712 .add(predOps(ARMCC::AL)); 1713 else 1714 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1715 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1716 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1717 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1718 1719 // Remove the old conditional branch. It may or may not still be in MBB. 1720 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1721 MI->eraseFromParent(); 1722 BBUtils->adjustBBOffsetsAfter(MBB); 1723 return true; 1724 } 1725 1726 bool ARMConstantIslands::optimizeThumb2Instructions() { 1727 bool MadeChange = false; 1728 1729 // Shrink ADR and LDR from constantpool. 1730 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1731 CPUser &U = CPUsers[i]; 1732 unsigned Opcode = U.MI->getOpcode(); 1733 unsigned NewOpc = 0; 1734 unsigned Scale = 1; 1735 unsigned Bits = 0; 1736 switch (Opcode) { 1737 default: break; 1738 case ARM::t2LEApcrel: 1739 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1740 NewOpc = ARM::tLEApcrel; 1741 Bits = 8; 1742 Scale = 4; 1743 } 1744 break; 1745 case ARM::t2LDRpci: 1746 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1747 NewOpc = ARM::tLDRpci; 1748 Bits = 8; 1749 Scale = 4; 1750 } 1751 break; 1752 } 1753 1754 if (!NewOpc) 1755 continue; 1756 1757 unsigned UserOffset = getUserOffset(U); 1758 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1759 1760 // Be conservative with inline asm. 1761 if (!U.KnownAlignment) 1762 MaxOffs -= 2; 1763 1764 // FIXME: Check if offset is multiple of scale if scale is not 4. 1765 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1766 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1767 U.MI->setDesc(TII->get(NewOpc)); 1768 MachineBasicBlock *MBB = U.MI->getParent(); 1769 BBUtils->adjustBBSize(MBB, -2); 1770 BBUtils->adjustBBOffsetsAfter(MBB); 1771 ++NumT2CPShrunk; 1772 MadeChange = true; 1773 } 1774 } 1775 1776 return MadeChange; 1777 } 1778 1779 1780 bool ARMConstantIslands::optimizeThumb2Branches() { 1781 1782 auto TryShrinkBranch = [this](ImmBranch &Br) { 1783 unsigned Opcode = Br.MI->getOpcode(); 1784 unsigned NewOpc = 0; 1785 unsigned Scale = 1; 1786 unsigned Bits = 0; 1787 switch (Opcode) { 1788 default: break; 1789 case ARM::t2B: 1790 NewOpc = ARM::tB; 1791 Bits = 11; 1792 Scale = 2; 1793 break; 1794 case ARM::t2Bcc: 1795 NewOpc = ARM::tBcc; 1796 Bits = 8; 1797 Scale = 2; 1798 break; 1799 } 1800 if (NewOpc) { 1801 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1802 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1803 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1804 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1805 Br.MI->setDesc(TII->get(NewOpc)); 1806 MachineBasicBlock *MBB = Br.MI->getParent(); 1807 BBUtils->adjustBBSize(MBB, -2); 1808 BBUtils->adjustBBOffsetsAfter(MBB); 1809 ++NumT2BrShrunk; 1810 return true; 1811 } 1812 } 1813 return false; 1814 }; 1815 1816 struct ImmCompare { 1817 MachineInstr* MI = nullptr; 1818 unsigned NewOpc = 0; 1819 }; 1820 1821 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1822 MachineBasicBlock *DestBB) { 1823 ImmCmp.MI = nullptr; 1824 ImmCmp.NewOpc = 0; 1825 1826 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1827 // so this transformation is not safe. 1828 if (!Br.MI->killsRegister(ARM::CPSR)) 1829 return false; 1830 1831 unsigned PredReg = 0; 1832 unsigned NewOpc = 0; 1833 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1834 if (Pred == ARMCC::EQ) 1835 NewOpc = ARM::tCBZ; 1836 else if (Pred == ARMCC::NE) 1837 NewOpc = ARM::tCBNZ; 1838 else 1839 return false; 1840 1841 // Check if the distance is within 126. Subtract starting offset by 2 1842 // because the cmp will be eliminated. 1843 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1844 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1845 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1846 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1847 return false; 1848 1849 // Search backwards to find a tCMPi8 1850 auto *TRI = STI->getRegisterInfo(); 1851 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1852 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1853 return false; 1854 1855 ImmCmp.MI = CmpMI; 1856 ImmCmp.NewOpc = NewOpc; 1857 return true; 1858 }; 1859 1860 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1861 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1862 STI->hasMinSize()) 1863 return false; 1864 1865 MachineBasicBlock *MBB = Br.MI->getParent(); 1866 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1867 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1868 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1869 return false; 1870 1871 if (!DT->dominates(DestBB, MBB)) 1872 return false; 1873 1874 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1875 // target of Br. So now we need to reverse the condition. 1876 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1877 1878 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1879 TII->get(ARM::t2LE)); 1880 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1881 MIB.add(Br.MI->getOperand(0)); 1882 Br.MI->eraseFromParent(); 1883 Br.MI = MIB; 1884 ++NumLEInserted; 1885 return true; 1886 }; 1887 1888 bool MadeChange = false; 1889 1890 // The order in which branches appear in ImmBranches is approximately their 1891 // order within the function body. By visiting later branches first, we reduce 1892 // the distance between earlier forward branches and their targets, making it 1893 // more likely that the cbn?z optimization, which can only apply to forward 1894 // branches, will succeed. 1895 for (ImmBranch &Br : reverse(ImmBranches)) { 1896 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1897 MachineBasicBlock *MBB = Br.MI->getParent(); 1898 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 1899 MBB->getFallThrough() : 1900 MBB->back().getOperand(0).getMBB(); 1901 1902 ImmCompare Cmp; 1903 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 1904 DestBB = ExitBB; 1905 MadeChange = true; 1906 } else { 1907 FindCmpForCBZ(Br, Cmp, DestBB); 1908 MadeChange |= TryShrinkBranch(Br); 1909 } 1910 1911 unsigned Opcode = Br.MI->getOpcode(); 1912 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 1913 continue; 1914 1915 Register Reg = Cmp.MI->getOperand(0).getReg(); 1916 1917 // Check for Kill flags on Reg. If they are present remove them and set kill 1918 // on the new CBZ. 1919 auto *TRI = STI->getRegisterInfo(); 1920 MachineBasicBlock::iterator KillMI = Br.MI; 1921 bool RegKilled = false; 1922 do { 1923 --KillMI; 1924 if (KillMI->killsRegister(Reg, TRI)) { 1925 KillMI->clearRegisterKills(Reg, TRI); 1926 RegKilled = true; 1927 break; 1928 } 1929 } while (KillMI != Cmp.MI); 1930 1931 // Create the new CBZ/CBNZ 1932 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 1933 MachineInstr *NewBR = 1934 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 1935 .addReg(Reg, getKillRegState(RegKilled)) 1936 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1937 1938 Cmp.MI->eraseFromParent(); 1939 1940 if (Br.MI->getOpcode() == ARM::tBcc) { 1941 Br.MI->eraseFromParent(); 1942 Br.MI = NewBR; 1943 BBUtils->adjustBBSize(MBB, -2); 1944 } else if (MBB->back().getOpcode() != ARM::t2LE) { 1945 // An LE has been generated, but it's not the terminator - that is an 1946 // unconditional branch. However, the logic has now been reversed with the 1947 // CBN?Z being the conditional branch and the LE being the unconditional 1948 // branch. So this means we can remove the redundant unconditional branch 1949 // at the end of the block. 1950 MachineInstr *LastMI = &MBB->back(); 1951 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 1952 LastMI->eraseFromParent(); 1953 } 1954 BBUtils->adjustBBOffsetsAfter(MBB); 1955 ++NumCBZ; 1956 MadeChange = true; 1957 } 1958 1959 return MadeChange; 1960 } 1961 1962 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1963 unsigned BaseReg) { 1964 if (I.getOpcode() != ARM::t2ADDrs) 1965 return false; 1966 1967 if (I.getOperand(0).getReg() != EntryReg) 1968 return false; 1969 1970 if (I.getOperand(1).getReg() != BaseReg) 1971 return false; 1972 1973 // FIXME: what about CC and IdxReg? 1974 return true; 1975 } 1976 1977 /// While trying to form a TBB/TBH instruction, we may (if the table 1978 /// doesn't immediately follow the BR_JT) need access to the start of the 1979 /// jump-table. We know one instruction that produces such a register; this 1980 /// function works out whether that definition can be preserved to the BR_JT, 1981 /// possibly by removing an intervening addition (which is usually needed to 1982 /// calculate the actual entry to jump to). 1983 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1984 MachineInstr *LEAMI, 1985 unsigned &DeadSize, 1986 bool &CanDeleteLEA, 1987 bool &BaseRegKill) { 1988 if (JumpMI->getParent() != LEAMI->getParent()) 1989 return false; 1990 1991 // Now we hope that we have at least these instructions in the basic block: 1992 // BaseReg = t2LEA ... 1993 // [...] 1994 // EntryReg = t2ADDrs BaseReg, ... 1995 // [...] 1996 // t2BR_JT EntryReg 1997 // 1998 // We have to be very conservative about what we recognise here though. The 1999 // main perturbing factors to watch out for are: 2000 // + Spills at any point in the chain: not direct problems but we would 2001 // expect a blocking Def of the spilled register so in practice what we 2002 // can do is limited. 2003 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2004 // of BaseReg, but only if the t2ADDrs can be removed. 2005 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2006 // the wild, but we should be careful. 2007 Register EntryReg = JumpMI->getOperand(0).getReg(); 2008 Register BaseReg = LEAMI->getOperand(0).getReg(); 2009 2010 CanDeleteLEA = true; 2011 BaseRegKill = false; 2012 MachineInstr *RemovableAdd = nullptr; 2013 MachineBasicBlock::iterator I(LEAMI); 2014 for (++I; &*I != JumpMI; ++I) { 2015 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2016 RemovableAdd = &*I; 2017 break; 2018 } 2019 2020 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2021 const MachineOperand &MO = I->getOperand(K); 2022 if (!MO.isReg() || !MO.getReg()) 2023 continue; 2024 if (MO.isDef() && MO.getReg() == BaseReg) 2025 return false; 2026 if (MO.isUse() && MO.getReg() == BaseReg) { 2027 BaseRegKill = BaseRegKill || MO.isKill(); 2028 CanDeleteLEA = false; 2029 } 2030 } 2031 } 2032 2033 if (!RemovableAdd) 2034 return true; 2035 2036 // Check the add really is removable, and that nothing else in the block 2037 // clobbers BaseReg. 2038 for (++I; &*I != JumpMI; ++I) { 2039 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2040 const MachineOperand &MO = I->getOperand(K); 2041 if (!MO.isReg() || !MO.getReg()) 2042 continue; 2043 if (MO.isDef() && MO.getReg() == BaseReg) 2044 return false; 2045 if (MO.isUse() && MO.getReg() == EntryReg) 2046 RemovableAdd = nullptr; 2047 } 2048 } 2049 2050 if (RemovableAdd) { 2051 RemovableAdd->eraseFromParent(); 2052 DeadSize += isThumb2 ? 4 : 2; 2053 } else if (BaseReg == EntryReg) { 2054 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2055 // preserve it. 2056 return false; 2057 } 2058 2059 // We reached the end of the block without seeing another definition of 2060 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2061 // used in the TBB/TBH if necessary. 2062 return true; 2063 } 2064 2065 /// Returns whether CPEMI is the first instruction in the block 2066 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2067 /// we can switch the first register to PC and usually remove the address 2068 /// calculation that preceded it. 2069 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2070 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2071 MachineFunction *MF = MBB->getParent(); 2072 ++MBB; 2073 2074 return MBB != MF->end() && MBB->begin() != MBB->end() && 2075 &*MBB->begin() == CPEMI; 2076 } 2077 2078 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2079 MachineInstr *JumpMI, 2080 unsigned &DeadSize) { 2081 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2082 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2083 // and is not clobbered / used. 2084 MachineInstr *RemovableAdd = nullptr; 2085 Register EntryReg = JumpMI->getOperand(0).getReg(); 2086 2087 // Find the last ADD to set EntryReg 2088 MachineBasicBlock::iterator I(LEAMI); 2089 for (++I; &*I != JumpMI; ++I) { 2090 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2091 RemovableAdd = &*I; 2092 } 2093 2094 if (!RemovableAdd) 2095 return; 2096 2097 // Ensure EntryReg is not clobbered or used. 2098 MachineBasicBlock::iterator J(RemovableAdd); 2099 for (++J; &*J != JumpMI; ++J) { 2100 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2101 const MachineOperand &MO = J->getOperand(K); 2102 if (!MO.isReg() || !MO.getReg()) 2103 continue; 2104 if (MO.isDef() && MO.getReg() == EntryReg) 2105 return; 2106 if (MO.isUse() && MO.getReg() == EntryReg) 2107 return; 2108 } 2109 } 2110 2111 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2112 RemovableAdd->eraseFromParent(); 2113 DeadSize += 4; 2114 } 2115 2116 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2117 /// jumptables when it's possible. 2118 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2119 bool MadeChange = false; 2120 2121 // FIXME: After the tables are shrunk, can we get rid some of the 2122 // constantpool tables? 2123 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2124 if (!MJTI) return false; 2125 2126 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2127 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2128 MachineInstr *MI = T2JumpTables[i]; 2129 const MCInstrDesc &MCID = MI->getDesc(); 2130 unsigned NumOps = MCID.getNumOperands(); 2131 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2132 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2133 unsigned JTI = JTOP.getIndex(); 2134 assert(JTI < JT.size()); 2135 2136 bool ByteOk = true; 2137 bool HalfWordOk = true; 2138 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2139 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2140 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2141 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2142 MachineBasicBlock *MBB = JTBBs[j]; 2143 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2144 // Negative offset is not ok. FIXME: We should change BB layout to make 2145 // sure all the branches are forward. 2146 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2147 ByteOk = false; 2148 unsigned TBHLimit = ((1<<16)-1)*2; 2149 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2150 HalfWordOk = false; 2151 if (!ByteOk && !HalfWordOk) 2152 break; 2153 } 2154 2155 if (!ByteOk && !HalfWordOk) 2156 continue; 2157 2158 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2159 MachineBasicBlock *MBB = MI->getParent(); 2160 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2161 continue; 2162 2163 unsigned DeadSize = 0; 2164 bool CanDeleteLEA = false; 2165 bool BaseRegKill = false; 2166 2167 unsigned IdxReg = ~0U; 2168 bool IdxRegKill = true; 2169 if (isThumb2) { 2170 IdxReg = MI->getOperand(1).getReg(); 2171 IdxRegKill = MI->getOperand(1).isKill(); 2172 2173 bool PreservedBaseReg = 2174 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2175 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2176 continue; 2177 } else { 2178 // We're in thumb-1 mode, so we must have something like: 2179 // %idx = tLSLri %idx, 2 2180 // %base = tLEApcrelJT 2181 // %t = tLDRr %base, %idx 2182 Register BaseReg = User.MI->getOperand(0).getReg(); 2183 2184 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2185 continue; 2186 MachineInstr *Shift = User.MI->getPrevNode(); 2187 if (Shift->getOpcode() != ARM::tLSLri || 2188 Shift->getOperand(3).getImm() != 2 || 2189 !Shift->getOperand(2).isKill()) 2190 continue; 2191 IdxReg = Shift->getOperand(2).getReg(); 2192 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2193 2194 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2195 // the range is checked later, but the LEA might still clobber it and not 2196 // actually get removed. 2197 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2198 continue; 2199 2200 MachineInstr *Load = User.MI->getNextNode(); 2201 if (Load->getOpcode() != ARM::tLDRr) 2202 continue; 2203 if (Load->getOperand(1).getReg() != BaseReg || 2204 Load->getOperand(2).getReg() != ShiftedIdxReg || 2205 !Load->getOperand(2).isKill()) 2206 continue; 2207 2208 // If we're in PIC mode, there should be another ADD following. 2209 auto *TRI = STI->getRegisterInfo(); 2210 2211 // %base cannot be redefined after the load as it will appear before 2212 // TBB/TBH like: 2213 // %base = 2214 // %base = 2215 // tBB %base, %idx 2216 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2217 continue; 2218 2219 if (isPositionIndependentOrROPI) { 2220 MachineInstr *Add = Load->getNextNode(); 2221 if (Add->getOpcode() != ARM::tADDrr || 2222 Add->getOperand(2).getReg() != BaseReg || 2223 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2224 !Add->getOperand(3).isKill()) 2225 continue; 2226 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2227 continue; 2228 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2229 // IdxReg gets redefined in the middle of the sequence. 2230 continue; 2231 Add->eraseFromParent(); 2232 DeadSize += 2; 2233 } else { 2234 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2235 continue; 2236 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2237 // IdxReg gets redefined in the middle of the sequence. 2238 continue; 2239 } 2240 2241 // Now safe to delete the load and lsl. The LEA will be removed later. 2242 CanDeleteLEA = true; 2243 Shift->eraseFromParent(); 2244 Load->eraseFromParent(); 2245 DeadSize += 4; 2246 } 2247 2248 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2249 MachineInstr *CPEMI = User.CPEMI; 2250 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2251 if (!isThumb2) 2252 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2253 2254 MachineBasicBlock::iterator MI_JT = MI; 2255 MachineInstr *NewJTMI = 2256 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2257 .addReg(User.MI->getOperand(0).getReg(), 2258 getKillRegState(BaseRegKill)) 2259 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2260 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2261 .addImm(CPEMI->getOperand(0).getImm()); 2262 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2263 2264 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2265 CPEMI->setDesc(TII->get(JTOpc)); 2266 2267 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2268 NewJTMI->getOperand(0).setReg(ARM::PC); 2269 NewJTMI->getOperand(0).setIsKill(false); 2270 2271 if (CanDeleteLEA) { 2272 if (isThumb2) 2273 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2274 2275 User.MI->eraseFromParent(); 2276 DeadSize += isThumb2 ? 4 : 2; 2277 2278 // The LEA was eliminated, the TBB instruction becomes the only new user 2279 // of the jump table. 2280 User.MI = NewJTMI; 2281 User.MaxDisp = 4; 2282 User.NegOk = false; 2283 User.IsSoImm = false; 2284 User.KnownAlignment = false; 2285 } else { 2286 // The LEA couldn't be eliminated, so we must add another CPUser to 2287 // record the TBB or TBH use. 2288 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2289 auto &CPEs = CPEntries[CPEntryIdx]; 2290 auto Entry = 2291 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2292 ++Entry->RefCount; 2293 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2294 } 2295 } 2296 2297 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2298 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2299 MI->eraseFromParent(); 2300 2301 int Delta = OrigSize - NewSize + DeadSize; 2302 BBInfo[MBB->getNumber()].Size -= Delta; 2303 BBUtils->adjustBBOffsetsAfter(MBB); 2304 2305 ++NumTBs; 2306 MadeChange = true; 2307 } 2308 2309 return MadeChange; 2310 } 2311 2312 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2313 /// jump tables always branch forwards, since that's what tbb and tbh need. 2314 bool ARMConstantIslands::reorderThumb2JumpTables() { 2315 bool MadeChange = false; 2316 2317 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2318 if (!MJTI) return false; 2319 2320 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2321 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2322 MachineInstr *MI = T2JumpTables[i]; 2323 const MCInstrDesc &MCID = MI->getDesc(); 2324 unsigned NumOps = MCID.getNumOperands(); 2325 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2326 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2327 unsigned JTI = JTOP.getIndex(); 2328 assert(JTI < JT.size()); 2329 2330 // We prefer if target blocks for the jump table come after the jump 2331 // instruction so we can use TB[BH]. Loop through the target blocks 2332 // and try to adjust them such that that's true. 2333 int JTNumber = MI->getParent()->getNumber(); 2334 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2335 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2336 MachineBasicBlock *MBB = JTBBs[j]; 2337 int DTNumber = MBB->getNumber(); 2338 2339 if (DTNumber < JTNumber) { 2340 // The destination precedes the switch. Try to move the block forward 2341 // so we have a positive offset. 2342 MachineBasicBlock *NewBB = 2343 adjustJTTargetBlockForward(MBB, MI->getParent()); 2344 if (NewBB) 2345 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2346 MadeChange = true; 2347 } 2348 } 2349 } 2350 2351 return MadeChange; 2352 } 2353 2354 MachineBasicBlock *ARMConstantIslands:: 2355 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2356 // If the destination block is terminated by an unconditional branch, 2357 // try to move it; otherwise, create a new block following the jump 2358 // table that branches back to the actual target. This is a very simple 2359 // heuristic. FIXME: We can definitely improve it. 2360 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2361 SmallVector<MachineOperand, 4> Cond; 2362 SmallVector<MachineOperand, 4> CondPrior; 2363 MachineFunction::iterator BBi = BB->getIterator(); 2364 MachineFunction::iterator OldPrior = std::prev(BBi); 2365 2366 // If the block terminator isn't analyzable, don't try to move the block 2367 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2368 2369 // If the block ends in an unconditional branch, move it. The prior block 2370 // has to have an analyzable terminator for us to move this one. Be paranoid 2371 // and make sure we're not trying to move the entry block of the function. 2372 if (!B && Cond.empty() && BB != &MF->front() && 2373 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2374 BB->moveAfter(JTBB); 2375 OldPrior->updateTerminator(); 2376 BB->updateTerminator(); 2377 // Update numbering to account for the block being moved. 2378 MF->RenumberBlocks(); 2379 ++NumJTMoved; 2380 return nullptr; 2381 } 2382 2383 // Create a new MBB for the code after the jump BB. 2384 MachineBasicBlock *NewBB = 2385 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2386 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2387 MF->insert(MBBI, NewBB); 2388 2389 // Copy live-in information to new block. 2390 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2391 NewBB->addLiveIn(RegMaskPair); 2392 2393 // Add an unconditional branch from NewBB to BB. 2394 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2395 // correspond directly to anything in the source. 2396 if (isThumb2) 2397 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2398 .addMBB(BB) 2399 .add(predOps(ARMCC::AL)); 2400 else 2401 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2402 .addMBB(BB) 2403 .add(predOps(ARMCC::AL)); 2404 2405 // Update internal data structures to account for the newly inserted MBB. 2406 MF->RenumberBlocks(NewBB); 2407 2408 // Update the CFG. 2409 NewBB->addSuccessor(BB); 2410 JTBB->replaceSuccessor(BB, NewBB); 2411 2412 ++NumJTInserted; 2413 return NewBB; 2414 } 2415 2416 /// createARMConstantIslandPass - returns an instance of the constpool 2417 /// island pass. 2418 FunctionPass *llvm::createARMConstantIslandPass() { 2419 return new ARMConstantIslands(); 2420 } 2421 2422 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2423 false, false) 2424