1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "MVETailPredUtils.h" 22 #include "Thumb2InstrInfo.h" 23 #include "Utils/ARMBaseInfo.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/CodeGen/LivePhysRegs.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineConstantPool.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <iterator> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "arm-cp-islands" 62 63 #define ARM_CP_ISLANDS_OPT_NAME \ 64 "ARM constant island placement and branch shortening pass" 65 STATISTIC(NumCPEs, "Number of constpool entries"); 66 STATISTIC(NumSplit, "Number of uncond branches inserted"); 67 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 68 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 69 STATISTIC(NumTBs, "Number of table branches generated"); 70 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 71 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 72 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 73 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 74 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 75 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 76 77 static cl::opt<bool> 78 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 79 cl::desc("Adjust basic block layout to better use TB[BH]")); 80 81 static cl::opt<unsigned> 82 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 83 cl::desc("The max number of iteration for converge")); 84 85 static cl::opt<bool> SynthesizeThumb1TBB( 86 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 87 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 88 "equivalent to the TBB/TBH instructions")); 89 90 namespace { 91 92 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 93 /// requires constant pool entries to be scattered among the instructions 94 /// inside a function. To do this, it completely ignores the normal LLVM 95 /// constant pool; instead, it places constants wherever it feels like with 96 /// special instructions. 97 /// 98 /// The terminology used in this pass includes: 99 /// Islands - Clumps of constants placed in the function. 100 /// Water - Potential places where an island could be formed. 101 /// CPE - A constant pool entry that has been placed somewhere, which 102 /// tracks a list of users. 103 class ARMConstantIslands : public MachineFunctionPass { 104 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 105 106 /// WaterList - A sorted list of basic blocks where islands could be placed 107 /// (i.e. blocks that don't fall through to the following block, due 108 /// to a return, unreachable, or unconditional branch). 109 std::vector<MachineBasicBlock*> WaterList; 110 111 /// NewWaterList - The subset of WaterList that was created since the 112 /// previous iteration by inserting unconditional branches. 113 SmallSet<MachineBasicBlock*, 4> NewWaterList; 114 115 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 116 117 /// CPUser - One user of a constant pool, keeping the machine instruction 118 /// pointer, the constant pool being referenced, and the max displacement 119 /// allowed from the instruction to the CP. The HighWaterMark records the 120 /// highest basic block where a new CPEntry can be placed. To ensure this 121 /// pass terminates, the CP entries are initially placed at the end of the 122 /// function and then move monotonically to lower addresses. The 123 /// exception to this rule is when the current CP entry for a particular 124 /// CPUser is out of range, but there is another CP entry for the same 125 /// constant value in range. We want to use the existing in-range CP 126 /// entry, but if it later moves out of range, the search for new water 127 /// should resume where it left off. The HighWaterMark is used to record 128 /// that point. 129 struct CPUser { 130 MachineInstr *MI; 131 MachineInstr *CPEMI; 132 MachineBasicBlock *HighWaterMark; 133 unsigned MaxDisp; 134 bool NegOk; 135 bool IsSoImm; 136 bool KnownAlignment = false; 137 138 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 139 bool neg, bool soimm) 140 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 141 HighWaterMark = CPEMI->getParent(); 142 } 143 144 /// getMaxDisp - Returns the maximum displacement supported by MI. 145 /// Correct for unknown alignment. 146 /// Conservatively subtract 2 bytes to handle weird alignment effects. 147 unsigned getMaxDisp() const { 148 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 149 } 150 }; 151 152 /// CPUsers - Keep track of all of the machine instructions that use various 153 /// constant pools and their max displacement. 154 std::vector<CPUser> CPUsers; 155 156 /// CPEntry - One per constant pool entry, keeping the machine instruction 157 /// pointer, the constpool index, and the number of CPUser's which 158 /// reference this entry. 159 struct CPEntry { 160 MachineInstr *CPEMI; 161 unsigned CPI; 162 unsigned RefCount; 163 164 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 165 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 166 }; 167 168 /// CPEntries - Keep track of all of the constant pool entry machine 169 /// instructions. For each original constpool index (i.e. those that existed 170 /// upon entry to this pass), it keeps a vector of entries. Original 171 /// elements are cloned as we go along; the clones are put in the vector of 172 /// the original element, but have distinct CPIs. 173 /// 174 /// The first half of CPEntries contains generic constants, the second half 175 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 176 /// which vector it will be in here. 177 std::vector<std::vector<CPEntry>> CPEntries; 178 179 /// Maps a JT index to the offset in CPEntries containing copies of that 180 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 181 DenseMap<int, int> JumpTableEntryIndices; 182 183 /// Maps a JT index to the LEA that actually uses the index to calculate its 184 /// base address. 185 DenseMap<int, int> JumpTableUserIndices; 186 187 // Maps a MachineBasicBlock to the number of jump tables entries. 188 DenseMap<const MachineBasicBlock *, int> BlockJumpTableRefCount; 189 190 /// ImmBranch - One per immediate branch, keeping the machine instruction 191 /// pointer, conditional or unconditional, the max displacement, 192 /// and (if isCond is true) the corresponding unconditional branch 193 /// opcode. 194 struct ImmBranch { 195 MachineInstr *MI; 196 unsigned MaxDisp : 31; 197 bool isCond : 1; 198 unsigned UncondBr; 199 200 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 201 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 202 }; 203 204 /// ImmBranches - Keep track of all the immediate branch instructions. 205 std::vector<ImmBranch> ImmBranches; 206 207 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 208 SmallVector<MachineInstr*, 4> PushPopMIs; 209 210 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 211 SmallVector<MachineInstr*, 4> T2JumpTables; 212 213 MachineFunction *MF; 214 MachineConstantPool *MCP; 215 const ARMBaseInstrInfo *TII; 216 const ARMSubtarget *STI; 217 ARMFunctionInfo *AFI; 218 MachineDominatorTree *DT = nullptr; 219 bool isThumb; 220 bool isThumb1; 221 bool isThumb2; 222 bool isPositionIndependentOrROPI; 223 224 public: 225 static char ID; 226 227 ARMConstantIslands() : MachineFunctionPass(ID) {} 228 229 bool runOnMachineFunction(MachineFunction &MF) override; 230 231 void getAnalysisUsage(AnalysisUsage &AU) const override { 232 AU.addRequired<MachineDominatorTree>(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 } 235 236 MachineFunctionProperties getRequiredProperties() const override { 237 return MachineFunctionProperties().set( 238 MachineFunctionProperties::Property::NoVRegs); 239 } 240 241 StringRef getPassName() const override { 242 return ARM_CP_ISLANDS_OPT_NAME; 243 } 244 245 private: 246 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 247 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 248 bool BBHasFallthrough(MachineBasicBlock *MBB); 249 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 250 Align getCPEAlign(const MachineInstr *CPEMI); 251 void scanFunctionJumpTables(); 252 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 253 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 254 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 255 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 256 unsigned getCombinedIndex(const MachineInstr *CPEMI); 257 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 258 bool findAvailableWater(CPUser&U, unsigned UserOffset, 259 water_iterator &WaterIter, bool CloserWater); 260 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 261 MachineBasicBlock *&NewMBB); 262 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 263 void removeDeadCPEMI(MachineInstr *CPEMI); 264 bool removeUnusedCPEntries(); 265 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 266 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 267 bool DoDump = false); 268 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 269 CPUser &U, unsigned &Growth); 270 bool fixupImmediateBr(ImmBranch &Br); 271 bool fixupConditionalBr(ImmBranch &Br); 272 bool fixupUnconditionalBr(ImmBranch &Br); 273 bool optimizeThumb2Instructions(); 274 bool optimizeThumb2Branches(); 275 bool reorderThumb2JumpTables(); 276 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 277 unsigned &DeadSize, bool &CanDeleteLEA, 278 bool &BaseRegKill); 279 bool optimizeThumb2JumpTables(); 280 void fixupBTI(unsigned JTI, MachineBasicBlock &OldBB, 281 MachineBasicBlock &NewBB); 282 MachineBasicBlock *adjustJTTargetBlockForward(unsigned JTI, 283 MachineBasicBlock *BB, 284 MachineBasicBlock *JTBB); 285 286 unsigned getUserOffset(CPUser&) const; 287 void dumpBBs(); 288 void verify(); 289 290 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 291 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 292 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 293 const CPUser &U) { 294 return isOffsetInRange(UserOffset, TrialOffset, 295 U.getMaxDisp(), U.NegOk, U.IsSoImm); 296 } 297 }; 298 299 } // end anonymous namespace 300 301 char ARMConstantIslands::ID = 0; 302 303 /// verify - check BBOffsets, BBSizes, alignment of islands 304 void ARMConstantIslands::verify() { 305 #ifndef NDEBUG 306 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 307 assert(is_sorted(*MF, [&BBInfo](const MachineBasicBlock &LHS, 308 const MachineBasicBlock &RHS) { 309 return BBInfo[LHS.getNumber()].postOffset() < 310 BBInfo[RHS.getNumber()].postOffset(); 311 })); 312 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 313 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 314 CPUser &U = CPUsers[i]; 315 unsigned UserOffset = getUserOffset(U); 316 // Verify offset using the real max displacement without the safety 317 // adjustment. 318 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 319 /* DoDump = */ true)) { 320 LLVM_DEBUG(dbgs() << "OK\n"); 321 continue; 322 } 323 LLVM_DEBUG(dbgs() << "Out of range.\n"); 324 dumpBBs(); 325 LLVM_DEBUG(MF->dump()); 326 llvm_unreachable("Constant pool entry out of range!"); 327 } 328 #endif 329 } 330 331 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 332 /// print block size and offset information - debugging 333 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 334 LLVM_DEBUG({ 335 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 336 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 337 const BasicBlockInfo &BBI = BBInfo[J]; 338 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 339 << " kb=" << unsigned(BBI.KnownBits) 340 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 341 << format(" size=%#x\n", BBInfo[J].Size); 342 } 343 }); 344 } 345 #endif 346 347 // Align blocks where the previous block does not fall through. This may add 348 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a 349 // measure of how much to align, and only runs at CodeGenOpt::Aggressive. 350 static bool AlignBlocks(MachineFunction *MF, const ARMSubtarget *STI) { 351 if (MF->getTarget().getOptLevel() != CodeGenOpt::Aggressive || 352 MF->getFunction().hasOptSize()) 353 return false; 354 355 auto *TLI = STI->getTargetLowering(); 356 const Align Alignment = TLI->getPrefLoopAlignment(); 357 if (Alignment < 4) 358 return false; 359 360 bool Changed = false; 361 bool PrevCanFallthough = true; 362 for (auto &MBB : *MF) { 363 if (!PrevCanFallthough) { 364 Changed = true; 365 MBB.setAlignment(Alignment); 366 } 367 368 PrevCanFallthough = MBB.canFallThrough(); 369 370 // For LOB's, the ARMLowOverheadLoops pass may remove the unconditional 371 // branch later in the pipeline. 372 if (STI->hasLOB()) { 373 for (const auto &MI : reverse(MBB.terminators())) { 374 if (MI.getOpcode() == ARM::t2B && 375 MI.getOperand(0).getMBB() == MBB.getNextNode()) 376 continue; 377 if (isLoopStart(MI) || MI.getOpcode() == ARM::t2LoopEnd || 378 MI.getOpcode() == ARM::t2LoopEndDec) { 379 PrevCanFallthough = true; 380 break; 381 } 382 // Any other terminator - nothing to do 383 break; 384 } 385 } 386 } 387 388 return Changed; 389 } 390 391 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 392 MF = &mf; 393 MCP = mf.getConstantPool(); 394 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 395 396 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 397 << MCP->getConstants().size() << " CP entries, aligned to " 398 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 399 400 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 401 TII = STI->getInstrInfo(); 402 isPositionIndependentOrROPI = 403 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 404 AFI = MF->getInfo<ARMFunctionInfo>(); 405 DT = &getAnalysis<MachineDominatorTree>(); 406 407 isThumb = AFI->isThumbFunction(); 408 isThumb1 = AFI->isThumb1OnlyFunction(); 409 isThumb2 = AFI->isThumb2Function(); 410 411 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 412 // TBB generation code in this constant island pass has not been adapted to 413 // deal with speculation barriers. 414 if (STI->hardenSlsRetBr()) 415 GenerateTBB = false; 416 417 // Renumber all of the machine basic blocks in the function, guaranteeing that 418 // the numbers agree with the position of the block in the function. 419 MF->RenumberBlocks(); 420 421 // Try to reorder and otherwise adjust the block layout to make good use 422 // of the TB[BH] instructions. 423 bool MadeChange = false; 424 if (GenerateTBB && AdjustJumpTableBlocks) { 425 scanFunctionJumpTables(); 426 MadeChange |= reorderThumb2JumpTables(); 427 // Data is out of date, so clear it. It'll be re-computed later. 428 T2JumpTables.clear(); 429 // Blocks may have shifted around. Keep the numbering up to date. 430 MF->RenumberBlocks(); 431 } 432 433 // Align any non-fallthrough blocks 434 MadeChange |= AlignBlocks(MF, STI); 435 436 // Perform the initial placement of the constant pool entries. To start with, 437 // we put them all at the end of the function. 438 std::vector<MachineInstr*> CPEMIs; 439 if (!MCP->isEmpty()) 440 doInitialConstPlacement(CPEMIs); 441 442 if (MF->getJumpTableInfo()) 443 doInitialJumpTablePlacement(CPEMIs); 444 445 /// The next UID to take is the first unused one. 446 AFI->initPICLabelUId(CPEMIs.size()); 447 448 // Do the initial scan of the function, building up information about the 449 // sizes of each block, the location of all the water, and finding all of the 450 // constant pool users. 451 initializeFunctionInfo(CPEMIs); 452 CPEMIs.clear(); 453 LLVM_DEBUG(dumpBBs()); 454 455 // Functions with jump tables need an alignment of 4 because they use the ADR 456 // instruction, which aligns the PC to 4 bytes before adding an offset. 457 if (!T2JumpTables.empty()) 458 MF->ensureAlignment(Align(4)); 459 460 /// Remove dead constant pool entries. 461 MadeChange |= removeUnusedCPEntries(); 462 463 // Iteratively place constant pool entries and fix up branches until there 464 // is no change. 465 unsigned NoCPIters = 0, NoBRIters = 0; 466 while (true) { 467 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 468 bool CPChange = false; 469 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 470 // For most inputs, it converges in no more than 5 iterations. 471 // If it doesn't end in 10, the input may have huge BB or many CPEs. 472 // In this case, we will try different heuristics. 473 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 474 if (CPChange && ++NoCPIters > CPMaxIteration) 475 report_fatal_error("Constant Island pass failed to converge!"); 476 LLVM_DEBUG(dumpBBs()); 477 478 // Clear NewWaterList now. If we split a block for branches, it should 479 // appear as "new water" for the next iteration of constant pool placement. 480 NewWaterList.clear(); 481 482 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 483 bool BRChange = false; 484 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 485 BRChange |= fixupImmediateBr(ImmBranches[i]); 486 if (BRChange && ++NoBRIters > 30) 487 report_fatal_error("Branch Fix Up pass failed to converge!"); 488 LLVM_DEBUG(dumpBBs()); 489 490 if (!CPChange && !BRChange) 491 break; 492 MadeChange = true; 493 } 494 495 // Shrink 32-bit Thumb2 load and store instructions. 496 if (isThumb2 && !STI->prefers32BitThumb()) 497 MadeChange |= optimizeThumb2Instructions(); 498 499 // Shrink 32-bit branch instructions. 500 if (isThumb && STI->hasV8MBaselineOps()) 501 MadeChange |= optimizeThumb2Branches(); 502 503 // Optimize jump tables using TBB / TBH. 504 if (GenerateTBB && !STI->genExecuteOnly()) 505 MadeChange |= optimizeThumb2JumpTables(); 506 507 // After a while, this might be made debug-only, but it is not expensive. 508 verify(); 509 510 // Save the mapping between original and cloned constpool entries. 511 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 512 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 513 const CPEntry & CPE = CPEntries[i][j]; 514 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 515 AFI->recordCPEClone(i, CPE.CPI); 516 } 517 } 518 519 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 520 521 BBUtils->clear(); 522 WaterList.clear(); 523 CPUsers.clear(); 524 CPEntries.clear(); 525 JumpTableEntryIndices.clear(); 526 JumpTableUserIndices.clear(); 527 BlockJumpTableRefCount.clear(); 528 ImmBranches.clear(); 529 PushPopMIs.clear(); 530 T2JumpTables.clear(); 531 532 return MadeChange; 533 } 534 535 /// Perform the initial placement of the regular constant pool entries. 536 /// To start with, we put them all at the end of the function. 537 void 538 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 539 // Create the basic block to hold the CPE's. 540 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 541 MF->push_back(BB); 542 543 // MachineConstantPool measures alignment in bytes. 544 const Align MaxAlign = MCP->getConstantPoolAlign(); 545 const unsigned MaxLogAlign = Log2(MaxAlign); 546 547 // Mark the basic block as required by the const-pool. 548 BB->setAlignment(MaxAlign); 549 550 // The function needs to be as aligned as the basic blocks. The linker may 551 // move functions around based on their alignment. 552 // Special case: halfword literals still need word alignment on the function. 553 Align FuncAlign = MaxAlign; 554 if (MaxAlign == 2) 555 FuncAlign = Align(4); 556 MF->ensureAlignment(FuncAlign); 557 558 // Order the entries in BB by descending alignment. That ensures correct 559 // alignment of all entries as long as BB is sufficiently aligned. Keep 560 // track of the insertion point for each alignment. We are going to bucket 561 // sort the entries as they are created. 562 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 563 BB->end()); 564 565 // Add all of the constants from the constant pool to the end block, use an 566 // identity mapping of CPI's to CPE's. 567 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 568 569 const DataLayout &TD = MF->getDataLayout(); 570 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 571 unsigned Size = CPs[i].getSizeInBytes(TD); 572 Align Alignment = CPs[i].getAlign(); 573 // Verify that all constant pool entries are a multiple of their alignment. 574 // If not, we would have to pad them out so that instructions stay aligned. 575 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 576 577 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 578 unsigned LogAlign = Log2(Alignment); 579 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 580 MachineInstr *CPEMI = 581 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 582 .addImm(i).addConstantPoolIndex(i).addImm(Size); 583 CPEMIs.push_back(CPEMI); 584 585 // Ensure that future entries with higher alignment get inserted before 586 // CPEMI. This is bucket sort with iterators. 587 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 588 if (InsPoint[a] == InsAt) 589 InsPoint[a] = CPEMI; 590 591 // Add a new CPEntry, but no corresponding CPUser yet. 592 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 593 ++NumCPEs; 594 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 595 << Size << ", align = " << Alignment.value() << '\n'); 596 } 597 LLVM_DEBUG(BB->dump()); 598 } 599 600 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 601 /// instructions can be made more efficient if the jump table immediately 602 /// follows the instruction, it's best to place them immediately next to their 603 /// jumps to begin with. In almost all cases they'll never be moved from that 604 /// position. 605 void ARMConstantIslands::doInitialJumpTablePlacement( 606 std::vector<MachineInstr *> &CPEMIs) { 607 unsigned i = CPEntries.size(); 608 auto MJTI = MF->getJumpTableInfo(); 609 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 610 611 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 612 for (MachineBasicBlock &MBB : *MF) { 613 auto MI = MBB.getLastNonDebugInstr(); 614 // Look past potential SpeculationBarriers at end of BB. 615 while (MI != MBB.end() && 616 (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) || 617 MI->isDebugInstr())) 618 --MI; 619 620 if (MI == MBB.end()) 621 continue; 622 623 unsigned JTOpcode; 624 switch (MI->getOpcode()) { 625 default: 626 continue; 627 case ARM::BR_JTadd: 628 case ARM::BR_JTr: 629 case ARM::tBR_JTr: 630 case ARM::BR_JTm_i12: 631 case ARM::BR_JTm_rs: 632 JTOpcode = ARM::JUMPTABLE_ADDRS; 633 break; 634 case ARM::t2BR_JT: 635 JTOpcode = ARM::JUMPTABLE_INSTS; 636 break; 637 case ARM::tTBB_JT: 638 case ARM::t2TBB_JT: 639 JTOpcode = ARM::JUMPTABLE_TBB; 640 break; 641 case ARM::tTBH_JT: 642 case ARM::t2TBH_JT: 643 JTOpcode = ARM::JUMPTABLE_TBH; 644 break; 645 } 646 647 unsigned NumOps = MI->getDesc().getNumOperands(); 648 MachineOperand JTOp = 649 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 650 unsigned JTI = JTOp.getIndex(); 651 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 652 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 653 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 654 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 655 DebugLoc(), TII->get(JTOpcode)) 656 .addImm(i++) 657 .addJumpTableIndex(JTI) 658 .addImm(Size); 659 CPEMIs.push_back(CPEMI); 660 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 661 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 662 if (!LastCorrectlyNumberedBB) 663 LastCorrectlyNumberedBB = &MBB; 664 } 665 666 // If we did anything then we need to renumber the subsequent blocks. 667 if (LastCorrectlyNumberedBB) 668 MF->RenumberBlocks(LastCorrectlyNumberedBB); 669 } 670 671 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 672 /// into the block immediately after it. 673 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 674 // Get the next machine basic block in the function. 675 MachineFunction::iterator MBBI = MBB->getIterator(); 676 // Can't fall off end of function. 677 if (std::next(MBBI) == MBB->getParent()->end()) 678 return false; 679 680 MachineBasicBlock *NextBB = &*std::next(MBBI); 681 if (!MBB->isSuccessor(NextBB)) 682 return false; 683 684 // Try to analyze the end of the block. A potential fallthrough may already 685 // have an unconditional branch for whatever reason. 686 MachineBasicBlock *TBB, *FBB; 687 SmallVector<MachineOperand, 4> Cond; 688 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 689 return TooDifficult || FBB == nullptr; 690 } 691 692 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 693 /// look up the corresponding CPEntry. 694 ARMConstantIslands::CPEntry * 695 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 696 const MachineInstr *CPEMI) { 697 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 698 // Number of entries per constpool index should be small, just do a 699 // linear search. 700 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 701 if (CPEs[i].CPEMI == CPEMI) 702 return &CPEs[i]; 703 } 704 return nullptr; 705 } 706 707 /// getCPEAlign - Returns the required alignment of the constant pool entry 708 /// represented by CPEMI. 709 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 710 switch (CPEMI->getOpcode()) { 711 case ARM::CONSTPOOL_ENTRY: 712 break; 713 case ARM::JUMPTABLE_TBB: 714 return isThumb1 ? Align(4) : Align(1); 715 case ARM::JUMPTABLE_TBH: 716 return isThumb1 ? Align(4) : Align(2); 717 case ARM::JUMPTABLE_INSTS: 718 return Align(2); 719 case ARM::JUMPTABLE_ADDRS: 720 return Align(4); 721 default: 722 llvm_unreachable("unknown constpool entry kind"); 723 } 724 725 unsigned CPI = getCombinedIndex(CPEMI); 726 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 727 return MCP->getConstants()[CPI].getAlign(); 728 } 729 730 // Exception landing pads, blocks that has their adress taken, and function 731 // entry blocks will always be (potential) indirect jump targets, regardless of 732 // whether they are referenced by or not by jump tables. 733 static bool isAlwaysIndirectTarget(const MachineBasicBlock &MBB) { 734 return MBB.isEHPad() || MBB.hasAddressTaken() || 735 &MBB == &MBB.getParent()->front(); 736 } 737 738 /// scanFunctionJumpTables - Do a scan of the function, building up 739 /// information about the sizes of each block and the locations of all 740 /// the jump tables. 741 void ARMConstantIslands::scanFunctionJumpTables() { 742 for (MachineBasicBlock &MBB : *MF) { 743 for (MachineInstr &I : MBB) 744 if (I.isBranch() && 745 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 746 T2JumpTables.push_back(&I); 747 } 748 749 if (!MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement()) 750 return; 751 752 if (const MachineJumpTableInfo *JTI = MF->getJumpTableInfo()) 753 for (const MachineJumpTableEntry &JTE : JTI->getJumpTables()) 754 for (const MachineBasicBlock *MBB : JTE.MBBs) { 755 if (isAlwaysIndirectTarget(*MBB)) 756 // Set the reference count essentially to infinity, it will never 757 // reach zero and the BTI Instruction will never be removed. 758 BlockJumpTableRefCount[MBB] = std::numeric_limits<int>::max(); 759 else 760 ++BlockJumpTableRefCount[MBB]; 761 } 762 } 763 764 /// initializeFunctionInfo - Do the initial scan of the function, building up 765 /// information about the sizes of each block, the location of all the water, 766 /// and finding all of the constant pool users. 767 void ARMConstantIslands:: 768 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 769 770 BBUtils->computeAllBlockSizes(); 771 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 772 // The known bits of the entry block offset are determined by the function 773 // alignment. 774 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 775 776 // Compute block offsets and known bits. 777 BBUtils->adjustBBOffsetsAfter(&MF->front()); 778 779 // Now go back through the instructions and build up our data structures. 780 for (MachineBasicBlock &MBB : *MF) { 781 // If this block doesn't fall through into the next MBB, then this is 782 // 'water' that a constant pool island could be placed. 783 if (!BBHasFallthrough(&MBB)) 784 WaterList.push_back(&MBB); 785 786 for (MachineInstr &I : MBB) { 787 if (I.isDebugInstr()) 788 continue; 789 790 unsigned Opc = I.getOpcode(); 791 if (I.isBranch()) { 792 bool isCond = false; 793 unsigned Bits = 0; 794 unsigned Scale = 1; 795 int UOpc = Opc; 796 switch (Opc) { 797 default: 798 continue; // Ignore other JT branches 799 case ARM::t2BR_JT: 800 case ARM::tBR_JTr: 801 T2JumpTables.push_back(&I); 802 continue; // Does not get an entry in ImmBranches 803 case ARM::Bcc: 804 isCond = true; 805 UOpc = ARM::B; 806 LLVM_FALLTHROUGH; 807 case ARM::B: 808 Bits = 24; 809 Scale = 4; 810 break; 811 case ARM::tBcc: 812 isCond = true; 813 UOpc = ARM::tB; 814 Bits = 8; 815 Scale = 2; 816 break; 817 case ARM::tB: 818 Bits = 11; 819 Scale = 2; 820 break; 821 case ARM::t2Bcc: 822 isCond = true; 823 UOpc = ARM::t2B; 824 Bits = 20; 825 Scale = 2; 826 break; 827 case ARM::t2B: 828 Bits = 24; 829 Scale = 2; 830 break; 831 } 832 833 // Record this immediate branch. 834 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 835 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 836 } 837 838 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 839 PushPopMIs.push_back(&I); 840 841 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 842 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 843 Opc == ARM::JUMPTABLE_TBH) 844 continue; 845 846 // Scan the instructions for constant pool operands. 847 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 848 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 849 // We found one. The addressing mode tells us the max displacement 850 // from the PC that this instruction permits. 851 852 // Basic size info comes from the TSFlags field. 853 unsigned Bits = 0; 854 unsigned Scale = 1; 855 bool NegOk = false; 856 bool IsSoImm = false; 857 858 switch (Opc) { 859 default: 860 llvm_unreachable("Unknown addressing mode for CP reference!"); 861 862 // Taking the address of a CP entry. 863 case ARM::LEApcrel: 864 case ARM::LEApcrelJT: { 865 // This takes a SoImm, which is 8 bit immediate rotated. We'll 866 // pretend the maximum offset is 255 * 4. Since each instruction 867 // 4 byte wide, this is always correct. We'll check for other 868 // displacements that fits in a SoImm as well. 869 Bits = 8; 870 NegOk = true; 871 IsSoImm = true; 872 unsigned CPI = I.getOperand(op).getIndex(); 873 assert(CPI < CPEMIs.size()); 874 MachineInstr *CPEMI = CPEMIs[CPI]; 875 const Align CPEAlign = getCPEAlign(CPEMI); 876 const unsigned LogCPEAlign = Log2(CPEAlign); 877 if (LogCPEAlign >= 2) 878 Scale = 4; 879 else 880 // For constants with less than 4-byte alignment, 881 // we'll pretend the maximum offset is 255 * 1. 882 Scale = 1; 883 } 884 break; 885 case ARM::t2LEApcrel: 886 case ARM::t2LEApcrelJT: 887 Bits = 12; 888 NegOk = true; 889 break; 890 case ARM::tLEApcrel: 891 case ARM::tLEApcrelJT: 892 Bits = 8; 893 Scale = 4; 894 break; 895 896 case ARM::LDRBi12: 897 case ARM::LDRi12: 898 case ARM::LDRcp: 899 case ARM::t2LDRpci: 900 case ARM::t2LDRHpci: 901 case ARM::t2LDRSHpci: 902 case ARM::t2LDRBpci: 903 case ARM::t2LDRSBpci: 904 Bits = 12; // +-offset_12 905 NegOk = true; 906 break; 907 908 case ARM::tLDRpci: 909 Bits = 8; 910 Scale = 4; // +(offset_8*4) 911 break; 912 913 case ARM::VLDRD: 914 case ARM::VLDRS: 915 Bits = 8; 916 Scale = 4; // +-(offset_8*4) 917 NegOk = true; 918 break; 919 case ARM::VLDRH: 920 Bits = 8; 921 Scale = 2; // +-(offset_8*2) 922 NegOk = true; 923 break; 924 } 925 926 // Remember that this is a user of a CP entry. 927 unsigned CPI = I.getOperand(op).getIndex(); 928 if (I.getOperand(op).isJTI()) { 929 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 930 CPI = JumpTableEntryIndices[CPI]; 931 } 932 933 MachineInstr *CPEMI = CPEMIs[CPI]; 934 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 935 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 936 937 // Increment corresponding CPEntry reference count. 938 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 939 assert(CPE && "Cannot find a corresponding CPEntry!"); 940 CPE->RefCount++; 941 942 // Instructions can only use one CP entry, don't bother scanning the 943 // rest of the operands. 944 break; 945 } 946 } 947 } 948 } 949 950 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 951 /// ID. 952 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 953 const MachineBasicBlock *RHS) { 954 return LHS->getNumber() < RHS->getNumber(); 955 } 956 957 /// updateForInsertedWaterBlock - When a block is newly inserted into the 958 /// machine function, it upsets all of the block numbers. Renumber the blocks 959 /// and update the arrays that parallel this numbering. 960 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 961 // Renumber the MBB's to keep them consecutive. 962 NewBB->getParent()->RenumberBlocks(NewBB); 963 964 // Insert an entry into BBInfo to align it properly with the (newly 965 // renumbered) block numbers. 966 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 967 968 // Next, update WaterList. Specifically, we need to add NewMBB as having 969 // available water after it. 970 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 971 WaterList.insert(IP, NewBB); 972 } 973 974 /// Split the basic block containing MI into two blocks, which are joined by 975 /// an unconditional branch. Update data structures and renumber blocks to 976 /// account for this change and returns the newly created block. 977 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 978 MachineBasicBlock *OrigBB = MI->getParent(); 979 980 // Collect liveness information at MI. 981 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 982 LRs.addLiveOuts(*OrigBB); 983 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 984 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 985 LRs.stepBackward(LiveMI); 986 987 // Create a new MBB for the code after the OrigBB. 988 MachineBasicBlock *NewBB = 989 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 990 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 991 MF->insert(MBBI, NewBB); 992 993 // Splice the instructions starting with MI over to NewBB. 994 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 995 996 // Add an unconditional branch from OrigBB to NewBB. 997 // Note the new unconditional branch is not being recorded. 998 // There doesn't seem to be meaningful DebugInfo available; this doesn't 999 // correspond to anything in the source. 1000 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 1001 if (!isThumb) 1002 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 1003 else 1004 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 1005 .addMBB(NewBB) 1006 .add(predOps(ARMCC::AL)); 1007 ++NumSplit; 1008 1009 // Update the CFG. All succs of OrigBB are now succs of NewBB. 1010 NewBB->transferSuccessors(OrigBB); 1011 1012 // OrigBB branches to NewBB. 1013 OrigBB->addSuccessor(NewBB); 1014 1015 // Update live-in information in the new block. 1016 MachineRegisterInfo &MRI = MF->getRegInfo(); 1017 for (MCPhysReg L : LRs) 1018 if (!MRI.isReserved(L)) 1019 NewBB->addLiveIn(L); 1020 1021 // Update internal data structures to account for the newly inserted MBB. 1022 // This is almost the same as updateForInsertedWaterBlock, except that 1023 // the Water goes after OrigBB, not NewBB. 1024 MF->RenumberBlocks(NewBB); 1025 1026 // Insert an entry into BBInfo to align it properly with the (newly 1027 // renumbered) block numbers. 1028 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 1029 1030 // Next, update WaterList. Specifically, we need to add OrigMBB as having 1031 // available water after it (but not if it's already there, which happens 1032 // when splitting before a conditional branch that is followed by an 1033 // unconditional branch - in that case we want to insert NewBB). 1034 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 1035 MachineBasicBlock* WaterBB = *IP; 1036 if (WaterBB == OrigBB) 1037 WaterList.insert(std::next(IP), NewBB); 1038 else 1039 WaterList.insert(IP, OrigBB); 1040 NewWaterList.insert(OrigBB); 1041 1042 // Figure out how large the OrigBB is. As the first half of the original 1043 // block, it cannot contain a tablejump. The size includes 1044 // the new jump we added. (It should be possible to do this without 1045 // recounting everything, but it's very confusing, and this is rarely 1046 // executed.) 1047 BBUtils->computeBlockSize(OrigBB); 1048 1049 // Figure out how large the NewMBB is. As the second half of the original 1050 // block, it may contain a tablejump. 1051 BBUtils->computeBlockSize(NewBB); 1052 1053 // All BBOffsets following these blocks must be modified. 1054 BBUtils->adjustBBOffsetsAfter(OrigBB); 1055 1056 return NewBB; 1057 } 1058 1059 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 1060 /// displacement computation. Update U.KnownAlignment to match its current 1061 /// basic block location. 1062 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 1063 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 1064 1065 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 1066 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 1067 unsigned KnownBits = BBI.internalKnownBits(); 1068 1069 // The value read from PC is offset from the actual instruction address. 1070 UserOffset += (isThumb ? 4 : 8); 1071 1072 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 1073 // Make sure U.getMaxDisp() returns a constrained range. 1074 U.KnownAlignment = (KnownBits >= 2); 1075 1076 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 1077 // purposes of the displacement computation; compensate for that here. 1078 // For unknown alignments, getMaxDisp() constrains the range instead. 1079 if (isThumb && U.KnownAlignment) 1080 UserOffset &= ~3u; 1081 1082 return UserOffset; 1083 } 1084 1085 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1086 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1087 /// constant pool entry). 1088 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1089 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1090 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1091 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1092 unsigned TrialOffset, unsigned MaxDisp, 1093 bool NegativeOK, bool IsSoImm) { 1094 if (UserOffset <= TrialOffset) { 1095 // User before the Trial. 1096 if (TrialOffset - UserOffset <= MaxDisp) 1097 return true; 1098 // FIXME: Make use full range of soimm values. 1099 } else if (NegativeOK) { 1100 if (UserOffset - TrialOffset <= MaxDisp) 1101 return true; 1102 // FIXME: Make use full range of soimm values. 1103 } 1104 return false; 1105 } 1106 1107 /// isWaterInRange - Returns true if a CPE placed after the specified 1108 /// Water (a basic block) will be in range for the specific MI. 1109 /// 1110 /// Compute how much the function will grow by inserting a CPE after Water. 1111 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1112 MachineBasicBlock* Water, CPUser &U, 1113 unsigned &Growth) { 1114 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1115 const Align CPEAlign = getCPEAlign(U.CPEMI); 1116 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1117 unsigned NextBlockOffset; 1118 Align NextBlockAlignment; 1119 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1120 if (++NextBlock == MF->end()) { 1121 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1122 } else { 1123 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1124 NextBlockAlignment = NextBlock->getAlignment(); 1125 } 1126 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1127 unsigned CPEEnd = CPEOffset + Size; 1128 1129 // The CPE may be able to hide in the alignment padding before the next 1130 // block. It may also cause more padding to be required if it is more aligned 1131 // that the next block. 1132 if (CPEEnd > NextBlockOffset) { 1133 Growth = CPEEnd - NextBlockOffset; 1134 // Compute the padding that would go at the end of the CPE to align the next 1135 // block. 1136 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1137 1138 // If the CPE is to be inserted before the instruction, that will raise 1139 // the offset of the instruction. Also account for unknown alignment padding 1140 // in blocks between CPE and the user. 1141 if (CPEOffset < UserOffset) 1142 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1143 } else 1144 // CPE fits in existing padding. 1145 Growth = 0; 1146 1147 return isOffsetInRange(UserOffset, CPEOffset, U); 1148 } 1149 1150 /// isCPEntryInRange - Returns true if the distance between specific MI and 1151 /// specific ConstPool entry instruction can fit in MI's displacement field. 1152 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1153 MachineInstr *CPEMI, unsigned MaxDisp, 1154 bool NegOk, bool DoDump) { 1155 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1156 1157 if (DoDump) { 1158 LLVM_DEBUG({ 1159 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1160 unsigned Block = MI->getParent()->getNumber(); 1161 const BasicBlockInfo &BBI = BBInfo[Block]; 1162 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1163 << " max delta=" << MaxDisp 1164 << format(" insn address=%#x", UserOffset) << " in " 1165 << printMBBReference(*MI->getParent()) << ": " 1166 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1167 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1168 int(CPEOffset - UserOffset)); 1169 }); 1170 } 1171 1172 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1173 } 1174 1175 #ifndef NDEBUG 1176 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1177 /// unconditionally branches to its only successor. 1178 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1179 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1180 return false; 1181 1182 MachineBasicBlock *Succ = *MBB->succ_begin(); 1183 MachineBasicBlock *Pred = *MBB->pred_begin(); 1184 MachineInstr *PredMI = &Pred->back(); 1185 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1186 || PredMI->getOpcode() == ARM::t2B) 1187 return PredMI->getOperand(0).getMBB() == Succ; 1188 return false; 1189 } 1190 #endif // NDEBUG 1191 1192 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1193 /// and instruction CPEMI, and decrement its refcount. If the refcount 1194 /// becomes 0 remove the entry and instruction. Returns true if we removed 1195 /// the entry, false if we didn't. 1196 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1197 MachineInstr *CPEMI) { 1198 // Find the old entry. Eliminate it if it is no longer used. 1199 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1200 assert(CPE && "Unexpected!"); 1201 if (--CPE->RefCount == 0) { 1202 removeDeadCPEMI(CPEMI); 1203 CPE->CPEMI = nullptr; 1204 --NumCPEs; 1205 return true; 1206 } 1207 return false; 1208 } 1209 1210 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1211 if (CPEMI->getOperand(1).isCPI()) 1212 return CPEMI->getOperand(1).getIndex(); 1213 1214 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1215 } 1216 1217 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1218 /// if not, see if an in-range clone of the CPE is in range, and if so, 1219 /// change the data structures so the user references the clone. Returns: 1220 /// 0 = no existing entry found 1221 /// 1 = entry found, and there were no code insertions or deletions 1222 /// 2 = entry found, and there were code insertions or deletions 1223 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1224 MachineInstr *UserMI = U.MI; 1225 MachineInstr *CPEMI = U.CPEMI; 1226 1227 // Check to see if the CPE is already in-range. 1228 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1229 true)) { 1230 LLVM_DEBUG(dbgs() << "In range\n"); 1231 return 1; 1232 } 1233 1234 // No. Look for previously created clones of the CPE that are in range. 1235 unsigned CPI = getCombinedIndex(CPEMI); 1236 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1237 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1238 // We already tried this one 1239 if (CPEs[i].CPEMI == CPEMI) 1240 continue; 1241 // Removing CPEs can leave empty entries, skip 1242 if (CPEs[i].CPEMI == nullptr) 1243 continue; 1244 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1245 U.NegOk)) { 1246 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1247 << CPEs[i].CPI << "\n"); 1248 // Point the CPUser node to the replacement 1249 U.CPEMI = CPEs[i].CPEMI; 1250 // Change the CPI in the instruction operand to refer to the clone. 1251 for (MachineOperand &MO : UserMI->operands()) 1252 if (MO.isCPI()) { 1253 MO.setIndex(CPEs[i].CPI); 1254 break; 1255 } 1256 // Adjust the refcount of the clone... 1257 CPEs[i].RefCount++; 1258 // ...and the original. If we didn't remove the old entry, none of the 1259 // addresses changed, so we don't need another pass. 1260 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1261 } 1262 } 1263 return 0; 1264 } 1265 1266 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1267 /// the specific unconditional branch instruction. 1268 static inline unsigned getUnconditionalBrDisp(int Opc) { 1269 switch (Opc) { 1270 case ARM::tB: 1271 return ((1<<10)-1)*2; 1272 case ARM::t2B: 1273 return ((1<<23)-1)*2; 1274 default: 1275 break; 1276 } 1277 1278 return ((1<<23)-1)*4; 1279 } 1280 1281 /// findAvailableWater - Look for an existing entry in the WaterList in which 1282 /// we can place the CPE referenced from U so it's within range of U's MI. 1283 /// Returns true if found, false if not. If it returns true, WaterIter 1284 /// is set to the WaterList entry. For Thumb, prefer water that will not 1285 /// introduce padding to water that will. To ensure that this pass 1286 /// terminates, the CPE location for a particular CPUser is only allowed to 1287 /// move to a lower address, so search backward from the end of the list and 1288 /// prefer the first water that is in range. 1289 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1290 water_iterator &WaterIter, 1291 bool CloserWater) { 1292 if (WaterList.empty()) 1293 return false; 1294 1295 unsigned BestGrowth = ~0u; 1296 // The nearest water without splitting the UserBB is right after it. 1297 // If the distance is still large (we have a big BB), then we need to split it 1298 // if we don't converge after certain iterations. This helps the following 1299 // situation to converge: 1300 // BB0: 1301 // Big BB 1302 // BB1: 1303 // Constant Pool 1304 // When a CP access is out of range, BB0 may be used as water. However, 1305 // inserting islands between BB0 and BB1 makes other accesses out of range. 1306 MachineBasicBlock *UserBB = U.MI->getParent(); 1307 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1308 const Align CPEAlign = getCPEAlign(U.CPEMI); 1309 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1310 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1311 return false; 1312 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1313 --IP) { 1314 MachineBasicBlock* WaterBB = *IP; 1315 // Check if water is in range and is either at a lower address than the 1316 // current "high water mark" or a new water block that was created since 1317 // the previous iteration by inserting an unconditional branch. In the 1318 // latter case, we want to allow resetting the high water mark back to 1319 // this new water since we haven't seen it before. Inserting branches 1320 // should be relatively uncommon and when it does happen, we want to be 1321 // sure to take advantage of it for all the CPEs near that block, so that 1322 // we don't insert more branches than necessary. 1323 // When CloserWater is true, we try to find the lowest address after (or 1324 // equal to) user MI's BB no matter of padding growth. 1325 unsigned Growth; 1326 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1327 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1328 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1329 Growth < BestGrowth) { 1330 // This is the least amount of required padding seen so far. 1331 BestGrowth = Growth; 1332 WaterIter = IP; 1333 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1334 << " Growth=" << Growth << '\n'); 1335 1336 if (CloserWater && WaterBB == U.MI->getParent()) 1337 return true; 1338 // Keep looking unless it is perfect and we're not looking for the lowest 1339 // possible address. 1340 if (!CloserWater && BestGrowth == 0) 1341 return true; 1342 } 1343 if (IP == B) 1344 break; 1345 } 1346 return BestGrowth != ~0u; 1347 } 1348 1349 /// createNewWater - No existing WaterList entry will work for 1350 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1351 /// block is used if in range, and the conditional branch munged so control 1352 /// flow is correct. Otherwise the block is split to create a hole with an 1353 /// unconditional branch around it. In either case NewMBB is set to a 1354 /// block following which the new island can be inserted (the WaterList 1355 /// is not adjusted). 1356 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1357 unsigned UserOffset, 1358 MachineBasicBlock *&NewMBB) { 1359 CPUser &U = CPUsers[CPUserIndex]; 1360 MachineInstr *UserMI = U.MI; 1361 MachineInstr *CPEMI = U.CPEMI; 1362 const Align CPEAlign = getCPEAlign(CPEMI); 1363 MachineBasicBlock *UserMBB = UserMI->getParent(); 1364 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1365 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1366 1367 // If the block does not end in an unconditional branch already, and if the 1368 // end of the block is within range, make new water there. (The addition 1369 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1370 // Thumb2, 2 on Thumb1. 1371 if (BBHasFallthrough(UserMBB)) { 1372 // Size of branch to insert. 1373 unsigned Delta = isThumb1 ? 2 : 4; 1374 // Compute the offset where the CPE will begin. 1375 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1376 1377 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1378 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1379 << format(", expected CPE offset %#x\n", CPEOffset)); 1380 NewMBB = &*++UserMBB->getIterator(); 1381 // Add an unconditional branch from UserMBB to fallthrough block. Record 1382 // it for branch lengthening; this new branch will not get out of range, 1383 // but if the preceding conditional branch is out of range, the targets 1384 // will be exchanged, and the altered branch may be out of range, so the 1385 // machinery has to know about it. 1386 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1387 if (!isThumb) 1388 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1389 else 1390 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1391 .addMBB(NewMBB) 1392 .add(predOps(ARMCC::AL)); 1393 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1394 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1395 MaxDisp, false, UncondBr)); 1396 BBUtils->computeBlockSize(UserMBB); 1397 BBUtils->adjustBBOffsetsAfter(UserMBB); 1398 return; 1399 } 1400 } 1401 1402 // What a big block. Find a place within the block to split it. This is a 1403 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1404 // entries are 4 bytes: if instruction I references island CPE, and 1405 // instruction I+1 references CPE', it will not work well to put CPE as far 1406 // forward as possible, since then CPE' cannot immediately follow it (that 1407 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1408 // need to create a new island. So, we make a first guess, then walk through 1409 // the instructions between the one currently being looked at and the 1410 // possible insertion point, and make sure any other instructions that 1411 // reference CPEs will be able to use the same island area; if not, we back 1412 // up the insertion point. 1413 1414 // Try to split the block so it's fully aligned. Compute the latest split 1415 // point where we can add a 4-byte branch instruction, and then align to 1416 // Align which is the largest possible alignment in the function. 1417 const Align Align = MF->getAlignment(); 1418 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1419 unsigned KnownBits = UserBBI.internalKnownBits(); 1420 unsigned UPad = UnknownPadding(Align, KnownBits); 1421 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1422 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1423 BaseInsertOffset)); 1424 1425 // The 4 in the following is for the unconditional branch we'll be inserting 1426 // (allows for long branch on Thumb1). Alignment of the island is handled 1427 // inside isOffsetInRange. 1428 BaseInsertOffset -= 4; 1429 1430 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1431 << " la=" << Log2(Align) << " kb=" << KnownBits 1432 << " up=" << UPad << '\n'); 1433 1434 // This could point off the end of the block if we've already got constant 1435 // pool entries following this block; only the last one is in the water list. 1436 // Back past any possible branches (allow for a conditional and a maximally 1437 // long unconditional). 1438 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1439 // Ensure BaseInsertOffset is larger than the offset of the instruction 1440 // following UserMI so that the loop which searches for the split point 1441 // iterates at least once. 1442 BaseInsertOffset = 1443 std::max(UserBBI.postOffset() - UPad - 8, 1444 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1445 // If the CP is referenced(ie, UserOffset) is in first four instructions 1446 // after IT, this recalculated BaseInsertOffset could be in the middle of 1447 // an IT block. If it is, change the BaseInsertOffset to just after the 1448 // IT block. This still make the CP Entry is in range becuase of the 1449 // following reasons. 1450 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1451 // U.getMaxDisp() - UPad). 1452 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1453 // bytes). 1454 // 3. All the relevant instructions support much larger Maximum 1455 // displacement. 1456 MachineBasicBlock::iterator I = UserMI; 1457 ++I; 1458 Register PredReg; 1459 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1460 I->getOpcode() != ARM::t2IT && 1461 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1462 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1463 BaseInsertOffset = 1464 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1465 assert(I != UserMBB->end() && "Fell off end of block"); 1466 } 1467 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1468 } 1469 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1470 CPEMI->getOperand(2).getImm(); 1471 MachineBasicBlock::iterator MI = UserMI; 1472 ++MI; 1473 unsigned CPUIndex = CPUserIndex+1; 1474 unsigned NumCPUsers = CPUsers.size(); 1475 MachineInstr *LastIT = nullptr; 1476 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1477 Offset < BaseInsertOffset; 1478 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1479 assert(MI != UserMBB->end() && "Fell off end of block"); 1480 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1481 CPUser &U = CPUsers[CPUIndex]; 1482 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1483 // Shift intertion point by one unit of alignment so it is within reach. 1484 BaseInsertOffset -= Align.value(); 1485 EndInsertOffset -= Align.value(); 1486 } 1487 // This is overly conservative, as we don't account for CPEMIs being 1488 // reused within the block, but it doesn't matter much. Also assume CPEs 1489 // are added in order with alignment padding. We may eventually be able 1490 // to pack the aligned CPEs better. 1491 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1492 CPUIndex++; 1493 } 1494 1495 // Remember the last IT instruction. 1496 if (MI->getOpcode() == ARM::t2IT) 1497 LastIT = &*MI; 1498 } 1499 1500 --MI; 1501 1502 // Avoid splitting an IT block. 1503 if (LastIT) { 1504 Register PredReg; 1505 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1506 if (CC != ARMCC::AL) 1507 MI = LastIT; 1508 } 1509 1510 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1511 // On Windows, this instruction pair is covered by one single 1512 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1513 // constant island is injected inbetween them, the relocation will clobber 1514 // the instruction and fail to update the MOVT instruction. 1515 // (These instructions are bundled up until right before the ConstantIslands 1516 // pass.) 1517 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1518 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1519 ARMII::MO_HI16) { 1520 --MI; 1521 assert(MI->getOpcode() == ARM::t2MOVi16 && 1522 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1523 ARMII::MO_LO16); 1524 } 1525 1526 // We really must not split an IT block. 1527 #ifndef NDEBUG 1528 Register PredReg; 1529 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1530 #endif 1531 NewMBB = splitBlockBeforeInstr(&*MI); 1532 } 1533 1534 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1535 /// is out-of-range. If so, pick up the constant pool value and move it some 1536 /// place in-range. Return true if we changed any addresses (thus must run 1537 /// another pass of branch lengthening), false otherwise. 1538 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1539 bool CloserWater) { 1540 CPUser &U = CPUsers[CPUserIndex]; 1541 MachineInstr *UserMI = U.MI; 1542 MachineInstr *CPEMI = U.CPEMI; 1543 unsigned CPI = getCombinedIndex(CPEMI); 1544 unsigned Size = CPEMI->getOperand(2).getImm(); 1545 // Compute this only once, it's expensive. 1546 unsigned UserOffset = getUserOffset(U); 1547 1548 // See if the current entry is within range, or there is a clone of it 1549 // in range. 1550 int result = findInRangeCPEntry(U, UserOffset); 1551 if (result==1) return false; 1552 else if (result==2) return true; 1553 1554 // No existing clone of this CPE is within range. 1555 // We will be generating a new clone. Get a UID for it. 1556 unsigned ID = AFI->createPICLabelUId(); 1557 1558 // Look for water where we can place this CPE. 1559 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1560 MachineBasicBlock *NewMBB; 1561 water_iterator IP; 1562 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1563 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1564 MachineBasicBlock *WaterBB = *IP; 1565 1566 // If the original WaterList entry was "new water" on this iteration, 1567 // propagate that to the new island. This is just keeping NewWaterList 1568 // updated to match the WaterList, which will be updated below. 1569 if (NewWaterList.erase(WaterBB)) 1570 NewWaterList.insert(NewIsland); 1571 1572 // The new CPE goes before the following block (NewMBB). 1573 NewMBB = &*++WaterBB->getIterator(); 1574 } else { 1575 // No water found. 1576 LLVM_DEBUG(dbgs() << "No water found\n"); 1577 createNewWater(CPUserIndex, UserOffset, NewMBB); 1578 1579 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1580 // called while handling branches so that the water will be seen on the 1581 // next iteration for constant pools, but in this context, we don't want 1582 // it. Check for this so it will be removed from the WaterList. 1583 // Also remove any entry from NewWaterList. 1584 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1585 IP = find(WaterList, WaterBB); 1586 if (IP != WaterList.end()) 1587 NewWaterList.erase(WaterBB); 1588 1589 // We are adding new water. Update NewWaterList. 1590 NewWaterList.insert(NewIsland); 1591 } 1592 // Always align the new block because CP entries can be smaller than 4 1593 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1594 // be an already aligned constant pool block. 1595 const Align Alignment = isThumb ? Align(2) : Align(4); 1596 if (NewMBB->getAlignment() < Alignment) 1597 NewMBB->setAlignment(Alignment); 1598 1599 // Remove the original WaterList entry; we want subsequent insertions in 1600 // this vicinity to go after the one we're about to insert. This 1601 // considerably reduces the number of times we have to move the same CPE 1602 // more than once and is also important to ensure the algorithm terminates. 1603 if (IP != WaterList.end()) 1604 WaterList.erase(IP); 1605 1606 // Okay, we know we can put an island before NewMBB now, do it! 1607 MF->insert(NewMBB->getIterator(), NewIsland); 1608 1609 // Update internal data structures to account for the newly inserted MBB. 1610 updateForInsertedWaterBlock(NewIsland); 1611 1612 // Now that we have an island to add the CPE to, clone the original CPE and 1613 // add it to the island. 1614 U.HighWaterMark = NewIsland; 1615 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1616 .addImm(ID) 1617 .add(CPEMI->getOperand(1)) 1618 .addImm(Size); 1619 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1620 ++NumCPEs; 1621 1622 // Decrement the old entry, and remove it if refcount becomes 0. 1623 decrementCPEReferenceCount(CPI, CPEMI); 1624 1625 // Mark the basic block as aligned as required by the const-pool entry. 1626 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1627 1628 // Increase the size of the island block to account for the new entry. 1629 BBUtils->adjustBBSize(NewIsland, Size); 1630 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1631 1632 // Finally, change the CPI in the instruction operand to be ID. 1633 for (MachineOperand &MO : UserMI->operands()) 1634 if (MO.isCPI()) { 1635 MO.setIndex(ID); 1636 break; 1637 } 1638 1639 LLVM_DEBUG( 1640 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1641 << format(" offset=%#x\n", 1642 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1643 1644 return true; 1645 } 1646 1647 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1648 /// sizes and offsets of impacted basic blocks. 1649 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1650 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1651 unsigned Size = CPEMI->getOperand(2).getImm(); 1652 CPEMI->eraseFromParent(); 1653 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1654 BBUtils->adjustBBSize(CPEBB, -Size); 1655 // All succeeding offsets have the current size value added in, fix this. 1656 if (CPEBB->empty()) { 1657 BBInfo[CPEBB->getNumber()].Size = 0; 1658 1659 // This block no longer needs to be aligned. 1660 CPEBB->setAlignment(Align(1)); 1661 } else { 1662 // Entries are sorted by descending alignment, so realign from the front. 1663 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1664 } 1665 1666 BBUtils->adjustBBOffsetsAfter(CPEBB); 1667 // An island has only one predecessor BB and one successor BB. Check if 1668 // this BB's predecessor jumps directly to this BB's successor. This 1669 // shouldn't happen currently. 1670 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1671 // FIXME: remove the empty blocks after all the work is done? 1672 } 1673 1674 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1675 /// are zero. 1676 bool ARMConstantIslands::removeUnusedCPEntries() { 1677 unsigned MadeChange = false; 1678 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1679 std::vector<CPEntry> &CPEs = CPEntries[i]; 1680 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1681 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1682 removeDeadCPEMI(CPEs[j].CPEMI); 1683 CPEs[j].CPEMI = nullptr; 1684 MadeChange = true; 1685 } 1686 } 1687 } 1688 return MadeChange; 1689 } 1690 1691 1692 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1693 /// away to fit in its displacement field. 1694 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1695 MachineInstr *MI = Br.MI; 1696 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1697 1698 // Check to see if the DestBB is already in-range. 1699 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1700 return false; 1701 1702 if (!Br.isCond) 1703 return fixupUnconditionalBr(Br); 1704 return fixupConditionalBr(Br); 1705 } 1706 1707 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1708 /// too far away to fit in its displacement field. If the LR register has been 1709 /// spilled in the epilogue, then we can use BL to implement a far jump. 1710 /// Otherwise, add an intermediate branch instruction to a branch. 1711 bool 1712 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1713 MachineInstr *MI = Br.MI; 1714 MachineBasicBlock *MBB = MI->getParent(); 1715 if (!isThumb1) 1716 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1717 1718 if (!AFI->isLRSpilled()) 1719 report_fatal_error("underestimated function size"); 1720 1721 // Use BL to implement far jump. 1722 Br.MaxDisp = (1 << 21) * 2; 1723 MI->setDesc(TII->get(ARM::tBfar)); 1724 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1725 BBInfo[MBB->getNumber()].Size += 2; 1726 BBUtils->adjustBBOffsetsAfter(MBB); 1727 ++NumUBrFixed; 1728 1729 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1730 1731 return true; 1732 } 1733 1734 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1735 /// far away to fit in its displacement field. It is converted to an inverse 1736 /// conditional branch + an unconditional branch to the destination. 1737 bool 1738 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1739 MachineInstr *MI = Br.MI; 1740 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1741 1742 // Add an unconditional branch to the destination and invert the branch 1743 // condition to jump over it: 1744 // blt L1 1745 // => 1746 // bge L2 1747 // b L1 1748 // L2: 1749 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1750 CC = ARMCC::getOppositeCondition(CC); 1751 Register CCReg = MI->getOperand(2).getReg(); 1752 1753 // If the branch is at the end of its MBB and that has a fall-through block, 1754 // direct the updated conditional branch to the fall-through block. Otherwise, 1755 // split the MBB before the next instruction. 1756 MachineBasicBlock *MBB = MI->getParent(); 1757 MachineInstr *BMI = &MBB->back(); 1758 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1759 1760 ++NumCBrFixed; 1761 if (BMI != MI) { 1762 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1763 BMI->getOpcode() == Br.UncondBr) { 1764 // Last MI in the BB is an unconditional branch. Can we simply invert the 1765 // condition and swap destinations: 1766 // beq L1 1767 // b L2 1768 // => 1769 // bne L2 1770 // b L1 1771 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1772 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1773 LLVM_DEBUG( 1774 dbgs() << " Invert Bcc condition and swap its destination with " 1775 << *BMI); 1776 BMI->getOperand(0).setMBB(DestBB); 1777 MI->getOperand(0).setMBB(NewDest); 1778 MI->getOperand(1).setImm(CC); 1779 return true; 1780 } 1781 } 1782 } 1783 1784 if (NeedSplit) { 1785 splitBlockBeforeInstr(MI); 1786 // No need for the branch to the next block. We're adding an unconditional 1787 // branch to the destination. 1788 int delta = TII->getInstSizeInBytes(MBB->back()); 1789 BBUtils->adjustBBSize(MBB, -delta); 1790 MBB->back().eraseFromParent(); 1791 1792 // The conditional successor will be swapped between the BBs after this, so 1793 // update CFG. 1794 MBB->addSuccessor(DestBB); 1795 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1796 1797 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1798 } 1799 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1800 1801 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1802 << " also invert condition and change dest. to " 1803 << printMBBReference(*NextBB) << "\n"); 1804 1805 // Insert a new conditional branch and a new unconditional branch. 1806 // Also update the ImmBranch as well as adding a new entry for the new branch. 1807 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1808 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1809 Br.MI = &MBB->back(); 1810 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1811 if (isThumb) 1812 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1813 .addMBB(DestBB) 1814 .add(predOps(ARMCC::AL)); 1815 else 1816 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1817 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1818 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1819 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1820 1821 // Remove the old conditional branch. It may or may not still be in MBB. 1822 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1823 MI->eraseFromParent(); 1824 BBUtils->adjustBBOffsetsAfter(MBB); 1825 return true; 1826 } 1827 1828 bool ARMConstantIslands::optimizeThumb2Instructions() { 1829 bool MadeChange = false; 1830 1831 // Shrink ADR and LDR from constantpool. 1832 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1833 CPUser &U = CPUsers[i]; 1834 unsigned Opcode = U.MI->getOpcode(); 1835 unsigned NewOpc = 0; 1836 unsigned Scale = 1; 1837 unsigned Bits = 0; 1838 switch (Opcode) { 1839 default: break; 1840 case ARM::t2LEApcrel: 1841 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1842 NewOpc = ARM::tLEApcrel; 1843 Bits = 8; 1844 Scale = 4; 1845 } 1846 break; 1847 case ARM::t2LDRpci: 1848 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1849 NewOpc = ARM::tLDRpci; 1850 Bits = 8; 1851 Scale = 4; 1852 } 1853 break; 1854 } 1855 1856 if (!NewOpc) 1857 continue; 1858 1859 unsigned UserOffset = getUserOffset(U); 1860 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1861 1862 // Be conservative with inline asm. 1863 if (!U.KnownAlignment) 1864 MaxOffs -= 2; 1865 1866 // FIXME: Check if offset is multiple of scale if scale is not 4. 1867 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1868 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1869 U.MI->setDesc(TII->get(NewOpc)); 1870 MachineBasicBlock *MBB = U.MI->getParent(); 1871 BBUtils->adjustBBSize(MBB, -2); 1872 BBUtils->adjustBBOffsetsAfter(MBB); 1873 ++NumT2CPShrunk; 1874 MadeChange = true; 1875 } 1876 } 1877 1878 return MadeChange; 1879 } 1880 1881 1882 bool ARMConstantIslands::optimizeThumb2Branches() { 1883 1884 auto TryShrinkBranch = [this](ImmBranch &Br) { 1885 unsigned Opcode = Br.MI->getOpcode(); 1886 unsigned NewOpc = 0; 1887 unsigned Scale = 1; 1888 unsigned Bits = 0; 1889 switch (Opcode) { 1890 default: break; 1891 case ARM::t2B: 1892 NewOpc = ARM::tB; 1893 Bits = 11; 1894 Scale = 2; 1895 break; 1896 case ARM::t2Bcc: 1897 NewOpc = ARM::tBcc; 1898 Bits = 8; 1899 Scale = 2; 1900 break; 1901 } 1902 if (NewOpc) { 1903 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1904 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1905 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1906 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1907 Br.MI->setDesc(TII->get(NewOpc)); 1908 MachineBasicBlock *MBB = Br.MI->getParent(); 1909 BBUtils->adjustBBSize(MBB, -2); 1910 BBUtils->adjustBBOffsetsAfter(MBB); 1911 ++NumT2BrShrunk; 1912 return true; 1913 } 1914 } 1915 return false; 1916 }; 1917 1918 struct ImmCompare { 1919 MachineInstr* MI = nullptr; 1920 unsigned NewOpc = 0; 1921 }; 1922 1923 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1924 MachineBasicBlock *DestBB) { 1925 ImmCmp.MI = nullptr; 1926 ImmCmp.NewOpc = 0; 1927 1928 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1929 // so this transformation is not safe. 1930 if (!Br.MI->killsRegister(ARM::CPSR)) 1931 return false; 1932 1933 Register PredReg; 1934 unsigned NewOpc = 0; 1935 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1936 if (Pred == ARMCC::EQ) 1937 NewOpc = ARM::tCBZ; 1938 else if (Pred == ARMCC::NE) 1939 NewOpc = ARM::tCBNZ; 1940 else 1941 return false; 1942 1943 // Check if the distance is within 126. Subtract starting offset by 2 1944 // because the cmp will be eliminated. 1945 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1946 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1947 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1948 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1949 return false; 1950 1951 // Search backwards to find a tCMPi8 1952 auto *TRI = STI->getRegisterInfo(); 1953 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1954 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1955 return false; 1956 1957 ImmCmp.MI = CmpMI; 1958 ImmCmp.NewOpc = NewOpc; 1959 return true; 1960 }; 1961 1962 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1963 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1964 STI->hasMinSize()) 1965 return false; 1966 1967 MachineBasicBlock *MBB = Br.MI->getParent(); 1968 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1969 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1970 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1971 return false; 1972 1973 if (!DT->dominates(DestBB, MBB)) 1974 return false; 1975 1976 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1977 // target of Br. So now we need to reverse the condition. 1978 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1979 1980 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1981 TII->get(ARM::t2LE)); 1982 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1983 MIB.add(Br.MI->getOperand(0)); 1984 Br.MI->eraseFromParent(); 1985 Br.MI = MIB; 1986 ++NumLEInserted; 1987 return true; 1988 }; 1989 1990 bool MadeChange = false; 1991 1992 // The order in which branches appear in ImmBranches is approximately their 1993 // order within the function body. By visiting later branches first, we reduce 1994 // the distance between earlier forward branches and their targets, making it 1995 // more likely that the cbn?z optimization, which can only apply to forward 1996 // branches, will succeed. 1997 for (ImmBranch &Br : reverse(ImmBranches)) { 1998 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1999 MachineBasicBlock *MBB = Br.MI->getParent(); 2000 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 2001 MBB->getFallThrough() : 2002 MBB->back().getOperand(0).getMBB(); 2003 2004 ImmCompare Cmp; 2005 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 2006 DestBB = ExitBB; 2007 MadeChange = true; 2008 } else { 2009 FindCmpForCBZ(Br, Cmp, DestBB); 2010 MadeChange |= TryShrinkBranch(Br); 2011 } 2012 2013 unsigned Opcode = Br.MI->getOpcode(); 2014 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 2015 continue; 2016 2017 Register Reg = Cmp.MI->getOperand(0).getReg(); 2018 2019 // Check for Kill flags on Reg. If they are present remove them and set kill 2020 // on the new CBZ. 2021 auto *TRI = STI->getRegisterInfo(); 2022 MachineBasicBlock::iterator KillMI = Br.MI; 2023 bool RegKilled = false; 2024 do { 2025 --KillMI; 2026 if (KillMI->killsRegister(Reg, TRI)) { 2027 KillMI->clearRegisterKills(Reg, TRI); 2028 RegKilled = true; 2029 break; 2030 } 2031 } while (KillMI != Cmp.MI); 2032 2033 // Create the new CBZ/CBNZ 2034 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 2035 MachineInstr *NewBR = 2036 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 2037 .addReg(Reg, getKillRegState(RegKilled) | 2038 getRegState(Cmp.MI->getOperand(0))) 2039 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 2040 2041 Cmp.MI->eraseFromParent(); 2042 2043 if (Br.MI->getOpcode() == ARM::tBcc) { 2044 Br.MI->eraseFromParent(); 2045 Br.MI = NewBR; 2046 BBUtils->adjustBBSize(MBB, -2); 2047 } else if (MBB->back().getOpcode() != ARM::t2LE) { 2048 // An LE has been generated, but it's not the terminator - that is an 2049 // unconditional branch. However, the logic has now been reversed with the 2050 // CBN?Z being the conditional branch and the LE being the unconditional 2051 // branch. So this means we can remove the redundant unconditional branch 2052 // at the end of the block. 2053 MachineInstr *LastMI = &MBB->back(); 2054 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 2055 LastMI->eraseFromParent(); 2056 } 2057 BBUtils->adjustBBOffsetsAfter(MBB); 2058 ++NumCBZ; 2059 MadeChange = true; 2060 } 2061 2062 return MadeChange; 2063 } 2064 2065 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 2066 unsigned BaseReg) { 2067 if (I.getOpcode() != ARM::t2ADDrs) 2068 return false; 2069 2070 if (I.getOperand(0).getReg() != EntryReg) 2071 return false; 2072 2073 if (I.getOperand(1).getReg() != BaseReg) 2074 return false; 2075 2076 // FIXME: what about CC and IdxReg? 2077 return true; 2078 } 2079 2080 /// While trying to form a TBB/TBH instruction, we may (if the table 2081 /// doesn't immediately follow the BR_JT) need access to the start of the 2082 /// jump-table. We know one instruction that produces such a register; this 2083 /// function works out whether that definition can be preserved to the BR_JT, 2084 /// possibly by removing an intervening addition (which is usually needed to 2085 /// calculate the actual entry to jump to). 2086 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2087 MachineInstr *LEAMI, 2088 unsigned &DeadSize, 2089 bool &CanDeleteLEA, 2090 bool &BaseRegKill) { 2091 if (JumpMI->getParent() != LEAMI->getParent()) 2092 return false; 2093 2094 // Now we hope that we have at least these instructions in the basic block: 2095 // BaseReg = t2LEA ... 2096 // [...] 2097 // EntryReg = t2ADDrs BaseReg, ... 2098 // [...] 2099 // t2BR_JT EntryReg 2100 // 2101 // We have to be very conservative about what we recognise here though. The 2102 // main perturbing factors to watch out for are: 2103 // + Spills at any point in the chain: not direct problems but we would 2104 // expect a blocking Def of the spilled register so in practice what we 2105 // can do is limited. 2106 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2107 // of BaseReg, but only if the t2ADDrs can be removed. 2108 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2109 // the wild, but we should be careful. 2110 Register EntryReg = JumpMI->getOperand(0).getReg(); 2111 Register BaseReg = LEAMI->getOperand(0).getReg(); 2112 2113 CanDeleteLEA = true; 2114 BaseRegKill = false; 2115 MachineInstr *RemovableAdd = nullptr; 2116 MachineBasicBlock::iterator I(LEAMI); 2117 for (++I; &*I != JumpMI; ++I) { 2118 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2119 RemovableAdd = &*I; 2120 break; 2121 } 2122 2123 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2124 const MachineOperand &MO = I->getOperand(K); 2125 if (!MO.isReg() || !MO.getReg()) 2126 continue; 2127 if (MO.isDef() && MO.getReg() == BaseReg) 2128 return false; 2129 if (MO.isUse() && MO.getReg() == BaseReg) { 2130 BaseRegKill = BaseRegKill || MO.isKill(); 2131 CanDeleteLEA = false; 2132 } 2133 } 2134 } 2135 2136 if (!RemovableAdd) 2137 return true; 2138 2139 // Check the add really is removable, and that nothing else in the block 2140 // clobbers BaseReg. 2141 for (++I; &*I != JumpMI; ++I) { 2142 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2143 const MachineOperand &MO = I->getOperand(K); 2144 if (!MO.isReg() || !MO.getReg()) 2145 continue; 2146 if (MO.isDef() && MO.getReg() == BaseReg) 2147 return false; 2148 if (MO.isUse() && MO.getReg() == EntryReg) 2149 RemovableAdd = nullptr; 2150 } 2151 } 2152 2153 if (RemovableAdd) { 2154 RemovableAdd->eraseFromParent(); 2155 DeadSize += isThumb2 ? 4 : 2; 2156 } else if (BaseReg == EntryReg) { 2157 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2158 // preserve it. 2159 return false; 2160 } 2161 2162 // We reached the end of the block without seeing another definition of 2163 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2164 // used in the TBB/TBH if necessary. 2165 return true; 2166 } 2167 2168 /// Returns whether CPEMI is the first instruction in the block 2169 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2170 /// we can switch the first register to PC and usually remove the address 2171 /// calculation that preceded it. 2172 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2173 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2174 MachineFunction *MF = MBB->getParent(); 2175 ++MBB; 2176 2177 return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI; 2178 } 2179 2180 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2181 MachineInstr *JumpMI, 2182 unsigned &DeadSize) { 2183 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2184 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2185 // and is not clobbered / used. 2186 MachineInstr *RemovableAdd = nullptr; 2187 Register EntryReg = JumpMI->getOperand(0).getReg(); 2188 2189 // Find the last ADD to set EntryReg 2190 MachineBasicBlock::iterator I(LEAMI); 2191 for (++I; &*I != JumpMI; ++I) { 2192 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2193 RemovableAdd = &*I; 2194 } 2195 2196 if (!RemovableAdd) 2197 return; 2198 2199 // Ensure EntryReg is not clobbered or used. 2200 MachineBasicBlock::iterator J(RemovableAdd); 2201 for (++J; &*J != JumpMI; ++J) { 2202 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2203 const MachineOperand &MO = J->getOperand(K); 2204 if (!MO.isReg() || !MO.getReg()) 2205 continue; 2206 if (MO.isDef() && MO.getReg() == EntryReg) 2207 return; 2208 if (MO.isUse() && MO.getReg() == EntryReg) 2209 return; 2210 } 2211 } 2212 2213 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2214 RemovableAdd->eraseFromParent(); 2215 DeadSize += 4; 2216 } 2217 2218 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2219 /// jumptables when it's possible. 2220 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2221 bool MadeChange = false; 2222 2223 // FIXME: After the tables are shrunk, can we get rid some of the 2224 // constantpool tables? 2225 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2226 if (!MJTI) return false; 2227 2228 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2229 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2230 MachineInstr *MI = T2JumpTables[i]; 2231 const MCInstrDesc &MCID = MI->getDesc(); 2232 unsigned NumOps = MCID.getNumOperands(); 2233 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2234 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2235 unsigned JTI = JTOP.getIndex(); 2236 assert(JTI < JT.size()); 2237 2238 bool ByteOk = true; 2239 bool HalfWordOk = true; 2240 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2241 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2242 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2243 for (MachineBasicBlock *MBB : JTBBs) { 2244 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2245 // Negative offset is not ok. FIXME: We should change BB layout to make 2246 // sure all the branches are forward. 2247 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2248 ByteOk = false; 2249 unsigned TBHLimit = ((1<<16)-1)*2; 2250 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2251 HalfWordOk = false; 2252 if (!ByteOk && !HalfWordOk) 2253 break; 2254 } 2255 2256 if (!ByteOk && !HalfWordOk) 2257 continue; 2258 2259 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2260 MachineBasicBlock *MBB = MI->getParent(); 2261 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2262 continue; 2263 2264 unsigned DeadSize = 0; 2265 bool CanDeleteLEA = false; 2266 bool BaseRegKill = false; 2267 2268 unsigned IdxReg = ~0U; 2269 bool IdxRegKill = true; 2270 if (isThumb2) { 2271 IdxReg = MI->getOperand(1).getReg(); 2272 IdxRegKill = MI->getOperand(1).isKill(); 2273 2274 bool PreservedBaseReg = 2275 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2276 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2277 continue; 2278 } else { 2279 // We're in thumb-1 mode, so we must have something like: 2280 // %idx = tLSLri %idx, 2 2281 // %base = tLEApcrelJT 2282 // %t = tLDRr %base, %idx 2283 Register BaseReg = User.MI->getOperand(0).getReg(); 2284 2285 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2286 continue; 2287 MachineInstr *Shift = User.MI->getPrevNode(); 2288 if (Shift->getOpcode() != ARM::tLSLri || 2289 Shift->getOperand(3).getImm() != 2 || 2290 !Shift->getOperand(2).isKill()) 2291 continue; 2292 IdxReg = Shift->getOperand(2).getReg(); 2293 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2294 2295 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2296 // the range is checked later, but the LEA might still clobber it and not 2297 // actually get removed. 2298 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2299 continue; 2300 2301 MachineInstr *Load = User.MI->getNextNode(); 2302 if (Load->getOpcode() != ARM::tLDRr) 2303 continue; 2304 if (Load->getOperand(1).getReg() != BaseReg || 2305 Load->getOperand(2).getReg() != ShiftedIdxReg || 2306 !Load->getOperand(2).isKill()) 2307 continue; 2308 2309 // If we're in PIC mode, there should be another ADD following. 2310 auto *TRI = STI->getRegisterInfo(); 2311 2312 // %base cannot be redefined after the load as it will appear before 2313 // TBB/TBH like: 2314 // %base = 2315 // %base = 2316 // tBB %base, %idx 2317 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2318 continue; 2319 2320 if (isPositionIndependentOrROPI) { 2321 MachineInstr *Add = Load->getNextNode(); 2322 if (Add->getOpcode() != ARM::tADDrr || 2323 Add->getOperand(2).getReg() != BaseReg || 2324 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2325 !Add->getOperand(3).isKill()) 2326 continue; 2327 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2328 continue; 2329 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2330 // IdxReg gets redefined in the middle of the sequence. 2331 continue; 2332 Add->eraseFromParent(); 2333 DeadSize += 2; 2334 } else { 2335 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2336 continue; 2337 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2338 // IdxReg gets redefined in the middle of the sequence. 2339 continue; 2340 } 2341 2342 // Now safe to delete the load and lsl. The LEA will be removed later. 2343 CanDeleteLEA = true; 2344 Shift->eraseFromParent(); 2345 Load->eraseFromParent(); 2346 DeadSize += 4; 2347 } 2348 2349 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2350 MachineInstr *CPEMI = User.CPEMI; 2351 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2352 if (!isThumb2) 2353 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2354 2355 MachineBasicBlock::iterator MI_JT = MI; 2356 MachineInstr *NewJTMI = 2357 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2358 .addReg(User.MI->getOperand(0).getReg(), 2359 getKillRegState(BaseRegKill)) 2360 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2361 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2362 .addImm(CPEMI->getOperand(0).getImm()); 2363 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2364 2365 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2366 CPEMI->setDesc(TII->get(JTOpc)); 2367 2368 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2369 NewJTMI->getOperand(0).setReg(ARM::PC); 2370 NewJTMI->getOperand(0).setIsKill(false); 2371 2372 if (CanDeleteLEA) { 2373 if (isThumb2) 2374 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2375 2376 User.MI->eraseFromParent(); 2377 DeadSize += isThumb2 ? 4 : 2; 2378 2379 // The LEA was eliminated, the TBB instruction becomes the only new user 2380 // of the jump table. 2381 User.MI = NewJTMI; 2382 User.MaxDisp = 4; 2383 User.NegOk = false; 2384 User.IsSoImm = false; 2385 User.KnownAlignment = false; 2386 } else { 2387 // The LEA couldn't be eliminated, so we must add another CPUser to 2388 // record the TBB or TBH use. 2389 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2390 auto &CPEs = CPEntries[CPEntryIdx]; 2391 auto Entry = 2392 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2393 ++Entry->RefCount; 2394 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2395 } 2396 } 2397 2398 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2399 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2400 MI->eraseFromParent(); 2401 2402 int Delta = OrigSize - NewSize + DeadSize; 2403 BBInfo[MBB->getNumber()].Size -= Delta; 2404 BBUtils->adjustBBOffsetsAfter(MBB); 2405 2406 ++NumTBs; 2407 MadeChange = true; 2408 } 2409 2410 return MadeChange; 2411 } 2412 2413 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2414 /// jump tables always branch forwards, since that's what tbb and tbh need. 2415 bool ARMConstantIslands::reorderThumb2JumpTables() { 2416 bool MadeChange = false; 2417 2418 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2419 if (!MJTI) return false; 2420 2421 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2422 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2423 MachineInstr *MI = T2JumpTables[i]; 2424 const MCInstrDesc &MCID = MI->getDesc(); 2425 unsigned NumOps = MCID.getNumOperands(); 2426 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2427 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2428 unsigned JTI = JTOP.getIndex(); 2429 assert(JTI < JT.size()); 2430 2431 // We prefer if target blocks for the jump table come after the jump 2432 // instruction so we can use TB[BH]. Loop through the target blocks 2433 // and try to adjust them such that that's true. 2434 int JTNumber = MI->getParent()->getNumber(); 2435 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2436 for (MachineBasicBlock *MBB : JTBBs) { 2437 int DTNumber = MBB->getNumber(); 2438 2439 if (DTNumber < JTNumber) { 2440 // The destination precedes the switch. Try to move the block forward 2441 // so we have a positive offset. 2442 MachineBasicBlock *NewBB = 2443 adjustJTTargetBlockForward(JTI, MBB, MI->getParent()); 2444 if (NewBB) 2445 MJTI->ReplaceMBBInJumpTable(JTI, MBB, NewBB); 2446 MadeChange = true; 2447 } 2448 } 2449 } 2450 2451 return MadeChange; 2452 } 2453 2454 void ARMConstantIslands::fixupBTI(unsigned JTI, MachineBasicBlock &OldBB, 2455 MachineBasicBlock &NewBB) { 2456 assert(isThumb2 && "BTI in Thumb1?"); 2457 2458 // Insert a BTI instruction into NewBB 2459 BuildMI(NewBB, NewBB.begin(), DebugLoc(), TII->get(ARM::t2BTI)); 2460 2461 // Update jump table reference counts. 2462 const MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); 2463 const MachineJumpTableEntry &JTE = MJTI.getJumpTables()[JTI]; 2464 for (const MachineBasicBlock *MBB : JTE.MBBs) { 2465 if (MBB != &OldBB) 2466 continue; 2467 --BlockJumpTableRefCount[MBB]; 2468 ++BlockJumpTableRefCount[&NewBB]; 2469 } 2470 2471 // If the old basic block reference count dropped to zero, remove 2472 // the BTI instruction at its beginning. 2473 if (BlockJumpTableRefCount[&OldBB] > 0) 2474 return; 2475 2476 // Skip meta instructions 2477 auto BTIPos = llvm::find_if_not(OldBB.instrs(), [](const MachineInstr &MI) { 2478 return MI.isMetaInstruction(); 2479 }); 2480 assert(BTIPos->getOpcode() == ARM::t2BTI && 2481 "BasicBlock is mentioned in a jump table but does start with BTI"); 2482 if (BTIPos->getOpcode() == ARM::t2BTI) 2483 BTIPos->eraseFromParent(); 2484 } 2485 2486 MachineBasicBlock *ARMConstantIslands::adjustJTTargetBlockForward( 2487 unsigned JTI, MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2488 // If the destination block is terminated by an unconditional branch, 2489 // try to move it; otherwise, create a new block following the jump 2490 // table that branches back to the actual target. This is a very simple 2491 // heuristic. FIXME: We can definitely improve it. 2492 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2493 SmallVector<MachineOperand, 4> Cond; 2494 SmallVector<MachineOperand, 4> CondPrior; 2495 MachineFunction::iterator BBi = BB->getIterator(); 2496 MachineFunction::iterator OldPrior = std::prev(BBi); 2497 MachineFunction::iterator OldNext = std::next(BBi); 2498 2499 // If the block terminator isn't analyzable, don't try to move the block 2500 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2501 2502 // If the block ends in an unconditional branch, move it. The prior block 2503 // has to have an analyzable terminator for us to move this one. Be paranoid 2504 // and make sure we're not trying to move the entry block of the function. 2505 if (!B && Cond.empty() && BB != &MF->front() && 2506 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2507 BB->moveAfter(JTBB); 2508 OldPrior->updateTerminator(BB); 2509 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr); 2510 // Update numbering to account for the block being moved. 2511 MF->RenumberBlocks(); 2512 ++NumJTMoved; 2513 return nullptr; 2514 } 2515 2516 // Create a new MBB for the code after the jump BB. 2517 MachineBasicBlock *NewBB = 2518 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2519 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2520 MF->insert(MBBI, NewBB); 2521 2522 // Copy live-in information to new block. 2523 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2524 NewBB->addLiveIn(RegMaskPair); 2525 2526 // Add an unconditional branch from NewBB to BB. 2527 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2528 // correspond directly to anything in the source. 2529 if (isThumb2) 2530 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2531 .addMBB(BB) 2532 .add(predOps(ARMCC::AL)); 2533 else 2534 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2535 .addMBB(BB) 2536 .add(predOps(ARMCC::AL)); 2537 2538 // Update internal data structures to account for the newly inserted MBB. 2539 MF->RenumberBlocks(NewBB); 2540 2541 // Update the CFG. 2542 NewBB->addSuccessor(BB); 2543 JTBB->replaceSuccessor(BB, NewBB); 2544 2545 if (MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement()) 2546 fixupBTI(JTI, *BB, *NewBB); 2547 2548 ++NumJTInserted; 2549 return NewBB; 2550 } 2551 2552 /// createARMConstantIslandPass - returns an instance of the constpool 2553 /// island pass. 2554 FunctionPass *llvm::createARMConstantIslandPass() { 2555 return new ARMConstantIslands(); 2556 } 2557 2558 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2559 false, false) 2560