1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass that splits the constant pool up into 'islands' 11 // which are scattered through-out the function. This is required due to the 12 // limited pc-relative displacements that ARM has. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "ARM.h" 17 #include "ARMBaseInstrInfo.h" 18 #include "ARMBasicBlockInfo.h" 19 #include "ARMMachineFunctionInfo.h" 20 #include "ARMSubtarget.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Thumb2InstrInfo.h" 23 #include "Utils/ARMBaseInfo.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineFunctionPass.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/MC/MCInstrDesc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "arm-cp-islands" 59 60 #define ARM_CP_ISLANDS_OPT_NAME \ 61 "ARM constant island placement and branch shortening pass" 62 STATISTIC(NumCPEs, "Number of constpool entries"); 63 STATISTIC(NumSplit, "Number of uncond branches inserted"); 64 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 66 STATISTIC(NumTBs, "Number of table branches generated"); 67 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 68 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 69 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 70 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 71 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 72 73 static cl::opt<bool> 74 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 75 cl::desc("Adjust basic block layout to better use TB[BH]")); 76 77 static cl::opt<unsigned> 78 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 79 cl::desc("The max number of iteration for converge")); 80 81 static cl::opt<bool> SynthesizeThumb1TBB( 82 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 83 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 84 "equivalent to the TBB/TBH instructions")); 85 86 namespace { 87 88 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 89 /// requires constant pool entries to be scattered among the instructions 90 /// inside a function. To do this, it completely ignores the normal LLVM 91 /// constant pool; instead, it places constants wherever it feels like with 92 /// special instructions. 93 /// 94 /// The terminology used in this pass includes: 95 /// Islands - Clumps of constants placed in the function. 96 /// Water - Potential places where an island could be formed. 97 /// CPE - A constant pool entry that has been placed somewhere, which 98 /// tracks a list of users. 99 class ARMConstantIslands : public MachineFunctionPass { 100 std::vector<BasicBlockInfo> BBInfo; 101 102 /// WaterList - A sorted list of basic blocks where islands could be placed 103 /// (i.e. blocks that don't fall through to the following block, due 104 /// to a return, unreachable, or unconditional branch). 105 std::vector<MachineBasicBlock*> WaterList; 106 107 /// NewWaterList - The subset of WaterList that was created since the 108 /// previous iteration by inserting unconditional branches. 109 SmallSet<MachineBasicBlock*, 4> NewWaterList; 110 111 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 112 113 /// CPUser - One user of a constant pool, keeping the machine instruction 114 /// pointer, the constant pool being referenced, and the max displacement 115 /// allowed from the instruction to the CP. The HighWaterMark records the 116 /// highest basic block where a new CPEntry can be placed. To ensure this 117 /// pass terminates, the CP entries are initially placed at the end of the 118 /// function and then move monotonically to lower addresses. The 119 /// exception to this rule is when the current CP entry for a particular 120 /// CPUser is out of range, but there is another CP entry for the same 121 /// constant value in range. We want to use the existing in-range CP 122 /// entry, but if it later moves out of range, the search for new water 123 /// should resume where it left off. The HighWaterMark is used to record 124 /// that point. 125 struct CPUser { 126 MachineInstr *MI; 127 MachineInstr *CPEMI; 128 MachineBasicBlock *HighWaterMark; 129 unsigned MaxDisp; 130 bool NegOk; 131 bool IsSoImm; 132 bool KnownAlignment = false; 133 134 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 135 bool neg, bool soimm) 136 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 137 HighWaterMark = CPEMI->getParent(); 138 } 139 140 /// getMaxDisp - Returns the maximum displacement supported by MI. 141 /// Correct for unknown alignment. 142 /// Conservatively subtract 2 bytes to handle weird alignment effects. 143 unsigned getMaxDisp() const { 144 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 145 } 146 }; 147 148 /// CPUsers - Keep track of all of the machine instructions that use various 149 /// constant pools and their max displacement. 150 std::vector<CPUser> CPUsers; 151 152 /// CPEntry - One per constant pool entry, keeping the machine instruction 153 /// pointer, the constpool index, and the number of CPUser's which 154 /// reference this entry. 155 struct CPEntry { 156 MachineInstr *CPEMI; 157 unsigned CPI; 158 unsigned RefCount; 159 160 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 161 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 162 }; 163 164 /// CPEntries - Keep track of all of the constant pool entry machine 165 /// instructions. For each original constpool index (i.e. those that existed 166 /// upon entry to this pass), it keeps a vector of entries. Original 167 /// elements are cloned as we go along; the clones are put in the vector of 168 /// the original element, but have distinct CPIs. 169 /// 170 /// The first half of CPEntries contains generic constants, the second half 171 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 172 /// which vector it will be in here. 173 std::vector<std::vector<CPEntry>> CPEntries; 174 175 /// Maps a JT index to the offset in CPEntries containing copies of that 176 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 177 DenseMap<int, int> JumpTableEntryIndices; 178 179 /// Maps a JT index to the LEA that actually uses the index to calculate its 180 /// base address. 181 DenseMap<int, int> JumpTableUserIndices; 182 183 /// ImmBranch - One per immediate branch, keeping the machine instruction 184 /// pointer, conditional or unconditional, the max displacement, 185 /// and (if isCond is true) the corresponding unconditional branch 186 /// opcode. 187 struct ImmBranch { 188 MachineInstr *MI; 189 unsigned MaxDisp : 31; 190 bool isCond : 1; 191 unsigned UncondBr; 192 193 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 194 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 195 }; 196 197 /// ImmBranches - Keep track of all the immediate branch instructions. 198 std::vector<ImmBranch> ImmBranches; 199 200 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 201 SmallVector<MachineInstr*, 4> PushPopMIs; 202 203 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 204 SmallVector<MachineInstr*, 4> T2JumpTables; 205 206 /// HasFarJump - True if any far jump instruction has been emitted during 207 /// the branch fix up pass. 208 bool HasFarJump; 209 210 MachineFunction *MF; 211 MachineConstantPool *MCP; 212 const ARMBaseInstrInfo *TII; 213 const ARMSubtarget *STI; 214 ARMFunctionInfo *AFI; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 MachineFunctionProperties getRequiredProperties() const override { 228 return MachineFunctionProperties().set( 229 MachineFunctionProperties::Property::NoVRegs); 230 } 231 232 StringRef getPassName() const override { 233 return ARM_CP_ISLANDS_OPT_NAME; 234 } 235 236 private: 237 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 238 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 239 bool BBHasFallthrough(MachineBasicBlock *MBB); 240 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 241 unsigned getCPELogAlign(const MachineInstr *CPEMI); 242 void scanFunctionJumpTables(); 243 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 244 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 245 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 246 void adjustBBOffsetsAfter(MachineBasicBlock *BB); 247 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 248 unsigned getCombinedIndex(const MachineInstr *CPEMI); 249 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 250 bool findAvailableWater(CPUser&U, unsigned UserOffset, 251 water_iterator &WaterIter, bool CloserWater); 252 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 253 MachineBasicBlock *&NewMBB); 254 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 255 void removeDeadCPEMI(MachineInstr *CPEMI); 256 bool removeUnusedCPEntries(); 257 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 258 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 259 bool DoDump = false); 260 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 261 CPUser &U, unsigned &Growth); 262 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); 263 bool fixupImmediateBr(ImmBranch &Br); 264 bool fixupConditionalBr(ImmBranch &Br); 265 bool fixupUnconditionalBr(ImmBranch &Br); 266 bool undoLRSpillRestore(); 267 bool optimizeThumb2Instructions(); 268 bool optimizeThumb2Branches(); 269 bool reorderThumb2JumpTables(); 270 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 271 unsigned &DeadSize, bool &CanDeleteLEA, 272 bool &BaseRegKill); 273 bool optimizeThumb2JumpTables(); 274 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 275 MachineBasicBlock *JTBB); 276 277 unsigned getOffsetOf(MachineInstr *MI) const; 278 unsigned getUserOffset(CPUser&) const; 279 void dumpBBs(); 280 void verify(); 281 282 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 283 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 284 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 285 const CPUser &U) { 286 return isOffsetInRange(UserOffset, TrialOffset, 287 U.getMaxDisp(), U.NegOk, U.IsSoImm); 288 } 289 }; 290 291 } // end anonymous namespace 292 293 char ARMConstantIslands::ID = 0; 294 295 /// verify - check BBOffsets, BBSizes, alignment of islands 296 void ARMConstantIslands::verify() { 297 #ifndef NDEBUG 298 assert(std::is_sorted(MF->begin(), MF->end(), 299 [this](const MachineBasicBlock &LHS, 300 const MachineBasicBlock &RHS) { 301 return BBInfo[LHS.getNumber()].postOffset() < 302 BBInfo[RHS.getNumber()].postOffset(); 303 })); 304 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 305 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 306 CPUser &U = CPUsers[i]; 307 unsigned UserOffset = getUserOffset(U); 308 // Verify offset using the real max displacement without the safety 309 // adjustment. 310 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 311 /* DoDump = */ true)) { 312 DEBUG(dbgs() << "OK\n"); 313 continue; 314 } 315 DEBUG(dbgs() << "Out of range.\n"); 316 dumpBBs(); 317 DEBUG(MF->dump()); 318 llvm_unreachable("Constant pool entry out of range!"); 319 } 320 #endif 321 } 322 323 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 324 /// print block size and offset information - debugging 325 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 326 DEBUG({ 327 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 328 const BasicBlockInfo &BBI = BBInfo[J]; 329 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 330 << " kb=" << unsigned(BBI.KnownBits) 331 << " ua=" << unsigned(BBI.Unalign) 332 << " pa=" << unsigned(BBI.PostAlign) 333 << format(" size=%#x\n", BBInfo[J].Size); 334 } 335 }); 336 } 337 #endif 338 339 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 340 MF = &mf; 341 MCP = mf.getConstantPool(); 342 343 DEBUG(dbgs() << "***** ARMConstantIslands: " 344 << MCP->getConstants().size() << " CP entries, aligned to " 345 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 346 347 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 348 TII = STI->getInstrInfo(); 349 isPositionIndependentOrROPI = 350 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 351 AFI = MF->getInfo<ARMFunctionInfo>(); 352 353 isThumb = AFI->isThumbFunction(); 354 isThumb1 = AFI->isThumb1OnlyFunction(); 355 isThumb2 = AFI->isThumb2Function(); 356 357 HasFarJump = false; 358 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 359 360 // This pass invalidates liveness information when it splits basic blocks. 361 MF->getRegInfo().invalidateLiveness(); 362 363 // Renumber all of the machine basic blocks in the function, guaranteeing that 364 // the numbers agree with the position of the block in the function. 365 MF->RenumberBlocks(); 366 367 // Try to reorder and otherwise adjust the block layout to make good use 368 // of the TB[BH] instructions. 369 bool MadeChange = false; 370 if (GenerateTBB && AdjustJumpTableBlocks) { 371 scanFunctionJumpTables(); 372 MadeChange |= reorderThumb2JumpTables(); 373 // Data is out of date, so clear it. It'll be re-computed later. 374 T2JumpTables.clear(); 375 // Blocks may have shifted around. Keep the numbering up to date. 376 MF->RenumberBlocks(); 377 } 378 379 // Perform the initial placement of the constant pool entries. To start with, 380 // we put them all at the end of the function. 381 std::vector<MachineInstr*> CPEMIs; 382 if (!MCP->isEmpty()) 383 doInitialConstPlacement(CPEMIs); 384 385 if (MF->getJumpTableInfo()) 386 doInitialJumpTablePlacement(CPEMIs); 387 388 /// The next UID to take is the first unused one. 389 AFI->initPICLabelUId(CPEMIs.size()); 390 391 // Do the initial scan of the function, building up information about the 392 // sizes of each block, the location of all the water, and finding all of the 393 // constant pool users. 394 initializeFunctionInfo(CPEMIs); 395 CPEMIs.clear(); 396 DEBUG(dumpBBs()); 397 398 // Functions with jump tables need an alignment of 4 because they use the ADR 399 // instruction, which aligns the PC to 4 bytes before adding an offset. 400 if (!T2JumpTables.empty()) 401 MF->ensureAlignment(2); 402 403 /// Remove dead constant pool entries. 404 MadeChange |= removeUnusedCPEntries(); 405 406 // Iteratively place constant pool entries and fix up branches until there 407 // is no change. 408 unsigned NoCPIters = 0, NoBRIters = 0; 409 while (true) { 410 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 411 bool CPChange = false; 412 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 413 // For most inputs, it converges in no more than 5 iterations. 414 // If it doesn't end in 10, the input may have huge BB or many CPEs. 415 // In this case, we will try different heuristics. 416 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 417 if (CPChange && ++NoCPIters > CPMaxIteration) 418 report_fatal_error("Constant Island pass failed to converge!"); 419 DEBUG(dumpBBs()); 420 421 // Clear NewWaterList now. If we split a block for branches, it should 422 // appear as "new water" for the next iteration of constant pool placement. 423 NewWaterList.clear(); 424 425 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 426 bool BRChange = false; 427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 428 BRChange |= fixupImmediateBr(ImmBranches[i]); 429 if (BRChange && ++NoBRIters > 30) 430 report_fatal_error("Branch Fix Up pass failed to converge!"); 431 DEBUG(dumpBBs()); 432 433 if (!CPChange && !BRChange) 434 break; 435 MadeChange = true; 436 } 437 438 // Shrink 32-bit Thumb2 load and store instructions. 439 if (isThumb2 && !STI->prefers32BitThumb()) 440 MadeChange |= optimizeThumb2Instructions(); 441 442 // Shrink 32-bit branch instructions. 443 if (isThumb && STI->hasV8MBaselineOps()) 444 MadeChange |= optimizeThumb2Branches(); 445 446 // Optimize jump tables using TBB / TBH. 447 if (GenerateTBB && !STI->genExecuteOnly()) 448 MadeChange |= optimizeThumb2JumpTables(); 449 450 // After a while, this might be made debug-only, but it is not expensive. 451 verify(); 452 453 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 454 // undo the spill / restore of LR if possible. 455 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 456 MadeChange |= undoLRSpillRestore(); 457 458 // Save the mapping between original and cloned constpool entries. 459 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 460 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 461 const CPEntry & CPE = CPEntries[i][j]; 462 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 463 AFI->recordCPEClone(i, CPE.CPI); 464 } 465 } 466 467 DEBUG(dbgs() << '\n'; dumpBBs()); 468 469 BBInfo.clear(); 470 WaterList.clear(); 471 CPUsers.clear(); 472 CPEntries.clear(); 473 JumpTableEntryIndices.clear(); 474 JumpTableUserIndices.clear(); 475 ImmBranches.clear(); 476 PushPopMIs.clear(); 477 T2JumpTables.clear(); 478 479 return MadeChange; 480 } 481 482 /// \brief Perform the initial placement of the regular constant pool entries. 483 /// To start with, we put them all at the end of the function. 484 void 485 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 486 // Create the basic block to hold the CPE's. 487 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 488 MF->push_back(BB); 489 490 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 491 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 492 493 // Mark the basic block as required by the const-pool. 494 BB->setAlignment(MaxAlign); 495 496 // The function needs to be as aligned as the basic blocks. The linker may 497 // move functions around based on their alignment. 498 MF->ensureAlignment(BB->getAlignment()); 499 500 // Order the entries in BB by descending alignment. That ensures correct 501 // alignment of all entries as long as BB is sufficiently aligned. Keep 502 // track of the insertion point for each alignment. We are going to bucket 503 // sort the entries as they are created. 504 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 505 506 // Add all of the constants from the constant pool to the end block, use an 507 // identity mapping of CPI's to CPE's. 508 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 509 510 const DataLayout &TD = MF->getDataLayout(); 511 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 512 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 513 assert(Size >= 4 && "Too small constant pool entry"); 514 unsigned Align = CPs[i].getAlignment(); 515 assert(isPowerOf2_32(Align) && "Invalid alignment"); 516 // Verify that all constant pool entries are a multiple of their alignment. 517 // If not, we would have to pad them out so that instructions stay aligned. 518 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 519 520 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 521 unsigned LogAlign = Log2_32(Align); 522 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 523 MachineInstr *CPEMI = 524 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 525 .addImm(i).addConstantPoolIndex(i).addImm(Size); 526 CPEMIs.push_back(CPEMI); 527 528 // Ensure that future entries with higher alignment get inserted before 529 // CPEMI. This is bucket sort with iterators. 530 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 531 if (InsPoint[a] == InsAt) 532 InsPoint[a] = CPEMI; 533 534 // Add a new CPEntry, but no corresponding CPUser yet. 535 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 536 ++NumCPEs; 537 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 538 << Size << ", align = " << Align <<'\n'); 539 } 540 DEBUG(BB->dump()); 541 } 542 543 /// \brief Do initial placement of the jump tables. Because Thumb2's TBB and TBH 544 /// instructions can be made more efficient if the jump table immediately 545 /// follows the instruction, it's best to place them immediately next to their 546 /// jumps to begin with. In almost all cases they'll never be moved from that 547 /// position. 548 void ARMConstantIslands::doInitialJumpTablePlacement( 549 std::vector<MachineInstr *> &CPEMIs) { 550 unsigned i = CPEntries.size(); 551 auto MJTI = MF->getJumpTableInfo(); 552 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 553 554 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 555 for (MachineBasicBlock &MBB : *MF) { 556 auto MI = MBB.getLastNonDebugInstr(); 557 if (MI == MBB.end()) 558 continue; 559 560 unsigned JTOpcode; 561 switch (MI->getOpcode()) { 562 default: 563 continue; 564 case ARM::BR_JTadd: 565 case ARM::BR_JTr: 566 case ARM::tBR_JTr: 567 case ARM::BR_JTm_i12: 568 case ARM::BR_JTm_rs: 569 JTOpcode = ARM::JUMPTABLE_ADDRS; 570 break; 571 case ARM::t2BR_JT: 572 JTOpcode = ARM::JUMPTABLE_INSTS; 573 break; 574 case ARM::tTBB_JT: 575 case ARM::t2TBB_JT: 576 JTOpcode = ARM::JUMPTABLE_TBB; 577 break; 578 case ARM::tTBH_JT: 579 case ARM::t2TBH_JT: 580 JTOpcode = ARM::JUMPTABLE_TBH; 581 break; 582 } 583 584 unsigned NumOps = MI->getDesc().getNumOperands(); 585 MachineOperand JTOp = 586 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 587 unsigned JTI = JTOp.getIndex(); 588 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 589 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 590 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 591 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 592 DebugLoc(), TII->get(JTOpcode)) 593 .addImm(i++) 594 .addJumpTableIndex(JTI) 595 .addImm(Size); 596 CPEMIs.push_back(CPEMI); 597 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 598 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 599 if (!LastCorrectlyNumberedBB) 600 LastCorrectlyNumberedBB = &MBB; 601 } 602 603 // If we did anything then we need to renumber the subsequent blocks. 604 if (LastCorrectlyNumberedBB) 605 MF->RenumberBlocks(LastCorrectlyNumberedBB); 606 } 607 608 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 609 /// into the block immediately after it. 610 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 611 // Get the next machine basic block in the function. 612 MachineFunction::iterator MBBI = MBB->getIterator(); 613 // Can't fall off end of function. 614 if (std::next(MBBI) == MBB->getParent()->end()) 615 return false; 616 617 MachineBasicBlock *NextBB = &*std::next(MBBI); 618 if (!MBB->isSuccessor(NextBB)) 619 return false; 620 621 // Try to analyze the end of the block. A potential fallthrough may already 622 // have an unconditional branch for whatever reason. 623 MachineBasicBlock *TBB, *FBB; 624 SmallVector<MachineOperand, 4> Cond; 625 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 626 return TooDifficult || FBB == nullptr; 627 } 628 629 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 630 /// look up the corresponding CPEntry. 631 ARMConstantIslands::CPEntry * 632 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 633 const MachineInstr *CPEMI) { 634 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 635 // Number of entries per constpool index should be small, just do a 636 // linear search. 637 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 638 if (CPEs[i].CPEMI == CPEMI) 639 return &CPEs[i]; 640 } 641 return nullptr; 642 } 643 644 /// getCPELogAlign - Returns the required alignment of the constant pool entry 645 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 646 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 647 switch (CPEMI->getOpcode()) { 648 case ARM::CONSTPOOL_ENTRY: 649 break; 650 case ARM::JUMPTABLE_TBB: 651 return isThumb1 ? 2 : 0; 652 case ARM::JUMPTABLE_TBH: 653 return isThumb1 ? 2 : 1; 654 case ARM::JUMPTABLE_INSTS: 655 return 1; 656 case ARM::JUMPTABLE_ADDRS: 657 return 2; 658 default: 659 llvm_unreachable("unknown constpool entry kind"); 660 } 661 662 unsigned CPI = getCombinedIndex(CPEMI); 663 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 664 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 665 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 666 return Log2_32(Align); 667 } 668 669 /// scanFunctionJumpTables - Do a scan of the function, building up 670 /// information about the sizes of each block and the locations of all 671 /// the jump tables. 672 void ARMConstantIslands::scanFunctionJumpTables() { 673 for (MachineBasicBlock &MBB : *MF) { 674 for (MachineInstr &I : MBB) 675 if (I.isBranch() && 676 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 677 T2JumpTables.push_back(&I); 678 } 679 } 680 681 /// initializeFunctionInfo - Do the initial scan of the function, building up 682 /// information about the sizes of each block, the location of all the water, 683 /// and finding all of the constant pool users. 684 void ARMConstantIslands:: 685 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 686 687 BBInfo = computeAllBlockSizes(MF); 688 689 // The known bits of the entry block offset are determined by the function 690 // alignment. 691 BBInfo.front().KnownBits = MF->getAlignment(); 692 693 // Compute block offsets and known bits. 694 adjustBBOffsetsAfter(&MF->front()); 695 696 // Now go back through the instructions and build up our data structures. 697 for (MachineBasicBlock &MBB : *MF) { 698 // If this block doesn't fall through into the next MBB, then this is 699 // 'water' that a constant pool island could be placed. 700 if (!BBHasFallthrough(&MBB)) 701 WaterList.push_back(&MBB); 702 703 for (MachineInstr &I : MBB) { 704 if (I.isDebugValue()) 705 continue; 706 707 unsigned Opc = I.getOpcode(); 708 if (I.isBranch()) { 709 bool isCond = false; 710 unsigned Bits = 0; 711 unsigned Scale = 1; 712 int UOpc = Opc; 713 switch (Opc) { 714 default: 715 continue; // Ignore other JT branches 716 case ARM::t2BR_JT: 717 case ARM::tBR_JTr: 718 T2JumpTables.push_back(&I); 719 continue; // Does not get an entry in ImmBranches 720 case ARM::Bcc: 721 isCond = true; 722 UOpc = ARM::B; 723 LLVM_FALLTHROUGH; 724 case ARM::B: 725 Bits = 24; 726 Scale = 4; 727 break; 728 case ARM::tBcc: 729 isCond = true; 730 UOpc = ARM::tB; 731 Bits = 8; 732 Scale = 2; 733 break; 734 case ARM::tB: 735 Bits = 11; 736 Scale = 2; 737 break; 738 case ARM::t2Bcc: 739 isCond = true; 740 UOpc = ARM::t2B; 741 Bits = 20; 742 Scale = 2; 743 break; 744 case ARM::t2B: 745 Bits = 24; 746 Scale = 2; 747 break; 748 } 749 750 // Record this immediate branch. 751 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 752 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 753 } 754 755 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 756 PushPopMIs.push_back(&I); 757 758 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 759 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 760 Opc == ARM::JUMPTABLE_TBH) 761 continue; 762 763 // Scan the instructions for constant pool operands. 764 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 765 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 766 // We found one. The addressing mode tells us the max displacement 767 // from the PC that this instruction permits. 768 769 // Basic size info comes from the TSFlags field. 770 unsigned Bits = 0; 771 unsigned Scale = 1; 772 bool NegOk = false; 773 bool IsSoImm = false; 774 775 switch (Opc) { 776 default: 777 llvm_unreachable("Unknown addressing mode for CP reference!"); 778 779 // Taking the address of a CP entry. 780 case ARM::LEApcrel: 781 case ARM::LEApcrelJT: 782 // This takes a SoImm, which is 8 bit immediate rotated. We'll 783 // pretend the maximum offset is 255 * 4. Since each instruction 784 // 4 byte wide, this is always correct. We'll check for other 785 // displacements that fits in a SoImm as well. 786 Bits = 8; 787 Scale = 4; 788 NegOk = true; 789 IsSoImm = true; 790 break; 791 case ARM::t2LEApcrel: 792 case ARM::t2LEApcrelJT: 793 Bits = 12; 794 NegOk = true; 795 break; 796 case ARM::tLEApcrel: 797 case ARM::tLEApcrelJT: 798 Bits = 8; 799 Scale = 4; 800 break; 801 802 case ARM::LDRBi12: 803 case ARM::LDRi12: 804 case ARM::LDRcp: 805 case ARM::t2LDRpci: 806 case ARM::t2LDRHpci: 807 case ARM::t2LDRBpci: 808 Bits = 12; // +-offset_12 809 NegOk = true; 810 break; 811 812 case ARM::tLDRpci: 813 Bits = 8; 814 Scale = 4; // +(offset_8*4) 815 break; 816 817 case ARM::VLDRD: 818 case ARM::VLDRS: 819 Bits = 8; 820 Scale = 4; // +-(offset_8*4) 821 NegOk = true; 822 break; 823 824 case ARM::tLDRHi: 825 Bits = 5; 826 Scale = 2; // +(offset_5*2) 827 break; 828 } 829 830 // Remember that this is a user of a CP entry. 831 unsigned CPI = I.getOperand(op).getIndex(); 832 if (I.getOperand(op).isJTI()) { 833 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 834 CPI = JumpTableEntryIndices[CPI]; 835 } 836 837 MachineInstr *CPEMI = CPEMIs[CPI]; 838 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 839 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 840 841 // Increment corresponding CPEntry reference count. 842 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 843 assert(CPE && "Cannot find a corresponding CPEntry!"); 844 CPE->RefCount++; 845 846 // Instructions can only use one CP entry, don't bother scanning the 847 // rest of the operands. 848 break; 849 } 850 } 851 } 852 } 853 854 /// getOffsetOf - Return the current offset of the specified machine instruction 855 /// from the start of the function. This offset changes as stuff is moved 856 /// around inside the function. 857 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const { 858 MachineBasicBlock *MBB = MI->getParent(); 859 860 // The offset is composed of two things: the sum of the sizes of all MBB's 861 // before this instruction's block, and the offset from the start of the block 862 // it is in. 863 unsigned Offset = BBInfo[MBB->getNumber()].Offset; 864 865 // Sum instructions before MI in MBB. 866 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { 867 assert(I != MBB->end() && "Didn't find MI in its own basic block?"); 868 Offset += TII->getInstSizeInBytes(*I); 869 } 870 return Offset; 871 } 872 873 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 874 /// ID. 875 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 876 const MachineBasicBlock *RHS) { 877 return LHS->getNumber() < RHS->getNumber(); 878 } 879 880 /// updateForInsertedWaterBlock - When a block is newly inserted into the 881 /// machine function, it upsets all of the block numbers. Renumber the blocks 882 /// and update the arrays that parallel this numbering. 883 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 884 // Renumber the MBB's to keep them consecutive. 885 NewBB->getParent()->RenumberBlocks(NewBB); 886 887 // Insert an entry into BBInfo to align it properly with the (newly 888 // renumbered) block numbers. 889 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 890 891 // Next, update WaterList. Specifically, we need to add NewMBB as having 892 // available water after it. 893 water_iterator IP = 894 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, 895 CompareMBBNumbers); 896 WaterList.insert(IP, NewBB); 897 } 898 899 /// Split the basic block containing MI into two blocks, which are joined by 900 /// an unconditional branch. Update data structures and renumber blocks to 901 /// account for this change and returns the newly created block. 902 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 903 MachineBasicBlock *OrigBB = MI->getParent(); 904 905 // Create a new MBB for the code after the OrigBB. 906 MachineBasicBlock *NewBB = 907 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 908 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 909 MF->insert(MBBI, NewBB); 910 911 // Splice the instructions starting with MI over to NewBB. 912 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 913 914 // Add an unconditional branch from OrigBB to NewBB. 915 // Note the new unconditional branch is not being recorded. 916 // There doesn't seem to be meaningful DebugInfo available; this doesn't 917 // correspond to anything in the source. 918 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 919 if (!isThumb) 920 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 921 else 922 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 923 .addMBB(NewBB) 924 .add(predOps(ARMCC::AL)); 925 ++NumSplit; 926 927 // Update the CFG. All succs of OrigBB are now succs of NewBB. 928 NewBB->transferSuccessors(OrigBB); 929 930 // OrigBB branches to NewBB. 931 OrigBB->addSuccessor(NewBB); 932 933 // Update internal data structures to account for the newly inserted MBB. 934 // This is almost the same as updateForInsertedWaterBlock, except that 935 // the Water goes after OrigBB, not NewBB. 936 MF->RenumberBlocks(NewBB); 937 938 // Insert an entry into BBInfo to align it properly with the (newly 939 // renumbered) block numbers. 940 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); 941 942 // Next, update WaterList. Specifically, we need to add OrigMBB as having 943 // available water after it (but not if it's already there, which happens 944 // when splitting before a conditional branch that is followed by an 945 // unconditional branch - in that case we want to insert NewBB). 946 water_iterator IP = 947 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, 948 CompareMBBNumbers); 949 MachineBasicBlock* WaterBB = *IP; 950 if (WaterBB == OrigBB) 951 WaterList.insert(std::next(IP), NewBB); 952 else 953 WaterList.insert(IP, OrigBB); 954 NewWaterList.insert(OrigBB); 955 956 // Figure out how large the OrigBB is. As the first half of the original 957 // block, it cannot contain a tablejump. The size includes 958 // the new jump we added. (It should be possible to do this without 959 // recounting everything, but it's very confusing, and this is rarely 960 // executed.) 961 computeBlockSize(MF, OrigBB, BBInfo[OrigBB->getNumber()]); 962 963 // Figure out how large the NewMBB is. As the second half of the original 964 // block, it may contain a tablejump. 965 computeBlockSize(MF, NewBB, BBInfo[NewBB->getNumber()]); 966 967 // All BBOffsets following these blocks must be modified. 968 adjustBBOffsetsAfter(OrigBB); 969 970 return NewBB; 971 } 972 973 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 974 /// displacement computation. Update U.KnownAlignment to match its current 975 /// basic block location. 976 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 977 unsigned UserOffset = getOffsetOf(U.MI); 978 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 979 unsigned KnownBits = BBI.internalKnownBits(); 980 981 // The value read from PC is offset from the actual instruction address. 982 UserOffset += (isThumb ? 4 : 8); 983 984 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 985 // Make sure U.getMaxDisp() returns a constrained range. 986 U.KnownAlignment = (KnownBits >= 2); 987 988 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 989 // purposes of the displacement computation; compensate for that here. 990 // For unknown alignments, getMaxDisp() constrains the range instead. 991 if (isThumb && U.KnownAlignment) 992 UserOffset &= ~3u; 993 994 return UserOffset; 995 } 996 997 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 998 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 999 /// constant pool entry). 1000 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1001 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1002 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1003 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1004 unsigned TrialOffset, unsigned MaxDisp, 1005 bool NegativeOK, bool IsSoImm) { 1006 if (UserOffset <= TrialOffset) { 1007 // User before the Trial. 1008 if (TrialOffset - UserOffset <= MaxDisp) 1009 return true; 1010 // FIXME: Make use full range of soimm values. 1011 } else if (NegativeOK) { 1012 if (UserOffset - TrialOffset <= MaxDisp) 1013 return true; 1014 // FIXME: Make use full range of soimm values. 1015 } 1016 return false; 1017 } 1018 1019 /// isWaterInRange - Returns true if a CPE placed after the specified 1020 /// Water (a basic block) will be in range for the specific MI. 1021 /// 1022 /// Compute how much the function will grow by inserting a CPE after Water. 1023 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1024 MachineBasicBlock* Water, CPUser &U, 1025 unsigned &Growth) { 1026 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1027 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1028 unsigned NextBlockOffset, NextBlockAlignment; 1029 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1030 if (++NextBlock == MF->end()) { 1031 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1032 NextBlockAlignment = 0; 1033 } else { 1034 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1035 NextBlockAlignment = NextBlock->getAlignment(); 1036 } 1037 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1038 unsigned CPEEnd = CPEOffset + Size; 1039 1040 // The CPE may be able to hide in the alignment padding before the next 1041 // block. It may also cause more padding to be required if it is more aligned 1042 // that the next block. 1043 if (CPEEnd > NextBlockOffset) { 1044 Growth = CPEEnd - NextBlockOffset; 1045 // Compute the padding that would go at the end of the CPE to align the next 1046 // block. 1047 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1048 1049 // If the CPE is to be inserted before the instruction, that will raise 1050 // the offset of the instruction. Also account for unknown alignment padding 1051 // in blocks between CPE and the user. 1052 if (CPEOffset < UserOffset) 1053 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1054 } else 1055 // CPE fits in existing padding. 1056 Growth = 0; 1057 1058 return isOffsetInRange(UserOffset, CPEOffset, U); 1059 } 1060 1061 /// isCPEntryInRange - Returns true if the distance between specific MI and 1062 /// specific ConstPool entry instruction can fit in MI's displacement field. 1063 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1064 MachineInstr *CPEMI, unsigned MaxDisp, 1065 bool NegOk, bool DoDump) { 1066 unsigned CPEOffset = getOffsetOf(CPEMI); 1067 1068 if (DoDump) { 1069 DEBUG({ 1070 unsigned Block = MI->getParent()->getNumber(); 1071 const BasicBlockInfo &BBI = BBInfo[Block]; 1072 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1073 << " max delta=" << MaxDisp 1074 << format(" insn address=%#x", UserOffset) << " in " 1075 << printMBBReference(*MI->getParent()) << ": " 1076 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1077 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1078 int(CPEOffset - UserOffset)); 1079 }); 1080 } 1081 1082 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1083 } 1084 1085 #ifndef NDEBUG 1086 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1087 /// unconditionally branches to its only successor. 1088 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1089 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1090 return false; 1091 1092 MachineBasicBlock *Succ = *MBB->succ_begin(); 1093 MachineBasicBlock *Pred = *MBB->pred_begin(); 1094 MachineInstr *PredMI = &Pred->back(); 1095 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1096 || PredMI->getOpcode() == ARM::t2B) 1097 return PredMI->getOperand(0).getMBB() == Succ; 1098 return false; 1099 } 1100 #endif // NDEBUG 1101 1102 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) { 1103 unsigned BBNum = BB->getNumber(); 1104 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { 1105 // Get the offset and known bits at the end of the layout predecessor. 1106 // Include the alignment of the current block. 1107 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); 1108 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); 1109 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); 1110 1111 // This is where block i begins. Stop if the offset is already correct, 1112 // and we have updated 2 blocks. This is the maximum number of blocks 1113 // changed before calling this function. 1114 if (i > BBNum + 2 && 1115 BBInfo[i].Offset == Offset && 1116 BBInfo[i].KnownBits == KnownBits) 1117 break; 1118 1119 BBInfo[i].Offset = Offset; 1120 BBInfo[i].KnownBits = KnownBits; 1121 } 1122 } 1123 1124 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1125 /// and instruction CPEMI, and decrement its refcount. If the refcount 1126 /// becomes 0 remove the entry and instruction. Returns true if we removed 1127 /// the entry, false if we didn't. 1128 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1129 MachineInstr *CPEMI) { 1130 // Find the old entry. Eliminate it if it is no longer used. 1131 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1132 assert(CPE && "Unexpected!"); 1133 if (--CPE->RefCount == 0) { 1134 removeDeadCPEMI(CPEMI); 1135 CPE->CPEMI = nullptr; 1136 --NumCPEs; 1137 return true; 1138 } 1139 return false; 1140 } 1141 1142 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1143 if (CPEMI->getOperand(1).isCPI()) 1144 return CPEMI->getOperand(1).getIndex(); 1145 1146 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1147 } 1148 1149 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1150 /// if not, see if an in-range clone of the CPE is in range, and if so, 1151 /// change the data structures so the user references the clone. Returns: 1152 /// 0 = no existing entry found 1153 /// 1 = entry found, and there were no code insertions or deletions 1154 /// 2 = entry found, and there were code insertions or deletions 1155 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1156 MachineInstr *UserMI = U.MI; 1157 MachineInstr *CPEMI = U.CPEMI; 1158 1159 // Check to see if the CPE is already in-range. 1160 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1161 true)) { 1162 DEBUG(dbgs() << "In range\n"); 1163 return 1; 1164 } 1165 1166 // No. Look for previously created clones of the CPE that are in range. 1167 unsigned CPI = getCombinedIndex(CPEMI); 1168 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1169 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1170 // We already tried this one 1171 if (CPEs[i].CPEMI == CPEMI) 1172 continue; 1173 // Removing CPEs can leave empty entries, skip 1174 if (CPEs[i].CPEMI == nullptr) 1175 continue; 1176 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1177 U.NegOk)) { 1178 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1179 << CPEs[i].CPI << "\n"); 1180 // Point the CPUser node to the replacement 1181 U.CPEMI = CPEs[i].CPEMI; 1182 // Change the CPI in the instruction operand to refer to the clone. 1183 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1184 if (UserMI->getOperand(j).isCPI()) { 1185 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1186 break; 1187 } 1188 // Adjust the refcount of the clone... 1189 CPEs[i].RefCount++; 1190 // ...and the original. If we didn't remove the old entry, none of the 1191 // addresses changed, so we don't need another pass. 1192 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1193 } 1194 } 1195 return 0; 1196 } 1197 1198 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1199 /// the specific unconditional branch instruction. 1200 static inline unsigned getUnconditionalBrDisp(int Opc) { 1201 switch (Opc) { 1202 case ARM::tB: 1203 return ((1<<10)-1)*2; 1204 case ARM::t2B: 1205 return ((1<<23)-1)*2; 1206 default: 1207 break; 1208 } 1209 1210 return ((1<<23)-1)*4; 1211 } 1212 1213 /// findAvailableWater - Look for an existing entry in the WaterList in which 1214 /// we can place the CPE referenced from U so it's within range of U's MI. 1215 /// Returns true if found, false if not. If it returns true, WaterIter 1216 /// is set to the WaterList entry. For Thumb, prefer water that will not 1217 /// introduce padding to water that will. To ensure that this pass 1218 /// terminates, the CPE location for a particular CPUser is only allowed to 1219 /// move to a lower address, so search backward from the end of the list and 1220 /// prefer the first water that is in range. 1221 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1222 water_iterator &WaterIter, 1223 bool CloserWater) { 1224 if (WaterList.empty()) 1225 return false; 1226 1227 unsigned BestGrowth = ~0u; 1228 // The nearest water without splitting the UserBB is right after it. 1229 // If the distance is still large (we have a big BB), then we need to split it 1230 // if we don't converge after certain iterations. This helps the following 1231 // situation to converge: 1232 // BB0: 1233 // Big BB 1234 // BB1: 1235 // Constant Pool 1236 // When a CP access is out of range, BB0 may be used as water. However, 1237 // inserting islands between BB0 and BB1 makes other accesses out of range. 1238 MachineBasicBlock *UserBB = U.MI->getParent(); 1239 unsigned MinNoSplitDisp = 1240 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1241 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1242 return false; 1243 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1244 --IP) { 1245 MachineBasicBlock* WaterBB = *IP; 1246 // Check if water is in range and is either at a lower address than the 1247 // current "high water mark" or a new water block that was created since 1248 // the previous iteration by inserting an unconditional branch. In the 1249 // latter case, we want to allow resetting the high water mark back to 1250 // this new water since we haven't seen it before. Inserting branches 1251 // should be relatively uncommon and when it does happen, we want to be 1252 // sure to take advantage of it for all the CPEs near that block, so that 1253 // we don't insert more branches than necessary. 1254 // When CloserWater is true, we try to find the lowest address after (or 1255 // equal to) user MI's BB no matter of padding growth. 1256 unsigned Growth; 1257 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1258 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1259 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1260 Growth < BestGrowth) { 1261 // This is the least amount of required padding seen so far. 1262 BestGrowth = Growth; 1263 WaterIter = IP; 1264 DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1265 << " Growth=" << Growth << '\n'); 1266 1267 if (CloserWater && WaterBB == U.MI->getParent()) 1268 return true; 1269 // Keep looking unless it is perfect and we're not looking for the lowest 1270 // possible address. 1271 if (!CloserWater && BestGrowth == 0) 1272 return true; 1273 } 1274 if (IP == B) 1275 break; 1276 } 1277 return BestGrowth != ~0u; 1278 } 1279 1280 /// createNewWater - No existing WaterList entry will work for 1281 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1282 /// block is used if in range, and the conditional branch munged so control 1283 /// flow is correct. Otherwise the block is split to create a hole with an 1284 /// unconditional branch around it. In either case NewMBB is set to a 1285 /// block following which the new island can be inserted (the WaterList 1286 /// is not adjusted). 1287 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1288 unsigned UserOffset, 1289 MachineBasicBlock *&NewMBB) { 1290 CPUser &U = CPUsers[CPUserIndex]; 1291 MachineInstr *UserMI = U.MI; 1292 MachineInstr *CPEMI = U.CPEMI; 1293 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1294 MachineBasicBlock *UserMBB = UserMI->getParent(); 1295 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1296 1297 // If the block does not end in an unconditional branch already, and if the 1298 // end of the block is within range, make new water there. (The addition 1299 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1300 // Thumb2, 2 on Thumb1. 1301 if (BBHasFallthrough(UserMBB)) { 1302 // Size of branch to insert. 1303 unsigned Delta = isThumb1 ? 2 : 4; 1304 // Compute the offset where the CPE will begin. 1305 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1306 1307 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1308 DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1309 << format(", expected CPE offset %#x\n", CPEOffset)); 1310 NewMBB = &*++UserMBB->getIterator(); 1311 // Add an unconditional branch from UserMBB to fallthrough block. Record 1312 // it for branch lengthening; this new branch will not get out of range, 1313 // but if the preceding conditional branch is out of range, the targets 1314 // will be exchanged, and the altered branch may be out of range, so the 1315 // machinery has to know about it. 1316 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1317 if (!isThumb) 1318 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1319 else 1320 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1321 .addMBB(NewMBB) 1322 .add(predOps(ARMCC::AL)); 1323 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1324 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1325 MaxDisp, false, UncondBr)); 1326 computeBlockSize(MF, UserMBB, BBInfo[UserMBB->getNumber()]); 1327 adjustBBOffsetsAfter(UserMBB); 1328 return; 1329 } 1330 } 1331 1332 // What a big block. Find a place within the block to split it. This is a 1333 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1334 // entries are 4 bytes: if instruction I references island CPE, and 1335 // instruction I+1 references CPE', it will not work well to put CPE as far 1336 // forward as possible, since then CPE' cannot immediately follow it (that 1337 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1338 // need to create a new island. So, we make a first guess, then walk through 1339 // the instructions between the one currently being looked at and the 1340 // possible insertion point, and make sure any other instructions that 1341 // reference CPEs will be able to use the same island area; if not, we back 1342 // up the insertion point. 1343 1344 // Try to split the block so it's fully aligned. Compute the latest split 1345 // point where we can add a 4-byte branch instruction, and then align to 1346 // LogAlign which is the largest possible alignment in the function. 1347 unsigned LogAlign = MF->getAlignment(); 1348 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1349 unsigned KnownBits = UserBBI.internalKnownBits(); 1350 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1351 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1352 DEBUG(dbgs() << format("Split in middle of big block before %#x", 1353 BaseInsertOffset)); 1354 1355 // The 4 in the following is for the unconditional branch we'll be inserting 1356 // (allows for long branch on Thumb1). Alignment of the island is handled 1357 // inside isOffsetInRange. 1358 BaseInsertOffset -= 4; 1359 1360 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1361 << " la=" << LogAlign 1362 << " kb=" << KnownBits 1363 << " up=" << UPad << '\n'); 1364 1365 // This could point off the end of the block if we've already got constant 1366 // pool entries following this block; only the last one is in the water list. 1367 // Back past any possible branches (allow for a conditional and a maximally 1368 // long unconditional). 1369 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1370 // Ensure BaseInsertOffset is larger than the offset of the instruction 1371 // following UserMI so that the loop which searches for the split point 1372 // iterates at least once. 1373 BaseInsertOffset = 1374 std::max(UserBBI.postOffset() - UPad - 8, 1375 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1376 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1377 } 1378 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1379 CPEMI->getOperand(2).getImm(); 1380 MachineBasicBlock::iterator MI = UserMI; 1381 ++MI; 1382 unsigned CPUIndex = CPUserIndex+1; 1383 unsigned NumCPUsers = CPUsers.size(); 1384 MachineInstr *LastIT = nullptr; 1385 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1386 Offset < BaseInsertOffset; 1387 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1388 assert(MI != UserMBB->end() && "Fell off end of block"); 1389 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1390 CPUser &U = CPUsers[CPUIndex]; 1391 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1392 // Shift intertion point by one unit of alignment so it is within reach. 1393 BaseInsertOffset -= 1u << LogAlign; 1394 EndInsertOffset -= 1u << LogAlign; 1395 } 1396 // This is overly conservative, as we don't account for CPEMIs being 1397 // reused within the block, but it doesn't matter much. Also assume CPEs 1398 // are added in order with alignment padding. We may eventually be able 1399 // to pack the aligned CPEs better. 1400 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1401 CPUIndex++; 1402 } 1403 1404 // Remember the last IT instruction. 1405 if (MI->getOpcode() == ARM::t2IT) 1406 LastIT = &*MI; 1407 } 1408 1409 --MI; 1410 1411 // Avoid splitting an IT block. 1412 if (LastIT) { 1413 unsigned PredReg = 0; 1414 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1415 if (CC != ARMCC::AL) 1416 MI = LastIT; 1417 } 1418 1419 // We really must not split an IT block. 1420 DEBUG(unsigned PredReg; 1421 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1422 1423 NewMBB = splitBlockBeforeInstr(&*MI); 1424 } 1425 1426 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1427 /// is out-of-range. If so, pick up the constant pool value and move it some 1428 /// place in-range. Return true if we changed any addresses (thus must run 1429 /// another pass of branch lengthening), false otherwise. 1430 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1431 bool CloserWater) { 1432 CPUser &U = CPUsers[CPUserIndex]; 1433 MachineInstr *UserMI = U.MI; 1434 MachineInstr *CPEMI = U.CPEMI; 1435 unsigned CPI = getCombinedIndex(CPEMI); 1436 unsigned Size = CPEMI->getOperand(2).getImm(); 1437 // Compute this only once, it's expensive. 1438 unsigned UserOffset = getUserOffset(U); 1439 1440 // See if the current entry is within range, or there is a clone of it 1441 // in range. 1442 int result = findInRangeCPEntry(U, UserOffset); 1443 if (result==1) return false; 1444 else if (result==2) return true; 1445 1446 // No existing clone of this CPE is within range. 1447 // We will be generating a new clone. Get a UID for it. 1448 unsigned ID = AFI->createPICLabelUId(); 1449 1450 // Look for water where we can place this CPE. 1451 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1452 MachineBasicBlock *NewMBB; 1453 water_iterator IP; 1454 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1455 DEBUG(dbgs() << "Found water in range\n"); 1456 MachineBasicBlock *WaterBB = *IP; 1457 1458 // If the original WaterList entry was "new water" on this iteration, 1459 // propagate that to the new island. This is just keeping NewWaterList 1460 // updated to match the WaterList, which will be updated below. 1461 if (NewWaterList.erase(WaterBB)) 1462 NewWaterList.insert(NewIsland); 1463 1464 // The new CPE goes before the following block (NewMBB). 1465 NewMBB = &*++WaterBB->getIterator(); 1466 } else { 1467 // No water found. 1468 DEBUG(dbgs() << "No water found\n"); 1469 createNewWater(CPUserIndex, UserOffset, NewMBB); 1470 1471 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1472 // called while handling branches so that the water will be seen on the 1473 // next iteration for constant pools, but in this context, we don't want 1474 // it. Check for this so it will be removed from the WaterList. 1475 // Also remove any entry from NewWaterList. 1476 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1477 IP = find(WaterList, WaterBB); 1478 if (IP != WaterList.end()) 1479 NewWaterList.erase(WaterBB); 1480 1481 // We are adding new water. Update NewWaterList. 1482 NewWaterList.insert(NewIsland); 1483 } 1484 1485 // Remove the original WaterList entry; we want subsequent insertions in 1486 // this vicinity to go after the one we're about to insert. This 1487 // considerably reduces the number of times we have to move the same CPE 1488 // more than once and is also important to ensure the algorithm terminates. 1489 if (IP != WaterList.end()) 1490 WaterList.erase(IP); 1491 1492 // Okay, we know we can put an island before NewMBB now, do it! 1493 MF->insert(NewMBB->getIterator(), NewIsland); 1494 1495 // Update internal data structures to account for the newly inserted MBB. 1496 updateForInsertedWaterBlock(NewIsland); 1497 1498 // Now that we have an island to add the CPE to, clone the original CPE and 1499 // add it to the island. 1500 U.HighWaterMark = NewIsland; 1501 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1502 .addImm(ID) 1503 .add(CPEMI->getOperand(1)) 1504 .addImm(Size); 1505 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1506 ++NumCPEs; 1507 1508 // Decrement the old entry, and remove it if refcount becomes 0. 1509 decrementCPEReferenceCount(CPI, CPEMI); 1510 1511 // Mark the basic block as aligned as required by the const-pool entry. 1512 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1513 1514 // Increase the size of the island block to account for the new entry. 1515 BBInfo[NewIsland->getNumber()].Size += Size; 1516 adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1517 1518 // Finally, change the CPI in the instruction operand to be ID. 1519 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1520 if (UserMI->getOperand(i).isCPI()) { 1521 UserMI->getOperand(i).setIndex(ID); 1522 break; 1523 } 1524 1525 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1526 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset)); 1527 1528 return true; 1529 } 1530 1531 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1532 /// sizes and offsets of impacted basic blocks. 1533 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1534 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1535 unsigned Size = CPEMI->getOperand(2).getImm(); 1536 CPEMI->eraseFromParent(); 1537 BBInfo[CPEBB->getNumber()].Size -= Size; 1538 // All succeeding offsets have the current size value added in, fix this. 1539 if (CPEBB->empty()) { 1540 BBInfo[CPEBB->getNumber()].Size = 0; 1541 1542 // This block no longer needs to be aligned. 1543 CPEBB->setAlignment(0); 1544 } else 1545 // Entries are sorted by descending alignment, so realign from the front. 1546 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1547 1548 adjustBBOffsetsAfter(CPEBB); 1549 // An island has only one predecessor BB and one successor BB. Check if 1550 // this BB's predecessor jumps directly to this BB's successor. This 1551 // shouldn't happen currently. 1552 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1553 // FIXME: remove the empty blocks after all the work is done? 1554 } 1555 1556 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1557 /// are zero. 1558 bool ARMConstantIslands::removeUnusedCPEntries() { 1559 unsigned MadeChange = false; 1560 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1561 std::vector<CPEntry> &CPEs = CPEntries[i]; 1562 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1563 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1564 removeDeadCPEMI(CPEs[j].CPEMI); 1565 CPEs[j].CPEMI = nullptr; 1566 MadeChange = true; 1567 } 1568 } 1569 } 1570 return MadeChange; 1571 } 1572 1573 /// isBBInRange - Returns true if the distance between specific MI and 1574 /// specific BB can fit in MI's displacement field. 1575 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB, 1576 unsigned MaxDisp) { 1577 unsigned PCAdj = isThumb ? 4 : 8; 1578 unsigned BrOffset = getOffsetOf(MI) + PCAdj; 1579 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1580 1581 DEBUG(dbgs() << "Branch of destination " << printMBBReference(*DestBB) 1582 << " from " << printMBBReference(*MI->getParent()) 1583 << " max delta=" << MaxDisp << " from " << getOffsetOf(MI) 1584 << " to " << DestOffset << " offset " 1585 << int(DestOffset - BrOffset) << "\t" << *MI); 1586 1587 if (BrOffset <= DestOffset) { 1588 // Branch before the Dest. 1589 if (DestOffset-BrOffset <= MaxDisp) 1590 return true; 1591 } else { 1592 if (BrOffset-DestOffset <= MaxDisp) 1593 return true; 1594 } 1595 return false; 1596 } 1597 1598 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1599 /// away to fit in its displacement field. 1600 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1601 MachineInstr *MI = Br.MI; 1602 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1603 1604 // Check to see if the DestBB is already in-range. 1605 if (isBBInRange(MI, DestBB, Br.MaxDisp)) 1606 return false; 1607 1608 if (!Br.isCond) 1609 return fixupUnconditionalBr(Br); 1610 return fixupConditionalBr(Br); 1611 } 1612 1613 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1614 /// too far away to fit in its displacement field. If the LR register has been 1615 /// spilled in the epilogue, then we can use BL to implement a far jump. 1616 /// Otherwise, add an intermediate branch instruction to a branch. 1617 bool 1618 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1619 MachineInstr *MI = Br.MI; 1620 MachineBasicBlock *MBB = MI->getParent(); 1621 if (!isThumb1) 1622 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1623 1624 // Use BL to implement far jump. 1625 Br.MaxDisp = (1 << 21) * 2; 1626 MI->setDesc(TII->get(ARM::tBfar)); 1627 BBInfo[MBB->getNumber()].Size += 2; 1628 adjustBBOffsetsAfter(MBB); 1629 HasFarJump = true; 1630 ++NumUBrFixed; 1631 1632 DEBUG(dbgs() << " Changed B to long jump " << *MI); 1633 1634 return true; 1635 } 1636 1637 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1638 /// far away to fit in its displacement field. It is converted to an inverse 1639 /// conditional branch + an unconditional branch to the destination. 1640 bool 1641 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1642 MachineInstr *MI = Br.MI; 1643 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1644 1645 // Add an unconditional branch to the destination and invert the branch 1646 // condition to jump over it: 1647 // blt L1 1648 // => 1649 // bge L2 1650 // b L1 1651 // L2: 1652 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1653 CC = ARMCC::getOppositeCondition(CC); 1654 unsigned CCReg = MI->getOperand(2).getReg(); 1655 1656 // If the branch is at the end of its MBB and that has a fall-through block, 1657 // direct the updated conditional branch to the fall-through block. Otherwise, 1658 // split the MBB before the next instruction. 1659 MachineBasicBlock *MBB = MI->getParent(); 1660 MachineInstr *BMI = &MBB->back(); 1661 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1662 1663 ++NumCBrFixed; 1664 if (BMI != MI) { 1665 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1666 BMI->getOpcode() == Br.UncondBr) { 1667 // Last MI in the BB is an unconditional branch. Can we simply invert the 1668 // condition and swap destinations: 1669 // beq L1 1670 // b L2 1671 // => 1672 // bne L2 1673 // b L1 1674 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1675 if (isBBInRange(MI, NewDest, Br.MaxDisp)) { 1676 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " 1677 << *BMI); 1678 BMI->getOperand(0).setMBB(DestBB); 1679 MI->getOperand(0).setMBB(NewDest); 1680 MI->getOperand(1).setImm(CC); 1681 return true; 1682 } 1683 } 1684 } 1685 1686 if (NeedSplit) { 1687 splitBlockBeforeInstr(MI); 1688 // No need for the branch to the next block. We're adding an unconditional 1689 // branch to the destination. 1690 int delta = TII->getInstSizeInBytes(MBB->back()); 1691 BBInfo[MBB->getNumber()].Size -= delta; 1692 MBB->back().eraseFromParent(); 1693 1694 // The conditional successor will be swapped between the BBs after this, so 1695 // update CFG. 1696 MBB->addSuccessor(DestBB); 1697 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1698 1699 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1700 } 1701 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1702 1703 DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1704 << " also invert condition and change dest. to " 1705 << printMBBReference(*NextBB) << "\n"); 1706 1707 // Insert a new conditional branch and a new unconditional branch. 1708 // Also update the ImmBranch as well as adding a new entry for the new branch. 1709 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1710 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1711 Br.MI = &MBB->back(); 1712 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1713 if (isThumb) 1714 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1715 .addMBB(DestBB) 1716 .add(predOps(ARMCC::AL)); 1717 else 1718 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1719 BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); 1720 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1721 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1722 1723 // Remove the old conditional branch. It may or may not still be in MBB. 1724 BBInfo[MI->getParent()->getNumber()].Size -= TII->getInstSizeInBytes(*MI); 1725 MI->eraseFromParent(); 1726 adjustBBOffsetsAfter(MBB); 1727 return true; 1728 } 1729 1730 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1731 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1732 /// to do this if tBfar is not used. 1733 bool ARMConstantIslands::undoLRSpillRestore() { 1734 bool MadeChange = false; 1735 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1736 MachineInstr *MI = PushPopMIs[i]; 1737 // First two operands are predicates. 1738 if (MI->getOpcode() == ARM::tPOP_RET && 1739 MI->getOperand(2).getReg() == ARM::PC && 1740 MI->getNumExplicitOperands() == 3) { 1741 // Create the new insn and copy the predicate from the old. 1742 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1743 .add(MI->getOperand(0)) 1744 .add(MI->getOperand(1)); 1745 MI->eraseFromParent(); 1746 MadeChange = true; 1747 } else if (MI->getOpcode() == ARM::tPUSH && 1748 MI->getOperand(2).getReg() == ARM::LR && 1749 MI->getNumExplicitOperands() == 3) { 1750 // Just remove the push. 1751 MI->eraseFromParent(); 1752 MadeChange = true; 1753 } 1754 } 1755 return MadeChange; 1756 } 1757 1758 bool ARMConstantIslands::optimizeThumb2Instructions() { 1759 bool MadeChange = false; 1760 1761 // Shrink ADR and LDR from constantpool. 1762 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1763 CPUser &U = CPUsers[i]; 1764 unsigned Opcode = U.MI->getOpcode(); 1765 unsigned NewOpc = 0; 1766 unsigned Scale = 1; 1767 unsigned Bits = 0; 1768 switch (Opcode) { 1769 default: break; 1770 case ARM::t2LEApcrel: 1771 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1772 NewOpc = ARM::tLEApcrel; 1773 Bits = 8; 1774 Scale = 4; 1775 } 1776 break; 1777 case ARM::t2LDRpci: 1778 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1779 NewOpc = ARM::tLDRpci; 1780 Bits = 8; 1781 Scale = 4; 1782 } 1783 break; 1784 } 1785 1786 if (!NewOpc) 1787 continue; 1788 1789 unsigned UserOffset = getUserOffset(U); 1790 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1791 1792 // Be conservative with inline asm. 1793 if (!U.KnownAlignment) 1794 MaxOffs -= 2; 1795 1796 // FIXME: Check if offset is multiple of scale if scale is not 4. 1797 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1798 DEBUG(dbgs() << "Shrink: " << *U.MI); 1799 U.MI->setDesc(TII->get(NewOpc)); 1800 MachineBasicBlock *MBB = U.MI->getParent(); 1801 BBInfo[MBB->getNumber()].Size -= 2; 1802 adjustBBOffsetsAfter(MBB); 1803 ++NumT2CPShrunk; 1804 MadeChange = true; 1805 } 1806 } 1807 1808 return MadeChange; 1809 } 1810 1811 bool ARMConstantIslands::optimizeThumb2Branches() { 1812 bool MadeChange = false; 1813 1814 // The order in which branches appear in ImmBranches is approximately their 1815 // order within the function body. By visiting later branches first, we reduce 1816 // the distance between earlier forward branches and their targets, making it 1817 // more likely that the cbn?z optimization, which can only apply to forward 1818 // branches, will succeed. 1819 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1820 ImmBranch &Br = ImmBranches[i-1]; 1821 unsigned Opcode = Br.MI->getOpcode(); 1822 unsigned NewOpc = 0; 1823 unsigned Scale = 1; 1824 unsigned Bits = 0; 1825 switch (Opcode) { 1826 default: break; 1827 case ARM::t2B: 1828 NewOpc = ARM::tB; 1829 Bits = 11; 1830 Scale = 2; 1831 break; 1832 case ARM::t2Bcc: 1833 NewOpc = ARM::tBcc; 1834 Bits = 8; 1835 Scale = 2; 1836 break; 1837 } 1838 if (NewOpc) { 1839 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1840 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1841 if (isBBInRange(Br.MI, DestBB, MaxOffs)) { 1842 DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1843 Br.MI->setDesc(TII->get(NewOpc)); 1844 MachineBasicBlock *MBB = Br.MI->getParent(); 1845 BBInfo[MBB->getNumber()].Size -= 2; 1846 adjustBBOffsetsAfter(MBB); 1847 ++NumT2BrShrunk; 1848 MadeChange = true; 1849 } 1850 } 1851 1852 Opcode = Br.MI->getOpcode(); 1853 if (Opcode != ARM::tBcc) 1854 continue; 1855 1856 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1857 // so this transformation is not safe. 1858 if (!Br.MI->killsRegister(ARM::CPSR)) 1859 continue; 1860 1861 NewOpc = 0; 1862 unsigned PredReg = 0; 1863 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1864 if (Pred == ARMCC::EQ) 1865 NewOpc = ARM::tCBZ; 1866 else if (Pred == ARMCC::NE) 1867 NewOpc = ARM::tCBNZ; 1868 if (!NewOpc) 1869 continue; 1870 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1871 // Check if the distance is within 126. Subtract starting offset by 2 1872 // because the cmp will be eliminated. 1873 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2; 1874 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1875 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { 1876 MachineBasicBlock::iterator CmpMI = Br.MI; 1877 if (CmpMI != Br.MI->getParent()->begin()) { 1878 --CmpMI; 1879 if (CmpMI->getOpcode() == ARM::tCMPi8) { 1880 unsigned Reg = CmpMI->getOperand(0).getReg(); 1881 Pred = getInstrPredicate(*CmpMI, PredReg); 1882 if (Pred == ARMCC::AL && 1883 CmpMI->getOperand(1).getImm() == 0 && 1884 isARMLowRegister(Reg)) { 1885 MachineBasicBlock *MBB = Br.MI->getParent(); 1886 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1887 MachineInstr *NewBR = 1888 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1889 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); 1890 CmpMI->eraseFromParent(); 1891 Br.MI->eraseFromParent(); 1892 Br.MI = NewBR; 1893 BBInfo[MBB->getNumber()].Size -= 2; 1894 adjustBBOffsetsAfter(MBB); 1895 ++NumCBZ; 1896 MadeChange = true; 1897 } 1898 } 1899 } 1900 } 1901 } 1902 1903 return MadeChange; 1904 } 1905 1906 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1907 unsigned BaseReg) { 1908 if (I.getOpcode() != ARM::t2ADDrs) 1909 return false; 1910 1911 if (I.getOperand(0).getReg() != EntryReg) 1912 return false; 1913 1914 if (I.getOperand(1).getReg() != BaseReg) 1915 return false; 1916 1917 // FIXME: what about CC and IdxReg? 1918 return true; 1919 } 1920 1921 /// \brief While trying to form a TBB/TBH instruction, we may (if the table 1922 /// doesn't immediately follow the BR_JT) need access to the start of the 1923 /// jump-table. We know one instruction that produces such a register; this 1924 /// function works out whether that definition can be preserved to the BR_JT, 1925 /// possibly by removing an intervening addition (which is usually needed to 1926 /// calculate the actual entry to jump to). 1927 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1928 MachineInstr *LEAMI, 1929 unsigned &DeadSize, 1930 bool &CanDeleteLEA, 1931 bool &BaseRegKill) { 1932 if (JumpMI->getParent() != LEAMI->getParent()) 1933 return false; 1934 1935 // Now we hope that we have at least these instructions in the basic block: 1936 // BaseReg = t2LEA ... 1937 // [...] 1938 // EntryReg = t2ADDrs BaseReg, ... 1939 // [...] 1940 // t2BR_JT EntryReg 1941 // 1942 // We have to be very conservative about what we recognise here though. The 1943 // main perturbing factors to watch out for are: 1944 // + Spills at any point in the chain: not direct problems but we would 1945 // expect a blocking Def of the spilled register so in practice what we 1946 // can do is limited. 1947 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1948 // of BaseReg, but only if the t2ADDrs can be removed. 1949 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1950 // the wild, but we should be careful. 1951 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 1952 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 1953 1954 CanDeleteLEA = true; 1955 BaseRegKill = false; 1956 MachineInstr *RemovableAdd = nullptr; 1957 MachineBasicBlock::iterator I(LEAMI); 1958 for (++I; &*I != JumpMI; ++I) { 1959 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 1960 RemovableAdd = &*I; 1961 break; 1962 } 1963 1964 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1965 const MachineOperand &MO = I->getOperand(K); 1966 if (!MO.isReg() || !MO.getReg()) 1967 continue; 1968 if (MO.isDef() && MO.getReg() == BaseReg) 1969 return false; 1970 if (MO.isUse() && MO.getReg() == BaseReg) { 1971 BaseRegKill = BaseRegKill || MO.isKill(); 1972 CanDeleteLEA = false; 1973 } 1974 } 1975 } 1976 1977 if (!RemovableAdd) 1978 return true; 1979 1980 // Check the add really is removable, and that nothing else in the block 1981 // clobbers BaseReg. 1982 for (++I; &*I != JumpMI; ++I) { 1983 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1984 const MachineOperand &MO = I->getOperand(K); 1985 if (!MO.isReg() || !MO.getReg()) 1986 continue; 1987 if (MO.isDef() && MO.getReg() == BaseReg) 1988 return false; 1989 if (MO.isUse() && MO.getReg() == EntryReg) 1990 RemovableAdd = nullptr; 1991 } 1992 } 1993 1994 if (RemovableAdd) { 1995 RemovableAdd->eraseFromParent(); 1996 DeadSize += isThumb2 ? 4 : 2; 1997 } else if (BaseReg == EntryReg) { 1998 // The add wasn't removable, but clobbered the base for the TBB. So we can't 1999 // preserve it. 2000 return false; 2001 } 2002 2003 // We reached the end of the block without seeing another definition of 2004 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2005 // used in the TBB/TBH if necessary. 2006 return true; 2007 } 2008 2009 /// \brief Returns whether CPEMI is the first instruction in the block 2010 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2011 /// we can switch the first register to PC and usually remove the address 2012 /// calculation that preceded it. 2013 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2014 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2015 MachineFunction *MF = MBB->getParent(); 2016 ++MBB; 2017 2018 return MBB != MF->end() && MBB->begin() != MBB->end() && 2019 &*MBB->begin() == CPEMI; 2020 } 2021 2022 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2023 MachineInstr *JumpMI, 2024 unsigned &DeadSize) { 2025 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2026 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2027 // and is not clobbered / used. 2028 MachineInstr *RemovableAdd = nullptr; 2029 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 2030 2031 // Find the last ADD to set EntryReg 2032 MachineBasicBlock::iterator I(LEAMI); 2033 for (++I; &*I != JumpMI; ++I) { 2034 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2035 RemovableAdd = &*I; 2036 } 2037 2038 if (!RemovableAdd) 2039 return; 2040 2041 // Ensure EntryReg is not clobbered or used. 2042 MachineBasicBlock::iterator J(RemovableAdd); 2043 for (++J; &*J != JumpMI; ++J) { 2044 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2045 const MachineOperand &MO = J->getOperand(K); 2046 if (!MO.isReg() || !MO.getReg()) 2047 continue; 2048 if (MO.isDef() && MO.getReg() == EntryReg) 2049 return; 2050 if (MO.isUse() && MO.getReg() == EntryReg) 2051 return; 2052 } 2053 } 2054 2055 DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2056 RemovableAdd->eraseFromParent(); 2057 DeadSize += 4; 2058 } 2059 2060 static bool registerDefinedBetween(unsigned Reg, 2061 MachineBasicBlock::iterator From, 2062 MachineBasicBlock::iterator To, 2063 const TargetRegisterInfo *TRI) { 2064 for (auto I = From; I != To; ++I) 2065 if (I->modifiesRegister(Reg, TRI)) 2066 return true; 2067 return false; 2068 } 2069 2070 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2071 /// jumptables when it's possible. 2072 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2073 bool MadeChange = false; 2074 2075 // FIXME: After the tables are shrunk, can we get rid some of the 2076 // constantpool tables? 2077 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2078 if (!MJTI) return false; 2079 2080 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2081 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2082 MachineInstr *MI = T2JumpTables[i]; 2083 const MCInstrDesc &MCID = MI->getDesc(); 2084 unsigned NumOps = MCID.getNumOperands(); 2085 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2086 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2087 unsigned JTI = JTOP.getIndex(); 2088 assert(JTI < JT.size()); 2089 2090 bool ByteOk = true; 2091 bool HalfWordOk = true; 2092 unsigned JTOffset = getOffsetOf(MI) + 4; 2093 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2094 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2095 MachineBasicBlock *MBB = JTBBs[j]; 2096 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2097 // Negative offset is not ok. FIXME: We should change BB layout to make 2098 // sure all the branches are forward. 2099 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2100 ByteOk = false; 2101 unsigned TBHLimit = ((1<<16)-1)*2; 2102 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2103 HalfWordOk = false; 2104 if (!ByteOk && !HalfWordOk) 2105 break; 2106 } 2107 2108 if (!ByteOk && !HalfWordOk) 2109 continue; 2110 2111 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2112 MachineBasicBlock *MBB = MI->getParent(); 2113 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2114 continue; 2115 2116 unsigned DeadSize = 0; 2117 bool CanDeleteLEA = false; 2118 bool BaseRegKill = false; 2119 2120 unsigned IdxReg = ~0U; 2121 bool IdxRegKill = true; 2122 if (isThumb2) { 2123 IdxReg = MI->getOperand(1).getReg(); 2124 IdxRegKill = MI->getOperand(1).isKill(); 2125 2126 bool PreservedBaseReg = 2127 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2128 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2129 continue; 2130 } else { 2131 // We're in thumb-1 mode, so we must have something like: 2132 // %idx = tLSLri %idx, 2 2133 // %base = tLEApcrelJT 2134 // %t = tLDRr %base, %idx 2135 unsigned BaseReg = User.MI->getOperand(0).getReg(); 2136 2137 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2138 continue; 2139 MachineInstr *Shift = User.MI->getPrevNode(); 2140 if (Shift->getOpcode() != ARM::tLSLri || 2141 Shift->getOperand(3).getImm() != 2 || 2142 !Shift->getOperand(2).isKill()) 2143 continue; 2144 IdxReg = Shift->getOperand(2).getReg(); 2145 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg(); 2146 2147 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2148 // the range is checked later, but the LEA might still clobber it and not 2149 // actually get removed. 2150 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2151 continue; 2152 2153 MachineInstr *Load = User.MI->getNextNode(); 2154 if (Load->getOpcode() != ARM::tLDRr) 2155 continue; 2156 if (Load->getOperand(1).getReg() != BaseReg || 2157 Load->getOperand(2).getReg() != ShiftedIdxReg || 2158 !Load->getOperand(2).isKill()) 2159 continue; 2160 2161 // If we're in PIC mode, there should be another ADD following. 2162 auto *TRI = STI->getRegisterInfo(); 2163 2164 // %base cannot be redefined after the load as it will appear before 2165 // TBB/TBH like: 2166 // %base = 2167 // %base = 2168 // tBB %base, %idx 2169 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2170 continue; 2171 2172 if (isPositionIndependentOrROPI) { 2173 MachineInstr *Add = Load->getNextNode(); 2174 if (Add->getOpcode() != ARM::tADDrr || 2175 Add->getOperand(2).getReg() != BaseReg || 2176 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2177 !Add->getOperand(3).isKill()) 2178 continue; 2179 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2180 continue; 2181 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2182 // IdxReg gets redefined in the middle of the sequence. 2183 continue; 2184 Add->eraseFromParent(); 2185 DeadSize += 2; 2186 } else { 2187 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2188 continue; 2189 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2190 // IdxReg gets redefined in the middle of the sequence. 2191 continue; 2192 } 2193 2194 // Now safe to delete the load and lsl. The LEA will be removed later. 2195 CanDeleteLEA = true; 2196 Shift->eraseFromParent(); 2197 Load->eraseFromParent(); 2198 DeadSize += 4; 2199 } 2200 2201 DEBUG(dbgs() << "Shrink JT: " << *MI); 2202 MachineInstr *CPEMI = User.CPEMI; 2203 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2204 if (!isThumb2) 2205 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2206 2207 MachineBasicBlock::iterator MI_JT = MI; 2208 MachineInstr *NewJTMI = 2209 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2210 .addReg(User.MI->getOperand(0).getReg(), 2211 getKillRegState(BaseRegKill)) 2212 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2213 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2214 .addImm(CPEMI->getOperand(0).getImm()); 2215 DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2216 2217 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2218 CPEMI->setDesc(TII->get(JTOpc)); 2219 2220 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2221 NewJTMI->getOperand(0).setReg(ARM::PC); 2222 NewJTMI->getOperand(0).setIsKill(false); 2223 2224 if (CanDeleteLEA) { 2225 if (isThumb2) 2226 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2227 2228 User.MI->eraseFromParent(); 2229 DeadSize += isThumb2 ? 4 : 2; 2230 2231 // The LEA was eliminated, the TBB instruction becomes the only new user 2232 // of the jump table. 2233 User.MI = NewJTMI; 2234 User.MaxDisp = 4; 2235 User.NegOk = false; 2236 User.IsSoImm = false; 2237 User.KnownAlignment = false; 2238 } else { 2239 // The LEA couldn't be eliminated, so we must add another CPUser to 2240 // record the TBB or TBH use. 2241 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2242 auto &CPEs = CPEntries[CPEntryIdx]; 2243 auto Entry = 2244 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2245 ++Entry->RefCount; 2246 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2247 } 2248 } 2249 2250 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2251 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2252 MI->eraseFromParent(); 2253 2254 int Delta = OrigSize - NewSize + DeadSize; 2255 BBInfo[MBB->getNumber()].Size -= Delta; 2256 adjustBBOffsetsAfter(MBB); 2257 2258 ++NumTBs; 2259 MadeChange = true; 2260 } 2261 2262 return MadeChange; 2263 } 2264 2265 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2266 /// jump tables always branch forwards, since that's what tbb and tbh need. 2267 bool ARMConstantIslands::reorderThumb2JumpTables() { 2268 bool MadeChange = false; 2269 2270 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2271 if (!MJTI) return false; 2272 2273 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2274 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2275 MachineInstr *MI = T2JumpTables[i]; 2276 const MCInstrDesc &MCID = MI->getDesc(); 2277 unsigned NumOps = MCID.getNumOperands(); 2278 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2279 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2280 unsigned JTI = JTOP.getIndex(); 2281 assert(JTI < JT.size()); 2282 2283 // We prefer if target blocks for the jump table come after the jump 2284 // instruction so we can use TB[BH]. Loop through the target blocks 2285 // and try to adjust them such that that's true. 2286 int JTNumber = MI->getParent()->getNumber(); 2287 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2288 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2289 MachineBasicBlock *MBB = JTBBs[j]; 2290 int DTNumber = MBB->getNumber(); 2291 2292 if (DTNumber < JTNumber) { 2293 // The destination precedes the switch. Try to move the block forward 2294 // so we have a positive offset. 2295 MachineBasicBlock *NewBB = 2296 adjustJTTargetBlockForward(MBB, MI->getParent()); 2297 if (NewBB) 2298 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2299 MadeChange = true; 2300 } 2301 } 2302 } 2303 2304 return MadeChange; 2305 } 2306 2307 MachineBasicBlock *ARMConstantIslands:: 2308 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2309 // If the destination block is terminated by an unconditional branch, 2310 // try to move it; otherwise, create a new block following the jump 2311 // table that branches back to the actual target. This is a very simple 2312 // heuristic. FIXME: We can definitely improve it. 2313 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2314 SmallVector<MachineOperand, 4> Cond; 2315 SmallVector<MachineOperand, 4> CondPrior; 2316 MachineFunction::iterator BBi = BB->getIterator(); 2317 MachineFunction::iterator OldPrior = std::prev(BBi); 2318 2319 // If the block terminator isn't analyzable, don't try to move the block 2320 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2321 2322 // If the block ends in an unconditional branch, move it. The prior block 2323 // has to have an analyzable terminator for us to move this one. Be paranoid 2324 // and make sure we're not trying to move the entry block of the function. 2325 if (!B && Cond.empty() && BB != &MF->front() && 2326 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2327 BB->moveAfter(JTBB); 2328 OldPrior->updateTerminator(); 2329 BB->updateTerminator(); 2330 // Update numbering to account for the block being moved. 2331 MF->RenumberBlocks(); 2332 ++NumJTMoved; 2333 return nullptr; 2334 } 2335 2336 // Create a new MBB for the code after the jump BB. 2337 MachineBasicBlock *NewBB = 2338 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2339 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2340 MF->insert(MBBI, NewBB); 2341 2342 // Add an unconditional branch from NewBB to BB. 2343 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2344 // correspond directly to anything in the source. 2345 if (isThumb2) 2346 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2347 .addMBB(BB) 2348 .add(predOps(ARMCC::AL)); 2349 else 2350 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2351 .addMBB(BB) 2352 .add(predOps(ARMCC::AL)); 2353 2354 // Update internal data structures to account for the newly inserted MBB. 2355 MF->RenumberBlocks(NewBB); 2356 2357 // Update the CFG. 2358 NewBB->addSuccessor(BB); 2359 JTBB->replaceSuccessor(BB, NewBB); 2360 2361 ++NumJTInserted; 2362 return NewBB; 2363 } 2364 2365 /// createARMConstantIslandPass - returns an instance of the constpool 2366 /// island pass. 2367 FunctionPass *llvm::createARMConstantIslandPass() { 2368 return new ARMConstantIslands(); 2369 } 2370 2371 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2372 false, false) 2373