1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "arm-cp-islands" 61 62 #define ARM_CP_ISLANDS_OPT_NAME \ 63 "ARM constant island placement and branch shortening pass" 64 STATISTIC(NumCPEs, "Number of constpool entries"); 65 STATISTIC(NumSplit, "Number of uncond branches inserted"); 66 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 67 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 68 STATISTIC(NumTBs, "Number of table branches generated"); 69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 71 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 72 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 75 76 static cl::opt<bool> 77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 78 cl::desc("Adjust basic block layout to better use TB[BH]")); 79 80 static cl::opt<unsigned> 81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 82 cl::desc("The max number of iteration for converge")); 83 84 static cl::opt<bool> SynthesizeThumb1TBB( 85 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 87 "equivalent to the TBB/TBH instructions")); 88 89 namespace { 90 91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 92 /// requires constant pool entries to be scattered among the instructions 93 /// inside a function. To do this, it completely ignores the normal LLVM 94 /// constant pool; instead, it places constants wherever it feels like with 95 /// special instructions. 96 /// 97 /// The terminology used in this pass includes: 98 /// Islands - Clumps of constants placed in the function. 99 /// Water - Potential places where an island could be formed. 100 /// CPE - A constant pool entry that has been placed somewhere, which 101 /// tracks a list of users. 102 class ARMConstantIslands : public MachineFunctionPass { 103 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 104 105 /// WaterList - A sorted list of basic blocks where islands could be placed 106 /// (i.e. blocks that don't fall through to the following block, due 107 /// to a return, unreachable, or unconditional branch). 108 std::vector<MachineBasicBlock*> WaterList; 109 110 /// NewWaterList - The subset of WaterList that was created since the 111 /// previous iteration by inserting unconditional branches. 112 SmallSet<MachineBasicBlock*, 4> NewWaterList; 113 114 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 115 116 /// CPUser - One user of a constant pool, keeping the machine instruction 117 /// pointer, the constant pool being referenced, and the max displacement 118 /// allowed from the instruction to the CP. The HighWaterMark records the 119 /// highest basic block where a new CPEntry can be placed. To ensure this 120 /// pass terminates, the CP entries are initially placed at the end of the 121 /// function and then move monotonically to lower addresses. The 122 /// exception to this rule is when the current CP entry for a particular 123 /// CPUser is out of range, but there is another CP entry for the same 124 /// constant value in range. We want to use the existing in-range CP 125 /// entry, but if it later moves out of range, the search for new water 126 /// should resume where it left off. The HighWaterMark is used to record 127 /// that point. 128 struct CPUser { 129 MachineInstr *MI; 130 MachineInstr *CPEMI; 131 MachineBasicBlock *HighWaterMark; 132 unsigned MaxDisp; 133 bool NegOk; 134 bool IsSoImm; 135 bool KnownAlignment = false; 136 137 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 138 bool neg, bool soimm) 139 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 140 HighWaterMark = CPEMI->getParent(); 141 } 142 143 /// getMaxDisp - Returns the maximum displacement supported by MI. 144 /// Correct for unknown alignment. 145 /// Conservatively subtract 2 bytes to handle weird alignment effects. 146 unsigned getMaxDisp() const { 147 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 148 } 149 }; 150 151 /// CPUsers - Keep track of all of the machine instructions that use various 152 /// constant pools and their max displacement. 153 std::vector<CPUser> CPUsers; 154 155 /// CPEntry - One per constant pool entry, keeping the machine instruction 156 /// pointer, the constpool index, and the number of CPUser's which 157 /// reference this entry. 158 struct CPEntry { 159 MachineInstr *CPEMI; 160 unsigned CPI; 161 unsigned RefCount; 162 163 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 164 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 165 }; 166 167 /// CPEntries - Keep track of all of the constant pool entry machine 168 /// instructions. For each original constpool index (i.e. those that existed 169 /// upon entry to this pass), it keeps a vector of entries. Original 170 /// elements are cloned as we go along; the clones are put in the vector of 171 /// the original element, but have distinct CPIs. 172 /// 173 /// The first half of CPEntries contains generic constants, the second half 174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 175 /// which vector it will be in here. 176 std::vector<std::vector<CPEntry>> CPEntries; 177 178 /// Maps a JT index to the offset in CPEntries containing copies of that 179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 180 DenseMap<int, int> JumpTableEntryIndices; 181 182 /// Maps a JT index to the LEA that actually uses the index to calculate its 183 /// base address. 184 DenseMap<int, int> JumpTableUserIndices; 185 186 /// ImmBranch - One per immediate branch, keeping the machine instruction 187 /// pointer, conditional or unconditional, the max displacement, 188 /// and (if isCond is true) the corresponding unconditional branch 189 /// opcode. 190 struct ImmBranch { 191 MachineInstr *MI; 192 unsigned MaxDisp : 31; 193 bool isCond : 1; 194 unsigned UncondBr; 195 196 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 197 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 198 }; 199 200 /// ImmBranches - Keep track of all the immediate branch instructions. 201 std::vector<ImmBranch> ImmBranches; 202 203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 204 SmallVector<MachineInstr*, 4> PushPopMIs; 205 206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 207 SmallVector<MachineInstr*, 4> T2JumpTables; 208 209 MachineFunction *MF; 210 MachineConstantPool *MCP; 211 const ARMBaseInstrInfo *TII; 212 const ARMSubtarget *STI; 213 ARMFunctionInfo *AFI; 214 MachineDominatorTree *DT = nullptr; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 void getAnalysisUsage(AnalysisUsage &AU) const override { 228 AU.addRequired<MachineDominatorTree>(); 229 MachineFunctionPass::getAnalysisUsage(AU); 230 } 231 232 MachineFunctionProperties getRequiredProperties() const override { 233 return MachineFunctionProperties().set( 234 MachineFunctionProperties::Property::NoVRegs); 235 } 236 237 StringRef getPassName() const override { 238 return ARM_CP_ISLANDS_OPT_NAME; 239 } 240 241 private: 242 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 243 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 244 bool BBHasFallthrough(MachineBasicBlock *MBB); 245 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 246 Align getCPEAlign(const MachineInstr *CPEMI); 247 void scanFunctionJumpTables(); 248 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 249 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 250 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 251 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 252 unsigned getCombinedIndex(const MachineInstr *CPEMI); 253 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 254 bool findAvailableWater(CPUser&U, unsigned UserOffset, 255 water_iterator &WaterIter, bool CloserWater); 256 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 257 MachineBasicBlock *&NewMBB); 258 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 259 void removeDeadCPEMI(MachineInstr *CPEMI); 260 bool removeUnusedCPEntries(); 261 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 262 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 263 bool DoDump = false); 264 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 265 CPUser &U, unsigned &Growth); 266 bool fixupImmediateBr(ImmBranch &Br); 267 bool fixupConditionalBr(ImmBranch &Br); 268 bool fixupUnconditionalBr(ImmBranch &Br); 269 bool optimizeThumb2Instructions(); 270 bool optimizeThumb2Branches(); 271 bool reorderThumb2JumpTables(); 272 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 273 unsigned &DeadSize, bool &CanDeleteLEA, 274 bool &BaseRegKill); 275 bool optimizeThumb2JumpTables(); 276 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 277 MachineBasicBlock *JTBB); 278 279 unsigned getUserOffset(CPUser&) const; 280 void dumpBBs(); 281 void verify(); 282 283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 284 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 286 const CPUser &U) { 287 return isOffsetInRange(UserOffset, TrialOffset, 288 U.getMaxDisp(), U.NegOk, U.IsSoImm); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char ARMConstantIslands::ID = 0; 295 296 /// verify - check BBOffsets, BBSizes, alignment of islands 297 void ARMConstantIslands::verify() { 298 #ifndef NDEBUG 299 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 300 assert(is_sorted(*MF, [&BBInfo](const MachineBasicBlock &LHS, 301 const MachineBasicBlock &RHS) { 302 return BBInfo[LHS.getNumber()].postOffset() < 303 BBInfo[RHS.getNumber()].postOffset(); 304 })); 305 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 306 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 307 CPUser &U = CPUsers[i]; 308 unsigned UserOffset = getUserOffset(U); 309 // Verify offset using the real max displacement without the safety 310 // adjustment. 311 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 312 /* DoDump = */ true)) { 313 LLVM_DEBUG(dbgs() << "OK\n"); 314 continue; 315 } 316 LLVM_DEBUG(dbgs() << "Out of range.\n"); 317 dumpBBs(); 318 LLVM_DEBUG(MF->dump()); 319 llvm_unreachable("Constant pool entry out of range!"); 320 } 321 #endif 322 } 323 324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 325 /// print block size and offset information - debugging 326 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 327 LLVM_DEBUG({ 328 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 329 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 330 const BasicBlockInfo &BBI = BBInfo[J]; 331 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 332 << " kb=" << unsigned(BBI.KnownBits) 333 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 334 << format(" size=%#x\n", BBInfo[J].Size); 335 } 336 }); 337 } 338 #endif 339 340 // Align blocks where the previous block does not fall through. This may add 341 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a 342 // measure of how much to align, and only runs at CodeGenOpt::Aggressive. 343 static bool AlignBlocks(MachineFunction *MF) { 344 if (MF->getTarget().getOptLevel() != CodeGenOpt::Aggressive || 345 MF->getFunction().hasOptSize()) 346 return false; 347 348 auto *TLI = MF->getSubtarget().getTargetLowering(); 349 const Align Alignment = TLI->getPrefLoopAlignment(); 350 if (Alignment < 4) 351 return false; 352 353 bool Changed = false; 354 bool PrevCanFallthough = true; 355 for (auto &MBB : *MF) { 356 if (!PrevCanFallthough) { 357 Changed = true; 358 MBB.setAlignment(Alignment); 359 } 360 PrevCanFallthough = MBB.canFallThrough(); 361 } 362 363 return Changed; 364 } 365 366 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 367 MF = &mf; 368 MCP = mf.getConstantPool(); 369 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 370 371 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 372 << MCP->getConstants().size() << " CP entries, aligned to " 373 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 374 375 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 376 TII = STI->getInstrInfo(); 377 isPositionIndependentOrROPI = 378 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 379 AFI = MF->getInfo<ARMFunctionInfo>(); 380 DT = &getAnalysis<MachineDominatorTree>(); 381 382 isThumb = AFI->isThumbFunction(); 383 isThumb1 = AFI->isThumb1OnlyFunction(); 384 isThumb2 = AFI->isThumb2Function(); 385 386 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 387 // TBB generation code in this constant island pass has not been adapted to 388 // deal with speculation barriers. 389 if (STI->hardenSlsRetBr()) 390 GenerateTBB = false; 391 392 // Renumber all of the machine basic blocks in the function, guaranteeing that 393 // the numbers agree with the position of the block in the function. 394 MF->RenumberBlocks(); 395 396 // Try to reorder and otherwise adjust the block layout to make good use 397 // of the TB[BH] instructions. 398 bool MadeChange = false; 399 if (GenerateTBB && AdjustJumpTableBlocks) { 400 scanFunctionJumpTables(); 401 MadeChange |= reorderThumb2JumpTables(); 402 // Data is out of date, so clear it. It'll be re-computed later. 403 T2JumpTables.clear(); 404 // Blocks may have shifted around. Keep the numbering up to date. 405 MF->RenumberBlocks(); 406 } 407 408 // Align any non-fallthrough blocks 409 MadeChange |= AlignBlocks(MF); 410 411 // Perform the initial placement of the constant pool entries. To start with, 412 // we put them all at the end of the function. 413 std::vector<MachineInstr*> CPEMIs; 414 if (!MCP->isEmpty()) 415 doInitialConstPlacement(CPEMIs); 416 417 if (MF->getJumpTableInfo()) 418 doInitialJumpTablePlacement(CPEMIs); 419 420 /// The next UID to take is the first unused one. 421 AFI->initPICLabelUId(CPEMIs.size()); 422 423 // Do the initial scan of the function, building up information about the 424 // sizes of each block, the location of all the water, and finding all of the 425 // constant pool users. 426 initializeFunctionInfo(CPEMIs); 427 CPEMIs.clear(); 428 LLVM_DEBUG(dumpBBs()); 429 430 // Functions with jump tables need an alignment of 4 because they use the ADR 431 // instruction, which aligns the PC to 4 bytes before adding an offset. 432 if (!T2JumpTables.empty()) 433 MF->ensureAlignment(Align(4)); 434 435 /// Remove dead constant pool entries. 436 MadeChange |= removeUnusedCPEntries(); 437 438 // Iteratively place constant pool entries and fix up branches until there 439 // is no change. 440 unsigned NoCPIters = 0, NoBRIters = 0; 441 while (true) { 442 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 443 bool CPChange = false; 444 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 445 // For most inputs, it converges in no more than 5 iterations. 446 // If it doesn't end in 10, the input may have huge BB or many CPEs. 447 // In this case, we will try different heuristics. 448 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 449 if (CPChange && ++NoCPIters > CPMaxIteration) 450 report_fatal_error("Constant Island pass failed to converge!"); 451 LLVM_DEBUG(dumpBBs()); 452 453 // Clear NewWaterList now. If we split a block for branches, it should 454 // appear as "new water" for the next iteration of constant pool placement. 455 NewWaterList.clear(); 456 457 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 458 bool BRChange = false; 459 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 460 BRChange |= fixupImmediateBr(ImmBranches[i]); 461 if (BRChange && ++NoBRIters > 30) 462 report_fatal_error("Branch Fix Up pass failed to converge!"); 463 LLVM_DEBUG(dumpBBs()); 464 465 if (!CPChange && !BRChange) 466 break; 467 MadeChange = true; 468 } 469 470 // Shrink 32-bit Thumb2 load and store instructions. 471 if (isThumb2 && !STI->prefers32BitThumb()) 472 MadeChange |= optimizeThumb2Instructions(); 473 474 // Shrink 32-bit branch instructions. 475 if (isThumb && STI->hasV8MBaselineOps()) 476 MadeChange |= optimizeThumb2Branches(); 477 478 // Optimize jump tables using TBB / TBH. 479 if (GenerateTBB && !STI->genExecuteOnly()) 480 MadeChange |= optimizeThumb2JumpTables(); 481 482 // After a while, this might be made debug-only, but it is not expensive. 483 verify(); 484 485 // Save the mapping between original and cloned constpool entries. 486 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 487 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 488 const CPEntry & CPE = CPEntries[i][j]; 489 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 490 AFI->recordCPEClone(i, CPE.CPI); 491 } 492 } 493 494 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 495 496 BBUtils->clear(); 497 WaterList.clear(); 498 CPUsers.clear(); 499 CPEntries.clear(); 500 JumpTableEntryIndices.clear(); 501 JumpTableUserIndices.clear(); 502 ImmBranches.clear(); 503 PushPopMIs.clear(); 504 T2JumpTables.clear(); 505 506 return MadeChange; 507 } 508 509 /// Perform the initial placement of the regular constant pool entries. 510 /// To start with, we put them all at the end of the function. 511 void 512 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 513 // Create the basic block to hold the CPE's. 514 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 515 MF->push_back(BB); 516 517 // MachineConstantPool measures alignment in bytes. 518 const Align MaxAlign = MCP->getConstantPoolAlign(); 519 const unsigned MaxLogAlign = Log2(MaxAlign); 520 521 // Mark the basic block as required by the const-pool. 522 BB->setAlignment(MaxAlign); 523 524 // The function needs to be as aligned as the basic blocks. The linker may 525 // move functions around based on their alignment. 526 // Special case: halfword literals still need word alignment on the function. 527 Align FuncAlign = MaxAlign; 528 if (MaxAlign == 2) 529 FuncAlign = Align(4); 530 MF->ensureAlignment(FuncAlign); 531 532 // Order the entries in BB by descending alignment. That ensures correct 533 // alignment of all entries as long as BB is sufficiently aligned. Keep 534 // track of the insertion point for each alignment. We are going to bucket 535 // sort the entries as they are created. 536 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 537 BB->end()); 538 539 // Add all of the constants from the constant pool to the end block, use an 540 // identity mapping of CPI's to CPE's. 541 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 542 543 const DataLayout &TD = MF->getDataLayout(); 544 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 545 unsigned Size = CPs[i].getSizeInBytes(TD); 546 Align Alignment = CPs[i].getAlign(); 547 // Verify that all constant pool entries are a multiple of their alignment. 548 // If not, we would have to pad them out so that instructions stay aligned. 549 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 550 551 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 552 unsigned LogAlign = Log2(Alignment); 553 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 554 MachineInstr *CPEMI = 555 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 556 .addImm(i).addConstantPoolIndex(i).addImm(Size); 557 CPEMIs.push_back(CPEMI); 558 559 // Ensure that future entries with higher alignment get inserted before 560 // CPEMI. This is bucket sort with iterators. 561 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 562 if (InsPoint[a] == InsAt) 563 InsPoint[a] = CPEMI; 564 565 // Add a new CPEntry, but no corresponding CPUser yet. 566 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 567 ++NumCPEs; 568 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 569 << Size << ", align = " << Alignment.value() << '\n'); 570 } 571 LLVM_DEBUG(BB->dump()); 572 } 573 574 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 575 /// instructions can be made more efficient if the jump table immediately 576 /// follows the instruction, it's best to place them immediately next to their 577 /// jumps to begin with. In almost all cases they'll never be moved from that 578 /// position. 579 void ARMConstantIslands::doInitialJumpTablePlacement( 580 std::vector<MachineInstr *> &CPEMIs) { 581 unsigned i = CPEntries.size(); 582 auto MJTI = MF->getJumpTableInfo(); 583 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 584 585 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 586 for (MachineBasicBlock &MBB : *MF) { 587 auto MI = MBB.getLastNonDebugInstr(); 588 // Look past potential SpeculationBarriers at end of BB. 589 while (MI != MBB.end() && 590 (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) || 591 MI->isDebugInstr())) 592 --MI; 593 594 if (MI == MBB.end()) 595 continue; 596 597 unsigned JTOpcode; 598 switch (MI->getOpcode()) { 599 default: 600 continue; 601 case ARM::BR_JTadd: 602 case ARM::BR_JTr: 603 case ARM::tBR_JTr: 604 case ARM::BR_JTm_i12: 605 case ARM::BR_JTm_rs: 606 JTOpcode = ARM::JUMPTABLE_ADDRS; 607 break; 608 case ARM::t2BR_JT: 609 JTOpcode = ARM::JUMPTABLE_INSTS; 610 break; 611 case ARM::tTBB_JT: 612 case ARM::t2TBB_JT: 613 JTOpcode = ARM::JUMPTABLE_TBB; 614 break; 615 case ARM::tTBH_JT: 616 case ARM::t2TBH_JT: 617 JTOpcode = ARM::JUMPTABLE_TBH; 618 break; 619 } 620 621 unsigned NumOps = MI->getDesc().getNumOperands(); 622 MachineOperand JTOp = 623 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 624 unsigned JTI = JTOp.getIndex(); 625 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 626 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 627 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 628 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 629 DebugLoc(), TII->get(JTOpcode)) 630 .addImm(i++) 631 .addJumpTableIndex(JTI) 632 .addImm(Size); 633 CPEMIs.push_back(CPEMI); 634 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 635 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 636 if (!LastCorrectlyNumberedBB) 637 LastCorrectlyNumberedBB = &MBB; 638 } 639 640 // If we did anything then we need to renumber the subsequent blocks. 641 if (LastCorrectlyNumberedBB) 642 MF->RenumberBlocks(LastCorrectlyNumberedBB); 643 } 644 645 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 646 /// into the block immediately after it. 647 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 648 // Get the next machine basic block in the function. 649 MachineFunction::iterator MBBI = MBB->getIterator(); 650 // Can't fall off end of function. 651 if (std::next(MBBI) == MBB->getParent()->end()) 652 return false; 653 654 MachineBasicBlock *NextBB = &*std::next(MBBI); 655 if (!MBB->isSuccessor(NextBB)) 656 return false; 657 658 // Try to analyze the end of the block. A potential fallthrough may already 659 // have an unconditional branch for whatever reason. 660 MachineBasicBlock *TBB, *FBB; 661 SmallVector<MachineOperand, 4> Cond; 662 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 663 return TooDifficult || FBB == nullptr; 664 } 665 666 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 667 /// look up the corresponding CPEntry. 668 ARMConstantIslands::CPEntry * 669 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 670 const MachineInstr *CPEMI) { 671 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 672 // Number of entries per constpool index should be small, just do a 673 // linear search. 674 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 675 if (CPEs[i].CPEMI == CPEMI) 676 return &CPEs[i]; 677 } 678 return nullptr; 679 } 680 681 /// getCPEAlign - Returns the required alignment of the constant pool entry 682 /// represented by CPEMI. 683 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 684 switch (CPEMI->getOpcode()) { 685 case ARM::CONSTPOOL_ENTRY: 686 break; 687 case ARM::JUMPTABLE_TBB: 688 return isThumb1 ? Align(4) : Align(1); 689 case ARM::JUMPTABLE_TBH: 690 return isThumb1 ? Align(4) : Align(2); 691 case ARM::JUMPTABLE_INSTS: 692 return Align(2); 693 case ARM::JUMPTABLE_ADDRS: 694 return Align(4); 695 default: 696 llvm_unreachable("unknown constpool entry kind"); 697 } 698 699 unsigned CPI = getCombinedIndex(CPEMI); 700 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 701 return MCP->getConstants()[CPI].getAlign(); 702 } 703 704 /// scanFunctionJumpTables - Do a scan of the function, building up 705 /// information about the sizes of each block and the locations of all 706 /// the jump tables. 707 void ARMConstantIslands::scanFunctionJumpTables() { 708 for (MachineBasicBlock &MBB : *MF) { 709 for (MachineInstr &I : MBB) 710 if (I.isBranch() && 711 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 712 T2JumpTables.push_back(&I); 713 } 714 } 715 716 /// initializeFunctionInfo - Do the initial scan of the function, building up 717 /// information about the sizes of each block, the location of all the water, 718 /// and finding all of the constant pool users. 719 void ARMConstantIslands:: 720 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 721 722 BBUtils->computeAllBlockSizes(); 723 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 724 // The known bits of the entry block offset are determined by the function 725 // alignment. 726 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 727 728 // Compute block offsets and known bits. 729 BBUtils->adjustBBOffsetsAfter(&MF->front()); 730 731 // Now go back through the instructions and build up our data structures. 732 for (MachineBasicBlock &MBB : *MF) { 733 // If this block doesn't fall through into the next MBB, then this is 734 // 'water' that a constant pool island could be placed. 735 if (!BBHasFallthrough(&MBB)) 736 WaterList.push_back(&MBB); 737 738 for (MachineInstr &I : MBB) { 739 if (I.isDebugInstr()) 740 continue; 741 742 unsigned Opc = I.getOpcode(); 743 if (I.isBranch()) { 744 bool isCond = false; 745 unsigned Bits = 0; 746 unsigned Scale = 1; 747 int UOpc = Opc; 748 switch (Opc) { 749 default: 750 continue; // Ignore other JT branches 751 case ARM::t2BR_JT: 752 case ARM::tBR_JTr: 753 T2JumpTables.push_back(&I); 754 continue; // Does not get an entry in ImmBranches 755 case ARM::Bcc: 756 isCond = true; 757 UOpc = ARM::B; 758 LLVM_FALLTHROUGH; 759 case ARM::B: 760 Bits = 24; 761 Scale = 4; 762 break; 763 case ARM::tBcc: 764 isCond = true; 765 UOpc = ARM::tB; 766 Bits = 8; 767 Scale = 2; 768 break; 769 case ARM::tB: 770 Bits = 11; 771 Scale = 2; 772 break; 773 case ARM::t2Bcc: 774 isCond = true; 775 UOpc = ARM::t2B; 776 Bits = 20; 777 Scale = 2; 778 break; 779 case ARM::t2B: 780 Bits = 24; 781 Scale = 2; 782 break; 783 } 784 785 // Record this immediate branch. 786 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 787 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 788 } 789 790 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 791 PushPopMIs.push_back(&I); 792 793 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 794 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 795 Opc == ARM::JUMPTABLE_TBH) 796 continue; 797 798 // Scan the instructions for constant pool operands. 799 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 800 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 801 // We found one. The addressing mode tells us the max displacement 802 // from the PC that this instruction permits. 803 804 // Basic size info comes from the TSFlags field. 805 unsigned Bits = 0; 806 unsigned Scale = 1; 807 bool NegOk = false; 808 bool IsSoImm = false; 809 810 switch (Opc) { 811 default: 812 llvm_unreachable("Unknown addressing mode for CP reference!"); 813 814 // Taking the address of a CP entry. 815 case ARM::LEApcrel: 816 case ARM::LEApcrelJT: { 817 // This takes a SoImm, which is 8 bit immediate rotated. We'll 818 // pretend the maximum offset is 255 * 4. Since each instruction 819 // 4 byte wide, this is always correct. We'll check for other 820 // displacements that fits in a SoImm as well. 821 Bits = 8; 822 NegOk = true; 823 IsSoImm = true; 824 unsigned CPI = I.getOperand(op).getIndex(); 825 assert(CPI < CPEMIs.size()); 826 MachineInstr *CPEMI = CPEMIs[CPI]; 827 const Align CPEAlign = getCPEAlign(CPEMI); 828 const unsigned LogCPEAlign = Log2(CPEAlign); 829 if (LogCPEAlign >= 2) 830 Scale = 4; 831 else 832 // For constants with less than 4-byte alignment, 833 // we'll pretend the maximum offset is 255 * 1. 834 Scale = 1; 835 } 836 break; 837 case ARM::t2LEApcrel: 838 case ARM::t2LEApcrelJT: 839 Bits = 12; 840 NegOk = true; 841 break; 842 case ARM::tLEApcrel: 843 case ARM::tLEApcrelJT: 844 Bits = 8; 845 Scale = 4; 846 break; 847 848 case ARM::LDRBi12: 849 case ARM::LDRi12: 850 case ARM::LDRcp: 851 case ARM::t2LDRpci: 852 case ARM::t2LDRHpci: 853 case ARM::t2LDRBpci: 854 Bits = 12; // +-offset_12 855 NegOk = true; 856 break; 857 858 case ARM::tLDRpci: 859 Bits = 8; 860 Scale = 4; // +(offset_8*4) 861 break; 862 863 case ARM::VLDRD: 864 case ARM::VLDRS: 865 Bits = 8; 866 Scale = 4; // +-(offset_8*4) 867 NegOk = true; 868 break; 869 case ARM::VLDRH: 870 Bits = 8; 871 Scale = 2; // +-(offset_8*2) 872 NegOk = true; 873 break; 874 } 875 876 // Remember that this is a user of a CP entry. 877 unsigned CPI = I.getOperand(op).getIndex(); 878 if (I.getOperand(op).isJTI()) { 879 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 880 CPI = JumpTableEntryIndices[CPI]; 881 } 882 883 MachineInstr *CPEMI = CPEMIs[CPI]; 884 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 885 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 886 887 // Increment corresponding CPEntry reference count. 888 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 889 assert(CPE && "Cannot find a corresponding CPEntry!"); 890 CPE->RefCount++; 891 892 // Instructions can only use one CP entry, don't bother scanning the 893 // rest of the operands. 894 break; 895 } 896 } 897 } 898 } 899 900 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 901 /// ID. 902 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 903 const MachineBasicBlock *RHS) { 904 return LHS->getNumber() < RHS->getNumber(); 905 } 906 907 /// updateForInsertedWaterBlock - When a block is newly inserted into the 908 /// machine function, it upsets all of the block numbers. Renumber the blocks 909 /// and update the arrays that parallel this numbering. 910 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 911 // Renumber the MBB's to keep them consecutive. 912 NewBB->getParent()->RenumberBlocks(NewBB); 913 914 // Insert an entry into BBInfo to align it properly with the (newly 915 // renumbered) block numbers. 916 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 917 918 // Next, update WaterList. Specifically, we need to add NewMBB as having 919 // available water after it. 920 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 921 WaterList.insert(IP, NewBB); 922 } 923 924 /// Split the basic block containing MI into two blocks, which are joined by 925 /// an unconditional branch. Update data structures and renumber blocks to 926 /// account for this change and returns the newly created block. 927 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 928 MachineBasicBlock *OrigBB = MI->getParent(); 929 930 // Collect liveness information at MI. 931 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 932 LRs.addLiveOuts(*OrigBB); 933 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 934 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 935 LRs.stepBackward(LiveMI); 936 937 // Create a new MBB for the code after the OrigBB. 938 MachineBasicBlock *NewBB = 939 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 940 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 941 MF->insert(MBBI, NewBB); 942 943 // Splice the instructions starting with MI over to NewBB. 944 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 945 946 // Add an unconditional branch from OrigBB to NewBB. 947 // Note the new unconditional branch is not being recorded. 948 // There doesn't seem to be meaningful DebugInfo available; this doesn't 949 // correspond to anything in the source. 950 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 951 if (!isThumb) 952 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 953 else 954 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 955 .addMBB(NewBB) 956 .add(predOps(ARMCC::AL)); 957 ++NumSplit; 958 959 // Update the CFG. All succs of OrigBB are now succs of NewBB. 960 NewBB->transferSuccessors(OrigBB); 961 962 // OrigBB branches to NewBB. 963 OrigBB->addSuccessor(NewBB); 964 965 // Update live-in information in the new block. 966 MachineRegisterInfo &MRI = MF->getRegInfo(); 967 for (MCPhysReg L : LRs) 968 if (!MRI.isReserved(L)) 969 NewBB->addLiveIn(L); 970 971 // Update internal data structures to account for the newly inserted MBB. 972 // This is almost the same as updateForInsertedWaterBlock, except that 973 // the Water goes after OrigBB, not NewBB. 974 MF->RenumberBlocks(NewBB); 975 976 // Insert an entry into BBInfo to align it properly with the (newly 977 // renumbered) block numbers. 978 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 979 980 // Next, update WaterList. Specifically, we need to add OrigMBB as having 981 // available water after it (but not if it's already there, which happens 982 // when splitting before a conditional branch that is followed by an 983 // unconditional branch - in that case we want to insert NewBB). 984 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 985 MachineBasicBlock* WaterBB = *IP; 986 if (WaterBB == OrigBB) 987 WaterList.insert(std::next(IP), NewBB); 988 else 989 WaterList.insert(IP, OrigBB); 990 NewWaterList.insert(OrigBB); 991 992 // Figure out how large the OrigBB is. As the first half of the original 993 // block, it cannot contain a tablejump. The size includes 994 // the new jump we added. (It should be possible to do this without 995 // recounting everything, but it's very confusing, and this is rarely 996 // executed.) 997 BBUtils->computeBlockSize(OrigBB); 998 999 // Figure out how large the NewMBB is. As the second half of the original 1000 // block, it may contain a tablejump. 1001 BBUtils->computeBlockSize(NewBB); 1002 1003 // All BBOffsets following these blocks must be modified. 1004 BBUtils->adjustBBOffsetsAfter(OrigBB); 1005 1006 return NewBB; 1007 } 1008 1009 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 1010 /// displacement computation. Update U.KnownAlignment to match its current 1011 /// basic block location. 1012 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 1013 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 1014 1015 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 1016 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 1017 unsigned KnownBits = BBI.internalKnownBits(); 1018 1019 // The value read from PC is offset from the actual instruction address. 1020 UserOffset += (isThumb ? 4 : 8); 1021 1022 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 1023 // Make sure U.getMaxDisp() returns a constrained range. 1024 U.KnownAlignment = (KnownBits >= 2); 1025 1026 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 1027 // purposes of the displacement computation; compensate for that here. 1028 // For unknown alignments, getMaxDisp() constrains the range instead. 1029 if (isThumb && U.KnownAlignment) 1030 UserOffset &= ~3u; 1031 1032 return UserOffset; 1033 } 1034 1035 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1036 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1037 /// constant pool entry). 1038 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1039 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1040 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1041 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1042 unsigned TrialOffset, unsigned MaxDisp, 1043 bool NegativeOK, bool IsSoImm) { 1044 if (UserOffset <= TrialOffset) { 1045 // User before the Trial. 1046 if (TrialOffset - UserOffset <= MaxDisp) 1047 return true; 1048 // FIXME: Make use full range of soimm values. 1049 } else if (NegativeOK) { 1050 if (UserOffset - TrialOffset <= MaxDisp) 1051 return true; 1052 // FIXME: Make use full range of soimm values. 1053 } 1054 return false; 1055 } 1056 1057 /// isWaterInRange - Returns true if a CPE placed after the specified 1058 /// Water (a basic block) will be in range for the specific MI. 1059 /// 1060 /// Compute how much the function will grow by inserting a CPE after Water. 1061 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1062 MachineBasicBlock* Water, CPUser &U, 1063 unsigned &Growth) { 1064 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1065 const Align CPEAlign = getCPEAlign(U.CPEMI); 1066 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1067 unsigned NextBlockOffset; 1068 Align NextBlockAlignment; 1069 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1070 if (++NextBlock == MF->end()) { 1071 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1072 } else { 1073 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1074 NextBlockAlignment = NextBlock->getAlignment(); 1075 } 1076 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1077 unsigned CPEEnd = CPEOffset + Size; 1078 1079 // The CPE may be able to hide in the alignment padding before the next 1080 // block. It may also cause more padding to be required if it is more aligned 1081 // that the next block. 1082 if (CPEEnd > NextBlockOffset) { 1083 Growth = CPEEnd - NextBlockOffset; 1084 // Compute the padding that would go at the end of the CPE to align the next 1085 // block. 1086 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1087 1088 // If the CPE is to be inserted before the instruction, that will raise 1089 // the offset of the instruction. Also account for unknown alignment padding 1090 // in blocks between CPE and the user. 1091 if (CPEOffset < UserOffset) 1092 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1093 } else 1094 // CPE fits in existing padding. 1095 Growth = 0; 1096 1097 return isOffsetInRange(UserOffset, CPEOffset, U); 1098 } 1099 1100 /// isCPEntryInRange - Returns true if the distance between specific MI and 1101 /// specific ConstPool entry instruction can fit in MI's displacement field. 1102 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1103 MachineInstr *CPEMI, unsigned MaxDisp, 1104 bool NegOk, bool DoDump) { 1105 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1106 1107 if (DoDump) { 1108 LLVM_DEBUG({ 1109 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1110 unsigned Block = MI->getParent()->getNumber(); 1111 const BasicBlockInfo &BBI = BBInfo[Block]; 1112 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1113 << " max delta=" << MaxDisp 1114 << format(" insn address=%#x", UserOffset) << " in " 1115 << printMBBReference(*MI->getParent()) << ": " 1116 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1117 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1118 int(CPEOffset - UserOffset)); 1119 }); 1120 } 1121 1122 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1123 } 1124 1125 #ifndef NDEBUG 1126 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1127 /// unconditionally branches to its only successor. 1128 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1129 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1130 return false; 1131 1132 MachineBasicBlock *Succ = *MBB->succ_begin(); 1133 MachineBasicBlock *Pred = *MBB->pred_begin(); 1134 MachineInstr *PredMI = &Pred->back(); 1135 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1136 || PredMI->getOpcode() == ARM::t2B) 1137 return PredMI->getOperand(0).getMBB() == Succ; 1138 return false; 1139 } 1140 #endif // NDEBUG 1141 1142 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1143 /// and instruction CPEMI, and decrement its refcount. If the refcount 1144 /// becomes 0 remove the entry and instruction. Returns true if we removed 1145 /// the entry, false if we didn't. 1146 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1147 MachineInstr *CPEMI) { 1148 // Find the old entry. Eliminate it if it is no longer used. 1149 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1150 assert(CPE && "Unexpected!"); 1151 if (--CPE->RefCount == 0) { 1152 removeDeadCPEMI(CPEMI); 1153 CPE->CPEMI = nullptr; 1154 --NumCPEs; 1155 return true; 1156 } 1157 return false; 1158 } 1159 1160 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1161 if (CPEMI->getOperand(1).isCPI()) 1162 return CPEMI->getOperand(1).getIndex(); 1163 1164 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1165 } 1166 1167 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1168 /// if not, see if an in-range clone of the CPE is in range, and if so, 1169 /// change the data structures so the user references the clone. Returns: 1170 /// 0 = no existing entry found 1171 /// 1 = entry found, and there were no code insertions or deletions 1172 /// 2 = entry found, and there were code insertions or deletions 1173 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1174 MachineInstr *UserMI = U.MI; 1175 MachineInstr *CPEMI = U.CPEMI; 1176 1177 // Check to see if the CPE is already in-range. 1178 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1179 true)) { 1180 LLVM_DEBUG(dbgs() << "In range\n"); 1181 return 1; 1182 } 1183 1184 // No. Look for previously created clones of the CPE that are in range. 1185 unsigned CPI = getCombinedIndex(CPEMI); 1186 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1187 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1188 // We already tried this one 1189 if (CPEs[i].CPEMI == CPEMI) 1190 continue; 1191 // Removing CPEs can leave empty entries, skip 1192 if (CPEs[i].CPEMI == nullptr) 1193 continue; 1194 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1195 U.NegOk)) { 1196 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1197 << CPEs[i].CPI << "\n"); 1198 // Point the CPUser node to the replacement 1199 U.CPEMI = CPEs[i].CPEMI; 1200 // Change the CPI in the instruction operand to refer to the clone. 1201 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1202 if (UserMI->getOperand(j).isCPI()) { 1203 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1204 break; 1205 } 1206 // Adjust the refcount of the clone... 1207 CPEs[i].RefCount++; 1208 // ...and the original. If we didn't remove the old entry, none of the 1209 // addresses changed, so we don't need another pass. 1210 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1211 } 1212 } 1213 return 0; 1214 } 1215 1216 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1217 /// the specific unconditional branch instruction. 1218 static inline unsigned getUnconditionalBrDisp(int Opc) { 1219 switch (Opc) { 1220 case ARM::tB: 1221 return ((1<<10)-1)*2; 1222 case ARM::t2B: 1223 return ((1<<23)-1)*2; 1224 default: 1225 break; 1226 } 1227 1228 return ((1<<23)-1)*4; 1229 } 1230 1231 /// findAvailableWater - Look for an existing entry in the WaterList in which 1232 /// we can place the CPE referenced from U so it's within range of U's MI. 1233 /// Returns true if found, false if not. If it returns true, WaterIter 1234 /// is set to the WaterList entry. For Thumb, prefer water that will not 1235 /// introduce padding to water that will. To ensure that this pass 1236 /// terminates, the CPE location for a particular CPUser is only allowed to 1237 /// move to a lower address, so search backward from the end of the list and 1238 /// prefer the first water that is in range. 1239 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1240 water_iterator &WaterIter, 1241 bool CloserWater) { 1242 if (WaterList.empty()) 1243 return false; 1244 1245 unsigned BestGrowth = ~0u; 1246 // The nearest water without splitting the UserBB is right after it. 1247 // If the distance is still large (we have a big BB), then we need to split it 1248 // if we don't converge after certain iterations. This helps the following 1249 // situation to converge: 1250 // BB0: 1251 // Big BB 1252 // BB1: 1253 // Constant Pool 1254 // When a CP access is out of range, BB0 may be used as water. However, 1255 // inserting islands between BB0 and BB1 makes other accesses out of range. 1256 MachineBasicBlock *UserBB = U.MI->getParent(); 1257 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1258 const Align CPEAlign = getCPEAlign(U.CPEMI); 1259 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1260 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1261 return false; 1262 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1263 --IP) { 1264 MachineBasicBlock* WaterBB = *IP; 1265 // Check if water is in range and is either at a lower address than the 1266 // current "high water mark" or a new water block that was created since 1267 // the previous iteration by inserting an unconditional branch. In the 1268 // latter case, we want to allow resetting the high water mark back to 1269 // this new water since we haven't seen it before. Inserting branches 1270 // should be relatively uncommon and when it does happen, we want to be 1271 // sure to take advantage of it for all the CPEs near that block, so that 1272 // we don't insert more branches than necessary. 1273 // When CloserWater is true, we try to find the lowest address after (or 1274 // equal to) user MI's BB no matter of padding growth. 1275 unsigned Growth; 1276 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1277 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1278 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1279 Growth < BestGrowth) { 1280 // This is the least amount of required padding seen so far. 1281 BestGrowth = Growth; 1282 WaterIter = IP; 1283 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1284 << " Growth=" << Growth << '\n'); 1285 1286 if (CloserWater && WaterBB == U.MI->getParent()) 1287 return true; 1288 // Keep looking unless it is perfect and we're not looking for the lowest 1289 // possible address. 1290 if (!CloserWater && BestGrowth == 0) 1291 return true; 1292 } 1293 if (IP == B) 1294 break; 1295 } 1296 return BestGrowth != ~0u; 1297 } 1298 1299 /// createNewWater - No existing WaterList entry will work for 1300 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1301 /// block is used if in range, and the conditional branch munged so control 1302 /// flow is correct. Otherwise the block is split to create a hole with an 1303 /// unconditional branch around it. In either case NewMBB is set to a 1304 /// block following which the new island can be inserted (the WaterList 1305 /// is not adjusted). 1306 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1307 unsigned UserOffset, 1308 MachineBasicBlock *&NewMBB) { 1309 CPUser &U = CPUsers[CPUserIndex]; 1310 MachineInstr *UserMI = U.MI; 1311 MachineInstr *CPEMI = U.CPEMI; 1312 const Align CPEAlign = getCPEAlign(CPEMI); 1313 MachineBasicBlock *UserMBB = UserMI->getParent(); 1314 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1315 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1316 1317 // If the block does not end in an unconditional branch already, and if the 1318 // end of the block is within range, make new water there. (The addition 1319 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1320 // Thumb2, 2 on Thumb1. 1321 if (BBHasFallthrough(UserMBB)) { 1322 // Size of branch to insert. 1323 unsigned Delta = isThumb1 ? 2 : 4; 1324 // Compute the offset where the CPE will begin. 1325 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1326 1327 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1328 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1329 << format(", expected CPE offset %#x\n", CPEOffset)); 1330 NewMBB = &*++UserMBB->getIterator(); 1331 // Add an unconditional branch from UserMBB to fallthrough block. Record 1332 // it for branch lengthening; this new branch will not get out of range, 1333 // but if the preceding conditional branch is out of range, the targets 1334 // will be exchanged, and the altered branch may be out of range, so the 1335 // machinery has to know about it. 1336 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1337 if (!isThumb) 1338 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1339 else 1340 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1341 .addMBB(NewMBB) 1342 .add(predOps(ARMCC::AL)); 1343 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1344 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1345 MaxDisp, false, UncondBr)); 1346 BBUtils->computeBlockSize(UserMBB); 1347 BBUtils->adjustBBOffsetsAfter(UserMBB); 1348 return; 1349 } 1350 } 1351 1352 // What a big block. Find a place within the block to split it. This is a 1353 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1354 // entries are 4 bytes: if instruction I references island CPE, and 1355 // instruction I+1 references CPE', it will not work well to put CPE as far 1356 // forward as possible, since then CPE' cannot immediately follow it (that 1357 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1358 // need to create a new island. So, we make a first guess, then walk through 1359 // the instructions between the one currently being looked at and the 1360 // possible insertion point, and make sure any other instructions that 1361 // reference CPEs will be able to use the same island area; if not, we back 1362 // up the insertion point. 1363 1364 // Try to split the block so it's fully aligned. Compute the latest split 1365 // point where we can add a 4-byte branch instruction, and then align to 1366 // Align which is the largest possible alignment in the function. 1367 const Align Align = MF->getAlignment(); 1368 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1369 unsigned KnownBits = UserBBI.internalKnownBits(); 1370 unsigned UPad = UnknownPadding(Align, KnownBits); 1371 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1372 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1373 BaseInsertOffset)); 1374 1375 // The 4 in the following is for the unconditional branch we'll be inserting 1376 // (allows for long branch on Thumb1). Alignment of the island is handled 1377 // inside isOffsetInRange. 1378 BaseInsertOffset -= 4; 1379 1380 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1381 << " la=" << Log2(Align) << " kb=" << KnownBits 1382 << " up=" << UPad << '\n'); 1383 1384 // This could point off the end of the block if we've already got constant 1385 // pool entries following this block; only the last one is in the water list. 1386 // Back past any possible branches (allow for a conditional and a maximally 1387 // long unconditional). 1388 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1389 // Ensure BaseInsertOffset is larger than the offset of the instruction 1390 // following UserMI so that the loop which searches for the split point 1391 // iterates at least once. 1392 BaseInsertOffset = 1393 std::max(UserBBI.postOffset() - UPad - 8, 1394 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1395 // If the CP is referenced(ie, UserOffset) is in first four instructions 1396 // after IT, this recalculated BaseInsertOffset could be in the middle of 1397 // an IT block. If it is, change the BaseInsertOffset to just after the 1398 // IT block. This still make the CP Entry is in range becuase of the 1399 // following reasons. 1400 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1401 // U.getMaxDisp() - UPad). 1402 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1403 // bytes). 1404 // 3. All the relevant instructions support much larger Maximum 1405 // displacement. 1406 MachineBasicBlock::iterator I = UserMI; 1407 ++I; 1408 Register PredReg; 1409 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1410 I->getOpcode() != ARM::t2IT && 1411 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1412 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1413 BaseInsertOffset = 1414 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1415 assert(I != UserMBB->end() && "Fell off end of block"); 1416 } 1417 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1418 } 1419 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1420 CPEMI->getOperand(2).getImm(); 1421 MachineBasicBlock::iterator MI = UserMI; 1422 ++MI; 1423 unsigned CPUIndex = CPUserIndex+1; 1424 unsigned NumCPUsers = CPUsers.size(); 1425 MachineInstr *LastIT = nullptr; 1426 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1427 Offset < BaseInsertOffset; 1428 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1429 assert(MI != UserMBB->end() && "Fell off end of block"); 1430 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1431 CPUser &U = CPUsers[CPUIndex]; 1432 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1433 // Shift intertion point by one unit of alignment so it is within reach. 1434 BaseInsertOffset -= Align.value(); 1435 EndInsertOffset -= Align.value(); 1436 } 1437 // This is overly conservative, as we don't account for CPEMIs being 1438 // reused within the block, but it doesn't matter much. Also assume CPEs 1439 // are added in order with alignment padding. We may eventually be able 1440 // to pack the aligned CPEs better. 1441 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1442 CPUIndex++; 1443 } 1444 1445 // Remember the last IT instruction. 1446 if (MI->getOpcode() == ARM::t2IT) 1447 LastIT = &*MI; 1448 } 1449 1450 --MI; 1451 1452 // Avoid splitting an IT block. 1453 if (LastIT) { 1454 Register PredReg; 1455 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1456 if (CC != ARMCC::AL) 1457 MI = LastIT; 1458 } 1459 1460 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1461 // On Windows, this instruction pair is covered by one single 1462 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1463 // constant island is injected inbetween them, the relocation will clobber 1464 // the instruction and fail to update the MOVT instruction. 1465 // (These instructions are bundled up until right before the ConstantIslands 1466 // pass.) 1467 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1468 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1469 ARMII::MO_HI16) { 1470 --MI; 1471 assert(MI->getOpcode() == ARM::t2MOVi16 && 1472 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1473 ARMII::MO_LO16); 1474 } 1475 1476 // We really must not split an IT block. 1477 #ifndef NDEBUG 1478 Register PredReg; 1479 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1480 #endif 1481 NewMBB = splitBlockBeforeInstr(&*MI); 1482 } 1483 1484 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1485 /// is out-of-range. If so, pick up the constant pool value and move it some 1486 /// place in-range. Return true if we changed any addresses (thus must run 1487 /// another pass of branch lengthening), false otherwise. 1488 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1489 bool CloserWater) { 1490 CPUser &U = CPUsers[CPUserIndex]; 1491 MachineInstr *UserMI = U.MI; 1492 MachineInstr *CPEMI = U.CPEMI; 1493 unsigned CPI = getCombinedIndex(CPEMI); 1494 unsigned Size = CPEMI->getOperand(2).getImm(); 1495 // Compute this only once, it's expensive. 1496 unsigned UserOffset = getUserOffset(U); 1497 1498 // See if the current entry is within range, or there is a clone of it 1499 // in range. 1500 int result = findInRangeCPEntry(U, UserOffset); 1501 if (result==1) return false; 1502 else if (result==2) return true; 1503 1504 // No existing clone of this CPE is within range. 1505 // We will be generating a new clone. Get a UID for it. 1506 unsigned ID = AFI->createPICLabelUId(); 1507 1508 // Look for water where we can place this CPE. 1509 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1510 MachineBasicBlock *NewMBB; 1511 water_iterator IP; 1512 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1513 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1514 MachineBasicBlock *WaterBB = *IP; 1515 1516 // If the original WaterList entry was "new water" on this iteration, 1517 // propagate that to the new island. This is just keeping NewWaterList 1518 // updated to match the WaterList, which will be updated below. 1519 if (NewWaterList.erase(WaterBB)) 1520 NewWaterList.insert(NewIsland); 1521 1522 // The new CPE goes before the following block (NewMBB). 1523 NewMBB = &*++WaterBB->getIterator(); 1524 } else { 1525 // No water found. 1526 LLVM_DEBUG(dbgs() << "No water found\n"); 1527 createNewWater(CPUserIndex, UserOffset, NewMBB); 1528 1529 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1530 // called while handling branches so that the water will be seen on the 1531 // next iteration for constant pools, but in this context, we don't want 1532 // it. Check for this so it will be removed from the WaterList. 1533 // Also remove any entry from NewWaterList. 1534 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1535 IP = find(WaterList, WaterBB); 1536 if (IP != WaterList.end()) 1537 NewWaterList.erase(WaterBB); 1538 1539 // We are adding new water. Update NewWaterList. 1540 NewWaterList.insert(NewIsland); 1541 } 1542 // Always align the new block because CP entries can be smaller than 4 1543 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1544 // be an already aligned constant pool block. 1545 const Align Alignment = isThumb ? Align(2) : Align(4); 1546 if (NewMBB->getAlignment() < Alignment) 1547 NewMBB->setAlignment(Alignment); 1548 1549 // Remove the original WaterList entry; we want subsequent insertions in 1550 // this vicinity to go after the one we're about to insert. This 1551 // considerably reduces the number of times we have to move the same CPE 1552 // more than once and is also important to ensure the algorithm terminates. 1553 if (IP != WaterList.end()) 1554 WaterList.erase(IP); 1555 1556 // Okay, we know we can put an island before NewMBB now, do it! 1557 MF->insert(NewMBB->getIterator(), NewIsland); 1558 1559 // Update internal data structures to account for the newly inserted MBB. 1560 updateForInsertedWaterBlock(NewIsland); 1561 1562 // Now that we have an island to add the CPE to, clone the original CPE and 1563 // add it to the island. 1564 U.HighWaterMark = NewIsland; 1565 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1566 .addImm(ID) 1567 .add(CPEMI->getOperand(1)) 1568 .addImm(Size); 1569 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1570 ++NumCPEs; 1571 1572 // Decrement the old entry, and remove it if refcount becomes 0. 1573 decrementCPEReferenceCount(CPI, CPEMI); 1574 1575 // Mark the basic block as aligned as required by the const-pool entry. 1576 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1577 1578 // Increase the size of the island block to account for the new entry. 1579 BBUtils->adjustBBSize(NewIsland, Size); 1580 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1581 1582 // Finally, change the CPI in the instruction operand to be ID. 1583 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1584 if (UserMI->getOperand(i).isCPI()) { 1585 UserMI->getOperand(i).setIndex(ID); 1586 break; 1587 } 1588 1589 LLVM_DEBUG( 1590 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1591 << format(" offset=%#x\n", 1592 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1593 1594 return true; 1595 } 1596 1597 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1598 /// sizes and offsets of impacted basic blocks. 1599 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1600 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1601 unsigned Size = CPEMI->getOperand(2).getImm(); 1602 CPEMI->eraseFromParent(); 1603 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1604 BBUtils->adjustBBSize(CPEBB, -Size); 1605 // All succeeding offsets have the current size value added in, fix this. 1606 if (CPEBB->empty()) { 1607 BBInfo[CPEBB->getNumber()].Size = 0; 1608 1609 // This block no longer needs to be aligned. 1610 CPEBB->setAlignment(Align(1)); 1611 } else { 1612 // Entries are sorted by descending alignment, so realign from the front. 1613 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1614 } 1615 1616 BBUtils->adjustBBOffsetsAfter(CPEBB); 1617 // An island has only one predecessor BB and one successor BB. Check if 1618 // this BB's predecessor jumps directly to this BB's successor. This 1619 // shouldn't happen currently. 1620 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1621 // FIXME: remove the empty blocks after all the work is done? 1622 } 1623 1624 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1625 /// are zero. 1626 bool ARMConstantIslands::removeUnusedCPEntries() { 1627 unsigned MadeChange = false; 1628 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1629 std::vector<CPEntry> &CPEs = CPEntries[i]; 1630 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1631 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1632 removeDeadCPEMI(CPEs[j].CPEMI); 1633 CPEs[j].CPEMI = nullptr; 1634 MadeChange = true; 1635 } 1636 } 1637 } 1638 return MadeChange; 1639 } 1640 1641 1642 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1643 /// away to fit in its displacement field. 1644 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1645 MachineInstr *MI = Br.MI; 1646 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1647 1648 // Check to see if the DestBB is already in-range. 1649 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1650 return false; 1651 1652 if (!Br.isCond) 1653 return fixupUnconditionalBr(Br); 1654 return fixupConditionalBr(Br); 1655 } 1656 1657 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1658 /// too far away to fit in its displacement field. If the LR register has been 1659 /// spilled in the epilogue, then we can use BL to implement a far jump. 1660 /// Otherwise, add an intermediate branch instruction to a branch. 1661 bool 1662 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1663 MachineInstr *MI = Br.MI; 1664 MachineBasicBlock *MBB = MI->getParent(); 1665 if (!isThumb1) 1666 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1667 1668 if (!AFI->isLRSpilled()) 1669 report_fatal_error("underestimated function size"); 1670 1671 // Use BL to implement far jump. 1672 Br.MaxDisp = (1 << 21) * 2; 1673 MI->setDesc(TII->get(ARM::tBfar)); 1674 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1675 BBInfo[MBB->getNumber()].Size += 2; 1676 BBUtils->adjustBBOffsetsAfter(MBB); 1677 ++NumUBrFixed; 1678 1679 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1680 1681 return true; 1682 } 1683 1684 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1685 /// far away to fit in its displacement field. It is converted to an inverse 1686 /// conditional branch + an unconditional branch to the destination. 1687 bool 1688 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1689 MachineInstr *MI = Br.MI; 1690 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1691 1692 // Add an unconditional branch to the destination and invert the branch 1693 // condition to jump over it: 1694 // blt L1 1695 // => 1696 // bge L2 1697 // b L1 1698 // L2: 1699 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1700 CC = ARMCC::getOppositeCondition(CC); 1701 Register CCReg = MI->getOperand(2).getReg(); 1702 1703 // If the branch is at the end of its MBB and that has a fall-through block, 1704 // direct the updated conditional branch to the fall-through block. Otherwise, 1705 // split the MBB before the next instruction. 1706 MachineBasicBlock *MBB = MI->getParent(); 1707 MachineInstr *BMI = &MBB->back(); 1708 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1709 1710 ++NumCBrFixed; 1711 if (BMI != MI) { 1712 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1713 BMI->getOpcode() == Br.UncondBr) { 1714 // Last MI in the BB is an unconditional branch. Can we simply invert the 1715 // condition and swap destinations: 1716 // beq L1 1717 // b L2 1718 // => 1719 // bne L2 1720 // b L1 1721 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1722 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1723 LLVM_DEBUG( 1724 dbgs() << " Invert Bcc condition and swap its destination with " 1725 << *BMI); 1726 BMI->getOperand(0).setMBB(DestBB); 1727 MI->getOperand(0).setMBB(NewDest); 1728 MI->getOperand(1).setImm(CC); 1729 return true; 1730 } 1731 } 1732 } 1733 1734 if (NeedSplit) { 1735 splitBlockBeforeInstr(MI); 1736 // No need for the branch to the next block. We're adding an unconditional 1737 // branch to the destination. 1738 int delta = TII->getInstSizeInBytes(MBB->back()); 1739 BBUtils->adjustBBSize(MBB, -delta); 1740 MBB->back().eraseFromParent(); 1741 1742 // The conditional successor will be swapped between the BBs after this, so 1743 // update CFG. 1744 MBB->addSuccessor(DestBB); 1745 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1746 1747 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1748 } 1749 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1750 1751 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1752 << " also invert condition and change dest. to " 1753 << printMBBReference(*NextBB) << "\n"); 1754 1755 // Insert a new conditional branch and a new unconditional branch. 1756 // Also update the ImmBranch as well as adding a new entry for the new branch. 1757 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1758 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1759 Br.MI = &MBB->back(); 1760 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1761 if (isThumb) 1762 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1763 .addMBB(DestBB) 1764 .add(predOps(ARMCC::AL)); 1765 else 1766 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1767 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1768 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1769 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1770 1771 // Remove the old conditional branch. It may or may not still be in MBB. 1772 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1773 MI->eraseFromParent(); 1774 BBUtils->adjustBBOffsetsAfter(MBB); 1775 return true; 1776 } 1777 1778 bool ARMConstantIslands::optimizeThumb2Instructions() { 1779 bool MadeChange = false; 1780 1781 // Shrink ADR and LDR from constantpool. 1782 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1783 CPUser &U = CPUsers[i]; 1784 unsigned Opcode = U.MI->getOpcode(); 1785 unsigned NewOpc = 0; 1786 unsigned Scale = 1; 1787 unsigned Bits = 0; 1788 switch (Opcode) { 1789 default: break; 1790 case ARM::t2LEApcrel: 1791 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1792 NewOpc = ARM::tLEApcrel; 1793 Bits = 8; 1794 Scale = 4; 1795 } 1796 break; 1797 case ARM::t2LDRpci: 1798 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1799 NewOpc = ARM::tLDRpci; 1800 Bits = 8; 1801 Scale = 4; 1802 } 1803 break; 1804 } 1805 1806 if (!NewOpc) 1807 continue; 1808 1809 unsigned UserOffset = getUserOffset(U); 1810 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1811 1812 // Be conservative with inline asm. 1813 if (!U.KnownAlignment) 1814 MaxOffs -= 2; 1815 1816 // FIXME: Check if offset is multiple of scale if scale is not 4. 1817 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1818 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1819 U.MI->setDesc(TII->get(NewOpc)); 1820 MachineBasicBlock *MBB = U.MI->getParent(); 1821 BBUtils->adjustBBSize(MBB, -2); 1822 BBUtils->adjustBBOffsetsAfter(MBB); 1823 ++NumT2CPShrunk; 1824 MadeChange = true; 1825 } 1826 } 1827 1828 return MadeChange; 1829 } 1830 1831 1832 bool ARMConstantIslands::optimizeThumb2Branches() { 1833 1834 auto TryShrinkBranch = [this](ImmBranch &Br) { 1835 unsigned Opcode = Br.MI->getOpcode(); 1836 unsigned NewOpc = 0; 1837 unsigned Scale = 1; 1838 unsigned Bits = 0; 1839 switch (Opcode) { 1840 default: break; 1841 case ARM::t2B: 1842 NewOpc = ARM::tB; 1843 Bits = 11; 1844 Scale = 2; 1845 break; 1846 case ARM::t2Bcc: 1847 NewOpc = ARM::tBcc; 1848 Bits = 8; 1849 Scale = 2; 1850 break; 1851 } 1852 if (NewOpc) { 1853 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1854 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1855 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1856 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1857 Br.MI->setDesc(TII->get(NewOpc)); 1858 MachineBasicBlock *MBB = Br.MI->getParent(); 1859 BBUtils->adjustBBSize(MBB, -2); 1860 BBUtils->adjustBBOffsetsAfter(MBB); 1861 ++NumT2BrShrunk; 1862 return true; 1863 } 1864 } 1865 return false; 1866 }; 1867 1868 struct ImmCompare { 1869 MachineInstr* MI = nullptr; 1870 unsigned NewOpc = 0; 1871 }; 1872 1873 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1874 MachineBasicBlock *DestBB) { 1875 ImmCmp.MI = nullptr; 1876 ImmCmp.NewOpc = 0; 1877 1878 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1879 // so this transformation is not safe. 1880 if (!Br.MI->killsRegister(ARM::CPSR)) 1881 return false; 1882 1883 Register PredReg; 1884 unsigned NewOpc = 0; 1885 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1886 if (Pred == ARMCC::EQ) 1887 NewOpc = ARM::tCBZ; 1888 else if (Pred == ARMCC::NE) 1889 NewOpc = ARM::tCBNZ; 1890 else 1891 return false; 1892 1893 // Check if the distance is within 126. Subtract starting offset by 2 1894 // because the cmp will be eliminated. 1895 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1896 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1897 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1898 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1899 return false; 1900 1901 // Search backwards to find a tCMPi8 1902 auto *TRI = STI->getRegisterInfo(); 1903 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1904 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1905 return false; 1906 1907 ImmCmp.MI = CmpMI; 1908 ImmCmp.NewOpc = NewOpc; 1909 return true; 1910 }; 1911 1912 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1913 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1914 STI->hasMinSize()) 1915 return false; 1916 1917 MachineBasicBlock *MBB = Br.MI->getParent(); 1918 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1919 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1920 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1921 return false; 1922 1923 if (!DT->dominates(DestBB, MBB)) 1924 return false; 1925 1926 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1927 // target of Br. So now we need to reverse the condition. 1928 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1929 1930 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1931 TII->get(ARM::t2LE)); 1932 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1933 MIB.add(Br.MI->getOperand(0)); 1934 Br.MI->eraseFromParent(); 1935 Br.MI = MIB; 1936 ++NumLEInserted; 1937 return true; 1938 }; 1939 1940 bool MadeChange = false; 1941 1942 // The order in which branches appear in ImmBranches is approximately their 1943 // order within the function body. By visiting later branches first, we reduce 1944 // the distance between earlier forward branches and their targets, making it 1945 // more likely that the cbn?z optimization, which can only apply to forward 1946 // branches, will succeed. 1947 for (ImmBranch &Br : reverse(ImmBranches)) { 1948 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1949 MachineBasicBlock *MBB = Br.MI->getParent(); 1950 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 1951 MBB->getFallThrough() : 1952 MBB->back().getOperand(0).getMBB(); 1953 1954 ImmCompare Cmp; 1955 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 1956 DestBB = ExitBB; 1957 MadeChange = true; 1958 } else { 1959 FindCmpForCBZ(Br, Cmp, DestBB); 1960 MadeChange |= TryShrinkBranch(Br); 1961 } 1962 1963 unsigned Opcode = Br.MI->getOpcode(); 1964 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 1965 continue; 1966 1967 Register Reg = Cmp.MI->getOperand(0).getReg(); 1968 1969 // Check for Kill flags on Reg. If they are present remove them and set kill 1970 // on the new CBZ. 1971 auto *TRI = STI->getRegisterInfo(); 1972 MachineBasicBlock::iterator KillMI = Br.MI; 1973 bool RegKilled = false; 1974 do { 1975 --KillMI; 1976 if (KillMI->killsRegister(Reg, TRI)) { 1977 KillMI->clearRegisterKills(Reg, TRI); 1978 RegKilled = true; 1979 break; 1980 } 1981 } while (KillMI != Cmp.MI); 1982 1983 // Create the new CBZ/CBNZ 1984 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 1985 MachineInstr *NewBR = 1986 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 1987 .addReg(Reg, getKillRegState(RegKilled)) 1988 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1989 1990 Cmp.MI->eraseFromParent(); 1991 1992 if (Br.MI->getOpcode() == ARM::tBcc) { 1993 Br.MI->eraseFromParent(); 1994 Br.MI = NewBR; 1995 BBUtils->adjustBBSize(MBB, -2); 1996 } else if (MBB->back().getOpcode() != ARM::t2LE) { 1997 // An LE has been generated, but it's not the terminator - that is an 1998 // unconditional branch. However, the logic has now been reversed with the 1999 // CBN?Z being the conditional branch and the LE being the unconditional 2000 // branch. So this means we can remove the redundant unconditional branch 2001 // at the end of the block. 2002 MachineInstr *LastMI = &MBB->back(); 2003 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 2004 LastMI->eraseFromParent(); 2005 } 2006 BBUtils->adjustBBOffsetsAfter(MBB); 2007 ++NumCBZ; 2008 MadeChange = true; 2009 } 2010 2011 return MadeChange; 2012 } 2013 2014 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 2015 unsigned BaseReg) { 2016 if (I.getOpcode() != ARM::t2ADDrs) 2017 return false; 2018 2019 if (I.getOperand(0).getReg() != EntryReg) 2020 return false; 2021 2022 if (I.getOperand(1).getReg() != BaseReg) 2023 return false; 2024 2025 // FIXME: what about CC and IdxReg? 2026 return true; 2027 } 2028 2029 /// While trying to form a TBB/TBH instruction, we may (if the table 2030 /// doesn't immediately follow the BR_JT) need access to the start of the 2031 /// jump-table. We know one instruction that produces such a register; this 2032 /// function works out whether that definition can be preserved to the BR_JT, 2033 /// possibly by removing an intervening addition (which is usually needed to 2034 /// calculate the actual entry to jump to). 2035 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2036 MachineInstr *LEAMI, 2037 unsigned &DeadSize, 2038 bool &CanDeleteLEA, 2039 bool &BaseRegKill) { 2040 if (JumpMI->getParent() != LEAMI->getParent()) 2041 return false; 2042 2043 // Now we hope that we have at least these instructions in the basic block: 2044 // BaseReg = t2LEA ... 2045 // [...] 2046 // EntryReg = t2ADDrs BaseReg, ... 2047 // [...] 2048 // t2BR_JT EntryReg 2049 // 2050 // We have to be very conservative about what we recognise here though. The 2051 // main perturbing factors to watch out for are: 2052 // + Spills at any point in the chain: not direct problems but we would 2053 // expect a blocking Def of the spilled register so in practice what we 2054 // can do is limited. 2055 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2056 // of BaseReg, but only if the t2ADDrs can be removed. 2057 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2058 // the wild, but we should be careful. 2059 Register EntryReg = JumpMI->getOperand(0).getReg(); 2060 Register BaseReg = LEAMI->getOperand(0).getReg(); 2061 2062 CanDeleteLEA = true; 2063 BaseRegKill = false; 2064 MachineInstr *RemovableAdd = nullptr; 2065 MachineBasicBlock::iterator I(LEAMI); 2066 for (++I; &*I != JumpMI; ++I) { 2067 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2068 RemovableAdd = &*I; 2069 break; 2070 } 2071 2072 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2073 const MachineOperand &MO = I->getOperand(K); 2074 if (!MO.isReg() || !MO.getReg()) 2075 continue; 2076 if (MO.isDef() && MO.getReg() == BaseReg) 2077 return false; 2078 if (MO.isUse() && MO.getReg() == BaseReg) { 2079 BaseRegKill = BaseRegKill || MO.isKill(); 2080 CanDeleteLEA = false; 2081 } 2082 } 2083 } 2084 2085 if (!RemovableAdd) 2086 return true; 2087 2088 // Check the add really is removable, and that nothing else in the block 2089 // clobbers BaseReg. 2090 for (++I; &*I != JumpMI; ++I) { 2091 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2092 const MachineOperand &MO = I->getOperand(K); 2093 if (!MO.isReg() || !MO.getReg()) 2094 continue; 2095 if (MO.isDef() && MO.getReg() == BaseReg) 2096 return false; 2097 if (MO.isUse() && MO.getReg() == EntryReg) 2098 RemovableAdd = nullptr; 2099 } 2100 } 2101 2102 if (RemovableAdd) { 2103 RemovableAdd->eraseFromParent(); 2104 DeadSize += isThumb2 ? 4 : 2; 2105 } else if (BaseReg == EntryReg) { 2106 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2107 // preserve it. 2108 return false; 2109 } 2110 2111 // We reached the end of the block without seeing another definition of 2112 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2113 // used in the TBB/TBH if necessary. 2114 return true; 2115 } 2116 2117 /// Returns whether CPEMI is the first instruction in the block 2118 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2119 /// we can switch the first register to PC and usually remove the address 2120 /// calculation that preceded it. 2121 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2122 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2123 MachineFunction *MF = MBB->getParent(); 2124 ++MBB; 2125 2126 return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI; 2127 } 2128 2129 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2130 MachineInstr *JumpMI, 2131 unsigned &DeadSize) { 2132 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2133 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2134 // and is not clobbered / used. 2135 MachineInstr *RemovableAdd = nullptr; 2136 Register EntryReg = JumpMI->getOperand(0).getReg(); 2137 2138 // Find the last ADD to set EntryReg 2139 MachineBasicBlock::iterator I(LEAMI); 2140 for (++I; &*I != JumpMI; ++I) { 2141 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2142 RemovableAdd = &*I; 2143 } 2144 2145 if (!RemovableAdd) 2146 return; 2147 2148 // Ensure EntryReg is not clobbered or used. 2149 MachineBasicBlock::iterator J(RemovableAdd); 2150 for (++J; &*J != JumpMI; ++J) { 2151 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2152 const MachineOperand &MO = J->getOperand(K); 2153 if (!MO.isReg() || !MO.getReg()) 2154 continue; 2155 if (MO.isDef() && MO.getReg() == EntryReg) 2156 return; 2157 if (MO.isUse() && MO.getReg() == EntryReg) 2158 return; 2159 } 2160 } 2161 2162 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2163 RemovableAdd->eraseFromParent(); 2164 DeadSize += 4; 2165 } 2166 2167 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2168 /// jumptables when it's possible. 2169 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2170 bool MadeChange = false; 2171 2172 // FIXME: After the tables are shrunk, can we get rid some of the 2173 // constantpool tables? 2174 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2175 if (!MJTI) return false; 2176 2177 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2178 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2179 MachineInstr *MI = T2JumpTables[i]; 2180 const MCInstrDesc &MCID = MI->getDesc(); 2181 unsigned NumOps = MCID.getNumOperands(); 2182 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2183 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2184 unsigned JTI = JTOP.getIndex(); 2185 assert(JTI < JT.size()); 2186 2187 bool ByteOk = true; 2188 bool HalfWordOk = true; 2189 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2190 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2191 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2192 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2193 MachineBasicBlock *MBB = JTBBs[j]; 2194 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2195 // Negative offset is not ok. FIXME: We should change BB layout to make 2196 // sure all the branches are forward. 2197 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2198 ByteOk = false; 2199 unsigned TBHLimit = ((1<<16)-1)*2; 2200 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2201 HalfWordOk = false; 2202 if (!ByteOk && !HalfWordOk) 2203 break; 2204 } 2205 2206 if (!ByteOk && !HalfWordOk) 2207 continue; 2208 2209 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2210 MachineBasicBlock *MBB = MI->getParent(); 2211 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2212 continue; 2213 2214 unsigned DeadSize = 0; 2215 bool CanDeleteLEA = false; 2216 bool BaseRegKill = false; 2217 2218 unsigned IdxReg = ~0U; 2219 bool IdxRegKill = true; 2220 if (isThumb2) { 2221 IdxReg = MI->getOperand(1).getReg(); 2222 IdxRegKill = MI->getOperand(1).isKill(); 2223 2224 bool PreservedBaseReg = 2225 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2226 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2227 continue; 2228 } else { 2229 // We're in thumb-1 mode, so we must have something like: 2230 // %idx = tLSLri %idx, 2 2231 // %base = tLEApcrelJT 2232 // %t = tLDRr %base, %idx 2233 Register BaseReg = User.MI->getOperand(0).getReg(); 2234 2235 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2236 continue; 2237 MachineInstr *Shift = User.MI->getPrevNode(); 2238 if (Shift->getOpcode() != ARM::tLSLri || 2239 Shift->getOperand(3).getImm() != 2 || 2240 !Shift->getOperand(2).isKill()) 2241 continue; 2242 IdxReg = Shift->getOperand(2).getReg(); 2243 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2244 2245 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2246 // the range is checked later, but the LEA might still clobber it and not 2247 // actually get removed. 2248 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2249 continue; 2250 2251 MachineInstr *Load = User.MI->getNextNode(); 2252 if (Load->getOpcode() != ARM::tLDRr) 2253 continue; 2254 if (Load->getOperand(1).getReg() != BaseReg || 2255 Load->getOperand(2).getReg() != ShiftedIdxReg || 2256 !Load->getOperand(2).isKill()) 2257 continue; 2258 2259 // If we're in PIC mode, there should be another ADD following. 2260 auto *TRI = STI->getRegisterInfo(); 2261 2262 // %base cannot be redefined after the load as it will appear before 2263 // TBB/TBH like: 2264 // %base = 2265 // %base = 2266 // tBB %base, %idx 2267 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2268 continue; 2269 2270 if (isPositionIndependentOrROPI) { 2271 MachineInstr *Add = Load->getNextNode(); 2272 if (Add->getOpcode() != ARM::tADDrr || 2273 Add->getOperand(2).getReg() != BaseReg || 2274 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2275 !Add->getOperand(3).isKill()) 2276 continue; 2277 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2278 continue; 2279 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2280 // IdxReg gets redefined in the middle of the sequence. 2281 continue; 2282 Add->eraseFromParent(); 2283 DeadSize += 2; 2284 } else { 2285 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2286 continue; 2287 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2288 // IdxReg gets redefined in the middle of the sequence. 2289 continue; 2290 } 2291 2292 // Now safe to delete the load and lsl. The LEA will be removed later. 2293 CanDeleteLEA = true; 2294 Shift->eraseFromParent(); 2295 Load->eraseFromParent(); 2296 DeadSize += 4; 2297 } 2298 2299 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2300 MachineInstr *CPEMI = User.CPEMI; 2301 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2302 if (!isThumb2) 2303 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2304 2305 MachineBasicBlock::iterator MI_JT = MI; 2306 MachineInstr *NewJTMI = 2307 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2308 .addReg(User.MI->getOperand(0).getReg(), 2309 getKillRegState(BaseRegKill)) 2310 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2311 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2312 .addImm(CPEMI->getOperand(0).getImm()); 2313 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2314 2315 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2316 CPEMI->setDesc(TII->get(JTOpc)); 2317 2318 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2319 NewJTMI->getOperand(0).setReg(ARM::PC); 2320 NewJTMI->getOperand(0).setIsKill(false); 2321 2322 if (CanDeleteLEA) { 2323 if (isThumb2) 2324 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2325 2326 User.MI->eraseFromParent(); 2327 DeadSize += isThumb2 ? 4 : 2; 2328 2329 // The LEA was eliminated, the TBB instruction becomes the only new user 2330 // of the jump table. 2331 User.MI = NewJTMI; 2332 User.MaxDisp = 4; 2333 User.NegOk = false; 2334 User.IsSoImm = false; 2335 User.KnownAlignment = false; 2336 } else { 2337 // The LEA couldn't be eliminated, so we must add another CPUser to 2338 // record the TBB or TBH use. 2339 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2340 auto &CPEs = CPEntries[CPEntryIdx]; 2341 auto Entry = 2342 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2343 ++Entry->RefCount; 2344 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2345 } 2346 } 2347 2348 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2349 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2350 MI->eraseFromParent(); 2351 2352 int Delta = OrigSize - NewSize + DeadSize; 2353 BBInfo[MBB->getNumber()].Size -= Delta; 2354 BBUtils->adjustBBOffsetsAfter(MBB); 2355 2356 ++NumTBs; 2357 MadeChange = true; 2358 } 2359 2360 return MadeChange; 2361 } 2362 2363 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2364 /// jump tables always branch forwards, since that's what tbb and tbh need. 2365 bool ARMConstantIslands::reorderThumb2JumpTables() { 2366 bool MadeChange = false; 2367 2368 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2369 if (!MJTI) return false; 2370 2371 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2372 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2373 MachineInstr *MI = T2JumpTables[i]; 2374 const MCInstrDesc &MCID = MI->getDesc(); 2375 unsigned NumOps = MCID.getNumOperands(); 2376 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2377 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2378 unsigned JTI = JTOP.getIndex(); 2379 assert(JTI < JT.size()); 2380 2381 // We prefer if target blocks for the jump table come after the jump 2382 // instruction so we can use TB[BH]. Loop through the target blocks 2383 // and try to adjust them such that that's true. 2384 int JTNumber = MI->getParent()->getNumber(); 2385 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2386 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2387 MachineBasicBlock *MBB = JTBBs[j]; 2388 int DTNumber = MBB->getNumber(); 2389 2390 if (DTNumber < JTNumber) { 2391 // The destination precedes the switch. Try to move the block forward 2392 // so we have a positive offset. 2393 MachineBasicBlock *NewBB = 2394 adjustJTTargetBlockForward(MBB, MI->getParent()); 2395 if (NewBB) 2396 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2397 MadeChange = true; 2398 } 2399 } 2400 } 2401 2402 return MadeChange; 2403 } 2404 2405 MachineBasicBlock *ARMConstantIslands:: 2406 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2407 // If the destination block is terminated by an unconditional branch, 2408 // try to move it; otherwise, create a new block following the jump 2409 // table that branches back to the actual target. This is a very simple 2410 // heuristic. FIXME: We can definitely improve it. 2411 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2412 SmallVector<MachineOperand, 4> Cond; 2413 SmallVector<MachineOperand, 4> CondPrior; 2414 MachineFunction::iterator BBi = BB->getIterator(); 2415 MachineFunction::iterator OldPrior = std::prev(BBi); 2416 MachineFunction::iterator OldNext = std::next(BBi); 2417 2418 // If the block terminator isn't analyzable, don't try to move the block 2419 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2420 2421 // If the block ends in an unconditional branch, move it. The prior block 2422 // has to have an analyzable terminator for us to move this one. Be paranoid 2423 // and make sure we're not trying to move the entry block of the function. 2424 if (!B && Cond.empty() && BB != &MF->front() && 2425 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2426 BB->moveAfter(JTBB); 2427 OldPrior->updateTerminator(BB); 2428 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr); 2429 // Update numbering to account for the block being moved. 2430 MF->RenumberBlocks(); 2431 ++NumJTMoved; 2432 return nullptr; 2433 } 2434 2435 // Create a new MBB for the code after the jump BB. 2436 MachineBasicBlock *NewBB = 2437 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2438 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2439 MF->insert(MBBI, NewBB); 2440 2441 // Copy live-in information to new block. 2442 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2443 NewBB->addLiveIn(RegMaskPair); 2444 2445 // Add an unconditional branch from NewBB to BB. 2446 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2447 // correspond directly to anything in the source. 2448 if (isThumb2) 2449 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2450 .addMBB(BB) 2451 .add(predOps(ARMCC::AL)); 2452 else 2453 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2454 .addMBB(BB) 2455 .add(predOps(ARMCC::AL)); 2456 2457 // Update internal data structures to account for the newly inserted MBB. 2458 MF->RenumberBlocks(NewBB); 2459 2460 // Update the CFG. 2461 NewBB->addSuccessor(BB); 2462 JTBB->replaceSuccessor(BB, NewBB); 2463 2464 ++NumJTInserted; 2465 return NewBB; 2466 } 2467 2468 /// createARMConstantIslandPass - returns an instance of the constpool 2469 /// island pass. 2470 FunctionPass *llvm::createARMConstantIslandPass() { 2471 return new ARMConstantIslands(); 2472 } 2473 2474 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2475 false, false) 2476