1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "MCTargetDesc/ARMAddressingModes.h" 19 #include "Thumb2InstrInfo.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineConstantPool.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineJumpTableInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/Format.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <algorithm> 36 using namespace llvm; 37 38 #define DEBUG_TYPE "arm-cp-islands" 39 40 STATISTIC(NumCPEs, "Number of constpool entries"); 41 STATISTIC(NumSplit, "Number of uncond branches inserted"); 42 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 43 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 44 STATISTIC(NumTBs, "Number of table branches generated"); 45 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 46 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 47 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 48 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 49 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 50 51 52 static cl::opt<bool> 53 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 54 cl::desc("Adjust basic block layout to better use TB[BH]")); 55 56 // FIXME: This option should be removed once it has received sufficient testing. 57 static cl::opt<bool> 58 AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true), 59 cl::desc("Align constant islands in code")); 60 61 /// UnknownPadding - Return the worst case padding that could result from 62 /// unknown offset bits. This does not include alignment padding caused by 63 /// known offset bits. 64 /// 65 /// @param LogAlign log2(alignment) 66 /// @param KnownBits Number of known low offset bits. 67 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { 68 if (KnownBits < LogAlign) 69 return (1u << LogAlign) - (1u << KnownBits); 70 return 0; 71 } 72 73 namespace { 74 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 75 /// requires constant pool entries to be scattered among the instructions 76 /// inside a function. To do this, it completely ignores the normal LLVM 77 /// constant pool; instead, it places constants wherever it feels like with 78 /// special instructions. 79 /// 80 /// The terminology used in this pass includes: 81 /// Islands - Clumps of constants placed in the function. 82 /// Water - Potential places where an island could be formed. 83 /// CPE - A constant pool entry that has been placed somewhere, which 84 /// tracks a list of users. 85 class ARMConstantIslands : public MachineFunctionPass { 86 /// BasicBlockInfo - Information about the offset and size of a single 87 /// basic block. 88 struct BasicBlockInfo { 89 /// Offset - Distance from the beginning of the function to the beginning 90 /// of this basic block. 91 /// 92 /// Offsets are computed assuming worst case padding before an aligned 93 /// block. This means that subtracting basic block offsets always gives a 94 /// conservative estimate of the real distance which may be smaller. 95 /// 96 /// Because worst case padding is used, the computed offset of an aligned 97 /// block may not actually be aligned. 98 unsigned Offset; 99 100 /// Size - Size of the basic block in bytes. If the block contains 101 /// inline assembly, this is a worst case estimate. 102 /// 103 /// The size does not include any alignment padding whether from the 104 /// beginning of the block, or from an aligned jump table at the end. 105 unsigned Size; 106 107 /// KnownBits - The number of low bits in Offset that are known to be 108 /// exact. The remaining bits of Offset are an upper bound. 109 uint8_t KnownBits; 110 111 /// Unalign - When non-zero, the block contains instructions (inline asm) 112 /// of unknown size. The real size may be smaller than Size bytes by a 113 /// multiple of 1 << Unalign. 114 uint8_t Unalign; 115 116 /// PostAlign - When non-zero, the block terminator contains a .align 117 /// directive, so the end of the block is aligned to 1 << PostAlign 118 /// bytes. 119 uint8_t PostAlign; 120 121 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0), 122 PostAlign(0) {} 123 124 /// Compute the number of known offset bits internally to this block. 125 /// This number should be used to predict worst case padding when 126 /// splitting the block. 127 unsigned internalKnownBits() const { 128 unsigned Bits = Unalign ? Unalign : KnownBits; 129 // If the block size isn't a multiple of the known bits, assume the 130 // worst case padding. 131 if (Size & ((1u << Bits) - 1)) 132 Bits = countTrailingZeros(Size); 133 return Bits; 134 } 135 136 /// Compute the offset immediately following this block. If LogAlign is 137 /// specified, return the offset the successor block will get if it has 138 /// this alignment. 139 unsigned postOffset(unsigned LogAlign = 0) const { 140 unsigned PO = Offset + Size; 141 unsigned LA = std::max(unsigned(PostAlign), LogAlign); 142 if (!LA) 143 return PO; 144 // Add alignment padding from the terminator. 145 return PO + UnknownPadding(LA, internalKnownBits()); 146 } 147 148 /// Compute the number of known low bits of postOffset. If this block 149 /// contains inline asm, the number of known bits drops to the 150 /// instruction alignment. An aligned terminator may increase the number 151 /// of know bits. 152 /// If LogAlign is given, also consider the alignment of the next block. 153 unsigned postKnownBits(unsigned LogAlign = 0) const { 154 return std::max(std::max(unsigned(PostAlign), LogAlign), 155 internalKnownBits()); 156 } 157 }; 158 159 std::vector<BasicBlockInfo> BBInfo; 160 161 /// WaterList - A sorted list of basic blocks where islands could be placed 162 /// (i.e. blocks that don't fall through to the following block, due 163 /// to a return, unreachable, or unconditional branch). 164 std::vector<MachineBasicBlock*> WaterList; 165 166 /// NewWaterList - The subset of WaterList that was created since the 167 /// previous iteration by inserting unconditional branches. 168 SmallSet<MachineBasicBlock*, 4> NewWaterList; 169 170 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 171 172 /// CPUser - One user of a constant pool, keeping the machine instruction 173 /// pointer, the constant pool being referenced, and the max displacement 174 /// allowed from the instruction to the CP. The HighWaterMark records the 175 /// highest basic block where a new CPEntry can be placed. To ensure this 176 /// pass terminates, the CP entries are initially placed at the end of the 177 /// function and then move monotonically to lower addresses. The 178 /// exception to this rule is when the current CP entry for a particular 179 /// CPUser is out of range, but there is another CP entry for the same 180 /// constant value in range. We want to use the existing in-range CP 181 /// entry, but if it later moves out of range, the search for new water 182 /// should resume where it left off. The HighWaterMark is used to record 183 /// that point. 184 struct CPUser { 185 MachineInstr *MI; 186 MachineInstr *CPEMI; 187 MachineBasicBlock *HighWaterMark; 188 private: 189 unsigned MaxDisp; 190 public: 191 bool NegOk; 192 bool IsSoImm; 193 bool KnownAlignment; 194 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 195 bool neg, bool soimm) 196 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 197 KnownAlignment(false) { 198 HighWaterMark = CPEMI->getParent(); 199 } 200 /// getMaxDisp - Returns the maximum displacement supported by MI. 201 /// Correct for unknown alignment. 202 /// Conservatively subtract 2 bytes to handle weird alignment effects. 203 unsigned getMaxDisp() const { 204 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 205 } 206 }; 207 208 /// CPUsers - Keep track of all of the machine instructions that use various 209 /// constant pools and their max displacement. 210 std::vector<CPUser> CPUsers; 211 212 /// CPEntry - One per constant pool entry, keeping the machine instruction 213 /// pointer, the constpool index, and the number of CPUser's which 214 /// reference this entry. 215 struct CPEntry { 216 MachineInstr *CPEMI; 217 unsigned CPI; 218 unsigned RefCount; 219 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 220 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 221 }; 222 223 /// CPEntries - Keep track of all of the constant pool entry machine 224 /// instructions. For each original constpool index (i.e. those that 225 /// existed upon entry to this pass), it keeps a vector of entries. 226 /// Original elements are cloned as we go along; the clones are 227 /// put in the vector of the original element, but have distinct CPIs. 228 std::vector<std::vector<CPEntry> > CPEntries; 229 230 /// ImmBranch - One per immediate branch, keeping the machine instruction 231 /// pointer, conditional or unconditional, the max displacement, 232 /// and (if isCond is true) the corresponding unconditional branch 233 /// opcode. 234 struct ImmBranch { 235 MachineInstr *MI; 236 unsigned MaxDisp : 31; 237 bool isCond : 1; 238 int UncondBr; 239 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) 240 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 241 }; 242 243 /// ImmBranches - Keep track of all the immediate branch instructions. 244 /// 245 std::vector<ImmBranch> ImmBranches; 246 247 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 248 /// 249 SmallVector<MachineInstr*, 4> PushPopMIs; 250 251 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 252 SmallVector<MachineInstr*, 4> T2JumpTables; 253 254 /// HasFarJump - True if any far jump instruction has been emitted during 255 /// the branch fix up pass. 256 bool HasFarJump; 257 258 MachineFunction *MF; 259 MachineConstantPool *MCP; 260 const ARMBaseInstrInfo *TII; 261 const ARMSubtarget *STI; 262 ARMFunctionInfo *AFI; 263 bool isThumb; 264 bool isThumb1; 265 bool isThumb2; 266 public: 267 static char ID; 268 ARMConstantIslands() : MachineFunctionPass(ID) {} 269 270 bool runOnMachineFunction(MachineFunction &MF) override; 271 272 const char *getPassName() const override { 273 return "ARM constant island placement and branch shortening pass"; 274 } 275 276 private: 277 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs); 278 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 279 unsigned getCPELogAlign(const MachineInstr *CPEMI); 280 void scanFunctionJumpTables(); 281 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 282 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 283 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 284 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 285 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 286 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 287 bool findAvailableWater(CPUser&U, unsigned UserOffset, 288 water_iterator &WaterIter); 289 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 290 MachineBasicBlock *&NewMBB); 291 bool handleConstantPoolUser(unsigned CPUserIndex); 292 void removeDeadCPEMI(MachineInstr *CPEMI); 293 bool removeUnusedCPEntries(); 294 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 295 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 296 bool DoDump = false); 297 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 298 CPUser &U, unsigned &Growth); 299 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 300 bool fixupImmediateBr(ImmBranch &Br); 301 bool fixupConditionalBr(ImmBranch &Br); 302 bool fixupUnconditionalBr(ImmBranch &Br); 303 bool undoLRSpillRestore(); 304 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const; 305 bool optimizeThumb2Instructions(); 306 bool optimizeThumb2Branches(); 307 bool reorderThumb2JumpTables(); 308 bool optimizeThumb2JumpTables(); 309 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 310 MachineBasicBlock *JTBB); 311 312 void computeBlockSize(MachineBasicBlock *MBB); 313 unsigned getOffsetOf(MachineInstr *MI) const; 314 unsigned getUserOffset(CPUser&) const; 315 void dumpBBs(); 316 void verify(); 317 318 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 319 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 320 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 321 const CPUser &U) { 322 return isOffsetInRange(UserOffset, TrialOffset, 323 U.getMaxDisp(), U.NegOk, U.IsSoImm); 324 } 325 }; 326 char ARMConstantIslands::ID = 0; 327 } 328 329 /// verify - check BBOffsets, BBSizes, alignment of islands 330 void ARMConstantIslands::verify() { 331 #ifndef NDEBUG 332 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 333 MBBI != E; ++MBBI) { 334 MachineBasicBlock *MBB = MBBI; 335 unsigned MBBId = MBB->getNumber(); 336 assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); 337 } 338 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 339 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 340 CPUser &U = CPUsers[i]; 341 unsigned UserOffset = getUserOffset(U); 342 // Verify offset using the real max displacement without the safety 343 // adjustment. 344 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 345 /* DoDump = */ true)) { 346 DEBUG(dbgs() << "OK\n"); 347 continue; 348 } 349 DEBUG(dbgs() << "Out of range.\n"); 350 dumpBBs(); 351 DEBUG(MF->dump()); 352 llvm_unreachable("Constant pool entry out of range!"); 353 } 354 #endif 355 } 356 357 /// print block size and offset information - debugging 358 void ARMConstantIslands::dumpBBs() { 359 DEBUG({ 360 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 361 const BasicBlockInfo &BBI = BBInfo[J]; 362 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 363 << " kb=" << unsigned(BBI.KnownBits) 364 << " ua=" << unsigned(BBI.Unalign) 365 << " pa=" << unsigned(BBI.PostAlign) 366 << format(" size=%#x\n", BBInfo[J].Size); 367 } 368 }); 369 } 370 371 /// createARMConstantIslandPass - returns an instance of the constpool 372 /// island pass. 373 FunctionPass *llvm::createARMConstantIslandPass() { 374 return new ARMConstantIslands(); 375 } 376 377 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 378 MF = &mf; 379 MCP = mf.getConstantPool(); 380 381 DEBUG(dbgs() << "***** ARMConstantIslands: " 382 << MCP->getConstants().size() << " CP entries, aligned to " 383 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 384 385 TII = (const ARMBaseInstrInfo *)MF->getTarget() 386 .getSubtargetImpl() 387 ->getInstrInfo(); 388 AFI = MF->getInfo<ARMFunctionInfo>(); 389 STI = &MF->getTarget().getSubtarget<ARMSubtarget>(); 390 391 isThumb = AFI->isThumbFunction(); 392 isThumb1 = AFI->isThumb1OnlyFunction(); 393 isThumb2 = AFI->isThumb2Function(); 394 395 HasFarJump = false; 396 397 // This pass invalidates liveness information when it splits basic blocks. 398 MF->getRegInfo().invalidateLiveness(); 399 400 // Renumber all of the machine basic blocks in the function, guaranteeing that 401 // the numbers agree with the position of the block in the function. 402 MF->RenumberBlocks(); 403 404 // Try to reorder and otherwise adjust the block layout to make good use 405 // of the TB[BH] instructions. 406 bool MadeChange = false; 407 if (isThumb2 && AdjustJumpTableBlocks) { 408 scanFunctionJumpTables(); 409 MadeChange |= reorderThumb2JumpTables(); 410 // Data is out of date, so clear it. It'll be re-computed later. 411 T2JumpTables.clear(); 412 // Blocks may have shifted around. Keep the numbering up to date. 413 MF->RenumberBlocks(); 414 } 415 416 // Thumb1 functions containing constant pools get 4-byte alignment. 417 // This is so we can keep exact track of where the alignment padding goes. 418 419 // ARM and Thumb2 functions need to be 4-byte aligned. 420 if (!isThumb1) 421 MF->ensureAlignment(2); // 2 = log2(4) 422 423 // Perform the initial placement of the constant pool entries. To start with, 424 // we put them all at the end of the function. 425 std::vector<MachineInstr*> CPEMIs; 426 if (!MCP->isEmpty()) 427 doInitialPlacement(CPEMIs); 428 429 /// The next UID to take is the first unused one. 430 AFI->initPICLabelUId(CPEMIs.size()); 431 432 // Do the initial scan of the function, building up information about the 433 // sizes of each block, the location of all the water, and finding all of the 434 // constant pool users. 435 initializeFunctionInfo(CPEMIs); 436 CPEMIs.clear(); 437 DEBUG(dumpBBs()); 438 439 440 /// Remove dead constant pool entries. 441 MadeChange |= removeUnusedCPEntries(); 442 443 // Iteratively place constant pool entries and fix up branches until there 444 // is no change. 445 unsigned NoCPIters = 0, NoBRIters = 0; 446 while (true) { 447 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 448 bool CPChange = false; 449 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 450 CPChange |= handleConstantPoolUser(i); 451 if (CPChange && ++NoCPIters > 30) 452 report_fatal_error("Constant Island pass failed to converge!"); 453 DEBUG(dumpBBs()); 454 455 // Clear NewWaterList now. If we split a block for branches, it should 456 // appear as "new water" for the next iteration of constant pool placement. 457 NewWaterList.clear(); 458 459 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 460 bool BRChange = false; 461 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 462 BRChange |= fixupImmediateBr(ImmBranches[i]); 463 if (BRChange && ++NoBRIters > 30) 464 report_fatal_error("Branch Fix Up pass failed to converge!"); 465 DEBUG(dumpBBs()); 466 467 if (!CPChange && !BRChange) 468 break; 469 MadeChange = true; 470 } 471 472 // Shrink 32-bit Thumb2 branch, load, and store instructions. 473 if (isThumb2 && !STI->prefers32BitThumb()) 474 MadeChange |= optimizeThumb2Instructions(); 475 476 // After a while, this might be made debug-only, but it is not expensive. 477 verify(); 478 479 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 480 // undo the spill / restore of LR if possible. 481 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 482 MadeChange |= undoLRSpillRestore(); 483 484 // Save the mapping between original and cloned constpool entries. 485 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 486 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 487 const CPEntry & CPE = CPEntries[i][j]; 488 AFI->recordCPEClone(i, CPE.CPI); 489 } 490 } 491 492 DEBUG(dbgs() << '\n'; dumpBBs()); 493 494 BBInfo.clear(); 495 WaterList.clear(); 496 CPUsers.clear(); 497 CPEntries.clear(); 498 ImmBranches.clear(); 499 PushPopMIs.clear(); 500 T2JumpTables.clear(); 501 502 return MadeChange; 503 } 504 505 /// doInitialPlacement - Perform the initial placement of the constant pool 506 /// entries. To start with, we put them all at the end of the function. 507 void 508 ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) { 509 // Create the basic block to hold the CPE's. 510 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 511 MF->push_back(BB); 512 513 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 514 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 515 516 // Mark the basic block as required by the const-pool. 517 // If AlignConstantIslands isn't set, use 4-byte alignment for everything. 518 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2); 519 520 // The function needs to be as aligned as the basic blocks. The linker may 521 // move functions around based on their alignment. 522 MF->ensureAlignment(BB->getAlignment()); 523 524 // Order the entries in BB by descending alignment. That ensures correct 525 // alignment of all entries as long as BB is sufficiently aligned. Keep 526 // track of the insertion point for each alignment. We are going to bucket 527 // sort the entries as they are created. 528 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 529 530 // Add all of the constants from the constant pool to the end block, use an 531 // identity mapping of CPI's to CPE's. 532 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 533 534 const DataLayout &TD = *MF->getSubtarget().getDataLayout(); 535 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 536 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 537 assert(Size >= 4 && "Too small constant pool entry"); 538 unsigned Align = CPs[i].getAlignment(); 539 assert(isPowerOf2_32(Align) && "Invalid alignment"); 540 // Verify that all constant pool entries are a multiple of their alignment. 541 // If not, we would have to pad them out so that instructions stay aligned. 542 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 543 544 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 545 unsigned LogAlign = Log2_32(Align); 546 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 547 MachineInstr *CPEMI = 548 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 549 .addImm(i).addConstantPoolIndex(i).addImm(Size); 550 CPEMIs.push_back(CPEMI); 551 552 // Ensure that future entries with higher alignment get inserted before 553 // CPEMI. This is bucket sort with iterators. 554 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 555 if (InsPoint[a] == InsAt) 556 InsPoint[a] = CPEMI; 557 558 // Add a new CPEntry, but no corresponding CPUser yet. 559 std::vector<CPEntry> CPEs; 560 CPEs.push_back(CPEntry(CPEMI, i)); 561 CPEntries.push_back(CPEs); 562 ++NumCPEs; 563 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 564 << Size << ", align = " << Align <<'\n'); 565 } 566 DEBUG(BB->dump()); 567 } 568 569 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 570 /// into the block immediately after it. 571 static bool BBHasFallthrough(MachineBasicBlock *MBB) { 572 // Get the next machine basic block in the function. 573 MachineFunction::iterator MBBI = MBB; 574 // Can't fall off end of function. 575 if (std::next(MBBI) == MBB->getParent()->end()) 576 return false; 577 578 MachineBasicBlock *NextBB = std::next(MBBI); 579 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 580 E = MBB->succ_end(); I != E; ++I) 581 if (*I == NextBB) 582 return true; 583 584 return false; 585 } 586 587 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 588 /// look up the corresponding CPEntry. 589 ARMConstantIslands::CPEntry 590 *ARMConstantIslands::findConstPoolEntry(unsigned CPI, 591 const MachineInstr *CPEMI) { 592 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 593 // Number of entries per constpool index should be small, just do a 594 // linear search. 595 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 596 if (CPEs[i].CPEMI == CPEMI) 597 return &CPEs[i]; 598 } 599 return nullptr; 600 } 601 602 /// getCPELogAlign - Returns the required alignment of the constant pool entry 603 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 604 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 605 assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY); 606 607 // Everything is 4-byte aligned unless AlignConstantIslands is set. 608 if (!AlignConstantIslands) 609 return 2; 610 611 unsigned CPI = CPEMI->getOperand(1).getIndex(); 612 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 613 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 614 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 615 return Log2_32(Align); 616 } 617 618 /// scanFunctionJumpTables - Do a scan of the function, building up 619 /// information about the sizes of each block and the locations of all 620 /// the jump tables. 621 void ARMConstantIslands::scanFunctionJumpTables() { 622 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 623 MBBI != E; ++MBBI) { 624 MachineBasicBlock &MBB = *MBBI; 625 626 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 627 I != E; ++I) 628 if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT) 629 T2JumpTables.push_back(I); 630 } 631 } 632 633 /// initializeFunctionInfo - Do the initial scan of the function, building up 634 /// information about the sizes of each block, the location of all the water, 635 /// and finding all of the constant pool users. 636 void ARMConstantIslands:: 637 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 638 BBInfo.clear(); 639 BBInfo.resize(MF->getNumBlockIDs()); 640 641 // First thing, compute the size of all basic blocks, and see if the function 642 // has any inline assembly in it. If so, we have to be conservative about 643 // alignment assumptions, as we don't know for sure the size of any 644 // instructions in the inline assembly. 645 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) 646 computeBlockSize(I); 647 648 // The known bits of the entry block offset are determined by the function 649 // alignment. 650 BBInfo.front().KnownBits = MF->getAlignment(); 651 652 // Compute block offsets and known bits. 653 adjustBBOffsetsAfter(MF->begin()); 654 655 // Now go back through the instructions and build up our data structures. 656 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); 657 MBBI != E; ++MBBI) { 658 MachineBasicBlock &MBB = *MBBI; 659 660 // If this block doesn't fall through into the next MBB, then this is 661 // 'water' that a constant pool island could be placed. 662 if (!BBHasFallthrough(&MBB)) 663 WaterList.push_back(&MBB); 664 665 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); 666 I != E; ++I) { 667 if (I->isDebugValue()) 668 continue; 669 670 int Opc = I->getOpcode(); 671 if (I->isBranch()) { 672 bool isCond = false; 673 unsigned Bits = 0; 674 unsigned Scale = 1; 675 int UOpc = Opc; 676 switch (Opc) { 677 default: 678 continue; // Ignore other JT branches 679 case ARM::t2BR_JT: 680 T2JumpTables.push_back(I); 681 continue; // Does not get an entry in ImmBranches 682 case ARM::Bcc: 683 isCond = true; 684 UOpc = ARM::B; 685 // Fallthrough 686 case ARM::B: 687 Bits = 24; 688 Scale = 4; 689 break; 690 case ARM::tBcc: 691 isCond = true; 692 UOpc = ARM::tB; 693 Bits = 8; 694 Scale = 2; 695 break; 696 case ARM::tB: 697 Bits = 11; 698 Scale = 2; 699 break; 700 case ARM::t2Bcc: 701 isCond = true; 702 UOpc = ARM::t2B; 703 Bits = 20; 704 Scale = 2; 705 break; 706 case ARM::t2B: 707 Bits = 24; 708 Scale = 2; 709 break; 710 } 711 712 // Record this immediate branch. 713 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 714 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); 715 } 716 717 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 718 PushPopMIs.push_back(I); 719 720 if (Opc == ARM::CONSTPOOL_ENTRY) 721 continue; 722 723 // Scan the instructions for constant pool operands. 724 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) 725 if (I->getOperand(op).isCPI()) { 726 // We found one. The addressing mode tells us the max displacement 727 // from the PC that this instruction permits. 728 729 // Basic size info comes from the TSFlags field. 730 unsigned Bits = 0; 731 unsigned Scale = 1; 732 bool NegOk = false; 733 bool IsSoImm = false; 734 735 switch (Opc) { 736 default: 737 llvm_unreachable("Unknown addressing mode for CP reference!"); 738 739 // Taking the address of a CP entry. 740 case ARM::LEApcrel: 741 // This takes a SoImm, which is 8 bit immediate rotated. We'll 742 // pretend the maximum offset is 255 * 4. Since each instruction 743 // 4 byte wide, this is always correct. We'll check for other 744 // displacements that fits in a SoImm as well. 745 Bits = 8; 746 Scale = 4; 747 NegOk = true; 748 IsSoImm = true; 749 break; 750 case ARM::t2LEApcrel: 751 Bits = 12; 752 NegOk = true; 753 break; 754 case ARM::tLEApcrel: 755 Bits = 8; 756 Scale = 4; 757 break; 758 759 case ARM::LDRBi12: 760 case ARM::LDRi12: 761 case ARM::LDRcp: 762 case ARM::t2LDRpci: 763 Bits = 12; // +-offset_12 764 NegOk = true; 765 break; 766 767 case ARM::tLDRpci: 768 Bits = 8; 769 Scale = 4; // +(offset_8*4) 770 break; 771 772 case ARM::VLDRD: 773 case ARM::VLDRS: 774 Bits = 8; 775 Scale = 4; // +-(offset_8*4) 776 NegOk = true; 777 break; 778 } 779 780 // Remember that this is a user of a CP entry. 781 unsigned CPI = I->getOperand(op).getIndex(); 782 MachineInstr *CPEMI = CPEMIs[CPI]; 783 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 784 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); 785 786 // Increment corresponding CPEntry reference count. 787 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 788 assert(CPE && "Cannot find a corresponding CPEntry!"); 789 CPE->RefCount++; 790 791 // Instructions can only use one CP entry, don't bother scanning the 792 // rest of the operands. 793 break; 794 } 795 } 796 } 797 } 798 799 /// computeBlockSize - Compute the size and some alignment information for MBB. 800 /// This function updates BBInfo directly. 801 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) { 802 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; 803 BBI.Size = 0; 804 BBI.Unalign = 0; 805 BBI.PostAlign = 0; 806 807 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; 808 ++I) { 809 BBI.Size += TII->GetInstSizeInBytes(I); 810 // For inline asm, GetInstSizeInBytes returns a conservative estimate. 811 // The actual size may be smaller, but still a multiple of the instr size. 812 if (I->isInlineAsm()) 813 BBI.Unalign = isThumb ? 1 : 2; 814 // Also consider instructions that may be shrunk later. 815 else if (isThumb && mayOptimizeThumb2Instruction(I)) 816 BBI.Unalign = 1; 817 } 818 819 // tBR_JTr contains a .align 2 directive. 820 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) { 821 BBI.PostAlign = 2; 822 MBB->getParent()->ensureAlignment(2); 823 } 824 } 825 826 /// getOffsetOf - Return the current offset of the specified machine instruction 827 /// from the start of the function. This offset changes as stuff is moved 828 /// around inside the function. 829 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 830 MachineBasicBlock *MBB = MI->getParent(); 831 832 // The offset is composed of two things: the sum of the sizes of all MBB's 833 // before this instruction's block, and the offset from the start of the block 834 // it is in. 835 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 836 837 // Sum instructions before MI in MBB. 838 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 839 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 840 Offset += TII->GetInstSizeInBytes(I); 841 } 842 return Offset; 843 } 844 845 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 846 /// ID. 847 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 848 const MachineBasicBlock *RHS) { 849 return LHS->getNumber() < RHS->getNumber(); 850 } 851 852 /// updateForInsertedWaterBlock - When a block is newly inserted into the 853 /// machine function, it upsets all of the block numbers. Renumber the blocks 854 /// and update the arrays that parallel this numbering. 855 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 856 // Renumber the MBB's to keep them consecutive. 857 NewBB->getParent()->RenumberBlocks(NewBB); 858 859 // Insert an entry into BBInfo to align it properly with the (newly 860 // renumbered) block numbers. 861 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 862 863 // Next, update WaterList. Specifically, we need to add NewMBB as having 864 // available water after it. 865 water_iterator IP = 866 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 867 CompareMBBNumbers); 868 WaterList.insert(IP, NewBB); 869 } 870 871 872 /// Split the basic block containing MI into two blocks, which are joined by 873 /// an unconditional branch. Update data structures and renumber blocks to 874 /// account for this change and returns the newly created block. 875 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 876 MachineBasicBlock *OrigBB = MI->getParent(); 877 878 // Create a new MBB for the code after the OrigBB. 879 MachineBasicBlock *NewBB = 880 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 881 MachineFunction::iterator MBBI = OrigBB; ++MBBI; 882 MF->insert(MBBI, NewBB); 883 884 // Splice the instructions starting with MI over to NewBB. 885 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 886 887 // Add an unconditional branch from OrigBB to NewBB. 888 // Note the new unconditional branch is not being recorded. 889 // There doesn't seem to be meaningful DebugInfo available; this doesn't 890 // correspond to anything in the source. 891 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 892 if (!isThumb) 893 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 894 else 895 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) 896 .addImm(ARMCC::AL).addReg(0); 897 ++NumSplit; 898 899 // Update the CFG. All succs of OrigBB are now succs of NewBB. 900 NewBB->transferSuccessors(OrigBB); 901 902 // OrigBB branches to NewBB. 903 OrigBB->addSuccessor(NewBB); 904 905 // Update internal data structures to account for the newly inserted MBB. 906 // This is almost the same as updateForInsertedWaterBlock, except that 907 // the Water goes after OrigBB, not NewBB. 908 MF->RenumberBlocks(NewBB); 909 910 // Insert an entry into BBInfo to align it properly with the (newly 911 // renumbered) block numbers. 912 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 913 914 // Next, update WaterList. Specifically, we need to add OrigMBB as having 915 // available water after it (but not if it's already there, which happens 916 // when splitting before a conditional branch that is followed by an 917 // unconditional branch - in that case we want to insert NewBB). 918 water_iterator IP = 919 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 920 CompareMBBNumbers); 921 MachineBasicBlock* WaterBB = *IP; 922 if (WaterBB == OrigBB) 923 WaterList.insert(std::next(IP), NewBB); 924 else 925 WaterList.insert(IP, OrigBB); 926 NewWaterList.insert(OrigBB); 927 928 // Figure out how large the OrigBB is. As the first half of the original 929 // block, it cannot contain a tablejump. The size includes 930 // the new jump we added. (It should be possible to do this without 931 // recounting everything, but it's very confusing, and this is rarely 932 // executed.) 933 computeBlockSize(OrigBB); 934 935 // Figure out how large the NewMBB is. As the second half of the original 936 // block, it may contain a tablejump. 937 computeBlockSize(NewBB); 938 939 // All BBOffsets following these blocks must be modified. 940 adjustBBOffsetsAfter(OrigBB); 941 942 return NewBB; 943 } 944 945 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 946 /// displacement computation. Update U.KnownAlignment to match its current 947 /// basic block location. 948 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 949 unsigned UserOffset = getOffsetOf(U.MI); 950 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 951 unsigned KnownBits = BBI.internalKnownBits(); 952 953 // The value read from PC is offset from the actual instruction address. 954 UserOffset += (isThumb ? 4 : 8); 955 956 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 957 // Make sure U.getMaxDisp() returns a constrained range. 958 U.KnownAlignment = (KnownBits >= 2); 959 960 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 961 // purposes of the displacement computation; compensate for that here. 962 // For unknown alignments, getMaxDisp() constrains the range instead. 963 if (isThumb && U.KnownAlignment) 964 UserOffset &= ~3u; 965 966 return UserOffset; 967 } 968 969 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 970 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 971 /// constant pool entry). 972 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 973 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 974 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 975 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 976 unsigned TrialOffset, unsigned MaxDisp, 977 bool NegativeOK, bool IsSoImm) { 978 if (UserOffset <= TrialOffset) { 979 // User before the Trial. 980 if (TrialOffset - UserOffset <= MaxDisp) 981 return true; 982 // FIXME: Make use full range of soimm values. 983 } else if (NegativeOK) { 984 if (UserOffset - TrialOffset <= MaxDisp) 985 return true; 986 // FIXME: Make use full range of soimm values. 987 } 988 return false; 989 } 990 991 /// isWaterInRange - Returns true if a CPE placed after the specified 992 /// Water (a basic block) will be in range for the specific MI. 993 /// 994 /// Compute how much the function will grow by inserting a CPE after Water. 995 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 996 MachineBasicBlock* Water, CPUser &U, 997 unsigned &Growth) { 998 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 999 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1000 unsigned NextBlockOffset, NextBlockAlignment; 1001 MachineFunction::const_iterator NextBlock = Water; 1002 if (++NextBlock == MF->end()) { 1003 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1004 NextBlockAlignment = 0; 1005 } else { 1006 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1007 NextBlockAlignment = NextBlock->getAlignment(); 1008 } 1009 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1010 unsigned CPEEnd = CPEOffset + Size; 1011 1012 // The CPE may be able to hide in the alignment padding before the next 1013 // block. It may also cause more padding to be required if it is more aligned 1014 // that the next block. 1015 if (CPEEnd > NextBlockOffset) { 1016 Growth = CPEEnd - NextBlockOffset; 1017 // Compute the padding that would go at the end of the CPE to align the next 1018 // block. 1019 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment); 1020 1021 // If the CPE is to be inserted before the instruction, that will raise 1022 // the offset of the instruction. Also account for unknown alignment padding 1023 // in blocks between CPE and the user. 1024 if (CPEOffset < UserOffset) 1025 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1026 } else 1027 // CPE fits in existing padding. 1028 Growth = 0; 1029 1030 return isOffsetInRange(UserOffset, CPEOffset, U); 1031 } 1032 1033 /// isCPEntryInRange - Returns true if the distance between specific MI and 1034 /// specific ConstPool entry instruction can fit in MI's displacement field. 1035 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1036 MachineInstr *CPEMI, unsigned MaxDisp, 1037 bool NegOk, bool DoDump) { 1038 unsigned CPEOffset = getOffsetOf(CPEMI); 1039 1040 if (DoDump) { 1041 DEBUG({ 1042 unsigned Block = MI->getParent()->getNumber(); 1043 const BasicBlockInfo &BBI = BBInfo[Block]; 1044 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1045 << " max delta=" << MaxDisp 1046 << format(" insn address=%#x", UserOffset) 1047 << " in BB#" << Block << ": " 1048 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1049 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1050 int(CPEOffset-UserOffset)); 1051 }); 1052 } 1053 1054 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1055 } 1056 1057 #ifndef NDEBUG 1058 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1059 /// unconditionally branches to its only successor. 1060 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1061 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1062 return false; 1063 1064 MachineBasicBlock *Succ = *MBB->succ_begin(); 1065 MachineBasicBlock *Pred = *MBB->pred_begin(); 1066 MachineInstr *PredMI = &Pred->back(); 1067 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1068 || PredMI->getOpcode() == ARM::t2B) 1069 return PredMI->getOperand(0).getMBB() == Succ; 1070 return false; 1071 } 1072 #endif // NDEBUG 1073 1074 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1075 unsigned BBNum = BB->getNumber(); 1076 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1077 // Get the offset and known bits at the end of the layout predecessor. 1078 // Include the alignment of the current block. 1079 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1080 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1081 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1082 1083 // This is where block i begins. Stop if the offset is already correct, 1084 // and we have updated 2 blocks. This is the maximum number of blocks 1085 // changed before calling this function. 1086 if (i > BBNum + 2 && 1087 BBInfo[i].Offset == Offset && 1088 BBInfo[i].KnownBits == KnownBits) 1089 break; 1090 1091 BBInfo[i].Offset = Offset; 1092 BBInfo[i].KnownBits = KnownBits; 1093 } 1094 } 1095 1096 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1097 /// and instruction CPEMI, and decrement its refcount. If the refcount 1098 /// becomes 0 remove the entry and instruction. Returns true if we removed 1099 /// the entry, false if we didn't. 1100 1101 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1102 MachineInstr *CPEMI) { 1103 // Find the old entry. Eliminate it if it is no longer used. 1104 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1105 assert(CPE && "Unexpected!"); 1106 if (--CPE->RefCount == 0) { 1107 removeDeadCPEMI(CPEMI); 1108 CPE->CPEMI = nullptr; 1109 --NumCPEs; 1110 return true; 1111 } 1112 return false; 1113 } 1114 1115 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1116 /// if not, see if an in-range clone of the CPE is in range, and if so, 1117 /// change the data structures so the user references the clone. Returns: 1118 /// 0 = no existing entry found 1119 /// 1 = entry found, and there were no code insertions or deletions 1120 /// 2 = entry found, and there were code insertions or deletions 1121 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1122 { 1123 MachineInstr *UserMI = U.MI; 1124 MachineInstr *CPEMI = U.CPEMI; 1125 1126 // Check to see if the CPE is already in-range. 1127 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1128 true)) { 1129 DEBUG(dbgs() << "In range\n"); 1130 return 1; 1131 } 1132 1133 // No. Look for previously created clones of the CPE that are in range. 1134 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1135 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1136 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1137 // We already tried this one 1138 if (CPEs[i].CPEMI == CPEMI) 1139 continue; 1140 // Removing CPEs can leave empty entries, skip 1141 if (CPEs[i].CPEMI == nullptr) 1142 continue; 1143 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1144 U.NegOk)) { 1145 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1146 << CPEs[i].CPI << "\n"); 1147 // Point the CPUser node to the replacement 1148 U.CPEMI = CPEs[i].CPEMI; 1149 // Change the CPI in the instruction operand to refer to the clone. 1150 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1151 if (UserMI->getOperand(j).isCPI()) { 1152 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1153 break; 1154 } 1155 // Adjust the refcount of the clone... 1156 CPEs[i].RefCount++; 1157 // ...and the original. If we didn't remove the old entry, none of the 1158 // addresses changed, so we don't need another pass. 1159 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1160 } 1161 } 1162 return 0; 1163 } 1164 1165 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1166 /// the specific unconditional branch instruction. 1167 static inline unsigned getUnconditionalBrDisp(int Opc) { 1168 switch (Opc) { 1169 case ARM::tB: 1170 return ((1<<10)-1)*2; 1171 case ARM::t2B: 1172 return ((1<<23)-1)*2; 1173 default: 1174 break; 1175 } 1176 1177 return ((1<<23)-1)*4; 1178 } 1179 1180 /// findAvailableWater - Look for an existing entry in the WaterList in which 1181 /// we can place the CPE referenced from U so it's within range of U's MI. 1182 /// Returns true if found, false if not. If it returns true, WaterIter 1183 /// is set to the WaterList entry. For Thumb, prefer water that will not 1184 /// introduce padding to water that will. To ensure that this pass 1185 /// terminates, the CPE location for a particular CPUser is only allowed to 1186 /// move to a lower address, so search backward from the end of the list and 1187 /// prefer the first water that is in range. 1188 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1189 water_iterator &WaterIter) { 1190 if (WaterList.empty()) 1191 return false; 1192 1193 unsigned BestGrowth = ~0u; 1194 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1195 --IP) { 1196 MachineBasicBlock* WaterBB = *IP; 1197 // Check if water is in range and is either at a lower address than the 1198 // current "high water mark" or a new water block that was created since 1199 // the previous iteration by inserting an unconditional branch. In the 1200 // latter case, we want to allow resetting the high water mark back to 1201 // this new water since we haven't seen it before. Inserting branches 1202 // should be relatively uncommon and when it does happen, we want to be 1203 // sure to take advantage of it for all the CPEs near that block, so that 1204 // we don't insert more branches than necessary. 1205 unsigned Growth; 1206 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1207 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1208 NewWaterList.count(WaterBB)) && Growth < BestGrowth) { 1209 // This is the least amount of required padding seen so far. 1210 BestGrowth = Growth; 1211 WaterIter = IP; 1212 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1213 << " Growth=" << Growth << '\n'); 1214 1215 // Keep looking unless it is perfect. 1216 if (BestGrowth == 0) 1217 return true; 1218 } 1219 if (IP == B) 1220 break; 1221 } 1222 return BestGrowth != ~0u; 1223 } 1224 1225 /// createNewWater - No existing WaterList entry will work for 1226 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1227 /// block is used if in range, and the conditional branch munged so control 1228 /// flow is correct. Otherwise the block is split to create a hole with an 1229 /// unconditional branch around it. In either case NewMBB is set to a 1230 /// block following which the new island can be inserted (the WaterList 1231 /// is not adjusted). 1232 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1233 unsigned UserOffset, 1234 MachineBasicBlock *&NewMBB) { 1235 CPUser &U = CPUsers[CPUserIndex]; 1236 MachineInstr *UserMI = U.MI; 1237 MachineInstr *CPEMI = U.CPEMI; 1238 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1239 MachineBasicBlock *UserMBB = UserMI->getParent(); 1240 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1241 1242 // If the block does not end in an unconditional branch already, and if the 1243 // end of the block is within range, make new water there. (The addition 1244 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1245 // Thumb2, 2 on Thumb1. 1246 if (BBHasFallthrough(UserMBB)) { 1247 // Size of branch to insert. 1248 unsigned Delta = isThumb1 ? 2 : 4; 1249 // Compute the offset where the CPE will begin. 1250 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1251 1252 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1253 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1254 << format(", expected CPE offset %#x\n", CPEOffset)); 1255 NewMBB = std::next(MachineFunction::iterator(UserMBB)); 1256 // Add an unconditional branch from UserMBB to fallthrough block. Record 1257 // it for branch lengthening; this new branch will not get out of range, 1258 // but if the preceding conditional branch is out of range, the targets 1259 // will be exchanged, and the altered branch may be out of range, so the 1260 // machinery has to know about it. 1261 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1262 if (!isThumb) 1263 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1264 else 1265 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) 1266 .addImm(ARMCC::AL).addReg(0); 1267 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1268 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1269 MaxDisp, false, UncondBr)); 1270 BBInfo[UserMBB->getNumber()].Size += Delta; 1271 adjustBBOffsetsAfter(UserMBB); 1272 return; 1273 } 1274 } 1275 1276 // What a big block. Find a place within the block to split it. This is a 1277 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1278 // entries are 4 bytes: if instruction I references island CPE, and 1279 // instruction I+1 references CPE', it will not work well to put CPE as far 1280 // forward as possible, since then CPE' cannot immediately follow it (that 1281 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1282 // need to create a new island. So, we make a first guess, then walk through 1283 // the instructions between the one currently being looked at and the 1284 // possible insertion point, and make sure any other instructions that 1285 // reference CPEs will be able to use the same island area; if not, we back 1286 // up the insertion point. 1287 1288 // Try to split the block so it's fully aligned. Compute the latest split 1289 // point where we can add a 4-byte branch instruction, and then align to 1290 // LogAlign which is the largest possible alignment in the function. 1291 unsigned LogAlign = MF->getAlignment(); 1292 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1293 unsigned KnownBits = UserBBI.internalKnownBits(); 1294 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1295 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1296 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1297 BaseInsertOffset)); 1298 1299 // The 4 in the following is for the unconditional branch we'll be inserting 1300 // (allows for long branch on Thumb1). Alignment of the island is handled 1301 // inside isOffsetInRange. 1302 BaseInsertOffset -= 4; 1303 1304 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1305 << " la=" << LogAlign 1306 << " kb=" << KnownBits 1307 << " up=" << UPad << '\n'); 1308 1309 // This could point off the end of the block if we've already got constant 1310 // pool entries following this block; only the last one is in the water list. 1311 // Back past any possible branches (allow for a conditional and a maximally 1312 // long unconditional). 1313 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1314 BaseInsertOffset = UserBBI.postOffset() - UPad - 8; 1315 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1316 } 1317 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1318 CPEMI->getOperand(2).getImm(); 1319 MachineBasicBlock::iterator MI = UserMI; 1320 ++MI; 1321 unsigned CPUIndex = CPUserIndex+1; 1322 unsigned NumCPUsers = CPUsers.size(); 1323 MachineInstr *LastIT = nullptr; 1324 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); 1325 Offset < BaseInsertOffset; 1326 Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) { 1327 assert(MI != UserMBB->end() && "Fell off end of block"); 1328 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { 1329 CPUser &U = CPUsers[CPUIndex]; 1330 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1331 // Shift intertion point by one unit of alignment so it is within reach. 1332 BaseInsertOffset -= 1u << LogAlign; 1333 EndInsertOffset -= 1u << LogAlign; 1334 } 1335 // This is overly conservative, as we don't account for CPEMIs being 1336 // reused within the block, but it doesn't matter much. Also assume CPEs 1337 // are added in order with alignment padding. We may eventually be able 1338 // to pack the aligned CPEs better. 1339 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1340 CPUIndex++; 1341 } 1342 1343 // Remember the last IT instruction. 1344 if (MI->getOpcode() == ARM::t2IT) 1345 LastIT = MI; 1346 } 1347 1348 --MI; 1349 1350 // Avoid splitting an IT block. 1351 if (LastIT) { 1352 unsigned PredReg = 0; 1353 ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg); 1354 if (CC != ARMCC::AL) 1355 MI = LastIT; 1356 } 1357 NewMBB = splitBlockBeforeInstr(MI); 1358 } 1359 1360 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1361 /// is out-of-range. If so, pick up the constant pool value and move it some 1362 /// place in-range. Return true if we changed any addresses (thus must run 1363 /// another pass of branch lengthening), false otherwise. 1364 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) { 1365 CPUser &U = CPUsers[CPUserIndex]; 1366 MachineInstr *UserMI = U.MI; 1367 MachineInstr *CPEMI = U.CPEMI; 1368 unsigned CPI = CPEMI->getOperand(1).getIndex(); 1369 unsigned Size = CPEMI->getOperand(2).getImm(); 1370 // Compute this only once, it's expensive. 1371 unsigned UserOffset = getUserOffset(U); 1372 1373 // See if the current entry is within range, or there is a clone of it 1374 // in range. 1375 int result = findInRangeCPEntry(U, UserOffset); 1376 if (result==1) return false; 1377 else if (result==2) return true; 1378 1379 // No existing clone of this CPE is within range. 1380 // We will be generating a new clone. Get a UID for it. 1381 unsigned ID = AFI->createPICLabelUId(); 1382 1383 // Look for water where we can place this CPE. 1384 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1385 MachineBasicBlock *NewMBB; 1386 water_iterator IP; 1387 if (findAvailableWater(U, UserOffset, IP)) { 1388 DEBUG(dbgs() << "Found water in range\n"); 1389 MachineBasicBlock *WaterBB = *IP; 1390 1391 // If the original WaterList entry was "new water" on this iteration, 1392 // propagate that to the new island. This is just keeping NewWaterList 1393 // updated to match the WaterList, which will be updated below. 1394 if (NewWaterList.erase(WaterBB)) 1395 NewWaterList.insert(NewIsland); 1396 1397 // The new CPE goes before the following block (NewMBB). 1398 NewMBB = std::next(MachineFunction::iterator(WaterBB)); 1399 1400 } else { 1401 // No water found. 1402 DEBUG(dbgs() << "No water found\n"); 1403 createNewWater(CPUserIndex, UserOffset, NewMBB); 1404 1405 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1406 // called while handling branches so that the water will be seen on the 1407 // next iteration for constant pools, but in this context, we don't want 1408 // it. Check for this so it will be removed from the WaterList. 1409 // Also remove any entry from NewWaterList. 1410 MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB)); 1411 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); 1412 if (IP != WaterList.end()) 1413 NewWaterList.erase(WaterBB); 1414 1415 // We are adding new water. Update NewWaterList. 1416 NewWaterList.insert(NewIsland); 1417 } 1418 1419 // Remove the original WaterList entry; we want subsequent insertions in 1420 // this vicinity to go after the one we're about to insert. This 1421 // considerably reduces the number of times we have to move the same CPE 1422 // more than once and is also important to ensure the algorithm terminates. 1423 if (IP != WaterList.end()) 1424 WaterList.erase(IP); 1425 1426 // Okay, we know we can put an island before NewMBB now, do it! 1427 MF->insert(NewMBB, NewIsland); 1428 1429 // Update internal data structures to account for the newly inserted MBB. 1430 updateForInsertedWaterBlock(NewIsland); 1431 1432 // Decrement the old entry, and remove it if refcount becomes 0. 1433 decrementCPEReferenceCount(CPI, CPEMI); 1434 1435 // Now that we have an island to add the CPE to, clone the original CPE and 1436 // add it to the island. 1437 U.HighWaterMark = NewIsland; 1438 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 1439 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); 1440 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1441 ++NumCPEs; 1442 1443 // Mark the basic block as aligned as required by the const-pool entry. 1444 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1445 1446 // Increase the size of the island block to account for the new entry. 1447 BBInfo[NewIsland->getNumber()].Size += Size; 1448 adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland))); 1449 1450 // Finally, change the CPI in the instruction operand to be ID. 1451 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1452 if (UserMI->getOperand(i).isCPI()) { 1453 UserMI->getOperand(i).setIndex(ID); 1454 break; 1455 } 1456 1457 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1458 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1459 1460 return true; 1461 } 1462 1463 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1464 /// sizes and offsets of impacted basic blocks. 1465 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1466 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1467 unsigned Size = CPEMI->getOperand(2).getImm(); 1468 CPEMI->eraseFromParent(); 1469 BBInfo[CPEBB->getNumber()].Size -= Size; 1470 // All succeeding offsets have the current size value added in, fix this. 1471 if (CPEBB->empty()) { 1472 BBInfo[CPEBB->getNumber()].Size = 0; 1473 1474 // This block no longer needs to be aligned. 1475 CPEBB->setAlignment(0); 1476 } else 1477 // Entries are sorted by descending alignment, so realign from the front. 1478 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin())); 1479 1480 adjustBBOffsetsAfter(CPEBB); 1481 // An island has only one predecessor BB and one successor BB. Check if 1482 // this BB's predecessor jumps directly to this BB's successor. This 1483 // shouldn't happen currently. 1484 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1485 // FIXME: remove the empty blocks after all the work is done? 1486 } 1487 1488 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1489 /// are zero. 1490 bool ARMConstantIslands::removeUnusedCPEntries() { 1491 unsigned MadeChange = false; 1492 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1493 std::vector<CPEntry> &CPEs = CPEntries[i]; 1494 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1495 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1496 removeDeadCPEMI(CPEs[j].CPEMI); 1497 CPEs[j].CPEMI = nullptr; 1498 MadeChange = true; 1499 } 1500 } 1501 } 1502 return MadeChange; 1503 } 1504 1505 /// isBBInRange - Returns true if the distance between specific MI and 1506 /// specific BB can fit in MI's displacement field. 1507 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1508 unsigned MaxDisp) { 1509 unsigned PCAdj = isThumb ? 4 : 8; 1510 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1511 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1512 1513 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1514 << " from BB#" << MI->getParent()->getNumber() 1515 << " max delta=" << MaxDisp 1516 << " from " << getOffsetOf(MI) << " to " << DestOffset 1517 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1518 1519 if (BrOffset <= DestOffset) { 1520 // Branch before the Dest. 1521 if (DestOffset-BrOffset <= MaxDisp) 1522 return true; 1523 } else { 1524 if (BrOffset-DestOffset <= MaxDisp) 1525 return true; 1526 } 1527 return false; 1528 } 1529 1530 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1531 /// away to fit in its displacement field. 1532 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1533 MachineInstr *MI = Br.MI; 1534 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1535 1536 // Check to see if the DestBB is already in-range. 1537 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1538 return false; 1539 1540 if (!Br.isCond) 1541 return fixupUnconditionalBr(Br); 1542 return fixupConditionalBr(Br); 1543 } 1544 1545 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1546 /// too far away to fit in its displacement field. If the LR register has been 1547 /// spilled in the epilogue, then we can use BL to implement a far jump. 1548 /// Otherwise, add an intermediate branch instruction to a branch. 1549 bool 1550 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1551 MachineInstr *MI = Br.MI; 1552 MachineBasicBlock *MBB = MI->getParent(); 1553 if (!isThumb1) 1554 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1555 1556 // Use BL to implement far jump. 1557 Br.MaxDisp = (1 << 21) * 2; 1558 MI->setDesc(TII->get(ARM::tBfar)); 1559 BBInfo[MBB->getNumber()].Size += 2; 1560 adjustBBOffsetsAfter(MBB); 1561 HasFarJump = true; 1562 ++NumUBrFixed; 1563 1564 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1565 1566 return true; 1567 } 1568 1569 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1570 /// far away to fit in its displacement field. It is converted to an inverse 1571 /// conditional branch + an unconditional branch to the destination. 1572 bool 1573 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1574 MachineInstr *MI = Br.MI; 1575 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1576 1577 // Add an unconditional branch to the destination and invert the branch 1578 // condition to jump over it: 1579 // blt L1 1580 // => 1581 // bge L2 1582 // b L1 1583 // L2: 1584 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1585 CC = ARMCC::getOppositeCondition(CC); 1586 unsigned CCReg = MI->getOperand(2).getReg(); 1587 1588 // If the branch is at the end of its MBB and that has a fall-through block, 1589 // direct the updated conditional branch to the fall-through block. Otherwise, 1590 // split the MBB before the next instruction. 1591 MachineBasicBlock *MBB = MI->getParent(); 1592 MachineInstr *BMI = &MBB->back(); 1593 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1594 1595 ++NumCBrFixed; 1596 if (BMI != MI) { 1597 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1598 BMI->getOpcode() == Br.UncondBr) { 1599 // Last MI in the BB is an unconditional branch. Can we simply invert the 1600 // condition and swap destinations: 1601 // beq L1 1602 // b L2 1603 // => 1604 // bne L2 1605 // b L1 1606 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1607 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1608 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1609 << *BMI); 1610 BMI->getOperand(0).setMBB(DestBB); 1611 MI->getOperand(0).setMBB(NewDest); 1612 MI->getOperand(1).setImm(CC); 1613 return true; 1614 } 1615 } 1616 } 1617 1618 if (NeedSplit) { 1619 splitBlockBeforeInstr(MI); 1620 // No need for the branch to the next block. We're adding an unconditional 1621 // branch to the destination. 1622 int delta = TII->GetInstSizeInBytes(&MBB->back()); 1623 BBInfo[MBB->getNumber()].Size -= delta; 1624 MBB->back().eraseFromParent(); 1625 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1626 } 1627 MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB)); 1628 1629 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1630 << " also invert condition and change dest. to BB#" 1631 << NextBB->getNumber() << "\n"); 1632 1633 // Insert a new conditional branch and a new unconditional branch. 1634 // Also update the ImmBranch as well as adding a new entry for the new branch. 1635 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1636 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1637 Br.MI = &MBB->back(); 1638 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1639 if (isThumb) 1640 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) 1641 .addImm(ARMCC::AL).addReg(0); 1642 else 1643 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1644 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back()); 1645 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1646 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1647 1648 // Remove the old conditional branch. It may or may not still be in MBB. 1649 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI); 1650 MI->eraseFromParent(); 1651 adjustBBOffsetsAfter(MBB); 1652 return true; 1653 } 1654 1655 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1656 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1657 /// to do this if tBfar is not used. 1658 bool ARMConstantIslands::undoLRSpillRestore() { 1659 bool MadeChange = false; 1660 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1661 MachineInstr *MI = PushPopMIs[i]; 1662 // First two operands are predicates. 1663 if (MI->getOpcode() == ARM::tPOP_RET && 1664 MI->getOperand(2).getReg() == ARM::PC && 1665 MI->getNumExplicitOperands() == 3) { 1666 // Create the new insn and copy the predicate from the old. 1667 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1668 .addOperand(MI->getOperand(0)) 1669 .addOperand(MI->getOperand(1)); 1670 MI->eraseFromParent(); 1671 MadeChange = true; 1672 } 1673 } 1674 return MadeChange; 1675 } 1676 1677 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions 1678 // below may shrink MI. 1679 bool 1680 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const { 1681 switch(MI->getOpcode()) { 1682 // optimizeThumb2Instructions. 1683 case ARM::t2LEApcrel: 1684 case ARM::t2LDRpci: 1685 // optimizeThumb2Branches. 1686 case ARM::t2B: 1687 case ARM::t2Bcc: 1688 case ARM::tBcc: 1689 // optimizeThumb2JumpTables. 1690 case ARM::t2BR_JT: 1691 return true; 1692 } 1693 return false; 1694 } 1695 1696 bool ARMConstantIslands::optimizeThumb2Instructions() { 1697 bool MadeChange = false; 1698 1699 // Shrink ADR and LDR from constantpool. 1700 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1701 CPUser &U = CPUsers[i]; 1702 unsigned Opcode = U.MI->getOpcode(); 1703 unsigned NewOpc = 0; 1704 unsigned Scale = 1; 1705 unsigned Bits = 0; 1706 switch (Opcode) { 1707 default: break; 1708 case ARM::t2LEApcrel: 1709 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1710 NewOpc = ARM::tLEApcrel; 1711 Bits = 8; 1712 Scale = 4; 1713 } 1714 break; 1715 case ARM::t2LDRpci: 1716 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1717 NewOpc = ARM::tLDRpci; 1718 Bits = 8; 1719 Scale = 4; 1720 } 1721 break; 1722 } 1723 1724 if (!NewOpc) 1725 continue; 1726 1727 unsigned UserOffset = getUserOffset(U); 1728 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1729 1730 // Be conservative with inline asm. 1731 if (!U.KnownAlignment) 1732 MaxOffs -= 2; 1733 1734 // FIXME: Check if offset is multiple of scale if scale is not 4. 1735 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1736 DEBUG(dbgs() << "Shrink: " << *U.MI); 1737 U.MI->setDesc(TII->get(NewOpc)); 1738 MachineBasicBlock *MBB = U.MI->getParent(); 1739 BBInfo[MBB->getNumber()].Size -= 2; 1740 adjustBBOffsetsAfter(MBB); 1741 ++NumT2CPShrunk; 1742 MadeChange = true; 1743 } 1744 } 1745 1746 MadeChange |= optimizeThumb2Branches(); 1747 MadeChange |= optimizeThumb2JumpTables(); 1748 return MadeChange; 1749 } 1750 1751 bool ARMConstantIslands::optimizeThumb2Branches() { 1752 bool MadeChange = false; 1753 1754 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { 1755 ImmBranch &Br = ImmBranches[i]; 1756 unsigned Opcode = Br.MI->getOpcode(); 1757 unsigned NewOpc = 0; 1758 unsigned Scale = 1; 1759 unsigned Bits = 0; 1760 switch (Opcode) { 1761 default: break; 1762 case ARM::t2B: 1763 NewOpc = ARM::tB; 1764 Bits = 11; 1765 Scale = 2; 1766 break; 1767 case ARM::t2Bcc: { 1768 NewOpc = ARM::tBcc; 1769 Bits = 8; 1770 Scale = 2; 1771 break; 1772 } 1773 } 1774 if (NewOpc) { 1775 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1776 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1777 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1778 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1779 Br.MI->setDesc(TII->get(NewOpc)); 1780 MachineBasicBlock *MBB = Br.MI->getParent(); 1781 BBInfo[MBB->getNumber()].Size -= 2; 1782 adjustBBOffsetsAfter(MBB); 1783 ++NumT2BrShrunk; 1784 MadeChange = true; 1785 } 1786 } 1787 1788 Opcode = Br.MI->getOpcode(); 1789 if (Opcode != ARM::tBcc) 1790 continue; 1791 1792 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1793 // so this transformation is not safe. 1794 if (!Br.MI->killsRegister(ARM::CPSR)) 1795 continue; 1796 1797 NewOpc = 0; 1798 unsigned PredReg = 0; 1799 ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg); 1800 if (Pred == ARMCC::EQ) 1801 NewOpc = ARM::tCBZ; 1802 else if (Pred == ARMCC::NE) 1803 NewOpc = ARM::tCBNZ; 1804 if (!NewOpc) 1805 continue; 1806 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1807 // Check if the distance is within 126. Subtract starting offset by 2 1808 // because the cmp will be eliminated. 1809 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1810 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1811 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1812 MachineBasicBlock::iterator CmpMI = Br.MI; 1813 if (CmpMI != Br.MI->getParent()->begin()) { 1814 --CmpMI; 1815 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1816 unsigned Reg = CmpMI->getOperand(0).getReg(); 1817 Pred = getInstrPredicate(CmpMI, PredReg); 1818 if (Pred == ARMCC::AL && 1819 CmpMI->getOperand(1).getImm() == 0 && 1820 isARMLowRegister(Reg)) { 1821 MachineBasicBlock *MBB = Br.MI->getParent(); 1822 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1823 MachineInstr *NewBR = 1824 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1825 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1826 CmpMI->eraseFromParent(); 1827 Br.MI->eraseFromParent(); 1828 Br.MI = NewBR; 1829 BBInfo[MBB->getNumber()].Size -= 2; 1830 adjustBBOffsetsAfter(MBB); 1831 ++NumCBZ; 1832 MadeChange = true; 1833 } 1834 } 1835 } 1836 } 1837 } 1838 1839 return MadeChange; 1840 } 1841 1842 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 1843 /// jumptables when it's possible. 1844 bool ARMConstantIslands::optimizeThumb2JumpTables() { 1845 bool MadeChange = false; 1846 1847 // FIXME: After the tables are shrunk, can we get rid some of the 1848 // constantpool tables? 1849 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1850 if (!MJTI) return false; 1851 1852 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1853 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1854 MachineInstr *MI = T2JumpTables[i]; 1855 const MCInstrDesc &MCID = MI->getDesc(); 1856 unsigned NumOps = MCID.getNumOperands(); 1857 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1858 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1859 unsigned JTI = JTOP.getIndex(); 1860 assert(JTI < JT.size()); 1861 1862 bool ByteOk = true; 1863 bool HalfWordOk = true; 1864 unsigned JTOffset = getOffsetOf(MI) + 4; 1865 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1866 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1867 MachineBasicBlock *MBB = JTBBs[j]; 1868 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 1869 // Negative offset is not ok. FIXME: We should change BB layout to make 1870 // sure all the branches are forward. 1871 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 1872 ByteOk = false; 1873 unsigned TBHLimit = ((1<<16)-1)*2; 1874 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 1875 HalfWordOk = false; 1876 if (!ByteOk && !HalfWordOk) 1877 break; 1878 } 1879 1880 if (ByteOk || HalfWordOk) { 1881 MachineBasicBlock *MBB = MI->getParent(); 1882 unsigned BaseReg = MI->getOperand(0).getReg(); 1883 bool BaseRegKill = MI->getOperand(0).isKill(); 1884 if (!BaseRegKill) 1885 continue; 1886 unsigned IdxReg = MI->getOperand(1).getReg(); 1887 bool IdxRegKill = MI->getOperand(1).isKill(); 1888 1889 // Scan backwards to find the instruction that defines the base 1890 // register. Due to post-RA scheduling, we can't count on it 1891 // immediately preceding the branch instruction. 1892 MachineBasicBlock::iterator PrevI = MI; 1893 MachineBasicBlock::iterator B = MBB->begin(); 1894 while (PrevI != B && !PrevI->definesRegister(BaseReg)) 1895 --PrevI; 1896 1897 // If for some reason we didn't find it, we can't do anything, so 1898 // just skip this one. 1899 if (!PrevI->definesRegister(BaseReg)) 1900 continue; 1901 1902 MachineInstr *AddrMI = PrevI; 1903 bool OptOk = true; 1904 // Examine the instruction that calculates the jumptable entry address. 1905 // Make sure it only defines the base register and kills any uses 1906 // other than the index register. 1907 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { 1908 const MachineOperand &MO = AddrMI->getOperand(k); 1909 if (!MO.isReg() || !MO.getReg()) 1910 continue; 1911 if (MO.isDef() && MO.getReg() != BaseReg) { 1912 OptOk = false; 1913 break; 1914 } 1915 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { 1916 OptOk = false; 1917 break; 1918 } 1919 } 1920 if (!OptOk) 1921 continue; 1922 1923 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction 1924 // that gave us the initial base register definition. 1925 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) 1926 ; 1927 1928 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want 1929 // to delete it as well. 1930 MachineInstr *LeaMI = PrevI; 1931 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && 1932 LeaMI->getOpcode() != ARM::t2LEApcrelJT) || 1933 LeaMI->getOperand(0).getReg() != BaseReg) 1934 OptOk = false; 1935 1936 if (!OptOk) 1937 continue; 1938 1939 DEBUG(dbgs() << "Shrink JT: " << *MI << " addr: " << *AddrMI 1940 << " lea: " << *LeaMI); 1941 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 1942 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) 1943 .addReg(IdxReg, getKillRegState(IdxRegKill)) 1944 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 1945 .addImm(MI->getOperand(JTOpIdx+1).getImm()); 1946 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); 1947 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction 1948 // is 2-byte aligned. For now, asm printer will fix it up. 1949 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); 1950 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); 1951 OrigSize += TII->GetInstSizeInBytes(LeaMI); 1952 OrigSize += TII->GetInstSizeInBytes(MI); 1953 1954 AddrMI->eraseFromParent(); 1955 LeaMI->eraseFromParent(); 1956 MI->eraseFromParent(); 1957 1958 int delta = OrigSize - NewSize; 1959 BBInfo[MBB->getNumber()].Size -= delta; 1960 adjustBBOffsetsAfter(MBB); 1961 1962 ++NumTBs; 1963 MadeChange = true; 1964 } 1965 } 1966 1967 return MadeChange; 1968 } 1969 1970 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 1971 /// jump tables always branch forwards, since that's what tbb and tbh need. 1972 bool ARMConstantIslands::reorderThumb2JumpTables() { 1973 bool MadeChange = false; 1974 1975 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1976 if (!MJTI) return false; 1977 1978 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1979 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 1980 MachineInstr *MI = T2JumpTables[i]; 1981 const MCInstrDesc &MCID = MI->getDesc(); 1982 unsigned NumOps = MCID.getNumOperands(); 1983 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2); 1984 MachineOperand JTOP = MI->getOperand(JTOpIdx); 1985 unsigned JTI = JTOP.getIndex(); 1986 assert(JTI < JT.size()); 1987 1988 // We prefer if target blocks for the jump table come after the jump 1989 // instruction so we can use TB[BH]. Loop through the target blocks 1990 // and try to adjust them such that that's true. 1991 int JTNumber = MI->getParent()->getNumber(); 1992 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1993 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 1994 MachineBasicBlock *MBB = JTBBs[j]; 1995 int DTNumber = MBB->getNumber(); 1996 1997 if (DTNumber < JTNumber) { 1998 // The destination precedes the switch. Try to move the block forward 1999 // so we have a positive offset. 2000 MachineBasicBlock *NewBB = 2001 adjustJTTargetBlockForward(MBB, MI->getParent()); 2002 if (NewBB) 2003 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2004 MadeChange = true; 2005 } 2006 } 2007 } 2008 2009 return MadeChange; 2010 } 2011 2012 MachineBasicBlock *ARMConstantIslands:: 2013 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2014 // If the destination block is terminated by an unconditional branch, 2015 // try to move it; otherwise, create a new block following the jump 2016 // table that branches back to the actual target. This is a very simple 2017 // heuristic. FIXME: We can definitely improve it. 2018 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2019 SmallVector<MachineOperand, 4> Cond; 2020 SmallVector<MachineOperand, 4> CondPrior; 2021 MachineFunction::iterator BBi = BB; 2022 MachineFunction::iterator OldPrior = std::prev(BBi); 2023 2024 // If the block terminator isn't analyzable, don't try to move the block 2025 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); 2026 2027 // If the block ends in an unconditional branch, move it. The prior block 2028 // has to have an analyzable terminator for us to move this one. Be paranoid 2029 // and make sure we're not trying to move the entry block of the function. 2030 if (!B && Cond.empty() && BB != MF->begin() && 2031 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2032 BB->moveAfter(JTBB); 2033 OldPrior->updateTerminator(); 2034 BB->updateTerminator(); 2035 // Update numbering to account for the block being moved. 2036 MF->RenumberBlocks(); 2037 ++NumJTMoved; 2038 return nullptr; 2039 } 2040 2041 // Create a new MBB for the code after the jump BB. 2042 MachineBasicBlock *NewBB = 2043 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2044 MachineFunction::iterator MBBI = JTBB; ++MBBI; 2045 MF->insert(MBBI, NewBB); 2046 2047 // Add an unconditional branch from NewBB to BB. 2048 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2049 // correspond directly to anything in the source. 2050 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); 2051 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) 2052 .addImm(ARMCC::AL).addReg(0); 2053 2054 // Update internal data structures to account for the newly inserted MBB. 2055 MF->RenumberBlocks(NewBB); 2056 2057 // Update the CFG. 2058 NewBB->addSuccessor(BB); 2059 JTBB->removeSuccessor(BB); 2060 JTBB->addSuccessor(NewBB); 2061 2062 ++NumJTInserted; 2063 return NewBB; 2064 } 2065