1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMBasicBlockInfo.h" 19 #include "ARMMachineFunctionInfo.h" 20 #include "ARMSubtarget.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Thumb2InstrInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/Format.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <iterator> 51 #include <new> 52 #include <utility> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "arm-cp-islands" 58 59 #define ARM_CP_ISLANDS_OPT_NAME \ 60 "ARM constant island placement and branch shortening pass" 61 STATISTIC(NumCPEs, "Number of constpool entries"); 62 STATISTIC(NumSplit, "Number of uncond branches inserted"); 63 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 64 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 65 STATISTIC(NumTBs, "Number of table branches generated"); 66 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 67 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 68 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 69 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 70 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 71 72 static cl::opt<bool> 73 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 74 cl::desc("Adjust basic block layout to better use TB[BH]")); 75 76 static cl::opt<unsigned> 77 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 78 cl::desc("The max number of iteration for converge")); 79 80 static cl::opt<bool> SynthesizeThumb1TBB( 81 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 82 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 83 "equivalent to the TBB/TBH instructions")); 84 85 namespace { 86 87 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 88 /// requires constant pool entries to be scattered among the instructions 89 /// inside a function. To do this, it completely ignores the normal LLVM 90 /// constant pool; instead, it places constants wherever it feels like with 91 /// special instructions. 92 /// 93 /// The terminology used in this pass includes: 94 /// Islands - Clumps of constants placed in the function. 95 /// Water - Potential places where an island could be formed. 96 /// CPE - A constant pool entry that has been placed somewhere, which 97 /// tracks a list of users. 98 class ARMConstantIslands : public MachineFunctionPass { 99 std::vector<BasicBlockInfo> BBInfo; 100 101 /// WaterList - A sorted list of basic blocks where islands could be placed 102 /// (i.e. blocks that don't fall through to the following block, due 103 /// to a return, unreachable, or unconditional branch). 104 std::vector<MachineBasicBlock*> WaterList; 105 106 /// NewWaterList - The subset of WaterList that was created since the 107 /// previous iteration by inserting unconditional branches. 108 SmallSet<MachineBasicBlock*, 4> NewWaterList; 109 110 typedef std::vector<MachineBasicBlock*>::iterator water_iterator; 111 112 /// CPUser - One user of a constant pool, keeping the machine instruction 113 /// pointer, the constant pool being referenced, and the max displacement 114 /// allowed from the instruction to the CP. The HighWaterMark records the 115 /// highest basic block where a new CPEntry can be placed. To ensure this 116 /// pass terminates, the CP entries are initially placed at the end of the 117 /// function and then move monotonically to lower addresses. The 118 /// exception to this rule is when the current CP entry for a particular 119 /// CPUser is out of range, but there is another CP entry for the same 120 /// constant value in range. We want to use the existing in-range CP 121 /// entry, but if it later moves out of range, the search for new water 122 /// should resume where it left off. The HighWaterMark is used to record 123 /// that point. 124 struct CPUser { 125 MachineInstr *MI; 126 MachineInstr *CPEMI; 127 MachineBasicBlock *HighWaterMark; 128 unsigned MaxDisp; 129 bool NegOk; 130 bool IsSoImm; 131 bool KnownAlignment; 132 133 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 134 bool neg, bool soimm) 135 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm), 136 KnownAlignment(false) { 137 HighWaterMark = CPEMI->getParent(); 138 } 139 140 /// getMaxDisp - Returns the maximum displacement supported by MI. 141 /// Correct for unknown alignment. 142 /// Conservatively subtract 2 bytes to handle weird alignment effects. 143 unsigned getMaxDisp() const { 144 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 145 } 146 }; 147 148 /// CPUsers - Keep track of all of the machine instructions that use various 149 /// constant pools and their max displacement. 150 std::vector<CPUser> CPUsers; 151 152 /// CPEntry - One per constant pool entry, keeping the machine instruction 153 /// pointer, the constpool index, and the number of CPUser's which 154 /// reference this entry. 155 struct CPEntry { 156 MachineInstr *CPEMI; 157 unsigned CPI; 158 unsigned RefCount; 159 160 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 161 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 162 }; 163 164 /// CPEntries - Keep track of all of the constant pool entry machine 165 /// instructions. For each original constpool index (i.e. those that existed 166 /// upon entry to this pass), it keeps a vector of entries. Original 167 /// elements are cloned as we go along; the clones are put in the vector of 168 /// the original element, but have distinct CPIs. 169 /// 170 /// The first half of CPEntries contains generic constants, the second half 171 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 172 /// which vector it will be in here. 173 std::vector<std::vector<CPEntry>> CPEntries; 174 175 /// Maps a JT index to the offset in CPEntries containing copies of that 176 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 177 DenseMap<int, int> JumpTableEntryIndices; 178 179 /// Maps a JT index to the LEA that actually uses the index to calculate its 180 /// base address. 181 DenseMap<int, int> JumpTableUserIndices; 182 183 /// ImmBranch - One per immediate branch, keeping the machine instruction 184 /// pointer, conditional or unconditional, the max displacement, 185 /// and (if isCond is true) the corresponding unconditional branch 186 /// opcode. 187 struct ImmBranch { 188 MachineInstr *MI; 189 unsigned MaxDisp : 31; 190 bool isCond : 1; 191 unsigned UncondBr; 192 193 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 194 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 195 }; 196 197 /// ImmBranches - Keep track of all the immediate branch instructions. 198 /// 199 std::vector<ImmBranch> ImmBranches; 200 201 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 202 /// 203 SmallVector<MachineInstr*, 4> PushPopMIs; 204 205 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 206 SmallVector<MachineInstr*, 4> T2JumpTables; 207 208 /// HasFarJump - True if any far jump instruction has been emitted during 209 /// the branch fix up pass. 210 bool HasFarJump; 211 212 MachineFunction *MF; 213 MachineConstantPool *MCP; 214 const ARMBaseInstrInfo *TII; 215 const ARMSubtarget *STI; 216 ARMFunctionInfo *AFI; 217 bool isThumb; 218 bool isThumb1; 219 bool isThumb2; 220 bool isPositionIndependentOrROPI; 221 222 public: 223 static char ID; 224 225 ARMConstantIslands() : MachineFunctionPass(ID) {} 226 227 bool runOnMachineFunction(MachineFunction &MF) override; 228 229 MachineFunctionProperties getRequiredProperties() const override { 230 return MachineFunctionProperties().set( 231 MachineFunctionProperties::Property::NoVRegs); 232 } 233 234 StringRef getPassName() const override { 235 return ARM_CP_ISLANDS_OPT_NAME; 236 } 237 238 private: 239 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 240 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 241 bool BBHasFallthrough(MachineBasicBlock *MBB); 242 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 243 unsigned getCPELogAlign(const MachineInstr *CPEMI); 244 void scanFunctionJumpTables(); 245 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 246 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 247 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 248 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 249 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 250 unsigned getCombinedIndex(const MachineInstr *CPEMI); 251 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 252 bool findAvailableWater(CPUser&U, unsigned UserOffset, 253 water_iterator &WaterIter, bool CloserWater); 254 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 255 MachineBasicBlock *&NewMBB); 256 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 257 void removeDeadCPEMI(MachineInstr *CPEMI); 258 bool removeUnusedCPEntries(); 259 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 260 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 261 bool DoDump = false); 262 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 263 CPUser &U, unsigned &Growth); 264 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 265 bool fixupImmediateBr(ImmBranch &Br); 266 bool fixupConditionalBr(ImmBranch &Br); 267 bool fixupUnconditionalBr(ImmBranch &Br); 268 bool undoLRSpillRestore(); 269 bool optimizeThumb2Instructions(); 270 bool optimizeThumb2Branches(); 271 bool reorderThumb2JumpTables(); 272 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 273 unsigned &DeadSize, bool &CanDeleteLEA, 274 bool &BaseRegKill); 275 bool optimizeThumb2JumpTables(); 276 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 277 MachineBasicBlock *JTBB); 278 279 unsigned getOffsetOf(MachineInstr *MI) const; 280 unsigned getUserOffset(CPUser&) const; 281 void dumpBBs(); 282 void verify(); 283 284 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 285 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 286 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 287 const CPUser &U) { 288 return isOffsetInRange(UserOffset, TrialOffset, 289 U.getMaxDisp(), U.NegOk, U.IsSoImm); 290 } 291 }; 292 293 char ARMConstantIslands::ID = 0; 294 295 } // end anonymous namespace 296 297 /// verify - check BBOffsets, BBSizes, alignment of islands 298 void ARMConstantIslands::verify() { 299 #ifndef NDEBUG 300 assert(std::is_sorted(MF->begin(), MF->end(), 301 [this](const MachineBasicBlock &LHS, 302 const MachineBasicBlock &RHS) { 303 return BBInfo[LHS.getNumber()].postOffset() < 304 BBInfo[RHS.getNumber()].postOffset(); 305 })); 306 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 307 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 308 CPUser &U = CPUsers[i]; 309 unsigned UserOffset = getUserOffset(U); 310 // Verify offset using the real max displacement without the safety 311 // adjustment. 312 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 313 /* DoDump = */ true)) { 314 DEBUG(dbgs() << "OK\n"); 315 continue; 316 } 317 DEBUG(dbgs() << "Out of range.\n"); 318 dumpBBs(); 319 DEBUG(MF->dump()); 320 llvm_unreachable("Constant pool entry out of range!"); 321 } 322 #endif 323 } 324 325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 326 /// print block size and offset information - debugging 327 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 328 DEBUG({ 329 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 330 const BasicBlockInfo &BBI = BBInfo[J]; 331 dbgs() << format("%08x BB#%u\t", BBI.Offset, J) 332 << " kb=" << unsigned(BBI.KnownBits) 333 << " ua=" << unsigned(BBI.Unalign) 334 << " pa=" << unsigned(BBI.PostAlign) 335 << format(" size=%#x\n", BBInfo[J].Size); 336 } 337 }); 338 } 339 #endif 340 341 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 342 MF = &mf; 343 MCP = mf.getConstantPool(); 344 345 DEBUG(dbgs() << "***** ARMConstantIslands: " 346 << MCP->getConstants().size() << " CP entries, aligned to " 347 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 348 349 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 350 TII = STI->getInstrInfo(); 351 isPositionIndependentOrROPI = 352 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 353 AFI = MF->getInfo<ARMFunctionInfo>(); 354 355 isThumb = AFI->isThumbFunction(); 356 isThumb1 = AFI->isThumb1OnlyFunction(); 357 isThumb2 = AFI->isThumb2Function(); 358 359 HasFarJump = false; 360 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 361 362 // This pass invalidates liveness information when it splits basic blocks. 363 MF->getRegInfo().invalidateLiveness(); 364 365 // Renumber all of the machine basic blocks in the function, guaranteeing that 366 // the numbers agree with the position of the block in the function. 367 MF->RenumberBlocks(); 368 369 // Try to reorder and otherwise adjust the block layout to make good use 370 // of the TB[BH] instructions. 371 bool MadeChange = false; 372 if (GenerateTBB && AdjustJumpTableBlocks) { 373 scanFunctionJumpTables(); 374 MadeChange |= reorderThumb2JumpTables(); 375 // Data is out of date, so clear it. It'll be re-computed later. 376 T2JumpTables.clear(); 377 // Blocks may have shifted around. Keep the numbering up to date. 378 MF->RenumberBlocks(); 379 } 380 381 // Perform the initial placement of the constant pool entries. To start with, 382 // we put them all at the end of the function. 383 std::vector<MachineInstr*> CPEMIs; 384 if (!MCP->isEmpty()) 385 doInitialConstPlacement(CPEMIs); 386 387 if (MF->getJumpTableInfo()) 388 doInitialJumpTablePlacement(CPEMIs); 389 390 /// The next UID to take is the first unused one. 391 AFI->initPICLabelUId(CPEMIs.size()); 392 393 // Do the initial scan of the function, building up information about the 394 // sizes of each block, the location of all the water, and finding all of the 395 // constant pool users. 396 initializeFunctionInfo(CPEMIs); 397 CPEMIs.clear(); 398 DEBUG(dumpBBs()); 399 400 // Functions with jump tables need an alignment of 4 because they use the ADR 401 // instruction, which aligns the PC to 4 bytes before adding an offset. 402 if (!T2JumpTables.empty()) 403 MF->ensureAlignment(2); 404 405 /// Remove dead constant pool entries. 406 MadeChange |= removeUnusedCPEntries(); 407 408 // Iteratively place constant pool entries and fix up branches until there 409 // is no change. 410 unsigned NoCPIters = 0, NoBRIters = 0; 411 while (true) { 412 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 413 bool CPChange = false; 414 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 415 // For most inputs, it converges in no more than 5 iterations. 416 // If it doesn't end in 10, the input may have huge BB or many CPEs. 417 // In this case, we will try different heuristics. 418 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 419 if (CPChange && ++NoCPIters > CPMaxIteration) 420 report_fatal_error("Constant Island pass failed to converge!"); 421 DEBUG(dumpBBs()); 422 423 // Clear NewWaterList now. If we split a block for branches, it should 424 // appear as "new water" for the next iteration of constant pool placement. 425 NewWaterList.clear(); 426 427 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 428 bool BRChange = false; 429 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 430 BRChange |= fixupImmediateBr(ImmBranches[i]); 431 if (BRChange && ++NoBRIters > 30) 432 report_fatal_error("Branch Fix Up pass failed to converge!"); 433 DEBUG(dumpBBs()); 434 435 if (!CPChange && !BRChange) 436 break; 437 MadeChange = true; 438 } 439 440 // Shrink 32-bit Thumb2 load and store instructions. 441 if (isThumb2 && !STI->prefers32BitThumb()) 442 MadeChange |= optimizeThumb2Instructions(); 443 444 // Shrink 32-bit branch instructions. 445 if (isThumb && STI->hasV8MBaselineOps()) 446 MadeChange |= optimizeThumb2Branches(); 447 448 // Optimize jump tables using TBB / TBH. 449 if (GenerateTBB && !STI->genExecuteOnly()) 450 MadeChange |= optimizeThumb2JumpTables(); 451 452 // After a while, this might be made debug-only, but it is not expensive. 453 verify(); 454 455 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 456 // undo the spill / restore of LR if possible. 457 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 458 MadeChange |= undoLRSpillRestore(); 459 460 // Save the mapping between original and cloned constpool entries. 461 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 462 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 463 const CPEntry & CPE = CPEntries[i][j]; 464 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 465 AFI->recordCPEClone(i, CPE.CPI); 466 } 467 } 468 469 DEBUG(dbgs() << '\n'; dumpBBs()); 470 471 BBInfo.clear(); 472 WaterList.clear(); 473 CPUsers.clear(); 474 CPEntries.clear(); 475 JumpTableEntryIndices.clear(); 476 JumpTableUserIndices.clear(); 477 ImmBranches.clear(); 478 PushPopMIs.clear(); 479 T2JumpTables.clear(); 480 481 return MadeChange; 482 } 483 484 /// \brief Perform the initial placement of the regular constant pool entries. 485 /// To start with, we put them all at the end of the function. 486 void 487 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 488 // Create the basic block to hold the CPE's. 489 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 490 MF->push_back(BB); 491 492 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 493 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 494 495 // Mark the basic block as required by the const-pool. 496 BB->setAlignment(MaxAlign); 497 498 // The function needs to be as aligned as the basic blocks. The linker may 499 // move functions around based on their alignment. 500 MF->ensureAlignment(BB->getAlignment()); 501 502 // Order the entries in BB by descending alignment. That ensures correct 503 // alignment of all entries as long as BB is sufficiently aligned. Keep 504 // track of the insertion point for each alignment. We are going to bucket 505 // sort the entries as they are created. 506 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 507 508 // Add all of the constants from the constant pool to the end block, use an 509 // identity mapping of CPI's to CPE's. 510 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 511 512 const DataLayout &TD = MF->getDataLayout(); 513 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 514 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 515 assert(Size >= 4 && "Too small constant pool entry"); 516 unsigned Align = CPs[i].getAlignment(); 517 assert(isPowerOf2_32(Align) && "Invalid alignment"); 518 // Verify that all constant pool entries are a multiple of their alignment. 519 // If not, we would have to pad them out so that instructions stay aligned. 520 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 521 522 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 523 unsigned LogAlign = Log2_32(Align); 524 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 525 MachineInstr *CPEMI = 526 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 527 .addImm(i).addConstantPoolIndex(i).addImm(Size); 528 CPEMIs.push_back(CPEMI); 529 530 // Ensure that future entries with higher alignment get inserted before 531 // CPEMI. This is bucket sort with iterators. 532 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 533 if (InsPoint[a] == InsAt) 534 InsPoint[a] = CPEMI; 535 536 // Add a new CPEntry, but no corresponding CPUser yet. 537 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 538 ++NumCPEs; 539 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 540 << Size << ", align = " << Align <<'\n'); 541 } 542 DEBUG(BB->dump()); 543 } 544 545 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH 546 /// instructions can be made more efficient if the jump table immediately 547 /// follows the instruction, it's best to place them immediately next to their 548 /// jumps to begin with. In almost all cases they'll never be moved from that 549 /// position. 550 void ARMConstantIslands::doInitialJumpTablePlacement( 551 std::vector<MachineInstr *> &CPEMIs) { 552 unsigned i = CPEntries.size(); 553 auto MJTI = MF->getJumpTableInfo(); 554 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 555 556 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 557 for (MachineBasicBlock &MBB : *MF) { 558 auto MI = MBB.getLastNonDebugInstr(); 559 if (MI == MBB.end()) 560 continue; 561 562 unsigned JTOpcode; 563 switch (MI->getOpcode()) { 564 default: 565 continue; 566 case ARM::BR_JTadd: 567 case ARM::BR_JTr: 568 case ARM::tBR_JTr: 569 case ARM::BR_JTm: 570 JTOpcode = ARM::JUMPTABLE_ADDRS; 571 break; 572 case ARM::t2BR_JT: 573 JTOpcode = ARM::JUMPTABLE_INSTS; 574 break; 575 case ARM::tTBB_JT: 576 case ARM::t2TBB_JT: 577 JTOpcode = ARM::JUMPTABLE_TBB; 578 break; 579 case ARM::tTBH_JT: 580 case ARM::t2TBH_JT: 581 JTOpcode = ARM::JUMPTABLE_TBH; 582 break; 583 } 584 585 unsigned NumOps = MI->getDesc().getNumOperands(); 586 MachineOperand JTOp = 587 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 588 unsigned JTI = JTOp.getIndex(); 589 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 590 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 591 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 592 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 593 DebugLoc(), TII->get(JTOpcode)) 594 .addImm(i++) 595 .addJumpTableIndex(JTI) 596 .addImm(Size); 597 CPEMIs.push_back(CPEMI); 598 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 599 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 600 if (!LastCorrectlyNumberedBB) 601 LastCorrectlyNumberedBB = &MBB; 602 } 603 604 // If we did anything then we need to renumber the subsequent blocks. 605 if (LastCorrectlyNumberedBB) 606 MF->RenumberBlocks(LastCorrectlyNumberedBB); 607 } 608 609 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 610 /// into the block immediately after it. 611 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 612 // Get the next machine basic block in the function. 613 MachineFunction::iterator MBBI = MBB->getIterator(); 614 // Can't fall off end of function. 615 if (std::next(MBBI) == MBB->getParent()->end()) 616 return false; 617 618 MachineBasicBlock *NextBB = &*std::next(MBBI); 619 if (!MBB->isSuccessor(NextBB)) 620 return false; 621 622 // Try to analyze the end of the block. A potential fallthrough may already 623 // have an unconditional branch for whatever reason. 624 MachineBasicBlock *TBB, *FBB; 625 SmallVector<MachineOperand, 4> Cond; 626 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 627 return TooDifficult || FBB == nullptr; 628 } 629 630 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 631 /// look up the corresponding CPEntry. 632 ARMConstantIslands::CPEntry 633 *ARMConstantIslands::findConstPoolEntry(unsigned CPI, 634 const MachineInstr *CPEMI) { 635 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 636 // Number of entries per constpool index should be small, just do a 637 // linear search. 638 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 639 if (CPEs[i].CPEMI == CPEMI) 640 return &CPEs[i]; 641 } 642 return nullptr; 643 } 644 645 /// getCPELogAlign - Returns the required alignment of the constant pool entry 646 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 647 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 648 switch (CPEMI->getOpcode()) { 649 case ARM::CONSTPOOL_ENTRY: 650 break; 651 case ARM::JUMPTABLE_TBB: 652 return isThumb1 ? 2 : 0; 653 case ARM::JUMPTABLE_TBH: 654 return isThumb1 ? 2 : 1; 655 case ARM::JUMPTABLE_INSTS: 656 return 1; 657 case ARM::JUMPTABLE_ADDRS: 658 return 2; 659 default: 660 llvm_unreachable("unknown constpool entry kind"); 661 } 662 663 unsigned CPI = getCombinedIndex(CPEMI); 664 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 665 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 666 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 667 return Log2_32(Align); 668 } 669 670 /// scanFunctionJumpTables - Do a scan of the function, building up 671 /// information about the sizes of each block and the locations of all 672 /// the jump tables. 673 void ARMConstantIslands::scanFunctionJumpTables() { 674 for (MachineBasicBlock &MBB : *MF) { 675 for (MachineInstr &I : MBB) 676 if (I.isBranch() && 677 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 678 T2JumpTables.push_back(&I); 679 } 680 } 681 682 /// initializeFunctionInfo - Do the initial scan of the function, building up 683 /// information about the sizes of each block, the location of all the water, 684 /// and finding all of the constant pool users. 685 void ARMConstantIslands:: 686 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 687 688 BBInfo = computeAllBlockSizes(MF); 689 690 // The known bits of the entry block offset are determined by the function 691 // alignment. 692 BBInfo.front().KnownBits = MF->getAlignment(); 693 694 // Compute block offsets and known bits. 695 adjustBBOffsetsAfter(&MF->front()); 696 697 // Now go back through the instructions and build up our data structures. 698 for (MachineBasicBlock &MBB : *MF) { 699 // If this block doesn't fall through into the next MBB, then this is 700 // 'water' that a constant pool island could be placed. 701 if (!BBHasFallthrough(&MBB)) 702 WaterList.push_back(&MBB); 703 704 for (MachineInstr &I : MBB) { 705 if (I.isDebugValue()) 706 continue; 707 708 unsigned Opc = I.getOpcode(); 709 if (I.isBranch()) { 710 bool isCond = false; 711 unsigned Bits = 0; 712 unsigned Scale = 1; 713 int UOpc = Opc; 714 switch (Opc) { 715 default: 716 continue; // Ignore other JT branches 717 case ARM::t2BR_JT: 718 case ARM::tBR_JTr: 719 T2JumpTables.push_back(&I); 720 continue; // Does not get an entry in ImmBranches 721 case ARM::Bcc: 722 isCond = true; 723 UOpc = ARM::B; 724 LLVM_FALLTHROUGH; 725 case ARM::B: 726 Bits = 24; 727 Scale = 4; 728 break; 729 case ARM::tBcc: 730 isCond = true; 731 UOpc = ARM::tB; 732 Bits = 8; 733 Scale = 2; 734 break; 735 case ARM::tB: 736 Bits = 11; 737 Scale = 2; 738 break; 739 case ARM::t2Bcc: 740 isCond = true; 741 UOpc = ARM::t2B; 742 Bits = 20; 743 Scale = 2; 744 break; 745 case ARM::t2B: 746 Bits = 24; 747 Scale = 2; 748 break; 749 } 750 751 // Record this immediate branch. 752 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 753 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 754 } 755 756 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 757 PushPopMIs.push_back(&I); 758 759 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 760 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 761 Opc == ARM::JUMPTABLE_TBH) 762 continue; 763 764 // Scan the instructions for constant pool operands. 765 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 766 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 767 // We found one. The addressing mode tells us the max displacement 768 // from the PC that this instruction permits. 769 770 // Basic size info comes from the TSFlags field. 771 unsigned Bits = 0; 772 unsigned Scale = 1; 773 bool NegOk = false; 774 bool IsSoImm = false; 775 776 switch (Opc) { 777 default: 778 llvm_unreachable("Unknown addressing mode for CP reference!"); 779 780 // Taking the address of a CP entry. 781 case ARM::LEApcrel: 782 case ARM::LEApcrelJT: 783 // This takes a SoImm, which is 8 bit immediate rotated. We'll 784 // pretend the maximum offset is 255 * 4. Since each instruction 785 // 4 byte wide, this is always correct. We'll check for other 786 // displacements that fits in a SoImm as well. 787 Bits = 8; 788 Scale = 4; 789 NegOk = true; 790 IsSoImm = true; 791 break; 792 case ARM::t2LEApcrel: 793 case ARM::t2LEApcrelJT: 794 Bits = 12; 795 NegOk = true; 796 break; 797 case ARM::tLEApcrel: 798 case ARM::tLEApcrelJT: 799 Bits = 8; 800 Scale = 4; 801 break; 802 803 case ARM::LDRBi12: 804 case ARM::LDRi12: 805 case ARM::LDRcp: 806 case ARM::t2LDRpci: 807 case ARM::t2LDRHpci: 808 case ARM::t2LDRBpci: 809 Bits = 12; // +-offset_12 810 NegOk = true; 811 break; 812 813 case ARM::tLDRpci: 814 Bits = 8; 815 Scale = 4; // +(offset_8*4) 816 break; 817 818 case ARM::VLDRD: 819 case ARM::VLDRS: 820 Bits = 8; 821 Scale = 4; // +-(offset_8*4) 822 NegOk = true; 823 break; 824 825 case ARM::tLDRHi: 826 Bits = 5; 827 Scale = 2; // +(offset_5*2) 828 break; 829 } 830 831 // Remember that this is a user of a CP entry. 832 unsigned CPI = I.getOperand(op).getIndex(); 833 if (I.getOperand(op).isJTI()) { 834 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 835 CPI = JumpTableEntryIndices[CPI]; 836 } 837 838 MachineInstr *CPEMI = CPEMIs[CPI]; 839 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 840 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 841 842 // Increment corresponding CPEntry reference count. 843 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 844 assert(CPE && "Cannot find a corresponding CPEntry!"); 845 CPE->RefCount++; 846 847 // Instructions can only use one CP entry, don't bother scanning the 848 // rest of the operands. 849 break; 850 } 851 } 852 } 853 } 854 855 /// getOffsetOf - Return the current offset of the specified machine instruction 856 /// from the start of the function. This offset changes as stuff is moved 857 /// around inside the function. 858 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 859 MachineBasicBlock *MBB = MI->getParent(); 860 861 // The offset is composed of two things: the sum of the sizes of all MBB's 862 // before this instruction's block, and the offset from the start of the block 863 // it is in. 864 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 865 866 // Sum instructions before MI in MBB. 867 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 868 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 869 Offset += TII->getInstSizeInBytes(*I); 870 } 871 return Offset; 872 } 873 874 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 875 /// ID. 876 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 877 const MachineBasicBlock *RHS) { 878 return LHS->getNumber() < RHS->getNumber(); 879 } 880 881 /// updateForInsertedWaterBlock - When a block is newly inserted into the 882 /// machine function, it upsets all of the block numbers. Renumber the blocks 883 /// and update the arrays that parallel this numbering. 884 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 885 // Renumber the MBB's to keep them consecutive. 886 NewBB->getParent()->RenumberBlocks(NewBB); 887 888 // Insert an entry into BBInfo to align it properly with the (newly 889 // renumbered) block numbers. 890 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 891 892 // Next, update WaterList. Specifically, we need to add NewMBB as having 893 // available water after it. 894 water_iterator IP = 895 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 896 CompareMBBNumbers); 897 WaterList.insert(IP, NewBB); 898 } 899 900 /// Split the basic block containing MI into two blocks, which are joined by 901 /// an unconditional branch. Update data structures and renumber blocks to 902 /// account for this change and returns the newly created block. 903 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 904 MachineBasicBlock *OrigBB = MI->getParent(); 905 906 // Create a new MBB for the code after the OrigBB. 907 MachineBasicBlock *NewBB = 908 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 909 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 910 MF->insert(MBBI, NewBB); 911 912 // Splice the instructions starting with MI over to NewBB. 913 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 914 915 // Add an unconditional branch from OrigBB to NewBB. 916 // Note the new unconditional branch is not being recorded. 917 // There doesn't seem to be meaningful DebugInfo available; this doesn't 918 // correspond to anything in the source. 919 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 920 if (!isThumb) 921 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 922 else 923 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 924 .addMBB(NewBB) 925 .add(predOps(ARMCC::AL)); 926 ++NumSplit; 927 928 // Update the CFG. All succs of OrigBB are now succs of NewBB. 929 NewBB->transferSuccessors(OrigBB); 930 931 // OrigBB branches to NewBB. 932 OrigBB->addSuccessor(NewBB); 933 934 // Update internal data structures to account for the newly inserted MBB. 935 // This is almost the same as updateForInsertedWaterBlock, except that 936 // the Water goes after OrigBB, not NewBB. 937 MF->RenumberBlocks(NewBB); 938 939 // Insert an entry into BBInfo to align it properly with the (newly 940 // renumbered) block numbers. 941 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 942 943 // Next, update WaterList. Specifically, we need to add OrigMBB as having 944 // available water after it (but not if it's already there, which happens 945 // when splitting before a conditional branch that is followed by an 946 // unconditional branch - in that case we want to insert NewBB). 947 water_iterator IP = 948 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 949 CompareMBBNumbers); 950 MachineBasicBlock* WaterBB = *IP; 951 if (WaterBB == OrigBB) 952 WaterList.insert(std::next(IP), NewBB); 953 else 954 WaterList.insert(IP, OrigBB); 955 NewWaterList.insert(OrigBB); 956 957 // Figure out how large the OrigBB is. As the first half of the original 958 // block, it cannot contain a tablejump. The size includes 959 // the new jump we added. (It should be possible to do this without 960 // recounting everything, but it's very confusing, and this is rarely 961 // executed.) 962 computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]); 963 964 // Figure out how large the NewMBB is. As the second half of the original 965 // block, it may contain a tablejump. 966 computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]); 967 968 // All BBOffsets following these blocks must be modified. 969 adjustBBOffsetsAfter(OrigBB); 970 971 return NewBB; 972 } 973 974 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 975 /// displacement computation. Update U.KnownAlignment to match its current 976 /// basic block location. 977 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 978 unsigned UserOffset = getOffsetOf(U.MI); 979 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 980 unsigned KnownBits = BBI.internalKnownBits(); 981 982 // The value read from PC is offset from the actual instruction address. 983 UserOffset += (isThumb ? 4 : 8); 984 985 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 986 // Make sure U.getMaxDisp() returns a constrained range. 987 U.KnownAlignment = (KnownBits >= 2); 988 989 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 990 // purposes of the displacement computation; compensate for that here. 991 // For unknown alignments, getMaxDisp() constrains the range instead. 992 if (isThumb && U.KnownAlignment) 993 UserOffset &= ~3u; 994 995 return UserOffset; 996 } 997 998 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 999 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1000 /// constant pool entry). 1001 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1002 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1003 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1004 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1005 unsigned TrialOffset, unsigned MaxDisp, 1006 bool NegativeOK, bool IsSoImm) { 1007 if (UserOffset <= TrialOffset) { 1008 // User before the Trial. 1009 if (TrialOffset - UserOffset <= MaxDisp) 1010 return true; 1011 // FIXME: Make use full range of soimm values. 1012 } else if (NegativeOK) { 1013 if (UserOffset - TrialOffset <= MaxDisp) 1014 return true; 1015 // FIXME: Make use full range of soimm values. 1016 } 1017 return false; 1018 } 1019 1020 /// isWaterInRange - Returns true if a CPE placed after the specified 1021 /// Water (a basic block) will be in range for the specific MI. 1022 /// 1023 /// Compute how much the function will grow by inserting a CPE after Water. 1024 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1025 MachineBasicBlock* Water, CPUser &U, 1026 unsigned &Growth) { 1027 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1028 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1029 unsigned NextBlockOffset, NextBlockAlignment; 1030 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1031 if (++NextBlock == MF->end()) { 1032 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1033 NextBlockAlignment = 0; 1034 } else { 1035 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1036 NextBlockAlignment = NextBlock->getAlignment(); 1037 } 1038 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1039 unsigned CPEEnd = CPEOffset + Size; 1040 1041 // The CPE may be able to hide in the alignment padding before the next 1042 // block. It may also cause more padding to be required if it is more aligned 1043 // that the next block. 1044 if (CPEEnd > NextBlockOffset) { 1045 Growth = CPEEnd - NextBlockOffset; 1046 // Compute the padding that would go at the end of the CPE to align the next 1047 // block. 1048 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1049 1050 // If the CPE is to be inserted before the instruction, that will raise 1051 // the offset of the instruction. Also account for unknown alignment padding 1052 // in blocks between CPE and the user. 1053 if (CPEOffset < UserOffset) 1054 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1055 } else 1056 // CPE fits in existing padding. 1057 Growth = 0; 1058 1059 return isOffsetInRange(UserOffset, CPEOffset, U); 1060 } 1061 1062 /// isCPEntryInRange - Returns true if the distance between specific MI and 1063 /// specific ConstPool entry instruction can fit in MI's displacement field. 1064 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1065 MachineInstr *CPEMI, unsigned MaxDisp, 1066 bool NegOk, bool DoDump) { 1067 unsigned CPEOffset = getOffsetOf(CPEMI); 1068 1069 if (DoDump) { 1070 DEBUG({ 1071 unsigned Block = MI->getParent()->getNumber(); 1072 const BasicBlockInfo &BBI = BBInfo[Block]; 1073 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1074 << " max delta=" << MaxDisp 1075 << format(" insn address=%#x", UserOffset) 1076 << " in BB#" << Block << ": " 1077 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1078 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1079 int(CPEOffset-UserOffset)); 1080 }); 1081 } 1082 1083 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1084 } 1085 1086 #ifndef NDEBUG 1087 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1088 /// unconditionally branches to its only successor. 1089 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1090 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1091 return false; 1092 1093 MachineBasicBlock *Succ = *MBB->succ_begin(); 1094 MachineBasicBlock *Pred = *MBB->pred_begin(); 1095 MachineInstr *PredMI = &Pred->back(); 1096 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1097 || PredMI->getOpcode() == ARM::t2B) 1098 return PredMI->getOperand(0).getMBB() == Succ; 1099 return false; 1100 } 1101 #endif // NDEBUG 1102 1103 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1104 unsigned BBNum = BB->getNumber(); 1105 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1106 // Get the offset and known bits at the end of the layout predecessor. 1107 // Include the alignment of the current block. 1108 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1109 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1110 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1111 1112 // This is where block i begins. Stop if the offset is already correct, 1113 // and we have updated 2 blocks. This is the maximum number of blocks 1114 // changed before calling this function. 1115 if (i > BBNum + 2 && 1116 BBInfo[i].Offset == Offset && 1117 BBInfo[i].KnownBits == KnownBits) 1118 break; 1119 1120 BBInfo[i].Offset = Offset; 1121 BBInfo[i].KnownBits = KnownBits; 1122 } 1123 } 1124 1125 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1126 /// and instruction CPEMI, and decrement its refcount. If the refcount 1127 /// becomes 0 remove the entry and instruction. Returns true if we removed 1128 /// the entry, false if we didn't. 1129 1130 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1131 MachineInstr *CPEMI) { 1132 // Find the old entry. Eliminate it if it is no longer used. 1133 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1134 assert(CPE && "Unexpected!"); 1135 if (--CPE->RefCount == 0) { 1136 removeDeadCPEMI(CPEMI); 1137 CPE->CPEMI = nullptr; 1138 --NumCPEs; 1139 return true; 1140 } 1141 return false; 1142 } 1143 1144 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1145 if (CPEMI->getOperand(1).isCPI()) 1146 return CPEMI->getOperand(1).getIndex(); 1147 1148 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1149 } 1150 1151 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1152 /// if not, see if an in-range clone of the CPE is in range, and if so, 1153 /// change the data structures so the user references the clone. Returns: 1154 /// 0 = no existing entry found 1155 /// 1 = entry found, and there were no code insertions or deletions 1156 /// 2 = entry found, and there were code insertions or deletions 1157 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) 1158 { 1159 MachineInstr *UserMI = U.MI; 1160 MachineInstr *CPEMI = U.CPEMI; 1161 1162 // Check to see if the CPE is already in-range. 1163 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1164 true)) { 1165 DEBUG(dbgs() << "In range\n"); 1166 return 1; 1167 } 1168 1169 // No. Look for previously created clones of the CPE that are in range. 1170 unsigned CPI = getCombinedIndex(CPEMI); 1171 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1172 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1173 // We already tried this one 1174 if (CPEs[i].CPEMI == CPEMI) 1175 continue; 1176 // Removing CPEs can leave empty entries, skip 1177 if (CPEs[i].CPEMI == nullptr) 1178 continue; 1179 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1180 U.NegOk)) { 1181 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1182 << CPEs[i].CPI << "\n"); 1183 // Point the CPUser node to the replacement 1184 U.CPEMI = CPEs[i].CPEMI; 1185 // Change the CPI in the instruction operand to refer to the clone. 1186 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1187 if (UserMI->getOperand(j).isCPI()) { 1188 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1189 break; 1190 } 1191 // Adjust the refcount of the clone... 1192 CPEs[i].RefCount++; 1193 // ...and the original. If we didn't remove the old entry, none of the 1194 // addresses changed, so we don't need another pass. 1195 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1196 } 1197 } 1198 return 0; 1199 } 1200 1201 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1202 /// the specific unconditional branch instruction. 1203 static inline unsigned getUnconditionalBrDisp(int Opc) { 1204 switch (Opc) { 1205 case ARM::tB: 1206 return ((1<<10)-1)*2; 1207 case ARM::t2B: 1208 return ((1<<23)-1)*2; 1209 default: 1210 break; 1211 } 1212 1213 return ((1<<23)-1)*4; 1214 } 1215 1216 /// findAvailableWater - Look for an existing entry in the WaterList in which 1217 /// we can place the CPE referenced from U so it's within range of U's MI. 1218 /// Returns true if found, false if not. If it returns true, WaterIter 1219 /// is set to the WaterList entry. For Thumb, prefer water that will not 1220 /// introduce padding to water that will. To ensure that this pass 1221 /// terminates, the CPE location for a particular CPUser is only allowed to 1222 /// move to a lower address, so search backward from the end of the list and 1223 /// prefer the first water that is in range. 1224 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1225 water_iterator &WaterIter, 1226 bool CloserWater) { 1227 if (WaterList.empty()) 1228 return false; 1229 1230 unsigned BestGrowth = ~0u; 1231 // The nearest water without splitting the UserBB is right after it. 1232 // If the distance is still large (we have a big BB), then we need to split it 1233 // if we don't converge after certain iterations. This helps the following 1234 // situation to converge: 1235 // BB0: 1236 // Big BB 1237 // BB1: 1238 // Constant Pool 1239 // When a CP access is out of range, BB0 may be used as water. However, 1240 // inserting islands between BB0 and BB1 makes other accesses out of range. 1241 MachineBasicBlock *UserBB = U.MI->getParent(); 1242 unsigned MinNoSplitDisp = 1243 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1244 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1245 return false; 1246 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1247 --IP) { 1248 MachineBasicBlock* WaterBB = *IP; 1249 // Check if water is in range and is either at a lower address than the 1250 // current "high water mark" or a new water block that was created since 1251 // the previous iteration by inserting an unconditional branch. In the 1252 // latter case, we want to allow resetting the high water mark back to 1253 // this new water since we haven't seen it before. Inserting branches 1254 // should be relatively uncommon and when it does happen, we want to be 1255 // sure to take advantage of it for all the CPEs near that block, so that 1256 // we don't insert more branches than necessary. 1257 // When CloserWater is true, we try to find the lowest address after (or 1258 // equal to) user MI's BB no matter of padding growth. 1259 unsigned Growth; 1260 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1261 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1262 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1263 Growth < BestGrowth) { 1264 // This is the least amount of required padding seen so far. 1265 BestGrowth = Growth; 1266 WaterIter = IP; 1267 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber() 1268 << " Growth=" << Growth << '\n'); 1269 1270 if (CloserWater && WaterBB == U.MI->getParent()) 1271 return true; 1272 // Keep looking unless it is perfect and we're not looking for the lowest 1273 // possible address. 1274 if (!CloserWater && BestGrowth == 0) 1275 return true; 1276 } 1277 if (IP == B) 1278 break; 1279 } 1280 return BestGrowth != ~0u; 1281 } 1282 1283 /// createNewWater - No existing WaterList entry will work for 1284 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1285 /// block is used if in range, and the conditional branch munged so control 1286 /// flow is correct. Otherwise the block is split to create a hole with an 1287 /// unconditional branch around it. In either case NewMBB is set to a 1288 /// block following which the new island can be inserted (the WaterList 1289 /// is not adjusted). 1290 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1291 unsigned UserOffset, 1292 MachineBasicBlock *&NewMBB) { 1293 CPUser &U = CPUsers[CPUserIndex]; 1294 MachineInstr *UserMI = U.MI; 1295 MachineInstr *CPEMI = U.CPEMI; 1296 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1297 MachineBasicBlock *UserMBB = UserMI->getParent(); 1298 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1299 1300 // If the block does not end in an unconditional branch already, and if the 1301 // end of the block is within range, make new water there. (The addition 1302 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1303 // Thumb2, 2 on Thumb1. 1304 if (BBHasFallthrough(UserMBB)) { 1305 // Size of branch to insert. 1306 unsigned Delta = isThumb1 ? 2 : 4; 1307 // Compute the offset where the CPE will begin. 1308 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1309 1310 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1311 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber() 1312 << format(", expected CPE offset %#x\n", CPEOffset)); 1313 NewMBB = &*++UserMBB->getIterator(); 1314 // Add an unconditional branch from UserMBB to fallthrough block. Record 1315 // it for branch lengthening; this new branch will not get out of range, 1316 // but if the preceding conditional branch is out of range, the targets 1317 // will be exchanged, and the altered branch may be out of range, so the 1318 // machinery has to know about it. 1319 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1320 if (!isThumb) 1321 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1322 else 1323 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1324 .addMBB(NewMBB) 1325 .add(predOps(ARMCC::AL)); 1326 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1327 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1328 MaxDisp, false, UncondBr)); 1329 computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]); 1330 adjustBBOffsetsAfter(UserMBB); 1331 return; 1332 } 1333 } 1334 1335 // What a big block. Find a place within the block to split it. This is a 1336 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1337 // entries are 4 bytes: if instruction I references island CPE, and 1338 // instruction I+1 references CPE', it will not work well to put CPE as far 1339 // forward as possible, since then CPE' cannot immediately follow it (that 1340 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1341 // need to create a new island. So, we make a first guess, then walk through 1342 // the instructions between the one currently being looked at and the 1343 // possible insertion point, and make sure any other instructions that 1344 // reference CPEs will be able to use the same island area; if not, we back 1345 // up the insertion point. 1346 1347 // Try to split the block so it's fully aligned. Compute the latest split 1348 // point where we can add a 4-byte branch instruction, and then align to 1349 // LogAlign which is the largest possible alignment in the function. 1350 unsigned LogAlign = MF->getAlignment(); 1351 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1352 unsigned KnownBits = UserBBI.internalKnownBits(); 1353 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1354 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1355 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1356 BaseInsertOffset)); 1357 1358 // The 4 in the following is for the unconditional branch we'll be inserting 1359 // (allows for long branch on Thumb1). Alignment of the island is handled 1360 // inside isOffsetInRange. 1361 BaseInsertOffset -= 4; 1362 1363 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1364 << " la=" << LogAlign 1365 << " kb=" << KnownBits 1366 << " up=" << UPad << '\n'); 1367 1368 // This could point off the end of the block if we've already got constant 1369 // pool entries following this block; only the last one is in the water list. 1370 // Back past any possible branches (allow for a conditional and a maximally 1371 // long unconditional). 1372 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1373 // Ensure BaseInsertOffset is larger than the offset of the instruction 1374 // following UserMI so that the loop which searches for the split point 1375 // iterates at least once. 1376 BaseInsertOffset = 1377 std::max(UserBBI.postOffset() - UPad - 8, 1378 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1379 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1380 } 1381 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1382 CPEMI->getOperand(2).getImm(); 1383 MachineBasicBlock::iterator MI = UserMI; 1384 ++MI; 1385 unsigned CPUIndex = CPUserIndex+1; 1386 unsigned NumCPUsers = CPUsers.size(); 1387 MachineInstr *LastIT = nullptr; 1388 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1389 Offset < BaseInsertOffset; 1390 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1391 assert(MI != UserMBB->end() && "Fell off end of block"); 1392 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1393 CPUser &U = CPUsers[CPUIndex]; 1394 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1395 // Shift intertion point by one unit of alignment so it is within reach. 1396 BaseInsertOffset -= 1u << LogAlign; 1397 EndInsertOffset -= 1u << LogAlign; 1398 } 1399 // This is overly conservative, as we don't account for CPEMIs being 1400 // reused within the block, but it doesn't matter much. Also assume CPEs 1401 // are added in order with alignment padding. We may eventually be able 1402 // to pack the aligned CPEs better. 1403 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1404 CPUIndex++; 1405 } 1406 1407 // Remember the last IT instruction. 1408 if (MI->getOpcode() == ARM::t2IT) 1409 LastIT = &*MI; 1410 } 1411 1412 --MI; 1413 1414 // Avoid splitting an IT block. 1415 if (LastIT) { 1416 unsigned PredReg = 0; 1417 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1418 if (CC != ARMCC::AL) 1419 MI = LastIT; 1420 } 1421 1422 // We really must not split an IT block. 1423 DEBUG(unsigned PredReg; 1424 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1425 1426 NewMBB = splitBlockBeforeInstr(&*MI); 1427 } 1428 1429 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1430 /// is out-of-range. If so, pick up the constant pool value and move it some 1431 /// place in-range. Return true if we changed any addresses (thus must run 1432 /// another pass of branch lengthening), false otherwise. 1433 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1434 bool CloserWater) { 1435 CPUser &U = CPUsers[CPUserIndex]; 1436 MachineInstr *UserMI = U.MI; 1437 MachineInstr *CPEMI = U.CPEMI; 1438 unsigned CPI = getCombinedIndex(CPEMI); 1439 unsigned Size = CPEMI->getOperand(2).getImm(); 1440 // Compute this only once, it's expensive. 1441 unsigned UserOffset = getUserOffset(U); 1442 1443 // See if the current entry is within range, or there is a clone of it 1444 // in range. 1445 int result = findInRangeCPEntry(U, UserOffset); 1446 if (result==1) return false; 1447 else if (result==2) return true; 1448 1449 // No existing clone of this CPE is within range. 1450 // We will be generating a new clone. Get a UID for it. 1451 unsigned ID = AFI->createPICLabelUId(); 1452 1453 // Look for water where we can place this CPE. 1454 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1455 MachineBasicBlock *NewMBB; 1456 water_iterator IP; 1457 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1458 DEBUG(dbgs() << "Found water in range\n"); 1459 MachineBasicBlock *WaterBB = *IP; 1460 1461 // If the original WaterList entry was "new water" on this iteration, 1462 // propagate that to the new island. This is just keeping NewWaterList 1463 // updated to match the WaterList, which will be updated below. 1464 if (NewWaterList.erase(WaterBB)) 1465 NewWaterList.insert(NewIsland); 1466 1467 // The new CPE goes before the following block (NewMBB). 1468 NewMBB = &*++WaterBB->getIterator(); 1469 } else { 1470 // No water found. 1471 DEBUG(dbgs() << "No water found\n"); 1472 createNewWater(CPUserIndex, UserOffset, NewMBB); 1473 1474 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1475 // called while handling branches so that the water will be seen on the 1476 // next iteration for constant pools, but in this context, we don't want 1477 // it. Check for this so it will be removed from the WaterList. 1478 // Also remove any entry from NewWaterList. 1479 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1480 IP = find(WaterList, WaterBB); 1481 if (IP != WaterList.end()) 1482 NewWaterList.erase(WaterBB); 1483 1484 // We are adding new water. Update NewWaterList. 1485 NewWaterList.insert(NewIsland); 1486 } 1487 1488 // Remove the original WaterList entry; we want subsequent insertions in 1489 // this vicinity to go after the one we're about to insert. This 1490 // considerably reduces the number of times we have to move the same CPE 1491 // more than once and is also important to ensure the algorithm terminates. 1492 if (IP != WaterList.end()) 1493 WaterList.erase(IP); 1494 1495 // Okay, we know we can put an island before NewMBB now, do it! 1496 MF->insert(NewMBB->getIterator(), NewIsland); 1497 1498 // Update internal data structures to account for the newly inserted MBB. 1499 updateForInsertedWaterBlock(NewIsland); 1500 1501 // Now that we have an island to add the CPE to, clone the original CPE and 1502 // add it to the island. 1503 U.HighWaterMark = NewIsland; 1504 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1505 .addImm(ID) 1506 .add(CPEMI->getOperand(1)) 1507 .addImm(Size); 1508 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1509 ++NumCPEs; 1510 1511 // Decrement the old entry, and remove it if refcount becomes 0. 1512 decrementCPEReferenceCount(CPI, CPEMI); 1513 1514 // Mark the basic block as aligned as required by the const-pool entry. 1515 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1516 1517 // Increase the size of the island block to account for the new entry. 1518 BBInfo[NewIsland->getNumber()].Size += Size; 1519 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1520 1521 // Finally, change the CPI in the instruction operand to be ID. 1522 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1523 if (UserMI->getOperand(i).isCPI()) { 1524 UserMI->getOperand(i).setIndex(ID); 1525 break; 1526 } 1527 1528 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1529 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1530 1531 return true; 1532 } 1533 1534 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1535 /// sizes and offsets of impacted basic blocks. 1536 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1537 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1538 unsigned Size = CPEMI->getOperand(2).getImm(); 1539 CPEMI->eraseFromParent(); 1540 BBInfo[CPEBB->getNumber()].Size -= Size; 1541 // All succeeding offsets have the current size value added in, fix this. 1542 if (CPEBB->empty()) { 1543 BBInfo[CPEBB->getNumber()].Size = 0; 1544 1545 // This block no longer needs to be aligned. 1546 CPEBB->setAlignment(0); 1547 } else 1548 // Entries are sorted by descending alignment, so realign from the front. 1549 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1550 1551 adjustBBOffsetsAfter(CPEBB); 1552 // An island has only one predecessor BB and one successor BB. Check if 1553 // this BB's predecessor jumps directly to this BB's successor. This 1554 // shouldn't happen currently. 1555 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1556 // FIXME: remove the empty blocks after all the work is done? 1557 } 1558 1559 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1560 /// are zero. 1561 bool ARMConstantIslands::removeUnusedCPEntries() { 1562 unsigned MadeChange = false; 1563 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1564 std::vector<CPEntry> &CPEs = CPEntries[i]; 1565 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1566 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1567 removeDeadCPEMI(CPEs[j].CPEMI); 1568 CPEs[j].CPEMI = nullptr; 1569 MadeChange = true; 1570 } 1571 } 1572 } 1573 return MadeChange; 1574 } 1575 1576 /// isBBInRange - Returns true if the distance between specific MI and 1577 /// specific BB can fit in MI's displacement field. 1578 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1579 unsigned MaxDisp) { 1580 unsigned PCAdj = isThumb ? 4 : 8; 1581 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1582 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1583 1584 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() 1585 << " from BB#" << MI->getParent()->getNumber() 1586 << " max delta=" << MaxDisp 1587 << " from " << getOffsetOf(MI) << " to " << DestOffset 1588 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); 1589 1590 if (BrOffset <= DestOffset) { 1591 // Branch before the Dest. 1592 if (DestOffset-BrOffset <= MaxDisp) 1593 return true; 1594 } else { 1595 if (BrOffset-DestOffset <= MaxDisp) 1596 return true; 1597 } 1598 return false; 1599 } 1600 1601 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1602 /// away to fit in its displacement field. 1603 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1604 MachineInstr *MI = Br.MI; 1605 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1606 1607 // Check to see if the DestBB is already in-range. 1608 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1609 return false; 1610 1611 if (!Br.isCond) 1612 return fixupUnconditionalBr(Br); 1613 return fixupConditionalBr(Br); 1614 } 1615 1616 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1617 /// too far away to fit in its displacement field. If the LR register has been 1618 /// spilled in the epilogue, then we can use BL to implement a far jump. 1619 /// Otherwise, add an intermediate branch instruction to a branch. 1620 bool 1621 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1622 MachineInstr *MI = Br.MI; 1623 MachineBasicBlock *MBB = MI->getParent(); 1624 if (!isThumb1) 1625 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1626 1627 // Use BL to implement far jump. 1628 Br.MaxDisp = (1 << 21) * 2; 1629 MI->setDesc(TII->get(ARM::tBfar)); 1630 BBInfo[MBB->getNumber()].Size += 2; 1631 adjustBBOffsetsAfter(MBB); 1632 HasFarJump = true; 1633 ++NumUBrFixed; 1634 1635 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1636 1637 return true; 1638 } 1639 1640 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1641 /// far away to fit in its displacement field. It is converted to an inverse 1642 /// conditional branch + an unconditional branch to the destination. 1643 bool 1644 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1645 MachineInstr *MI = Br.MI; 1646 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1647 1648 // Add an unconditional branch to the destination and invert the branch 1649 // condition to jump over it: 1650 // blt L1 1651 // => 1652 // bge L2 1653 // b L1 1654 // L2: 1655 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1656 CC = ARMCC::getOppositeCondition(CC); 1657 unsigned CCReg = MI->getOperand(2).getReg(); 1658 1659 // If the branch is at the end of its MBB and that has a fall-through block, 1660 // direct the updated conditional branch to the fall-through block. Otherwise, 1661 // split the MBB before the next instruction. 1662 MachineBasicBlock *MBB = MI->getParent(); 1663 MachineInstr *BMI = &MBB->back(); 1664 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1665 1666 ++NumCBrFixed; 1667 if (BMI != MI) { 1668 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1669 BMI->getOpcode() == Br.UncondBr) { 1670 // Last MI in the BB is an unconditional branch. Can we simply invert the 1671 // condition and swap destinations: 1672 // beq L1 1673 // b L2 1674 // => 1675 // bne L2 1676 // b L1 1677 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1678 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1679 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1680 << *BMI); 1681 BMI->getOperand(0).setMBB(DestBB); 1682 MI->getOperand(0).setMBB(NewDest); 1683 MI->getOperand(1).setImm(CC); 1684 return true; 1685 } 1686 } 1687 } 1688 1689 if (NeedSplit) { 1690 splitBlockBeforeInstr(MI); 1691 // No need for the branch to the next block. We're adding an unconditional 1692 // branch to the destination. 1693 int delta = TII->getInstSizeInBytes(MBB->back()); 1694 BBInfo[MBB->getNumber()].Size -= delta; 1695 MBB->back().eraseFromParent(); 1696 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1697 } 1698 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1699 1700 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber() 1701 << " also invert condition and change dest. to BB#" 1702 << NextBB->getNumber() << "\n"); 1703 1704 // Insert a new conditional branch and a new unconditional branch. 1705 // Also update the ImmBranch as well as adding a new entry for the new branch. 1706 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1707 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1708 Br.MI = &MBB->back(); 1709 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1710 if (isThumb) 1711 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1712 .addMBB(DestBB) 1713 .add(predOps(ARMCC::AL)); 1714 else 1715 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1716 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1717 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1718 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1719 1720 // Remove the old conditional branch. It may or may not still be in MBB. 1721 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1722 MI->eraseFromParent(); 1723 adjustBBOffsetsAfter(MBB); 1724 return true; 1725 } 1726 1727 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1728 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1729 /// to do this if tBfar is not used. 1730 bool ARMConstantIslands::undoLRSpillRestore() { 1731 bool MadeChange = false; 1732 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1733 MachineInstr *MI = PushPopMIs[i]; 1734 // First two operands are predicates. 1735 if (MI->getOpcode() == ARM::tPOP_RET && 1736 MI->getOperand(2).getReg() == ARM::PC && 1737 MI->getNumExplicitOperands() == 3) { 1738 // Create the new insn and copy the predicate from the old. 1739 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1740 .add(MI->getOperand(0)) 1741 .add(MI->getOperand(1)); 1742 MI->eraseFromParent(); 1743 MadeChange = true; 1744 } 1745 if (MI->getOpcode() == ARM::tPUSH && 1746 MI->getOperand(2).getReg() == ARM::LR && 1747 MI->getNumExplicitOperands() == 3) { 1748 // Just remove the push. 1749 MI->eraseFromParent(); 1750 MadeChange = true; 1751 } 1752 } 1753 return MadeChange; 1754 } 1755 1756 bool ARMConstantIslands::optimizeThumb2Instructions() { 1757 bool MadeChange = false; 1758 1759 // Shrink ADR and LDR from constantpool. 1760 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1761 CPUser &U = CPUsers[i]; 1762 unsigned Opcode = U.MI->getOpcode(); 1763 unsigned NewOpc = 0; 1764 unsigned Scale = 1; 1765 unsigned Bits = 0; 1766 switch (Opcode) { 1767 default: break; 1768 case ARM::t2LEApcrel: 1769 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1770 NewOpc = ARM::tLEApcrel; 1771 Bits = 8; 1772 Scale = 4; 1773 } 1774 break; 1775 case ARM::t2LDRpci: 1776 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1777 NewOpc = ARM::tLDRpci; 1778 Bits = 8; 1779 Scale = 4; 1780 } 1781 break; 1782 } 1783 1784 if (!NewOpc) 1785 continue; 1786 1787 unsigned UserOffset = getUserOffset(U); 1788 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1789 1790 // Be conservative with inline asm. 1791 if (!U.KnownAlignment) 1792 MaxOffs -= 2; 1793 1794 // FIXME: Check if offset is multiple of scale if scale is not 4. 1795 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1796 DEBUG(dbgs() << "Shrink: " << *U.MI); 1797 U.MI->setDesc(TII->get(NewOpc)); 1798 MachineBasicBlock *MBB = U.MI->getParent(); 1799 BBInfo[MBB->getNumber()].Size -= 2; 1800 adjustBBOffsetsAfter(MBB); 1801 ++NumT2CPShrunk; 1802 MadeChange = true; 1803 } 1804 } 1805 1806 return MadeChange; 1807 } 1808 1809 bool ARMConstantIslands::optimizeThumb2Branches() { 1810 bool MadeChange = false; 1811 1812 // The order in which branches appear in ImmBranches is approximately their 1813 // order within the function body. By visiting later branches first, we reduce 1814 // the distance between earlier forward branches and their targets, making it 1815 // more likely that the cbn?z optimization, which can only apply to forward 1816 // branches, will succeed. 1817 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1818 ImmBranch &Br = ImmBranches[i-1]; 1819 unsigned Opcode = Br.MI->getOpcode(); 1820 unsigned NewOpc = 0; 1821 unsigned Scale = 1; 1822 unsigned Bits = 0; 1823 switch (Opcode) { 1824 default: break; 1825 case ARM::t2B: 1826 NewOpc = ARM::tB; 1827 Bits = 11; 1828 Scale = 2; 1829 break; 1830 case ARM::t2Bcc: 1831 NewOpc = ARM::tBcc; 1832 Bits = 8; 1833 Scale = 2; 1834 break; 1835 } 1836 if (NewOpc) { 1837 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1838 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1839 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1840 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1841 Br.MI->setDesc(TII->get(NewOpc)); 1842 MachineBasicBlock *MBB = Br.MI->getParent(); 1843 BBInfo[MBB->getNumber()].Size -= 2; 1844 adjustBBOffsetsAfter(MBB); 1845 ++NumT2BrShrunk; 1846 MadeChange = true; 1847 } 1848 } 1849 1850 Opcode = Br.MI->getOpcode(); 1851 if (Opcode != ARM::tBcc) 1852 continue; 1853 1854 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1855 // so this transformation is not safe. 1856 if (!Br.MI->killsRegister(ARM::CPSR)) 1857 continue; 1858 1859 NewOpc = 0; 1860 unsigned PredReg = 0; 1861 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1862 if (Pred == ARMCC::EQ) 1863 NewOpc = ARM::tCBZ; 1864 else if (Pred == ARMCC::NE) 1865 NewOpc = ARM::tCBNZ; 1866 if (!NewOpc) 1867 continue; 1868 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1869 // Check if the distance is within 126. Subtract starting offset by 2 1870 // because the cmp will be eliminated. 1871 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1872 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1873 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1874 MachineBasicBlock::iterator CmpMI = Br.MI; 1875 if (CmpMI != Br.MI->getParent()->begin()) { 1876 --CmpMI; 1877 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1878 unsigned Reg = CmpMI->getOperand(0).getReg(); 1879 Pred = getInstrPredicate(*CmpMI, PredReg); 1880 if (Pred == ARMCC::AL && 1881 CmpMI->getOperand(1).getImm() == 0 && 1882 isARMLowRegister(Reg)) { 1883 MachineBasicBlock *MBB = Br.MI->getParent(); 1884 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1885 MachineInstr *NewBR = 1886 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1887 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1888 CmpMI->eraseFromParent(); 1889 Br.MI->eraseFromParent(); 1890 Br.MI = NewBR; 1891 BBInfo[MBB->getNumber()].Size -= 2; 1892 adjustBBOffsetsAfter(MBB); 1893 ++NumCBZ; 1894 MadeChange = true; 1895 } 1896 } 1897 } 1898 } 1899 } 1900 1901 return MadeChange; 1902 } 1903 1904 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1905 unsigned BaseReg) { 1906 if (I.getOpcode() != ARM::t2ADDrs) 1907 return false; 1908 1909 if (I.getOperand(0).getReg() != EntryReg) 1910 return false; 1911 1912 if (I.getOperand(1).getReg() != BaseReg) 1913 return false; 1914 1915 // FIXME: what about CC and IdxReg? 1916 return true; 1917 } 1918 1919 /// \brief While trying to form a TBB/TBH instruction, we may (if the table 1920 /// doesn't immediately follow the BR_JT) need access to the start of the 1921 /// jump-table. We know one instruction that produces such a register; this 1922 /// function works out whether that definition can be preserved to the BR_JT, 1923 /// possibly by removing an intervening addition (which is usually needed to 1924 /// calculate the actual entry to jump to). 1925 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1926 MachineInstr *LEAMI, 1927 unsigned &DeadSize, 1928 bool &CanDeleteLEA, 1929 bool &BaseRegKill) { 1930 if (JumpMI->getParent() != LEAMI->getParent()) 1931 return false; 1932 1933 // Now we hope that we have at least these instructions in the basic block: 1934 // BaseReg = t2LEA ... 1935 // [...] 1936 // EntryReg = t2ADDrs BaseReg, ... 1937 // [...] 1938 // t2BR_JT EntryReg 1939 // 1940 // We have to be very conservative about what we recognise here though. The 1941 // main perturbing factors to watch out for are: 1942 // + Spills at any point in the chain: not direct problems but we would 1943 // expect a blocking Def of the spilled register so in practice what we 1944 // can do is limited. 1945 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1946 // of BaseReg, but only if the t2ADDrs can be removed. 1947 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1948 // the wild, but we should be careful. 1949 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 1950 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 1951 1952 CanDeleteLEA = true; 1953 BaseRegKill = false; 1954 MachineInstr *RemovableAdd = nullptr; 1955 MachineBasicBlock::iterator I(LEAMI); 1956 for (++I; &*I != JumpMI; ++I) { 1957 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 1958 RemovableAdd = &*I; 1959 break; 1960 } 1961 1962 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1963 const MachineOperand &MO = I->getOperand(K); 1964 if (!MO.isReg() || !MO.getReg()) 1965 continue; 1966 if (MO.isDef() && MO.getReg() == BaseReg) 1967 return false; 1968 if (MO.isUse() && MO.getReg() == BaseReg) { 1969 BaseRegKill = BaseRegKill || MO.isKill(); 1970 CanDeleteLEA = false; 1971 } 1972 } 1973 } 1974 1975 if (!RemovableAdd) 1976 return true; 1977 1978 // Check the add really is removable, and that nothing else in the block 1979 // clobbers BaseReg. 1980 for (++I; &*I != JumpMI; ++I) { 1981 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1982 const MachineOperand &MO = I->getOperand(K); 1983 if (!MO.isReg() || !MO.getReg()) 1984 continue; 1985 if (MO.isDef() && MO.getReg() == BaseReg) 1986 return false; 1987 if (MO.isUse() && MO.getReg() == EntryReg) 1988 RemovableAdd = nullptr; 1989 } 1990 } 1991 1992 if (RemovableAdd) { 1993 RemovableAdd->eraseFromParent(); 1994 DeadSize += isThumb2 ? 4 : 2; 1995 } else if (BaseReg == EntryReg) { 1996 // The add wasn't removable, but clobbered the base for the TBB. So we can't 1997 // preserve it. 1998 return false; 1999 } 2000 2001 // We reached the end of the block without seeing another definition of 2002 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2003 // used in the TBB/TBH if necessary. 2004 return true; 2005 } 2006 2007 /// \brief Returns whether CPEMI is the first instruction in the block 2008 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2009 /// we can switch the first register to PC and usually remove the address 2010 /// calculation that preceded it. 2011 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2012 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2013 MachineFunction *MF = MBB->getParent(); 2014 ++MBB; 2015 2016 return MBB != MF->end() && MBB->begin() != MBB->end() && 2017 &*MBB->begin() == CPEMI; 2018 } 2019 2020 static bool registerDefinedBetween(unsigned Reg, 2021 MachineBasicBlock::iterator From, 2022 MachineBasicBlock::iterator To, 2023 const TargetRegisterInfo *TRI) { 2024 for (auto I = From; I != To; ++I) 2025 if (I->modifiesRegister(Reg, TRI)) 2026 return true; 2027 return false; 2028 } 2029 2030 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2031 /// jumptables when it's possible. 2032 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2033 bool MadeChange = false; 2034 2035 // FIXME: After the tables are shrunk, can we get rid some of the 2036 // constantpool tables? 2037 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2038 if (!MJTI) return false; 2039 2040 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2041 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2042 MachineInstr *MI = T2JumpTables[i]; 2043 const MCInstrDesc &MCID = MI->getDesc(); 2044 unsigned NumOps = MCID.getNumOperands(); 2045 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2046 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2047 unsigned JTI = JTOP.getIndex(); 2048 assert(JTI < JT.size()); 2049 2050 bool ByteOk = true; 2051 bool HalfWordOk = true; 2052 unsigned JTOffset = getOffsetOf(MI) + 4; 2053 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2054 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2055 MachineBasicBlock *MBB = JTBBs[j]; 2056 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2057 // Negative offset is not ok. FIXME: We should change BB layout to make 2058 // sure all the branches are forward. 2059 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2060 ByteOk = false; 2061 unsigned TBHLimit = ((1<<16)-1)*2; 2062 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2063 HalfWordOk = false; 2064 if (!ByteOk && !HalfWordOk) 2065 break; 2066 } 2067 2068 if (!ByteOk && !HalfWordOk) 2069 continue; 2070 2071 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2072 MachineBasicBlock *MBB = MI->getParent(); 2073 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2074 continue; 2075 2076 unsigned DeadSize = 0; 2077 bool CanDeleteLEA = false; 2078 bool BaseRegKill = false; 2079 2080 unsigned IdxReg = ~0U; 2081 bool IdxRegKill = true; 2082 if (isThumb2) { 2083 IdxReg = MI->getOperand(1).getReg(); 2084 IdxRegKill = MI->getOperand(1).isKill(); 2085 2086 bool PreservedBaseReg = 2087 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2088 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2089 continue; 2090 } else { 2091 // We're in thumb-1 mode, so we must have something like: 2092 // %idx = tLSLri %idx, 2 2093 // %base = tLEApcrelJT 2094 // %t = tLDRr %idx, %base 2095 unsigned BaseReg = User.MI->getOperand(0).getReg(); 2096 2097 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2098 continue; 2099 MachineInstr *Shift = User.MI->getPrevNode(); 2100 if (Shift->getOpcode() != ARM::tLSLri || 2101 Shift->getOperand(3).getImm() != 2 || 2102 !Shift->getOperand(2).isKill()) 2103 continue; 2104 IdxReg = Shift->getOperand(2).getReg(); 2105 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg(); 2106 2107 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2108 // the range is checked later, but the LEA might still clobber it and not 2109 // actually get removed. 2110 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2111 continue; 2112 2113 MachineInstr *Load = User.MI->getNextNode(); 2114 if (Load->getOpcode() != ARM::tLDRr) 2115 continue; 2116 if (Load->getOperand(1).getReg() != ShiftedIdxReg || 2117 Load->getOperand(2).getReg() != BaseReg || 2118 !Load->getOperand(1).isKill()) 2119 continue; 2120 2121 // If we're in PIC mode, there should be another ADD following. 2122 auto *TRI = STI->getRegisterInfo(); 2123 if (isPositionIndependentOrROPI) { 2124 MachineInstr *Add = Load->getNextNode(); 2125 if (Add->getOpcode() != ARM::tADDrr || 2126 Add->getOperand(2).getReg() != Load->getOperand(0).getReg() || 2127 Add->getOperand(3).getReg() != BaseReg || 2128 !Add->getOperand(2).isKill()) 2129 continue; 2130 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2131 continue; 2132 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2133 // IdxReg gets redefined in the middle of the sequence. 2134 continue; 2135 Add->eraseFromParent(); 2136 DeadSize += 2; 2137 } else { 2138 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2139 continue; 2140 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2141 // IdxReg gets redefined in the middle of the sequence. 2142 continue; 2143 } 2144 2145 // Now safe to delete the load and lsl. The LEA will be removed later. 2146 CanDeleteLEA = true; 2147 Shift->eraseFromParent(); 2148 Load->eraseFromParent(); 2149 DeadSize += 4; 2150 } 2151 2152 DEBUG(dbgs() << "Shrink JT: " << *MI); 2153 MachineInstr *CPEMI = User.CPEMI; 2154 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2155 if (!isThumb2) 2156 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2157 2158 MachineBasicBlock::iterator MI_JT = MI; 2159 MachineInstr *NewJTMI = 2160 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2161 .addReg(User.MI->getOperand(0).getReg(), 2162 getKillRegState(BaseRegKill)) 2163 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2164 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2165 .addImm(CPEMI->getOperand(0).getImm()); 2166 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI); 2167 2168 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2169 CPEMI->setDesc(TII->get(JTOpc)); 2170 2171 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2172 NewJTMI->getOperand(0).setReg(ARM::PC); 2173 NewJTMI->getOperand(0).setIsKill(false); 2174 2175 if (CanDeleteLEA) { 2176 User.MI->eraseFromParent(); 2177 DeadSize += isThumb2 ? 4 : 2; 2178 2179 // The LEA was eliminated, the TBB instruction becomes the only new user 2180 // of the jump table. 2181 User.MI = NewJTMI; 2182 User.MaxDisp = 4; 2183 User.NegOk = false; 2184 User.IsSoImm = false; 2185 User.KnownAlignment = false; 2186 } else { 2187 // The LEA couldn't be eliminated, so we must add another CPUser to 2188 // record the TBB or TBH use. 2189 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2190 auto &CPEs = CPEntries[CPEntryIdx]; 2191 auto Entry = 2192 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2193 ++Entry->RefCount; 2194 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2195 } 2196 } 2197 2198 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2199 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2200 MI->eraseFromParent(); 2201 2202 int Delta = OrigSize - NewSize + DeadSize; 2203 BBInfo[MBB->getNumber()].Size -= Delta; 2204 adjustBBOffsetsAfter(MBB); 2205 2206 ++NumTBs; 2207 MadeChange = true; 2208 } 2209 2210 return MadeChange; 2211 } 2212 2213 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2214 /// jump tables always branch forwards, since that's what tbb and tbh need. 2215 bool ARMConstantIslands::reorderThumb2JumpTables() { 2216 bool MadeChange = false; 2217 2218 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2219 if (!MJTI) return false; 2220 2221 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2222 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2223 MachineInstr *MI = T2JumpTables[i]; 2224 const MCInstrDesc &MCID = MI->getDesc(); 2225 unsigned NumOps = MCID.getNumOperands(); 2226 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2227 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2228 unsigned JTI = JTOP.getIndex(); 2229 assert(JTI < JT.size()); 2230 2231 // We prefer if target blocks for the jump table come after the jump 2232 // instruction so we can use TB[BH]. Loop through the target blocks 2233 // and try to adjust them such that that's true. 2234 int JTNumber = MI->getParent()->getNumber(); 2235 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2236 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2237 MachineBasicBlock *MBB = JTBBs[j]; 2238 int DTNumber = MBB->getNumber(); 2239 2240 if (DTNumber < JTNumber) { 2241 // The destination precedes the switch. Try to move the block forward 2242 // so we have a positive offset. 2243 MachineBasicBlock *NewBB = 2244 adjustJTTargetBlockForward(MBB, MI->getParent()); 2245 if (NewBB) 2246 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2247 MadeChange = true; 2248 } 2249 } 2250 } 2251 2252 return MadeChange; 2253 } 2254 2255 MachineBasicBlock *ARMConstantIslands:: 2256 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2257 // If the destination block is terminated by an unconditional branch, 2258 // try to move it; otherwise, create a new block following the jump 2259 // table that branches back to the actual target. This is a very simple 2260 // heuristic. FIXME: We can definitely improve it. 2261 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2262 SmallVector<MachineOperand, 4> Cond; 2263 SmallVector<MachineOperand, 4> CondPrior; 2264 MachineFunction::iterator BBi = BB->getIterator(); 2265 MachineFunction::iterator OldPrior = std::prev(BBi); 2266 2267 // If the block terminator isn't analyzable, don't try to move the block 2268 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2269 2270 // If the block ends in an unconditional branch, move it. The prior block 2271 // has to have an analyzable terminator for us to move this one. Be paranoid 2272 // and make sure we're not trying to move the entry block of the function. 2273 if (!B && Cond.empty() && BB != &MF->front() && 2274 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2275 BB->moveAfter(JTBB); 2276 OldPrior->updateTerminator(); 2277 BB->updateTerminator(); 2278 // Update numbering to account for the block being moved. 2279 MF->RenumberBlocks(); 2280 ++NumJTMoved; 2281 return nullptr; 2282 } 2283 2284 // Create a new MBB for the code after the jump BB. 2285 MachineBasicBlock *NewBB = 2286 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2287 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2288 MF->insert(MBBI, NewBB); 2289 2290 // Add an unconditional branch from NewBB to BB. 2291 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2292 // correspond directly to anything in the source. 2293 if (isThumb2) 2294 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2295 .addMBB(BB) 2296 .add(predOps(ARMCC::AL)); 2297 else 2298 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2299 .addMBB(BB) 2300 .add(predOps(ARMCC::AL)); 2301 2302 // Update internal data structures to account for the newly inserted MBB. 2303 MF->RenumberBlocks(NewBB); 2304 2305 // Update the CFG. 2306 NewBB->addSuccessor(BB); 2307 JTBB->replaceSuccessor(BB, NewBB); 2308 2309 ++NumJTInserted; 2310 return NewBB; 2311 } 2312 2313 /// createARMConstantIslandPass - returns an instance of the constpool 2314 /// island pass. 2315 FunctionPass *llvm::createARMConstantIslandPass() { 2316 return new ARMConstantIslands(); 2317 } 2318 2319 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2320 false, false) 2321